xref: /linux/drivers/nvme/host/pci.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
782 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
783 				return nvme_setup_prp_simple(dev, req,
784 							     &cmnd->rw, &bv);
785 
786 			if (nvmeq->qid && sgl_threshold &&
787 			    nvme_ctrl_sgl_supported(&dev->ctrl))
788 				return nvme_setup_sgl_simple(dev, req,
789 							     &cmnd->rw, &bv);
790 		}
791 	}
792 
793 	iod->dma_len = 0;
794 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
795 	if (!iod->sgt.sgl)
796 		return BLK_STS_RESOURCE;
797 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
798 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
799 	if (!iod->sgt.orig_nents)
800 		goto out_free_sg;
801 
802 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
803 			     DMA_ATTR_NO_WARN);
804 	if (rc) {
805 		if (rc == -EREMOTEIO)
806 			ret = BLK_STS_TARGET;
807 		goto out_free_sg;
808 	}
809 
810 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
811 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
812 	else
813 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
814 	if (ret != BLK_STS_OK)
815 		goto out_unmap_sg;
816 	return BLK_STS_OK;
817 
818 out_unmap_sg:
819 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
820 out_free_sg:
821 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
822 	return ret;
823 }
824 
825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
826 		struct nvme_command *cmnd)
827 {
828 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 	struct bio_vec bv = rq_integrity_vec(req);
830 
831 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
832 	if (dma_mapping_error(dev->dev, iod->meta_dma))
833 		return BLK_STS_IOERR;
834 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
839 {
840 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
841 	blk_status_t ret;
842 
843 	iod->aborted = false;
844 	iod->nr_allocations = -1;
845 	iod->sgt.nents = 0;
846 
847 	ret = nvme_setup_cmd(req->q->queuedata, req);
848 	if (ret)
849 		return ret;
850 
851 	if (blk_rq_nr_phys_segments(req)) {
852 		ret = nvme_map_data(dev, req, &iod->cmd);
853 		if (ret)
854 			goto out_free_cmd;
855 	}
856 
857 	if (blk_integrity_rq(req)) {
858 		ret = nvme_map_metadata(dev, req, &iod->cmd);
859 		if (ret)
860 			goto out_unmap_data;
861 	}
862 
863 	nvme_start_request(req);
864 	return BLK_STS_OK;
865 out_unmap_data:
866 	if (blk_rq_nr_phys_segments(req))
867 		nvme_unmap_data(dev, req);
868 out_free_cmd:
869 	nvme_cleanup_cmd(req);
870 	return ret;
871 }
872 
873 /*
874  * NOTE: ns is NULL when called on the admin queue.
875  */
876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
877 			 const struct blk_mq_queue_data *bd)
878 {
879 	struct nvme_queue *nvmeq = hctx->driver_data;
880 	struct nvme_dev *dev = nvmeq->dev;
881 	struct request *req = bd->rq;
882 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
883 	blk_status_t ret;
884 
885 	/*
886 	 * We should not need to do this, but we're still using this to
887 	 * ensure we can drain requests on a dying queue.
888 	 */
889 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 		return BLK_STS_IOERR;
891 
892 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
893 		return nvme_fail_nonready_command(&dev->ctrl, req);
894 
895 	ret = nvme_prep_rq(dev, req);
896 	if (unlikely(ret))
897 		return ret;
898 	spin_lock(&nvmeq->sq_lock);
899 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
900 	nvme_write_sq_db(nvmeq, bd->last);
901 	spin_unlock(&nvmeq->sq_lock);
902 	return BLK_STS_OK;
903 }
904 
905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
906 {
907 	spin_lock(&nvmeq->sq_lock);
908 	while (!rq_list_empty(*rqlist)) {
909 		struct request *req = rq_list_pop(rqlist);
910 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911 
912 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
913 	}
914 	nvme_write_sq_db(nvmeq, true);
915 	spin_unlock(&nvmeq->sq_lock);
916 }
917 
918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
919 {
920 	/*
921 	 * We should not need to do this, but we're still using this to
922 	 * ensure we can drain requests on a dying queue.
923 	 */
924 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
925 		return false;
926 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
927 		return false;
928 
929 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
930 }
931 
932 static void nvme_queue_rqs(struct request **rqlist)
933 {
934 	struct request *req, *next, *prev = NULL;
935 	struct request *requeue_list = NULL;
936 
937 	rq_list_for_each_safe(rqlist, req, next) {
938 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
939 
940 		if (!nvme_prep_rq_batch(nvmeq, req)) {
941 			/* detach 'req' and add to remainder list */
942 			rq_list_move(rqlist, &requeue_list, req, prev);
943 
944 			req = prev;
945 			if (!req)
946 				continue;
947 		}
948 
949 		if (!next || req->mq_hctx != next->mq_hctx) {
950 			/* detach rest of list, and submit */
951 			req->rq_next = NULL;
952 			nvme_submit_cmds(nvmeq, rqlist);
953 			*rqlist = next;
954 			prev = NULL;
955 		} else
956 			prev = req;
957 	}
958 
959 	*rqlist = requeue_list;
960 }
961 
962 static __always_inline void nvme_pci_unmap_rq(struct request *req)
963 {
964 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
965 	struct nvme_dev *dev = nvmeq->dev;
966 
967 	if (blk_integrity_rq(req)) {
968 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
969 
970 		dma_unmap_page(dev->dev, iod->meta_dma,
971 			       rq_integrity_vec(req).bv_len, rq_dma_dir(req));
972 	}
973 
974 	if (blk_rq_nr_phys_segments(req))
975 		nvme_unmap_data(dev, req);
976 }
977 
978 static void nvme_pci_complete_rq(struct request *req)
979 {
980 	nvme_pci_unmap_rq(req);
981 	nvme_complete_rq(req);
982 }
983 
984 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
985 {
986 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
987 }
988 
989 /* We read the CQE phase first to check if the rest of the entry is valid */
990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
991 {
992 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
993 
994 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
995 }
996 
997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
998 {
999 	u16 head = nvmeq->cq_head;
1000 
1001 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1002 					      nvmeq->dbbuf_cq_ei))
1003 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1004 }
1005 
1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1007 {
1008 	if (!nvmeq->qid)
1009 		return nvmeq->dev->admin_tagset.tags[0];
1010 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1011 }
1012 
1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1014 				   struct io_comp_batch *iob, u16 idx)
1015 {
1016 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1017 	__u16 command_id = READ_ONCE(cqe->command_id);
1018 	struct request *req;
1019 
1020 	/*
1021 	 * AEN requests are special as they don't time out and can
1022 	 * survive any kind of queue freeze and often don't respond to
1023 	 * aborts.  We don't even bother to allocate a struct request
1024 	 * for them but rather special case them here.
1025 	 */
1026 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1027 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1028 				cqe->status, &cqe->result);
1029 		return;
1030 	}
1031 
1032 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1033 	if (unlikely(!req)) {
1034 		dev_warn(nvmeq->dev->ctrl.device,
1035 			"invalid id %d completed on queue %d\n",
1036 			command_id, le16_to_cpu(cqe->sq_id));
1037 		return;
1038 	}
1039 
1040 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1041 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1042 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1043 					nvme_pci_complete_batch))
1044 		nvme_pci_complete_rq(req);
1045 }
1046 
1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1048 {
1049 	u32 tmp = nvmeq->cq_head + 1;
1050 
1051 	if (tmp == nvmeq->q_depth) {
1052 		nvmeq->cq_head = 0;
1053 		nvmeq->cq_phase ^= 1;
1054 	} else {
1055 		nvmeq->cq_head = tmp;
1056 	}
1057 }
1058 
1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1060 			       struct io_comp_batch *iob)
1061 {
1062 	int found = 0;
1063 
1064 	while (nvme_cqe_pending(nvmeq)) {
1065 		found++;
1066 		/*
1067 		 * load-load control dependency between phase and the rest of
1068 		 * the cqe requires a full read memory barrier
1069 		 */
1070 		dma_rmb();
1071 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1072 		nvme_update_cq_head(nvmeq);
1073 	}
1074 
1075 	if (found)
1076 		nvme_ring_cq_doorbell(nvmeq);
1077 	return found;
1078 }
1079 
1080 static irqreturn_t nvme_irq(int irq, void *data)
1081 {
1082 	struct nvme_queue *nvmeq = data;
1083 	DEFINE_IO_COMP_BATCH(iob);
1084 
1085 	if (nvme_poll_cq(nvmeq, &iob)) {
1086 		if (!rq_list_empty(iob.req_list))
1087 			nvme_pci_complete_batch(&iob);
1088 		return IRQ_HANDLED;
1089 	}
1090 	return IRQ_NONE;
1091 }
1092 
1093 static irqreturn_t nvme_irq_check(int irq, void *data)
1094 {
1095 	struct nvme_queue *nvmeq = data;
1096 
1097 	if (nvme_cqe_pending(nvmeq))
1098 		return IRQ_WAKE_THREAD;
1099 	return IRQ_NONE;
1100 }
1101 
1102 /*
1103  * Poll for completions for any interrupt driven queue
1104  * Can be called from any context.
1105  */
1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1107 {
1108 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1109 
1110 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1111 
1112 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1113 	nvme_poll_cq(nvmeq, NULL);
1114 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1115 }
1116 
1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1118 {
1119 	struct nvme_queue *nvmeq = hctx->driver_data;
1120 	bool found;
1121 
1122 	if (!nvme_cqe_pending(nvmeq))
1123 		return 0;
1124 
1125 	spin_lock(&nvmeq->cq_poll_lock);
1126 	found = nvme_poll_cq(nvmeq, iob);
1127 	spin_unlock(&nvmeq->cq_poll_lock);
1128 
1129 	return found;
1130 }
1131 
1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1133 {
1134 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1135 	struct nvme_queue *nvmeq = &dev->queues[0];
1136 	struct nvme_command c = { };
1137 
1138 	c.common.opcode = nvme_admin_async_event;
1139 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1140 
1141 	spin_lock(&nvmeq->sq_lock);
1142 	nvme_sq_copy_cmd(nvmeq, &c);
1143 	nvme_write_sq_db(nvmeq, true);
1144 	spin_unlock(&nvmeq->sq_lock);
1145 }
1146 
1147 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1148 {
1149 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1150 	int ret = 0;
1151 
1152 	/*
1153 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1154 	 * altered by reset_work. Holding this lock before the RESETTING state
1155 	 * change, if successful, also ensures nvme_remove won't be able to
1156 	 * proceed to iounmap until we're done.
