1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/suspend.h> 22 #include <linux/t10-pi.h> 23 #include <linux/types.h> 24 #include <linux/io-64-nonatomic-lo-hi.h> 25 #include <linux/sed-opal.h> 26 #include <linux/pci-p2pdma.h> 27 28 #include "trace.h" 29 #include "nvme.h" 30 31 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 32 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 33 34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 35 36 /* 37 * These can be higher, but we need to ensure that any command doesn't 38 * require an sg allocation that needs more than a page of data. 39 */ 40 #define NVME_MAX_KB_SZ 4096 41 #define NVME_MAX_SEGS 127 42 43 static int use_threaded_interrupts; 44 module_param(use_threaded_interrupts, int, 0); 45 46 static bool use_cmb_sqes = true; 47 module_param(use_cmb_sqes, bool, 0444); 48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 49 50 static unsigned int max_host_mem_size_mb = 128; 51 module_param(max_host_mem_size_mb, uint, 0444); 52 MODULE_PARM_DESC(max_host_mem_size_mb, 53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 54 55 static unsigned int sgl_threshold = SZ_32K; 56 module_param(sgl_threshold, uint, 0644); 57 MODULE_PARM_DESC(sgl_threshold, 58 "Use SGLs when average request segment size is larger or equal to " 59 "this size. Use 0 to disable SGLs."); 60 61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 62 static const struct kernel_param_ops io_queue_depth_ops = { 63 .set = io_queue_depth_set, 64 .get = param_get_int, 65 }; 66 67 static int io_queue_depth = 1024; 68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 70 71 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 72 { 73 unsigned int n; 74 int ret; 75 76 ret = kstrtouint(val, 10, &n); 77 if (ret != 0 || n > num_possible_cpus()) 78 return -EINVAL; 79 return param_set_uint(val, kp); 80 } 81 82 static const struct kernel_param_ops io_queue_count_ops = { 83 .set = io_queue_count_set, 84 .get = param_get_uint, 85 }; 86 87 static unsigned int write_queues; 88 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 89 MODULE_PARM_DESC(write_queues, 90 "Number of queues to use for writes. If not set, reads and writes " 91 "will share a queue set."); 92 93 static unsigned int poll_queues; 94 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 95 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 96 97 struct nvme_dev; 98 struct nvme_queue; 99 100 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 101 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 102 103 /* 104 * Represents an NVM Express device. Each nvme_dev is a PCI function. 105 */ 106 struct nvme_dev { 107 struct nvme_queue *queues; 108 struct blk_mq_tag_set tagset; 109 struct blk_mq_tag_set admin_tagset; 110 u32 __iomem *dbs; 111 struct device *dev; 112 struct dma_pool *prp_page_pool; 113 struct dma_pool *prp_small_pool; 114 unsigned online_queues; 115 unsigned max_qid; 116 unsigned io_queues[HCTX_MAX_TYPES]; 117 unsigned int num_vecs; 118 int q_depth; 119 int io_sqes; 120 u32 db_stride; 121 void __iomem *bar; 122 unsigned long bar_mapped_size; 123 struct work_struct remove_work; 124 struct mutex shutdown_lock; 125 bool subsystem; 126 u64 cmb_size; 127 bool cmb_use_sqes; 128 u32 cmbsz; 129 u32 cmbloc; 130 struct nvme_ctrl ctrl; 131 u32 last_ps; 132 133 mempool_t *iod_mempool; 134 135 /* shadow doorbell buffer support: */ 136 u32 *dbbuf_dbs; 137 dma_addr_t dbbuf_dbs_dma_addr; 138 u32 *dbbuf_eis; 139 dma_addr_t dbbuf_eis_dma_addr; 140 141 /* host memory buffer support: */ 142 u64 host_mem_size; 143 u32 nr_host_mem_descs; 144 dma_addr_t host_mem_descs_dma; 145 struct nvme_host_mem_buf_desc *host_mem_descs; 146 void **host_mem_desc_bufs; 147 unsigned int nr_allocated_queues; 148 unsigned int nr_write_queues; 149 unsigned int nr_poll_queues; 150 }; 151 152 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 153 { 154 int n = 0, ret; 155 156 ret = kstrtoint(val, 10, &n); 157 if (ret != 0 || n < 2) 158 return -EINVAL; 159 160 return param_set_int(val, kp); 161 } 162 163 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 164 { 165 return qid * 2 * stride; 166 } 167 168 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 169 { 170 return (qid * 2 + 1) * stride; 171 } 172 173 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 174 { 175 return container_of(ctrl, struct nvme_dev, ctrl); 176 } 177 178 /* 179 * An NVM Express queue. Each device has at least two (one for admin 180 * commands and one for I/O commands). 181 */ 182 struct nvme_queue { 183 struct nvme_dev *dev; 184 spinlock_t sq_lock; 185 void *sq_cmds; 186 /* only used for poll queues: */ 187 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 188 struct nvme_completion *cqes; 189 dma_addr_t sq_dma_addr; 190 dma_addr_t cq_dma_addr; 191 u32 __iomem *q_db; 192 u16 q_depth; 193 u16 cq_vector; 194 u16 sq_tail; 195 u16 cq_head; 196 u16 qid; 197 u8 cq_phase; 198 u8 sqes; 199 unsigned long flags; 200 #define NVMEQ_ENABLED 0 201 #define NVMEQ_SQ_CMB 1 202 #define NVMEQ_DELETE_ERROR 2 203 #define NVMEQ_POLLED 3 204 u32 *dbbuf_sq_db; 205 u32 *dbbuf_cq_db; 206 u32 *dbbuf_sq_ei; 207 u32 *dbbuf_cq_ei; 208 struct completion delete_done; 209 }; 210 211 /* 212 * The nvme_iod describes the data in an I/O. 213 * 214 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 215 * to the actual struct scatterlist. 216 */ 217 struct nvme_iod { 218 struct nvme_request req; 219 struct nvme_queue *nvmeq; 220 bool use_sgl; 221 int aborted; 222 int npages; /* In the PRP list. 0 means small pool in use */ 223 int nents; /* Used in scatterlist */ 224 dma_addr_t first_dma; 225 unsigned int dma_len; /* length of single DMA segment mapping */ 226 dma_addr_t meta_dma; 227 struct scatterlist *sg; 228 }; 229 230 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 231 { 232 return dev->nr_allocated_queues * 8 * dev->db_stride; 233 } 234 235 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 236 { 237 unsigned int mem_size = nvme_dbbuf_size(dev); 238 239 if (dev->dbbuf_dbs) 240 return 0; 241 242 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 243 &dev->dbbuf_dbs_dma_addr, 244 GFP_KERNEL); 245 if (!dev->dbbuf_dbs) 246 return -ENOMEM; 247 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 248 &dev->dbbuf_eis_dma_addr, 249 GFP_KERNEL); 250 if (!dev->dbbuf_eis) { 251 dma_free_coherent(dev->dev, mem_size, 252 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 253 dev->dbbuf_dbs = NULL; 254 return -ENOMEM; 255 } 256 257 return 0; 258 } 259 260 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 261 { 262 unsigned int mem_size = nvme_dbbuf_size(dev); 263 264 if (dev->dbbuf_dbs) { 265 dma_free_coherent(dev->dev, mem_size, 266 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 267 dev->dbbuf_dbs = NULL; 268 } 269 if (dev->dbbuf_eis) { 270 dma_free_coherent(dev->dev, mem_size, 271 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 272 dev->dbbuf_eis = NULL; 273 } 274 } 275 276 static void nvme_dbbuf_init(struct nvme_dev *dev, 277 struct nvme_queue *nvmeq, int qid) 278 { 279 if (!dev->dbbuf_dbs || !qid) 280 return; 281 282 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 283 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 284 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 285 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 286 } 287 288 static void nvme_dbbuf_set(struct nvme_dev *dev) 289 { 290 struct nvme_command c; 291 292 if (!dev->dbbuf_dbs) 293 return; 294 295 memset(&c, 0, sizeof(c)); 296 c.dbbuf.opcode = nvme_admin_dbbuf; 297 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 298 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 299 300 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 301 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 302 /* Free memory and continue on */ 303 nvme_dbbuf_dma_free(dev); 304 } 305 } 306 307 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 308 { 309 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 310 } 311 312 /* Update dbbuf and return true if an MMIO is required */ 313 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 314 volatile u32 *dbbuf_ei) 315 { 316 if (dbbuf_db) { 317 u16 old_value; 318 319 /* 320 * Ensure that the queue is written before updating 321 * the doorbell in memory 322 */ 323 wmb(); 324 325 old_value = *dbbuf_db; 326 *dbbuf_db = value; 327 328 /* 329 * Ensure that the doorbell is updated before reading the event 330 * index from memory. The controller needs to provide similar 331 * ordering to ensure the envent index is updated before reading 332 * the doorbell. 333 */ 334 mb(); 335 336 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 337 return false; 338 } 339 340 return true; 341 } 342 343 /* 344 * Will slightly overestimate the number of pages needed. This is OK 345 * as it only leads to a small amount of wasted memory for the lifetime of 346 * the I/O. 347 */ 348 static int nvme_npages(unsigned size, struct nvme_dev *dev) 349 { 350 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 351 dev->ctrl.page_size); 352 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 353 } 354 355 /* 356 * Calculates the number of pages needed for the SGL segments. For example a 4k 357 * page can accommodate 256 SGL descriptors. 358 */ 359 static int nvme_pci_npages_sgl(unsigned int num_seg) 360 { 361 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 362 } 363 364 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 365 unsigned int size, unsigned int nseg, bool use_sgl) 366 { 367 size_t alloc_size; 368 369 if (use_sgl) 370 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 371 else 372 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 373 374 return alloc_size + sizeof(struct scatterlist) * nseg; 375 } 376 377 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 378 unsigned int hctx_idx) 379 { 380 struct nvme_dev *dev = data; 381 struct nvme_queue *nvmeq = &dev->queues[0]; 382 383 WARN_ON(hctx_idx != 0); 384 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 385 386 hctx->driver_data = nvmeq; 387 return 0; 388 } 389 390 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 391 unsigned int hctx_idx) 392 { 393 struct nvme_dev *dev = data; 394 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 395 396 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 397 hctx->driver_data = nvmeq; 398 return 0; 399 } 400 401 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 402 unsigned int hctx_idx, unsigned int numa_node) 403 { 404 struct nvme_dev *dev = set->driver_data; 405 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 406 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 407 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 408 409 BUG_ON(!nvmeq); 410 iod->nvmeq = nvmeq; 411 412 nvme_req(req)->ctrl = &dev->ctrl; 413 return 0; 414 } 415 416 static int queue_irq_offset(struct nvme_dev *dev) 417 { 418 /* if we have more than 1 vec, admin queue offsets us by 1 */ 419 if (dev->num_vecs > 1) 420 return 1; 421 422 return 0; 423 } 424 425 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 426 { 427 struct nvme_dev *dev = set->driver_data; 428 int i, qoff, offset; 429 430 offset = queue_irq_offset(dev); 431 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 432 struct blk_mq_queue_map *map = &set->map[i]; 433 434 map->nr_queues = dev->io_queues[i]; 435 if (!map->nr_queues) { 436 BUG_ON(i == HCTX_TYPE_DEFAULT); 437 continue; 438 } 439 440 /* 441 * The poll queue(s) doesn't have an IRQ (and hence IRQ 442 * affinity), so use the regular blk-mq cpu mapping 443 */ 444 map->queue_offset = qoff; 445 if (i != HCTX_TYPE_POLL && offset) 446 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 447 else 448 blk_mq_map_queues(map); 449 qoff += map->nr_queues; 450 offset += map->nr_queues; 451 } 452 453 return 0; 454 } 455 456 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq) 457 { 458 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 459 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 460 writel(nvmeq->sq_tail, nvmeq->q_db); 461 } 462 463 /** 464 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 465 * @nvmeq: The queue to use 466 * @cmd: The command to send 467 * @write_sq: whether to write to the SQ doorbell 468 */ 469 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 470 bool write_sq) 471 { 472 spin_lock(&nvmeq->sq_lock); 473 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 474 cmd, sizeof(*cmd)); 475 if (++nvmeq->sq_tail == nvmeq->q_depth) 476 nvmeq->sq_tail = 0; 477 if (write_sq) 478 nvme_write_sq_db(nvmeq); 479 spin_unlock(&nvmeq->sq_lock); 480 } 481 482 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 483 { 484 struct nvme_queue *nvmeq = hctx->driver_data; 485 486 spin_lock(&nvmeq->sq_lock); 487 nvme_write_sq_db(nvmeq); 488 spin_unlock(&nvmeq->sq_lock); 489 } 490 491 static void **nvme_pci_iod_list(struct request *req) 492 { 493 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 494 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 495 } 496 497 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 498 { 499 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 500 int nseg = blk_rq_nr_phys_segments(req); 501 unsigned int avg_seg_size; 502 503 if (nseg == 0) 504 return false; 505 506 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 507 508 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 509 return false; 510 if (!iod->nvmeq->qid) 511 return false; 512 if (!sgl_threshold || avg_seg_size < sgl_threshold) 513 return false; 514 return true; 515 } 516 517 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 518 { 519 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 520 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 521 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 522 int i; 523 524 if (iod->dma_len) { 525 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, 526 rq_dma_dir(req)); 527 return; 528 } 529 530 WARN_ON_ONCE(!iod->nents); 531 532 if (is_pci_p2pdma_page(sg_page(iod->sg))) 533 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 534 rq_dma_dir(req)); 535 else 536 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 537 538 539 if (iod->npages == 0) 540 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 541 dma_addr); 542 543 for (i = 0; i < iod->npages; i++) { 544 void *addr = nvme_pci_iod_list(req)[i]; 545 546 if (iod->use_sgl) { 547 struct nvme_sgl_desc *sg_list = addr; 548 549 next_dma_addr = 550 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 551 } else { 552 __le64 *prp_list = addr; 553 554 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 555 } 556 557 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 558 dma_addr = next_dma_addr; 559 } 560 561 mempool_free(iod->sg, dev->iod_mempool); 562 } 563 564 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 565 { 566 int i; 567 struct scatterlist *sg; 568 569 for_each_sg(sgl, sg, nents, i) { 570 dma_addr_t phys = sg_phys(sg); 571 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 572 "dma_address:%pad dma_length:%d\n", 573 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 574 sg_dma_len(sg)); 575 } 576 } 577 578 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 579 struct request *req, struct nvme_rw_command *cmnd) 580 { 581 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 582 struct dma_pool *pool; 583 int length = blk_rq_payload_bytes(req); 584 struct scatterlist *sg = iod->sg; 585 int dma_len = sg_dma_len(sg); 586 u64 dma_addr = sg_dma_address(sg); 587 u32 page_size = dev->ctrl.page_size; 588 int offset = dma_addr & (page_size - 1); 589 __le64 *prp_list; 590 void **list = nvme_pci_iod_list(req); 591 dma_addr_t prp_dma; 592 int nprps, i; 593 594 length -= (page_size - offset); 595 if (length <= 0) { 596 iod->first_dma = 0; 597 goto done; 598 } 599 600 dma_len -= (page_size - offset); 601 if (dma_len) { 602 dma_addr += (page_size - offset); 603 } else { 604 sg = sg_next(sg); 605 dma_addr = sg_dma_address(sg); 606 dma_len = sg_dma_len(sg); 607 } 608 609 if (length <= page_size) { 610 iod->first_dma = dma_addr; 611 goto done; 612 } 613 614 nprps = DIV_ROUND_UP(length, page_size); 615 if (nprps <= (256 / 8)) { 616 pool = dev->prp_small_pool; 617 iod->npages = 0; 618 } else { 619 pool = dev->prp_page_pool; 620 iod->npages = 1; 621 } 622 623 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 624 if (!prp_list) { 625 iod->first_dma = dma_addr; 626 iod->npages = -1; 627 return BLK_STS_RESOURCE; 628 } 629 list[0] = prp_list; 630 iod->first_dma = prp_dma; 631 i = 0; 632 for (;;) { 633 if (i == page_size >> 3) { 634 __le64 *old_prp_list = prp_list; 635 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 636 if (!prp_list) 637 return BLK_STS_RESOURCE; 638 list[iod->npages++] = prp_list; 639 prp_list[0] = old_prp_list[i - 1]; 640 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 641 i = 1; 642 } 643 prp_list[i++] = cpu_to_le64(dma_addr); 644 dma_len -= page_size; 645 dma_addr += page_size; 646 length -= page_size; 647 if (length <= 0) 648 break; 649 if (dma_len > 0) 650 continue; 651 if (unlikely(dma_len < 0)) 652 goto bad_sgl; 653 sg = sg_next(sg); 654 dma_addr = sg_dma_address(sg); 655 dma_len = sg_dma_len(sg); 656 } 657 658 done: 659 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 660 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 661 662 return BLK_STS_OK; 663 664 bad_sgl: 665 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 666 "Invalid SGL for payload:%d nents:%d\n", 667 blk_rq_payload_bytes(req), iod->nents); 668 return BLK_STS_IOERR; 669 } 670 671 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 672 struct scatterlist *sg) 673 { 674 sge->addr = cpu_to_le64(sg_dma_address(sg)); 675 sge->length = cpu_to_le32(sg_dma_len(sg)); 676 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 677 } 678 679 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 680 dma_addr_t dma_addr, int entries) 681 { 682 sge->addr = cpu_to_le64(dma_addr); 683 if (entries < SGES_PER_PAGE) { 684 sge->length = cpu_to_le32(entries * sizeof(*sge)); 685 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 686 } else { 687 sge->length = cpu_to_le32(PAGE_SIZE); 688 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 689 } 690 } 691 692 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 693 struct request *req, struct nvme_rw_command *cmd, int entries) 694 { 695 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 696 struct dma_pool *pool; 697 struct nvme_sgl_desc *sg_list; 698 struct scatterlist *sg = iod->sg; 699 dma_addr_t sgl_dma; 700 int i = 0; 701 702 /* setting the transfer type as SGL */ 703 cmd->flags = NVME_CMD_SGL_METABUF; 704 705 if (entries == 1) { 706 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 707 return BLK_STS_OK; 708 } 709 710 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 711 pool = dev->prp_small_pool; 712 iod->npages = 0; 713 } else { 714 pool = dev->prp_page_pool; 715 iod->npages = 1; 716 } 717 718 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 719 if (!sg_list) { 720 iod->npages = -1; 721 return BLK_STS_RESOURCE; 722 } 723 724 nvme_pci_iod_list(req)[0] = sg_list; 725 iod->first_dma = sgl_dma; 726 727 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 728 729 do { 730 if (i == SGES_PER_PAGE) { 731 struct nvme_sgl_desc *old_sg_desc = sg_list; 732 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 733 734 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 735 if (!sg_list) 736 return BLK_STS_RESOURCE; 737 738 i = 0; 739 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 740 sg_list[i++] = *link; 741 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 742 } 743 744 nvme_pci_sgl_set_data(&sg_list[i++], sg); 745 sg = sg_next(sg); 746 } while (--entries > 0); 747 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1); 757 unsigned int first_prp_len = dev->ctrl.page_size - offset; 758 759 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 760 if (dma_mapping_error(dev->dev, iod->first_dma)) 761 return BLK_STS_RESOURCE; 762 iod->dma_len = bv->bv_len; 763 764 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 765 if (bv->bv_len > first_prp_len) 766 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 767 return 0; 768 } 769 770 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 771 struct request *req, struct nvme_rw_command *cmnd, 772 struct bio_vec *bv) 773 { 774 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 775 776 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 777 if (dma_mapping_error(dev->dev, iod->first_dma)) 778 return BLK_STS_RESOURCE; 779 iod->dma_len = bv->bv_len; 780 781 cmnd->flags = NVME_CMD_SGL_METABUF; 782 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 783 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 784 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 785 return 0; 786 } 787 788 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 789 struct nvme_command *cmnd) 790 { 791 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 792 blk_status_t ret = BLK_STS_RESOURCE; 793 int nr_mapped; 794 795 if (blk_rq_nr_phys_segments(req) == 1) { 796 struct bio_vec bv = req_bvec(req); 797 798 if (!is_pci_p2pdma_page(bv.bv_page)) { 799 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2) 800 return nvme_setup_prp_simple(dev, req, 801 &cmnd->rw, &bv); 802 803 if (iod->nvmeq->qid && 804 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 805 return nvme_setup_sgl_simple(dev, req, 806 &cmnd->rw, &bv); 807 } 808 } 809 810 iod->dma_len = 0; 811 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 812 if (!iod->sg) 813 return BLK_STS_RESOURCE; 814 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 815 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 816 if (!iod->nents) 817 goto out; 818 819 if (is_pci_p2pdma_page(sg_page(iod->sg))) 820 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 821 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 822 else 823 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 824 rq_dma_dir(req), DMA_ATTR_NO_WARN); 825 if (!nr_mapped) 826 goto out; 827 828 iod->use_sgl = nvme_pci_use_sgls(dev, req); 829 if (iod->use_sgl) 830 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 831 else 832 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 833 out: 834 if (ret != BLK_STS_OK) 835 nvme_unmap_data(dev, req); 836 return ret; 837 } 838 839 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 840 struct nvme_command *cmnd) 841 { 842 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 843 844 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 845 rq_dma_dir(req), 0); 846 if (dma_mapping_error(dev->dev, iod->meta_dma)) 847 return BLK_STS_IOERR; 848 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 849 return 0; 850 } 851 852 /* 853 * NOTE: ns is NULL when called on the admin queue. 