1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 782 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 783 return nvme_setup_prp_simple(dev, req, 784 &cmnd->rw, &bv); 785 786 if (nvmeq->qid && sgl_threshold && 787 nvme_ctrl_sgl_supported(&dev->ctrl)) 788 return nvme_setup_sgl_simple(dev, req, 789 &cmnd->rw, &bv); 790 } 791 } 792 793 iod->dma_len = 0; 794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 795 if (!iod->sgt.sgl) 796 return BLK_STS_RESOURCE; 797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 799 if (!iod->sgt.orig_nents) 800 goto out_free_sg; 801 802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 803 DMA_ATTR_NO_WARN); 804 if (rc) { 805 if (rc == -EREMOTEIO) 806 ret = BLK_STS_TARGET; 807 goto out_free_sg; 808 } 809 810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 812 else 813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 814 if (ret != BLK_STS_OK) 815 goto out_unmap_sg; 816 return BLK_STS_OK; 817 818 out_unmap_sg: 819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 820 out_free_sg: 821 mempool_free(iod->sgt.sgl, dev->iod_mempool); 822 return ret; 823 } 824 825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 826 struct nvme_command *cmnd) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 struct bio_vec bv = rq_integrity_vec(req); 830 831 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 832 if (dma_mapping_error(dev->dev, iod->meta_dma)) 833 return BLK_STS_IOERR; 834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 blk_status_t ret; 842 843 iod->aborted = false; 844 iod->nr_allocations = -1; 845 iod->sgt.nents = 0; 846 847 ret = nvme_setup_cmd(req->q->queuedata, req); 848 if (ret) 849 return ret; 850 851 if (blk_rq_nr_phys_segments(req)) { 852 ret = nvme_map_data(dev, req, &iod->cmd); 853 if (ret) 854 goto out_free_cmd; 855 } 856 857 if (blk_integrity_rq(req)) { 858 ret = nvme_map_metadata(dev, req, &iod->cmd); 859 if (ret) 860 goto out_unmap_data; 861 } 862 863 nvme_start_request(req); 864 return BLK_STS_OK; 865 out_unmap_data: 866 if (blk_rq_nr_phys_segments(req)) 867 nvme_unmap_data(dev, req); 868 out_free_cmd: 869 nvme_cleanup_cmd(req); 870 return ret; 871 } 872 873 /* 874 * NOTE: ns is NULL when called on the admin queue. 875 */ 876 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 877 const struct blk_mq_queue_data *bd) 878 { 879 struct nvme_queue *nvmeq = hctx->driver_data; 880 struct nvme_dev *dev = nvmeq->dev; 881 struct request *req = bd->rq; 882 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 883 blk_status_t ret; 884 885 /* 886 * We should not need to do this, but we're still using this to 887 * ensure we can drain requests on a dying queue. 888 */ 889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 890 return BLK_STS_IOERR; 891 892 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 893 return nvme_fail_nonready_command(&dev->ctrl, req); 894 895 ret = nvme_prep_rq(dev, req); 896 if (unlikely(ret)) 897 return ret; 898 spin_lock(&nvmeq->sq_lock); 899 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 900 nvme_write_sq_db(nvmeq, bd->last); 901 spin_unlock(&nvmeq->sq_lock); 902 return BLK_STS_OK; 903 } 904 905 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 906 { 907 spin_lock(&nvmeq->sq_lock); 908 while (!rq_list_empty(*rqlist)) { 909 struct request *req = rq_list_pop(rqlist); 910 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 911 912 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 913 } 914 nvme_write_sq_db(nvmeq, true); 915 spin_unlock(&nvmeq->sq_lock); 916 } 917 918 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 919 { 920 /* 921 * We should not need to do this, but we're still using this to 922 * ensure we can drain requests on a dying queue. 923 */ 924 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 925 return false; 926 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 927 return false; 928 929 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 930 } 931 932 static void nvme_queue_rqs(struct request **rqlist) 933 { 934 struct request *req, *next, *prev = NULL; 935 struct request *requeue_list = NULL; 936 937 rq_list_for_each_safe(rqlist, req, next) { 938 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 939 940 if (!nvme_prep_rq_batch(nvmeq, req)) { 941 /* detach 'req' and add to remainder list */ 942 rq_list_move(rqlist, &requeue_list, req, prev); 943 944 req = prev; 945 if (!req) 946 continue; 947 } 948 949 if (!next || req->mq_hctx != next->mq_hctx) { 950 /* detach rest of list, and submit */ 951 req->rq_next = NULL; 952 nvme_submit_cmds(nvmeq, rqlist); 953 *rqlist = next; 954 prev = NULL; 955 } else 956 prev = req; 957 } 958 959 *rqlist = requeue_list; 960 } 961 962 static __always_inline void nvme_pci_unmap_rq(struct request *req) 963 { 964 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 965 struct nvme_dev *dev = nvmeq->dev; 966 967 if (blk_integrity_rq(req)) { 968 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 969 970 dma_unmap_page(dev->dev, iod->meta_dma, 971 rq_integrity_vec(req).bv_len, rq_dma_dir(req)); 972 } 973 974 if (blk_rq_nr_phys_segments(req)) 975 nvme_unmap_data(dev, req); 976 } 977 978 static void nvme_pci_complete_rq(struct request *req) 979 { 980 nvme_pci_unmap_rq(req); 981 nvme_complete_rq(req); 982 } 983 984 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 985 { 986 nvme_complete_batch(iob, nvme_pci_unmap_rq); 987 } 988 989 /* We read the CQE phase first to check if the rest of the entry is valid */ 990 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 991 { 992 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 993 994 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 995 } 996 997 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 998 { 999 u16 head = nvmeq->cq_head; 1000 1001 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1002 nvmeq->dbbuf_cq_ei)) 1003 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1004 } 1005 1006 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1007 { 1008 if (!nvmeq->qid) 1009 return nvmeq->dev->admin_tagset.tags[0]; 1010 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1011 } 1012 1013 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1014 struct io_comp_batch *iob, u16 idx) 1015 { 1016 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1017 __u16 command_id = READ_ONCE(cqe->command_id); 1018 struct request *req; 1019 1020 /* 1021 * AEN requests are special as they don't time out and can 1022 * survive any kind of queue freeze and often don't respond to 1023 * aborts. We don't even bother to allocate a struct request 1024 * for them but rather special case them here. 1025 */ 1026 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1027 nvme_complete_async_event(&nvmeq->dev->ctrl, 1028 cqe->status, &cqe->result); 1029 return; 1030 } 1031 1032 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1033 if (unlikely(!req)) { 1034 dev_warn(nvmeq->dev->ctrl.device, 1035 "invalid id %d completed on queue %d\n", 1036 command_id, le16_to_cpu(cqe->sq_id)); 1037 return; 1038 } 1039 1040 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1041 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1042 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1043 nvme_pci_complete_batch)) 1044 nvme_pci_complete_rq(req); 1045 } 1046 1047 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1048 { 1049 u32 tmp = nvmeq->cq_head + 1; 1050 1051 if (tmp == nvmeq->q_depth) { 1052 nvmeq->cq_head = 0; 1053 nvmeq->cq_phase ^= 1; 1054 } else { 1055 nvmeq->cq_head = tmp; 1056 } 1057 } 1058 1059 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1060 struct io_comp_batch *iob) 1061 { 1062 int found = 0; 1063 1064 while (nvme_cqe_pending(nvmeq)) { 1065 found++; 1066 /* 1067 * load-load control dependency between phase and the rest of 1068 * the cqe requires a full read memory barrier 1069 */ 1070 dma_rmb(); 1071 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1072 nvme_update_cq_head(nvmeq); 1073 } 1074 1075 if (found) 1076 nvme_ring_cq_doorbell(nvmeq); 1077 return found; 1078 } 1079 1080 static irqreturn_t nvme_irq(int irq, void *data) 1081 { 1082 struct nvme_queue *nvmeq = data; 1083 DEFINE_IO_COMP_BATCH(iob); 1084 1085 if (nvme_poll_cq(nvmeq, &iob)) { 1086 if (!rq_list_empty(iob.req_list)) 1087 nvme_pci_complete_batch(&iob); 1088 return IRQ_HANDLED; 1089 } 1090 return IRQ_NONE; 1091 } 1092 1093 static irqreturn_t nvme_irq_check(int irq, void *data) 1094 { 1095 struct nvme_queue *nvmeq = data; 1096 1097 if (nvme_cqe_pending(nvmeq)) 1098 return IRQ_WAKE_THREAD; 1099 return IRQ_NONE; 1100 } 1101 1102 /* 1103 * Poll for completions for any interrupt driven queue 1104 * Can be called from any context. 