1157 	 */
1158 	mutex_lock(&dev->shutdown_lock);
1159 	if (!dev->bar_mapped_size) {
1160 		ret = -ENODEV;
1161 		goto unlock;
1162 	}
1163 
1164 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1165 		ret = -EBUSY;
1166 		goto unlock;
1167 	}
1168 
1169 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1170 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1171 
1172 	/*
1173 	 * Read controller status to flush the previous write and trigger a
1174 	 * pcie read error.
1175 	 */
1176 	readl(dev->bar + NVME_REG_CSTS);
1177 unlock:
1178 	mutex_unlock(&dev->shutdown_lock);
1179 	return ret;
1180 }
1181 
1182 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1183 {
1184 	struct nvme_command c = { };
1185 
1186 	c.delete_queue.opcode = opcode;
1187 	c.delete_queue.qid = cpu_to_le16(id);
1188 
1189 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1190 }
1191 
1192 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1193 		struct nvme_queue *nvmeq, s16 vector)
1194 {
1195 	struct nvme_command c = { };
1196 	int flags = NVME_QUEUE_PHYS_CONTIG;
1197 
1198 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1199 		flags |= NVME_CQ_IRQ_ENABLED;
1200 
1201 	/*
1202 	 * Note: we (ab)use the fact that the prp fields survive if no data
1203 	 * is attached to the request.
1204 	 */
1205 	c.create_cq.opcode = nvme_admin_create_cq;
1206 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1207 	c.create_cq.cqid = cpu_to_le16(qid);
1208 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1209 	c.create_cq.cq_flags = cpu_to_le16(flags);
1210 	c.create_cq.irq_vector = cpu_to_le16(vector);
1211 
1212 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1213 }
1214 
1215 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1216 						struct nvme_queue *nvmeq)
1217 {
1218 	struct nvme_ctrl *ctrl = &dev->ctrl;
1219 	struct nvme_command c = { };
1220 	int flags = NVME_QUEUE_PHYS_CONTIG;
1221 
1222 	/*
1223 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1224 	 * set. Since URGENT priority is zeroes, it makes all queues
1225 	 * URGENT.
1226 	 */
1227 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1228 		flags |= NVME_SQ_PRIO_MEDIUM;
1229 
1230 	/*
1231 	 * Note: we (ab)use the fact that the prp fields survive if no data
1232 	 * is attached to the request.
1233 	 */
1234 	c.create_sq.opcode = nvme_admin_create_sq;
1235 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1236 	c.create_sq.sqid = cpu_to_le16(qid);
1237 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1238 	c.create_sq.sq_flags = cpu_to_le16(flags);
1239 	c.create_sq.cqid = cpu_to_le16(qid);
1240 
1241 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1242 }
1243 
1244 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1245 {
1246 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1247 }
1248 
1249 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1250 {
1251 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1252 }
1253 
1254 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1255 {
1256 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1257 
1258 	dev_warn(nvmeq->dev->ctrl.device,
1259 		 "Abort status: 0x%x", nvme_req(req)->status);
1260 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1261 	blk_mq_free_request(req);
1262 	return RQ_END_IO_NONE;
1263 }
1264 
1265 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1266 {
1267 	/* If true, indicates loss of adapter communication, possibly by a
1268 	 * NVMe Subsystem reset.
1269 	 */
1270 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1271 
1272 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1273 	switch (nvme_ctrl_state(&dev->ctrl)) {
1274 	case NVME_CTRL_RESETTING:
1275 	case NVME_CTRL_CONNECTING:
1276 		return false;
1277 	default:
1278 		break;
1279 	}
1280 
1281 	/* We shouldn't reset unless the controller is on fatal error state
1282 	 * _or_ if we lost the communication with it.
1283 	 */
1284 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1291 {
1292 	/* Read a config register to help see what died. */
1293 	u16 pci_status;
1294 	int result;
1295 
1296 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1297 				      &pci_status);
1298 	if (result == PCIBIOS_SUCCESSFUL)
1299 		dev_warn(dev->ctrl.device,
1300 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1301 			 csts, pci_status);
1302 	else
1303 		dev_warn(dev->ctrl.device,
1304 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1305 			 csts, result);
1306 
1307 	if (csts != ~0)
1308 		return;
1309 
1310 	dev_warn(dev->ctrl.device,
1311 		 "Does your device have a faulty power saving mode enabled?\n");
1312 	dev_warn(dev->ctrl.device,
1313 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1314 }
1315 
1316 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1317 {
1318 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1319 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1320 	struct nvme_dev *dev = nvmeq->dev;
1321 	struct request *abort_req;
1322 	struct nvme_command cmd = { };
1323 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1324 	u8 opcode;
1325 
1326 	if (nvme_state_terminal(&dev->ctrl))
1327 		goto disable;
1328 
1329 	/* If PCI error recovery process is happening, we cannot reset or
1330 	 * the recovery mechanism will surely fail.
1331 	 */
1332 	mb();
1333 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1334 		return BLK_EH_RESET_TIMER;
1335 
1336 	/*
1337 	 * Reset immediately if the controller is failed
1338 	 */
1339 	if (nvme_should_reset(dev, csts)) {
1340 		nvme_warn_reset(dev, csts);
1341 		goto disable;
1342 	}
1343 
1344 	/*
1345 	 * Did we miss an interrupt?
1346 	 */
1347 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1348 		nvme_poll(req->mq_hctx, NULL);
1349 	else
1350 		nvme_poll_irqdisable(nvmeq);
1351 
1352 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1353 		dev_warn(dev->ctrl.device,
1354 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1355 			 req->tag, nvme_cid(req), nvmeq->qid);
1356 		return BLK_EH_DONE;
1357 	}
1358 
1359 	/*
1360 	 * Shutdown immediately if controller times out while starting. The
1361 	 * reset work will see the pci device disabled when it gets the forced
1362 	 * cancellation error. All outstanding requests are completed on
1363 	 * shutdown, so we return BLK_EH_DONE.
1364 	 */
1365 	switch (nvme_ctrl_state(&dev->ctrl)) {
1366 	case NVME_CTRL_CONNECTING:
1367 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1368 		fallthrough;
1369 	case NVME_CTRL_DELETING:
1370 		dev_warn_ratelimited(dev->ctrl.device,
1371 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1372 			 req->tag, nvme_cid(req), nvmeq->qid);
1373 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1374 		nvme_dev_disable(dev, true);
1375 		return BLK_EH_DONE;
1376 	case NVME_CTRL_RESETTING:
1377 		return BLK_EH_RESET_TIMER;
1378 	default:
1379 		break;
1380 	}
1381 
1382 	/*
1383 	 * Shutdown the controller immediately and schedule a reset if the
1384 	 * command was already aborted once before and still hasn't been
1385 	 * returned to the driver, or if this is the admin queue.
1386 	 */
1387 	opcode = nvme_req(req)->cmd->common.opcode;
1388 	if (!nvmeq->qid || iod->aborted) {
1389 		dev_warn(dev->ctrl.device,
1390 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1391 			 req->tag, nvme_cid(req), opcode,
1392 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1393 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1394 		goto disable;
1395 	}
1396 
1397 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1398 		atomic_inc(&dev->ctrl.abort_limit);
1399 		return BLK_EH_RESET_TIMER;
1400 	}
1401 	iod->aborted = true;
1402 
1403 	cmd.abort.opcode = nvme_admin_abort_cmd;
1404 	cmd.abort.cid = nvme_cid(req);
1405 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1406 
1407 	dev_warn(nvmeq->dev->ctrl.device,
1408 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1409 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1410 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1411 		 blk_rq_bytes(req));
1412 
1413 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1414 					 BLK_MQ_REQ_NOWAIT);
1415 	if (IS_ERR(abort_req)) {
1416 		atomic_inc(&dev->ctrl.abort_limit);
1417 		return BLK_EH_RESET_TIMER;
1418 	}
1419 	nvme_init_request(abort_req, &cmd);
1420 
1421 	abort_req->end_io = abort_endio;
1422 	abort_req->end_io_data = NULL;
1423 	blk_execute_rq_nowait(abort_req, false);
1424 
1425 	/*
1426 	 * The aborted req will be completed on receiving the abort req.
1427 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1428 	 * as the device then is in a faulty state.
1429 	 */
1430 	return BLK_EH_RESET_TIMER;
1431 
1432 disable:
1433 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1434 		if (nvme_state_terminal(&dev->ctrl))
1435 			nvme_dev_disable(dev, true);
1436 		return BLK_EH_DONE;
1437 	}
1438 
1439 	nvme_dev_disable(dev, false);
1440 	if (nvme_try_sched_reset(&dev->ctrl))
1441 		nvme_unquiesce_io_queues(&dev->ctrl);
1442 	return BLK_EH_DONE;
1443 }
1444 
1445 static void nvme_free_queue(struct nvme_queue *nvmeq)
1446 {
1447 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1448 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1449 	if (!nvmeq->sq_cmds)
1450 		return;
1451 
1452 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1453 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1454 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1455 	} else {
1456 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1457 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1458 	}
1459 }
1460 
1461 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1462 {
1463 	int i;
1464 
1465 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1466 		dev->ctrl.queue_count--;
1467 		nvme_free_queue(&dev->queues[i]);
1468 	}
1469 }
1470 
1471 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1472 {
1473 	struct nvme_queue *nvmeq = &dev->queues[qid];
1474 
1475 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1476 		return;
1477 
1478 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1479 	mb();
1480 
1481 	nvmeq->dev->online_queues--;
1482 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1483 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1484 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1485 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1486 }
1487 
1488 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1489 {
1490 	int i;
1491 
1492 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1493 		nvme_suspend_queue(dev, i);
1494 }
1495 
1496 /*
1497  * Called only on a device that has been disabled and after all other threads
1498  * that can check this device's completion queues have synced, except
1499  * nvme_poll(). This is the last chance for the driver to see a natural
1500  * completion before nvme_cancel_request() terminates all incomplete requests.
