1 /* 2 * NVMe over Fabrics RDMA host code. 3 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 #include <linux/delay.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/slab.h> 19 #include <linux/err.h> 20 #include <linux/string.h> 21 #include <linux/jiffies.h> 22 #include <linux/atomic.h> 23 #include <linux/blk-mq.h> 24 #include <linux/types.h> 25 #include <linux/list.h> 26 #include <linux/mutex.h> 27 #include <linux/scatterlist.h> 28 #include <linux/nvme.h> 29 #include <linux/t10-pi.h> 30 #include <asm/unaligned.h> 31 32 #include <rdma/ib_verbs.h> 33 #include <rdma/rdma_cm.h> 34 #include <rdma/ib_cm.h> 35 #include <linux/nvme-rdma.h> 36 37 #include "nvme.h" 38 #include "fabrics.h" 39 40 41 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */ 42 43 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */ 44 45 #define NVME_RDMA_MAX_SEGMENTS 256 46 47 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1 48 49 #define NVME_RDMA_MAX_PAGES_PER_MR 512 50 51 #define NVME_RDMA_DEF_RECONNECT_DELAY 20 52 53 /* 54 * We handle AEN commands ourselves and don't even let the 55 * block layer know about them. 56 */ 57 #define NVME_RDMA_NR_AEN_COMMANDS 1 58 #define NVME_RDMA_AQ_BLKMQ_DEPTH \ 59 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS) 60 61 struct nvme_rdma_device { 62 struct ib_device *dev; 63 struct ib_pd *pd; 64 struct ib_mr *mr; 65 struct kref ref; 66 struct list_head entry; 67 }; 68 69 struct nvme_rdma_qe { 70 struct ib_cqe cqe; 71 void *data; 72 u64 dma; 73 }; 74 75 struct nvme_rdma_queue; 76 struct nvme_rdma_request { 77 struct ib_mr *mr; 78 struct nvme_rdma_qe sqe; 79 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; 80 u32 num_sge; 81 int nents; 82 bool inline_data; 83 bool need_inval; 84 struct ib_reg_wr reg_wr; 85 struct ib_cqe reg_cqe; 86 struct nvme_rdma_queue *queue; 87 struct sg_table sg_table; 88 struct scatterlist first_sgl[]; 89 }; 90 91 enum nvme_rdma_queue_flags { 92 NVME_RDMA_Q_CONNECTED = (1 << 0), 93 }; 94 95 struct nvme_rdma_queue { 96 struct nvme_rdma_qe *rsp_ring; 97 u8 sig_count; 98 int queue_size; 99 size_t cmnd_capsule_len; 100 struct nvme_rdma_ctrl *ctrl; 101 struct nvme_rdma_device *device; 102 struct ib_cq *ib_cq; 103 struct ib_qp *qp; 104 105 unsigned long flags; 106 struct rdma_cm_id *cm_id; 107 int cm_error; 108 struct completion cm_done; 109 }; 110 111 struct nvme_rdma_ctrl { 112 /* read and written in the hot path */ 113 spinlock_t lock; 114 115 /* read only in the hot path */ 116 struct nvme_rdma_queue *queues; 117 u32 queue_count; 118 119 /* other member variables */ 120 struct blk_mq_tag_set tag_set; 121 struct work_struct delete_work; 122 struct work_struct reset_work; 123 struct work_struct err_work; 124 125 struct nvme_rdma_qe async_event_sqe; 126 127 int reconnect_delay; 128 struct delayed_work reconnect_work; 129 130 struct list_head list; 131 132 struct blk_mq_tag_set admin_tag_set; 133 struct nvme_rdma_device *device; 134 135 u64 cap; 136 u32 max_fr_pages; 137 138 union { 139 struct sockaddr addr; 140 struct sockaddr_in addr_in; 141 }; 142 143 struct nvme_ctrl ctrl; 144 }; 145 146 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) 147 { 148 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); 149 } 150 151 static LIST_HEAD(device_list); 152 static DEFINE_MUTEX(device_list_mutex); 153 154 static LIST_HEAD(nvme_rdma_ctrl_list); 155 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); 156 157 static struct workqueue_struct *nvme_rdma_wq; 158 159 /* 160 * Disabling this option makes small I/O goes faster, but is fundamentally 161 * unsafe. With it turned off we will have to register a global rkey that 162 * allows read and write access to all physical memory. 163 */ 164 static bool register_always = true; 165 module_param(register_always, bool, 0444); 166 MODULE_PARM_DESC(register_always, 167 "Use memory registration even for contiguous memory regions"); 168 169 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 170 struct rdma_cm_event *event); 171 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); 172 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl); 173 174 /* XXX: really should move to a generic header sooner or later.. */ 175 static inline void put_unaligned_le24(u32 val, u8 *p) 176 { 177 *p++ = val; 178 *p++ = val >> 8; 179 *p++ = val >> 16; 180 } 181 182 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) 183 { 184 return queue - queue->ctrl->queues; 185 } 186 187 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) 188 { 189 return queue->cmnd_capsule_len - sizeof(struct nvme_command); 190 } 191 192 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 193 size_t capsule_size, enum dma_data_direction dir) 194 { 195 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); 196 kfree(qe->data); 197 } 198 199 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, 200 size_t capsule_size, enum dma_data_direction dir) 201 { 202 qe->data = kzalloc(capsule_size, GFP_KERNEL); 203 if (!qe->data) 204 return -ENOMEM; 205 206 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); 207 if (ib_dma_mapping_error(ibdev, qe->dma)) { 208 kfree(qe->data); 209 return -ENOMEM; 210 } 211 212 return 0; 213 } 214 215 static void nvme_rdma_free_ring(struct ib_device *ibdev, 216 struct nvme_rdma_qe *ring, size_t ib_queue_size, 217 size_t capsule_size, enum dma_data_direction dir) 218 { 219 int i; 220 221 for (i = 0; i < ib_queue_size; i++) 222 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); 223 kfree(ring); 224 } 225 226 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, 227 size_t ib_queue_size, size_t capsule_size, 228 enum dma_data_direction dir) 229 { 230 struct nvme_rdma_qe *ring; 231 int i; 232 233 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); 234 if (!ring) 235 return NULL; 236 237 for (i = 0; i < ib_queue_size; i++) { 238 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) 239 goto out_free_ring; 240 } 241 242 return ring; 243 244 out_free_ring: 245 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); 246 return NULL; 247 } 248 249 static void nvme_rdma_qp_event(struct ib_event *event, void *context) 250 { 251 pr_debug("QP event %d\n", event->event); 252 } 253 254 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) 255 { 256 wait_for_completion_interruptible_timeout(&queue->cm_done, 257 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); 258 return queue->cm_error; 259 } 260 261 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) 262 { 263 struct nvme_rdma_device *dev = queue->device; 264 struct ib_qp_init_attr init_attr; 265 int ret; 266 267 memset(&init_attr, 0, sizeof(init_attr)); 268 init_attr.event_handler = nvme_rdma_qp_event; 269 /* +1 for drain */ 270 init_attr.cap.max_send_wr = factor * queue->queue_size + 1; 271 /* +1 for drain */ 272 init_attr.cap.max_recv_wr = queue->queue_size + 1; 273 init_attr.cap.max_recv_sge = 1; 274 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS; 275 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 276 init_attr.qp_type = IB_QPT_RC; 277 init_attr.send_cq = queue->ib_cq; 278 init_attr.recv_cq = queue->ib_cq; 279 