1105 */ 1106 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1107 { 1108 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1109 1110 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1111 1112 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1113 nvme_poll_cq(nvmeq, NULL); 1114 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1115 } 1116 1117 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1118 { 1119 struct nvme_queue *nvmeq = hctx->driver_data; 1120 bool found; 1121 1122 if (!nvme_cqe_pending(nvmeq)) 1123 return 0; 1124 1125 spin_lock(&nvmeq->cq_poll_lock); 1126 found = nvme_poll_cq(nvmeq, iob); 1127 spin_unlock(&nvmeq->cq_poll_lock); 1128 1129 return found; 1130 } 1131 1132 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1133 { 1134 struct nvme_dev *dev = to_nvme_dev(ctrl); 1135 struct nvme_queue *nvmeq = &dev->queues[0]; 1136 struct nvme_command c = { }; 1137 1138 c.common.opcode = nvme_admin_async_event; 1139 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1140 1141 spin_lock(&nvmeq->sq_lock); 1142 nvme_sq_copy_cmd(nvmeq, &c); 1143 nvme_write_sq_db(nvmeq, true); 1144 spin_unlock(&nvmeq->sq_lock); 1145 } 1146 1147 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1148 { 1149 struct nvme_dev *dev = to_nvme_dev(ctrl); 1150 int ret = 0; 1151 1152 /* 1153 * Taking the shutdown_lock ensures the BAR mapping is not being 1154 * altered by reset_work. Holding this lock before the RESETTING state 1155 * change, if successful, also ensures nvme_remove won't be able to 1156 * proceed to iounmap until we're done. 1157 */ 1158 mutex_lock(&dev->shutdown_lock); 1159 if (!dev->bar_mapped_size) { 1160 ret = -ENODEV; 1161 goto unlock; 1162 } 1163 1164 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1165 ret = -EBUSY; 1166 goto unlock; 1167 } 1168 1169 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1170 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1171 1172 /* 1173 * Read controller status to flush the previous write and trigger a 1174 * pcie read error. 1175 */ 1176 readl(dev->bar + NVME_REG_CSTS); 1177 unlock: 1178 mutex_unlock(&dev->shutdown_lock); 1179 return ret; 1180 } 1181 1182 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1183 { 1184 struct nvme_command c = { }; 1185 1186 c.delete_queue.opcode = opcode; 1187 c.delete_queue.qid = cpu_to_le16(id); 1188 1189 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1190 } 1191 1192 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1193 struct nvme_queue *nvmeq, s16 vector) 1194 { 1195 struct nvme_command c = { }; 1196 int flags = NVME_QUEUE_PHYS_CONTIG; 1197 1198 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1199 flags |= NVME_CQ_IRQ_ENABLED; 1200 1201 /* 1202 * Note: we (ab)use the fact that the prp fields survive if no data 1203 * is attached to the request. 1204 */ 1205 c.create_cq.opcode = nvme_admin_create_cq; 1206 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1207 c.create_cq.cqid = cpu_to_le16(qid); 1208 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1209 c.create_cq.cq_flags = cpu_to_le16(flags); 1210 c.create_cq.irq_vector = cpu_to_le16(vector); 1211 1212 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1213 } 1214 1215 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1216 struct nvme_queue *nvmeq) 1217 { 1218 struct nvme_ctrl *ctrl = &dev->ctrl; 1219 struct nvme_command c = { }; 1220 int flags = NVME_QUEUE_PHYS_CONTIG; 1221 1222 /* 1223 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1224 * set. Since URGENT priority is zeroes, it makes all queues 1225 * URGENT. 1226 */ 1227 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1228 flags |= NVME_SQ_PRIO_MEDIUM; 1229 1230 /* 1231 * Note: we (ab)use the fact that the prp fields survive if no data 1232 * is attached to the request. 1233 */ 1234 c.create_sq.opcode = nvme_admin_create_sq; 1235 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1236 c.create_sq.sqid = cpu_to_le16(qid); 1237 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1238 c.create_sq.sq_flags = cpu_to_le16(flags); 1239 c.create_sq.cqid = cpu_to_le16(qid); 1240 1241 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1242 } 1243 1244 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1245 { 1246 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1247 } 1248 1249 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1250 { 1251 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1252 } 1253 1254 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1255 { 1256 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1257 1258 dev_warn(nvmeq->dev->ctrl.device, 1259 "Abort status: 0x%x", nvme_req(req)->status); 1260 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1261 blk_mq_free_request(req); 1262 return RQ_END_IO_NONE; 1263 } 1264 1265 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1266 { 1267 /* If true, indicates loss of adapter communication, possibly by a 1268 * NVMe Subsystem reset. 1269 */ 1270 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1271 1272 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1273 switch (nvme_ctrl_state(&dev->ctrl)) { 1274 case NVME_CTRL_RESETTING: 1275 case NVME_CTRL_CONNECTING: 1276 return false; 1277 default: 1278 break; 1279 } 1280 1281 /* We shouldn't reset unless the controller is on fatal error state 1282 * _or_ if we lost the communication with it. 1283 */ 1284 if (!(csts & NVME_CSTS_CFS) && !nssro) 1285 return false; 1286 1287 return true; 1288 } 1289 1290 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1291 { 1292 /* Read a config register to help see what died. */ 1293 u16 pci_status; 1294 int result; 1295 1296 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1297 &pci_status); 1298 if (result == PCIBIOS_SUCCESSFUL) 1299 dev_warn(dev->ctrl.device, 1300 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1301 csts, pci_status); 1302 else 1303 dev_warn(dev->ctrl.device, 1304 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1305 csts, result); 1306 1307 if (csts != ~0) 1308 return; 1309 1310 dev_warn(dev->ctrl.device, 1311 "Does your device have a faulty power saving mode enabled?\n"); 1312 dev_warn(dev->ctrl.device, 1313 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1314 } 1315 1316 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1317 { 1318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1319 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1320 struct nvme_dev *dev = nvmeq->dev; 1321 struct request *abort_req; 1322 struct nvme_command cmd = { }; 1323 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1324 u8 opcode; 1325 1326 if (nvme_state_terminal(&dev->ctrl)) 1327 goto disable; 1328 1329 /* If PCI error recovery process is happening, we cannot reset or 1330 * the recovery mechanism will surely fail. 1331 */ 1332 mb(); 1333 if (pci_channel_offline(to_pci_dev(dev->dev))) 1334 return BLK_EH_RESET_TIMER; 1335 1336 /* 1337 * Reset immediately if the controller is failed 1338 */ 1339 if (nvme_should_reset(dev, csts)) { 1340 nvme_warn_reset(dev, csts); 1341 goto disable; 1342 } 1343 1344 /* 1345 * Did we miss an interrupt? 1346 */ 1347 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1348 nvme_poll(req->mq_hctx, NULL); 1349 else 1350 nvme_poll_irqdisable(nvmeq); 1351 1352 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1353 dev_warn(dev->ctrl.device, 1354 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1355 req->tag, nvme_cid(req), nvmeq->qid); 1356 return BLK_EH_DONE; 1357 } 1358 1359 /* 1360 * Shutdown immediately if controller times out while starting. The 1361 * reset work will see the pci device disabled when it gets the forced 1362 * cancellation error. All outstanding requests are completed on 1363 * shutdown, so we return BLK_EH_DONE. 1364 */ 1365 switch (nvme_ctrl_state(&dev->ctrl)) { 1366 case NVME_CTRL_CONNECTING: 1367 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1368 fallthrough; 1369 case NVME_CTRL_DELETING: 1370 dev_warn_ratelimited(dev->ctrl.device, 1371 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1372 req->tag, nvme_cid(req), nvmeq->qid); 1373 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1374 nvme_dev_disable(dev, true); 1375 return BLK_EH_DONE; 1376 case NVME_CTRL_RESETTING: 1377 return BLK_EH_RESET_TIMER; 1378 default: 1379 break; 1380 } 1381 1382 /* 1383 * Shutdown the controller immediately and schedule a reset if the 1384 * command was already aborted once before and still hasn't been 1385 * returned to the driver, or if this is the admin queue. 