854 */ 855 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 856 const struct blk_mq_queue_data *bd) 857 { 858 struct nvme_ns *ns = hctx->queue->queuedata; 859 struct nvme_queue *nvmeq = hctx->driver_data; 860 struct nvme_dev *dev = nvmeq->dev; 861 struct request *req = bd->rq; 862 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 863 struct nvme_command cmnd; 864 blk_status_t ret; 865 866 iod->aborted = 0; 867 iod->npages = -1; 868 iod->nents = 0; 869 870 /* 871 * We should not need to do this, but we're still using this to 872 * ensure we can drain requests on a dying queue. 873 */ 874 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 875 return BLK_STS_IOERR; 876 877 ret = nvme_setup_cmd(ns, req, &cmnd); 878 if (ret) 879 return ret; 880 881 if (blk_rq_nr_phys_segments(req)) { 882 ret = nvme_map_data(dev, req, &cmnd); 883 if (ret) 884 goto out_free_cmd; 885 } 886 887 if (blk_integrity_rq(req)) { 888 ret = nvme_map_metadata(dev, req, &cmnd); 889 if (ret) 890 goto out_unmap_data; 891 } 892 893 blk_mq_start_request(req); 894 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 895 return BLK_STS_OK; 896 out_unmap_data: 897 nvme_unmap_data(dev, req); 898 out_free_cmd: 899 nvme_cleanup_cmd(req); 900 return ret; 901 } 902 903 static void nvme_pci_complete_rq(struct request *req) 904 { 905 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 906 struct nvme_dev *dev = iod->nvmeq->dev; 907 908 if (blk_integrity_rq(req)) 909 dma_unmap_page(dev->dev, iod->meta_dma, 910 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 911 if (blk_rq_nr_phys_segments(req)) 912 nvme_unmap_data(dev, req); 913 nvme_complete_rq(req); 914 } 915 916 /* We read the CQE phase first to check if the rest of the entry is valid */ 917 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 918 { 919 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 920 921 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 922 } 923 924 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 925 { 926 u16 head = nvmeq->cq_head; 927 928 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 929 nvmeq->dbbuf_cq_ei)) 930 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 931 } 932 933 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 934 { 935 if (!nvmeq->qid) 936 return nvmeq->dev->admin_tagset.tags[0]; 937 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 938 } 939 940 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 941 { 942 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 943 struct request *req; 944 945 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 946 dev_warn(nvmeq->dev->ctrl.device, 947 "invalid id %d completed on queue %d\n", 948 cqe->command_id, le16_to_cpu(cqe->sq_id)); 949 return; 950 } 951 952 /* 953 * AEN requests are special as they don't time out and can 954 * survive any kind of queue freeze and often don't respond to 955 * aborts. We don't even bother to allocate a struct request 956 * for them but rather special case them here. 957 */ 958 if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { 959 nvme_complete_async_event(&nvmeq->dev->ctrl, 960 cqe->status, &cqe->result); 961 return; 962 } 963 964 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); 965 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 966 if (!nvme_end_request(req, cqe->status, cqe->result)) 967 nvme_pci_complete_rq(req); 968 } 969 970 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 971 { 972 u16 tmp = nvmeq->cq_head + 1; 973 974 if (tmp == nvmeq->q_depth) { 975 nvmeq->cq_head = 0; 976 nvmeq->cq_phase ^= 1; 977 } else { 978 nvmeq->cq_head = tmp; 979 } 980 } 981 982 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 983 { 984 int found = 0; 985 986 while (nvme_cqe_pending(nvmeq)) { 987 found++; 988 /* 989 * load-load control dependency between phase and the rest of 990 * the cqe requires a full read memory barrier 991 */ 992 dma_rmb(); 993 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 994 nvme_update_cq_head(nvmeq); 995 } 996 997 if (found) 998 nvme_ring_cq_doorbell(nvmeq); 999 return found; 1000 } 1001 1002 static irqreturn_t nvme_irq(int irq, void *data) 1003 { 1004 struct nvme_queue *nvmeq = data; 1005 irqreturn_t ret = IRQ_NONE; 1006 1007 /* 1008 * The rmb/wmb pair ensures we see all updates from a previous run of 1009 * the irq handler, even if that was on another CPU. 1010 */ 1011 rmb(); 1012 if (nvme_process_cq(nvmeq)) 1013 ret = IRQ_HANDLED; 1014 wmb(); 1015 1016 return ret; 1017 } 1018 1019 static irqreturn_t nvme_irq_check(int irq, void *data) 1020 { 1021 struct nvme_queue *nvmeq = data; 1022 if (nvme_cqe_pending(nvmeq)) 1023 return IRQ_WAKE_THREAD; 1024 return IRQ_NONE; 1025 } 1026 1027 /* 1028 * Poll for completions for any interrupt driven queue 1029 * Can be called from any context. 1030 */ 1031 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1032 { 1033 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1034 1035 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1036 1037 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1038 nvme_process_cq(nvmeq); 1039 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1040 } 1041 1042 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1043 { 1044 struct nvme_queue *nvmeq = hctx->driver_data; 1045 bool found; 1046 1047 if (!nvme_cqe_pending(nvmeq)) 1048 return 0; 1049 1050 spin_lock(&nvmeq->cq_poll_lock); 1051 found = nvme_process_cq(nvmeq); 1052 spin_unlock(&nvmeq->cq_poll_lock); 1053 1054 return found; 1055 } 1056 1057 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1058 { 1059 struct nvme_dev *dev = to_nvme_dev(ctrl); 1060 struct nvme_queue *nvmeq = &dev->queues[0]; 1061 struct nvme_command c; 1062 1063 memset(&c, 0, sizeof(c)); 1064 c.common.opcode = nvme_admin_async_event; 1065 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1066 nvme_submit_cmd(nvmeq, &c, true); 1067 } 1068 1069 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1070 { 1071 struct nvme_command c; 1072 1073 memset(&c, 0, sizeof(c)); 1074 c.delete_queue.opcode = opcode; 1075 c.delete_queue.qid = cpu_to_le16(id); 1076 1077 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1078 } 1079 1080 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1081 struct nvme_queue *nvmeq, s16 vector) 1082 { 1083 struct nvme_command c; 1084 int flags = NVME_QUEUE_PHYS_CONTIG; 1085 1086 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1087 flags |= NVME_CQ_IRQ_ENABLED; 1088 1089 /* 1090 * Note: we (ab)use the fact that the prp fields survive if no data 1091 * is attached to the request. 1092 */ 1093 memset(&c, 0, sizeof(c)); 1094 c.create_cq.opcode = nvme_admin_create_cq; 1095 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1096 c.create_cq.cqid = cpu_to_le16(qid); 1097 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1098 c.create_cq.cq_flags = cpu_to_le16(flags); 1099 c.create_cq.irq_vector = cpu_to_le16(vector); 1100 1101 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1102 } 1103 1104 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1105 struct nvme_queue *nvmeq) 1106 { 1107 struct nvme_ctrl *ctrl = &dev->ctrl; 1108 struct nvme_command c; 1109 int flags = NVME_QUEUE_PHYS_CONTIG; 1110 1111 /* 1112 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1113 * set. Since URGENT priority is zeroes, it makes all queues 1114 * URGENT. 1115 */ 1116 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1117 flags |= NVME_SQ_PRIO_MEDIUM; 1118 1119 /* 1120 * Note: we (ab)use the fact that the prp fields survive if no data 1121 * is attached to the request. 1122 */ 1123 memset(&c, 0, sizeof(c)); 1124 c.create_sq.opcode = nvme_admin_create_sq; 1125 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1126 c.create_sq.sqid = cpu_to_le16(qid); 1127 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1128 c.create_sq.sq_flags = cpu_to_le16(flags); 1129 c.create_sq.cqid = cpu_to_le16(qid); 1130 1131 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1132 } 1133 1134 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1135 { 1136 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1137 } 1138 1139 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1140 { 1141 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1142 } 1143 1144 static void abort_endio(struct request *req, blk_status_t error) 1145 { 1146 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1147 struct nvme_queue *nvmeq = iod->nvmeq; 1148 1149 dev_warn(nvmeq->dev->ctrl.device, 1150 "Abort status: 0x%x", nvme_req(req)->status); 1151 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1152 blk_mq_free_request(req); 1153 } 1154 1155 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1156 { 1157 1158 /* If true, indicates loss of adapter communication, possibly by a 1159 * NVMe Subsystem reset. 1160 */ 1161 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1162 1163 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1164 switch (dev->ctrl.state) { 1165 case NVME_CTRL_RESETTING: 1166 case NVME_CTRL_CONNECTING: 1167 return false; 1168 default: 1169 break; 1170 } 1171 1172 /* We shouldn't reset unless the controller is on fatal error state 1173 * _or_ if we lost the communication with it. 1174 */ 1175 if (!(csts & NVME_CSTS_CFS) && !nssro) 1176 return false; 1177 1178 return true; 1179 } 1180 1181 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1182 { 1183 /* Read a config register to help see what died. */ 1184 u16 pci_status; 1185 int result; 1186 1187 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1188 &pci_status); 1189 if (result == PCIBIOS_SUCCESSFUL) 1190 dev_warn(dev->ctrl.device, 1191 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1192 csts, pci_status); 1193 else 1194 dev_warn(dev->ctrl.device, 1195 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1196 csts, result); 1197 } 1198 1199 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1200 { 1201 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1202 struct nvme_queue *nvmeq = iod->nvmeq; 1203 struct nvme_dev *dev = nvmeq->dev; 1204 struct request *abort_req; 1205 struct nvme_command cmd; 1206 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1207 1208 /* If PCI error recovery process is happening, we cannot reset or 1209 * the recovery mechanism will surely fail. 1210 */ 1211 mb(); 1212 if (pci_channel_offline(to_pci_dev(dev->dev))) 1213 return BLK_EH_RESET_TIMER; 1214 1215 /* 1216 * Reset immediately if the controller is failed 1217 */ 1218 if (nvme_should_reset(dev, csts)) { 1219 nvme_warn_reset(dev, csts); 1220 nvme_dev_disable(dev, false); 1221 nvme_reset_ctrl(&dev->ctrl); 1222 return BLK_EH_DONE; 1223 } 1224 1225 /* 1226 * Did we miss an interrupt? 1227 */ 1228 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1229 nvme_poll(req->mq_hctx); 1230 else 1231 nvme_poll_irqdisable(nvmeq); 1232 1233 if (blk_mq_request_completed(req)) { 1234 dev_warn(dev->ctrl.device, 1235 "I/O %d QID %d timeout, completion polled\n", 1236 req->tag, nvmeq->qid); 1237 return BLK_EH_DONE; 1238 } 1239 1240 /* 1241 * Shutdown immediately if controller times out while starting. The 1242 * reset work will see the pci device disabled when it gets the forced 1243 * cancellation error. All outstanding requests are completed on 1244 * shutdown, so we return BLK_EH_DONE. 1245 */ 1246 switch (dev->ctrl.state) { 1247 case NVME_CTRL_CONNECTING: 1248 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1249 /* fall through */ 1250 case NVME_CTRL_DELETING: 1251 dev_warn_ratelimited(dev->ctrl.device, 1252 "I/O %d QID %d timeout, disable controller\n", 1253 req->tag, nvmeq->qid); 1254 nvme_dev_disable(dev, true); 1255 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1256 return BLK_EH_DONE; 1257 case NVME_CTRL_RESETTING: 1258 return BLK_EH_RESET_TIMER; 1259 default: 1260 break; 1261 } 1262 1263 /* 1264 * Shutdown the controller immediately and schedule a reset if the 1265 * command was already aborted once before and still hasn't been 1266 * returned to the driver, or if this is the admin queue. 