1501  */
1502 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1503 {
1504 	int i;
1505 
1506 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1507 		spin_lock(&dev->queues[i].cq_poll_lock);
1508 		nvme_poll_cq(&dev->queues[i], NULL);
1509 		spin_unlock(&dev->queues[i].cq_poll_lock);
1510 	}
1511 }
1512 
1513 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1514 				int entry_size)
1515 {
1516 	int q_depth = dev->q_depth;
1517 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1518 					  NVME_CTRL_PAGE_SIZE);
1519 
1520 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1521 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1522 
1523 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1524 		q_depth = div_u64(mem_per_q, entry_size);
1525 
1526 		/*
1527 		 * Ensure the reduced q_depth is above some threshold where it
1528 		 * would be better to map queues in system memory with the
1529 		 * original depth
1530 		 */
1531 		if (q_depth < 64)
1532 			return -ENOMEM;
1533 	}
1534 
1535 	return q_depth;
1536 }
1537 
1538 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1539 				int qid)
1540 {
1541 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1542 
1543 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1544 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1545 		if (nvmeq->sq_cmds) {
1546 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1547 							nvmeq->sq_cmds);
1548 			if (nvmeq->sq_dma_addr) {
1549 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1550 				return 0;
1551 			}
1552 
1553 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1554 		}
1555 	}
1556 
1557 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1558 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1559 	if (!nvmeq->sq_cmds)
1560 		return -ENOMEM;
1561 	return 0;
1562 }
1563 
1564 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1565 {
1566 	struct nvme_queue *nvmeq = &dev->queues[qid];
1567 
1568 	if (dev->ctrl.queue_count > qid)
1569 		return 0;
1570 
1571 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1572 	nvmeq->q_depth = depth;
1573 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1574 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1575 	if (!nvmeq->cqes)
1576 		goto free_nvmeq;
1577 
1578 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1579 		goto free_cqdma;
1580 
1581 	nvmeq->dev = dev;
1582 	spin_lock_init(&nvmeq->sq_lock);
1583 	spin_lock_init(&nvmeq->cq_poll_lock);
1584 	nvmeq->cq_head = 0;
1585 	nvmeq->cq_phase = 1;
1586 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1587 	nvmeq->qid = qid;
1588 	dev->ctrl.queue_count++;
1589 
1590 	return 0;
1591 
1592  free_cqdma:
1593 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1594 			  nvmeq->cq_dma_addr);
1595  free_nvmeq:
1596 	return -ENOMEM;
1597 }
1598 
1599 static int queue_request_irq(struct nvme_queue *nvmeq)
1600 {
1601 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1602 	int nr = nvmeq->dev->ctrl.instance;
1603 
1604 	if (use_threaded_interrupts) {
1605 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1606 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1607 	} else {
1608 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1609 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1610 	}
1611 }
1612 
1613 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1614 {
1615 	struct nvme_dev *dev = nvmeq->dev;
1616 
1617 	nvmeq->sq_tail = 0;
1618 	nvmeq->last_sq_tail = 0;
1619 	nvmeq->cq_head = 0;
1620 	nvmeq->cq_phase = 1;
1621 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1622 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1623 	nvme_dbbuf_init(dev, nvmeq, qid);
1624 	dev->online_queues++;
1625 	wmb(); /* ensure the first interrupt sees the initialization */
1626 }
1627 
1628 /*
1629  * Try getting shutdown_lock while setting up IO queues.
1630  */
1631 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1632 {
1633 	/*
1634 	 * Give up if the lock is being held by nvme_dev_disable.
1635 	 */
1636 	if (!mutex_trylock(&dev->shutdown_lock))
1637 		return -ENODEV;
1638 
1639 	/*
1640 	 * Controller is in wrong state, fail early.
1641 	 */
1642 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1643 		mutex_unlock(&dev->shutdown_lock);
1644 		return -ENODEV;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1651 {
1652 	struct nvme_dev *dev = nvmeq->dev;
1653 	int result;
1654 	u16 vector = 0;
1655 
1656 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1657 
1658 	/*
1659 	 * A queue's vector matches the queue identifier unless the controller
1660 	 * has only one vector available.
1661 	 */
1662 	if (!polled)
1663 		vector = dev->num_vecs == 1 ? 0 : qid;
1664 	else
1665 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1666 
1667 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1668 	if (result)
1669 		return result;
1670 
1671 	result = adapter_alloc_sq(dev, qid, nvmeq);
1672 	if (result < 0)
1673 		return result;
1674 	if (result)
1675 		goto release_cq;
1676 
1677 	nvmeq->cq_vector = vector;
1678 
1679 	result = nvme_setup_io_queues_trylock(dev);
1680 	if (result)
1681 		return result;
1682 	nvme_init_queue(nvmeq, qid);
1683 	if (!polled) {
1684 		result = queue_request_irq(nvmeq);
1685 		if (result < 0)
1686 			goto release_sq;
1687 	}
1688 
1689 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1690 	mutex_unlock(&dev->shutdown_lock);
1691 	return result;
1692 
1693 release_sq:
1694 	dev->online_queues--;
1695 	mutex_unlock(&dev->shutdown_lock);
1696 	adapter_delete_sq(dev, qid);
1697 release_cq:
1698 	adapter_delete_cq(dev, qid);
1699 	return result;
1700 }
1701 
1702 static const struct blk_mq_ops nvme_mq_admin_ops = {
1703 	.queue_rq	= nvme_queue_rq,
1704 	.complete	= nvme_pci_complete_rq,
1705 	.init_hctx	= nvme_admin_init_hctx,
1706 	.init_request	= nvme_pci_init_request,
1707 	.timeout	= nvme_timeout,
1708 };
1709 
1710 static const struct blk_mq_ops nvme_mq_ops = {
1711 	.queue_rq	= nvme_queue_rq,
1712 	.queue_rqs	= nvme_queue_rqs,
1713 	.complete	= nvme_pci_complete_rq,
1714 	.commit_rqs	= nvme_commit_rqs,
1715 	.init_hctx	= nvme_init_hctx,
1716 	.init_request	= nvme_pci_init_request,
1717 	.map_queues	= nvme_pci_map_queues,
1718 	.timeout	= nvme_timeout,
1719 	.poll		= nvme_poll,
1720 };
1721 
1722 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1723 {
1724 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1725 		/*
1726 		 * If the controller was reset during removal, it's possible
1727 		 * user requests may be waiting on a stopped queue. Start the
1728 		 * queue to flush these to completion.
1729 		 */
1730 		nvme_unquiesce_admin_queue(&dev->ctrl);
1731 		nvme_remove_admin_tag_set(&dev->ctrl);
1732 	}
1733 }
1734 
1735 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1736 {
1737 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1738 }
1739 
1740 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1741 {
1742 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1743 
1744 	if (size <= dev->bar_mapped_size)
1745 		return 0;
1746 	if (size > pci_resource_len(pdev, 0))
1747 		return -ENOMEM;
1748 	if (dev->bar)
1749 		iounmap(dev->bar);
1750 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1751 	if (!dev->bar) {
1752 		dev->bar_mapped_size = 0;
1753 		return -ENOMEM;
1754 	}
1755 	dev->bar_mapped_size = size;
1756 	dev->dbs = dev->bar + NVME_REG_DBS;
1757 
1758 	return 0;
1759 }
1760 
1761 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1762 {
1763 	int result;
1764 	u32 aqa;
1765 	struct nvme_queue *nvmeq;
1766 
1767 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1768 	if (result < 0)
1769 		return result;
1770 
1771 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1772 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1773 
1774 	if (dev->subsystem &&
1775 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1776 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1777 
1778 	/*
1779 	 * If the device has been passed off to us in an enabled state, just
1780 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1781 	 * notification bits', but doing so may cause the device to complete
1782 	 * commands to the admin queue ... and we don't know what memory that
1783 	 * might be pointing at!
1784 	 */
1785 	result = nvme_disable_ctrl(&dev->ctrl, false);
1786 	if (result < 0)
1787 		return result;
1788 
1789 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1790 	if (result)
1791 		return result;
1792 
1793 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1794 
1795 	nvmeq = &dev->queues[0];
1796 	aqa = nvmeq->q_depth - 1;
1797 	aqa |= aqa << 16;
1798 
1799 	writel(aqa, dev->bar + NVME_REG_AQA);
1800 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1801 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1802 
1803 	result = nvme_enable_ctrl(&dev->ctrl);
1804 	if (result)
1805 		return result;
1806 
1807 	nvmeq->cq_vector = 0;
1808 	nvme_init_queue(nvmeq, 0);
1809 	result = queue_request_irq(nvmeq);
1810 	if (result) {
1811 		dev->online_queues--;
1812 		return result;
1813 	}
1814 
1815 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1816 	return result;
1817 }
1818 
1819 static int nvme_create_io_queues(struct nvme_dev *dev)
1820 {
1821 	unsigned i, max, rw_queues;
1822 	int ret = 0;
1823 
1824 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1825 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1826 			ret = -ENOMEM;
1827 			break;
1828 		}
1829 	}
1830 
1831 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1832 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1833 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1834 				dev->io_queues[HCTX_TYPE_READ];
1835 	} else {
1836 		rw_queues = max;
1837 	}
1838 
1839 	for (i = dev->online_queues; i <= max; i++) {
1840 		bool polled = i > rw_queues;
1841 
1842 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1843 		if (ret)
1844 			break;
1845 	}
1846 
1847 	/*
1848 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1849 	 * than the desired amount of queues, and even a controller without
1850 	 * I/O queues can still be used to issue admin commands.  This might
1851 	 * be useful to upgrade a buggy firmware for example.