280 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); 281 282 queue->qp = queue->cm_id->qp; 283 return ret; 284 } 285 286 static int nvme_rdma_reinit_request(void *data, struct request *rq) 287 { 288 struct nvme_rdma_ctrl *ctrl = data; 289 struct nvme_rdma_device *dev = ctrl->device; 290 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 291 int ret = 0; 292 293 if (!req->need_inval) 294 goto out; 295 296 ib_dereg_mr(req->mr); 297 298 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 299 ctrl->max_fr_pages); 300 if (IS_ERR(req->mr)) { 301 ret = PTR_ERR(req->mr); 302 req->mr = NULL; 303 } 304 305 req->need_inval = false; 306 307 out: 308 return ret; 309 } 310 311 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl, 312 struct request *rq, unsigned int queue_idx) 313 { 314 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 315 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 316 struct nvme_rdma_device *dev = queue->device; 317 318 if (req->mr) 319 ib_dereg_mr(req->mr); 320 321 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 322 DMA_TO_DEVICE); 323 } 324 325 static void nvme_rdma_exit_request(void *data, struct request *rq, 326 unsigned int hctx_idx, unsigned int rq_idx) 327 { 328 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1); 329 } 330 331 static void nvme_rdma_exit_admin_request(void *data, struct request *rq, 332 unsigned int hctx_idx, unsigned int rq_idx) 333 { 334 return __nvme_rdma_exit_request(data, rq, 0); 335 } 336 337 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl, 338 struct request *rq, unsigned int queue_idx) 339 { 340 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 341 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; 342 struct nvme_rdma_device *dev = queue->device; 343 struct ib_device *ibdev = dev->dev; 344 int ret; 345 346 BUG_ON(queue_idx >= ctrl->queue_count); 347 348 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), 349 DMA_TO_DEVICE); 350 if (ret) 351 return ret; 352 353 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG, 354 ctrl->max_fr_pages); 355 if (IS_ERR(req->mr)) { 356 ret = PTR_ERR(req->mr); 357 goto out_free_qe; 358 } 359 360 req->queue = queue; 361 362 return 0; 363 364 out_free_qe: 365 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), 366 DMA_TO_DEVICE); 367 return -ENOMEM; 368 } 369 370 static int nvme_rdma_init_request(void *data, struct request *rq, 371 unsigned int hctx_idx, unsigned int rq_idx, 372 unsigned int numa_node) 373 { 374 return __nvme_rdma_init_request(data, rq, hctx_idx + 1); 375 } 376 377 static int nvme_rdma_init_admin_request(void *data, struct request *rq, 378 unsigned int hctx_idx, unsigned int rq_idx, 379 unsigned int numa_node) 380 { 381 return __nvme_rdma_init_request(data, rq, 0); 382 } 383 384 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 385 unsigned int hctx_idx) 386 { 387 struct nvme_rdma_ctrl *ctrl = data; 388 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; 389 390 BUG_ON(hctx_idx >= ctrl->queue_count); 391 392 hctx->driver_data = queue; 393 return 0; 394 } 395 396 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 397 unsigned int hctx_idx) 398 { 399 struct nvme_rdma_ctrl *ctrl = data; 400 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 401 402 BUG_ON(hctx_idx != 0); 403 404 hctx->driver_data = queue; 405 return 0; 406 } 407 408 static void nvme_rdma_free_dev(struct kref *ref) 409 { 410 struct nvme_rdma_device *ndev = 411 container_of(ref, struct nvme_rdma_device, ref); 412 413 mutex_lock(&device_list_mutex); 414 list_del(&ndev->entry); 415 mutex_unlock(&device_list_mutex); 416 417 if (!register_always) 418 ib_dereg_mr(ndev->mr); 419 ib_dealloc_pd(ndev->pd); 420 421 kfree(ndev); 422 } 423 424 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) 425 { 426 kref_put(&dev->ref, nvme_rdma_free_dev); 427 } 428 429 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) 430 { 431 return kref_get_unless_zero(&dev->ref); 432 } 433 434 static struct nvme_rdma_device * 435 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) 436 { 437 struct nvme_rdma_device *ndev; 438 439 mutex_lock(&device_list_mutex); 440 list_for_each_entry(ndev, &device_list, entry) { 441 if (ndev->dev->node_guid == cm_id->device->node_guid && 442 nvme_rdma_dev_get(ndev)) 443 goto out_unlock; 444 } 445 446 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); 447 if (!ndev) 448 goto out_err; 449 450 ndev->dev = cm_id->device; 451 kref_init(&ndev->ref); 452 453 ndev->pd = ib_alloc_pd(ndev->dev); 454 if (IS_ERR(ndev->pd)) 455 goto out_free_dev; 456 457 if (!register_always) { 458 ndev->mr = ib_get_dma_mr(ndev->pd, 459 IB_ACCESS_LOCAL_WRITE | 460 IB_ACCESS_REMOTE_READ | 461 IB_ACCESS_REMOTE_WRITE); 462 if (IS_ERR(ndev->mr)) 463 goto out_free_pd; 464 } 465 466 if (!(ndev->dev->attrs.device_cap_flags & 467 IB_DEVICE_MEM_MGT_EXTENSIONS)) { 468 dev_err(&ndev->dev->dev, 469 "Memory registrations not supported.\n"); 470 goto out_free_mr; 471 } 472 473 list_add(&ndev->entry, &device_list); 474 out_unlock: 475 mutex_unlock(&device_list_mutex); 476 return ndev; 477 478 out_free_mr: 479 if (!register_always) 480 ib_dereg_mr(ndev->mr); 481 out_free_pd: 482 ib_dealloc_pd(ndev->pd); 483 out_free_dev: 484 kfree(ndev); 485 out_err: 486 mutex_unlock(&device_list_mutex); 487 return NULL; 488 } 489 490 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) 491 { 492 struct nvme_rdma_device *dev = queue->device; 493 struct ib_device *ibdev = dev->dev; 494 495 rdma_destroy_qp(queue->cm_id); 496 ib_free_cq(queue->ib_cq); 497 498 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, 499 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 500 501 nvme_rdma_dev_put(dev); 502 } 503 504 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue, 505 struct nvme_rdma_device *dev) 506 { 507 struct ib_device *ibdev = dev->dev; 508 const int send_wr_factor = 3; /* MR, SEND, INV */ 509 const int cq_factor = send_wr_factor + 1; /* + RECV */ 510 int comp_vector, idx = nvme_rdma_queue_idx(queue); 511 512 int ret; 513 514 queue->device = dev; 515 516 /* 517 * The admin queue is barely used once the controller is live, so don't 518 * bother to spread it out. 519 */ 520 if (idx == 0) 521 comp_vector = 0; 522 else 523 comp_vector = idx % ibdev->num_comp_vectors; 524 525 526 /* +1 for ib_stop_cq */ 527 queue->ib_cq = ib_alloc_cq(dev->dev, queue, 528 cq_factor * queue->queue_size + 1, comp_vector, 529 IB_POLL_SOFTIRQ); 530 if (IS_ERR(queue->ib_cq)) { 531 ret = PTR_ERR(queue->ib_cq); 532 goto out; 533 } 534 535 ret = nvme_rdma_create_qp(queue, send_wr_factor); 536 if (ret) 537 goto out_destroy_ib_cq; 538 539 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, 540 sizeof(struct nvme_completion), DMA_FROM_DEVICE); 541 if (!queue->rsp_ring) { 542 ret = -ENOMEM; 543 goto out_destroy_qp; 544 } 545 546 return 0; 547 548 out_destroy_qp: 549 ib_destroy_qp(queue->qp); 550 out_destroy_ib_cq: 551 ib_free_cq(queue->ib_cq); 552 out: 553 return ret; 554 } 555 556 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl, 557 int idx, size_t queue_size) 558 { 559 struct nvme_rdma_queue *queue; 560 int ret; 561 562 queue = &ctrl->queues[idx]; 563 queue->ctrl = ctrl; 564 init_completion(&queue->cm_done); 565 566 if (idx > 0) 567 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 568 else 569 queue->cmnd_capsule_len = sizeof(struct nvme_command); 570 571 queue->queue_size = queue_size; 572 573 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, 574 RDMA_PS_TCP, IB_QPT_RC); 575 if (IS_ERR(queue->cm_id)) { 576 dev_info(ctrl->ctrl.device, 577 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); 578 return PTR_ERR(queue->cm_id); 579 } 580 581 queue->cm_error = -ETIMEDOUT; 582 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr, 583 NVME_RDMA_CONNECT_TIMEOUT_MS); 584 if (ret) { 585 dev_info(ctrl->ctrl.device, 586 "rdma_resolve_addr failed (%d).