xref: /linux/drivers/nvme/host/pr.c (revision 4e15fa8305deecdf20233558ed9f7a8a62b708fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015 Intel Corporation
4  *	Keith Busch <kbusch@kernel.org>
5  */
6 #include <linux/blkdev.h>
7 #include <linux/pr.h>
8 #include <linux/unaligned.h>
9 
10 #include "nvme.h"
11 
12 static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
13 {
14 	switch (type) {
15 	case PR_WRITE_EXCLUSIVE:
16 		return NVME_PR_WRITE_EXCLUSIVE;
17 	case PR_EXCLUSIVE_ACCESS:
18 		return NVME_PR_EXCLUSIVE_ACCESS;
19 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
20 		return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
21 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
22 		return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
23 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
24 		return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
25 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
26 		return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
27 	}
28 
29 	return 0;
30 }
31 
32 static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
33 {
34 	switch (type) {
35 	case NVME_PR_WRITE_EXCLUSIVE:
36 		return PR_WRITE_EXCLUSIVE;
37 	case NVME_PR_EXCLUSIVE_ACCESS:
38 		return PR_EXCLUSIVE_ACCESS;
39 	case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
40 		return PR_WRITE_EXCLUSIVE_REG_ONLY;
41 	case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
42 		return PR_EXCLUSIVE_ACCESS_REG_ONLY;
43 	case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
44 		return PR_WRITE_EXCLUSIVE_ALL_REGS;
45 	case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
46 		return PR_EXCLUSIVE_ACCESS_ALL_REGS;
47 	}
48 
49 	return 0;
50 }
51 
52 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
53 		struct nvme_command *c, void *data, unsigned int data_len)
54 {
55 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
56 	int srcu_idx = srcu_read_lock(&head->srcu);
57 	struct nvme_ns *ns = nvme_find_path(head);
58 	int ret = -EWOULDBLOCK;
59 
60 	if (ns) {
61 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
62 		ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
63 	}
64 	srcu_read_unlock(&head->srcu, srcu_idx);
65 	return ret;
66 }
67 
68 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
69 		void *data, unsigned int data_len)
70 {
71 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
72 	return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
73 }
74 
75 static int nvme_status_to_pr_err(int status)
76 {
77 	if (nvme_is_path_error(status))
78 		return PR_STS_PATH_FAILED;
79 
80 	switch (status & NVME_SCT_SC_MASK) {
81 	case NVME_SC_SUCCESS:
82 		return PR_STS_SUCCESS;
83 	case NVME_SC_RESERVATION_CONFLICT:
84 		return PR_STS_RESERVATION_CONFLICT;
85 	case NVME_SC_ONCS_NOT_SUPPORTED:
86 		return -EOPNOTSUPP;
87 	case NVME_SC_BAD_ATTRIBUTES:
88 	case NVME_SC_INVALID_OPCODE:
89 	case NVME_SC_INVALID_FIELD:
90 	case NVME_SC_INVALID_NS:
91 		return -EINVAL;
92 	default:
93 		return PR_STS_IOERR;
94 	}
95 }
96 
97 static int __nvme_send_pr_command(struct block_device *bdev, u32 cdw10,
98 		u32 cdw11, u8 op, void *data, unsigned int data_len)
99 {
100 	struct nvme_command c = { 0 };
101 
102 	c.common.opcode = op;
103 	c.common.cdw10 = cpu_to_le32(cdw10);
104 	c.common.cdw11 = cpu_to_le32(cdw11);
105 
106 	if (nvme_disk_is_ns_head(bdev->bd_disk))
107 		return nvme_send_ns_head_pr_command(bdev, &c, data, data_len);
108 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c,
109 				data, data_len);
110 }
111 
112 static int nvme_send_pr_command(struct block_device *bdev, u32 cdw10, u32 cdw11,
113 		u8 op, void *data, unsigned int data_len)