1852 	 */
1853 	return ret >= 0 ? 0 : ret;
1854 }
1855 
1856 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1857 {
1858 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1859 
1860 	return 1ULL << (12 + 4 * szu);
1861 }
1862 
1863 static u32 nvme_cmb_size(struct nvme_dev *dev)
1864 {
1865 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1866 }
1867 
1868 static void nvme_map_cmb(struct nvme_dev *dev)
1869 {
1870 	u64 size, offset;
1871 	resource_size_t bar_size;
1872 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1873 	int bar;
1874 
1875 	if (dev->cmb_size)
1876 		return;
1877 
1878 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1879 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1880 
1881 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1882 	if (!dev->cmbsz)
1883 		return;
1884 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1885 
1886 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1887 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1888 	bar = NVME_CMB_BIR(dev->cmbloc);
1889 	bar_size = pci_resource_len(pdev, bar);
1890 
1891 	if (offset > bar_size)
1892 		return;
1893 
1894 	/*
1895 	 * Tell the controller about the host side address mapping the CMB,
1896 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1897 	 */
1898 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1899 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1900 			     (pci_bus_address(pdev, bar) + offset),
1901 			     dev->bar + NVME_REG_CMBMSC);
1902 	}
1903 
1904 	/*
1905 	 * Controllers may support a CMB size larger than their BAR,
1906 	 * for example, due to being behind a bridge. Reduce the CMB to
1907 	 * the reported size of the BAR
1908 	 */
1909 	if (size > bar_size - offset)
1910 		size = bar_size - offset;
1911 
1912 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1913 		dev_warn(dev->ctrl.device,
1914 			 "failed to register the CMB\n");
1915 		return;
1916 	}
1917 
1918 	dev->cmb_size = size;
1919 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1920 
1921 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1922 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1923 		pci_p2pmem_publish(pdev, true);
1924 
1925 	nvme_update_attrs(dev);
1926 }
1927 
1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1929 {
1930 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1931 	u64 dma_addr = dev->host_mem_descs_dma;
1932 	struct nvme_command c = { };
1933 	int ret;
1934 
1935 	c.features.opcode	= nvme_admin_set_features;
1936 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1937 	c.features.dword11	= cpu_to_le32(bits);
1938 	c.features.dword12	= cpu_to_le32(host_mem_size);
1939 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1940 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1941 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1942 
1943 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1944 	if (ret) {
1945 		dev_warn(dev->ctrl.device,
1946 			 "failed to set host mem (err %d, flags %#x).\n",
1947 			 ret, bits);
1948 	} else
1949 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1950 
1951 	return ret;
1952 }
1953 
1954 static void nvme_free_host_mem(struct nvme_dev *dev)
1955 {
1956 	int i;
1957 
1958 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1959 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1960 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1961 
1962 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1963 			       le64_to_cpu(desc->addr),
1964 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965 	}
1966 
1967 	kfree(dev->host_mem_desc_bufs);
1968 	dev->host_mem_desc_bufs = NULL;
1969 	dma_free_coherent(dev->dev,
1970 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1971 			dev->host_mem_descs, dev->host_mem_descs_dma);
1972 	dev->host_mem_descs = NULL;
1973 	dev->nr_host_mem_descs = 0;
1974 }
1975 
1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1977 		u32 chunk_size)
1978 {
1979 	struct nvme_host_mem_buf_desc *descs;
1980 	u32 max_entries, len;
1981 	dma_addr_t descs_dma;
1982 	int i = 0;
1983 	void **bufs;
1984 	u64 size, tmp;
1985 
1986 	tmp = (preferred + chunk_size - 1);
1987 	do_div(tmp, chunk_size);
1988 	max_entries = tmp;
1989 
1990 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1991 		max_entries = dev->ctrl.hmmaxd;
1992 
1993 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1994 				   &descs_dma, GFP_KERNEL);
1995 	if (!descs)
1996 		goto out;
1997 
1998 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1999 	if (!bufs)
2000 		goto out_free_descs;
2001 
2002 	for (size = 0; size < preferred && i < max_entries; size += len) {
2003 		dma_addr_t dma_addr;
2004 
2005 		len = min_t(u64, chunk_size, preferred - size);
2006 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2007 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2008 		if (!bufs[i])
2009 			break;
2010 
2011 		descs[i].addr = cpu_to_le64(dma_addr);
2012 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2013 		i++;
2014 	}
2015 
2016 	if (!size)
2017 		goto out_free_bufs;
2018 
2019 	dev->nr_host_mem_descs = i;
2020 	dev->host_mem_size = size;
2021 	dev->host_mem_descs = descs;
2022 	dev->host_mem_descs_dma = descs_dma;
2023 	dev->host_mem_desc_bufs = bufs;
2024 	return 0;
2025 
2026 out_free_bufs:
2027 	while (--i >= 0) {
2028 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2029 
2030 		dma_free_attrs(dev->dev, size, bufs[i],
2031 			       le64_to_cpu(descs[i].addr),
2032 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2033 	}
2034 
2035 	kfree(bufs);
2036 out_free_descs:
2037 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2038 			descs_dma);
2039 out:
2040 	dev->host_mem_descs = NULL;
2041 	return -ENOMEM;
2042 }
2043 
2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2045 {
2046 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2047 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2048 	u64 chunk_size;
2049 
2050 	/* start big and work our way down */
2051 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2052 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2053 			if (!min || dev->host_mem_size >= min)
2054 				return 0;
2055 			nvme_free_host_mem(dev);
2056 		}
2057 	}
2058 
2059 	return -ENOMEM;
2060 }
2061 
2062 static int nvme_setup_host_mem(struct nvme_dev *dev)
2063 {
2064 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2065 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2066 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2067 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2068 	int ret;
2069 
2070 	if (!dev->ctrl.hmpre)
2071 		return 0;
2072 
2073 	preferred = min(preferred, max);
2074 	if (min > max) {
2075 		dev_warn(dev->ctrl.device,
2076 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2077 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2078 		nvme_free_host_mem(dev);
2079 		return 0;
2080 	}
2081 
2082 	/*
2083 	 * If we already have a buffer allocated check if we can reuse it.
2084 	 */
2085 	if (dev->host_mem_descs) {
2086 		if (dev->host_mem_size >= min)
2087 			enable_bits |= NVME_HOST_MEM_RETURN;
2088 		else
2089 			nvme_free_host_mem(dev);
2090 	}
2091 
2092 	if (!dev->host_mem_descs) {
2093 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2094 			dev_warn(dev->ctrl.device,
2095 				"failed to allocate host memory buffer.\n");
2096 			return 0; /* controller must work without HMB */
2097 		}
2098 
2099 		dev_info(dev->ctrl.device,
2100 			"allocated %lld MiB host memory buffer.\n",
2101 			dev->host_mem_size >> ilog2(SZ_1M));
2102 	}
2103 
2104 	ret = nvme_set_host_mem(dev, enable_bits);
2105 	if (ret)
2106 		nvme_free_host_mem(dev);
2107 	return ret;
2108 }
2109 
2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2111 		char *buf)
2112 {
2113 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2114 
2115 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2116 		       ndev->cmbloc, ndev->cmbsz);
2117 }
2118 static DEVICE_ATTR_RO(cmb);
2119 
2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2121 		char *buf)
2122 {
2123 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2124 
2125 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2126 }
2127 static DEVICE_ATTR_RO(cmbloc);
2128 
2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2130 		char *buf)
2131 {
2132 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2133 
2134 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2135 }
2136 static DEVICE_ATTR_RO(cmbsz);
2137 
2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2139 			char *buf)
2140 {
2141 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2142 
2143 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2144 }
2145 
2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2147 			 const char *buf, size_t count)
2148 {
2149 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2150 	bool new;
2151 	int ret;
2152 
2153 	if (kstrtobool(buf, &new) < 0)
2154 		return -EINVAL;
2155 
2156 	if (new == ndev->hmb)
2157 		return count;
2158 
2159 	if (new) {
2160 		ret = nvme_setup_host_mem(ndev);
2161 	} else {
2162 		ret = nvme_set_host_mem(ndev, 0);
2163 		if (!ret)
2164 			nvme_free_host_mem(ndev);
2165 	}
2166 
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	return count;
2171 }
2172 static DEVICE_ATTR_RW(hmb);
2173 
2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2175 		struct attribute *a, int n)
2176 {
2177 	struct nvme_ctrl *ctrl =
2178 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2179 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2180 
2181 	if (a == &dev_attr_cmb.attr ||
2182 	    a == &dev_attr_cmbloc.attr ||
2183 	    a == &dev_attr_cmbsz.attr) {
2184 	    	if (!dev->cmbsz)
2185 			return 0;
2186 	}
2187 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2188 		return 0;
2189 
2190 	return a->mode;
2191 }
2192 
2193 static struct attribute *nvme_pci_attrs[] = {
2194 	&dev_attr_cmb.attr,
2195 	&dev_attr_cmbloc.attr,
2196 	&dev_attr_cmbsz.attr,
2197 	&dev_attr_hmb.attr,
2198 	NULL,
2199 };
2200 
2201 static const struct attribute_group nvme_pci_dev_attrs_group = {
2202 	.attrs		= nvme_pci_attrs,
2203 	.is_visible	= nvme_pci_attrs_are_visible,
2204 };
2205 
2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2207 	&nvme_dev_attrs_group,
2208 	&nvme_pci_dev_attrs_group,
2209 	NULL,
2210 };
2211 
2212 static void nvme_update_attrs(struct nvme_dev *dev)
2213 {
2214 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2215 }
2216 
2217 /*
2218  * nirqs is the number of interrupts available for write and read
2219  * queues. The core already reserved an interrupt for the admin queue.
2220  */
2221 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2222 {
2223 	struct nvme_dev *dev = affd->priv;
2224 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2225 
2226 	/*
2227 	 * If there is no interrupt available for queues, ensure that
2228 	 * the default queue is set to 1. The affinity set size is
2229 	 * also set to one, but the irq core ignores it for this case.