\n", ret); 587 goto out_destroy_cm_id; 588 } 589 590 ret = nvme_rdma_wait_for_cm(queue); 591 if (ret) { 592 dev_info(ctrl->ctrl.device, 593 "rdma_resolve_addr wait failed (%d).\n", ret); 594 goto out_destroy_cm_id; 595 } 596 597 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags); 598 599 return 0; 600 601 out_destroy_cm_id: 602 rdma_destroy_id(queue->cm_id); 603 return ret; 604 } 605 606 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) 607 { 608 rdma_disconnect(queue->cm_id); 609 ib_drain_qp(queue->qp); 610 } 611 612 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) 613 { 614 nvme_rdma_destroy_queue_ib(queue); 615 rdma_destroy_id(queue->cm_id); 616 } 617 618 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue) 619 { 620 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) 621 return; 622 nvme_rdma_stop_queue(queue); 623 nvme_rdma_free_queue(queue); 624 } 625 626 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) 627 { 628 int i; 629 630 for (i = 1; i < ctrl->queue_count; i++) 631 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 632 } 633 634 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl) 635 { 636 int i, ret = 0; 637 638 for (i = 1; i < ctrl->queue_count; i++) { 639 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 640 if (ret) 641 break; 642 } 643 644 return ret; 645 } 646 647 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl) 648 { 649 int i, ret; 650 651 for (i = 1; i < ctrl->queue_count; i++) { 652 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize); 653 if (ret) { 654 dev_info(ctrl->ctrl.device, 655 "failed to initialize i/o queue: %d\n", ret); 656 goto out_free_queues; 657 } 658 } 659 660 return 0; 661 662 out_free_queues: 663 for (; i >= 1; i--) 664 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]); 665 666 return ret; 667 } 668 669 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl) 670 { 671 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe, 672 sizeof(struct nvme_command), DMA_TO_DEVICE); 673 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 674 blk_cleanup_queue(ctrl->ctrl.admin_q); 675 blk_mq_free_tag_set(&ctrl->admin_tag_set); 676 nvme_rdma_dev_put(ctrl->device); 677 } 678 679 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) 680 { 681 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 682 683 if (list_empty(&ctrl->list)) 684 goto free_ctrl; 685 686 mutex_lock(&nvme_rdma_ctrl_mutex); 687 list_del(&ctrl->list); 688 mutex_unlock(&nvme_rdma_ctrl_mutex); 689 690 if (ctrl->ctrl.tagset) { 691 blk_cleanup_queue(ctrl->ctrl.connect_q); 692 blk_mq_free_tag_set(&ctrl->tag_set); 693 nvme_rdma_dev_put(ctrl->device); 694 } 695 kfree(ctrl->queues); 696 nvmf_free_options(nctrl->opts); 697 free_ctrl: 698 kfree(ctrl); 699 } 700 701 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) 702 { 703 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), 704 struct nvme_rdma_ctrl, reconnect_work); 705 bool changed; 706 int ret; 707 708 if (ctrl->queue_count > 1) { 709 nvme_rdma_free_io_queues(ctrl); 710 711 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 712 if (ret) 713 goto requeue; 714 } 715 716 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]); 717 718 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set); 719 if (ret) 720 goto requeue; 721 722 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 723 if (ret) 724 goto requeue; 725 726 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true); 727 728 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 729 if (ret) 730 goto stop_admin_q; 731 732 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 733 if (ret) 734 goto stop_admin_q; 735 736 nvme_start_keep_alive(&ctrl->ctrl); 737 738 if (ctrl->queue_count > 1) { 739 ret = nvme_rdma_init_io_queues(ctrl); 740 if (ret) 741 goto stop_admin_q; 742 743 ret = nvme_rdma_connect_io_queues(ctrl); 744 if (ret) 745 goto stop_admin_q; 746 } 747 748 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 749 WARN_ON_ONCE(!changed); 750 751 if (ctrl->queue_count > 1) 752 nvme_start_queues(&ctrl->ctrl); 753 754 dev_info(ctrl->ctrl.device, "Successfully reconnected\n"); 755 756 return; 757 758 stop_admin_q: 759 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 760 requeue: 761 /* Make sure we are not resetting/deleting */ 762 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) { 763 dev_info(ctrl->ctrl.device, 764 "Failed reconnect attempt, requeueing...\n"); 765 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 766 ctrl->reconnect_delay * HZ); 767 } 768 } 769 770 static void nvme_rdma_error_recovery_work(struct work_struct *work) 771 { 772 struct nvme_rdma_ctrl *ctrl = container_of(work, 773 struct nvme_rdma_ctrl, err_work); 774 775 nvme_stop_keep_alive(&ctrl->ctrl); 776 if (ctrl->queue_count > 1) 777 nvme_stop_queues(&ctrl->ctrl); 778 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 779 780 /* We must take care of fastfail/requeue all our inflight requests */ 781 if (ctrl->queue_count > 1) 782 blk_mq_tagset_busy_iter(&ctrl->tag_set, 783 nvme_cancel_request, &ctrl->ctrl); 784 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 785 nvme_cancel_request, &ctrl->ctrl); 786 787 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n", 788 ctrl->reconnect_delay); 789 790 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work, 791 ctrl->reconnect_delay * HZ); 792 } 793 794 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) 795 { 796 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) 797 return; 798 799 queue_work(nvme_rdma_wq, &ctrl->err_work); 800 } 801 802 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, 803 const char *op) 804 { 805 struct nvme_rdma_queue *queue = cq->cq_context; 806 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 807 808 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 809 dev_info(ctrl->ctrl.device, 810 "%s for CQE 0x%p failed with status %s (%d)\n", 811 op, wc->wr_cqe, 812 ib_wc_status_msg(wc->status), wc->status); 813 nvme_rdma_error_recovery(ctrl); 814 } 815 816 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) 817 { 818 if (unlikely(wc->status != IB_WC_SUCCESS)) 819 nvme_rdma_wr_error(cq, wc, "MEMREG"); 820 } 821 822 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) 823 { 824 if (unlikely(wc->status != IB_WC_SUCCESS)) 825 nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); 