1267 */ 1268 if (!nvmeq->qid || iod->aborted) { 1269 dev_warn(dev->ctrl.device, 1270 "I/O %d QID %d timeout, reset controller\n", 1271 req->tag, nvmeq->qid); 1272 nvme_dev_disable(dev, false); 1273 nvme_reset_ctrl(&dev->ctrl); 1274 1275 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1276 return BLK_EH_DONE; 1277 } 1278 1279 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1280 atomic_inc(&dev->ctrl.abort_limit); 1281 return BLK_EH_RESET_TIMER; 1282 } 1283 iod->aborted = 1; 1284 1285 memset(&cmd, 0, sizeof(cmd)); 1286 cmd.abort.opcode = nvme_admin_abort_cmd; 1287 cmd.abort.cid = req->tag; 1288 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1289 1290 dev_warn(nvmeq->dev->ctrl.device, 1291 "I/O %d QID %d timeout, aborting\n", 1292 req->tag, nvmeq->qid); 1293 1294 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1295 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1296 if (IS_ERR(abort_req)) { 1297 atomic_inc(&dev->ctrl.abort_limit); 1298 return BLK_EH_RESET_TIMER; 1299 } 1300 1301 abort_req->timeout = ADMIN_TIMEOUT; 1302 abort_req->end_io_data = NULL; 1303 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1304 1305 /* 1306 * The aborted req will be completed on receiving the abort req. 1307 * We enable the timer again. If hit twice, it'll cause a device reset, 1308 * as the device then is in a faulty state. 1309 */ 1310 return BLK_EH_RESET_TIMER; 1311 } 1312 1313 static void nvme_free_queue(struct nvme_queue *nvmeq) 1314 { 1315 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1316 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1317 if (!nvmeq->sq_cmds) 1318 return; 1319 1320 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1321 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1322 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1323 } else { 1324 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1325 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1326 } 1327 } 1328 1329 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1330 { 1331 int i; 1332 1333 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1334 dev->ctrl.queue_count--; 1335 nvme_free_queue(&dev->queues[i]); 1336 } 1337 } 1338 1339 /** 1340 * nvme_suspend_queue - put queue into suspended state 1341 * @nvmeq: queue to suspend 1342 */ 1343 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1344 { 1345 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1346 return 1; 1347 1348 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1349 mb(); 1350 1351 nvmeq->dev->online_queues--; 1352 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1353 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1354 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1355 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1356 return 0; 1357 } 1358 1359 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1360 { 1361 int i; 1362 1363 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1364 nvme_suspend_queue(&dev->queues[i]); 1365 } 1366 1367 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1368 { 1369 struct nvme_queue *nvmeq = &dev->queues[0]; 1370 1371 if (shutdown) 1372 nvme_shutdown_ctrl(&dev->ctrl); 1373 else 1374 nvme_disable_ctrl(&dev->ctrl); 1375 1376 nvme_poll_irqdisable(nvmeq); 1377 } 1378 1379 /* 1380 * Called only on a device that has been disabled and after all other threads 1381 * that can check this device's completion queues have synced, except 1382 * nvme_poll(). This is the last chance for the driver to see a natural 1383 * completion before nvme_cancel_request() terminates all incomplete requests. 1384 */ 1385 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1386 { 1387 int i; 1388 1389 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1390 spin_lock(&dev->queues[i].cq_poll_lock); 1391 nvme_process_cq(&dev->queues[i]); 1392 spin_unlock(&dev->queues[i].cq_poll_lock); 1393 } 1394 } 1395 1396 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1397 int entry_size) 1398 { 1399 int q_depth = dev->q_depth; 1400 unsigned q_size_aligned = roundup(q_depth * entry_size, 1401 dev->ctrl.page_size); 1402 1403 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1404 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1405 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1406 q_depth = div_u64(mem_per_q, entry_size); 1407 1408 /* 1409 * Ensure the reduced q_depth is above some threshold where it 1410 * would be better to map queues in system memory with the 1411 * original depth 1412 */ 1413 if (q_depth < 64) 1414 return -ENOMEM; 1415 } 1416 1417 return q_depth; 1418 } 1419 1420 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1421 int qid) 1422 { 1423 struct pci_dev *pdev = to_pci_dev(dev->dev); 1424 1425 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1426 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1427 if (nvmeq->sq_cmds) { 1428 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1429 nvmeq->sq_cmds); 1430 if (nvmeq->sq_dma_addr) { 1431 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1432 return 0; 1433 } 1434 1435 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1436 } 1437 } 1438 1439 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1440 &nvmeq->sq_dma_addr, GFP_KERNEL); 1441 if (!nvmeq->sq_cmds) 1442 return -ENOMEM; 1443 return 0; 1444 } 1445 1446 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1447 { 1448 struct nvme_queue *nvmeq = &dev->queues[qid]; 1449 1450 if (dev->ctrl.queue_count > qid) 1451 return 0; 1452 1453 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1454 nvmeq->q_depth = depth; 1455 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1456 &nvmeq->cq_dma_addr, GFP_KERNEL); 1457 if (!nvmeq->cqes) 1458 goto free_nvmeq; 1459 1460 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1461 goto free_cqdma; 1462 1463 nvmeq->dev = dev; 1464 spin_lock_init(&nvmeq->sq_lock); 1465 spin_lock_init(&nvmeq->cq_poll_lock); 1466 nvmeq->cq_head = 0; 1467 nvmeq->cq_phase = 1; 1468 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1469 nvmeq->qid = qid; 1470 dev->ctrl.queue_count++; 1471 1472 return 0; 1473 1474 free_cqdma: 1475 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1476 nvmeq->cq_dma_addr); 1477 free_nvmeq: 1478 return -ENOMEM; 1479 } 1480 1481 static int queue_request_irq(struct nvme_queue *nvmeq) 1482 { 1483 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1484 int nr = nvmeq->dev->ctrl.instance; 1485 1486 if (use_threaded_interrupts) { 1487 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1488 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1489 } else { 1490 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1491 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1492 } 1493 } 1494 1495 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1496 { 1497 struct nvme_dev *dev = nvmeq->dev; 1498 1499 nvmeq->sq_tail = 0; 1500 nvmeq->cq_head = 0; 1501 nvmeq->cq_phase = 1; 1502 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1503 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1504 nvme_dbbuf_init(dev, nvmeq, qid); 1505 dev->online_queues++; 1506 wmb(); /* ensure the first interrupt sees the initialization */ 1507 } 1508 1509 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1510 { 1511 struct nvme_dev *dev = nvmeq->dev; 1512 int result; 1513 u16 vector = 0; 1514 1515 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1516 1517 /* 1518 * A queue's vector matches the queue identifier unless the controller 1519 * has only one vector available. 1520 */ 1521 if (!polled) 1522 vector = dev->num_vecs == 1 ? 0 : qid; 1523 else 1524 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1525 1526 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1527 if (result) 1528 return result; 1529 1530 result = adapter_alloc_sq(dev, qid, nvmeq); 1531 if (result < 0) 1532 return result; 1533 if (result) 1534 goto release_cq; 1535 1536 nvmeq->cq_vector = vector; 1537 nvme_init_queue(nvmeq, qid); 1538 1539 if (!polled) { 1540 result = queue_request_irq(nvmeq); 1541 if (result < 0) 1542 goto release_sq; 1543 } 1544 1545 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1546 return result; 1547 1548 release_sq: 1549 dev->online_queues--; 1550 adapter_delete_sq(dev, qid); 1551 release_cq: 1552 adapter_delete_cq(dev, qid); 1553 return result; 1554 } 1555 1556 static const struct blk_mq_ops nvme_mq_admin_ops = { 1557 .queue_rq = nvme_queue_rq, 1558 .complete = nvme_pci_complete_rq, 1559 .init_hctx = nvme_admin_init_hctx, 1560 .init_request = nvme_init_request, 1561 .timeout = nvme_timeout, 1562 }; 1563 1564 static const struct blk_mq_ops nvme_mq_ops = { 1565 .queue_rq = nvme_queue_rq, 1566 .complete = nvme_pci_complete_rq, 1567 .commit_rqs = nvme_commit_rqs, 1568 .init_hctx = nvme_init_hctx, 1569 .init_request = nvme_init_request, 1570 .map_queues = nvme_pci_map_queues, 1571 .timeout = nvme_timeout, 1572 .poll = nvme_poll, 1573 }; 1574 1575 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1576 { 1577 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1578 /* 1579 * If the controller was reset during removal, it's possible 1580 * user requests may be waiting on a stopped queue. Start the 1581 * queue to flush these to completion. 1582 */ 1583 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1584 blk_cleanup_queue(dev->ctrl.admin_q); 1585 blk_mq_free_tag_set(&dev->admin_tagset); 1586 } 1587 } 1588 1589 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1590 { 1591 if (!dev->ctrl.admin_q) { 1592 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1593 dev->admin_tagset.nr_hw_queues = 1; 1594 1595 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1596 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1597 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1598 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1599 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1600 dev->admin_tagset.driver_data = dev; 1601 1602 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1603 return -ENOMEM; 1604 dev->ctrl.admin_tagset = &dev->admin_tagset; 1605 1606 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1607 if (IS_ERR(dev->ctrl.admin_q)) { 1608 blk_mq_free_tag_set(&dev->admin_tagset); 1609 return -ENOMEM; 1610 } 1611 if (!blk_get_queue(dev->ctrl.admin_q)) { 1612 nvme_dev_remove_admin(dev); 1613 dev->ctrl.admin_q = NULL; 1614 return -ENODEV; 1615 } 1616 } else 1617 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1618 1619 return 0; 1620 } 1621 1622 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1623 { 1624 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1625 } 1626 1627 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1628 { 1629 struct pci_dev *pdev = to_pci_dev(dev->dev); 1630 1631 if (size <= dev->bar_mapped_size) 1632 return 0; 1633 if (size > pci_resource_len(pdev, 0)) 1634 return -ENOMEM; 1635 if (dev->bar) 1636 iounmap(dev->bar); 1637 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1638 if (!dev->bar) { 1639 dev->bar_mapped_size = 0; 1640 return -ENOMEM; 1641 } 1642 dev->bar_mapped_size = size; 1643 dev->dbs = dev->bar + NVME_REG_DBS; 1644 1645 return 0; 1646 } 1647 1648 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1649 { 1650 int