2230 	 *
2231 	 * If only one interrupt is available or 'write_queue' == 0, combine
2232 	 * write and read queues.
2233 	 *
2234 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2235 	 * queue.
2236 	 */
2237 	if (!nrirqs) {
2238 		nrirqs = 1;
2239 		nr_read_queues = 0;
2240 	} else if (nrirqs == 1 || !nr_write_queues) {
2241 		nr_read_queues = 0;
2242 	} else if (nr_write_queues >= nrirqs) {
2243 		nr_read_queues = 1;
2244 	} else {
2245 		nr_read_queues = nrirqs - nr_write_queues;
2246 	}
2247 
2248 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2249 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2250 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2251 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2252 	affd->nr_sets = nr_read_queues ? 2 : 1;
2253 }
2254 
2255 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2256 {
2257 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2258 	struct irq_affinity affd = {
2259 		.pre_vectors	= 1,
2260 		.calc_sets	= nvme_calc_irq_sets,
2261 		.priv		= dev,
2262 	};
2263 	unsigned int irq_queues, poll_queues;
2264 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2265 
2266 	/*
2267 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2268 	 * left over for non-polled I/O.
2269 	 */
2270 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2271 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2272 
2273 	/*
2274 	 * Initialize for the single interrupt case, will be updated in
2275 	 * nvme_calc_irq_sets().
2276 	 */
2277 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2278 	dev->io_queues[HCTX_TYPE_READ] = 0;
2279 
2280 	/*
2281 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2282 	 * but some Apple controllers require all queues to use the first
2283 	 * vector.
2284 	 */
2285 	irq_queues = 1;
2286 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2287 		irq_queues += (nr_io_queues - poll_queues);
2288 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2289 		flags &= ~PCI_IRQ_MSI;
2290 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2291 					      &affd);
2292 }
2293 
2294 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2295 {
2296 	/*
2297 	 * If tags are shared with admin queue (Apple bug), then
2298 	 * make sure we only use one IO queue.
2299 	 */
2300 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2301 		return 1;
2302 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2303 }
2304 
2305 static int nvme_setup_io_queues(struct nvme_dev *dev)
2306 {
2307 	struct nvme_queue *adminq = &dev->queues[0];
2308 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2309 	unsigned int nr_io_queues;
2310 	unsigned long size;
2311 	int result;
2312 
2313 	/*
2314 	 * Sample the module parameters once at reset time so that we have
2315 	 * stable values to work with.
2316 	 */
2317 	dev->nr_write_queues = write_queues;
2318 	dev->nr_poll_queues = poll_queues;
2319 
2320 	nr_io_queues = dev->nr_allocated_queues - 1;
2321 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2322 	if (result < 0)
2323 		return result;
2324 
2325 	if (nr_io_queues == 0)
2326 		return 0;
2327 
2328 	/*
2329 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2330 	 * from set to unset. If there is a window to it is truely freed,
2331 	 * pci_free_irq_vectors() jumping into this window will crash.
2332 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2333 	 * nvme_dev_disable() path.
2334 	 */
2335 	result = nvme_setup_io_queues_trylock(dev);
2336 	if (result)
2337 		return result;
2338 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2339 		pci_free_irq(pdev, 0, adminq);
2340 
2341 	if (dev->cmb_use_sqes) {
2342 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2343 				sizeof(struct nvme_command));
2344 		if (result > 0) {
2345 			dev->q_depth = result;
2346 			dev->ctrl.sqsize = result - 1;
2347 		} else {
2348 			dev->cmb_use_sqes = false;
2349 		}
2350 	}
2351 
2352 	do {
2353 		size = db_bar_size(dev, nr_io_queues);
2354 		result = nvme_remap_bar(dev, size);
2355 		if (!result)
2356 			break;
2357 		if (!--nr_io_queues) {
2358 			result = -ENOMEM;
2359 			goto out_unlock;
2360 		}
2361 	} while (1);
2362 	adminq->q_db = dev->dbs;
2363 
2364  retry:
2365 	/* Deregister the admin queue's interrupt */
2366 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2367 		pci_free_irq(pdev, 0, adminq);
2368 
2369 	/*
2370 	 * If we enable msix early due to not intx, disable it again before
2371 	 * setting up the full range we need.
2372 	 */
2373 	pci_free_irq_vectors(pdev);
2374 
2375 	result = nvme_setup_irqs(dev, nr_io_queues);
2376 	if (result <= 0) {
2377 		result = -EIO;
2378 		goto out_unlock;
2379 	}
2380 
2381 	dev->num_vecs = result;
2382 	result = max(result - 1, 1);
2383 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2384 
2385 	/*
2386 	 * Should investigate if there's a performance win from allocating
2387 	 * more queues than interrupt vectors; it might allow the submission
2388 	 * path to scale better, even if the receive path is limited by the
2389 	 * number of interrupts.
2390 	 */
2391 	result = queue_request_irq(adminq);
2392 	if (result)
2393 		goto out_unlock;
2394 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2395 	mutex_unlock(&dev->shutdown_lock);
2396 
2397 	result = nvme_create_io_queues(dev);
2398 	if (result || dev->online_queues < 2)
2399 		return result;
2400 
2401 	if (dev->online_queues - 1 < dev->max_qid) {
2402 		nr_io_queues = dev->online_queues - 1;
2403 		nvme_delete_io_queues(dev);
2404 		result = nvme_setup_io_queues_trylock(dev);
2405 		if (result)
2406 			return result;
2407 		nvme_suspend_io_queues(dev);
2408 		goto retry;
2409 	}
2410 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2411 					dev->io_queues[HCTX_TYPE_DEFAULT],
2412 					dev->io_queues[HCTX_TYPE_READ],
2413 					dev->io_queues[HCTX_TYPE_POLL]);
2414 	return 0;
2415 out_unlock:
2416 	mutex_unlock(&dev->shutdown_lock);
2417 	return result;
2418 }
2419 
2420 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2421 					     blk_status_t error)
2422 {
2423 	struct nvme_queue *nvmeq = req->end_io_data;
2424 
2425 	blk_mq_free_request(req);
2426 	complete(&nvmeq->delete_done);
2427 	return RQ_END_IO_NONE;
2428 }
2429 
2430 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2431 					  blk_status_t error)
2432 {
2433 	struct nvme_queue *nvmeq = req->end_io_data;
2434 
2435 	if (error)
2436 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2437 
2438 	return nvme_del_queue_end(req, error);
2439 }
2440 
2441 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2442 {
2443 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2444 	struct request *req;
2445 	struct nvme_command cmd = { };
2446 
2447 	cmd.delete_queue.opcode = opcode;
2448 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2449 
2450 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2451 	if (IS_ERR(req))
2452 		return PTR_ERR(req);
2453 	nvme_init_request(req, &cmd);
2454 
2455 	if (opcode == nvme_admin_delete_cq)
2456 		req->end_io = nvme_del_cq_end;
2457 	else
2458 		req->end_io = nvme_del_queue_end;
2459 	req->end_io_data = nvmeq;
2460 
2461 	init_completion(&nvmeq->delete_done);
2462 	blk_execute_rq_nowait(req, false);
2463 	return 0;
2464 }
2465 
2466 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2467 {
2468 	int nr_queues = dev->online_queues - 1, sent = 0;
2469 	unsigned long timeout;
2470 
2471  retry:
2472 	timeout = NVME_ADMIN_TIMEOUT;
2473 	while (nr_queues > 0) {
2474 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2475 			break;
2476 		nr_queues--;
2477 		sent++;
2478 	}
2479 	while (sent) {
2480 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2481 
2482 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2483 				timeout);
2484 		if (timeout == 0)
2485 			return false;
2486 
2487 		sent--;
2488 		if (nr_queues)
2489 			goto retry;
2490 	}
2491 	return true;
2492 }
2493 
2494 static void nvme_delete_io_queues(struct nvme_dev *dev)
2495 {
2496 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2497 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2498 }
2499 
2500 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2501 {
2502 	if (dev->io_queues[HCTX_TYPE_POLL])
2503 		return 3;
2504 	if (dev->io_queues[HCTX_TYPE_READ])
2505 		return 2;
2506 	return 1;
2507 }
2508 
2509 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2510 {
2511 	if (!dev->ctrl.tagset) {
2512 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2513 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2514 		return true;
2515 	}
2516 
2517 	/* Give up if we are racing with nvme_dev_disable() */
2518 	if (!mutex_trylock(&dev->shutdown_lock))
2519 		return false;
2520 
2521 	/* Check if nvme_dev_disable() has been executed already */
2522 	if (!dev->online_queues) {
2523 		mutex_unlock(&dev->shutdown_lock);
2524 		return false;
2525 	}
2526 
2527 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2528 	/* free previously allocated queues that are no longer usable */
2529 	nvme_free_queues(dev, dev->online_queues);
2530 	mutex_unlock(&dev->shutdown_lock);
2531 	return true;
2532 }
2533 
2534 static int nvme_pci_enable(struct nvme_dev *dev)
2535 {
2536 	int result = -ENOMEM;
2537 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2538 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2539 
2540 	if (pci_enable_device_mem(pdev))
2541 		return result;
2542 
2543 	pci_set_master(pdev);
2544 
2545 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2546 		result = -ENODEV;
2547 		goto disable;
2548 	}
2549 
2550 	/*
2551 	 * Some devices and/or platforms don't advertise or work with INTx
2552 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2553 	 * adjust this later.
2554 	 */
2555 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2556 		flags &= ~PCI_IRQ_MSI;
2557 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2558 	if (result < 0)
2559 		goto disable;
2560 
2561 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2562 
2563 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2564 				io_queue_depth);
2565 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2566 	dev->dbs = dev->bar + 4096;
2567 
2568 	/*
2569 	 * Some Apple controllers require a non-standard SQE size.
2570 	 * Interestingly they also seem to ignore the CC:IOSQES register
2571 	 * so we don't bother updating it here.
