1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/cpu.h> 21 #include <linux/delay.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/genhd.h> 25 #include <linux/hdreg.h> 26 #include <linux/idr.h> 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/io.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/timer.h> 43 #include <linux/types.h> 44 #include <linux/io-64-nonatomic-lo-hi.h> 45 #include <asm/unaligned.h> 46 47 #include "nvme.h" 48 49 #define NVME_Q_DEPTH 1024 50 #define NVME_AQ_DEPTH 256 51 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 52 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 53 54 /* 55 * We handle AEN commands ourselves and don't even let the 56 * block layer know about them. 57 */ 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 59 60 static int use_threaded_interrupts; 61 module_param(use_threaded_interrupts, int, 0); 62 63 static bool use_cmb_sqes = true; 64 module_param(use_cmb_sqes, bool, 0644); 65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 66 67 static struct workqueue_struct *nvme_workq; 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static int nvme_reset(struct nvme_dev *dev); 73 static void nvme_process_cq(struct nvme_queue *nvmeq); 74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 75 76 /* 77 * Represents an NVM Express device. Each nvme_dev is a PCI function. 78 */ 79 struct nvme_dev { 80 struct nvme_queue **queues; 81 struct blk_mq_tag_set tagset; 82 struct blk_mq_tag_set admin_tagset; 83 u32 __iomem *dbs; 84 struct device *dev; 85 struct dma_pool *prp_page_pool; 86 struct dma_pool *prp_small_pool; 87 unsigned queue_count; 88 unsigned online_queues; 89 unsigned max_qid; 90 int q_depth; 91 u32 db_stride; 92 void __iomem *bar; 93 struct work_struct reset_work; 94 struct work_struct remove_work; 95 struct timer_list watchdog_timer; 96 struct mutex shutdown_lock; 97 bool subsystem; 98 void __iomem *cmb; 99 dma_addr_t cmb_dma_addr; 100 u64 cmb_size; 101 u32 cmbsz; 102 u32 cmbloc; 103 struct nvme_ctrl ctrl; 104 struct completion ioq_wait; 105 }; 106 107 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 108 { 109 return container_of(ctrl, struct nvme_dev, ctrl); 110 } 111 112 /* 113 * An NVM Express queue. Each device has at least two (one for admin 114 * commands and one for I/O commands). 115 */ 116 struct nvme_queue { 117 struct device *q_dmadev; 118 struct nvme_dev *dev; 119 char irqname[24]; /* nvme4294967295-65535\0 */ 120 spinlock_t q_lock; 121 struct nvme_command *sq_cmds; 122 struct nvme_command __iomem *sq_cmds_io; 123 volatile struct nvme_completion *cqes; 124 struct blk_mq_tags **tags; 125 dma_addr_t sq_dma_addr; 126 dma_addr_t cq_dma_addr; 127 u32 __iomem *q_db; 128 u16 q_depth; 129 s16 cq_vector; 130 u16 sq_tail; 131 u16 cq_head; 132 u16 qid; 133 u8 cq_phase; 134 u8 cqe_seen; 135 }; 136 137 /* 138 * The nvme_iod describes the data in an I/O, including the list of PRP 139 * entries. You can't see it in this data structure because C doesn't let 140 * me express that. Use nvme_init_iod to ensure there's enough space 141 * allocated to store the PRP list. 142 */ 143 struct nvme_iod { 144 struct nvme_request req; 145 struct nvme_queue *nvmeq; 146 int aborted; 147 int npages; /* In the PRP list. 0 means small pool in use */ 148 int nents; /* Used in scatterlist */ 149 int length; /* Of data, in bytes */ 150 dma_addr_t first_dma; 151 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 152 struct scatterlist *sg; 153 struct scatterlist inline_sg[0]; 154 }; 155 156 /* 157 * Check we didin't inadvertently grow the command struct 158 */ 159 static inline void _nvme_check_size(void) 160 { 161 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 162 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 163 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 164 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 165 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 166 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 167 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 168 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 169 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 170 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 171 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 172 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 173 } 174 175 /* 176 * Max size of iod being embedded in the request payload 177 */ 178 #define NVME_INT_PAGES 2 179 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 180 181 /* 182 * Will slightly overestimate the number of pages needed. This is OK 183 * as it only leads to a small amount of wasted memory for the lifetime of 184 * the I/O. 185 */ 186 static int nvme_npages(unsigned size, struct nvme_dev *dev) 187 { 188 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 189 dev->ctrl.page_size); 190 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 191 } 192 193 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 194 unsigned int size, unsigned int nseg) 195 { 196 return sizeof(__le64 *) * nvme_npages(size, dev) + 197 sizeof(struct scatterlist) * nseg; 198 } 199 200 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 201 { 202 return sizeof(struct nvme_iod) + 203 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 204 } 205 206 static int nvmeq_irq(struct nvme_queue *nvmeq) 207 { 208 return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); 209 } 210 211 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 212 unsigned int hctx_idx) 213 { 214 struct nvme_dev *dev = data; 215 struct nvme_queue *nvmeq = dev->queues[0]; 216 217 WARN_ON(hctx_idx != 0); 218 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 219 WARN_ON(nvmeq->tags); 220 221 hctx->driver_data = nvmeq; 222 nvmeq->tags = &dev->admin_tagset.tags[0]; 223 return 0; 224 } 225 226 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 227 { 228 struct nvme_queue *nvmeq = hctx->driver_data; 229 230 nvmeq->tags = NULL; 231 } 232 233 static int nvme_admin_init_request(void *data, struct request *req, 234 unsigned int hctx_idx, unsigned int rq_idx, 235 unsigned int numa_node) 236 { 237 struct nvme_dev *dev = data; 238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 239 struct nvme_queue *nvmeq = dev->queues[0]; 240 241 BUG_ON(!nvmeq); 242 iod->nvmeq = nvmeq; 243 return 0; 244 } 245 246 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 247 unsigned int hctx_idx) 248 { 249 struct nvme_dev *dev = data; 250 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 251 252 if (!nvmeq->tags) 253 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 254 255 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 256 hctx->driver_data = nvmeq; 257 return 0; 258 } 259 260 static int nvme_init_request(void *data, struct request *req, 261 unsigned int hctx_idx, unsigned int rq_idx, 262 unsigned int numa_node) 263 { 264 struct nvme_dev *dev = data; 265 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 267 268 BUG_ON(!nvmeq); 269 iod->nvmeq = nvmeq; 270 return 0; 271 } 272 273 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 274 { 275 struct nvme_dev *dev = set->driver_data; 276 277 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 278 } 279 280 /** 281 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 282 * @nvmeq: The queue to use 283 * @cmd: The command to send 284 * 285 * Safe to use from interrupt context 286 */ 287 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 288 struct nvme_command *cmd) 289 { 290 u16 tail = nvmeq->sq_tail; 291 292 if (nvmeq->sq_cmds_io) 293 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 294 else 295 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 296 297 if (++tail == nvmeq->q_depth) 298 tail = 0; 299 writel(tail, nvmeq->q_db); 300 nvmeq->sq_tail = tail; 301 } 302 303 static __le64 **iod_list(struct request *req) 304 { 305 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 306 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 307 } 308 309 static int nvme_init_iod(struct request *rq, unsigned size, 310 struct nvme_dev *dev) 311 { 312 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 313 int nseg = blk_rq_nr_phys_segments(rq); 314 315 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 316 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 317 if (!iod->sg) 318 return BLK_MQ_RQ_QUEUE_BUSY; 319 } else { 320 iod->sg = iod->inline_sg; 321 } 322 323 iod->aborted = 0; 324 iod->npages = -1; 325 iod->nents = 0; 326 iod->length = size; 327 328 if (!