826 } 827 828 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, 829 struct nvme_rdma_request *req) 830 { 831 struct ib_send_wr *bad_wr; 832 struct ib_send_wr wr = { 833 .opcode = IB_WR_LOCAL_INV, 834 .next = NULL, 835 .num_sge = 0, 836 .send_flags = 0, 837 .ex.invalidate_rkey = req->mr->rkey, 838 }; 839 840 req->reg_cqe.done = nvme_rdma_inv_rkey_done; 841 wr.wr_cqe = &req->reg_cqe; 842 843 return ib_post_send(queue->qp, &wr, &bad_wr); 844 } 845 846 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, 847 struct request *rq) 848 { 849 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 850 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 851 struct nvme_rdma_device *dev = queue->device; 852 struct ib_device *ibdev = dev->dev; 853 int res; 854 855 if (!blk_rq_bytes(rq)) 856 return; 857 858 if (req->need_inval) { 859 res = nvme_rdma_inv_rkey(queue, req); 860 if (res < 0) { 861 dev_err(ctrl->ctrl.device, 862 "Queueing INV WR for rkey %#x failed (%d)\n", 863 req->mr->rkey, res); 864 nvme_rdma_error_recovery(queue->ctrl); 865 } 866 } 867 868 ib_dma_unmap_sg(ibdev, req->sg_table.sgl, 869 req->nents, rq_data_dir(rq) == 870 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 871 872 nvme_cleanup_cmd(rq); 873 sg_free_table_chained(&req->sg_table, true); 874 } 875 876 static int nvme_rdma_set_sg_null(struct nvme_command *c) 877 { 878 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 879 880 sg->addr = 0; 881 put_unaligned_le24(0, sg->length); 882 put_unaligned_le32(0, sg->key); 883 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 884 return 0; 885 } 886 887 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, 888 struct nvme_rdma_request *req, struct nvme_command *c) 889 { 890 struct nvme_sgl_desc *sg = &c->common.dptr.sgl; 891 892 req->sge[1].addr = sg_dma_address(req->sg_table.sgl); 893 req->sge[1].length = sg_dma_len(req->sg_table.sgl); 894 req->sge[1].lkey = queue->device->pd->local_dma_lkey; 895 896 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); 897 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl)); 898 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; 899 900 req->inline_data = true; 901 req->num_sge++; 902 return 0; 903 } 904 905 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, 906 struct nvme_rdma_request *req, struct nvme_command *c) 907 { 908 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 909 910 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); 911 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); 912 put_unaligned_le32(queue->device->mr->rkey, sg->key); 913 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; 914 return 0; 915 } 916 917 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, 918 struct nvme_rdma_request *req, struct nvme_command *c, 919 int count) 920 { 921 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; 922 int nr; 923 924 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE); 925 if (nr < count) { 926 if (nr < 0) 927 return nr; 928 return -EINVAL; 929 } 930 931 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); 932 933 req->reg_cqe.done = nvme_rdma_memreg_done; 934 memset(&req->reg_wr, 0, sizeof(req->reg_wr)); 935 req->reg_wr.wr.opcode = IB_WR_REG_MR; 936 req->reg_wr.wr.wr_cqe = &req->reg_cqe; 937 req->reg_wr.wr.num_sge = 0; 938 req->reg_wr.mr = req->mr; 939 req->reg_wr.key = req->mr->rkey; 940 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | 941 IB_ACCESS_REMOTE_READ | 942 IB_ACCESS_REMOTE_WRITE; 943 944 req->need_inval = true; 945 946 sg->addr = cpu_to_le64(req->mr->iova); 947 put_unaligned_le24(req->mr->length, sg->length); 948 put_unaligned_le32(req->mr->rkey, sg->key); 949 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | 950 NVME_SGL_FMT_INVALIDATE; 951 952 return 0; 953 } 954 955 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, 956 struct request *rq, unsigned int map_len, 957 struct nvme_command *c) 958 { 959 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 960 struct nvme_rdma_device *dev = queue->device; 961 struct ib_device *ibdev = dev->dev; 962 int nents, count; 963 int ret; 964 965 req->num_sge = 1; 966 req->inline_data = false; 967 req->need_inval = false; 968 969 c->common.flags |= NVME_CMD_SGL_METABUF; 970 971 if (!blk_rq_bytes(rq)) 972 return nvme_rdma_set_sg_null(c); 973 974 req->sg_table.sgl = req->first_sgl; 975 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments, 976 req->sg_table.sgl); 977 if (ret) 978 return -ENOMEM; 979 980 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); 981 BUG_ON(nents > rq->nr_phys_segments); 982 req->nents = nents; 983 984 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents, 985 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 986 if (unlikely(count <= 0)) { 987 sg_free_table_chained(&req->sg_table, true); 988 return -EIO; 989 } 990 991 if (count == 1) { 992 if (rq_data_dir(rq) == WRITE && 993 map_len <= nvme_rdma_inline_data_size(queue) && 994 nvme_rdma_queue_idx(queue)) 995 return nvme_rdma_map_sg_inline(queue, req, c); 996 997 if (!register_always) 998 return nvme_rdma_map_sg_single(queue, req, c); 999 } 1000 1001 return nvme_rdma_map_sg_fr(queue, req, c, count); 1002 } 1003 1004 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) 1005 { 1006 if (unlikely(wc->status != IB_WC_SUCCESS)) 1007 nvme_rdma_wr_error(cq, wc, "SEND"); 1008 } 1009 1010 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, 1011 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, 1012 struct ib_send_wr *first, bool flush) 1013 { 1014 struct ib_send_wr wr, *bad_wr; 1015 int ret; 1016 1017 sge->addr = qe->dma; 1018 sge->length = sizeof(struct nvme_command), 1019 sge->lkey = queue->device->pd->local_dma_lkey; 1020 1021 qe->cqe.done = nvme_rdma_send_done; 1022 1023 wr.next = NULL; 1024 wr.wr_cqe = &qe->cqe; 1025 wr.sg_list = sge; 1026 wr.num_sge = num_sge; 1027 wr.opcode = IB_WR_SEND; 1028 wr.send_flags = 0; 1029 1030 /* 1031 * Unsignalled send completions are another giant desaster in the 1032 * IB Verbs spec: If we don't regularly post signalled sends 1033 * the send queue will fill up and only a QP reset will rescue us. 1034 * Would have been way to obvious to handle this in hardware or 1035 * at least the RDMA stack.. 1036 * 1037 * This messy and racy code sniplet is copy and pasted from the iSER 1038 * initiator, and the magic '32' comes from there as well. 1039 * 1040 * Always signal the flushes. The magic request used for the flush 1041 * sequencer is not allocated in our driver's tagset and it's 1042 * triggered to be freed by blk_cleanup_queue(). So we need to 1043 * always mark it as signaled to ensure that the "wr_cqe", which is 1044 * embeded in request's payload, is not freed when __ib_process_cq() 1045 * calls wr_cqe->done(). 