2572 	 */
2573 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2574 		dev->io_sqes = 7;
2575 	else
2576 		dev->io_sqes = NVME_NVM_IOSQES;
2577 
2578 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2579 		dev->q_depth = 2;
2580 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2581 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2582 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2583 		dev->q_depth = 64;
2584 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2585                         "set queue depth=%u\n", dev->q_depth);
2586 	}
2587 
2588 	/*
2589 	 * Controllers with the shared tags quirk need the IO queue to be
2590 	 * big enough so that we get 32 tags for the admin queue
2591 	 */
2592 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2593 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2594 		dev->q_depth = NVME_AQ_DEPTH + 2;
2595 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2596 			 dev->q_depth);
2597 	}
2598 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2599 
2600 	nvme_map_cmb(dev);
2601 
2602 	pci_save_state(pdev);
2603 
2604 	result = nvme_pci_configure_admin_queue(dev);
2605 	if (result)
2606 		goto free_irq;
2607 	return result;
2608 
2609  free_irq:
2610 	pci_free_irq_vectors(pdev);
2611  disable:
2612 	pci_disable_device(pdev);
2613 	return result;
2614 }
2615 
2616 static void nvme_dev_unmap(struct nvme_dev *dev)
2617 {
2618 	if (dev->bar)
2619 		iounmap(dev->bar);
2620 	pci_release_mem_regions(to_pci_dev(dev->dev));
2621 }
2622 
2623 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2624 {
2625 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2626 	u32 csts;
2627 
2628 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2629 		return true;
2630 	if (pdev->error_state != pci_channel_io_normal)
2631 		return true;
2632 
2633 	csts = readl(dev->bar + NVME_REG_CSTS);
2634 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2635 }
2636 
2637 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2638 {
2639 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2640 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2641 	bool dead;
2642 
2643 	mutex_lock(&dev->shutdown_lock);
2644 	dead = nvme_pci_ctrl_is_dead(dev);
2645 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2646 		if (pci_is_enabled(pdev))
2647 			nvme_start_freeze(&dev->ctrl);
2648 		/*
2649 		 * Give the controller a chance to complete all entered requests
2650 		 * if doing a safe shutdown.
2651 		 */
2652 		if (!dead && shutdown)
2653 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2654 	}
2655 
2656 	nvme_quiesce_io_queues(&dev->ctrl);
2657 
2658 	if (!dead && dev->ctrl.queue_count > 0) {
2659 		nvme_delete_io_queues(dev);
2660 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2661 		nvme_poll_irqdisable(&dev->queues[0]);
2662 	}
2663 	nvme_suspend_io_queues(dev);
2664 	nvme_suspend_queue(dev, 0);
2665 	pci_free_irq_vectors(pdev);
2666 	if (pci_is_enabled(pdev))
2667 		pci_disable_device(pdev);
2668 	nvme_reap_pending_cqes(dev);
2669 
2670 	nvme_cancel_tagset(&dev->ctrl);
2671 	nvme_cancel_admin_tagset(&dev->ctrl);
2672 
2673 	/*
2674 	 * The driver will not be starting up queues again if shutting down so
2675 	 * must flush all entered requests to their failed completion to avoid
2676 	 * deadlocking blk-mq hot-cpu notifier.
2677 	 */
2678 	if (shutdown) {
2679 		nvme_unquiesce_io_queues(&dev->ctrl);
2680 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2681 			nvme_unquiesce_admin_queue(&dev->ctrl);
2682 	}
2683 	mutex_unlock(&dev->shutdown_lock);
2684 }
2685 
2686 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2687 {
2688 	if (!nvme_wait_reset(&dev->ctrl))
2689 		return -EBUSY;
2690 	nvme_dev_disable(dev, shutdown);
2691 	return 0;
2692 }
2693 
2694 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2695 {
2696 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2697 						NVME_CTRL_PAGE_SIZE,
2698 						NVME_CTRL_PAGE_SIZE, 0);
2699 	if (!dev->prp_page_pool)
2700 		return -ENOMEM;
2701 
2702 	/* Optimisation for I/Os between 4k and 128k */
2703 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2704 						256, 256, 0);
2705 	if (!dev->prp_small_pool) {
2706 		dma_pool_destroy(dev->prp_page_pool);
2707 		return -ENOMEM;
2708 	}
2709 	return 0;
2710 }
2711 
2712 static void nvme_release_prp_pools(struct nvme_dev *dev)
2713 {
2714 	dma_pool_destroy(dev->prp_page_pool);
2715 	dma_pool_destroy(dev->prp_small_pool);
2716 }
2717 
2718 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2719 {
2720 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2721 
2722 	dev->iod_mempool = mempool_create_node(1,
2723 			mempool_kmalloc, mempool_kfree,
2724 			(void *)alloc_size, GFP_KERNEL,
2725 			dev_to_node(dev->dev));
2726 	if (!dev->iod_mempool)
2727 		return -ENOMEM;
2728 	return 0;
2729 }
2730 
2731 static void nvme_free_tagset(struct nvme_dev *dev)
2732 {
2733 	if (dev->tagset.tags)
2734 		nvme_remove_io_tag_set(&dev->ctrl);
2735 	dev->ctrl.tagset = NULL;
2736 }
2737 
2738 /* pairs with nvme_pci_alloc_dev */
2739 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2740 {
2741 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2742 
2743 	nvme_free_tagset(dev);
2744 	put_device(dev->dev);
2745 	kfree(dev->queues);
2746 	kfree(dev);
2747 }
2748 
2749 static void nvme_reset_work(struct work_struct *work)
2750 {
2751 	struct nvme_dev *dev =
2752 		container_of(work, struct nvme_dev, ctrl.reset_work);
2753 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2754 	int result;
2755 
2756 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2757 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2758 			 dev->ctrl.state);
2759 		result = -ENODEV;
2760 		goto out;
2761 	}
2762 
2763 	/*
2764 	 * If we're called to reset a live controller first shut it down before
2765 	 * moving on.
2766 	 */
2767 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2768 		nvme_dev_disable(dev, false);
2769 	nvme_sync_queues(&dev->ctrl);
2770 
2771 	mutex_lock(&dev->shutdown_lock);
2772 	result = nvme_pci_enable(dev);
2773 	if (result)
2774 		goto out_unlock;
2775 	nvme_unquiesce_admin_queue(&dev->ctrl);
2776 	mutex_unlock(&dev->shutdown_lock);
2777 
2778 	/*
2779 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2780 	 * initializing procedure here.
2781 	 */
2782 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2783 		dev_warn(dev->ctrl.device,
2784 			"failed to mark controller CONNECTING\n");
2785 		result = -EBUSY;
2786 		goto out;
2787 	}
2788 
2789 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2790 	if (result)
2791 		goto out;
2792 
2793 	nvme_dbbuf_dma_alloc(dev);
2794 
2795 	result = nvme_setup_host_mem(dev);
2796 	if (result < 0)
2797 		goto out;
2798 
2799 	result = nvme_setup_io_queues(dev);
2800 	if (result)
2801 		goto out;
2802 
2803 	/*
2804 	 * Freeze and update the number of I/O queues as thos might have
2805 	 * changed.  If there are no I/O queues left after this reset, keep the
2806 	 * controller around but remove all namespaces.
2807 	 */
2808 	if (dev->online_queues > 1) {
2809 		nvme_dbbuf_set(dev);
2810 		nvme_unquiesce_io_queues(&dev->ctrl);
2811 		nvme_wait_freeze(&dev->ctrl);
2812 		if (!nvme_pci_update_nr_queues(dev))
2813 			goto out;
2814 		nvme_unfreeze(&dev->ctrl);
2815 	} else {
2816 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2817 		nvme_mark_namespaces_dead(&dev->ctrl);
2818 		nvme_unquiesce_io_queues(&dev->ctrl);
2819 		nvme_remove_namespaces(&dev->ctrl);
2820 		nvme_free_tagset(dev);
2821 	}
2822 
2823 	/*
2824 	 * If only admin queue live, keep it to do further investigation or
2825 	 * recovery.
2826 	 */
2827 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2828 		dev_warn(dev->ctrl.device,
2829 			"failed to mark controller live state\n");
2830 		result = -ENODEV;
2831 		goto out;
2832 	}
2833 
2834 	nvme_start_ctrl(&dev->ctrl);
2835 	return;
2836 
2837  out_unlock:
2838 	mutex_unlock(&dev->shutdown_lock);
2839  out:
2840 	/*
2841 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2842 	 * may be holding this pci_dev's device lock.
2843 	 */
2844 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2845 		 result);
2846 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2847 	nvme_dev_disable(dev, true);
2848 	nvme_sync_queues(&dev->ctrl);
2849 	nvme_mark_namespaces_dead(&dev->ctrl);
2850 	nvme_unquiesce_io_queues(&dev->ctrl);
2851 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2852 }
2853 
2854 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2855 {
2856 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2857 	return 0;
2858 }
2859 
2860 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2861 {
2862 	writel(val, to_nvme_dev(ctrl)->bar + off);
2863 	return 0;
2864 }
2865 
2866 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2867 {
2868 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2869 	return 0;
2870 }
2871 
2872 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2873 {
2874 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2875 
2876 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2877 }
2878 
2879 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2880 {
2881 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2882 	struct nvme_subsystem *subsys = ctrl->subsys;
2883 
2884 	dev_err(ctrl->device,
2885 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2886 		pdev->vendor, pdev->device,
2887 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2888 		subsys->model, nvme_strlen(subsys->firmware_rev,
2889 					   sizeof(subsys->firmware_rev)),
2890 		subsys->firmware_rev);
2891 }
2892 
2893 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2894 {
2895 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2896 
2897 	return dma_pci_p2pdma_supported(dev->dev);
2898 }
2899 
2900 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2901 	.name			= "pcie",
2902 	.module			= THIS_MODULE,
2903 	.flags			= NVME_F_METADATA_SUPPORTED,
2904 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2905 	.reg_read32		= nvme_pci_reg_read32,
2906 	.reg_write32		= nvme_pci_reg_write32,
2907 	.reg_read64		= nvme_pci_reg_read64,
2908 	.free_ctrl		= nvme_pci_free_ctrl,
2909 	.submit_async_event	= nvme_pci_submit_async_event,
2910 	.subsystem_reset	= nvme_pci_subsystem_reset,
2911 	.get_address		= nvme_pci_get_address,
2912 	.print_device_info	= nvme_pci_print_device_info,
2913 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2914 };
2915 
2916 static int nvme_dev_map(struct nvme_dev *dev)
2917 {
2918 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2919 
2920 	if (pci_request_mem_regions(pdev, "nvme"))
2921 		return -ENODEV;
2922 
2923 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2924 		goto release;
2925 
2926 	return 0;
2927   release:
2928 	pci_release_mem_regions(pdev);
2929 	return -ENODEV;
2930 }
2931 
2932 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2933 {
2934 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2935 		/*
2936 		 * Several Samsung devices seem to drop off the PCIe bus
2937 		 * randomly when APST is on and uses the deepest sleep state.