(rq->rq_flags & RQF_DONTPREP)) { 329 rq->retries = 0; 330 rq->rq_flags |= RQF_DONTPREP; 331 } 332 return BLK_MQ_RQ_QUEUE_OK; 333 } 334 335 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 336 { 337 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 338 const int last_prp = dev->ctrl.page_size / 8 - 1; 339 int i; 340 __le64 **list = iod_list(req); 341 dma_addr_t prp_dma = iod->first_dma; 342 343 if (iod->npages == 0) 344 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 345 for (i = 0; i < iod->npages; i++) { 346 __le64 *prp_list = list[i]; 347 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 348 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 349 prp_dma = next_prp_dma; 350 } 351 352 if (iod->sg != iod->inline_sg) 353 kfree(iod->sg); 354 } 355 356 #ifdef CONFIG_BLK_DEV_INTEGRITY 357 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 358 { 359 if (be32_to_cpu(pi->ref_tag) == v) 360 pi->ref_tag = cpu_to_be32(p); 361 } 362 363 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 364 { 365 if (be32_to_cpu(pi->ref_tag) == p) 366 pi->ref_tag = cpu_to_be32(v); 367 } 368 369 /** 370 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 371 * 372 * The virtual start sector is the one that was originally submitted by the 373 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 374 * start sector may be different. Remap protection information to match the 375 * physical LBA on writes, and back to the original seed on reads. 376 * 377 * Type 0 and 3 do not have a ref tag, so no remapping required. 378 */ 379 static void nvme_dif_remap(struct request *req, 380 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 381 { 382 struct nvme_ns *ns = req->rq_disk->private_data; 383 struct bio_integrity_payload *bip; 384 struct t10_pi_tuple *pi; 385 void *p, *pmap; 386 u32 i, nlb, ts, phys, virt; 387 388 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 389 return; 390 391 bip = bio_integrity(req->bio); 392 if (!bip) 393 return; 394 395 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 396 397 p = pmap; 398 virt = bip_get_seed(bip); 399 phys = nvme_block_nr(ns, blk_rq_pos(req)); 400 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 401 ts = ns->disk->queue->integrity.tuple_size; 402 403 for (i = 0; i < nlb; i++, virt++, phys++) { 404 pi = (struct t10_pi_tuple *)p; 405 dif_swap(phys, virt, pi); 406 p += ts; 407 } 408 kunmap_atomic(pmap); 409 } 410 #else /* CONFIG_BLK_DEV_INTEGRITY */ 411 static void nvme_dif_remap(struct request *req, 412 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 413 { 414 } 415 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 416 { 417 } 418 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 419 { 420 } 421 #endif 422 423 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 424 int total_len) 425 { 426 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 427 struct dma_pool *pool; 428 int length = total_len; 429 struct scatterlist *sg = iod->sg; 430 int dma_len = sg_dma_len(sg); 431 u64 dma_addr = sg_dma_address(sg); 432 u32 page_size = dev->ctrl.page_size; 433 int offset = dma_addr & (page_size - 1); 434 __le64 *prp_list; 435 __le64 **list = iod_list(req); 436 dma_addr_t prp_dma; 437 int nprps, i; 438 439 length -= (page_size - offset); 440 if (length <= 0) 441 return true; 442 443 dma_len -= (page_size - offset); 444 if (dma_len) { 445 dma_addr += (page_size - offset); 446 } else { 447 sg = sg_next(sg); 448 dma_addr = sg_dma_address(sg); 449 dma_len = sg_dma_len(sg); 450 } 451 452 if (length <= page_size) { 453 iod->first_dma = dma_addr; 454 return true; 455 } 456 457 nprps = DIV_ROUND_UP(length, page_size); 458 if (nprps <= (256 / 8)) { 459 pool = dev->prp_small_pool; 460 iod->npages = 0; 461 } else { 462 pool = dev->prp_page_pool; 463 iod->npages = 1; 464 } 465 466 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 467 if (!prp_list) { 468 iod->first_dma = dma_addr; 469 iod->npages = -1; 470 return false; 471 } 472 list[0] = prp_list; 473 iod->first_dma = prp_dma; 474 i = 0; 475 for (;;) { 476 if (i == page_size >> 3) { 477 __le64 *old_prp_list = prp_list; 478 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 479 if (!prp_list) 480 return false; 481 list[iod->npages++] = prp_list; 482 prp_list[0] = old_prp_list[i - 1]; 483 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 484 i = 1; 485 } 486 prp_list[i++] = cpu_to_le64(dma_addr); 487 dma_len -= page_size; 488 dma_addr += page_size; 489 length -= page_size; 490 if (length <= 0) 491 break; 492 if (dma_len > 0) 493 continue; 494 BUG_ON(dma_len < 0); 495 sg = sg_next(sg); 496 dma_addr = sg_dma_address(sg); 497 dma_len = sg_dma_len(sg); 498 } 499 500 return true; 501 } 502 503 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 504 unsigned size, struct nvme_command *cmnd) 505 { 506 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 507 struct request_queue *q = req->q; 508 enum dma_data_direction dma_dir = rq_data_dir(req) ? 509 DMA_TO_DEVICE : DMA_FROM_DEVICE; 510 int ret = BLK_MQ_RQ_QUEUE_ERROR; 511 512 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 513 iod->nents = blk_rq_map_sg(q, req, iod->sg); 514 if (!iod->nents) 515 goto out; 516 517 ret = BLK_MQ_RQ_QUEUE_BUSY; 518 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 519 DMA_ATTR_NO_WARN)) 520 goto out; 521 522 if (!nvme_setup_prps(dev, req, size)) 523 goto out_unmap; 524 525 ret = BLK_MQ_RQ_QUEUE_ERROR; 526 if (blk_integrity_rq(req)) { 527 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 528 goto out_unmap; 529 530 sg_init_table(&iod->meta_sg, 1); 531 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 532 goto out_unmap; 533 534 if (rq_data_dir(req)) 535 nvme_dif_remap(req, nvme_dif_prep); 536 537 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 538 goto out_unmap; 539 } 540 541 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 542 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 543 if (blk_integrity_rq(req)) 544 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 545 return BLK_MQ_RQ_QUEUE_OK; 546 547 out_unmap: 548 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 549 out: 550 return ret; 551 } 552 553 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 554 { 555 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 556 enum dma_data_direction dma_dir = rq_data_dir(req) ? 