1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/slab.h> 18 #include <rdma/mr_pool.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/blk-mq-rdma.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <asm/unaligned.h> 30 31 #include <rdma/ib_verbs.h> 32 #include <rdma/rdma_cm.h> 33 #include <linux/nvme-rdma.h> 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 39 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */ 40 41 #define NVME_RDMA_MAX_SEGMENTS 256 42 43 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 44 45 struct nvme_rdma_device { 46 struct ib_device *dev; 47 struct ib_pd *pd; 48 struct kref ref; 49 struct list_head entry; 50 }; 51 52 struct nvme_rdma_qe { 53 struct ib_cqe cqe; 54 void *data; 55 u64 dma; 56 }; 57 58 struct nvme_rdma_queue; 59 struct nvme_rdma_request { 60 struct nvme_request req; 61 struct ib_mr *mr; 62 struct nvme_rdma_qe sqe; 63 union nvme_result result; 64 __le16 status; 65 refcount_t ref; 66 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 67 u32 num_sge; 68 int nents; 69 bool inline_data; 70 struct ib_reg_wr reg_wr; 71 struct ib_cqe reg_cqe; 72 struct nvme_rdma_queue *queue; 73 struct sg_table sg_table; 74 struct scatterlist first_sgl[]; 75 }; 76 77 enum nvme_rdma_queue_flags { 78 NVME_RDMA_Q_ALLOCATED = 0, 79 NVME_RDMA_Q_LIVE = 1, 80 NVME_RDMA_Q_TR_READY = 2, 81 }; 82 83 struct nvme_rdma_queue { 84 struct nvme_rdma_qe *rsp_ring; 85 int queue_size; 86 size_t cmnd_capsule_len; 87 struct nvme_rdma_ctrl *ctrl; 88 struct nvme_rdma_device *device; 89 struct ib_cq *ib_cq; 90 struct ib_qp *qp; 91 92 unsigned long flags; 93 struct rdma_cm_id *cm_id; 94 int cm_error; 95 struct completion cm_done; 96 }; 97 98 struct nvme_rdma_ctrl { 99 /* read only in the hot path */ 100 struct nvme_rdma_queue *queues; 101 102 /* other member variables */ 103 struct blk_mq_tag_set tag_set; 104 struct work_struct err_work; 105 106 struct nvme_rdma_qe async_event_sqe; 107 108 struct delayed_work reconnect_work; 109 110 struct list_head list; 111 112 struct blk_mq_tag_set admin_tag_set; 113 struct nvme_rdma_device *device; 114 115 u32 max_fr_pages; 116 117 struct sockaddr_storage addr; 118 struct sockaddr_storage src_addr; 119 120 struct nvme_ctrl ctrl; 121 }; 122 123 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 124 { 125 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 126 } 127 128 static LIST_HEAD(device_list); 129 static DEFINE_MUTEX(device_list_mutex); 130 131 static LIST_HEAD(nvme_rdma_ctrl_list); 132 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 133 134 /* 135 * Disabling this option makes small I/O goes faster, but is fundamentally 136 * unsafe. With it turned off we will have to register a global rkey that 137 * allows read and write access to all physical memory. 138 */ 139 static bool register_always = true; 140 module_param(register_always, bool, 0444); 141 MODULE_PARM_DESC(register_always, 142 "Use memory registration even for contiguous memory regions"); 143 144 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 145 struct rdma_cm_event *event); 146 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 147 148 static const struct blk_mq_ops nvme_rdma_mq_ops; 149 static const struct blk_mq_ops nvme_rdma_admin_mq_ops; 150 151 /* XXX: really should move to a generic header sooner or later.. */ 152 static inline void put_unaligned_le24(u32 val, u8 *p) 153 { 154 *p++ = val; 155 *p++ = val >> 8; 156 *p++ = val >> 16; 157 } 158 159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 160 { 161 return queue - queue->ctrl->queues; 162 } 163 164 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 165 { 166 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 167 } 168 169 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 170 size_t capsule_size, enum dma_data_direction dir) 171 { 172 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 173 kfree(qe->data); 174 } 175 176 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 177 size_t capsule_size, enum dma_data_direction dir) 178 { 179 qe->data = kzalloc(capsule_size, GFP_KERNEL); 180 if (!qe->data) 181 return -ENOMEM; 182 183 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 184 if (ib_dma_mapping_error(ibdev, qe->dma)) { 185 kfree(qe->data); 186 return -ENOMEM; 187 } 188 189 return 0; 190 } 191 192 static void nvme_rdma_free_ring(struct ib_device *ibdev, 193 struct nvme_rdma_qe *ring, size_t ib_queue_size, 194 size_t capsule_size, enum dma_data_direction dir) 195 { 196 int i; 197 198 for (i = 0; i < ib_queue_size; i++) 199 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 200 kfree(ring); 201 } 202 203 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 204 size_t ib_queue_size, size_t capsule_size, 205 enum dma_data_direction dir) 206 { 207 struct nvme_rdma_qe *ring; 208 int i; 209 210 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 211 if (!ring) 212 return NULL; 213 214 for (i = 0; i < ib_queue_size; i++) { 215 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 216 goto out_free_ring; 217 } 218 219 return ring; 220 221 out_free_ring: 222 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 223 return NULL; 224 } 225 226 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 227 { 228 pr_debug("QP event %s (%d)\n", 229 ib_event_msg(event->event), event->event); 230 231 } 232 233 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 234 { 235 wait_for_completion_interruptible_timeout(&queue->cm_done, 236 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 237 return queue->cm_error; 238 } 239 240 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 241 { 242 struct nvme_rdma_device *dev = queue->device; 243 struct ib_qp_init_attr init_attr; 244 int ret; 245 246 memset(&init_attr, 0, sizeof(init_attr)); 247 init_attr.event_handler = nvme_rdma_qp_event; 248 /* +1 for drain */ 249 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 250 /* +1 for drain */ 251 init_attr.cap.max_recv_wr = queue->queue_size + 1; 252 init_attr.cap.max_recv_sge = 1; 253 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 254 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 255 init_attr.qp_type = IB_QPT_RC; 256 init_attr.send_cq = queue->ib_cq; 257 init_attr.recv_cq = queue->ib_cq; 258 259 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 260 261 queue->qp = queue->cm_id->qp; 262 return ret; 263 } 264 265 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, 266 struct request *rq, unsigned int hctx_idx) 267 { 268 struct nvme_rdma_ctrl *ctrl = set->driver_data; 269 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 270 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 271 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 272 struct nvme_rdma_device *dev = queue->device; 273 274 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 275 DMA_TO_DEVICE); 276 } 277 278 static int nvme_rdma_init_request(struct blk_mq_tag_set *set, 279 struct request *rq, unsigned int hctx_idx, 280 unsigned int numa_node) 281 { 282 struct nvme_rdma_ctrl *ctrl = set->driver_data; 283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 284 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 285 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 286 struct nvme_rdma_device *dev = queue->device; 287 struct ib_device *ibdev = dev->dev; 