1386 */ 1387 opcode = nvme_req(req)->cmd->common.opcode; 1388 if (!nvmeq->qid || iod->aborted) { 1389 dev_warn(dev->ctrl.device, 1390 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1391 req->tag, nvme_cid(req), opcode, 1392 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1393 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1394 goto disable; 1395 } 1396 1397 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1398 atomic_inc(&dev->ctrl.abort_limit); 1399 return BLK_EH_RESET_TIMER; 1400 } 1401 iod->aborted = true; 1402 1403 cmd.abort.opcode = nvme_admin_abort_cmd; 1404 cmd.abort.cid = nvme_cid(req); 1405 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1406 1407 dev_warn(nvmeq->dev->ctrl.device, 1408 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1409 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1410 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1411 blk_rq_bytes(req)); 1412 1413 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1414 BLK_MQ_REQ_NOWAIT); 1415 if (IS_ERR(abort_req)) { 1416 atomic_inc(&dev->ctrl.abort_limit); 1417 return BLK_EH_RESET_TIMER; 1418 } 1419 nvme_init_request(abort_req, &cmd); 1420 1421 abort_req->end_io = abort_endio; 1422 abort_req->end_io_data = NULL; 1423 blk_execute_rq_nowait(abort_req, false); 1424 1425 /* 1426 * The aborted req will be completed on receiving the abort req. 1427 * We enable the timer again. If hit twice, it'll cause a device reset, 1428 * as the device then is in a faulty state. 1429 */ 1430 return BLK_EH_RESET_TIMER; 1431 1432 disable: 1433 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1434 if (nvme_state_terminal(&dev->ctrl)) 1435 nvme_dev_disable(dev, true); 1436 return BLK_EH_DONE; 1437 } 1438 1439 nvme_dev_disable(dev, false); 1440 if (nvme_try_sched_reset(&dev->ctrl)) 1441 nvme_unquiesce_io_queues(&dev->ctrl); 1442 return BLK_EH_DONE; 1443 } 1444 1445 static void nvme_free_queue(struct nvme_queue *nvmeq) 1446 { 1447 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1448 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1449 if (!nvmeq->sq_cmds) 1450 return; 1451 1452 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1453 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1454 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1455 } else { 1456 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1457 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1458 } 1459 } 1460 1461 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1462 { 1463 int i; 1464 1465 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1466 dev->ctrl.queue_count--; 1467 nvme_free_queue(&dev->queues[i]); 1468 } 1469 } 1470 1471 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1472 { 1473 struct nvme_queue *nvmeq = &dev->queues[qid]; 1474 1475 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1476 return; 1477 1478 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1479 mb(); 1480 1481 nvmeq->dev->online_queues--; 1482 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1483 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1484 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1485 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1486 } 1487 1488 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1489 { 1490 int i; 1491 1492 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1493 nvme_suspend_queue(dev, i); 1494 } 1495 1496 /* 1497 * Called only on a device that has been disabled and after all other threads 1498 * that can check this device's completion queues have synced, except 1499 * nvme_poll(). This is the last chance for the driver to see a natural 1500 * completion before nvme_cancel_request() terminates all incomplete requests. 1501 */ 1502 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1503 { 1504 int i; 1505 1506 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1507 spin_lock(&dev->queues[i].cq_poll_lock); 1508 nvme_poll_cq(&dev->queues[i], NULL); 1509 spin_unlock(&dev->queues[i].cq_poll_lock); 1510 } 1511 } 1512 1513 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1514 int entry_size) 1515 { 1516 int q_depth = dev->q_depth; 1517 unsigned q_size_aligned = roundup(q_depth * entry_size, 1518 NVME_CTRL_PAGE_SIZE); 1519 1520 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1521 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1522 1523 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1524 q_depth = div_u64(mem_per_q, entry_size); 1525 1526 /* 1527 * Ensure the reduced q_depth is above some threshold where it 1528 * would be better to map queues in system memory with the 1529 * original depth 1530 */ 1531 if (q_depth < 64) 1532 return -ENOMEM; 1533 } 1534 1535 return q_depth; 1536 } 1537 1538 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1539 int qid) 1540 { 1541 struct pci_dev *pdev = to_pci_dev(dev->dev); 1542 1543 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1544 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1545 if (nvmeq->sq_cmds) { 1546 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1547 nvmeq->sq_cmds); 1548 if (nvmeq->sq_dma_addr) { 1549 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1550 return 0; 1551 } 1552 1553 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1554 } 1555 } 1556 1557 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1558 &nvmeq->sq_dma_addr, GFP_KERNEL); 1559 if (!nvmeq->sq_cmds) 1560 return -ENOMEM; 1561 return 0; 1562 } 1563 1564 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1565 { 1566 struct nvme_queue *nvmeq = &dev->queues[qid]; 1567 1568 if (dev->ctrl.queue_count > qid) 1569 return 0; 1570 1571 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1572 nvmeq->q_depth = depth; 1573 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1574 &nvmeq->cq_dma_addr, GFP_KERNEL); 1575 if (!nvmeq->cqes) 1576 goto free_nvmeq; 1577 1578 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1579 goto free_cqdma; 1580 1581 nvmeq->dev = dev; 1582 spin_lock_init(&nvmeq->sq_lock); 1583 spin_lock_init(&nvmeq->cq_poll_lock); 1584 nvmeq->cq_head = 0; 1585 nvmeq->cq_phase = 1; 1586 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1587 nvmeq->qid = qid; 1588 dev->ctrl.queue_count++; 1589 1590 return 0; 1591 1592 free_cqdma: 1593 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1594 nvmeq->cq_dma_addr); 1595 free_nvmeq: 1596 return -ENOMEM; 1597 } 1598 1599 static int queue_request_irq(struct nvme_queue *nvmeq) 1600 { 1601 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1602 int nr = nvmeq->dev->ctrl.instance; 1603 1604 if (use_threaded_interrupts) { 1605 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1606 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1607 } else { 1608 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1609 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1610 } 1611 } 1612 1613 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1614 { 1615 struct nvme_dev *dev = nvmeq->dev; 1616 1617 nvmeq->sq_tail = 0; 1618 nvmeq->last_sq_tail = 0; 1619 nvmeq->cq_head = 0; 1620 nvmeq->cq_phase = 1; 1621 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1622 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1623 nvme_dbbuf_init(dev, nvmeq, qid); 1624 dev->online_queues++; 1625 wmb(); /* ensure the first interrupt sees the initialization */ 1626 } 1627 1628 /* 1629 * Try getting shutdown_lock while setting up IO queues. 1630 */ 1631 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1632 { 1633 /* 1634 * Give up if the lock is being held by nvme_dev_disable. 1635 */ 1636 if (!mutex_trylock(&dev->shutdown_lock)) 1637 return -ENODEV; 1638 1639 /* 1640 * Controller is in wrong state, fail early. 1641 */ 1642 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1643 mutex_unlock(&dev->shutdown_lock); 1644 return -ENODEV; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1651 { 1652 struct nvme_dev *dev = nvmeq->dev; 1653 int result; 1654 u16 vector = 0; 1655 1656 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1657 1658 /* 1659 * A queue's vector matches the queue identifier unless the controller 1660 * has only one vector available. 1661 */ 1662 if (!polled) 1663 vector = dev->num_vecs == 1 ? 