557 DMA_TO_DEVICE : DMA_FROM_DEVICE; 558 559 if (iod->nents) { 560 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 561 if (blk_integrity_rq(req)) { 562 if (!rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_complete); 564 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 565 } 566 } 567 568 nvme_cleanup_cmd(req); 569 nvme_free_iod(dev, req); 570 } 571 572 /* 573 * NOTE: ns is NULL when called on the admin queue. 574 */ 575 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 576 const struct blk_mq_queue_data *bd) 577 { 578 struct nvme_ns *ns = hctx->queue->queuedata; 579 struct nvme_queue *nvmeq = hctx->driver_data; 580 struct nvme_dev *dev = nvmeq->dev; 581 struct request *req = bd->rq; 582 struct nvme_command cmnd; 583 unsigned map_len; 584 int ret = BLK_MQ_RQ_QUEUE_OK; 585 586 /* 587 * If formated with metadata, require the block layer provide a buffer 588 * unless this namespace is formated such that the metadata can be 589 * stripped/generated by the controller with PRACT=1. 590 */ 591 if (ns && ns->ms && !blk_integrity_rq(req)) { 592 if (!(ns->pi_type && ns->ms == 8) && 593 req->cmd_type != REQ_TYPE_DRV_PRIV) { 594 blk_mq_end_request(req, -EFAULT); 595 return BLK_MQ_RQ_QUEUE_OK; 596 } 597 } 598 599 ret = nvme_setup_cmd(ns, req, &cmnd); 600 if (ret != BLK_MQ_RQ_QUEUE_OK) 601 return ret; 602 603 map_len = nvme_map_len(req); 604 ret = nvme_init_iod(req, map_len, dev); 605 if (ret != BLK_MQ_RQ_QUEUE_OK) 606 goto out_free_cmd; 607 608 if (blk_rq_nr_phys_segments(req)) 609 ret = nvme_map_data(dev, req, map_len, &cmnd); 610 611 if (ret != BLK_MQ_RQ_QUEUE_OK) 612 goto out_cleanup_iod; 613 614 blk_mq_start_request(req); 615 616 spin_lock_irq(&nvmeq->q_lock); 617 if (unlikely(nvmeq->cq_vector < 0)) { 618 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) 619 ret = BLK_MQ_RQ_QUEUE_BUSY; 620 else 621 ret = BLK_MQ_RQ_QUEUE_ERROR; 622 spin_unlock_irq(&nvmeq->q_lock); 623 goto out_cleanup_iod; 624 } 625 __nvme_submit_cmd(nvmeq, &cmnd); 626 nvme_process_cq(nvmeq); 627 spin_unlock_irq(&nvmeq->q_lock); 628 return BLK_MQ_RQ_QUEUE_OK; 629 out_cleanup_iod: 630 nvme_free_iod(dev, req); 631 out_free_cmd: 632 nvme_cleanup_cmd(req); 633 return ret; 634 } 635 636 static void nvme_complete_rq(struct request *req) 637 { 638 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 639 struct nvme_dev *dev = iod->nvmeq->dev; 640 int error = 0; 641 642 nvme_unmap_data(dev, req); 643 644 if (unlikely(req->errors)) { 645 if (nvme_req_needs_retry(req, req->errors)) { 646 req->retries++; 647 nvme_requeue_req(req); 648 return; 649 } 650 651 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 652 error = req->errors; 653 else 654 error = nvme_error_status(req->errors); 655 } 656 657 if (unlikely(iod->aborted)) { 658 dev_warn(dev->ctrl.device, 659 "completing aborted command with status: %04x\n", 660 req->errors); 661 } 662 663 blk_mq_end_request(req, error); 664 } 665 666 /* We read the CQE phase first to check if the rest of the entry is valid */ 667 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 668 u16 phase) 669 { 670 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 671 } 672 673 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 674 { 675 u16 head, phase; 676 677 head = nvmeq->cq_head; 678 phase = nvmeq->cq_phase; 679 680 while (nvme_cqe_valid(nvmeq, head, phase)) { 681 struct nvme_completion cqe = nvmeq->cqes[head]; 682 struct request *req; 683 684 if (++head == nvmeq->q_depth) { 685 head = 0; 686 phase = !phase; 687 } 688 689 if (tag && *tag == cqe.command_id) 690 *tag = -1; 691 692 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 693 dev_warn(nvmeq->dev->ctrl.device, 694 "invalid id %d completed on queue %d\n", 695 cqe.command_id, le16_to_cpu(cqe.sq_id)); 696 continue; 697 } 698 699 /* 700 * AEN requests are special as they don't time out and can 701 * survive any kind of queue freeze and often don't respond to 702 * aborts. We don't even bother to allocate a struct request 703 * for them but rather special case them here. 704 */ 705 if (unlikely(nvmeq->qid == 0 && 706 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 707 nvme_complete_async_event(&nvmeq->dev->ctrl, 708 cqe.status, &cqe.result); 709 continue; 710 } 711 712 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 713 nvme_req(req)->result = cqe.result; 714 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); 715 } 716 717 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 718 return; 719 720 if (likely(nvmeq->cq_vector >= 0)) 721 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 722 nvmeq->cq_head = head; 723 nvmeq->cq_phase = phase; 724 725 nvmeq->cqe_seen = 1; 726 } 727 728 static void nvme_process_cq(struct nvme_queue *nvmeq) 729 { 730 __nvme_process_cq(nvmeq, NULL); 731 } 732 733 static irqreturn_t nvme_irq(int irq, void *data) 734 { 735 irqreturn_t result; 736 struct nvme_queue *nvmeq = data; 737 spin_lock(&nvmeq->q_lock); 738 nvme_process_cq(nvmeq); 739 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 740 nvmeq->cqe_seen = 0; 741 spin_unlock(&nvmeq->q_lock); 742 return result; 743 } 744 745 static irqreturn_t nvme_irq_check(int irq, void *data) 746 { 747 struct nvme_queue *nvmeq = data; 748 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 749 return IRQ_WAKE_THREAD; 750 return IRQ_NONE; 751 } 752 753 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 754 { 755 struct nvme_queue *nvmeq = hctx->driver_data; 756 757 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 758 spin_lock_irq(&nvmeq->q_lock); 759 __nvme_process_cq(nvmeq, &tag); 760 spin_unlock_irq(&nvmeq->q_lock); 761 762 if (tag == -1) 763 return 1; 764 } 765 766 return 0; 767 } 768 769 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 770 { 771 struct nvme_dev *dev = to_nvme_dev(ctrl); 772 struct nvme_queue *nvmeq = dev->queues[0]; 773 struct nvme_command c; 774 775 memset(&c, 0, sizeof(c)); 776 c.common.opcode = nvme_admin_async_event; 777 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 778 779 spin_lock_irq(&nvmeq->q_lock); 780 __nvme_submit_cmd(nvmeq, &c); 781 spin_unlock_irq(&nvmeq->q_lock); 782 } 783 784 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 785 { 786 struct nvme_command c; 787 788 memset(&c, 0, sizeof(c)); 789 c.delete_queue.opcode = opcode; 790 c.delete_queue.qid = cpu_to_le16(id); 791 792 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 793 } 794 795 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 796 struct nvme_queue *nvmeq) 797 { 798 struct nvme_command c; 799 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 800 801 /* 802 * Note: we (ab)use the fact the the prp fields survive if no data 803 * is attached to the request. 804 */ 805 memset(&c, 0, sizeof(c)); 806 c.create_cq.opcode = nvme_admin_create_cq; 807 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 808 c.create_cq.cqid = cpu_to_le16(qid); 809 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 810 c.create_cq.cq_flags = cpu_to_le16(flags); 811 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 812 813 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 814 } 815 816 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 817 struct nvme_queue *nvmeq) 818 { 819 struct nvme_command c; 820 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 821 822 /* 823 * Note: we (ab)use the fact the the prp fields survive if no data 824 * is attached to the request. 