288 int ret; 289 290 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 291 DMA_TO_DEVICE); 292 if (ret) 293 return ret; 294 295 req->queue = queue; 296 297 return 0; 298 } 299 300 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 301 unsigned int hctx_idx) 302 { 303 struct nvme_rdma_ctrl *ctrl = data; 304 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 305 306 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); 307 308 hctx->driver_data = queue; 309 return 0; 310 } 311 312 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 313 unsigned int hctx_idx) 314 { 315 struct nvme_rdma_ctrl *ctrl = data; 316 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 317 318 BUG_ON(hctx_idx != 0); 319 320 hctx->driver_data = queue; 321 return 0; 322 } 323 324 static void nvme_rdma_free_dev(struct kref *ref) 325 { 326 struct nvme_rdma_device *ndev = 327 container_of(ref, struct nvme_rdma_device, ref); 328 329 mutex_lock(&device_list_mutex); 330 list_del(&ndev->entry); 331 mutex_unlock(&device_list_mutex); 332 333 ib_dealloc_pd(ndev->pd); 334 kfree(ndev); 335 } 336 337 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 338 { 339 kref_put(&dev->ref, nvme_rdma_free_dev); 340 } 341 342 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 343 { 344 return kref_get_unless_zero(&dev->ref); 345 } 346 347 static struct nvme_rdma_device * 348 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 349 { 350 struct nvme_rdma_device *ndev; 351 352 mutex_lock(&device_list_mutex); 353 list_for_each_entry(ndev, &device_list, entry) { 354 if (ndev->dev->node_guid == cm_id->device->node_guid && 355 nvme_rdma_dev_get(ndev)) 356 goto out_unlock; 357 } 358 359 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 360 if (!ndev) 361 goto out_err; 362 363 ndev->dev = cm_id->device; 364 kref_init(&ndev->ref); 365 366 ndev->pd = ib_alloc_pd(ndev->dev, 367 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); 368 if (IS_ERR(ndev->pd)) 369 goto out_free_dev; 370 371 if (!(ndev->dev->attrs.device_cap_flags & 372 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 373 dev_err(&ndev->dev->dev, 374 "Memory registrations not supported.\n"); 375 goto out_free_pd; 376 } 377 378 list_add(&ndev->entry, &device_list); 379 out_unlock: 380 mutex_unlock(&device_list_mutex); 381 return ndev; 382 383 out_free_pd: 384 ib_dealloc_pd(ndev->pd); 385 out_free_dev: 386 kfree(ndev); 387 out_err: 388 mutex_unlock(&device_list_mutex); 389 return NULL; 390 } 391 392 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 393 { 394 struct nvme_rdma_device *dev; 395 struct ib_device *ibdev; 396 397 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) 398 return; 399 400 dev = queue->device; 401 ibdev = dev->dev; 402 403 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); 404 405 /* 406 * The cm_id object might have been destroyed during RDMA connection 407 * establishment error flow to avoid getting other cma events, thus 408 * the destruction of the QP shouldn't use rdma_cm API. 409 */ 410 ib_destroy_qp(queue->qp); 411 ib_free_cq(queue->ib_cq); 412 413 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 414 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 415 416 nvme_rdma_dev_put(dev); 417 } 418 419 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) 420 { 421 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, 422 ibdev->attrs.max_fast_reg_page_list_len); 423 } 424 425 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) 426 { 427 struct ib_device *ibdev; 428 const int send_wr_factor = 3; /* MR, SEND, INV */ 429 const int cq_factor = send_wr_factor + 1; /* + RECV */ 430 int comp_vector, idx = nvme_rdma_queue_idx(queue); 431 int ret; 432 433 queue->device = nvme_rdma_find_get_device(queue->cm_id); 434 if (!queue->device) { 435 dev_err(queue->cm_id->device->dev.parent, 436 "no client data found!\n"); 437 return -ECONNREFUSED; 438 } 439 ibdev = queue->device->dev; 440 441 /* 442 * Spread I/O queues completion vectors according their queue index. 443 * Admin queues can always go on completion vector 0. 444 */ 445 comp_vector = idx == 0 ? idx : idx - 1; 446 447 /* +1 for ib_stop_cq */ 448 queue->ib_cq = ib_alloc_cq(ibdev, queue, 449 cq_factor * queue->queue_size + 1, 450 comp_vector, IB_POLL_SOFTIRQ); 451 if (IS_ERR(queue->ib_cq)) { 452 ret = PTR_ERR(queue->ib_cq); 453 goto out_put_dev; 454 } 455 456 ret = nvme_rdma_create_qp(queue, send_wr_factor); 457 if (ret) 458 goto out_destroy_ib_cq; 459 460 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 461 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 462 if (!queue->rsp_ring) { 463 ret = -ENOMEM; 464 goto out_destroy_qp; 465 } 466 467 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, 468 queue->queue_size, 469 IB_MR_TYPE_MEM_REG, 470 nvme_rdma_get_max_fr_pages(ibdev)); 471 if (ret) { 472 dev_err(queue->ctrl->ctrl.device, 473 "failed to initialize MR pool sized %d for QID %d\n", 474 queue->queue_size, idx); 475 goto out_destroy_ring; 476 } 477 478 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); 479 480 return 0; 481 482 out_destroy_ring: 483 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 484 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 485 out_destroy_qp: 486 rdma_destroy_qp(queue->cm_id); 487 out_destroy_ib_cq: 488 ib_free_cq(queue->ib_cq); 489 out_put_dev: 490 nvme_rdma_dev_put(queue->device); 491 return ret; 492 } 493 494 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, 495 int idx, size_t queue_size) 496 { 497 struct nvme_rdma_queue *queue; 498 struct sockaddr *src_addr = NULL; 499 int ret; 500 501 queue = &ctrl->queues[idx]; 502 queue->ctrl = ctrl; 503 init_completion(&queue->cm_done); 504 505 if (idx > 0) 506 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 507 else 508 queue->cmnd_capsule_len = sizeof(struct nvme_command); 509 510 queue->queue_size = queue_size; 511 512 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 513 RDMA_PS_TCP, IB_QPT_RC); 514 if (IS_ERR(queue->cm_id)) { 515 dev_info(ctrl->ctrl.device, 516 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 517 return PTR_ERR(queue->cm_id); 518 } 519 520 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 521 src_addr = (struct sockaddr *)&ctrl->src_addr; 522 523 queue->cm_error = -ETIMEDOUT; 524 ret = rdma_resolve_addr(queue->cm_id, src_addr, 525 (struct sockaddr *)&ctrl->addr, 526 NVME_RDMA_CONNECT_TIMEOUT_MS); 527 if (ret) { 528 dev_info(ctrl->ctrl.device, 529 "rdma_resolve_addr failed (%d).