result; 1651 u32 aqa; 1652 struct nvme_queue *nvmeq; 1653 1654 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1655 if (result < 0) 1656 return result; 1657 1658 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1659 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1660 1661 if (dev->subsystem && 1662 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1663 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1664 1665 result = nvme_disable_ctrl(&dev->ctrl); 1666 if (result < 0) 1667 return result; 1668 1669 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1670 if (result) 1671 return result; 1672 1673 nvmeq = &dev->queues[0]; 1674 aqa = nvmeq->q_depth - 1; 1675 aqa |= aqa << 16; 1676 1677 writel(aqa, dev->bar + NVME_REG_AQA); 1678 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1679 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1680 1681 result = nvme_enable_ctrl(&dev->ctrl); 1682 if (result) 1683 return result; 1684 1685 nvmeq->cq_vector = 0; 1686 nvme_init_queue(nvmeq, 0); 1687 result = queue_request_irq(nvmeq); 1688 if (result) { 1689 dev->online_queues--; 1690 return result; 1691 } 1692 1693 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1694 return result; 1695 } 1696 1697 static int nvme_create_io_queues(struct nvme_dev *dev) 1698 { 1699 unsigned i, max, rw_queues; 1700 int ret = 0; 1701 1702 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1703 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1704 ret = -ENOMEM; 1705 break; 1706 } 1707 } 1708 1709 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1710 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1711 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1712 dev->io_queues[HCTX_TYPE_READ]; 1713 } else { 1714 rw_queues = max; 1715 } 1716 1717 for (i = dev->online_queues; i <= max; i++) { 1718 bool polled = i > rw_queues; 1719 1720 ret = nvme_create_queue(&dev->queues[i], i, polled); 1721 if (ret) 1722 break; 1723 } 1724 1725 /* 1726 * Ignore failing Create SQ/CQ commands, we can continue with less 1727 * than the desired amount of queues, and even a controller without 1728 * I/O queues can still be used to issue admin commands. This might 1729 * be useful to upgrade a buggy firmware for example. 1730 */ 1731 return ret >= 0 ? 0 : ret; 1732 } 1733 1734 static ssize_t nvme_cmb_show(struct device *dev, 1735 struct device_attribute *attr, 1736 char *buf) 1737 { 1738 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1739 1740 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1741 ndev->cmbloc, ndev->cmbsz); 1742 } 1743 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1744 1745 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1746 { 1747 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1748 1749 return 1ULL << (12 + 4 * szu); 1750 } 1751 1752 static u32 nvme_cmb_size(struct nvme_dev *dev) 1753 { 1754 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1755 } 1756 1757 static void nvme_map_cmb(struct nvme_dev *dev) 1758 { 1759 u64 size, offset; 1760 resource_size_t bar_size; 1761 struct pci_dev *pdev = to_pci_dev(dev->dev); 1762 int bar; 1763 1764 if (dev->cmb_size) 1765 return; 1766 1767 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1768 if (!dev->cmbsz) 1769 return; 1770 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1771 1772 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1773 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1774 bar = NVME_CMB_BIR(dev->cmbloc); 1775 bar_size = pci_resource_len(pdev, bar); 1776 1777 if (offset > bar_size) 1778 return; 1779 1780 /* 1781 * Controllers may support a CMB size larger than their BAR, 1782 * for example, due to being behind a bridge. Reduce the CMB to 1783 * the reported size of the BAR 1784 */ 1785 if (size > bar_size - offset) 1786 size = bar_size - offset; 1787 1788 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1789 dev_warn(dev->ctrl.device, 1790 "failed to register the CMB\n"); 1791 return; 1792 } 1793 1794 dev->cmb_size = size; 1795 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1796 1797 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1798 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1799 pci_p2pmem_publish(pdev, true); 1800 1801 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1802 &dev_attr_cmb.attr, NULL)) 1803 dev_warn(dev->ctrl.device, 1804 "failed to add sysfs attribute for CMB\n"); 1805 } 1806 1807 static inline void nvme_release_cmb(struct nvme_dev *dev) 1808 { 1809 if (dev->cmb_size) { 1810 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1811 &dev_attr_cmb.attr, NULL); 1812 dev->cmb_size = 0; 1813 } 1814 } 1815 1816 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1817 { 1818 u64 dma_addr = dev->host_mem_descs_dma; 1819 struct nvme_command c; 1820 int ret; 1821 1822 memset(&c, 0, sizeof(c)); 1823 c.features.opcode = nvme_admin_set_features; 1824 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1825 c.features.dword11 = cpu_to_le32(bits); 1826 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1827 ilog2(dev->ctrl.page_size)); 1828 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1829 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1830 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1831 1832 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1833 if (ret) { 1834 dev_warn(dev->ctrl.device, 1835 "failed to set host mem (err %d, flags %#x).\n", 1836 ret, bits); 1837 } 1838 return ret; 1839 } 1840 1841 static void nvme_free_host_mem(struct nvme_dev *dev) 1842 { 1843 int i; 1844 1845 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1846 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1847 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1848 1849 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1850 le64_to_cpu(desc->addr), 1851 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1852 } 1853 1854 kfree(dev->host_mem_desc_bufs); 1855 dev->host_mem_desc_bufs = NULL; 1856 dma_free_coherent(dev->dev, 1857 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1858 dev->host_mem_descs, dev->host_mem_descs_dma); 1859 dev->host_mem_descs = NULL; 1860 dev->nr_host_mem_descs = 0; 1861 } 1862 1863 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1864 u32 chunk_size) 1865 { 1866 struct nvme_host_mem_buf_desc *descs; 1867 u32 max_entries, len; 1868 dma_addr_t descs_dma; 1869 int i = 0; 1870 void **bufs; 1871 u64 size, tmp; 1872 1873 tmp = (preferred + chunk_size - 1); 1874 do_div(tmp, chunk_size); 1875 max_entries = tmp; 1876 1877 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1878 max_entries = dev->ctrl.hmmaxd; 1879 1880 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1881 &descs_dma, GFP_KERNEL); 1882 if (!descs) 1883 goto out; 1884 1885 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1886 if (!bufs) 1887 goto out_free_descs; 1888 1889 for (size = 0; size < preferred && i < max_entries; size += len) { 1890 dma_addr_t dma_addr; 1891 1892 len = min_t(u64, chunk_size, preferred - size); 1893 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1894 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1895 if (!bufs[i]) 1896 break; 1897 1898 descs[i].addr = cpu_to_le64(dma_addr); 1899 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1900 i++; 1901 } 1902 1903 if (!size) 1904 goto out_free_bufs; 1905 1906 dev->nr_host_mem_descs = i; 1907 dev->host_mem_size = size; 1908 dev->host_mem_descs = descs; 1909 dev->host_mem_descs_dma = descs_dma; 1910 dev->host_mem_desc_bufs = bufs; 1911 return 0; 1912 1913 out_free_bufs: 1914 while (--i >= 0) { 1915 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1916 1917 dma_free_attrs(dev->dev, size, bufs[i], 1918 le64_to_cpu(descs[i].addr), 1919 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1920 } 1921 1922 kfree(bufs); 1923 out_free_descs: 1924 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1925 descs_dma); 1926 out: 1927 dev->host_mem_descs = NULL; 1928 return -ENOMEM; 1929 } 1930 1931 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1932 { 1933 u32 chunk_size; 1934 1935 /* start big and work our way down */ 1936 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1937 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1938 chunk_size /= 2) { 1939 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1940 if (!min || dev->host_mem_size >= min) 1941 return 0; 1942 nvme_free_host_mem(dev); 1943 } 1944 } 1945 1946 return -ENOMEM; 1947 } 1948 1949 static int nvme_setup_host_mem(struct nvme_dev *dev) 1950 { 1951 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1952 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1953 u64 min = (u64)dev->ctrl.hmmin * 4096; 1954 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1955 int ret; 1956 1957 preferred = min(preferred, max); 1958 if (min > max) { 1959 dev_warn(dev->ctrl.device, 1960 "min host memory (%lld MiB) above limit (%d MiB).\n", 1961 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1962 nvme_free_host_mem(dev); 1963 return 0; 1964 } 1965 1966 /* 1967 * If we already have a buffer allocated check if we can reuse it. 1968 */ 1969 if (dev->host_mem_descs) { 1970 if (dev->host_mem_size >= min) 1971 enable_bits |= NVME_HOST_MEM_RETURN; 1972 else 1973 nvme_free_host_mem(dev); 1974 } 1975 1976 if (!dev->host_mem_descs) { 1977 if (nvme_alloc_host_mem(dev, min, preferred)) { 1978 dev_warn(dev->ctrl.device, 1979 "failed to allocate host memory buffer.\n"); 1980 return 0; /* controller must work without HMB */ 1981 } 1982 1983 dev_info(dev->ctrl.device, 1984 "allocated %lld MiB host memory buffer.\n", 1985 dev->host_mem_size >> ilog2(SZ_1M)); 1986 } 1987 1988 ret = nvme_set_host_mem(dev, enable_bits); 1989 if (ret) 1990 nvme_free_host_mem(dev); 1991 return ret; 1992 } 1993 1994 /* 1995 * nirqs is the number of interrupts available for write and read 1996 * queues. The core already reserved an interrupt for the admin queue. 1997 */ 1998 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 1999 { 2000 struct nvme_dev *dev = affd->priv; 2001 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2002 2003 /* 2004 * If there is no interupt available for queues, ensure that 2005 * the default queue is set to 1. The affinity set size is 2006 * also set to one, but the irq core ignores it for this case. 2007 * 2008 * If only one interrupt is available or 'write_queue' == 0, combine 2009 * write and read queues. 2010 * 2011 * If 'write_queues' > 0, ensure it leaves room for at least one read 2012 * queue. 2013 */ 2014 if (!nrirqs) { 2015 nrirqs = 1; 2016 nr_read_queues = 0; 2017 } else if (nrirqs == 1 || !nr_write_queues) { 2018 nr_read_queues = 0; 2019 } else if (nr_write_queues >= nrirqs) { 2020 nr_read_queues = 1; 2021 } else { 2022 nr_read_queues = nrirqs - nr_write_queues; 2023 } 2024 2025 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2026 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2027 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2028 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2029 affd->nr_sets = nr_read_queues ? 