825 */ 826 memset(&c, 0, sizeof(c)); 827 c.create_sq.opcode = nvme_admin_create_sq; 828 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 829 c.create_sq.sqid = cpu_to_le16(qid); 830 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 831 c.create_sq.sq_flags = cpu_to_le16(flags); 832 c.create_sq.cqid = cpu_to_le16(qid); 833 834 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 835 } 836 837 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 838 { 839 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 840 } 841 842 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 843 { 844 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 845 } 846 847 static void abort_endio(struct request *req, int error) 848 { 849 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 850 struct nvme_queue *nvmeq = iod->nvmeq; 851 u16 status = req->errors; 852 853 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); 854 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 855 blk_mq_free_request(req); 856 } 857 858 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 859 { 860 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 861 struct nvme_queue *nvmeq = iod->nvmeq; 862 struct nvme_dev *dev = nvmeq->dev; 863 struct request *abort_req; 864 struct nvme_command cmd; 865 866 /* 867 * Shutdown immediately if controller times out while starting. The 868 * reset work will see the pci device disabled when it gets the forced 869 * cancellation error. All outstanding requests are completed on 870 * shutdown, so we return BLK_EH_HANDLED. 871 */ 872 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 873 dev_warn(dev->ctrl.device, 874 "I/O %d QID %d timeout, disable controller\n", 875 req->tag, nvmeq->qid); 876 nvme_dev_disable(dev, false); 877 req->errors = NVME_SC_CANCELLED; 878 return BLK_EH_HANDLED; 879 } 880 881 /* 882 * Shutdown the controller immediately and schedule a reset if the 883 * command was already aborted once before and still hasn't been 884 * returned to the driver, or if this is the admin queue. 885 */ 886 if (!nvmeq->qid || iod->aborted) { 887 dev_warn(dev->ctrl.device, 888 "I/O %d QID %d timeout, reset controller\n", 889 req->tag, nvmeq->qid); 890 nvme_dev_disable(dev, false); 891 nvme_reset(dev); 892 893 /* 894 * Mark the request as handled, since the inline shutdown 895 * forces all outstanding requests to complete. 896 */ 897 req->errors = NVME_SC_CANCELLED; 898 return BLK_EH_HANDLED; 899 } 900 901 iod->aborted = 1; 902 903 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 904 atomic_inc(&dev->ctrl.abort_limit); 905 return BLK_EH_RESET_TIMER; 906 } 907 908 memset(&cmd, 0, sizeof(cmd)); 909 cmd.abort.opcode = nvme_admin_abort_cmd; 910 cmd.abort.cid = req->tag; 911 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 912 913 dev_warn(nvmeq->dev->ctrl.device, 914 "I/O %d QID %d timeout, aborting\n", 915 req->tag, nvmeq->qid); 916 917 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 918 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 919 if (IS_ERR(abort_req)) { 920 atomic_inc(&dev->ctrl.abort_limit); 921 return BLK_EH_RESET_TIMER; 922 } 923 924 abort_req->timeout = ADMIN_TIMEOUT; 925 abort_req->end_io_data = NULL; 926 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 927 928 /* 929 * The aborted req will be completed on receiving the abort req. 930 * We enable the timer again. If hit twice, it'll cause a device reset, 931 * as the device then is in a faulty state. 932 */ 933 return BLK_EH_RESET_TIMER; 934 } 935 936 static void nvme_free_queue(struct nvme_queue *nvmeq) 937 { 938 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 939 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 940 if (nvmeq->sq_cmds) 941 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 942 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 943 kfree(nvmeq); 944 } 945 946 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 947 { 948 int i; 949 950 for (i = dev->queue_count - 1; i >= lowest; i--) { 951 struct nvme_queue *nvmeq = dev->queues[i]; 952 dev->queue_count--; 953 dev->queues[i] = NULL; 954 nvme_free_queue(nvmeq); 955 } 956 } 957 958 /** 959 * nvme_suspend_queue - put queue into suspended state 960 * @nvmeq - queue to suspend 961 */ 962 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 963 { 964 int vector; 965 966 spin_lock_irq(&nvmeq->q_lock); 967 if (nvmeq->cq_vector == -1) { 968 spin_unlock_irq(&nvmeq->q_lock); 969 return 1; 970 } 971 vector = nvmeq_irq(nvmeq); 972 nvmeq->dev->online_queues--; 973 nvmeq->cq_vector = -1; 974 spin_unlock_irq(&nvmeq->q_lock); 975 976 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 977 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 978 979 free_irq(vector, nvmeq); 980 981 return 0; 982 } 983 984 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 985 { 986 struct nvme_queue *nvmeq = dev->queues[0]; 987 988 if (!nvmeq) 989 return; 990 if (nvme_suspend_queue(nvmeq)) 991 return; 992 993 if (shutdown) 994 nvme_shutdown_ctrl(&dev->ctrl); 995 else 996 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 997 dev->bar + NVME_REG_CAP)); 998 999 spin_lock_irq(&nvmeq->q_lock); 1000 nvme_process_cq(nvmeq); 1001 spin_unlock_irq(&nvmeq->q_lock); 1002 } 1003 1004 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1005 int entry_size) 1006 { 1007 int q_depth = dev->q_depth; 1008 unsigned q_size_aligned = roundup(q_depth * entry_size, 1009 dev->ctrl.page_size); 1010 1011 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1012 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1013 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1014 q_depth = div_u64(mem_per_q, entry_size); 1015 1016 /* 1017 * Ensure the reduced q_depth is above some threshold where it 1018 * would be better to map queues in system memory with the 1019 * original depth 1020 */ 1021 if (q_depth < 64) 1022 return -ENOMEM; 1023 } 1024 1025 return q_depth; 1026 } 1027 1028 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1029 int qid, int depth) 1030 { 1031 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1032 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1033 dev->ctrl.page_size); 1034 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1035 nvmeq->sq_cmds_io = dev->cmb + offset; 1036 } else { 1037 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1038 &nvmeq->sq_dma_addr, GFP_KERNEL); 1039 if (!nvmeq->sq_cmds) 1040 return -ENOMEM; 1041 } 1042 1043 return 0; 1044 } 1045 1046 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1047 int depth) 1048 { 1049 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1050 if (!nvmeq) 1051 return NULL; 1052 1053 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1054 &nvmeq->cq_dma_addr, GFP_KERNEL); 1055 if (!nvmeq->cqes) 1056 goto free_nvmeq; 1057 1058 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1059 goto free_cqdma; 1060 1061 nvmeq->q_dmadev = dev->dev; 1062 nvmeq->dev = dev; 1063 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1064 dev->ctrl.instance, qid); 1065 spin_lock_init(&nvmeq->q_lock); 1066 nvmeq->cq_head = 0; 1067 nvmeq->cq_phase = 1; 1068 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1069 nvmeq->q_depth = depth; 1070 nvmeq->qid = qid; 1071 nvmeq->cq_vector = -1; 1072 dev->queues[qid] = nvmeq; 1073 dev->queue_count++; 1074 1075 return nvmeq; 1076 1077 free_cqdma: 1078 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1079 nvmeq->cq_dma_addr); 1080 free_nvmeq: 1081 kfree(nvmeq); 1082 return NULL; 1083 } 1084 1085 static int queue_request_irq(struct nvme_queue *nvmeq) 1086 { 1087 if (use_threaded_interrupts) 1088 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, 1089 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); 1090 else 1091 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, 1092 nvmeq->irqname, nvmeq); 1093 } 1094 1095 