0 : qid; 1664 else 1665 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1666 1667 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1668 if (result) 1669 return result; 1670 1671 result = adapter_alloc_sq(dev, qid, nvmeq); 1672 if (result < 0) 1673 return result; 1674 if (result) 1675 goto release_cq; 1676 1677 nvmeq->cq_vector = vector; 1678 1679 result = nvme_setup_io_queues_trylock(dev); 1680 if (result) 1681 return result; 1682 nvme_init_queue(nvmeq, qid); 1683 if (!polled) { 1684 result = queue_request_irq(nvmeq); 1685 if (result < 0) 1686 goto release_sq; 1687 } 1688 1689 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1690 mutex_unlock(&dev->shutdown_lock); 1691 return result; 1692 1693 release_sq: 1694 dev->online_queues--; 1695 mutex_unlock(&dev->shutdown_lock); 1696 adapter_delete_sq(dev, qid); 1697 release_cq: 1698 adapter_delete_cq(dev, qid); 1699 return result; 1700 } 1701 1702 static const struct blk_mq_ops nvme_mq_admin_ops = { 1703 .queue_rq = nvme_queue_rq, 1704 .complete = nvme_pci_complete_rq, 1705 .init_hctx = nvme_admin_init_hctx, 1706 .init_request = nvme_pci_init_request, 1707 .timeout = nvme_timeout, 1708 }; 1709 1710 static const struct blk_mq_ops nvme_mq_ops = { 1711 .queue_rq = nvme_queue_rq, 1712 .queue_rqs = nvme_queue_rqs, 1713 .complete = nvme_pci_complete_rq, 1714 .commit_rqs = nvme_commit_rqs, 1715 .init_hctx = nvme_init_hctx, 1716 .init_request = nvme_pci_init_request, 1717 .map_queues = nvme_pci_map_queues, 1718 .timeout = nvme_timeout, 1719 .poll = nvme_poll, 1720 }; 1721 1722 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1723 { 1724 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1725 /* 1726 * If the controller was reset during removal, it's possible 1727 * user requests may be waiting on a stopped queue. Start the 1728 * queue to flush these to completion. 1729 */ 1730 nvme_unquiesce_admin_queue(&dev->ctrl); 1731 nvme_remove_admin_tag_set(&dev->ctrl); 1732 } 1733 } 1734 1735 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1736 { 1737 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1738 } 1739 1740 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1741 { 1742 struct pci_dev *pdev = to_pci_dev(dev->dev); 1743 1744 if (size <= dev->bar_mapped_size) 1745 return 0; 1746 if (size > pci_resource_len(pdev, 0)) 1747 return -ENOMEM; 1748 if (dev->bar) 1749 iounmap(dev->bar); 1750 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1751 if (!dev->bar) { 1752 dev->bar_mapped_size = 0; 1753 return -ENOMEM; 1754 } 1755 dev->bar_mapped_size = size; 1756 dev->dbs = dev->bar + NVME_REG_DBS; 1757 1758 return 0; 1759 } 1760 1761 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1762 { 1763 int result; 1764 u32 aqa; 1765 struct nvme_queue *nvmeq; 1766 1767 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1768 if (result < 0) 1769 return result; 1770 1771 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1772 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1773 1774 if (dev->subsystem && 1775 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1776 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1777 1778 /* 1779 * If the device has been passed off to us in an enabled state, just 1780 * clear the enabled bit. The spec says we should set the 'shutdown 1781 * notification bits', but doing so may cause the device to complete 1782 * commands to the admin queue ... and we don't know what memory that 1783 * might be pointing at! 1784 */ 1785 result = nvme_disable_ctrl(&dev->ctrl, false); 1786 if (result < 0) 1787 return result; 1788 1789 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1790 if (result) 1791 return result; 1792 1793 dev->ctrl.numa_node = dev_to_node(dev->dev); 1794 1795 nvmeq = &dev->queues[0]; 1796 aqa = nvmeq->q_depth - 1; 1797 aqa |= aqa << 16; 1798 1799 writel(aqa, dev->bar + NVME_REG_AQA); 1800 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1801 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1802 1803 result = nvme_enable_ctrl(&dev->ctrl); 1804 if (result) 1805 return result; 1806 1807 nvmeq->cq_vector = 0; 1808 nvme_init_queue(nvmeq, 0); 1809 result = queue_request_irq(nvmeq); 1810 if (result) { 1811 dev->online_queues--; 1812 return result; 1813 } 1814 1815 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1816 return result; 1817 } 1818 1819 static int nvme_create_io_queues(struct nvme_dev *dev) 1820 { 1821 unsigned i, max, rw_queues; 1822 int ret = 0; 1823 1824 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1825 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1826 ret = -ENOMEM; 1827 break; 1828 } 1829 } 1830 1831 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1832 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1833 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1834 dev->io_queues[HCTX_TYPE_READ]; 1835 } else { 1836 rw_queues = max; 1837 } 1838 1839 for (i = dev->online_queues; i <= max; i++) { 1840 bool polled = i > rw_queues; 1841 1842 ret = nvme_create_queue(&dev->queues[i], i, polled); 1843 if (ret) 1844 break; 1845 } 1846 1847 /* 1848 * Ignore failing Create SQ/CQ commands, we can continue with less 1849 * than the desired amount of queues, and even a controller without 1850 * I/O queues can still be used to issue admin commands. This might 1851 * be useful to upgrade a buggy firmware for example. 1852 */ 1853 return ret >= 0 ? 0 : ret; 1854 } 1855 1856 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1857 { 1858 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1859 1860 return 1ULL << (12 + 4 * szu); 1861 } 1862 1863 static u32 nvme_cmb_size(struct nvme_dev *dev) 1864 { 1865 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1866 } 1867 1868 static void nvme_map_cmb(struct nvme_dev *dev) 1869 { 1870 u64 size, offset; 1871 resource_size_t bar_size; 1872 struct pci_dev *pdev = to_pci_dev(dev->dev); 1873 int bar; 1874 1875 if (dev->cmb_size) 1876 return; 1877 1878 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1879 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1880 1881 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1882 if (!dev->cmbsz) 1883 return; 1884 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1885 1886 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1887 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1888 bar = NVME_CMB_BIR(dev->cmbloc); 1889 bar_size = pci_resource_len(pdev, bar); 1890 1891 if (offset > bar_size) 1892 return; 1893 1894 /* 1895 * Tell the controller about the host side address mapping the CMB, 1896 * and enable CMB decoding for the NVMe 1.4+ scheme: 1897 */ 1898 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1899 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1900 (pci_bus_address(pdev, bar) + offset), 1901 dev->bar + NVME_REG_CMBMSC); 1902 } 1903 1904 /* 1905 * Controllers may support a CMB size larger than their BAR, 1906 * for example, due to being behind a bridge. Reduce the CMB to 1907 * the reported size of the BAR 1908 */ 1909 if (size > bar_size - offset) 1910 size = bar_size - offset; 1911 1912 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1913 dev_warn(dev->ctrl.device, 1914 "failed to register the CMB\n"); 1915 return; 1916 } 1917 1918 dev->cmb_size = size; 1919 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1920 1921 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1922 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1923 pci_p2pmem_publish(pdev, true); 1924 1925 nvme_update_attrs(dev); 1926 } 1927 1928 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1929 { 1930 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1931 u64 dma_addr = dev->host_mem_descs_dma; 1932 struct nvme_command c = { }; 1933 int ret; 1934 1935 c.features.opcode = nvme_admin_set_features; 1936 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1937 c.features.dword11 = cpu_to_le32(bits); 1938 c.features.dword12 = cpu_to_le32(host_mem_size); 1939 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1940 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1941 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1942 1943 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1944 if (ret) { 1945 dev_warn(dev->ctrl.device, 1946 "failed to set host mem (err %d, flags %#x).