1046 */ 1047 if ((++queue->sig_count % 32) == 0 || flush) 1048 wr.send_flags |= IB_SEND_SIGNALED; 1049 1050 if (first) 1051 first->next = ≀ 1052 else 1053 first = ≀ 1054 1055 ret = ib_post_send(queue->qp, first, &bad_wr); 1056 if (ret) { 1057 dev_err(queue->ctrl->ctrl.device, 1058 "%s failed with error code %d\n", __func__, ret); 1059 } 1060 return ret; 1061 } 1062 1063 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, 1064 struct nvme_rdma_qe *qe) 1065 { 1066 struct ib_recv_wr wr, *bad_wr; 1067 struct ib_sge list; 1068 int ret; 1069 1070 list.addr = qe->dma; 1071 list.length = sizeof(struct nvme_completion); 1072 list.lkey = queue->device->pd->local_dma_lkey; 1073 1074 qe->cqe.done = nvme_rdma_recv_done; 1075 1076 wr.next = NULL; 1077 wr.wr_cqe = &qe->cqe; 1078 wr.sg_list = &list; 1079 wr.num_sge = 1; 1080 1081 ret = ib_post_recv(queue->qp, &wr, &bad_wr); 1082 if (ret) { 1083 dev_err(queue->ctrl->ctrl.device, 1084 "%s failed with error code %d\n", __func__, ret); 1085 } 1086 return ret; 1087 } 1088 1089 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) 1090 { 1091 u32 queue_idx = nvme_rdma_queue_idx(queue); 1092 1093 if (queue_idx == 0) 1094 return queue->ctrl->admin_tag_set.tags[queue_idx]; 1095 return queue->ctrl->tag_set.tags[queue_idx - 1]; 1096 } 1097 1098 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx) 1099 { 1100 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); 1101 struct nvme_rdma_queue *queue = &ctrl->queues[0]; 1102 struct ib_device *dev = queue->device->dev; 1103 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; 1104 struct nvme_command *cmd = sqe->data; 1105 struct ib_sge sge; 1106 int ret; 1107 1108 if (WARN_ON_ONCE(aer_idx != 0)) 1109 return; 1110 1111 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); 1112 1113 memset(cmd, 0, sizeof(*cmd)); 1114 cmd->common.opcode = nvme_admin_async_event; 1115 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH; 1116 cmd->common.flags |= NVME_CMD_SGL_METABUF; 1117 nvme_rdma_set_sg_null(cmd); 1118 1119 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), 1120 DMA_TO_DEVICE); 1121 1122 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false); 1123 WARN_ON_ONCE(ret); 1124 } 1125 1126 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, 1127 struct nvme_completion *cqe, struct ib_wc *wc, int tag) 1128 { 1129 u16 status = le16_to_cpu(cqe->status); 1130 struct request *rq; 1131 struct nvme_rdma_request *req; 1132 int ret = 0; 1133 1134 status >>= 1; 1135 1136 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); 1137 if (!rq) { 1138 dev_err(queue->ctrl->ctrl.device, 1139 "tag 0x%x on QP %#x not found\n", 1140 cqe->command_id, queue->qp->qp_num); 1141 nvme_rdma_error_recovery(queue->ctrl); 1142 return ret; 1143 } 1144 req = blk_mq_rq_to_pdu(rq); 1145 1146 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special) 1147 memcpy(rq->special, cqe, sizeof(*cqe)); 1148 1149 if (rq->tag == tag) 1150 ret = 1; 1151 1152 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) && 1153 wc->ex.invalidate_rkey == req->mr->rkey) 1154 req->need_inval = false; 1155 1156 blk_mq_complete_request(rq, status); 1157 1158 return ret; 1159 } 1160 1161 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) 1162 { 1163 struct nvme_rdma_qe *qe = 1164 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); 1165 struct nvme_rdma_queue *queue = cq->cq_context; 1166 struct ib_device *ibdev = queue->device->dev; 1167 struct nvme_completion *cqe = qe->data; 1168 const size_t len = sizeof(struct nvme_completion); 1169 int ret = 0; 1170 1171 if (unlikely(wc->status != IB_WC_SUCCESS)) { 1172 nvme_rdma_wr_error(cq, wc, "RECV"); 1173 return 0; 1174 } 1175 1176 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1177 /* 1178 * AEN requests are special as they don't time out and can 1179 * survive any kind of queue freeze and often don't respond to 1180 * aborts. We don't even bother to allocate a struct request 1181 * for them but rather special case them here. 1182 */ 1183 if (unlikely(nvme_rdma_queue_idx(queue) == 0 && 1184 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH)) 1185 nvme_complete_async_event(&queue->ctrl->ctrl, cqe); 1186 else 1187 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); 1188 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); 1189 1190 nvme_rdma_post_recv(queue, qe); 1191 return ret; 1192 } 1193 1194 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) 1195 { 1196 __nvme_rdma_recv_done(cq, wc, -1); 1197 } 1198 1199 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) 1200 { 1201 int ret, i; 1202 1203 for (i = 0; i < queue->queue_size; i++) { 1204 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); 1205 if (ret) 1206 goto out_destroy_queue_ib; 1207 } 1208 1209 return 0; 1210 1211 out_destroy_queue_ib: 1212 nvme_rdma_destroy_queue_ib(queue); 1213 return ret; 1214 } 1215 1216 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, 1217 struct rdma_cm_event *ev) 1218 { 1219 if (ev->param.conn.private_data_len) { 1220 struct nvme_rdma_cm_rej *rej = 1221 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data; 1222 1223 dev_err(queue->ctrl->ctrl.device, 1224 "Connect rejected, status %d.", le16_to_cpu(rej->sts)); 1225 /* XXX: Think of something clever to do here... */ 1226 } else { 1227 dev_err(queue->ctrl->ctrl.device, 1228 "Connect rejected, no private data.\n"); 1229 } 1230 1231 return -ECONNRESET; 1232 } 1233 1234 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) 1235 { 1236 struct nvme_rdma_device *dev; 1237 int ret; 1238 1239 dev = nvme_rdma_find_get_device(queue->cm_id); 1240 if (!dev) { 1241 dev_err(queue->cm_id->device->dma_device, 1242 "no client data found!\n"); 1243 return -ECONNREFUSED; 1244 } 1245 1246 ret = nvme_rdma_create_queue_ib(queue, dev); 1247 if (ret) { 1248 nvme_rdma_dev_put(dev); 1249 goto out; 1250 } 1251 1252 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); 1253 if (ret) { 1254 dev_err(queue->ctrl->ctrl.device, 1255 "rdma_resolve_route failed (%d).\n", 1256 queue->cm_error); 1257 goto out_destroy_queue; 1258 } 1259 1260 return 0; 1261 1262 out_destroy_queue: 1263 nvme_rdma_destroy_queue_ib(queue); 1264 out: 1265 return ret; 1266 } 1267 1268 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) 1269 { 1270 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1271 struct rdma_conn_param param = { }; 1272 struct nvme_rdma_cm_req priv; 1273 int ret; 1274 1275 param.qp_num = queue->qp->qp_num; 1276 param.flow_control = 1; 1277 1278 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; 1279 /* maximum retry count */ 1280 param.retry_count = 7; 1281 param.rnr_retry_count = 7; 1282 param.private_data = &priv; 1283 param.private_data_len = sizeof(priv); 1284 1285 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); 1286 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); 1287 priv.hrqsize = cpu_to_le16(queue->queue_size); 1288 priv.hsqsize = cpu_to_le16(queue->queue_size); 1289 1290 ret = rdma_connect(queue->cm_id, ¶m); 1291 if (ret) { 1292 dev_err(ctrl->ctrl.device, 1293 "rdma_connect failed (%d).\n", ret); 1294 goto out_destroy_queue_ib; 1295 } 1296 1297 return 0; 1298 1299 out_destroy_queue_ib: 1300 nvme_rdma_destroy_queue_ib(queue); 1301 return ret; 1302 } 1303 1304 /** 1305 * nvme_rdma_device_unplug() - Handle RDMA device unplug 1306 * @queue: Queue that owns the cm_id that caught the event 1307 * 1308 * DEVICE_REMOVAL event notifies us that the RDMA device is about 1309 * to unplug so we should take care of destroying our RDMA resources. 