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1096 { 1097 struct nvme_dev *dev = nvmeq->dev; 1098 1099 spin_lock_irq(&nvmeq->q_lock); 1100 nvmeq->sq_tail = 0; 1101 nvmeq->cq_head = 0; 1102 nvmeq->cq_phase = 1; 1103 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1104 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1105 dev->online_queues++; 1106 spin_unlock_irq(&nvmeq->q_lock); 1107 } 1108 1109 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1110 { 1111 struct nvme_dev *dev = nvmeq->dev; 1112 int result; 1113 1114 nvmeq->cq_vector = qid - 1; 1115 result = adapter_alloc_cq(dev, qid, nvmeq); 1116 if (result < 0) 1117 return result; 1118 1119 result = adapter_alloc_sq(dev, qid, nvmeq); 1120 if (result < 0) 1121 goto release_cq; 1122 1123 result = queue_request_irq(nvmeq); 1124 if (result < 0) 1125 goto release_sq; 1126 1127 nvme_init_queue(nvmeq, qid); 1128 return result; 1129 1130 release_sq: 1131 adapter_delete_sq(dev, qid); 1132 release_cq: 1133 adapter_delete_cq(dev, qid); 1134 return result; 1135 } 1136 1137 static struct blk_mq_ops nvme_mq_admin_ops = { 1138 .queue_rq = nvme_queue_rq, 1139 .complete = nvme_complete_rq, 1140 .init_hctx = nvme_admin_init_hctx, 1141 .exit_hctx = nvme_admin_exit_hctx, 1142 .init_request = nvme_admin_init_request, 1143 .timeout = nvme_timeout, 1144 }; 1145 1146 static struct blk_mq_ops nvme_mq_ops = { 1147 .queue_rq = nvme_queue_rq, 1148 .complete = nvme_complete_rq, 1149 .init_hctx = nvme_init_hctx, 1150 .init_request = nvme_init_request, 1151 .map_queues = nvme_pci_map_queues, 1152 .timeout = nvme_timeout, 1153 .poll = nvme_poll, 1154 }; 1155 1156 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1157 { 1158 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1159 /* 1160 * If the controller was reset during removal, it's possible 1161 * user requests may be waiting on a stopped queue. Start the 1162 * queue to flush these to completion. 1163 */ 1164 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1165 blk_cleanup_queue(dev->ctrl.admin_q); 1166 blk_mq_free_tag_set(&dev->admin_tagset); 1167 } 1168 } 1169 1170 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1171 { 1172 if (!dev->ctrl.admin_q) { 1173 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1174 dev->admin_tagset.nr_hw_queues = 1; 1175 1176 /* 1177 * Subtract one to leave an empty queue entry for 'Full Queue' 1178 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1179 */ 1180 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1181 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1182 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1183 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1184 dev->admin_tagset.driver_data = dev; 1185 1186 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1187 return -ENOMEM; 1188 1189 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1190 if (IS_ERR(dev->ctrl.admin_q)) { 1191 blk_mq_free_tag_set(&dev->admin_tagset); 1192 return -ENOMEM; 1193 } 1194 if (!blk_get_queue(dev->ctrl.admin_q)) { 1195 nvme_dev_remove_admin(dev); 1196 dev->ctrl.admin_q = NULL; 1197 return -ENODEV; 1198 } 1199 } else 1200 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1201 1202 return 0; 1203 } 1204 1205 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1206 { 1207 int result; 1208 u32 aqa; 1209 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1210 struct nvme_queue *nvmeq; 1211 1212 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1213 NVME_CAP_NSSRC(cap) : 0; 1214 1215 if (dev->subsystem && 1216 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1217 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1218 1219 result = nvme_disable_ctrl(&dev->ctrl, cap); 1220 if (result < 0) 1221 return result; 1222 1223 nvmeq = dev->queues[0]; 1224 if (!nvmeq) { 1225 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1226 if (!nvmeq) 1227 return -ENOMEM; 1228 } 1229 1230 aqa = nvmeq->q_depth - 1; 1231 aqa |= aqa << 16; 1232 1233 writel(aqa, dev->bar + NVME_REG_AQA); 1234 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1235 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1236 1237 result = nvme_enable_ctrl(&dev->ctrl, cap); 1238 if (result) 1239 return result; 1240 1241 nvmeq->cq_vector = 0; 1242 result = queue_request_irq(nvmeq); 1243 if (result) { 1244 nvmeq->cq_vector = -1; 1245 return result; 1246 } 1247 1248 return result; 1249 } 1250 1251 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1252 { 1253 1254 /* If true, indicates loss of adapter communication, possibly by a 1255 * NVMe Subsystem reset. 1256 */ 1257 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1258 1259 /* If there is a reset ongoing, we shouldn't reset again. */ 1260 if (work_busy(&dev->reset_work)) 1261 return false; 1262 1263 /* We shouldn't reset unless the controller is on fatal error state 1264 * _or_ if we lost the communication with it. 1265 */ 1266 if (!(csts & NVME_CSTS_CFS) && !nssro) 1267 return false; 1268 1269 /* If PCI error recovery process is happening, we cannot reset or 1270 * the recovery mechanism will surely fail. 1271 */ 1272 if (pci_channel_offline(to_pci_dev(dev->dev))) 1273 return false; 1274 1275 return true; 1276 } 1277 1278 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1279 { 1280 /* Read a config register to help see what died. */ 1281 u16 pci_status; 1282 int result; 1283 1284 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1285 &pci_status); 1286 if (result == PCIBIOS_SUCCESSFUL) 1287 dev_warn(dev->dev, 1288 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1289 csts, pci_status); 1290 else 1291 dev_warn(dev->dev, 1292 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1293 csts, result); 1294 } 1295 1296 static void nvme_watchdog_timer(unsigned long data) 1297 { 1298 struct nvme_dev *dev = (struct nvme_dev *)data; 1299 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1300 1301 /* Skip controllers under certain specific conditions. */ 1302 if (nvme_should_reset(dev, csts)) { 1303 if (!nvme_reset(dev)) 1304 nvme_warn_reset(dev, csts); 1305 return; 1306 } 1307 1308 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1309 } 1310 1311 static int nvme_create_io_queues(struct nvme_dev *dev) 1312 { 1313 unsigned i, max; 1314 int ret = 0; 1315 1316 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1317 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1318 ret = -ENOMEM; 1319 break; 1320 } 1321 } 1322 1323 max = min(dev->max_qid, dev->queue_count - 1); 1324 for (i = dev->online_queues; i <= max; i++) { 1325 ret = nvme_create_queue(dev->queues[i], i); 1326 if (ret) 1327 break; 1328 } 1329 1330 /* 1331 * Ignore failing Create SQ/CQ commands, we can continue with less 1332 * than the desired aount of queues, and even a controller without 1333 * I/O queues an still be used to issue admin commands. This might 1334 * be useful to upgrade a buggy firmware for example. 1335 */ 1336 return ret >= 0 ? 0 : ret; 1337 } 1338 1339 static ssize_t nvme_cmb_show(struct device *dev, 1340 struct device_attribute *attr, 1341 char *buf) 1342 { 1343 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1344 1345 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1346 ndev->cmbloc, ndev->cmbsz); 1347 } 1348 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1349 1350 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1351 { 1352 u64 szu, size, offset; 1353 resource_size_t bar_size; 1354 struct pci_dev *pdev = to_pci_dev(dev->dev); 1355 void __iomem *cmb; 1356 dma_addr_t dma_addr; 1357 1358 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1359 if (!