\n", 1947 ret, bits); 1948 } else 1949 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1950 1951 return ret; 1952 } 1953 1954 static void nvme_free_host_mem(struct nvme_dev *dev) 1955 { 1956 int i; 1957 1958 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1959 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1960 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1961 1962 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1963 le64_to_cpu(desc->addr), 1964 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1965 } 1966 1967 kfree(dev->host_mem_desc_bufs); 1968 dev->host_mem_desc_bufs = NULL; 1969 dma_free_coherent(dev->dev, 1970 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1971 dev->host_mem_descs, dev->host_mem_descs_dma); 1972 dev->host_mem_descs = NULL; 1973 dev->nr_host_mem_descs = 0; 1974 } 1975 1976 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1977 u32 chunk_size) 1978 { 1979 struct nvme_host_mem_buf_desc *descs; 1980 u32 max_entries, len; 1981 dma_addr_t descs_dma; 1982 int i = 0; 1983 void **bufs; 1984 u64 size, tmp; 1985 1986 tmp = (preferred + chunk_size - 1); 1987 do_div(tmp, chunk_size); 1988 max_entries = tmp; 1989 1990 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1991 max_entries = dev->ctrl.hmmaxd; 1992 1993 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1994 &descs_dma, GFP_KERNEL); 1995 if (!descs) 1996 goto out; 1997 1998 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1999 if (!bufs) 2000 goto out_free_descs; 2001 2002 for (size = 0; size < preferred && i < max_entries; size += len) { 2003 dma_addr_t dma_addr; 2004 2005 len = min_t(u64, chunk_size, preferred - size); 2006 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2007 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2008 if (!bufs[i]) 2009 break; 2010 2011 descs[i].addr = cpu_to_le64(dma_addr); 2012 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2013 i++; 2014 } 2015 2016 if (!size) 2017 goto out_free_bufs; 2018 2019 dev->nr_host_mem_descs = i; 2020 dev->host_mem_size = size; 2021 dev->host_mem_descs = descs; 2022 dev->host_mem_descs_dma = descs_dma; 2023 dev->host_mem_desc_bufs = bufs; 2024 return 0; 2025 2026 out_free_bufs: 2027 while (--i >= 0) { 2028 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2029 2030 dma_free_attrs(dev->dev, size, bufs[i], 2031 le64_to_cpu(descs[i].addr), 2032 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2033 } 2034 2035 kfree(bufs); 2036 out_free_descs: 2037 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2038 descs_dma); 2039 out: 2040 dev->host_mem_descs = NULL; 2041 return -ENOMEM; 2042 } 2043 2044 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2045 { 2046 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2047 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2048 u64 chunk_size; 2049 2050 /* start big and work our way down */ 2051 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2052 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2053 if (!min || dev->host_mem_size >= min) 2054 return 0; 2055 nvme_free_host_mem(dev); 2056 } 2057 } 2058 2059 return -ENOMEM; 2060 } 2061 2062 static int nvme_setup_host_mem(struct nvme_dev *dev) 2063 { 2064 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2065 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2066 u64 min = (u64)dev->ctrl.hmmin * 4096; 2067 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2068 int ret; 2069 2070 if (!dev->ctrl.hmpre) 2071 return 0; 2072 2073 preferred = min(preferred, max); 2074 if (min > max) { 2075 dev_warn(dev->ctrl.device, 2076 "min host memory (%lld MiB) above limit (%d MiB).\n", 2077 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2078 nvme_free_host_mem(dev); 2079 return 0; 2080 } 2081 2082 /* 2083 * If we already have a buffer allocated check if we can reuse it. 2084 */ 2085 if (dev->host_mem_descs) { 2086 if (dev->host_mem_size >= min) 2087 enable_bits |= NVME_HOST_MEM_RETURN; 2088 else 2089 nvme_free_host_mem(dev); 2090 } 2091 2092 if (!dev->host_mem_descs) { 2093 if (nvme_alloc_host_mem(dev, min, preferred)) { 2094 dev_warn(dev->ctrl.device, 2095 "failed to allocate host memory buffer.\n"); 2096 return 0; /* controller must work without HMB */ 2097 } 2098 2099 dev_info(dev->ctrl.device, 2100 "allocated %lld MiB host memory buffer.\n", 2101 dev->host_mem_size >> ilog2(SZ_1M)); 2102 } 2103 2104 ret = nvme_set_host_mem(dev, enable_bits); 2105 if (ret) 2106 nvme_free_host_mem(dev); 2107 return ret; 2108 } 2109 2110 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2111 char *buf) 2112 { 2113 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2114 2115 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2116 ndev->cmbloc, ndev->cmbsz); 2117 } 2118 static DEVICE_ATTR_RO(cmb); 2119 2120 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2121 char *buf) 2122 { 2123 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2124 2125 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2126 } 2127 static DEVICE_ATTR_RO(cmbloc); 2128 2129 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2130 char *buf) 2131 { 2132 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2133 2134 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2135 } 2136 static DEVICE_ATTR_RO(cmbsz); 2137 2138 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2139 char *buf) 2140 { 2141 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2142 2143 return sysfs_emit(buf, "%d\n", ndev->hmb); 2144 } 2145 2146 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2147 const char *buf, size_t count) 2148 { 2149 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2150 bool new; 2151 int ret; 2152 2153 if (kstrtobool(buf, &new) < 0) 2154 return -EINVAL; 2155 2156 if (new == ndev->hmb) 2157 return count; 2158 2159 if (new) { 2160 ret = nvme_setup_host_mem(ndev); 2161 } else { 2162 ret = nvme_set_host_mem(ndev, 0); 2163 if (!ret) 2164 nvme_free_host_mem(ndev); 2165 } 2166 2167 if (ret < 0) 2168 return ret; 2169 2170 return count; 2171 } 2172 static DEVICE_ATTR_RW(hmb); 2173 2174 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2175 struct attribute *a, int n) 2176 { 2177 struct nvme_ctrl *ctrl = 2178 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2179 struct nvme_dev *dev = to_nvme_dev(ctrl); 2180 2181 if (a == &dev_attr_cmb.attr || 2182 a == &dev_attr_cmbloc.attr || 2183 a == &dev_attr_cmbsz.attr) { 2184 if (!dev->cmbsz) 2185 return 0; 2186 } 2187 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2188 return 0; 2189 2190 return a->mode; 2191 } 2192 2193 static struct attribute *nvme_pci_attrs[] = { 2194 &dev_attr_cmb.attr, 2195 &dev_attr_cmbloc.attr, 2196 &dev_attr_cmbsz.attr, 2197 &dev_attr_hmb.attr, 2198 NULL, 2199 }; 2200 2201 static const struct attribute_group nvme_pci_dev_attrs_group = { 2202 .attrs = nvme_pci_attrs, 2203 .is_visible = nvme_pci_attrs_are_visible, 2204 }; 2205 2206 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2207 &nvme_dev_attrs_group, 2208 &nvme_pci_dev_attrs_group, 2209 NULL, 2210 }; 2211 2212 static void nvme_update_attrs(struct nvme_dev *dev) 2213 { 2214 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2215 } 2216 2217 /* 2218 * nirqs is the number of interrupts available for write and read 2219 * queues. The core already reserved an interrupt for the admin queue. 2220 */ 2221 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2222 { 2223 struct nvme_dev *dev = affd->priv; 2224 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2225 2226 /* 2227 * If there is no interrupt available for queues, ensure that 2228 * the default queue is set to 1. The affinity set size is 2229 * also set to one, but the irq core ignores it for this case. 2230 * 2231 * If only one interrupt is available or 'write_queue' == 0, combine 2232 * write and read queues. 2233 * 2234 * If 'write_queues' > 0, ensure it leaves room for at least one read 2235 * queue. 2236 */ 2237 if (!nrirqs) { 2238 nrirqs = 1; 2239 nr_read_queues = 0; 2240 } else if (nrirqs == 1 || !nr_write_queues) { 2241 nr_read_queues = 0; 2242 } else if (nr_write_queues >= nrirqs) { 2243 nr_read_queues = 1; 2244 } else { 2245 nr_read_queues = nrirqs - nr_write_queues; 2246 } 2247 2248 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2249 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2250 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2251 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2252 affd->nr_sets = nr_read_queues ? 2 : 1; 2253 } 2254 2255 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2256 { 2257 struct pci_dev *pdev = to_pci_dev(dev->dev); 2258 struct irq_affinity affd = { 2259 .pre_vectors = 1, 2260 .calc_sets = nvme_calc_irq_sets, 2261 .priv = dev, 2262 }; 2263 unsigned int irq_queues, poll_queues; 2264 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2265 2266 /* 2267 * Poll queues don't need interrupts, but we need at least one I/O queue 2268 * left over for non-polled I/O. 2269 */ 2270 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2271 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2272 2273 /* 2274 * Initialize for the single interrupt case, will be updated in 2275 * nvme_calc_irq_sets(). 2276 */ 2277 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2278 dev->io_queues[HCTX_TYPE_READ] = 0; 2279 2280 /* 2281 * We need interrupts for the admin queue and each non-polled I/O queue, 2282 * but some Apple controllers require all queues to use the first 2283 * vector. 2284 */ 2285 irq_queues = 1; 2286 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2287 irq_queues += (nr_io_queues - poll_queues); 2288 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2289 flags &= ~PCI_IRQ_MSI; 2290 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2291 &affd); 2292 } 2293 2294 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2295 { 2296 /* 2297 * If tags are shared with admin queue (Apple bug), then 2298 * make sure we only use one IO queue. 