2 : 1; 2030 } 2031 2032 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2033 { 2034 struct pci_dev *pdev = to_pci_dev(dev->dev); 2035 struct irq_affinity affd = { 2036 .pre_vectors = 1, 2037 .calc_sets = nvme_calc_irq_sets, 2038 .priv = dev, 2039 }; 2040 unsigned int irq_queues, this_p_queues; 2041 2042 /* 2043 * Poll queues don't need interrupts, but we need at least one IO 2044 * queue left over for non-polled IO. 2045 */ 2046 this_p_queues = dev->nr_poll_queues; 2047 if (this_p_queues >= nr_io_queues) { 2048 this_p_queues = nr_io_queues - 1; 2049 irq_queues = 1; 2050 } else { 2051 irq_queues = nr_io_queues - this_p_queues + 1; 2052 } 2053 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2054 2055 /* Initialize for the single interrupt case */ 2056 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2057 dev->io_queues[HCTX_TYPE_READ] = 0; 2058 2059 /* 2060 * Some Apple controllers require all queues to use the 2061 * first vector. 2062 */ 2063 if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR) 2064 irq_queues = 1; 2065 2066 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2067 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2068 } 2069 2070 static void nvme_disable_io_queues(struct nvme_dev *dev) 2071 { 2072 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2073 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2074 } 2075 2076 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2077 { 2078 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2079 } 2080 2081 static int nvme_setup_io_queues(struct nvme_dev *dev) 2082 { 2083 struct nvme_queue *adminq = &dev->queues[0]; 2084 struct pci_dev *pdev = to_pci_dev(dev->dev); 2085 unsigned int nr_io_queues; 2086 unsigned long size; 2087 int result; 2088 2089 /* 2090 * Sample the module parameters once at reset time so that we have 2091 * stable values to work with. 2092 */ 2093 dev->nr_write_queues = write_queues; 2094 dev->nr_poll_queues = poll_queues; 2095 2096 /* 2097 * If tags are shared with admin queue (Apple bug), then 2098 * make sure we only use one IO queue. 2099 */ 2100 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2101 nr_io_queues = 1; 2102 else 2103 nr_io_queues = min(nvme_max_io_queues(dev), 2104 dev->nr_allocated_queues - 1); 2105 2106 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2107 if (result < 0) 2108 return result; 2109 2110 if (nr_io_queues == 0) 2111 return 0; 2112 2113 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2114 2115 if (dev->cmb_use_sqes) { 2116 result = nvme_cmb_qdepth(dev, nr_io_queues, 2117 sizeof(struct nvme_command)); 2118 if (result > 0) 2119 dev->q_depth = result; 2120 else 2121 dev->cmb_use_sqes = false; 2122 } 2123 2124 do { 2125 size = db_bar_size(dev, nr_io_queues); 2126 result = nvme_remap_bar(dev, size); 2127 if (!result) 2128 break; 2129 if (!--nr_io_queues) 2130 return -ENOMEM; 2131 } while (1); 2132 adminq->q_db = dev->dbs; 2133 2134 retry: 2135 /* Deregister the admin queue's interrupt */ 2136 pci_free_irq(pdev, 0, adminq); 2137 2138 /* 2139 * If we enable msix early due to not intx, disable it again before 2140 * setting up the full range we need. 2141 */ 2142 pci_free_irq_vectors(pdev); 2143 2144 result = nvme_setup_irqs(dev, nr_io_queues); 2145 if (result <= 0) 2146 return -EIO; 2147 2148 dev->num_vecs = result; 2149 result = max(result - 1, 1); 2150 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2151 2152 /* 2153 * Should investigate if there's a performance win from allocating 2154 * more queues than interrupt vectors; it might allow the submission 2155 * path to scale better, even if the receive path is limited by the 2156 * number of interrupts. 2157 */ 2158 result = queue_request_irq(adminq); 2159 if (result) 2160 return result; 2161 set_bit(NVMEQ_ENABLED, &adminq->flags); 2162 2163 result = nvme_create_io_queues(dev); 2164 if (result || dev->online_queues < 2) 2165 return result; 2166 2167 if (dev->online_queues - 1 < dev->max_qid) { 2168 nr_io_queues = dev->online_queues - 1; 2169 nvme_disable_io_queues(dev); 2170 nvme_suspend_io_queues(dev); 2171 goto retry; 2172 } 2173 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2174 dev->io_queues[HCTX_TYPE_DEFAULT], 2175 dev->io_queues[HCTX_TYPE_READ], 2176 dev->io_queues[HCTX_TYPE_POLL]); 2177 return 0; 2178 } 2179 2180 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2181 { 2182 struct nvme_queue *nvmeq = req->end_io_data; 2183 2184 blk_mq_free_request(req); 2185 complete(&nvmeq->delete_done); 2186 } 2187 2188 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2189 { 2190 struct nvme_queue *nvmeq = req->end_io_data; 2191 2192 if (error) 2193 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2194 2195 nvme_del_queue_end(req, error); 2196 } 2197 2198 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2199 { 2200 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2201 struct request *req; 2202 struct nvme_command cmd; 2203 2204 memset(&cmd, 0, sizeof(cmd)); 2205 cmd.delete_queue.opcode = opcode; 2206 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2207 2208 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2209 if (IS_ERR(req)) 2210 return PTR_ERR(req); 2211 2212 req->timeout = ADMIN_TIMEOUT; 2213 req->end_io_data = nvmeq; 2214 2215 init_completion(&nvmeq->delete_done); 2216 blk_execute_rq_nowait(q, NULL, req, false, 2217 opcode == nvme_admin_delete_cq ? 2218 nvme_del_cq_end : nvme_del_queue_end); 2219 return 0; 2220 } 2221 2222 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2223 { 2224 int nr_queues = dev->online_queues - 1, sent = 0; 2225 unsigned long timeout; 2226 2227 retry: 2228 timeout = ADMIN_TIMEOUT; 2229 while (nr_queues > 0) { 2230 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2231 break; 2232 nr_queues--; 2233 sent++; 2234 } 2235 while (sent) { 2236 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2237 2238 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2239 timeout); 2240 if (timeout == 0) 2241 return false; 2242 2243 sent--; 2244 if (nr_queues) 2245 goto retry; 2246 } 2247 return true; 2248 } 2249 2250 static void nvme_dev_add(struct nvme_dev *dev) 2251 { 2252 int ret; 2253 2254 if (!dev->ctrl.tagset) { 2255 dev->tagset.ops = &nvme_mq_ops; 2256 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2257 dev->tagset.nr_maps = 2; /* default + read */ 2258 if (dev->io_queues[HCTX_TYPE_POLL]) 2259 dev->tagset.nr_maps++; 2260 dev->tagset.timeout = NVME_IO_TIMEOUT; 2261 dev->tagset.numa_node = dev_to_node(dev->dev); 2262 dev->tagset.queue_depth = 2263 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2264 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2265 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2266 dev->tagset.driver_data = dev; 2267 2268 /* 2269 * Some Apple controllers requires tags to be unique 2270 * across admin and IO queue, so reserve the first 32 2271 * tags of the IO queue. 2272 */ 2273 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2274 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2275 2276 ret = blk_mq_alloc_tag_set(&dev->tagset); 2277 if (ret) { 2278 dev_warn(dev->ctrl.device, 2279 "IO queues tagset allocation failed %d\n", ret); 2280 return; 2281 } 2282 dev->ctrl.tagset = &dev->tagset; 2283 } else { 2284 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2285 2286 /* Free previously allocated queues that are no longer usable */ 2287 nvme_free_queues(dev, dev->online_queues); 2288 } 2289 2290 nvme_dbbuf_set(dev); 2291 } 2292 2293 static int nvme_pci_enable(struct nvme_dev *dev) 2294 { 2295 int result = -ENOMEM; 2296 struct pci_dev *pdev = to_pci_dev(dev->dev); 2297 2298 if (pci_enable_device_mem(pdev)) 2299 return result; 2300 2301 pci_set_master(pdev); 2302 2303 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) 2304 goto disable; 2305 2306 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2307 result = -ENODEV; 2308 goto disable; 2309 } 2310 2311 /* 2312 * Some devices and/or platforms don't advertise or work with INTx 2313 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2314 * adjust this later. 2315 */ 2316 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2317 if (result < 0) 2318 return result; 2319 2320 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2321 2322 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2323 io_queue_depth); 2324 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2325 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2326 dev->dbs = dev->bar + 4096; 2327 2328 /* 2329 * Some Apple controllers require a non-standard SQE size. 2330 * Interestingly they also seem to ignore the CC:IOSQES register 2331 * so we don't bother updating it here. 2332 */ 2333 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2334 dev->io_sqes = 7; 2335 else 2336 dev->io_sqes = NVME_NVM_IOSQES; 2337 2338 /* 2339 * Temporary fix for the Apple controller found in the MacBook8,1 and 2340 * some MacBook7,1 to avoid controller resets and data loss. 2341 */ 2342 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2343 dev->q_depth = 2; 2344 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2345 "set queue depth=%u to work around controller resets\n", 2346 dev->q_depth); 2347 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2348 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2349 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2350 dev->q_depth = 64; 2351 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2352 "set queue depth=%u\n", dev->q_depth); 2353 } 2354 2355 /* 2356 * Controllers with the shared tags quirk need the IO queue to be 2357 * big enough so that we get 32 tags for the admin queue 2358 */ 2359 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2360 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2361 dev->q_depth = NVME_AQ_DEPTH + 2; 2362 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2363 dev->q_depth); 2364 } 2365 2366 2367 nvme_map_cmb(dev); 2368 2369 pci_enable_pcie_error_reporting(pdev); 2370 pci_save_state(pdev); 2371 return 0; 2372 2373 disable: 2374 pci_disable_device(pdev); 2375 return result; 2376 } 2377 2378 static void nvme_dev_unmap(struct nvme_dev *dev) 2379 { 2380 if (dev->bar) 2381 iounmap(dev->bar); 2382 pci_release_mem_regions(to_pci_dev(dev->dev)); 2383 } 2384 2385 static void nvme_pci_disable(struct nvme_dev *dev) 2386 { 2387 struct pci_dev *pdev = to_pci_dev(dev->dev); 2388 2389 pci_free_irq_vectors(pdev); 2390 2391 if (pci_is_enabled(pdev)) { 2392 pci_disable_pcie_error_reporting(pdev); 2393 pci_disable_device(pdev); 2394 } 2395 } 2396 2397 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2398 { 2399 bool dead = true, freeze = false; 2400 struct pci_dev *pdev = to_pci_dev(dev->dev); 2401 2402 mutex_lock(&dev->shutdown_lock); 2403 if (pci_is_enabled(pdev)) { 2404 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2405 2406 if (dev->ctrl.state == NVME_CTRL_LIVE || 2407 dev->ctrl.state == NVME_CTRL_RESETTING) { 2408 freeze = true; 2409 nvme_start_freeze(&dev->ctrl); 2410 } 2411 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2412 pdev->error_state != pci_channel_io_normal); 2413 } 2414 2415 /* 2416 * Give the controller a chance to complete all entered requests if 2417 * doing a safe shutdown. 2418 */ 2419 if (!dead && shutdown && freeze) 2420 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2421 2422 nvme_stop_queues(&dev->ctrl); 2423 2424 if (!dead && dev->ctrl.queue_count > 0) { 2425 nvme_disable_io_queues(dev); 2426 nvme_disable_admin_queue(dev, shutdown); 2427 } 2428 nvme_suspend_io_queues(dev); 2429 nvme_suspend_queue(&dev->queues[0]); 2430 nvme_pci_disable(dev); 2431 nvme_reap_pending_cqes(dev); 2432 2433 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2434 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2435 blk_mq_tagset_wait_completed_request(&dev->tagset); 2436 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2437 2438 /* 2439 * The driver will not be starting up queues again if shutting down so 2440 * must flush all entered requests to their failed completion to avoid 2441 * deadlocking blk-mq hot-cpu notifier. 