1310 * This event will be generated for each allocated cm_id. 1311 * 1312 * In our case, the RDMA resources are managed per controller and not 1313 * only per queue. So the way we handle this is we trigger an implicit 1314 * controller deletion upon the first DEVICE_REMOVAL event we see, and 1315 * hold the event inflight until the controller deletion is completed. 1316 * 1317 * One exception that we need to handle is the destruction of the cm_id 1318 * that caught the event. Since we hold the callout until the controller 1319 * deletion is completed, we'll deadlock if the controller deletion will 1320 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership 1321 * of destroying this queue before-hand, destroy the queue resources 1322 * after the controller deletion completed with the exception of destroying 1323 * the cm_id implicitely by returning a non-zero rc to the callout. 1324 */ 1325 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue) 1326 { 1327 struct nvme_rdma_ctrl *ctrl = queue->ctrl; 1328 int ret, ctrl_deleted = 0; 1329 1330 /* First disable the queue so ctrl delete won't free it */ 1331 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) 1332 goto out; 1333 1334 /* delete the controller */ 1335 ret = __nvme_rdma_del_ctrl(ctrl); 1336 if (!ret) { 1337 dev_warn(ctrl->ctrl.device, 1338 "Got rdma device removal event, deleting ctrl\n"); 1339 flush_work(&ctrl->delete_work); 1340 1341 /* Return non-zero so the cm_id will destroy implicitly */ 1342 ctrl_deleted = 1; 1343 1344 /* Free this queue ourselves */ 1345 rdma_disconnect(queue->cm_id); 1346 ib_drain_qp(queue->qp); 1347 nvme_rdma_destroy_queue_ib(queue); 1348 } 1349 1350 out: 1351 return ctrl_deleted; 1352 } 1353 1354 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, 1355 struct rdma_cm_event *ev) 1356 { 1357 struct nvme_rdma_queue *queue = cm_id->context; 1358 int cm_error = 0; 1359 1360 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", 1361 rdma_event_msg(ev->event), ev->event, 1362 ev->status, cm_id); 1363 1364 switch (ev->event) { 1365 case RDMA_CM_EVENT_ADDR_RESOLVED: 1366 cm_error = nvme_rdma_addr_resolved(queue); 1367 break; 1368 case RDMA_CM_EVENT_ROUTE_RESOLVED: 1369 cm_error = nvme_rdma_route_resolved(queue); 1370 break; 1371 case RDMA_CM_EVENT_ESTABLISHED: 1372 queue->cm_error = nvme_rdma_conn_established(queue); 1373 /* complete cm_done regardless of success/failure */ 1374 complete(&queue->cm_done); 1375 return 0; 1376 case RDMA_CM_EVENT_REJECTED: 1377 cm_error = nvme_rdma_conn_rejected(queue, ev); 1378 break; 1379 case RDMA_CM_EVENT_ADDR_ERROR: 1380 case RDMA_CM_EVENT_ROUTE_ERROR: 1381 case RDMA_CM_EVENT_CONNECT_ERROR: 1382 case RDMA_CM_EVENT_UNREACHABLE: 1383 dev_dbg(queue->ctrl->ctrl.device, 1384 "CM error event %d\n", ev->event); 1385 cm_error = -ECONNRESET; 1386 break; 1387 case RDMA_CM_EVENT_DISCONNECTED: 1388 case RDMA_CM_EVENT_ADDR_CHANGE: 1389 case RDMA_CM_EVENT_TIMEWAIT_EXIT: 1390 dev_dbg(queue->ctrl->ctrl.device, 1391 "disconnect received - connection closed\n"); 1392 nvme_rdma_error_recovery(queue->ctrl); 1393 break; 1394 case RDMA_CM_EVENT_DEVICE_REMOVAL: 1395 /* return 1 means impliciy CM ID destroy */ 1396 return nvme_rdma_device_unplug(queue); 1397 default: 1398 dev_err(queue->ctrl->ctrl.device, 1399 "Unexpected RDMA CM event (%d)\n", ev->event); 1400 nvme_rdma_error_recovery(queue->ctrl); 1401 break; 1402 } 1403 1404 if (cm_error) { 1405 queue->cm_error = cm_error; 1406 complete(&queue->cm_done); 1407 } 1408 1409 return 0; 1410 } 1411 1412 static enum blk_eh_timer_return 1413 nvme_rdma_timeout(struct request *rq, bool reserved) 1414 { 1415 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1416 1417 /* queue error recovery */ 1418 nvme_rdma_error_recovery(req->queue->ctrl); 1419 1420 /* fail with DNR on cmd timeout */ 1421 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR; 1422 1423 return BLK_EH_HANDLED; 1424 } 1425 1426 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, 1427 const struct blk_mq_queue_data *bd) 1428 { 1429 struct nvme_ns *ns = hctx->queue->queuedata; 1430 struct nvme_rdma_queue *queue = hctx->driver_data; 1431 struct request *rq = bd->rq; 1432 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1433 struct nvme_rdma_qe *sqe = &req->sqe; 1434 struct nvme_command *c = sqe->data; 1435 bool flush = false; 1436 struct ib_device *dev; 1437 unsigned int map_len; 1438 int ret; 1439 1440 WARN_ON_ONCE(rq->tag < 0); 1441 1442 dev = queue->device->dev; 1443 ib_dma_sync_single_for_cpu(dev, sqe->dma, 1444 sizeof(struct nvme_command), DMA_TO_DEVICE); 1445 1446 ret = nvme_setup_cmd(ns, rq, c); 1447 if (ret) 1448 return ret; 1449 1450 c->common.command_id = rq->tag; 1451 blk_mq_start_request(rq); 1452 1453 map_len = nvme_map_len(rq); 1454 ret = nvme_rdma_map_data(queue, rq, map_len, c); 1455 if (ret < 0) { 1456 dev_err(queue->ctrl->ctrl.device, 1457 "Failed to map data (%d)\n", ret); 1458 nvme_cleanup_cmd(rq); 1459 goto err; 1460 } 1461 1462 ib_dma_sync_single_for_device(dev, sqe->dma, 1463 sizeof(struct nvme_command), DMA_TO_DEVICE); 1464 1465 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH) 1466 flush = true; 1467 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, 1468 req->need_inval ? &req->reg_wr.wr : NULL, flush); 1469 if (ret) { 1470 nvme_rdma_unmap_data(queue, rq); 1471 goto err; 1472 } 1473 1474 return BLK_MQ_RQ_QUEUE_OK; 1475 err: 1476 return (ret == -ENOMEM || ret == -EAGAIN) ? 1477 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR; 1478 } 1479 1480 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 1481 { 1482 struct nvme_rdma_queue *queue = hctx->driver_data; 1483 struct ib_cq *cq = queue->ib_cq; 1484 struct ib_wc wc; 1485 int found = 0; 1486 1487 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1488 while (ib_poll_cq(cq, 1, &wc) > 0) { 1489 struct ib_cqe *cqe = wc.wr_cqe; 1490 1491 if (cqe) { 1492 if (cqe->done == nvme_rdma_recv_done) 1493 found |= __nvme_rdma_recv_done(cq, &wc, tag); 1494 else 1495 cqe->done(cq, &wc); 1496 } 1497 } 1498 1499 return found; 1500 } 1501 1502 static void nvme_rdma_complete_rq(struct request *rq) 1503 { 1504 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); 1505 struct nvme_rdma_queue *queue = req->queue; 1506 int error = 0; 1507 1508 nvme_rdma_unmap_data(queue, rq); 1509 1510 if (unlikely(rq->errors)) { 1511 if (nvme_req_needs_retry(rq, rq->errors)) { 1512 nvme_requeue_req(rq); 1513 return; 1514 } 1515 1516 if (rq->cmd_type == REQ_TYPE_DRV_PRIV) 1517 error = rq->errors; 1518 else 1519 error = nvme_error_status(rq->errors); 1520 } 1521 1522 blk_mq_end_request(rq, error); 1523 } 1524 1525 static struct blk_mq_ops nvme_rdma_mq_ops = { 1526 .queue_rq = nvme_rdma_queue_rq, 1527 .complete = nvme_rdma_complete_rq, 1528 .map_queue = blk_mq_map_queue, 1529 .init_request = nvme_rdma_init_request, 1530 .exit_request = nvme_rdma_exit_request, 1531 .reinit_request = nvme_rdma_reinit_request, 1532 .init_hctx = nvme_rdma_init_hctx, 1533 .poll = nvme_rdma_poll, 1534 .timeout = nvme_rdma_timeout, 1535 }; 1536 1537 static struct blk_mq_ops nvme_rdma_admin_mq_ops = { 1538 .queue_rq = nvme_rdma_queue_rq, 1539 .complete = nvme_rdma_complete_rq, 1540 .map_queue = blk_mq_map_queue, 1541 .init_request = nvme_rdma_init_admin_request, 1542 .exit_request = nvme_rdma_exit_admin_request, 1543 .reinit_request = nvme_rdma_reinit_request, 1544 .init_hctx = nvme_rdma_init_admin_hctx, 1545 .timeout = nvme_rdma_timeout, 1546 }; 1547 1548 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl) 1549 { 1550 int error; 1551 1552 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH); 1553 if (error) 1554 return error; 1555 1556 ctrl->device = ctrl->queues[0].device; 1557 1558 /* 1559 * We need a reference on the device as long as the tag_set is alive, 1560 * as the MRs in the request structures need a valid ib_device. 