(NVME_CMB_SZ(dev->cmbsz))) 1360 return NULL; 1361 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1362 1363 if (!use_cmb_sqes) 1364 return NULL; 1365 1366 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1367 size = szu * NVME_CMB_SZ(dev->cmbsz); 1368 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1369 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1370 1371 if (offset > bar_size) 1372 return NULL; 1373 1374 /* 1375 * Controllers may support a CMB size larger than their BAR, 1376 * for example, due to being behind a bridge. Reduce the CMB to 1377 * the reported size of the BAR 1378 */ 1379 if (size > bar_size - offset) 1380 size = bar_size - offset; 1381 1382 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1383 cmb = ioremap_wc(dma_addr, size); 1384 if (!cmb) 1385 return NULL; 1386 1387 dev->cmb_dma_addr = dma_addr; 1388 dev->cmb_size = size; 1389 return cmb; 1390 } 1391 1392 static inline void nvme_release_cmb(struct nvme_dev *dev) 1393 { 1394 if (dev->cmb) { 1395 iounmap(dev->cmb); 1396 dev->cmb = NULL; 1397 } 1398 } 1399 1400 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1401 { 1402 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1403 } 1404 1405 static int nvme_setup_io_queues(struct nvme_dev *dev) 1406 { 1407 struct nvme_queue *adminq = dev->queues[0]; 1408 struct pci_dev *pdev = to_pci_dev(dev->dev); 1409 int result, nr_io_queues, size; 1410 1411 nr_io_queues = num_online_cpus(); 1412 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1413 if (result < 0) 1414 return result; 1415 1416 if (nr_io_queues == 0) 1417 return 0; 1418 1419 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1420 result = nvme_cmb_qdepth(dev, nr_io_queues, 1421 sizeof(struct nvme_command)); 1422 if (result > 0) 1423 dev->q_depth = result; 1424 else 1425 nvme_release_cmb(dev); 1426 } 1427 1428 size = db_bar_size(dev, nr_io_queues); 1429 if (size > 8192) { 1430 iounmap(dev->bar); 1431 do { 1432 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1433 if (dev->bar) 1434 break; 1435 if (!--nr_io_queues) 1436 return -ENOMEM; 1437 size = db_bar_size(dev, nr_io_queues); 1438 } while (1); 1439 dev->dbs = dev->bar + 4096; 1440 adminq->q_db = dev->dbs; 1441 } 1442 1443 /* Deregister the admin queue's interrupt */ 1444 free_irq(pci_irq_vector(pdev, 0), adminq); 1445 1446 /* 1447 * If we enable msix early due to not intx, disable it again before 1448 * setting up the full range we need. 1449 */ 1450 pci_free_irq_vectors(pdev); 1451 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1452 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1453 if (nr_io_queues <= 0) 1454 return -EIO; 1455 dev->max_qid = nr_io_queues; 1456 1457 /* 1458 * Should investigate if there's a performance win from allocating 1459 * more queues than interrupt vectors; it might allow the submission 1460 * path to scale better, even if the receive path is limited by the 1461 * number of interrupts. 1462 */ 1463 1464 result = queue_request_irq(adminq); 1465 if (result) { 1466 adminq->cq_vector = -1; 1467 return result; 1468 } 1469 return nvme_create_io_queues(dev); 1470 } 1471 1472 static void nvme_del_queue_end(struct request *req, int error) 1473 { 1474 struct nvme_queue *nvmeq = req->end_io_data; 1475 1476 blk_mq_free_request(req); 1477 complete(&nvmeq->dev->ioq_wait); 1478 } 1479 1480 static void nvme_del_cq_end(struct request *req, int error) 1481 { 1482 struct nvme_queue *nvmeq = req->end_io_data; 1483 1484 if (!error) { 1485 unsigned long flags; 1486 1487 /* 1488 * We might be called with the AQ q_lock held 1489 * and the I/O queue q_lock should always 1490 * nest inside the AQ one. 1491 */ 1492 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1493 SINGLE_DEPTH_NESTING); 1494 nvme_process_cq(nvmeq); 1495 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1496 } 1497 1498 nvme_del_queue_end(req, error); 1499 } 1500 1501 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1502 { 1503 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1504 struct request *req; 1505 struct nvme_command cmd; 1506 1507 memset(&cmd, 0, sizeof(cmd)); 1508 cmd.delete_queue.opcode = opcode; 1509 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1510 1511 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1512 if (IS_ERR(req)) 1513 return PTR_ERR(req); 1514 1515 req->timeout = ADMIN_TIMEOUT; 1516 req->end_io_data = nvmeq; 1517 1518 blk_execute_rq_nowait(q, NULL, req, false, 1519 opcode == nvme_admin_delete_cq ? 1520 nvme_del_cq_end : nvme_del_queue_end); 1521 return 0; 1522 } 1523 1524 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1525 { 1526 int pass; 1527 unsigned long timeout; 1528 u8 opcode = nvme_admin_delete_sq; 1529 1530 for (pass = 0; pass < 2; pass++) { 1531 int sent = 0, i = queues; 1532 1533 reinit_completion(&dev->ioq_wait); 1534 retry: 1535 timeout = ADMIN_TIMEOUT; 1536 for (; i > 0; i--, sent++) 1537 if (nvme_delete_queue(dev->queues[i], opcode)) 1538 break; 1539 1540 while (sent--) { 1541 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1542 if (timeout == 0) 1543 return; 1544 if (i) 1545 goto retry; 1546 } 1547 opcode = nvme_admin_delete_cq; 1548 } 1549 } 1550 1551 /* 1552 * Return: error value if an error occurred setting up the queues or calling 1553 * Identify Device. 0 if these succeeded, even if adding some of the 1554 * namespaces failed. At the moment, these failures are silent. TBD which 1555 * failures should be reported. 1556 */ 1557 static int nvme_dev_add(struct nvme_dev *dev) 1558 { 1559 if (!dev->ctrl.tagset) { 1560 dev->tagset.ops = &nvme_mq_ops; 1561 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1562 dev->tagset.timeout = NVME_IO_TIMEOUT; 1563 dev->tagset.numa_node = dev_to_node(dev->dev); 1564 dev->tagset.queue_depth = 1565 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1566 dev->tagset.cmd_size = nvme_cmd_size(dev); 1567 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1568 dev->tagset.driver_data = dev; 1569 1570 if (blk_mq_alloc_tag_set(&dev->tagset)) 1571 return 0; 1572 dev->ctrl.tagset = &dev->tagset; 1573 } else { 1574 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1575 1576 /* Free previously allocated queues that are no longer usable */ 1577 nvme_free_queues(dev, dev->online_queues); 1578 } 1579 1580 return 0; 1581 } 1582 1583 static int nvme_pci_enable(struct nvme_dev *dev) 1584 { 1585 u64 cap; 1586 int result = -ENOMEM; 1587 struct pci_dev *pdev = to_pci_dev(dev->dev); 1588 1589 if (pci_enable_device_mem(pdev)) 1590 return result; 1591 1592 pci_set_master(pdev); 1593 1594 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1595 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1596 goto disable; 1597 1598 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1599 result = -ENODEV; 1600 goto disable; 1601 } 1602 1603 /* 1604 * Some devices and/or platforms don't advertise or work with INTx 1605 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1606 * adjust this later. 