2442 */ 2443 if (shutdown) { 2444 nvme_start_queues(&dev->ctrl); 2445 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2446 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2447 } 2448 mutex_unlock(&dev->shutdown_lock); 2449 } 2450 2451 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2452 { 2453 if (!nvme_wait_reset(&dev->ctrl)) 2454 return -EBUSY; 2455 nvme_dev_disable(dev, shutdown); 2456 return 0; 2457 } 2458 2459 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2460 { 2461 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2462 PAGE_SIZE, PAGE_SIZE, 0); 2463 if (!dev->prp_page_pool) 2464 return -ENOMEM; 2465 2466 /* Optimisation for I/Os between 4k and 128k */ 2467 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2468 256, 256, 0); 2469 if (!dev->prp_small_pool) { 2470 dma_pool_destroy(dev->prp_page_pool); 2471 return -ENOMEM; 2472 } 2473 return 0; 2474 } 2475 2476 static void nvme_release_prp_pools(struct nvme_dev *dev) 2477 { 2478 dma_pool_destroy(dev->prp_page_pool); 2479 dma_pool_destroy(dev->prp_small_pool); 2480 } 2481 2482 static void nvme_free_tagset(struct nvme_dev *dev) 2483 { 2484 if (dev->tagset.tags) 2485 blk_mq_free_tag_set(&dev->tagset); 2486 dev->ctrl.tagset = NULL; 2487 } 2488 2489 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2490 { 2491 struct nvme_dev *dev = to_nvme_dev(ctrl); 2492 2493 nvme_dbbuf_dma_free(dev); 2494 nvme_free_tagset(dev); 2495 if (dev->ctrl.admin_q) 2496 blk_put_queue(dev->ctrl.admin_q); 2497 free_opal_dev(dev->ctrl.opal_dev); 2498 mempool_destroy(dev->iod_mempool); 2499 put_device(dev->dev); 2500 kfree(dev->queues); 2501 kfree(dev); 2502 } 2503 2504 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2505 { 2506 /* 2507 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2508 * may be holding this pci_dev's device lock. 2509 */ 2510 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2511 nvme_get_ctrl(&dev->ctrl); 2512 nvme_dev_disable(dev, false); 2513 nvme_kill_queues(&dev->ctrl); 2514 if (!queue_work(nvme_wq, &dev->remove_work)) 2515 nvme_put_ctrl(&dev->ctrl); 2516 } 2517 2518 static void nvme_reset_work(struct work_struct *work) 2519 { 2520 struct nvme_dev *dev = 2521 container_of(work, struct nvme_dev, ctrl.reset_work); 2522 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2523 int result; 2524 2525 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2526 result = -ENODEV; 2527 goto out; 2528 } 2529 2530 /* 2531 * If we're called to reset a live controller first shut it down before 2532 * moving on. 2533 */ 2534 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2535 nvme_dev_disable(dev, false); 2536 nvme_sync_queues(&dev->ctrl); 2537 2538 mutex_lock(&dev->shutdown_lock); 2539 result = nvme_pci_enable(dev); 2540 if (result) 2541 goto out_unlock; 2542 2543 result = nvme_pci_configure_admin_queue(dev); 2544 if (result) 2545 goto out_unlock; 2546 2547 result = nvme_alloc_admin_tags(dev); 2548 if (result) 2549 goto out_unlock; 2550 2551 /* 2552 * Limit the max command size to prevent iod->sg allocations going 2553 * over a single page. 2554 */ 2555 dev->ctrl.max_hw_sectors = min_t(u32, 2556 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2557 dev->ctrl.max_segments = NVME_MAX_SEGS; 2558 2559 /* 2560 * Don't limit the IOMMU merged segment size. 2561 */ 2562 dma_set_max_seg_size(dev->dev, 0xffffffff); 2563 2564 mutex_unlock(&dev->shutdown_lock); 2565 2566 /* 2567 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2568 * initializing procedure here. 2569 */ 2570 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2571 dev_warn(dev->ctrl.device, 2572 "failed to mark controller CONNECTING\n"); 2573 result = -EBUSY; 2574 goto out; 2575 } 2576 2577 /* 2578 * We do not support an SGL for metadata (yet), so we are limited to a 2579 * single integrity segment for the separate metadata pointer. 2580 */ 2581 dev->ctrl.max_integrity_segments = 1; 2582 2583 result = nvme_init_identify(&dev->ctrl); 2584 if (result) 2585 goto out; 2586 2587 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2588 if (!dev->ctrl.opal_dev) 2589 dev->ctrl.opal_dev = 2590 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2591 else if (was_suspend) 2592 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2593 } else { 2594 free_opal_dev(dev->ctrl.opal_dev); 2595 dev->ctrl.opal_dev = NULL; 2596 } 2597 2598 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2599 result = nvme_dbbuf_dma_alloc(dev); 2600 if (result) 2601 dev_warn(dev->dev, 2602 "unable to allocate dma for dbbuf\n"); 2603 } 2604 2605 if (dev->ctrl.hmpre) { 2606 result = nvme_setup_host_mem(dev); 2607 if (result < 0) 2608 goto out; 2609 } 2610 2611 result = nvme_setup_io_queues(dev); 2612 if (result) 2613 goto out; 2614 2615 /* 2616 * Keep the controller around but remove all namespaces if we don't have 2617 * any working I/O queue. 2618 */ 2619 if (dev->online_queues < 2) { 2620 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2621 nvme_kill_queues(&dev->ctrl); 2622 nvme_remove_namespaces(&dev->ctrl); 2623 nvme_free_tagset(dev); 2624 } else { 2625 nvme_start_queues(&dev->ctrl); 2626 nvme_wait_freeze(&dev->ctrl); 2627 nvme_dev_add(dev); 2628 nvme_unfreeze(&dev->ctrl); 2629 } 2630 2631 /* 2632 * If only admin queue live, keep it to do further investigation or 2633 * recovery. 2634 */ 2635 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2636 dev_warn(dev->ctrl.device, 2637 "failed to mark controller live state\n"); 2638 result = -ENODEV; 2639 goto out; 2640 } 2641 2642 nvme_start_ctrl(&dev->ctrl); 2643 return; 2644 2645 out_unlock: 2646 mutex_unlock(&dev->shutdown_lock); 2647 out: 2648 if (result) 2649 dev_warn(dev->ctrl.device, 2650 "Removing after probe failure status: %d\n", result); 2651 nvme_remove_dead_ctrl(dev); 2652 } 2653 2654 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2655 { 2656 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2657 struct pci_dev *pdev = to_pci_dev(dev->dev); 2658 2659 if (pci_get_drvdata(pdev)) 2660 device_release_driver(&pdev->dev); 2661 nvme_put_ctrl(&dev->ctrl); 2662 } 2663 2664 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2665 { 2666 *val = readl(to_nvme_dev(ctrl)->bar + off); 2667 return 0; 2668 } 2669 2670 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2671 { 2672 writel(val, to_nvme_dev(ctrl)->bar + off); 2673 return 0; 2674 } 2675 2676 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2677 { 2678 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2679 return 0; 2680 } 2681 2682 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2683 { 2684 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2685 2686 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2687 } 2688 2689 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2690 .name = "pcie", 2691 .module = THIS_MODULE, 2692 .flags = NVME_F_METADATA_SUPPORTED | 2693 NVME_F_PCI_P2PDMA, 2694 .reg_read32 = nvme_pci_reg_read32, 2695 .reg_write32 = nvme_pci_reg_write32, 2696 .reg_read64 = nvme_pci_reg_read64, 2697 .free_ctrl = nvme_pci_free_ctrl, 2698 .submit_async_event = nvme_pci_submit_async_event, 2699 .get_address = nvme_pci_get_address, 2700 }; 2701 2702 static int nvme_dev_map(struct nvme_dev *dev) 2703 { 2704 struct pci_dev *pdev = to_pci_dev(dev->dev); 2705 2706 if (pci_request_mem_regions(pdev, "nvme")) 2707 return -ENODEV; 2708 2709 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2710 goto release; 2711 2712 return 0; 2713 release: 2714 pci_release_mem_regions(pdev); 2715 return -ENODEV; 2716 } 2717 2718 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2719 { 2720 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2721 /* 2722 * Several Samsung devices seem to drop off the PCIe bus 2723 * randomly when APST is on and uses the deepest sleep state. 2724 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2725 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2726 * 950 PRO 256GB", but it seems to be restricted to two Dell 2727 * laptops. 2728 */ 2729 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2730 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2731 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2732 return NVME_QUIRK_NO_DEEPEST_PS; 2733 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2734 /* 2735 * Samsung SSD 960 EVO drops off the PCIe bus after system 2736 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2737 * within few minutes after bootup on a Coffee Lake board - 2738 * ASUS PRIME Z370-A 2739 */ 2740 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2741 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2742 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2743 return NVME_QUIRK_NO_APST; 2744 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2745 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2746 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2747 /* 2748 * Forcing to use host managed nvme power settings for 2749 * lowest idle power with quick resume latency on 2750 * Samsung and Toshiba SSDs based on suspend behavior 2751 * on Coffee Lake board for LENOVO C640 2752 */ 2753 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2754 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2755 return NVME_QUIRK_SIMPLE_SUSPEND; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static void nvme_async_probe(void *data, async_cookie_t cookie) 2762 { 2763 struct nvme_dev *dev = data; 2764 2765 flush_work(&dev->ctrl.reset_work); 2766 flush_work(&dev->ctrl.scan_work); 2767 nvme_put_ctrl(&dev->ctrl); 2768 } 2769 2770 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2771 { 2772 int node, result = -ENOMEM; 2773 struct nvme_dev *dev; 2774 unsigned long quirks = id->driver_data; 2775 size_t alloc_size; 2776 2777 node = dev_to_node(&pdev->dev); 2778 if (node == NUMA_NO_NODE) 2779 set_dev_node(&pdev->dev, first_memory_node); 2780 2781 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2782 if (!dev) 2783 return -ENOMEM; 2784 2785 dev->nr_write_queues = write_queues; 2786 dev->nr_poll_queues = poll_queues; 2787 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2788 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2789 sizeof(struct nvme_queue), GFP_KERNEL, node); 2790 if (!dev->queues) 2791 goto free; 2792 2793 dev->dev = get_device(&pdev->dev); 2794 pci_set_drvdata(pdev, dev); 2795 2796 result = nvme_dev_map(dev); 2797 if (result) 2798 goto put_pci; 2799 2800 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2801 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2802 mutex_init(&dev->shutdown_lock); 2803 2804 result = nvme_setup_prp_pools(dev); 2805 if (result) 2806 goto unmap; 2807 2808 quirks |= check_vendor_combination_bug(pdev); 2809 2810 /* 2811 * Double check that our mempool alloc size will cover the biggest 2812 * command we support. 