2299 */ 2300 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2301 return 1; 2302 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2303 } 2304 2305 static int nvme_setup_io_queues(struct nvme_dev *dev) 2306 { 2307 struct nvme_queue *adminq = &dev->queues[0]; 2308 struct pci_dev *pdev = to_pci_dev(dev->dev); 2309 unsigned int nr_io_queues; 2310 unsigned long size; 2311 int result; 2312 2313 /* 2314 * Sample the module parameters once at reset time so that we have 2315 * stable values to work with. 2316 */ 2317 dev->nr_write_queues = write_queues; 2318 dev->nr_poll_queues = poll_queues; 2319 2320 nr_io_queues = dev->nr_allocated_queues - 1; 2321 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2322 if (result < 0) 2323 return result; 2324 2325 if (nr_io_queues == 0) 2326 return 0; 2327 2328 /* 2329 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2330 * from set to unset. If there is a window to it is truely freed, 2331 * pci_free_irq_vectors() jumping into this window will crash. 2332 * And take lock to avoid racing with pci_free_irq_vectors() in 2333 * nvme_dev_disable() path. 2334 */ 2335 result = nvme_setup_io_queues_trylock(dev); 2336 if (result) 2337 return result; 2338 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2339 pci_free_irq(pdev, 0, adminq); 2340 2341 if (dev->cmb_use_sqes) { 2342 result = nvme_cmb_qdepth(dev, nr_io_queues, 2343 sizeof(struct nvme_command)); 2344 if (result > 0) { 2345 dev->q_depth = result; 2346 dev->ctrl.sqsize = result - 1; 2347 } else { 2348 dev->cmb_use_sqes = false; 2349 } 2350 } 2351 2352 do { 2353 size = db_bar_size(dev, nr_io_queues); 2354 result = nvme_remap_bar(dev, size); 2355 if (!result) 2356 break; 2357 if (!--nr_io_queues) { 2358 result = -ENOMEM; 2359 goto out_unlock; 2360 } 2361 } while (1); 2362 adminq->q_db = dev->dbs; 2363 2364 retry: 2365 /* Deregister the admin queue's interrupt */ 2366 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2367 pci_free_irq(pdev, 0, adminq); 2368 2369 /* 2370 * If we enable msix early due to not intx, disable it again before 2371 * setting up the full range we need. 2372 */ 2373 pci_free_irq_vectors(pdev); 2374 2375 result = nvme_setup_irqs(dev, nr_io_queues); 2376 if (result <= 0) { 2377 result = -EIO; 2378 goto out_unlock; 2379 } 2380 2381 dev->num_vecs = result; 2382 result = max(result - 1, 1); 2383 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2384 2385 /* 2386 * Should investigate if there's a performance win from allocating 2387 * more queues than interrupt vectors; it might allow the submission 2388 * path to scale better, even if the receive path is limited by the 2389 * number of interrupts. 2390 */ 2391 result = queue_request_irq(adminq); 2392 if (result) 2393 goto out_unlock; 2394 set_bit(NVMEQ_ENABLED, &adminq->flags); 2395 mutex_unlock(&dev->shutdown_lock); 2396 2397 result = nvme_create_io_queues(dev); 2398 if (result || dev->online_queues < 2) 2399 return result; 2400 2401 if (dev->online_queues - 1 < dev->max_qid) { 2402 nr_io_queues = dev->online_queues - 1; 2403 nvme_delete_io_queues(dev); 2404 result = nvme_setup_io_queues_trylock(dev); 2405 if (result) 2406 return result; 2407 nvme_suspend_io_queues(dev); 2408 goto retry; 2409 } 2410 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2411 dev->io_queues[HCTX_TYPE_DEFAULT], 2412 dev->io_queues[HCTX_TYPE_READ], 2413 dev->io_queues[HCTX_TYPE_POLL]); 2414 return 0; 2415 out_unlock: 2416 mutex_unlock(&dev->shutdown_lock); 2417 return result; 2418 } 2419 2420 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2421 blk_status_t error) 2422 { 2423 struct nvme_queue *nvmeq = req->end_io_data; 2424 2425 blk_mq_free_request(req); 2426 complete(&nvmeq->delete_done); 2427 return RQ_END_IO_NONE; 2428 } 2429 2430 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2431 blk_status_t error) 2432 { 2433 struct nvme_queue *nvmeq = req->end_io_data; 2434 2435 if (error) 2436 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2437 2438 return nvme_del_queue_end(req, error); 2439 } 2440 2441 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2442 { 2443 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2444 struct request *req; 2445 struct nvme_command cmd = { }; 2446 2447 cmd.delete_queue.opcode = opcode; 2448 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2449 2450 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2451 if (IS_ERR(req)) 2452 return PTR_ERR(req); 2453 nvme_init_request(req, &cmd); 2454 2455 if (opcode == nvme_admin_delete_cq) 2456 req->end_io = nvme_del_cq_end; 2457 else 2458 req->end_io = nvme_del_queue_end; 2459 req->end_io_data = nvmeq; 2460 2461 init_completion(&nvmeq->delete_done); 2462 blk_execute_rq_nowait(req, false); 2463 return 0; 2464 } 2465 2466 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2467 { 2468 int nr_queues = dev->online_queues - 1, sent = 0; 2469 unsigned long timeout; 2470 2471 retry: 2472 timeout = NVME_ADMIN_TIMEOUT; 2473 while (nr_queues > 0) { 2474 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2475 break; 2476 nr_queues--; 2477 sent++; 2478 } 2479 while (sent) { 2480 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2481 2482 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2483 timeout); 2484 if (timeout == 0) 2485 return false; 2486 2487 sent--; 2488 if (nr_queues) 2489 goto retry; 2490 } 2491 return true; 2492 } 2493 2494 static void nvme_delete_io_queues(struct nvme_dev *dev) 2495 { 2496 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2497 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2498 } 2499 2500 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2501 { 2502 if (dev->io_queues[HCTX_TYPE_POLL]) 2503 return 3; 2504 if (dev->io_queues[HCTX_TYPE_READ]) 2505 return 2; 2506 return 1; 2507 } 2508 2509 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2510 { 2511 if (!dev->ctrl.tagset) { 2512 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2513 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2514 return true; 2515 } 2516 2517 /* Give up if we are racing with nvme_dev_disable() */ 2518 if (!mutex_trylock(&dev->shutdown_lock)) 2519 return false; 2520 2521 /* Check if nvme_dev_disable() has been executed already */ 2522 if (!dev->online_queues) { 2523 mutex_unlock(&dev->shutdown_lock); 2524 return false; 2525 } 2526 2527 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2528 /* free previously allocated queues that are no longer usable */ 2529 nvme_free_queues(dev, dev->online_queues); 2530 mutex_unlock(&dev->shutdown_lock); 2531 return true; 2532 } 2533 2534 static int nvme_pci_enable(struct nvme_dev *dev) 2535 { 2536 int result = -ENOMEM; 2537 struct pci_dev *pdev = to_pci_dev(dev->dev); 2538 unsigned int flags = PCI_IRQ_ALL_TYPES; 2539 2540 if (pci_enable_device_mem(pdev)) 2541 return result; 2542 2543 pci_set_master(pdev); 2544 2545 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2546 result = -ENODEV; 2547 goto disable; 2548 } 2549 2550 /* 2551 * Some devices and/or platforms don't advertise or work with INTx 2552 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2553 * adjust this later. 2554 */ 2555 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2556 flags &= ~PCI_IRQ_MSI; 2557 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2558 if (result < 0) 2559 goto disable; 2560 2561 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2562 2563 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2564 io_queue_depth); 2565 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2566 dev->dbs = dev->bar + 4096; 2567 2568 /* 2569 * Some Apple controllers require a non-standard SQE size. 2570 * Interestingly they also seem to ignore the CC:IOSQES register 2571 * so we don't bother updating it here. 2572 */ 2573 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2574 dev->io_sqes = 7; 2575 else 2576 dev->io_sqes = NVME_NVM_IOSQES; 2577 2578 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2579 dev->q_depth = 2; 2580 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2581 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2582 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2583 dev->q_depth = 64; 2584 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2585 "set queue depth=%u\n", dev->q_depth); 2586 } 2587 2588 /* 2589 * Controllers with the shared tags quirk need the IO queue to be 2590 * big enough so that we get 32 tags for the admin queue 2591 */ 2592 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2593 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2594 dev->q_depth = NVME_AQ_DEPTH + 2; 2595 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2596 dev->q_depth); 2597 } 2598 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2599 2600 nvme_map_cmb(dev); 2601 2602 pci_save_state(pdev); 