\n", ret); 530 goto out_destroy_cm_id; 531 } 532 533 ret = nvme_rdma_wait_for_cm(queue); 534 if (ret) { 535 dev_info(ctrl->ctrl.device, 536 "rdma connection establishment failed (%d)\n", ret); 537 goto out_destroy_cm_id; 538 } 539 540 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); 541 542 return 0; 543 544 out_destroy_cm_id: 545 rdma_destroy_id(queue->cm_id); 546 nvme_rdma_destroy_queue_ib(queue); 547 return ret; 548 } 549 550 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 551 { 552 if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) 553 return; 554 555 rdma_disconnect(queue->cm_id); 556 ib_drain_qp(queue->qp); 557 } 558 559 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 560 { 561 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) 562 return; 563 564 if (nvme_rdma_queue_idx(queue) == 0) { 565 nvme_rdma_free_qe(queue->device->dev, 566 &queue->ctrl->async_event_sqe, 567 sizeof(struct nvme_command), DMA_TO_DEVICE); 568 } 569 570 nvme_rdma_destroy_queue_ib(queue); 571 rdma_destroy_id(queue->cm_id); 572 } 573 574 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 575 { 576 int i; 577 578 for (i = 1; i < ctrl->ctrl.queue_count; i++) 579 nvme_rdma_free_queue(&ctrl->queues[i]); 580 } 581 582 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) 583 { 584 int i; 585 586 for (i = 1; i < ctrl->ctrl.queue_count; i++) 587 nvme_rdma_stop_queue(&ctrl->queues[i]); 588 } 589 590 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) 591 { 592 int ret; 593 594 if (idx) 595 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); 596 else 597 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 598 599 if (!ret) 600 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); 601 else 602 dev_info(ctrl->ctrl.device, 603 "failed to connect queue: %d ret=%d\n", idx, ret); 604 return ret; 605 } 606 607 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) 608 { 609 int i, ret = 0; 610 611 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 612 ret = nvme_rdma_start_queue(ctrl, i); 613 if (ret) 614 goto out_stop_queues; 615 } 616 617 return 0; 618 619 out_stop_queues: 620 for (i--; i >= 1; i--) 621 nvme_rdma_stop_queue(&ctrl->queues[i]); 622 return ret; 623 } 624 625 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) 626 { 627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 628 struct ib_device *ibdev = ctrl->device->dev; 629 unsigned int nr_io_queues; 630 int i, ret; 631 632 nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); 633 634 /* 635 * we map queues according to the device irq vectors for 636 * optimal locality so we don't need more queues than 637 * completion vectors. 638 */ 639 nr_io_queues = min_t(unsigned int, nr_io_queues, 640 ibdev->num_comp_vectors); 641 642 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 643 if (ret) 644 return ret; 645 646 ctrl->ctrl.queue_count = nr_io_queues + 1; 647 if (ctrl->ctrl.queue_count < 2) 648 return 0; 649 650 dev_info(ctrl->ctrl.device, 651 "creating %d I/O queues.\n", nr_io_queues); 652 653 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 654 ret = nvme_rdma_alloc_queue(ctrl, i, 655 ctrl->ctrl.sqsize + 1); 656 if (ret) 657 goto out_free_queues; 658 } 659 660 return 0; 661 662 out_free_queues: 663 for (i--; i >= 1; i--) 664 nvme_rdma_free_queue(&ctrl->queues[i]); 665 666 return ret; 667 } 668 669 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, 670 struct blk_mq_tag_set *set) 671 { 672 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 673 674 blk_mq_free_tag_set(set); 675 nvme_rdma_dev_put(ctrl->device); 676 } 677 678 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, 679 bool admin) 680 { 681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 682 struct blk_mq_tag_set *set; 683 int ret; 684 685 if (admin) { 686 set = &ctrl->admin_tag_set; 687 memset(set, 0, sizeof(*set)); 688 set->ops = &nvme_rdma_admin_mq_ops; 689 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 690 set->reserved_tags = 2; /* connect + keep-alive */ 691 set->numa_node = NUMA_NO_NODE; 692 set->cmd_size = sizeof(struct nvme_rdma_request) + 693 SG_CHUNK_SIZE * sizeof(struct scatterlist); 694 set->driver_data = ctrl; 695 set->nr_hw_queues = 1; 696 set->timeout = ADMIN_TIMEOUT; 697 set->flags = BLK_MQ_F_NO_SCHED; 698 } else { 699 set = &ctrl->tag_set; 700 memset(set, 0, sizeof(*set)); 701 set->ops = &nvme_rdma_mq_ops; 702 set->queue_depth = nctrl->opts->queue_size; 703 set->reserved_tags = 1; /* fabric connect */ 704 set->numa_node = NUMA_NO_NODE; 705 set->flags = BLK_MQ_F_SHOULD_MERGE; 706 set->cmd_size = sizeof(struct nvme_rdma_request) + 707 SG_CHUNK_SIZE * sizeof(struct scatterlist); 708 set->driver_data = ctrl; 709 set->nr_hw_queues = nctrl->queue_count - 1; 710 set->timeout = NVME_IO_TIMEOUT; 711 } 712 713 ret = blk_mq_alloc_tag_set(set); 714 if (ret) 715 goto out; 716 717 /* 718 * We need a reference on the device as long as the tag_set is alive, 719 * as the MRs in the request structures need a valid ib_device. 720 */ 721 ret = nvme_rdma_dev_get(ctrl->device); 722 if (!ret) { 723 ret = -EINVAL; 724 goto out_free_tagset; 725 } 726 727 return set; 728 729 out_free_tagset: 730 blk_mq_free_tag_set(set); 731 out: 732 return ERR_PTR(ret); 733 } 734 735 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, 736 bool remove) 737 { 738 nvme_rdma_stop_queue(&ctrl->queues[0]); 739 if (remove) { 740 blk_cleanup_queue(ctrl->ctrl.admin_q); 741 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 742 } 743 nvme_rdma_free_queue(&ctrl->queues[0]); 744 } 745 746 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, 747 bool new) 748 { 749 int error; 750 751 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); 752 if (error) 753 return error; 754 755 ctrl->device = ctrl->queues[0].device; 756 757 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); 758 759 if (new) { 760 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); 761 if (IS_ERR(ctrl->ctrl.admin_tagset)) { 762 error = PTR_ERR(ctrl->ctrl.admin_tagset); 763 goto out_free_queue; 764 } 765 766 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 767 if (IS_ERR(ctrl->ctrl.admin_q)) { 768 error = PTR_ERR(ctrl->ctrl.admin_q); 769 goto out_free_tagset; 770 } 771 } 772 773 error = nvme_rdma_start_queue(ctrl, 0); 774 if (error) 775 goto out_cleanup_queue; 776 777 error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, 778 &ctrl->ctrl.cap); 779 if (error) { 780 dev_err(ctrl->ctrl.device, 781 "prop_get NVME_REG_CAP failed\n"); 782 goto out_cleanup_queue; 783 } 784 785 ctrl->ctrl.sqsize = 786 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 787 788 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 789 if (error) 790 goto out_cleanup_queue; 791 792 ctrl->ctrl.max_hw_sectors = 793 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); 794 795 error = nvme_init_identify(&ctrl->ctrl); 796 if (error) 797 goto out_cleanup_queue; 798 799 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 800 &ctrl->async_event_sqe, sizeof(struct nvme_command), 801 DMA_TO_DEVICE); 802 if (error) 803 goto out_cleanup_queue; 804 805 return 0; 806 807 out_cleanup_queue: 808 if (new) 809 blk_cleanup_queue(ctrl->ctrl.admin_q); 810 out_free_tagset: 811 if (new) 812 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); 813 out_free_queue: 814 nvme_rdma_free_queue(&ctrl->queues[0]); 815 return error; 816 } 817 818 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, 819 bool remove) 820 { 821 nvme_rdma_stop_io_queues(ctrl); 822 if (remove) { 823 blk_cleanup_queue(ctrl->ctrl.connect_q); 824 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 825 } 826 nvme_rdma_free_io_queues(ctrl); 827 } 828 829 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) 830 { 831 int ret; 832 833 ret = nvme_rdma_alloc_io_queues(ctrl); 834 if (ret) 835 return ret; 836 837 if (new) { 838 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); 839 if (IS_ERR(ctrl->ctrl.tagset)) { 840 ret = PTR_ERR(ctrl->ctrl.tagset); 841 goto out_free_io_queues; 842 } 843 844 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 845 if (IS_ERR(ctrl->ctrl.connect_q)) { 846 ret = PTR_ERR(ctrl->ctrl.connect_q); 847 goto out_free_tag_set; 848 } 849 } else { 850 blk_mq_update_nr_hw_queues(&ctrl->tag_set, 851 ctrl->ctrl.queue_count - 1); 852 } 853 854 ret = nvme_rdma_start_io_queues(ctrl); 855 if (ret) 856 goto out_cleanup_connect_q; 857 858 return 0; 859 860 out_cleanup_connect_q: 861 if (new) 862 blk_cleanup_queue(ctrl->ctrl.connect_q); 863 out_free_tag_set: 864 if (new) 865 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 866 out_free_io_queues: 867 nvme_rdma_free_io_queues(ctrl); 868 return ret; 869 } 870 871 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 872 { 873 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 874 875 if (list_empty(&ctrl->list)) 876 goto free_ctrl; 877 878 mutex_lock(&nvme_rdma_ctrl_mutex); 879 list_del(&ctrl->list); 880 mutex_unlock(&nvme_rdma_ctrl_mutex); 881 882 kfree(ctrl->queues); 883 nvmf_free_options(nctrl->opts); 884 free_ctrl: 885 kfree(ctrl); 886 } 887 888 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) 889 { 890 /* If we are resetting/deleting then do nothing */ 891 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) { 892 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || 893 ctrl->ctrl.state == NVME_CTRL_LIVE); 894 return; 895 } 896 897 if (nvmf_should_reconnect(&ctrl->ctrl)) { 898 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", 899 ctrl->ctrl.opts->reconnect_delay); 900 queue_delayed_work(nvme_wq, &ctrl->reconnect_work, 901 ctrl->ctrl.opts->reconnect_delay * HZ); 902 } else { 903 dev_info(ctrl->ctrl.device, "Removing controller...\n"); 904 nvme_delete_ctrl(&ctrl->ctrl); 905 } 906 } 907 908 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 909 { 910 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 911 struct nvme_rdma_ctrl, reconnect_work); 912 bool changed; 913 int ret; 914 915 ++ctrl->ctrl.nr_reconnects; 916 917 ret = nvme_rdma_configure_admin_queue(ctrl, false); 918 if (ret) 919 goto requeue; 920 921 if (ctrl->ctrl.queue_count > 1) { 922 ret = nvme_rdma_configure_io_queues(ctrl, false); 923 if (ret) 924 goto destroy_admin; 925 } 926 927 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 928 if (!changed) { 929 /* state change failure is ok if we're in DELETING state */ 930 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 931 return; 932 } 933 934 nvme_start_ctrl(&ctrl->ctrl); 935 936 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", 937 ctrl->ctrl.nr_reconnects); 938 939 ctrl->ctrl.nr_reconnects = 0; 940 941 return; 942 943 destroy_admin: 944 nvme_rdma_destroy_admin_queue(ctrl, false); 945 requeue: 946 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", 947 ctrl->ctrl.nr_reconnects); 948 nvme_rdma_reconnect_or_remove(ctrl); 949 } 950 951 static void nvme_rdma_error_recovery_work(struct work_struct *work) 952 { 953 struct nvme_rdma_ctrl *ctrl = container_of(work, 954 struct nvme_rdma_ctrl, err_work); 955 956 nvme_stop_keep_alive(&ctrl->ctrl); 957 958 if (ctrl->ctrl.queue_count > 1) { 959 nvme_stop_queues(&ctrl->ctrl); 960 blk_mq_tagset_busy_iter(&ctrl->tag_set, 961 nvme_cancel_request, &ctrl->ctrl); 962 nvme_rdma_destroy_io_queues(ctrl, false); 963 } 964 965 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 966 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 967 nvme_cancel_request, &ctrl->ctrl); 968 nvme_rdma_destroy_admin_queue(ctrl, false); 969 970 /* 971 * queues are not a live anymore, so restart the queues to fail fast 972 * new IO 973 */ 974 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 975 nvme_start_queues(&ctrl->ctrl); 976 977 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 978 /* state change failure should never happen */ 979 WARN_ON_ONCE(1); 980 return; 981 } 982 983 nvme_rdma_reconnect_or_remove(ctrl); 984 } 985 986 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 987 { 988 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 989 return; 990 991 queue_work(nvme_wq, &ctrl->err_work); 992 } 993 994 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 995 const char *op) 996 { 997 struct nvme_rdma_queue *queue = cq->cq_context; 998 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 999 1000 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1001 dev_info(ctrl->ctrl.device, 1002 "%s for CQE 0x%p failed with status %s (%d)\n", 1003 op, wc->wr_cqe, 1004 ib_wc_status_msg(wc->status), wc->status); 1005 nvme_rdma_error_recovery(ctrl); 1006 } 1007 1008 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 1009 { 1010 if (unlikely(wc->status != IB_WC_SUCCESS)) 1011 nvme_rdma_wr_error(cq, wc, "MEMREG"); 1012 } 1013 1014 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 1015 { 1016 struct nvme_rdma_request *req = 1017 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); 1018 struct request *rq = blk_mq_rq_from_pdu(req); 1019 1020 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1021 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 1022 return; 1023 } 1024 1025 if (refcount_dec_and_test(&req->ref)) 1026 nvme_end_request(rq, req->status, req->result); 1027 1028 } 1029 1030 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 1031 struct nvme_rdma_request *req) 1032 { 1033 struct ib_send_wr *bad_wr; 1034 struct ib_send_wr wr = { 1035 .opcode = IB_WR_LOCAL_INV, 1036 .next = NULL, 1037 .num_sge = 0, 1038 .send_flags = IB_SEND_SIGNALED, 1039 .ex.invalidate_rkey = req->mr->rkey, 1040 }; 1041 1042 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 1043 wr.wr_cqe = &req->reg_cqe; 1044 1045 return ib_post_send(queue->qp, &wr, &bad_wr); 1046 } 1047 1048 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 1049 struct request *rq) 1050 { 1051 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1052 struct nvme_rdma_device *dev = queue->device; 1053 struct ib_device *ibdev = dev->dev; 1054 1055 if (!blk_rq_bytes(rq)) 1056 return; 1057 1058 if (req->mr) { 1059 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1060 req->mr = NULL; 1061 } 1062 1063 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 1064 req->nents, rq_data_dir(rq) == 1065 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1066 1067 nvme_cleanup_cmd(rq); 1068 sg_free_table_chained(&req->sg_table, true); 1069 } 1070 1071 static int nvme_rdma_set_sg_null(struct nvme_command *c) 1072 { 1073 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1074 1075 sg->addr = 0; 1076 put_unaligned_le24(0, sg->length); 1077 put_unaligned_le32(0, sg->key); 1078 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1079 return 0; 1080 } 1081 1082 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 1083 struct nvme_rdma_request *req, struct nvme_command *c) 1084 { 1085 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 1086 1087 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 1088 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 1089 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 1090 1091 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 1092 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 1093 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 1094 1095 req->inline_data = true; 1096 req->num_sge++; 1097 return 0; 1098 } 1099 1100 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 1101 struct nvme_rdma_request *req, struct nvme_command *c) 1102 { 1103 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1104 1105 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 1106 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 1107 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); 1108 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 1109 return 0; 1110 } 1111 1112 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 1113 struct nvme_rdma_request *req, struct nvme_command *c, 1114 int count) 1115 { 1116 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 1117 int nr; 1118 1119 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); 1120 if (WARN_ON_ONCE(!req->mr)) 1121 return -EAGAIN; 1122 1123 /* 1124 * Align the MR to a 4K page size to match the ctrl page size and 1125 * the block virtual boundary. 