1561 */ 1562 error = -EINVAL; 1563 if (!nvme_rdma_dev_get(ctrl->device)) 1564 goto out_free_queue; 1565 1566 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS, 1567 ctrl->device->dev->attrs.max_fast_reg_page_list_len); 1568 1569 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 1570 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops; 1571 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH; 1572 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */ 1573 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 1574 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1575 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1576 ctrl->admin_tag_set.driver_data = ctrl; 1577 ctrl->admin_tag_set.nr_hw_queues = 1; 1578 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 1579 1580 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 1581 if (error) 1582 goto out_put_dev; 1583 1584 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 1585 if (IS_ERR(ctrl->ctrl.admin_q)) { 1586 error = PTR_ERR(ctrl->ctrl.admin_q); 1587 goto out_free_tagset; 1588 } 1589 1590 error = nvmf_connect_admin_queue(&ctrl->ctrl); 1591 if (error) 1592 goto out_cleanup_queue; 1593 1594 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap); 1595 if (error) { 1596 dev_err(ctrl->ctrl.device, 1597 "prop_get NVME_REG_CAP failed\n"); 1598 goto out_cleanup_queue; 1599 } 1600 1601 ctrl->ctrl.sqsize = 1602 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize); 1603 1604 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap); 1605 if (error) 1606 goto out_cleanup_queue; 1607 1608 ctrl->ctrl.max_hw_sectors = 1609 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9); 1610 1611 error = nvme_init_identify(&ctrl->ctrl); 1612 if (error) 1613 goto out_cleanup_queue; 1614 1615 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev, 1616 &ctrl->async_event_sqe, sizeof(struct nvme_command), 1617 DMA_TO_DEVICE); 1618 if (error) 1619 goto out_cleanup_queue; 1620 1621 nvme_start_keep_alive(&ctrl->ctrl); 1622 1623 return 0; 1624 1625 out_cleanup_queue: 1626 blk_cleanup_queue(ctrl->ctrl.admin_q); 1627 out_free_tagset: 1628 /* disconnect and drain the queue before freeing the tagset */ 1629 nvme_rdma_stop_queue(&ctrl->queues[0]); 1630 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1631 out_put_dev: 1632 nvme_rdma_dev_put(ctrl->device); 1633 out_free_queue: 1634 nvme_rdma_free_queue(&ctrl->queues[0]); 1635 return error; 1636 } 1637 1638 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl) 1639 { 1640 nvme_stop_keep_alive(&ctrl->ctrl); 1641 cancel_work_sync(&ctrl->err_work); 1642 cancel_delayed_work_sync(&ctrl->reconnect_work); 1643 1644 if (ctrl->queue_count > 1) { 1645 nvme_stop_queues(&ctrl->ctrl); 1646 blk_mq_tagset_busy_iter(&ctrl->tag_set, 1647 nvme_cancel_request, &ctrl->ctrl); 1648 nvme_rdma_free_io_queues(ctrl); 1649 } 1650 1651 if (ctrl->ctrl.state == NVME_CTRL_LIVE) 1652 nvme_shutdown_ctrl(&ctrl->ctrl); 1653 1654 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q); 1655 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 1656 nvme_cancel_request, &ctrl->ctrl); 1657 nvme_rdma_destroy_admin_queue(ctrl); 1658 } 1659 1660 static void nvme_rdma_del_ctrl_work(struct work_struct *work) 1661 { 1662 struct nvme_rdma_ctrl *ctrl = container_of(work, 1663 struct nvme_rdma_ctrl, delete_work); 1664 1665 nvme_remove_namespaces(&ctrl->ctrl); 1666 nvme_rdma_shutdown_ctrl(ctrl); 1667 nvme_uninit_ctrl(&ctrl->ctrl); 1668 nvme_put_ctrl(&ctrl->ctrl); 1669 } 1670 1671 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl) 1672 { 1673 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING)) 1674 return -EBUSY; 1675 1676 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work)) 1677 return -EBUSY; 1678 1679 return 0; 1680 } 1681 1682 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl) 1683 { 1684 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1685 int ret; 1686 1687 ret = __nvme_rdma_del_ctrl(ctrl); 1688 if (ret) 1689 return ret; 1690 1691 flush_work(&ctrl->delete_work); 1692 1693 return 0; 1694 } 1695 1696 static void nvme_rdma_remove_ctrl_work(struct work_struct *work) 1697 { 1698 struct nvme_rdma_ctrl *ctrl = container_of(work, 1699 struct nvme_rdma_ctrl, delete_work); 1700 1701 nvme_remove_namespaces(&ctrl->ctrl); 1702 nvme_uninit_ctrl(&ctrl->ctrl); 1703 nvme_put_ctrl(&ctrl->ctrl); 1704 } 1705 1706 static void nvme_rdma_reset_ctrl_work(struct work_struct *work) 1707 { 1708 struct nvme_rdma_ctrl *ctrl = container_of(work, 1709 struct nvme_rdma_ctrl, reset_work); 1710 int ret; 1711 bool changed; 1712 1713 nvme_rdma_shutdown_ctrl(ctrl); 1714 1715 ret = nvme_rdma_configure_admin_queue(ctrl); 1716 if (ret) { 1717 /* ctrl is already shutdown, just remove the ctrl */ 1718 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work); 1719 goto del_dead_ctrl; 1720 } 1721 1722 if (ctrl->queue_count > 1) { 1723 ret = blk_mq_reinit_tagset(&ctrl->tag_set); 1724 if (ret) 1725 goto del_dead_ctrl; 1726 1727 ret = nvme_rdma_init_io_queues(ctrl); 1728 if (ret) 1729 goto del_dead_ctrl; 1730 1731 ret = nvme_rdma_connect_io_queues(ctrl); 1732 if (ret) 1733 goto del_dead_ctrl; 1734 } 1735 1736 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1737 WARN_ON_ONCE(!changed); 1738 1739 if (ctrl->queue_count > 1) { 1740 nvme_start_queues(&ctrl->ctrl); 1741 nvme_queue_scan(&ctrl->ctrl); 1742 } 1743 1744 return; 1745 1746 del_dead_ctrl: 1747 /* Deleting this dead controller... */ 1748 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n"); 1749 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work)); 1750 } 1751 1752 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl) 1753 { 1754 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); 1755 1756 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) 1757 return -EBUSY; 1758 1759 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work)) 1760 return -EBUSY; 1761 1762 flush_work(&ctrl->reset_work); 1763 1764 return 0; 1765 } 1766 1767 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { 1768 .name = "rdma", 1769 .module = THIS_MODULE, 1770 .is_fabrics = true, 1771 .reg_read32 = nvmf_reg_read32, 1772 .reg_read64 = nvmf_reg_read64, 1773 .reg_write32 = nvmf_reg_write32, 1774 .reset_ctrl = nvme_rdma_reset_ctrl, 1775 .free_ctrl = nvme_rdma_free_ctrl, 1776 .submit_async_event = nvme_rdma_submit_async_event, 1777 .delete_ctrl = nvme_rdma_del_ctrl, 1778 .get_subsysnqn = nvmf_get_subsysnqn, 1779 .get_address = nvmf_get_address, 1780 }; 1781 1782 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl) 1783 { 1784 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 1785 int ret; 1786 1787 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues); 1788 if (ret) 1789 return ret; 1790 1791 ctrl->queue_count = opts->nr_io_queues + 1; 1792 if (ctrl->queue_count < 2) 1793 return 0; 1794 1795 dev_info(ctrl->ctrl.device, 1796 "creating %d I/O queues.