114 {
115 	int ret;
116 
117 	ret = __nvme_send_pr_command(bdev, cdw10, cdw11, op, data, data_len);
118 	return ret < 0 ? ret : nvme_status_to_pr_err(ret);
119 }
120 
121 static int nvme_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
122 		unsigned int flags)
123 {
124 	struct nvmet_pr_register_data data = { 0 };
125 	u32 cdw10;
126 
127 	if (flags & ~PR_FL_IGNORE_KEY)
128 		return -EOPNOTSUPP;
129 
130 	data.crkey = cpu_to_le64(old_key);
131 	data.nrkey = cpu_to_le64(new_key);
132 
133 	cdw10 = old_key ? NVME_PR_REGISTER_ACT_REPLACE :
134 		NVME_PR_REGISTER_ACT_REG;
135 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
136 	cdw10 |= NVME_PR_CPTPL_PERSIST;
137 
138 	return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_register,
139 			&data, sizeof(data));
140 }
141 
142 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
143 		enum pr_type type, unsigned flags)
144 {
145 	struct nvmet_pr_acquire_data data = { 0 };
146 	u32 cdw10;
147 
148 	if (flags & ~PR_FL_IGNORE_KEY)
149 		return -EOPNOTSUPP;
150 
151 	data.crkey = cpu_to_le64(key);
152 
153 	cdw10 = NVME_PR_ACQUIRE_ACT_ACQUIRE;
154 	cdw10 |= nvme_pr_type_from_blk(type) << 8;
155 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? NVME_PR_IGNORE_KEY : 0;
156 
157 	return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
158 			&data, sizeof(data));
159 }
160 
161 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
162 		enum pr_type type, bool abort)
163 {
164 	struct nvmet_pr_acquire_data data = { 0 };
165 	u32 cdw10;
166 
167 	data.crkey = cpu_to_le64(old);
168 	data.prkey = cpu_to_le64(new);
169 
170 	cdw10 = abort ? NVME_PR_ACQUIRE_ACT_PREEMPT_AND_ABORT :
171 			NVME_PR_ACQUIRE_ACT_PREEMPT;
172 	cdw10 |= nvme_pr_type_from_blk(type) << 8;
173 
174 	return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_acquire,
175 			&data, sizeof(data));
176 }
177 
178 static int nvme_pr_clear(struct block_device *bdev, u64 key)
179 {
180 	struct nvmet_pr_release_data data = { 0 };
181 	u32 cdw10;
182 
183 	data.crkey = cpu_to_le64(key);
184 
185 	cdw10 = NVME_PR_RELEASE_ACT_CLEAR;
186 	cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
187 
188 	return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
189 			&data, sizeof(data));
190 }
191 
192 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
193 {
194 	struct nvmet_pr_release_data data = { 0 };
195 	u32 cdw10;
196 
197 	data.crkey = cpu_to_le64(key);
198 
199 	cdw10 = NVME_PR_RELEASE_ACT_RELEASE;
200 	cdw10 |= nvme_pr_type_from_blk(type) << 8;
201 	cdw10 |= key ? 0 : NVME_PR_IGNORE_KEY;
202 
203 	return nvme_send_pr_command(bdev, cdw10, 0, nvme_cmd_resv_release,
204 			&data, sizeof(data));
205 }
206 
207 static int nvme_pr_resv_report(struct block_device *bdev, void *data,
208 		u32 data_len, bool *eds)
209 {
210 	u32 cdw10, cdw11;
211 	int ret;
212 
213 	cdw10 = nvme_bytes_to_numd(data_len);
214 	cdw11 = NVME_EXTENDED_DATA_STRUCT;
215 	*eds = true;
216 
217 retry:
218 	ret = __nvme_send_pr_command(bdev, cdw10, cdw11, nvme_cmd_resv_report,
219 			data, data_len);
220 	if (ret == NVME_SC_HOST_ID_INCONSIST &&
221 	    cdw11 == NVME_EXTENDED_DATA_STRUCT) {
222 		cdw11 = 0;
223 		*eds = false;
224 		goto retry;
225 	}
226 
227 	return ret < 0 ? ret : nvme_status_to_pr_err(ret);
228 }
229 
230 static int nvme_pr_read_keys(struct block_device *bdev,
231 		struct pr_keys *keys_info)
232 {
233 	u32 rse_len, num_keys = keys_info->num_keys;
234 	struct nvme_reservation_status_ext *rse;
235 	int ret, i;
236 	bool eds;
237 
238 	/*
239 	 * Assume we are using 128-bit host IDs and allocate a buffer large
240 	 * enough to get enough keys to fill the return keys buffer.