1126 */ 1127 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); 1128 if (unlikely(nr < count)) { 1129 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); 1130 req->mr = NULL; 1131 if (nr < 0) 1132 return nr; 1133 return -EINVAL; 1134 } 1135 1136 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 1137 1138 req->reg_cqe.done = nvme_rdma_memreg_done; 1139 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 1140 req->reg_wr.wr.opcode = IB_WR_REG_MR; 1141 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 1142 req->reg_wr.wr.num_sge = 0; 1143 req->reg_wr.mr = req->mr; 1144 req->reg_wr.key = req->mr->rkey; 1145 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 1146 IB_ACCESS_REMOTE_READ | 1147 IB_ACCESS_REMOTE_WRITE; 1148 1149 sg->addr = cpu_to_le64(req->mr->iova); 1150 put_unaligned_le24(req->mr->length, sg->length); 1151 put_unaligned_le32(req->mr->rkey, sg->key); 1152 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 1153 NVME_SGL_FMT_INVALIDATE; 1154 1155 return 0; 1156 } 1157 1158 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 1159 struct request *rq, struct nvme_command *c) 1160 { 1161 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1162 struct nvme_rdma_device *dev = queue->device; 1163 struct ib_device *ibdev = dev->dev; 1164 int count, ret; 1165 1166 req->num_sge = 1; 1167 req->inline_data = false; 1168 refcount_set(&req->ref, 2); /* send and recv completions */ 1169 1170 c->common.flags |= NVME_CMD_SGL_METABUF; 1171 1172 if (!blk_rq_bytes(rq)) 1173 return nvme_rdma_set_sg_null(c); 1174 1175 req->sg_table.sgl = req->first_sgl; 1176 ret = sg_alloc_table_chained(&req->sg_table, 1177 blk_rq_nr_phys_segments(rq), req->sg_table.sgl); 1178 if (ret) 1179 return -ENOMEM; 1180 1181 req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 1182 1183 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, 1184 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 1185 if (unlikely(count <= 0)) { 1186 sg_free_table_chained(&req->sg_table, true); 1187 return -EIO; 1188 } 1189 1190 if (count == 1) { 1191 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && 1192 blk_rq_payload_bytes(rq) <= 1193 nvme_rdma_inline_data_size(queue)) 1194 return nvme_rdma_map_sg_inline(queue, req, c); 1195 1196 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) 1197 return nvme_rdma_map_sg_single(queue, req, c); 1198 } 1199 1200 return nvme_rdma_map_sg_fr(queue, req, c, count); 1201 } 1202 1203 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1204 { 1205 struct nvme_rdma_qe *qe = 1206 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1207 struct nvme_rdma_request *req = 1208 container_of(qe, struct nvme_rdma_request, sqe); 1209 struct request *rq = blk_mq_rq_from_pdu(req); 1210 1211 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1212 nvme_rdma_wr_error(cq, wc, "SEND"); 1213 return; 1214 } 1215 1216 if (refcount_dec_and_test(&req->ref)) 1217 nvme_end_request(rq, req->status, req->result); 1218 } 1219 1220 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1221 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1222 struct ib_send_wr *first) 1223 { 1224 struct ib_send_wr wr, *bad_wr; 1225 int ret; 1226 1227 sge->addr = qe->dma; 1228 sge->length = sizeof(struct nvme_command), 1229 sge->lkey = queue->device->pd->local_dma_lkey; 1230 1231 wr.next = NULL; 1232 wr.wr_cqe = &qe->cqe; 1233 wr.sg_list = sge; 1234 wr.num_sge = num_sge; 1235 wr.opcode = IB_WR_SEND; 1236 wr.send_flags = IB_SEND_SIGNALED; 1237 1238 if (first) 1239 first->next = ≀ 1240 else 1241 first = ≀ 1242 1243 ret = ib_post_send(queue->qp, first, &bad_wr); 1244 if (unlikely(ret)) { 1245 dev_err(queue->ctrl->ctrl.device, 1246 "%s failed with error code %d\n", __func__, ret); 1247 } 1248 return ret; 1249 } 1250 1251 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1252 struct nvme_rdma_qe *qe) 1253 { 1254 struct ib_recv_wr wr, *bad_wr; 1255 struct ib_sge list; 1256 int ret; 1257 1258 list.addr = qe->dma; 1259 list.length = sizeof(struct nvme_completion); 1260 list.lkey = queue->device->pd->local_dma_lkey; 1261 1262 qe->cqe.done = nvme_rdma_recv_done; 1263 1264 wr.next = NULL; 1265 wr.wr_cqe = &qe->cqe; 1266 wr.sg_list = &list; 1267 wr.num_sge = 1; 1268 1269 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1270 if (unlikely(ret)) { 1271 dev_err(queue->ctrl->ctrl.device, 1272 "%s failed with error code %d\n", __func__, ret); 1273 } 1274 return ret; 1275 } 1276 1277 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1278 { 1279 u32 queue_idx = nvme_rdma_queue_idx(queue); 1280 1281 if (queue_idx == 0) 1282 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1283 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1284 } 1285 1286 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) 1287 { 1288 if (unlikely(wc->status != IB_WC_SUCCESS)) 1289 nvme_rdma_wr_error(cq, wc, "ASYNC"); 1290 } 1291 1292 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) 1293 { 1294 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1295 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1296 struct ib_device *dev = queue->device->dev; 1297 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1298 struct nvme_command *cmd = sqe->data; 1299 struct ib_sge sge; 1300 int ret; 1301 1302 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1303 1304 memset(cmd, 0, sizeof(*cmd)); 1305 cmd->common.opcode = nvme_admin_async_event; 1306 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1307 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1308 nvme_rdma_set_sg_null(cmd); 1309 1310 sqe->cqe.done = nvme_rdma_async_done; 1311 1312 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1313 DMA_TO_DEVICE); 1314 1315 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); 1316 WARN_ON_ONCE(ret); 1317 } 1318 1319 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1320 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1321 { 1322 struct request *rq; 1323 struct nvme_rdma_request *req; 1324 int ret = 0; 1325 1326 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1327 if (!rq) { 1328 dev_err(queue->ctrl->ctrl.device, 1329 "tag 0x%x on QP %#x not found\n", 1330 cqe->command_id, queue->qp->qp_num); 1331 nvme_rdma_error_recovery(queue->ctrl); 1332 return ret; 1333 } 1334 req = blk_mq_rq_to_pdu(rq); 1335 1336 req->status = cqe->status; 1337 req->result = cqe->result; 1338 1339 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { 1340 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { 1341 dev_err(queue->ctrl->ctrl.device, 1342 "Bogus remote invalidation for rkey %#x\n", 1343 req->mr->rkey); 1344 nvme_rdma_error_recovery(queue->ctrl); 1345 } 1346 } else if (req->mr) { 1347 ret = nvme_rdma_inv_rkey(queue, req); 1348 if (unlikely(ret < 0)) { 1349 dev_err(queue->ctrl->ctrl.device, 1350 "Queueing INV WR for rkey %#x failed (%d)\n", 1351 req->mr->rkey, ret); 1352 nvme_rdma_error_recovery(queue->ctrl); 1353 } 1354 /* the local invalidation completion will end the request */ 1355 return 0; 1356 } 1357 1358 if (refcount_dec_and_test(&req->ref)) { 1359 if (rq->tag == tag) 1360 ret = 1; 1361 nvme_end_request(rq, req->status, req->result); 1362 } 1363 1364 return ret; 1365 } 1366 1367 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1368 { 1369 struct nvme_rdma_qe *qe = 1370 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1371 struct nvme_rdma_queue *queue = cq->cq_context; 1372 struct ib_device *ibdev = queue->device->dev; 1373 struct nvme_completion *cqe = qe->data; 1374 const size_t len = sizeof(struct nvme_completion); 1375 int ret = 0; 1376 1377 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1378 nvme_rdma_wr_error(cq, wc, "RECV"); 1379 return 0; 1380 } 1381 1382 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1383 /* 1384 * AEN requests are special as they don't time out and can 1385 * survive any kind of queue freeze and often don't respond to 1386 * aborts. We don't even bother to allocate a struct request 1387 * for them but rather special case them here. 1388 */ 1389 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1390 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) 1391 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, 1392 &cqe->result); 1393 else 1394 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1395 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1396 1397 nvme_rdma_post_recv(queue, qe); 1398 return ret; 1399 } 1400 1401 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1402 { 1403 __nvme_rdma_recv_done(cq, wc, -1); 1404 } 1405 1406 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1407 { 1408 int ret, i; 1409 1410 for (i = 0; i < queue->queue_size; i++) { 1411 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1412 if (ret) 1413 goto out_destroy_queue_ib; 1414 } 1415 1416 return 0; 1417 1418 out_destroy_queue_ib: 1419 nvme_rdma_destroy_queue_ib(queue); 1420 return ret; 1421 } 1422 1423 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1424 struct rdma_cm_event *ev) 1425 { 1426 struct rdma_cm_id *cm_id = queue->cm_id; 1427 int status = ev->status; 1428 const char *rej_msg; 1429 const struct nvme_rdma_cm_rej *rej_data; 1430 u8 rej_data_len; 1431 1432 rej_msg = rdma_reject_msg(cm_id, status); 1433 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); 1434 1435 if (rej_data && rej_data_len >= sizeof(u16)) { 1436 u16 sts = le16_to_cpu(rej_data->sts); 1437 1438 dev_err(queue->ctrl->ctrl.device, 1439 "Connect rejected: status %d (%s) nvme status %d (%s).\n", 1440 status, rej_msg, sts, nvme_rdma_cm_msg(sts)); 1441 } else { 1442 dev_err(queue->ctrl->ctrl.device, 1443 "Connect rejected: status %d (%s).\n", status, rej_msg); 1444 } 1445 1446 return -ECONNRESET; 1447 } 1448 1449 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1450 { 1451 int ret; 1452 1453 ret = nvme_rdma_create_queue_ib(queue); 1454 if (ret) 1455 return ret; 1456 1457 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1458 if (ret) { 1459 dev_err(queue->ctrl->ctrl.device, 1460 "rdma_resolve_route failed (%d).\n", 1461 queue->cm_error); 1462 goto out_destroy_queue; 1463 } 1464 1465 return 0; 1466 1467 out_destroy_queue: 1468 nvme_rdma_destroy_queue_ib(queue); 1469 return ret; 1470 } 1471 1472 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1473 { 1474 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1475 struct rdma_conn_param param = { }; 1476 struct nvme_rdma_cm_req priv = { }; 1477 int ret; 1478 1479 param.qp_num = queue->qp->qp_num; 1480 param.flow_control = 1; 1481 1482 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1483 /* maximum retry count */ 1484 param.retry_count = 7; 1485 param.rnr_retry_count = 7; 1486 param.private_data = &priv; 1487 param.private_data_len = sizeof(priv); 1488 1489 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1490 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1491 /* 1492 * set the admin queue depth to the minimum size 1493 * specified by the Fabrics standard. 1494 */ 1495 if (priv.qid == 0) { 1496 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); 1497 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 1498 } else { 1499 /* 1500 * current interpretation of the fabrics spec 1501 * is at minimum you make hrqsize sqsize+1, or a 1502 * 1's based representation of sqsize. 1503 */ 1504 priv.hrqsize = cpu_to_le16(queue->queue_size); 1505 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); 1506 } 1507 1508 ret = rdma_connect(queue->cm_id, ¶m); 1509 if (ret) { 1510 dev_err(ctrl->ctrl.device, 1511 "rdma_connect failed (%d).\n", ret); 1512 goto out_destroy_queue_ib; 1513 } 1514 1515 return 0; 1516 1517 out_destroy_queue_ib: 1518 nvme_rdma_destroy_queue_ib(queue); 1519 return ret; 1520 } 1521 1522 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1523 struct rdma_cm_event *ev) 1524 { 1525 struct nvme_rdma_queue *queue = cm_id->context; 1526 int cm_error = 0; 1527 1528 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1529 rdma_event_msg(ev->event), ev->event, 1530 ev->status, cm_id); 1531 1532 switch (ev->event) { 1533 case RDMA_CM_EVENT_ADDR_RESOLVED: 1534 cm_error = nvme_rdma_addr_resolved(queue); 1535 break; 1536 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1537 cm_error = nvme_rdma_route_resolved(queue); 1538 break; 1539 case RDMA_CM_EVENT_ESTABLISHED: 1540 queue->cm_error = nvme_rdma_conn_established(queue); 1541 /* complete cm_done regardless of success/failure */ 1542 complete(&queue->cm_done); 1543 return 0; 1544 case RDMA_CM_EVENT_REJECTED: 1545 nvme_rdma_destroy_queue_ib(queue); 1546 cm_error = nvme_rdma_conn_rejected(queue, ev); 1547 break; 1548 case RDMA_CM_EVENT_ROUTE_ERROR: 1549 case RDMA_CM_EVENT_CONNECT_ERROR: 1550 case RDMA_CM_EVENT_UNREACHABLE: 1551 nvme_rdma_destroy_queue_ib(queue); 1552 case RDMA_CM_EVENT_ADDR_ERROR: 1553 dev_dbg(queue->ctrl->ctrl.device, 1554 "CM error event %d\n", ev->event); 1555 cm_error = -ECONNRESET; 1556 break; 1557 case RDMA_CM_EVENT_DISCONNECTED: 1558 case RDMA_CM_EVENT_ADDR_CHANGE: 1559 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1560 dev_dbg(queue->ctrl->ctrl.device, 1561 "disconnect received - connection closed\n"); 1562 nvme_rdma_error_recovery(queue->ctrl); 1563 break; 1564 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1565 /* device removal is handled via the ib_client API */ 1566 break; 1567 default: 1568 dev_err(queue->ctrl->ctrl.device, 1569 "Unexpected RDMA CM event (%d)\n", ev->event); 1570 nvme_rdma_error_recovery(queue->ctrl); 1571 break; 1572 } 1573 1574 if (cm_error) { 1575 queue->cm_error = cm_error; 1576 complete(&queue->cm_done); 1577 } 1578 1579 return 0; 1580 } 1581 1582 static enum blk_eh_timer_return 1583 nvme_rdma_timeout(struct request *rq, bool reserved) 1584 { 1585 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1586 1587 dev_warn(req->queue->ctrl->ctrl.device, 1588 "I/O %d QID %d timeout, reset controller\n", 1589 rq->tag, nvme_rdma_queue_idx(req->queue)); 1590 1591 /* queue error recovery */ 1592 nvme_rdma_error_recovery(req->queue->ctrl); 1593 1594 /* fail with DNR on cmd timeout */ 1595 nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1596 1597 return BLK_EH_HANDLED; 1598 } 1599 1600 /* 1601 * We cannot accept any other command until the Connect command has completed. 