1607 */ 1608 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1609 if (result < 0) 1610 return result; 1611 1612 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1613 1614 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1615 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1616 dev->dbs = dev->bar + 4096; 1617 1618 /* 1619 * Temporary fix for the Apple controller found in the MacBook8,1 and 1620 * some MacBook7,1 to avoid controller resets and data loss. 1621 */ 1622 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1623 dev->q_depth = 2; 1624 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1625 "queue depth=%u to work around controller resets\n", 1626 dev->q_depth); 1627 } 1628 1629 /* 1630 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1631 * populate sysfs if a CMB is implemented. Note that we add the 1632 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1633 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1634 * NULL as final argument to sysfs_add_file_to_group. 1635 */ 1636 1637 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1638 dev->cmb = nvme_map_cmb(dev); 1639 1640 if (dev->cmbsz) { 1641 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1642 &dev_attr_cmb.attr, NULL)) 1643 dev_warn(dev->dev, 1644 "failed to add sysfs attribute for CMB\n"); 1645 } 1646 } 1647 1648 pci_enable_pcie_error_reporting(pdev); 1649 pci_save_state(pdev); 1650 return 0; 1651 1652 disable: 1653 pci_disable_device(pdev); 1654 return result; 1655 } 1656 1657 static void nvme_dev_unmap(struct nvme_dev *dev) 1658 { 1659 if (dev->bar) 1660 iounmap(dev->bar); 1661 pci_release_mem_regions(to_pci_dev(dev->dev)); 1662 } 1663 1664 static void nvme_pci_disable(struct nvme_dev *dev) 1665 { 1666 struct pci_dev *pdev = to_pci_dev(dev->dev); 1667 1668 pci_free_irq_vectors(pdev); 1669 1670 if (pci_is_enabled(pdev)) { 1671 pci_disable_pcie_error_reporting(pdev); 1672 pci_disable_device(pdev); 1673 } 1674 } 1675 1676 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1677 { 1678 int i, queues; 1679 u32 csts = -1; 1680 1681 del_timer_sync(&dev->watchdog_timer); 1682 1683 mutex_lock(&dev->shutdown_lock); 1684 if (pci_is_enabled(to_pci_dev(dev->dev))) { 1685 nvme_stop_queues(&dev->ctrl); 1686 csts = readl(dev->bar + NVME_REG_CSTS); 1687 } 1688 1689 queues = dev->online_queues - 1; 1690 for (i = dev->queue_count - 1; i > 0; i--) 1691 nvme_suspend_queue(dev->queues[i]); 1692 1693 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1694 /* A device might become IO incapable very soon during 1695 * probe, before the admin queue is configured. Thus, 1696 * queue_count can be 0 here. 1697 */ 1698 if (dev->queue_count) 1699 nvme_suspend_queue(dev->queues[0]); 1700 } else { 1701 nvme_disable_io_queues(dev, queues); 1702 nvme_disable_admin_queue(dev, shutdown); 1703 } 1704 nvme_pci_disable(dev); 1705 1706 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 1707 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 1708 mutex_unlock(&dev->shutdown_lock); 1709 } 1710 1711 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1712 { 1713 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1714 PAGE_SIZE, PAGE_SIZE, 0); 1715 if (!dev->prp_page_pool) 1716 return -ENOMEM; 1717 1718 /* Optimisation for I/Os between 4k and 128k */ 1719 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1720 256, 256, 0); 1721 if (!dev->prp_small_pool) { 1722 dma_pool_destroy(dev->prp_page_pool); 1723 return -ENOMEM; 1724 } 1725 return 0; 1726 } 1727 1728 static void nvme_release_prp_pools(struct nvme_dev *dev) 1729 { 1730 dma_pool_destroy(dev->prp_page_pool); 1731 dma_pool_destroy(dev->prp_small_pool); 1732 } 1733 1734 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1735 { 1736 struct nvme_dev *dev = to_nvme_dev(ctrl); 1737 1738 put_device(dev->dev); 1739 if (dev->tagset.tags) 1740 blk_mq_free_tag_set(&dev->tagset); 1741 if (dev->ctrl.admin_q) 1742 blk_put_queue(dev->ctrl.admin_q); 1743 kfree(dev->queues); 1744 kfree(dev); 1745 } 1746 1747 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 1748 { 1749 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 1750 1751 kref_get(&dev->ctrl.kref); 1752 nvme_dev_disable(dev, false); 1753 if (!schedule_work(&dev->remove_work)) 1754 nvme_put_ctrl(&dev->ctrl); 1755 } 1756 1757 static void nvme_reset_work(struct work_struct *work) 1758 { 1759 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1760 int result = -ENODEV; 1761 1762 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) 1763 goto out; 1764 1765 /* 1766 * If we're called to reset a live controller first shut it down before 1767 * moving on. 1768 */ 1769 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 1770 nvme_dev_disable(dev, false); 1771 1772 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1773 goto out; 1774 1775 result = nvme_pci_enable(dev); 1776 if (result) 1777 goto out; 1778 1779 result = nvme_configure_admin_queue(dev); 1780 if (result) 1781 goto out; 1782 1783 nvme_init_queue(dev->queues[0], 0); 1784 result = nvme_alloc_admin_tags(dev); 1785 if (result) 1786 goto out; 1787 1788 result = nvme_init_identify(&dev->ctrl); 1789 if (result) 1790 goto out; 1791 1792 result = nvme_setup_io_queues(dev); 1793 if (result) 1794 goto out; 1795 1796 /* 1797 * A controller that can not execute IO typically requires user 1798 * intervention to correct. For such degraded controllers, the driver 1799 * should not submit commands the user did not request, so skip 1800 * registering for asynchronous event notification on this condition. 1801 */ 1802 if (dev->online_queues > 1) 1803 nvme_queue_async_events(&dev->ctrl); 1804 1805 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); 1806 1807 /* 1808 * Keep the controller around but remove all namespaces if we don't have 1809 * any working I/O queue. 1810 */ 1811 if (dev->online_queues < 2) { 1812 dev_warn(dev->ctrl.device, "IO queues not created\n"); 1813 nvme_kill_queues(&dev->ctrl); 1814 nvme_remove_namespaces(&dev->ctrl); 1815 } else { 1816 nvme_start_queues(&dev->ctrl); 1817 nvme_dev_add(dev); 1818 } 1819 1820 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 1821 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 1822 goto out; 1823 } 1824 1825 if (dev->online_queues > 1) 1826 nvme_queue_scan(&dev->ctrl); 1827 return; 1828 1829 out: 1830 nvme_remove_dead_ctrl(dev, result); 1831 } 1832 1833 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1834 { 1835 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1836 struct pci_dev *pdev = to_pci_dev(dev->dev); 1837 1838 nvme_kill_queues(&dev->ctrl); 1839 if (pci_get_drvdata(pdev)) 1840 device_release_driver(&pdev->dev); 1841 nvme_put_ctrl(&dev->ctrl); 1842 } 1843 1844 static int nvme_reset(struct nvme_dev *dev) 1845 { 1846 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1847 return -ENODEV; 1848 if (work_busy(&dev->reset_work)) 1849 return -ENODEV; 1850 if (!queue_work(nvme_workq, &dev->reset_work)) 1851 return -EBUSY; 1852 return 0; 1853 } 1854 1855 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 1856 { 1857 *val = readl(to_nvme_dev(ctrl)->bar + off); 1858 return 0; 1859 } 1860 1861 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 1862 { 1863 writel(val, to_nvme_dev(ctrl)->bar + off); 1864 return 0; 1865 } 1866 1867 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 1868 { 1869 *val = readq(to_nvme_dev(ctrl)->bar + off); 1870 return 0; 1871 } 1872 1873 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 1874 { 1875 struct nvme_dev *dev = to_nvme_dev(ctrl); 1876 int ret = nvme_reset(dev); 1877 1878 if (!ret) 1879 flush_work(&dev->reset_work); 1880 return ret; 1881 } 1882 1883 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 1884 .name = "pcie", 1885 .module = THIS_MODULE, 1886 .reg_read32 = nvme_pci_reg_read32, 1887 .reg_write32 = nvme_pci_reg_write32, 1888 .reg_read64 = nvme_pci_reg_read64, 1889 .reset_ctrl = nvme_pci_reset_ctrl, 1890 .free_ctrl = nvme_pci_free_ctrl, 1891 .submit_async_event = nvme_pci_submit_async_event, 