2603 2604 result = nvme_pci_configure_admin_queue(dev); 2605 if (result) 2606 goto free_irq; 2607 return result; 2608 2609 free_irq: 2610 pci_free_irq_vectors(pdev); 2611 disable: 2612 pci_disable_device(pdev); 2613 return result; 2614 } 2615 2616 static void nvme_dev_unmap(struct nvme_dev *dev) 2617 { 2618 if (dev->bar) 2619 iounmap(dev->bar); 2620 pci_release_mem_regions(to_pci_dev(dev->dev)); 2621 } 2622 2623 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2624 { 2625 struct pci_dev *pdev = to_pci_dev(dev->dev); 2626 u32 csts; 2627 2628 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2629 return true; 2630 if (pdev->error_state != pci_channel_io_normal) 2631 return true; 2632 2633 csts = readl(dev->bar + NVME_REG_CSTS); 2634 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2635 } 2636 2637 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2638 { 2639 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2640 struct pci_dev *pdev = to_pci_dev(dev->dev); 2641 bool dead; 2642 2643 mutex_lock(&dev->shutdown_lock); 2644 dead = nvme_pci_ctrl_is_dead(dev); 2645 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2646 if (pci_is_enabled(pdev)) 2647 nvme_start_freeze(&dev->ctrl); 2648 /* 2649 * Give the controller a chance to complete all entered requests 2650 * if doing a safe shutdown. 2651 */ 2652 if (!dead && shutdown) 2653 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2654 } 2655 2656 nvme_quiesce_io_queues(&dev->ctrl); 2657 2658 if (!dead && dev->ctrl.queue_count > 0) { 2659 nvme_delete_io_queues(dev); 2660 nvme_disable_ctrl(&dev->ctrl, shutdown); 2661 nvme_poll_irqdisable(&dev->queues[0]); 2662 } 2663 nvme_suspend_io_queues(dev); 2664 nvme_suspend_queue(dev, 0); 2665 pci_free_irq_vectors(pdev); 2666 if (pci_is_enabled(pdev)) 2667 pci_disable_device(pdev); 2668 nvme_reap_pending_cqes(dev); 2669 2670 nvme_cancel_tagset(&dev->ctrl); 2671 nvme_cancel_admin_tagset(&dev->ctrl); 2672 2673 /* 2674 * The driver will not be starting up queues again if shutting down so 2675 * must flush all entered requests to their failed completion to avoid 2676 * deadlocking blk-mq hot-cpu notifier. 2677 */ 2678 if (shutdown) { 2679 nvme_unquiesce_io_queues(&dev->ctrl); 2680 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2681 nvme_unquiesce_admin_queue(&dev->ctrl); 2682 } 2683 mutex_unlock(&dev->shutdown_lock); 2684 } 2685 2686 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2687 { 2688 if (!nvme_wait_reset(&dev->ctrl)) 2689 return -EBUSY; 2690 nvme_dev_disable(dev, shutdown); 2691 return 0; 2692 } 2693 2694 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2695 { 2696 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2697 NVME_CTRL_PAGE_SIZE, 2698 NVME_CTRL_PAGE_SIZE, 0); 2699 if (!dev->prp_page_pool) 2700 return -ENOMEM; 2701 2702 /* Optimisation for I/Os between 4k and 128k */ 2703 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2704 256, 256, 0); 2705 if (!dev->prp_small_pool) { 2706 dma_pool_destroy(dev->prp_page_pool); 2707 return -ENOMEM; 2708 } 2709 return 0; 2710 } 2711 2712 static void nvme_release_prp_pools(struct nvme_dev *dev) 2713 { 2714 dma_pool_destroy(dev->prp_page_pool); 2715 dma_pool_destroy(dev->prp_small_pool); 2716 } 2717 2718 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2719 { 2720 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2721 2722 dev->iod_mempool = mempool_create_node(1, 2723 mempool_kmalloc, mempool_kfree, 2724 (void *)alloc_size, GFP_KERNEL, 2725 dev_to_node(dev->dev)); 2726 if (!dev->iod_mempool) 2727 return -ENOMEM; 2728 return 0; 2729 } 2730 2731 static void nvme_free_tagset(struct nvme_dev *dev) 2732 { 2733 if (dev->tagset.tags) 2734 nvme_remove_io_tag_set(&dev->ctrl); 2735 dev->ctrl.tagset = NULL; 2736 } 2737 2738 /* pairs with nvme_pci_alloc_dev */ 2739 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2740 { 2741 struct nvme_dev *dev = to_nvme_dev(ctrl); 2742 2743 nvme_free_tagset(dev); 2744 put_device(dev->dev); 2745 kfree(dev->queues); 2746 kfree(dev); 2747 } 2748 2749 static void nvme_reset_work(struct work_struct *work) 2750 { 2751 struct nvme_dev *dev = 2752 container_of(work, struct nvme_dev, ctrl.reset_work); 2753 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2754 int result; 2755 2756 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2757 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2758 dev->ctrl.state); 2759 result = -ENODEV; 2760 goto out; 2761 } 2762 2763 /* 2764 * If we're called to reset a live controller first shut it down before 2765 * moving on. 2766 */ 2767 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2768 nvme_dev_disable(dev, false); 2769 nvme_sync_queues(&dev->ctrl); 2770 2771 mutex_lock(&dev->shutdown_lock); 2772 result = nvme_pci_enable(dev); 2773 if (result) 2774 goto out_unlock; 2775 nvme_unquiesce_admin_queue(&dev->ctrl); 2776 mutex_unlock(&dev->shutdown_lock); 2777 2778 /* 2779 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2780 * initializing procedure here. 2781 */ 2782 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2783 dev_warn(dev->ctrl.device, 2784 "failed to mark controller CONNECTING\n"); 2785 result = -EBUSY; 2786 goto out; 2787 } 2788 2789 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2790 if (result) 2791 goto out; 2792 2793 nvme_dbbuf_dma_alloc(dev); 2794 2795 result = nvme_setup_host_mem(dev); 2796 if (result < 0) 2797 goto out; 2798 2799 result = nvme_setup_io_queues(dev); 2800 if (result) 2801 goto out; 2802 2803 /* 2804 * Freeze and update the number of I/O queues as thos might have 2805 * changed. If there are no I/O queues left after this reset, keep the 2806 * controller around but remove all namespaces. 2807 */ 2808 if (dev->online_queues > 1) { 2809 nvme_dbbuf_set(dev); 2810 nvme_unquiesce_io_queues(&dev->ctrl); 2811 nvme_wait_freeze(&dev->ctrl); 2812 if (!nvme_pci_update_nr_queues(dev)) 2813 goto out; 2814 nvme_unfreeze(&dev->ctrl); 2815 } else { 2816 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2817 nvme_mark_namespaces_dead(&dev->ctrl); 2818 nvme_unquiesce_io_queues(&dev->ctrl); 2819 nvme_remove_namespaces(&dev->ctrl); 2820 nvme_free_tagset(dev); 2821 } 2822 2823 /* 2824 * If only admin queue live, keep it to do further investigation or 2825 * recovery. 2826 */ 2827 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2828 dev_warn(dev->ctrl.device, 2829 "failed to mark controller live state\n"); 2830 result = -ENODEV; 2831 goto out; 2832 } 2833 2834 nvme_start_ctrl(&dev->ctrl); 2835 return; 2836 2837 out_unlock: 2838 mutex_unlock(&dev->shutdown_lock); 2839 out: 2840 /* 2841 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2842 * may be holding this pci_dev's device lock. 2843 */ 2844 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2845 result); 2846 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2847 nvme_dev_disable(dev, true); 2848 nvme_sync_queues(&dev->ctrl); 2849 nvme_mark_namespaces_dead(&dev->ctrl); 2850 nvme_unquiesce_io_queues(&dev->ctrl); 2851 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2852 } 2853 2854 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2855 { 2856 *val = readl(to_nvme_dev(ctrl)->bar + off); 2857 return 0; 2858 } 2859 2860 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2861 { 2862 writel(val, to_nvme_dev(ctrl)->bar + off); 2863 return 0; 2864 } 2865 2866 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2867 { 2868 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2869 return 0; 2870 } 2871 2872 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2873 { 2874 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2875 2876 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2877 } 2878 2879 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2880 { 2881 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2882 struct nvme_subsystem *subsys = ctrl->subsys; 2883 2884 dev_err(ctrl->device, 2885 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2886 pdev->vendor, pdev->device, 2887 nvme_strlen(subsys->model, sizeof(subsys->model)), 2888 subsys->model, nvme_strlen(subsys->firmware_rev, 2889 sizeof(subsys->firmware_rev)), 2890 subsys->firmware_rev); 2891 } 2892 2893 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2894 { 2895 struct nvme_dev *dev = to_nvme_dev(ctrl); 2896 2897 return dma_pci_p2pdma_supported(dev->dev); 2898 } 2899 2900 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2901 .name = "pcie", 2902 .module = THIS_MODULE, 2903 .flags = NVME_F_METADATA_SUPPORTED, 2904 .dev_attr_groups = nvme_pci_dev_attr_groups, 2905 .reg_read32 = nvme_pci_reg_read32, 2906 .reg_write32 = nvme_pci_reg_write32, 2907 .reg_read64 = nvme_pci_reg_read64, 2908 .free_ctrl = nvme_pci_free_ctrl, 2909 .submit_async_event = nvme_pci_submit_async_event, 2910 .subsystem_reset = nvme_pci_subsystem_reset, 2911 .get_address = nvme_pci_get_address, 2912 .print_device_info = nvme_pci_print_device_info, 2913 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2914 }; 2915 2916 static int nvme_dev_map(struct nvme_dev *dev) 2917 { 2918 struct pci_dev *pdev = to_pci_dev(dev->dev); 2919 2920 if (pci_request_mem_regions(pdev, "nvme")) 2921 return -ENODEV; 2922 2923 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2924 goto release; 2925 2926 return 0; 2927 release: 2928 pci_release_mem_regions(pdev); 2929 return -ENODEV; 2930 } 2931 2932 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2933 { 2934 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2935 /* 2936 * Several Samsung devices seem to drop off the PCIe bus 2937 * randomly when APST is on and uses the deepest sleep state. 