1602 */ 1603 static inline blk_status_t 1604 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq) 1605 { 1606 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) 1607 return nvmf_check_init_req(&queue->ctrl->ctrl, rq); 1608 return BLK_STS_OK; 1609 } 1610 1611 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1612 const struct blk_mq_queue_data *bd) 1613 { 1614 struct nvme_ns *ns = hctx->queue->queuedata; 1615 struct nvme_rdma_queue *queue = hctx->driver_data; 1616 struct request *rq = bd->rq; 1617 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1618 struct nvme_rdma_qe *sqe = &req->sqe; 1619 struct nvme_command *c = sqe->data; 1620 struct ib_device *dev; 1621 blk_status_t ret; 1622 int err; 1623 1624 WARN_ON_ONCE(rq->tag < 0); 1625 1626 ret = nvme_rdma_is_ready(queue, rq); 1627 if (unlikely(ret)) 1628 return ret; 1629 1630 dev = queue->device->dev; 1631 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1632 sizeof(struct nvme_command), DMA_TO_DEVICE); 1633 1634 ret = nvme_setup_cmd(ns, rq, c); 1635 if (ret) 1636 return ret; 1637 1638 blk_mq_start_request(rq); 1639 1640 err = nvme_rdma_map_data(queue, rq, c); 1641 if (unlikely(err < 0)) { 1642 dev_err(queue->ctrl->ctrl.device, 1643 "Failed to map data (%d)\n", err); 1644 nvme_cleanup_cmd(rq); 1645 goto err; 1646 } 1647 1648 sqe->cqe.done = nvme_rdma_send_done; 1649 1650 ib_dma_sync_single_for_device(dev, sqe->dma, 1651 sizeof(struct nvme_command), DMA_TO_DEVICE); 1652 1653 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1654 req->mr ? &req->reg_wr.wr : NULL); 1655 if (unlikely(err)) { 1656 nvme_rdma_unmap_data(queue, rq); 1657 goto err; 1658 } 1659 1660 return BLK_STS_OK; 1661 err: 1662 if (err == -ENOMEM || err == -EAGAIN) 1663 return BLK_STS_RESOURCE; 1664 return BLK_STS_IOERR; 1665 } 1666 1667 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1668 { 1669 struct nvme_rdma_queue *queue = hctx->driver_data; 1670 struct ib_cq *cq = queue->ib_cq; 1671 struct ib_wc wc; 1672 int found = 0; 1673 1674 while (ib_poll_cq(cq, 1, &wc) > 0) { 1675 struct ib_cqe *cqe = wc.wr_cqe; 1676 1677 if (cqe) { 1678 if (cqe->done == nvme_rdma_recv_done) 1679 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1680 else 1681 cqe->done(cq, &wc); 1682 } 1683 } 1684 1685 return found; 1686 } 1687 1688 static void nvme_rdma_complete_rq(struct request *rq) 1689 { 1690 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1691 1692 nvme_rdma_unmap_data(req->queue, rq); 1693 nvme_complete_rq(rq); 1694 } 1695 1696 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) 1697 { 1698 struct nvme_rdma_ctrl *ctrl = set->driver_data; 1699 1700 return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); 1701 } 1702 1703 static const struct blk_mq_ops nvme_rdma_mq_ops = { 1704 .queue_rq = nvme_rdma_queue_rq, 1705 .complete = nvme_rdma_complete_rq, 1706 .init_request = nvme_rdma_init_request, 1707 .exit_request = nvme_rdma_exit_request, 1708 .init_hctx = nvme_rdma_init_hctx, 1709 .poll = nvme_rdma_poll, 1710 .timeout = nvme_rdma_timeout, 1711 .map_queues = nvme_rdma_map_queues, 1712 }; 1713 1714 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1715 .queue_rq = nvme_rdma_queue_rq, 1716 .complete = nvme_rdma_complete_rq, 1717 .init_request = nvme_rdma_init_request, 1718 .exit_request = nvme_rdma_exit_request, 1719 .init_hctx = nvme_rdma_init_admin_hctx, 1720 .timeout = nvme_rdma_timeout, 1721 }; 1722 1723 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) 1724 { 1725 cancel_work_sync(&ctrl->err_work); 1726 cancel_delayed_work_sync(&ctrl->reconnect_work); 1727 1728 if (ctrl->ctrl.queue_count > 1) { 1729 nvme_stop_queues(&ctrl->ctrl); 1730 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1731 nvme_cancel_request, &ctrl->ctrl); 1732 nvme_rdma_destroy_io_queues(ctrl, shutdown); 1733 } 1734 1735 if (shutdown) 1736 nvme_shutdown_ctrl(&ctrl->ctrl); 1737 else 1738 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 1739 1740 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 1741 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1742 nvme_cancel_request, &ctrl->ctrl); 1743 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1744 nvme_rdma_destroy_admin_queue(ctrl, shutdown); 1745 } 1746 1747 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) 1748 { 1749 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); 1750 } 1751 1752 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1753 { 1754 struct nvme_rdma_ctrl *ctrl = 1755 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); 1756 int ret; 1757 bool changed; 1758 1759 nvme_stop_ctrl(&ctrl->ctrl); 1760 nvme_rdma_shutdown_ctrl(ctrl, false); 1761 1762 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 1763 /* state change failure should never happen */ 1764 WARN_ON_ONCE(1); 1765 return; 1766 } 1767 1768 ret = nvme_rdma_configure_admin_queue(ctrl, false); 1769 if (ret) 1770 goto out_fail; 1771 1772 if (ctrl->ctrl.queue_count > 1) { 1773 ret = nvme_rdma_configure_io_queues(ctrl, false); 1774 if (ret) 1775 goto out_fail; 1776 } 1777 1778 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1779 if (!changed) { 1780 /* state change failure is ok if we're in DELETING state */ 1781 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); 1782 return; 1783 } 1784 1785 nvme_start_ctrl(&ctrl->ctrl); 1786 1787 return; 1788 1789 out_fail: 1790 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1791 nvme_remove_namespaces(&ctrl->ctrl); 1792 nvme_rdma_shutdown_ctrl(ctrl, true); 1793 nvme_uninit_ctrl(&ctrl->ctrl); 1794 nvme_put_ctrl(&ctrl->ctrl); 1795 } 1796 1797 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1798 .name = "rdma", 1799 .module = THIS_MODULE, 1800 .flags = NVME_F_FABRICS, 1801 .reg_read32 = nvmf_reg_read32, 1802 .reg_read64 = nvmf_reg_read64, 1803 .reg_write32 = nvmf_reg_write32, 1804 .free_ctrl = nvme_rdma_free_ctrl, 1805 .submit_async_event = nvme_rdma_submit_async_event, 1806 .delete_ctrl = nvme_rdma_delete_ctrl, 1807 .get_address = nvmf_get_address, 1808 }; 1809 1810 static inline bool 1811 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, 1812 struct nvmf_ctrl_options *opts) 1813 { 1814 char *stdport = __stringify(NVME_RDMA_IP_PORT); 1815 1816 1817 if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || 1818 strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) 1819 return false; 1820 1821 if (opts->mask & NVMF_OPT_TRSVCID && 1822 ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1823 if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) 1824 return false; 1825 } else if (opts->mask & NVMF_OPT_TRSVCID) { 1826 if (strcmp(opts->trsvcid, stdport)) 1827 return false; 1828 } else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { 1829 if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) 1830 return false; 1831 } 1832 /* else, it's a match as both have stdport. Fall to next checks */ 1833 1834 /* 1835 * checking the local address is rough. In most cases, one 1836 * is not specified and the host port is selected by the stack. 