1892 }; 1893 1894 static int nvme_dev_map(struct nvme_dev *dev) 1895 { 1896 struct pci_dev *pdev = to_pci_dev(dev->dev); 1897 1898 if (pci_request_mem_regions(pdev, "nvme")) 1899 return -ENODEV; 1900 1901 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1902 if (!dev->bar) 1903 goto release; 1904 1905 return 0; 1906 release: 1907 pci_release_mem_regions(pdev); 1908 return -ENODEV; 1909 } 1910 1911 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1912 { 1913 int node, result = -ENOMEM; 1914 struct nvme_dev *dev; 1915 1916 node = dev_to_node(&pdev->dev); 1917 if (node == NUMA_NO_NODE) 1918 set_dev_node(&pdev->dev, first_memory_node); 1919 1920 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 1921 if (!dev) 1922 return -ENOMEM; 1923 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 1924 GFP_KERNEL, node); 1925 if (!dev->queues) 1926 goto free; 1927 1928 dev->dev = get_device(&pdev->dev); 1929 pci_set_drvdata(pdev, dev); 1930 1931 result = nvme_dev_map(dev); 1932 if (result) 1933 goto free; 1934 1935 INIT_WORK(&dev->reset_work, nvme_reset_work); 1936 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 1937 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, 1938 (unsigned long)dev); 1939 mutex_init(&dev->shutdown_lock); 1940 init_completion(&dev->ioq_wait); 1941 1942 result = nvme_setup_prp_pools(dev); 1943 if (result) 1944 goto put_pci; 1945 1946 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 1947 id->driver_data); 1948 if (result) 1949 goto release_pools; 1950 1951 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 1952 1953 queue_work(nvme_workq, &dev->reset_work); 1954 return 0; 1955 1956 release_pools: 1957 nvme_release_prp_pools(dev); 1958 put_pci: 1959 put_device(dev->dev); 1960 nvme_dev_unmap(dev); 1961 free: 1962 kfree(dev->queues); 1963 kfree(dev); 1964 return result; 1965 } 1966 1967 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 1968 { 1969 struct nvme_dev *dev = pci_get_drvdata(pdev); 1970 1971 if (prepare) 1972 nvme_dev_disable(dev, false); 1973 else 1974 nvme_reset(dev); 1975 } 1976 1977 static void nvme_shutdown(struct pci_dev *pdev) 1978 { 1979 struct nvme_dev *dev = pci_get_drvdata(pdev); 1980 nvme_dev_disable(dev, true); 1981 } 1982 1983 /* 1984 * The driver's remove may be called on a device in a partially initialized 1985 * state. This function must not have any dependencies on the device state in 1986 * order to proceed. 1987 */ 1988 static void nvme_remove(struct pci_dev *pdev) 1989 { 1990 struct nvme_dev *dev = pci_get_drvdata(pdev); 1991 1992 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1993 1994 pci_set_drvdata(pdev, NULL); 1995 1996 if (!pci_device_is_present(pdev)) 1997 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 1998 1999 flush_work(&dev->reset_work); 2000 nvme_uninit_ctrl(&dev->ctrl); 2001 nvme_dev_disable(dev, true); 2002 nvme_dev_remove_admin(dev); 2003 nvme_free_queues(dev, 0); 2004 nvme_release_cmb(dev); 2005 nvme_release_prp_pools(dev); 2006 nvme_dev_unmap(dev); 2007 nvme_put_ctrl(&dev->ctrl); 2008 } 2009 2010 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2011 { 2012 int ret = 0; 2013 2014 if (numvfs == 0) { 2015 if (pci_vfs_assigned(pdev)) { 2016 dev_warn(&pdev->dev, 2017 "Cannot disable SR-IOV VFs while assigned\n"); 2018 return -EPERM; 2019 } 2020 pci_disable_sriov(pdev); 2021 return 0; 2022 } 2023 2024 ret = pci_enable_sriov(pdev, numvfs); 2025 return ret ? ret : numvfs; 2026 } 2027 2028 #ifdef CONFIG_PM_SLEEP 2029 static int nvme_suspend(struct device *dev) 2030 { 2031 struct pci_dev *pdev = to_pci_dev(dev); 2032 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2033 2034 nvme_dev_disable(ndev, true); 2035 return 0; 2036 } 2037 2038 static int nvme_resume(struct device *dev) 2039 { 2040 struct pci_dev *pdev = to_pci_dev(dev); 2041 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2042 2043 nvme_reset(ndev); 2044 return 0; 2045 } 2046 #endif 2047 2048 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2049 2050 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2051 pci_channel_state_t state) 2052 { 2053 struct nvme_dev *dev = pci_get_drvdata(pdev); 2054 2055 /* 2056 * A frozen channel requires a reset. When detected, this method will 2057 * shutdown the controller to quiesce. The controller will be restarted 2058 * after the slot reset through driver's slot_reset callback. 2059 */ 2060 switch (state) { 2061 case pci_channel_io_normal: 2062 return PCI_ERS_RESULT_CAN_RECOVER; 2063 case pci_channel_io_frozen: 2064 dev_warn(dev->ctrl.device, 2065 "frozen state error detected, reset controller\n"); 2066 nvme_dev_disable(dev, false); 2067 return PCI_ERS_RESULT_NEED_RESET; 2068 case pci_channel_io_perm_failure: 2069 dev_warn(dev->ctrl.device, 2070 "failure state error detected, request disconnect\n"); 2071 return PCI_ERS_RESULT_DISCONNECT; 2072 } 2073 return PCI_ERS_RESULT_NEED_RESET; 2074 } 2075 2076 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2077 { 2078 struct nvme_dev *dev = pci_get_drvdata(pdev); 2079 2080 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2081 pci_restore_state(pdev); 2082 nvme_reset(dev); 2083 return PCI_ERS_RESULT_RECOVERED; 2084 } 2085 2086 static void nvme_error_resume(struct pci_dev *pdev) 2087 { 2088 pci_cleanup_aer_uncorrect_error_status(pdev); 2089 } 2090 2091 static const struct pci_error_handlers nvme_err_handler = { 2092 .error_detected = nvme_error_detected, 2093 .slot_reset = nvme_slot_reset, 2094 .resume = nvme_error_resume, 2095 .reset_notify = nvme_reset_notify, 2096 }; 2097 2098 static const struct pci_device_id nvme_id_table[] = { 2099 { PCI_VDEVICE(INTEL, 0x0953), 2100 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2101 NVME_QUIRK_DISCARD_ZEROES, }, 2102 { PCI_VDEVICE(INTEL, 0x0a53), 2103 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2104 NVME_QUIRK_DISCARD_ZEROES, }, 2105 { PCI_VDEVICE(INTEL, 0x0a54), 2106 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2107 NVME_QUIRK_DISCARD_ZEROES, }, 2108 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2109 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2110 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2111 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2112 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2113 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2114 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2115 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2116 { 0, } 2117 }; 2118 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2119 2120 static struct pci_driver nvme_driver = { 2121 .name = "nvme", 2122 .id_table = nvme_id_table, 2123 .probe = nvme_probe, 2124 .remove = nvme_remove, 2125 .shutdown = nvme_shutdown, 2126 .driver = { 2127 .pm = &nvme_dev_pm_ops, 2128 }, 2129 .sriov_configure = nvme_pci_sriov_configure, 2130 .err_handler = &nvme_err_handler, 2131 }; 2132 2133 static int __init nvme_init(void) 2134 { 2135 int result; 2136 2137 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2138 if (!nvme_workq) 2139 return -ENOMEM; 2140 2141 result = pci_register_driver(&nvme_driver); 2142 if (result) 2143 destroy_workqueue(nvme_workq); 2144 return result; 2145 } 2146 2147 static void __exit nvme_exit(void) 2148 { 2149 pci_unregister_driver(&nvme_driver); 2150 destroy_workqueue(nvme_workq); 2151 _nvme_check_size(); 2152 } 2153 2154 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2155 MODULE_LICENSE("GPL"); 2156 MODULE_VERSION("1.0"); 2157 module_init(nvme_init); 2158 module_exit(nvme_exit); 2159