241 	 */
242 	rse_len = struct_size(rse, regctl_eds, num_keys);
243 	rse = kzalloc(rse_len, GFP_KERNEL);
244 	if (!rse)
245 		return -ENOMEM;
246 
247 	ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
248 	if (ret)
249 		goto free_rse;
250 
251 	keys_info->generation = le32_to_cpu(rse->gen);
252 	keys_info->num_keys = get_unaligned_le16(&rse->regctl);
253 
254 	num_keys = min(num_keys, keys_info->num_keys);
255 	for (i = 0; i < num_keys; i++) {
256 		if (eds) {
257 			keys_info->keys[i] =
258 					le64_to_cpu(rse->regctl_eds[i].rkey);
259 		} else {
260 			struct nvme_reservation_status *rs;
261 
262 			rs = (struct nvme_reservation_status *)rse;
263 			keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
264 		}
265 	}
266 
267 free_rse:
268 	kfree(rse);
269 	return ret;
270 }
271 
272 static int nvme_pr_read_reservation(struct block_device *bdev,
273 		struct pr_held_reservation *resv)
274 {
275 	struct nvme_reservation_status_ext tmp_rse, *rse;
276 	int ret, i, num_regs;
277 	u32 rse_len;
278 	bool eds;
279 
280 get_num_regs:
281 	/*
282 	 * Get the number of registrations so we know how big to allocate
283 	 * the response buffer.
284 	 */
285 	ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
286 	if (ret)
287 		return ret;
288 
289 	num_regs = get_unaligned_le16(&tmp_rse.regctl);
290 	if (!num_regs) {
291 		resv->generation = le32_to_cpu(tmp_rse.gen);
292 		return 0;
293 	}
294 
295 	rse_len = struct_size(rse, regctl_eds, num_regs);
296 	rse = kzalloc(rse_len, GFP_KERNEL);
297 	if (!rse)
298 		return -ENOMEM;
299 
300 	ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
301 	if (ret)
302 		goto free_rse;
303 
304 	if (num_regs != get_unaligned_le16(&rse->regctl)) {
305 		kfree(rse);
306 		goto get_num_regs;
307 	}
308 
309 	resv->generation = le32_to_cpu(rse->gen);
310 	resv->type = block_pr_type_from_nvme(rse->rtype);
311 
312 	for (i = 0; i < num_regs; i++) {
313 		if (eds) {
314 			if (rse->regctl_eds[i].rcsts) {
315 				resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
316 				break;
317 			}
318 		} else {
319 			struct nvme_reservation_status *rs;
320 
321 			rs = (struct nvme_reservation_status *)rse;
322 			if (rs->regctl_ds[i].rcsts) {
323 				resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
324 				break;
325 			}
326 		}
327 	}
328 
329 free_rse:
330 	kfree(rse);
331 	return ret;
332 }
333 
334 const struct pr_ops nvme_pr_ops = {
335 	.pr_register	= nvme_pr_register,
336 	.pr_reserve	= nvme_pr_reserve,
337 	.pr_release	= nvme_pr_release,
338 	.pr_preempt	= nvme_pr_preempt,
339 	.pr_clear	= nvme_pr_clear,
340 	.pr_read_keys	= nvme_pr_read_keys,
341 	.pr_read_reservation = nvme_pr_read_reservation,
342 };
343