\n", opts->nr_io_queues); 1797 1798 ret = nvme_rdma_init_io_queues(ctrl); 1799 if (ret) 1800 return ret; 1801 1802 /* 1803 * We need a reference on the device as long as the tag_set is alive, 1804 * as the MRs in the request structures need a valid ib_device. 1805 */ 1806 ret = -EINVAL; 1807 if (!nvme_rdma_dev_get(ctrl->device)) 1808 goto out_free_io_queues; 1809 1810 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 1811 ctrl->tag_set.ops = &nvme_rdma_mq_ops; 1812 ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize; 1813 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 1814 ctrl->tag_set.numa_node = NUMA_NO_NODE; 1815 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1816 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) + 1817 SG_CHUNK_SIZE * sizeof(struct scatterlist); 1818 ctrl->tag_set.driver_data = ctrl; 1819 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1; 1820 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 1821 1822 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 1823 if (ret) 1824 goto out_put_dev; 1825 ctrl->ctrl.tagset = &ctrl->tag_set; 1826 1827 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 1828 if (IS_ERR(ctrl->ctrl.connect_q)) { 1829 ret = PTR_ERR(ctrl->ctrl.connect_q); 1830 goto out_free_tag_set; 1831 } 1832 1833 ret = nvme_rdma_connect_io_queues(ctrl); 1834 if (ret) 1835 goto out_cleanup_connect_q; 1836 1837 return 0; 1838 1839 out_cleanup_connect_q: 1840 blk_cleanup_queue(ctrl->ctrl.connect_q); 1841 out_free_tag_set: 1842 blk_mq_free_tag_set(&ctrl->tag_set); 1843 out_put_dev: 1844 nvme_rdma_dev_put(ctrl->device); 1845 out_free_io_queues: 1846 nvme_rdma_free_io_queues(ctrl); 1847 return ret; 1848 } 1849 1850 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p) 1851 { 1852 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr; 1853 size_t buflen = strlen(p); 1854 1855 /* XXX: handle IPv6 addresses */ 1856 1857 if (buflen > INET_ADDRSTRLEN) 1858 return -EINVAL; 1859 if (in4_pton(p, buflen, addr, '\0', NULL) == 0) 1860 return -EINVAL; 1861 in_addr->sin_family = AF_INET; 1862 return 0; 1863 } 1864 1865 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, 1866 struct nvmf_ctrl_options *opts) 1867 { 1868 struct nvme_rdma_ctrl *ctrl; 1869 int ret; 1870 bool changed; 1871 1872 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 1873 if (!ctrl) 1874 return ERR_PTR(-ENOMEM); 1875 ctrl->ctrl.opts = opts; 1876 INIT_LIST_HEAD(&ctrl->list); 1877 1878 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr); 1879 if (ret) { 1880 pr_err("malformed IP address passed: %s\n", opts->traddr); 1881 goto out_free_ctrl; 1882 } 1883 1884 if (opts->mask & NVMF_OPT_TRSVCID) { 1885 u16 port; 1886 1887 ret = kstrtou16(opts->trsvcid, 0, &port); 1888 if (ret) 1889 goto out_free_ctrl; 1890 1891 ctrl->addr_in.sin_port = cpu_to_be16(port); 1892 } else { 1893 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT); 1894 } 1895 1896 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, 1897 0 /* no quirks, we're perfect! */); 1898 if (ret) 1899 goto out_free_ctrl; 1900 1901 ctrl->reconnect_delay = opts->reconnect_delay; 1902 INIT_DELAYED_WORK(&ctrl->reconnect_work, 1903 nvme_rdma_reconnect_ctrl_work); 1904 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); 1905 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work); 1906 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work); 1907 spin_lock_init(&ctrl->lock); 1908 1909 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ 1910 ctrl->ctrl.sqsize = opts->queue_size; 1911 ctrl->ctrl.kato = opts->kato; 1912 1913 ret = -ENOMEM; 1914 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues), 1915 GFP_KERNEL); 1916 if (!ctrl->queues) 1917 goto out_uninit_ctrl; 1918 1919 ret = nvme_rdma_configure_admin_queue(ctrl); 1920 if (ret) 1921 goto out_kfree_queues; 1922 1923 /* sanity check icdoff */ 1924 if (ctrl->ctrl.icdoff) { 1925 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); 1926 goto out_remove_admin_queue; 1927 } 1928 1929 /* sanity check keyed sgls */ 1930 if (!(ctrl->ctrl.sgls & (1 << 20))) { 1931 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n"); 1932 goto out_remove_admin_queue; 1933 } 1934 1935 if (opts->queue_size > ctrl->ctrl.maxcmd) { 1936 /* warn if maxcmd is lower than queue_size */ 1937 dev_warn(ctrl->ctrl.device, 1938 "queue_size %zu > ctrl maxcmd %u, clamping down\n", 1939 opts->queue_size, ctrl->ctrl.maxcmd); 1940 opts->queue_size = ctrl->ctrl.maxcmd; 1941 } 1942 1943 if (opts->nr_io_queues) { 1944 ret = nvme_rdma_create_io_queues(ctrl); 1945 if (ret) 1946 goto out_remove_admin_queue; 1947 } 1948 1949 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 1950 WARN_ON_ONCE(!changed); 1951 1952 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n", 1953 ctrl->ctrl.opts->subsysnqn, &ctrl->addr); 1954 1955 kref_get(&ctrl->ctrl.kref); 1956 1957 mutex_lock(&nvme_rdma_ctrl_mutex); 1958 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); 1959 mutex_unlock(&nvme_rdma_ctrl_mutex); 1960 1961 if (opts->nr_io_queues) { 1962 nvme_queue_scan(&ctrl->ctrl); 1963 nvme_queue_async_events(&ctrl->ctrl); 1964 } 1965 1966 return &ctrl->ctrl; 1967 1968 out_remove_admin_queue: 1969 nvme_stop_keep_alive(&ctrl->ctrl); 1970 nvme_rdma_destroy_admin_queue(ctrl); 1971 out_kfree_queues: 1972 kfree(ctrl->queues); 1973 out_uninit_ctrl: 1974 nvme_uninit_ctrl(&ctrl->ctrl); 1975 nvme_put_ctrl(&ctrl->ctrl); 1976 if (ret > 0) 1977 ret = -EIO; 1978 return ERR_PTR(ret); 1979 out_free_ctrl: 1980 kfree(ctrl); 1981 return ERR_PTR(ret); 1982 } 1983 1984 static struct nvmf_transport_ops nvme_rdma_transport = { 1985 .name = "rdma", 1986 .required_opts = NVMF_OPT_TRADDR, 1987 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY, 1988 .create_ctrl = nvme_rdma_create_ctrl, 1989 }; 1990 1991 static int __init nvme_rdma_init_module(void) 1992 { 1993 nvme_rdma_wq = create_workqueue("nvme_rdma_wq"); 1994 if (!nvme_rdma_wq) 1995 return -ENOMEM; 1996 1997 nvmf_register_transport(&nvme_rdma_transport); 1998 return 0; 1999 } 2000 2001 static void __exit nvme_rdma_cleanup_module(void) 2002 { 2003 struct nvme_rdma_ctrl *ctrl; 2004 2005 nvmf_unregister_transport(&nvme_rdma_transport); 2006 2007 mutex_lock(&nvme_rdma_ctrl_mutex); 2008 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) 2009 __nvme_rdma_del_ctrl(ctrl); 2010 mutex_unlock(&nvme_rdma_ctrl_mutex); 2011 2012 destroy_workqueue(nvme_rdma_wq); 2013 } 2014 2015 module_init(nvme_rdma_init_module); 2016 module_exit(nvme_rdma_cleanup_module); 2017 2018 MODULE_LICENSE("GPL v2"); 2019