1837 * 1838 * Assume no match if: 1839 * local address is specified and address is not the same 1840 * local address is not specified but remote is, or vice versa 1841 * (admin using specific host_traddr when it matters). 1842 */ 1843 if (opts->mask & NVMF_OPT_HOST_TRADDR && 1844 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { 1845 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) 1846 return false; 1847 } else if (opts->mask & NVMF_OPT_HOST_TRADDR || 1848 ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) 1849 return false; 1850 /* 1851 * if neither controller had an host port specified, assume it's 1852 * a match as everything else matched. 1853 */ 1854 1855 return true; 1856 } 1857 1858 /* 1859 * Fails a connection request if it matches an existing controller 1860 * (association) with the same tuple: 1861 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> 1862 * 1863 * if local address is not specified in the request, it will match an 1864 * existing controller with all the other parameters the same and no 1865 * local port address specified as well. 1866 * 1867 * The ports don't need to be compared as they are intrinsically 1868 * already matched by the port pointers supplied. 1869 */ 1870 static bool 1871 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) 1872 { 1873 struct nvme_rdma_ctrl *ctrl; 1874 bool found = false; 1875 1876 mutex_lock(&nvme_rdma_ctrl_mutex); 1877 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 1878 found = __nvme_rdma_options_match(ctrl, opts); 1879 if (found) 1880 break; 1881 } 1882 mutex_unlock(&nvme_rdma_ctrl_mutex); 1883 1884 return found; 1885 } 1886 1887 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1888 struct nvmf_ctrl_options *opts) 1889 { 1890 struct nvme_rdma_ctrl *ctrl; 1891 int ret; 1892 bool changed; 1893 char *port; 1894 1895 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1896 if (!ctrl) 1897 return ERR_PTR(-ENOMEM); 1898 ctrl->ctrl.opts = opts; 1899 INIT_LIST_HEAD(&ctrl->list); 1900 1901 if (opts->mask & NVMF_OPT_TRSVCID) 1902 port = opts->trsvcid; 1903 else 1904 port = __stringify(NVME_RDMA_IP_PORT); 1905 1906 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1907 opts->traddr, port, &ctrl->addr); 1908 if (ret) { 1909 pr_err("malformed address passed: %s:%s\n", opts->traddr, port); 1910 goto out_free_ctrl; 1911 } 1912 1913 if (opts->mask & NVMF_OPT_HOST_TRADDR) { 1914 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, 1915 opts->host_traddr, NULL, &ctrl->src_addr); 1916 if (ret) { 1917 pr_err("malformed src address passed: %s\n", 1918 opts->host_traddr); 1919 goto out_free_ctrl; 1920 } 1921 } 1922 1923 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { 1924 ret = -EALREADY; 1925 goto out_free_ctrl; 1926 } 1927 1928 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1929 0 /* no quirks, we're perfect! */); 1930 if (ret) 1931 goto out_free_ctrl; 1932 1933 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1934 nvme_rdma_reconnect_ctrl_work); 1935 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1936 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); 1937 1938 ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1939 ctrl->ctrl.sqsize = opts->queue_size - 1; 1940 ctrl->ctrl.kato = opts->kato; 1941 1942 ret = -ENOMEM; 1943 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), 1944 GFP_KERNEL); 1945 if (!ctrl->queues) 1946 goto out_uninit_ctrl; 1947 1948 ret = nvme_rdma_configure_admin_queue(ctrl, true); 1949 if (ret) 1950 goto out_kfree_queues; 1951 1952 /* sanity check icdoff */ 1953 if (ctrl->ctrl.icdoff) { 1954 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1955 ret = -EINVAL; 1956 goto out_remove_admin_queue; 1957 } 1958 1959 /* sanity check keyed sgls */ 1960 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1961 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1962 ret = -EINVAL; 1963 goto out_remove_admin_queue; 1964 } 1965 1966 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1967 /* warn if maxcmd is lower than queue_size */ 1968 dev_warn(ctrl->ctrl.device, 1969 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1970 opts->queue_size, ctrl->ctrl.maxcmd); 1971 opts->queue_size = ctrl->ctrl.maxcmd; 1972 } 1973 1974 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 1975 /* warn if sqsize is lower than queue_size */ 1976 dev_warn(ctrl->ctrl.device, 1977 "queue_size %zu > ctrl sqsize %u, clamping down\n", 1978 opts->queue_size, ctrl->ctrl.sqsize + 1); 1979 opts->queue_size = ctrl->ctrl.sqsize + 1; 1980 } 1981 1982 if (opts->nr_io_queues) { 1983 ret = nvme_rdma_configure_io_queues(ctrl, true); 1984 if (ret) 1985 goto out_remove_admin_queue; 1986 } 1987 1988 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1989 WARN_ON_ONCE(!changed); 1990 1991 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", 1992 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1993 1994 nvme_get_ctrl(&ctrl->ctrl); 1995 1996 mutex_lock(&nvme_rdma_ctrl_mutex); 1997 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1998 mutex_unlock(&nvme_rdma_ctrl_mutex); 1999 2000 nvme_start_ctrl(&ctrl->ctrl); 2001 2002 return &ctrl->ctrl; 2003 2004 out_remove_admin_queue: 2005 nvme_rdma_destroy_admin_queue(ctrl, true); 2006 out_kfree_queues: 2007 kfree(ctrl->queues); 2008 out_uninit_ctrl: 2009 nvme_uninit_ctrl(&ctrl->ctrl); 2010 nvme_put_ctrl(&ctrl->ctrl); 2011 if (ret > 0) 2012 ret = -EIO; 2013 return ERR_PTR(ret); 2014 out_free_ctrl: 2015 kfree(ctrl); 2016 return ERR_PTR(ret); 2017 } 2018 2019 static struct nvmf_transport_ops nvme_rdma_transport = { 2020 .name = "rdma", 2021 .required_opts = NVMF_OPT_TRADDR, 2022 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | 2023 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, 2024 .create_ctrl = nvme_rdma_create_ctrl, 2025 }; 2026 2027 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) 2028 { 2029 struct nvme_rdma_ctrl *ctrl; 2030 2031 /* Delete all controllers using this device */ 2032 mutex_lock(&nvme_rdma_ctrl_mutex); 2033 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { 2034 if (ctrl->device->dev != ib_device) 2035 continue; 2036 dev_info(ctrl->ctrl.device, 2037 "Removing ctrl: NQN \"%s\", addr %pISp\n", 2038 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 2039 nvme_delete_ctrl(&ctrl->ctrl); 2040 } 2041 mutex_unlock(&nvme_rdma_ctrl_mutex); 2042 2043 flush_workqueue(nvme_wq); 2044 } 2045 2046 static struct ib_client nvme_rdma_ib_client = { 2047 .name = "nvme_rdma", 2048 .remove = nvme_rdma_remove_one 2049 }; 2050 2051 static int __init nvme_rdma_init_module(void) 2052 { 2053 int ret; 2054 2055 ret = ib_register_client(&nvme_rdma_ib_client); 2056 if (ret) 2057 return ret; 2058 2059 ret = nvmf_register_transport(&nvme_rdma_transport); 2060 if (ret) 2061 goto err_unreg_client; 2062 2063 return 0; 2064 2065 err_unreg_client: 2066 ib_unregister_client(&nvme_rdma_ib_client); 2067 return ret; 2068 } 2069 2070 static void __exit nvme_rdma_cleanup_module(void) 2071 { 2072 nvmf_unregister_transport(&nvme_rdma_transport); 2073 ib_unregister_client(&nvme_rdma_ib_client); 2074 } 2075 2076 module_init(nvme_rdma_init_module); 2077 module_exit(nvme_rdma_cleanup_module); 2078 2079 MODULE_LICENSE("GPL v2"); 2080