2938 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2939 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2940 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2941 		 * laptops.
2942 		 */
2943 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2944 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2945 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2946 			return NVME_QUIRK_NO_DEEPEST_PS;
2947 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2948 		/*
2949 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2950 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2951 		 * within few minutes after bootup on a Coffee Lake board -
2952 		 * ASUS PRIME Z370-A
2953 		 */
2954 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2955 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2956 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2957 			return NVME_QUIRK_NO_APST;
2958 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2959 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2960 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2961 		/*
2962 		 * Forcing to use host managed nvme power settings for
2963 		 * lowest idle power with quick resume latency on
2964 		 * Samsung and Toshiba SSDs based on suspend behavior
2965 		 * on Coffee Lake board for LENOVO C640
2966 		 */
2967 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2968 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2969 			return NVME_QUIRK_SIMPLE_SUSPEND;
2970 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2971 		   pdev->device == 0x500f)) {
2972 		/*
2973 		 * Exclude some Kingston NV1 and A2000 devices from
2974 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2975 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2976 		 */
2977 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
2978 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
2979 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
2980 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
2981 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2982 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
2983 		/*
2984 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
2985 		 * because of high power consumption (> 2 Watt) in s2idle
2986 		 * sleep. Only some boards with Intel CPU are affected.
2987 		 */
2988 		if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
2989 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
2990 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
2991 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
2992 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2993 	}
2994 
2995 	/*
2996 	 * NVMe SSD drops off the PCIe bus after system idle
2997 	 * for 10 hours on a Lenovo N60z board.
2998 	 */
2999 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3000 		return NVME_QUIRK_NO_APST;
3001 
3002 	return 0;
3003 }
3004 
3005 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3006 		const struct pci_device_id *id)
3007 {
3008 	unsigned long quirks = id->driver_data;
3009 	int node = dev_to_node(&pdev->dev);
3010 	struct nvme_dev *dev;
3011 	int ret = -ENOMEM;
3012 
3013 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3014 	if (!dev)
3015 		return ERR_PTR(-ENOMEM);
3016 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3017 	mutex_init(&dev->shutdown_lock);
3018 
3019 	dev->nr_write_queues = write_queues;
3020 	dev->nr_poll_queues = poll_queues;
3021 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3022 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3023 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3024 	if (!dev->queues)
3025 		goto out_free_dev;
3026 
3027 	dev->dev = get_device(&pdev->dev);
3028 
3029 	quirks |= check_vendor_combination_bug(pdev);
3030 	if (!noacpi &&
3031 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3032 	    acpi_storage_d3(&pdev->dev)) {
3033 		/*
3034 		 * Some systems use a bios work around to ask for D3 on
3035 		 * platforms that support kernel managed suspend.
3036 		 */
3037 		dev_info(&pdev->dev,
3038 			 "platform quirk: setting simple suspend\n");
3039 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3040 	}
3041 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3042 			     quirks);
3043 	if (ret)
3044 		goto out_put_device;
3045 
3046 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3047 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3048 	else
3049 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3050 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3051 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3052 
3053 	/*
3054 	 * Limit the max command size to prevent iod->sg allocations going
3055 	 * over a single page.
3056 	 */
3057 	dev->ctrl.max_hw_sectors = min_t(u32,
3058 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3059 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3060 
3061 	/*
3062 	 * There is no support for SGLs for metadata (yet), so we are limited to
3063 	 * a single integrity segment for the separate metadata pointer.
3064 	 */
3065 	dev->ctrl.max_integrity_segments = 1;
3066 	return dev;
3067 
3068 out_put_device:
3069 	put_device(dev->dev);
3070 	kfree(dev->queues);
3071 out_free_dev:
3072 	kfree(dev);
3073 	return ERR_PTR(ret);
3074 }
3075 
3076 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3077 {
3078 	struct nvme_dev *dev;
3079 	int result = -ENOMEM;
3080 
3081 	dev = nvme_pci_alloc_dev(pdev, id);
3082 	if (IS_ERR(dev))
3083 		return PTR_ERR(dev);
3084 
3085 	result = nvme_add_ctrl(&dev->ctrl);
3086 	if (result)
3087 		goto out_put_ctrl;
3088 
3089 	result = nvme_dev_map(dev);
3090 	if (result)
3091 		goto out_uninit_ctrl;
3092 
3093 	result = nvme_setup_prp_pools(dev);
3094 	if (result)
3095 		goto out_dev_unmap;
3096 
3097 	result = nvme_pci_alloc_iod_mempool(dev);
3098 	if (result)
3099 		goto out_release_prp_pools;
3100 
3101 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3102 
3103 	result = nvme_pci_enable(dev);
3104 	if (result)
3105 		goto out_release_iod_mempool;
3106 
3107 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3108 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3109 	if (result)
3110 		goto out_disable;
3111 
3112 	/*
3113 	 * Mark the controller as connecting before sending admin commands to
3114 	 * allow the timeout handler to do the right thing.
3115 	 */
3116 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3117 		dev_warn(dev->ctrl.device,
3118 			"failed to mark controller CONNECTING\n");
3119 		result = -EBUSY;
3120 		goto out_disable;
3121 	}
3122 
3123 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3124 	if (result)
3125 		goto out_disable;
3126 
3127 	nvme_dbbuf_dma_alloc(dev);
3128 
3129 	result = nvme_setup_host_mem(dev);
3130 	if (result < 0)
3131 		goto out_disable;
3132 
3133 	result = nvme_setup_io_queues(dev);
3134 	if (result)
3135 		goto out_disable;
3136 
3137 	if (dev->online_queues > 1) {
3138 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3139 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3140 		nvme_dbbuf_set(dev);
3141 	}
3142 
3143 	if (!dev->ctrl.tagset)
3144 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3145 
3146 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3147 		dev_warn(dev->ctrl.device,
3148 			"failed to mark controller live state\n");
3149 		result = -ENODEV;
3150 		goto out_disable;
3151 	}
3152 
3153 	pci_set_drvdata(pdev, dev);
3154 
3155 	nvme_start_ctrl(&dev->ctrl);
3156 	nvme_put_ctrl(&dev->ctrl);
3157 	flush_work(&dev->ctrl.scan_work);
3158 	return 0;
3159 
3160 out_disable:
3161 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3162 	nvme_dev_disable(dev, true);
3163 	nvme_free_host_mem(dev);
3164 	nvme_dev_remove_admin(dev);
3165 	nvme_dbbuf_dma_free(dev);
3166 	nvme_free_queues(dev, 0);
3167 out_release_iod_mempool:
3168 	mempool_destroy(dev->iod_mempool);
3169 out_release_prp_pools:
3170 	nvme_release_prp_pools(dev);
3171 out_dev_unmap:
3172 	nvme_dev_unmap(dev);
3173 out_uninit_ctrl:
3174 	nvme_uninit_ctrl(&dev->ctrl);
3175 out_put_ctrl:
3176 	nvme_put_ctrl(&dev->ctrl);
3177 	return result;
3178 }
3179 
3180 static void nvme_reset_prepare(struct pci_dev *pdev)
3181 {
3182 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3183 
3184 	/*
3185 	 * We don't need to check the return value from waiting for the reset
3186 	 * state as pci_dev device lock is held, making it impossible to race
3187 	 * with ->remove().
3188 	 */
3189 	nvme_disable_prepare_reset(dev, false);
3190 	nvme_sync_queues(&dev->ctrl);
3191 }
3192 
3193 static void nvme_reset_done(struct pci_dev *pdev)
3194 {
3195 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3196 
3197 	if (!nvme_try_sched_reset(&dev->ctrl))
3198 		flush_work(&dev->ctrl.reset_work);
3199 }
3200 
3201 static void nvme_shutdown(struct pci_dev *pdev)
3202 {
3203 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3204 
3205 	nvme_disable_prepare_reset(dev, true);
3206 }
3207 
3208 /*
3209  * The driver's remove may be called on a device in a partially initialized
3210  * state. This function must not have any dependencies on the device state in
3211  * order to proceed.