2813 */ 2814 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2815 NVME_MAX_SEGS, true); 2816 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2817 2818 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2819 mempool_kfree, 2820 (void *) alloc_size, 2821 GFP_KERNEL, node); 2822 if (!dev->iod_mempool) { 2823 result = -ENOMEM; 2824 goto release_pools; 2825 } 2826 2827 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2828 quirks); 2829 if (result) 2830 goto release_mempool; 2831 2832 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2833 2834 nvme_reset_ctrl(&dev->ctrl); 2835 async_schedule(nvme_async_probe, dev); 2836 2837 return 0; 2838 2839 release_mempool: 2840 mempool_destroy(dev->iod_mempool); 2841 release_pools: 2842 nvme_release_prp_pools(dev); 2843 unmap: 2844 nvme_dev_unmap(dev); 2845 put_pci: 2846 put_device(dev->dev); 2847 free: 2848 kfree(dev->queues); 2849 kfree(dev); 2850 return result; 2851 } 2852 2853 static void nvme_reset_prepare(struct pci_dev *pdev) 2854 { 2855 struct nvme_dev *dev = pci_get_drvdata(pdev); 2856 2857 /* 2858 * We don't need to check the return value from waiting for the reset 2859 * state as pci_dev device lock is held, making it impossible to race 2860 * with ->remove(). 2861 */ 2862 nvme_disable_prepare_reset(dev, false); 2863 nvme_sync_queues(&dev->ctrl); 2864 } 2865 2866 static void nvme_reset_done(struct pci_dev *pdev) 2867 { 2868 struct nvme_dev *dev = pci_get_drvdata(pdev); 2869 2870 if (!nvme_try_sched_reset(&dev->ctrl)) 2871 flush_work(&dev->ctrl.reset_work); 2872 } 2873 2874 static void nvme_shutdown(struct pci_dev *pdev) 2875 { 2876 struct nvme_dev *dev = pci_get_drvdata(pdev); 2877 nvme_disable_prepare_reset(dev, true); 2878 } 2879 2880 /* 2881 * The driver's remove may be called on a device in a partially initialized 2882 * state. This function must not have any dependencies on the device state in 2883 * order to proceed. 2884 */ 2885 static void nvme_remove(struct pci_dev *pdev) 2886 { 2887 struct nvme_dev *dev = pci_get_drvdata(pdev); 2888 2889 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2890 pci_set_drvdata(pdev, NULL); 2891 2892 if (!pci_device_is_present(pdev)) { 2893 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2894 nvme_dev_disable(dev, true); 2895 nvme_dev_remove_admin(dev); 2896 } 2897 2898 flush_work(&dev->ctrl.reset_work); 2899 nvme_stop_ctrl(&dev->ctrl); 2900 nvme_remove_namespaces(&dev->ctrl); 2901 nvme_dev_disable(dev, true); 2902 nvme_release_cmb(dev); 2903 nvme_free_host_mem(dev); 2904 nvme_dev_remove_admin(dev); 2905 nvme_free_queues(dev, 0); 2906 nvme_release_prp_pools(dev); 2907 nvme_dev_unmap(dev); 2908 nvme_uninit_ctrl(&dev->ctrl); 2909 } 2910 2911 #ifdef CONFIG_PM_SLEEP 2912 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 2913 { 2914 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 2915 } 2916 2917 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 2918 { 2919 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 2920 } 2921 2922 static int nvme_resume(struct device *dev) 2923 { 2924 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 2925 struct nvme_ctrl *ctrl = &ndev->ctrl; 2926 2927 if (ndev->last_ps == U32_MAX || 2928 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 2929 return nvme_try_sched_reset(&ndev->ctrl); 2930 return 0; 2931 } 2932 2933 static int nvme_suspend(struct device *dev) 2934 { 2935 struct pci_dev *pdev = to_pci_dev(dev); 2936 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2937 struct nvme_ctrl *ctrl = &ndev->ctrl; 2938 int ret = -EBUSY; 2939 2940 ndev->last_ps = U32_MAX; 2941 2942 /* 2943 * The platform does not remove power for a kernel managed suspend so 2944 * use host managed nvme power settings for lowest idle power if 2945 * possible. This should have quicker resume latency than a full device 2946 * shutdown. But if the firmware is involved after the suspend or the 2947 * device does not support any non-default power states, shut down the 2948 * device fully. 2949 * 2950 * If ASPM is not enabled for the device, shut down the device and allow 2951 * the PCI bus layer to put it into D3 in order to take the PCIe link 2952 * down, so as to allow the platform to achieve its minimum low-power 2953 * state (which may not be possible if the link is up). 2954 * 2955 * If a host memory buffer is enabled, shut down the device as the NVMe 2956 * specification allows the device to access the host memory buffer in 2957 * host DRAM from all power states, but hosts will fail access to DRAM 2958 * during S3. 2959 */ 2960 if (pm_suspend_via_firmware() || !ctrl->npss || 2961 !pcie_aspm_enabled(pdev) || 2962 ndev->nr_host_mem_descs || 2963 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 2964 return nvme_disable_prepare_reset(ndev, true); 2965 2966 nvme_start_freeze(ctrl); 2967 nvme_wait_freeze(ctrl); 2968 nvme_sync_queues(ctrl); 2969 2970 if (ctrl->state != NVME_CTRL_LIVE) 2971 goto unfreeze; 2972 2973 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 2974 if (ret < 0) 2975 goto unfreeze; 2976 2977 /* 2978 * A saved state prevents pci pm from generically controlling the 2979 * device's power. If we're using protocol specific settings, we don't 2980 * want pci interfering. 2981 */ 2982 pci_save_state(pdev); 2983 2984 ret = nvme_set_power_state(ctrl, ctrl->npss); 2985 if (ret < 0) 2986 goto unfreeze; 2987 2988 if (ret) { 2989 /* discard the saved state */ 2990 pci_load_saved_state(pdev, NULL); 2991 2992 /* 2993 * Clearing npss forces a controller reset on resume. The 2994 * correct value will be rediscovered then. 2995 */ 2996 ret = nvme_disable_prepare_reset(ndev, true); 2997 ctrl->npss = 0; 2998 } 2999 unfreeze: 3000 nvme_unfreeze(ctrl); 3001 return ret; 3002 } 3003 3004 static int nvme_simple_suspend(struct device *dev) 3005 { 3006 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3007 return nvme_disable_prepare_reset(ndev, true); 3008 } 3009 3010 static int nvme_simple_resume(struct device *dev) 3011 { 3012 struct pci_dev *pdev = to_pci_dev(dev); 3013 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3014 3015 return nvme_try_sched_reset(&ndev->ctrl); 3016 } 3017 3018 static const struct dev_pm_ops nvme_dev_pm_ops = { 3019 .suspend = nvme_suspend, 3020 .resume = nvme_resume, 3021 .freeze = nvme_simple_suspend, 3022 .thaw = nvme_simple_resume, 3023 .poweroff = nvme_simple_suspend, 3024 .restore = nvme_simple_resume, 3025 }; 3026 #endif /* CONFIG_PM_SLEEP */ 3027 3028 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3029 pci_channel_state_t state) 3030 { 3031 struct nvme_dev *dev = pci_get_drvdata(pdev); 3032 3033 /* 3034 * A frozen channel requires a reset. When detected, this method will 3035 * shutdown the controller to quiesce. The controller will be restarted 3036 * after the slot reset through driver's slot_reset callback. 3037 */ 3038 switch (state) { 3039 case pci_channel_io_normal: 3040 return PCI_ERS_RESULT_CAN_RECOVER; 3041 case pci_channel_io_frozen: 3042 dev_warn(dev->ctrl.device, 3043 "frozen state error detected, reset controller\n"); 3044 nvme_dev_disable(dev, false); 3045 return PCI_ERS_RESULT_NEED_RESET; 3046 case pci_channel_io_perm_failure: 3047 dev_warn(dev->ctrl.device, 3048 "failure state error detected, request disconnect\n"); 3049 return PCI_ERS_RESULT_DISCONNECT; 3050 } 3051 return PCI_ERS_RESULT_NEED_RESET; 3052 } 3053 3054 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3055 { 3056 struct nvme_dev *dev = pci_get_drvdata(pdev); 3057 3058 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3059 pci_restore_state(pdev); 3060 nvme_reset_ctrl(&dev->ctrl); 3061 return PCI_ERS_RESULT_RECOVERED; 3062 } 3063 3064 static void nvme_error_resume(struct pci_dev *pdev) 3065 { 3066 struct nvme_dev *dev = pci_get_drvdata(pdev); 3067 3068 flush_work(&dev->ctrl.reset_work); 3069 } 3070 3071 static const struct pci_error_handlers nvme_err_handler = { 3072 .error_detected = nvme_error_detected, 3073 .slot_reset = nvme_slot_reset, 3074 .resume = nvme_error_resume, 3075 .reset_prepare = nvme_reset_prepare, 3076 .reset_done = nvme_reset_done, 3077 }; 3078 3079 static const struct pci_device_id nvme_id_table[] = { 3080 { PCI_VDEVICE(INTEL, 0x0953), 3081 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3082 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3083 { PCI_VDEVICE(INTEL, 0x0a53), 3084 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3085 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3086 { PCI_VDEVICE(INTEL, 0x0a54), 3087 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3088 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3089 { PCI_VDEVICE(INTEL, 0x0a55), 3090 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3091 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3092 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3093 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3094 NVME_QUIRK_MEDIUM_PRIO_SQ | 3095 NVME_QUIRK_NO_TEMP_THRESH_CHANGE }, 3096 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3097 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3098 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3099 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3100 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3101 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3102 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3103 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3104 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3105 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3106 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3107 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3108 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3109 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3110 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3111 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3112 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3113 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3114 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3115 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3116 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3117 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3118 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3119 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3120 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3121 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3122 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3123 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3124 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3125 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3126 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3127 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3128 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3129 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3130 NVME_QUIRK_128_BYTES_SQES | 3131 NVME_QUIRK_SHARED_TAGS }, 3132 { 0, } 3133 }; 3134 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3135 3136 static struct pci_driver nvme_driver = { 3137 .name = "nvme", 3138 .id_table = nvme_id_table, 3139 .probe = nvme_probe, 3140 .remove = nvme_remove, 3141 .shutdown = nvme_shutdown, 3142 #ifdef CONFIG_PM_SLEEP 3143 .driver = { 3144 .pm = &nvme_dev_pm_ops, 3145 }, 3146 #endif 3147 .sriov_configure = pci_sriov_configure_simple, 3148 .err_handler = &nvme_err_handler, 3149 }; 3150 3151 static int __init nvme_init(void) 3152 { 3153 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3154 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3155 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3156 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3157 3158 return pci_register_driver(&nvme_driver); 3159 } 3160 3161 static void __exit nvme_exit(void) 3162 { 3163 pci_unregister_driver(&nvme_driver); 3164 flush_workqueue(nvme_wq); 3165 } 3166 3167 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3168 MODULE_LICENSE("GPL"); 3169 MODULE_VERSION("1.0"); 3170 module_init(nvme_init); 3171 module_exit(nvme_exit); 3172