3212  */
3213 static void nvme_remove(struct pci_dev *pdev)
3214 {
3215 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3216 
3217 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3218 	pci_set_drvdata(pdev, NULL);
3219 
3220 	if (!pci_device_is_present(pdev)) {
3221 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3222 		nvme_dev_disable(dev, true);
3223 	}
3224 
3225 	flush_work(&dev->ctrl.reset_work);
3226 	nvme_stop_ctrl(&dev->ctrl);
3227 	nvme_remove_namespaces(&dev->ctrl);
3228 	nvme_dev_disable(dev, true);
3229 	nvme_free_host_mem(dev);
3230 	nvme_dev_remove_admin(dev);
3231 	nvme_dbbuf_dma_free(dev);
3232 	nvme_free_queues(dev, 0);
3233 	mempool_destroy(dev->iod_mempool);
3234 	nvme_release_prp_pools(dev);
3235 	nvme_dev_unmap(dev);
3236 	nvme_uninit_ctrl(&dev->ctrl);
3237 }
3238 
3239 #ifdef CONFIG_PM_SLEEP
3240 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3241 {
3242 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3243 }
3244 
3245 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3246 {
3247 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3248 }
3249 
3250 static int nvme_resume(struct device *dev)
3251 {
3252 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3253 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3254 
3255 	if (ndev->last_ps == U32_MAX ||
3256 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3257 		goto reset;
3258 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3259 		goto reset;
3260 
3261 	return 0;
3262 reset:
3263 	return nvme_try_sched_reset(ctrl);
3264 }
3265 
3266 static int nvme_suspend(struct device *dev)
3267 {
3268 	struct pci_dev *pdev = to_pci_dev(dev);
3269 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3270 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3271 	int ret = -EBUSY;
3272 
3273 	ndev->last_ps = U32_MAX;
3274 
3275 	/*
3276 	 * The platform does not remove power for a kernel managed suspend so
3277 	 * use host managed nvme power settings for lowest idle power if
3278 	 * possible. This should have quicker resume latency than a full device
3279 	 * shutdown.  But if the firmware is involved after the suspend or the
3280 	 * device does not support any non-default power states, shut down the
3281 	 * device fully.
3282 	 *
3283 	 * If ASPM is not enabled for the device, shut down the device and allow
3284 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3285 	 * down, so as to allow the platform to achieve its minimum low-power
3286 	 * state (which may not be possible if the link is up).
3287 	 */
3288 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3289 	    !pcie_aspm_enabled(pdev) ||
3290 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3291 		return nvme_disable_prepare_reset(ndev, true);
3292 
3293 	nvme_start_freeze(ctrl);
3294 	nvme_wait_freeze(ctrl);
3295 	nvme_sync_queues(ctrl);
3296 
3297 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3298 		goto unfreeze;
3299 
3300 	/*
3301 	 * Host memory access may not be successful in a system suspend state,
3302 	 * but the specification allows the controller to access memory in a
3303 	 * non-operational power state.
3304 	 */
3305 	if (ndev->hmb) {
3306 		ret = nvme_set_host_mem(ndev, 0);
3307 		if (ret < 0)
3308 			goto unfreeze;
3309 	}
3310 
3311 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3312 	if (ret < 0)
3313 		goto unfreeze;
3314 
3315 	/*
3316 	 * A saved state prevents pci pm from generically controlling the
3317 	 * device's power. If we're using protocol specific settings, we don't
3318 	 * want pci interfering.
3319 	 */
3320 	pci_save_state(pdev);
3321 
3322 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3323 	if (ret < 0)
3324 		goto unfreeze;
3325 
3326 	if (ret) {
3327 		/* discard the saved state */
3328 		pci_load_saved_state(pdev, NULL);
3329 
3330 		/*
3331 		 * Clearing npss forces a controller reset on resume. The
3332 		 * correct value will be rediscovered then.
3333 		 */
3334 		ret = nvme_disable_prepare_reset(ndev, true);
3335 		ctrl->npss = 0;
3336 	}
3337 unfreeze:
3338 	nvme_unfreeze(ctrl);
3339 	return ret;
3340 }
3341 
3342 static int nvme_simple_suspend(struct device *dev)
3343 {
3344 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3345 
3346 	return nvme_disable_prepare_reset(ndev, true);
3347 }
3348 
3349 static int nvme_simple_resume(struct device *dev)
3350 {
3351 	struct pci_dev *pdev = to_pci_dev(dev);
3352 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3353 
3354 	return nvme_try_sched_reset(&ndev->ctrl);
3355 }
3356 
3357 static const struct dev_pm_ops nvme_dev_pm_ops = {
3358 	.suspend	= nvme_suspend,
3359 	.resume		= nvme_resume,
3360 	.freeze		= nvme_simple_suspend,
3361 	.thaw		= nvme_simple_resume,
3362 	.poweroff	= nvme_simple_suspend,
3363 	.restore	= nvme_simple_resume,
3364 };
3365 #endif /* CONFIG_PM_SLEEP */
3366 
3367 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3368 						pci_channel_state_t state)
3369 {
3370 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3371 
3372 	/*
3373 	 * A frozen channel requires a reset. When detected, this method will
3374 	 * shutdown the controller to quiesce. The controller will be restarted
3375 	 * after the slot reset through driver's slot_reset callback.
3376 	 */
3377 	switch (state) {
3378 	case pci_channel_io_normal:
3379 		return PCI_ERS_RESULT_CAN_RECOVER;
3380 	case pci_channel_io_frozen:
3381 		dev_warn(dev->ctrl.device,
3382 			"frozen state error detected, reset controller\n");
3383 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3384 			nvme_dev_disable(dev, true);
3385 			return PCI_ERS_RESULT_DISCONNECT;
3386 		}
3387 		nvme_dev_disable(dev, false);
3388 		return PCI_ERS_RESULT_NEED_RESET;
3389 	case pci_channel_io_perm_failure:
3390 		dev_warn(dev->ctrl.device,
3391 			"failure state error detected, request disconnect\n");
3392 		return PCI_ERS_RESULT_DISCONNECT;
3393 	}
3394 	return PCI_ERS_RESULT_NEED_RESET;
3395 }
3396 
3397 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3398 {
3399 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3400 
3401 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3402 	pci_restore_state(pdev);
3403 	if (!nvme_try_sched_reset(&dev->ctrl))
3404 		nvme_unquiesce_io_queues(&dev->ctrl);
3405 	return PCI_ERS_RESULT_RECOVERED;
3406 }
3407 
3408 static void nvme_error_resume(struct pci_dev *pdev)
3409 {
3410 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3411 
3412 	flush_work(&dev->ctrl.reset_work);
3413 }
3414 
3415 static const struct pci_error_handlers nvme_err_handler = {
3416 	.error_detected	= nvme_error_detected,
3417 	.slot_reset	= nvme_slot_reset,
3418 	.resume		= nvme_error_resume,
3419 	.reset_prepare	= nvme_reset_prepare,
3420 	.reset_done	= nvme_reset_done,
3421 };
3422 
3423 static const struct pci_device_id nvme_id_table[] = {
3424 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3425 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3426 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3427 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3428 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3429 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3430 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3431 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3432 				NVME_QUIRK_DEALLOCATE_ZEROES |
3433 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3434 				NVME_QUIRK_BOGUS_NID, },
3435 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3436 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3437 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3438 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3439 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3440 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3441 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3442 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3443 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3444 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3445 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3446 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3447 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3448 				NVME_QUIRK_BOGUS_NID, },
3449 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3450 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3451 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3452 		.driver_data = NVME_QUIRK_QDEPTH_ONE },
3453 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3454 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3455 				NVME_QUIRK_BOGUS_NID, },
3456 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3457 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3458 				NVME_QUIRK_BOGUS_NID, },
3459 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3460 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3461 				NVME_QUIRK_NO_NS_DESC_LIST, },
3462 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3463 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3465 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3466 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3467 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3468 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3469 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3470 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3471 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3472 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3473 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3474 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3475 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3476 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3477 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3478 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3479 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3480 				NVME_QUIRK_BOGUS_NID, },
3481 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3482 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3483 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3484 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3485 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3486 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3487 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3488 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3489 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3490 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3491 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3492 				NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3494 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3495 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3496 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3497 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3498 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3499 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3500 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3501 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3502 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3503 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3504 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3505 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3506 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3507 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3508 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3509 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3510 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3511 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3512 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3513 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3514 				NVME_QUIRK_BOGUS_NID, },
3515 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3516 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3517 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3518 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3519 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3520 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3521 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3522 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3523 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3524 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3525 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3526 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3527 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3528 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3529 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3530 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3531 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3532 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3533 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3534 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3535 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3536 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3537 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3538 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3539 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3540 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3541 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3542 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3543 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3544 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3545 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3546 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3547 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3548 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3549 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3550 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3551 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3552 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3553 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3554 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3555 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3556 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3557 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3558 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3559 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3560 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3561 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3562 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3563 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3564 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3565 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3566 		.driver_data = NVME_QUIRK_BOGUS_NID |
3567 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3568 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3569 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3570 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3571 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3572 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3573 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3574 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3575 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3576 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3577 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3578 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3579 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3580 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3581 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3582 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3583 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3584 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3585 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3586 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3587 		/*
3588 		 * Fix for the Apple controller found in the MacBook8,1 and
3589 		 * some MacBook7,1 to avoid controller resets and data loss.
3590 		 */
3591 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3592 				NVME_QUIRK_QDEPTH_ONE },
3593 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3594 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3595 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3596 				NVME_QUIRK_128_BYTES_SQES |
3597 				NVME_QUIRK_SHARED_TAGS |
3598 				NVME_QUIRK_SKIP_CID_GEN |
3599 				NVME_QUIRK_IDENTIFY_CNS },
3600 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3601 	{ 0, }
3602 };
3603 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3604 
3605 static struct pci_driver nvme_driver = {
3606 	.name		= "nvme",
3607 	.id_table	= nvme_id_table,
3608 	.probe		= nvme_probe,
3609 	.remove		= nvme_remove,
3610 	.shutdown	= nvme_shutdown,
3611 	.driver		= {
3612 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3613 #ifdef CONFIG_PM_SLEEP
3614 		.pm		= &nvme_dev_pm_ops,
3615 #endif
3616 	},
3617 	.sriov_configure = pci_sriov_configure_simple,
3618 	.err_handler	= &nvme_err_handler,
3619 };
3620 
3621 static int __init nvme_init(void)
3622 {
3623 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3624 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3625 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3626 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3627 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3628 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3629 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3630 
3631 	return pci_register_driver(&nvme_driver);
3632 }
3633 
3634 static void __exit nvme_exit(void)
3635 {
3636 	pci_unregister_driver(&nvme_driver);
3637 	flush_workqueue(nvme_wq);
3638 }
3639 
3640 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3641 MODULE_LICENSE("GPL");
3642 MODULE_VERSION("1.0");
3643 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3644 module_init(nvme_init);
3645 module_exit(nvme_exit);
3646