2938 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2939 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2940 * 950 PRO 256GB", but it seems to be restricted to two Dell 2941 * laptops. 2942 */ 2943 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2944 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2945 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2946 return NVME_QUIRK_NO_DEEPEST_PS; 2947 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2948 /* 2949 * Samsung SSD 960 EVO drops off the PCIe bus after system 2950 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2951 * within few minutes after bootup on a Coffee Lake board - 2952 * ASUS PRIME Z370-A 2953 */ 2954 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2955 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2956 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2957 return NVME_QUIRK_NO_APST; 2958 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2959 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2960 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2961 /* 2962 * Forcing to use host managed nvme power settings for 2963 * lowest idle power with quick resume latency on 2964 * Samsung and Toshiba SSDs based on suspend behavior 2965 * on Coffee Lake board for LENOVO C640 2966 */ 2967 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2968 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2969 return NVME_QUIRK_SIMPLE_SUSPEND; 2970 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2971 pdev->device == 0x500f)) { 2972 /* 2973 * Exclude some Kingston NV1 and A2000 devices from 2974 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2975 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2976 */ 2977 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2978 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2979 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2980 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2981 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2982 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 2983 /* 2984 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 2985 * because of high power consumption (> 2 Watt) in s2idle 2986 * sleep. Only some boards with Intel CPU are affected. 2987 */ 2988 if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 2989 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 2990 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 2991 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 2992 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2993 } 2994 2995 /* 2996 * NVMe SSD drops off the PCIe bus after system idle 2997 * for 10 hours on a Lenovo N60z board. 2998 */ 2999 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3000 return NVME_QUIRK_NO_APST; 3001 3002 return 0; 3003 } 3004 3005 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3006 const struct pci_device_id *id) 3007 { 3008 unsigned long quirks = id->driver_data; 3009 int node = dev_to_node(&pdev->dev); 3010 struct nvme_dev *dev; 3011 int ret = -ENOMEM; 3012 3013 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3014 if (!dev) 3015 return ERR_PTR(-ENOMEM); 3016 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3017 mutex_init(&dev->shutdown_lock); 3018 3019 dev->nr_write_queues = write_queues; 3020 dev->nr_poll_queues = poll_queues; 3021 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3022 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3023 sizeof(struct nvme_queue), GFP_KERNEL, node); 3024 if (!dev->queues) 3025 goto out_free_dev; 3026 3027 dev->dev = get_device(&pdev->dev); 3028 3029 quirks |= check_vendor_combination_bug(pdev); 3030 if (!noacpi && 3031 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3032 acpi_storage_d3(&pdev->dev)) { 3033 /* 3034 * Some systems use a bios work around to ask for D3 on 3035 * platforms that support kernel managed suspend. 3036 */ 3037 dev_info(&pdev->dev, 3038 "platform quirk: setting simple suspend\n"); 3039 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3040 } 3041 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3042 quirks); 3043 if (ret) 3044 goto out_put_device; 3045 3046 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3047 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3048 else 3049 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3050 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3051 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3052 3053 /* 3054 * Limit the max command size to prevent iod->sg allocations going 3055 * over a single page. 3056 */ 3057 dev->ctrl.max_hw_sectors = min_t(u32, 3058 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3059 dev->ctrl.max_segments = NVME_MAX_SEGS; 3060 3061 /* 3062 * There is no support for SGLs for metadata (yet), so we are limited to 3063 * a single integrity segment for the separate metadata pointer. 3064 */ 3065 dev->ctrl.max_integrity_segments = 1; 3066 return dev; 3067 3068 out_put_device: 3069 put_device(dev->dev); 3070 kfree(dev->queues); 3071 out_free_dev: 3072 kfree(dev); 3073 return ERR_PTR(ret); 3074 } 3075 3076 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3077 { 3078 struct nvme_dev *dev; 3079 int result = -ENOMEM; 3080 3081 dev = nvme_pci_alloc_dev(pdev, id); 3082 if (IS_ERR(dev)) 3083 return PTR_ERR(dev); 3084 3085 result = nvme_add_ctrl(&dev->ctrl); 3086 if (result) 3087 goto out_put_ctrl; 3088 3089 result = nvme_dev_map(dev); 3090 if (result) 3091 goto out_uninit_ctrl; 3092 3093 result = nvme_setup_prp_pools(dev); 3094 if (result) 3095 goto out_dev_unmap; 3096 3097 result = nvme_pci_alloc_iod_mempool(dev); 3098 if (result) 3099 goto out_release_prp_pools; 3100 3101 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3102 3103 result = nvme_pci_enable(dev); 3104 if (result) 3105 goto out_release_iod_mempool; 3106 3107 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3108 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3109 if (result) 3110 goto out_disable; 3111 3112 /* 3113 * Mark the controller as connecting before sending admin commands to 3114 * allow the timeout handler to do the right thing. 3115 */ 3116 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3117 dev_warn(dev->ctrl.device, 3118 "failed to mark controller CONNECTING\n"); 3119 result = -EBUSY; 3120 goto out_disable; 3121 } 3122 3123 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3124 if (result) 3125 goto out_disable; 3126 3127 nvme_dbbuf_dma_alloc(dev); 3128 3129 result = nvme_setup_host_mem(dev); 3130 if (result < 0) 3131 goto out_disable; 3132 3133 result = nvme_setup_io_queues(dev); 3134 if (result) 3135 goto out_disable; 3136 3137 if (dev->online_queues > 1) { 3138 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3139 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3140 nvme_dbbuf_set(dev); 3141 } 3142 3143 if (!dev->ctrl.tagset) 3144 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3145 3146 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3147 dev_warn(dev->ctrl.device, 3148 "failed to mark controller live state\n"); 3149 result = -ENODEV; 3150 goto out_disable; 3151 } 3152 3153 pci_set_drvdata(pdev, dev); 3154 3155 nvme_start_ctrl(&dev->ctrl); 3156 nvme_put_ctrl(&dev->ctrl); 3157 flush_work(&dev->ctrl.scan_work); 3158 return 0; 3159 3160 out_disable: 3161 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3162 nvme_dev_disable(dev, true); 3163 nvme_free_host_mem(dev); 3164 nvme_dev_remove_admin(dev); 3165 nvme_dbbuf_dma_free(dev); 3166 nvme_free_queues(dev, 0); 3167 out_release_iod_mempool: 3168 mempool_destroy(dev->iod_mempool); 3169 out_release_prp_pools: 3170 nvme_release_prp_pools(dev); 3171 out_dev_unmap: 3172 nvme_dev_unmap(dev); 3173 out_uninit_ctrl: 3174 nvme_uninit_ctrl(&dev->ctrl); 3175 out_put_ctrl: 3176 nvme_put_ctrl(&dev->ctrl); 3177 return result; 3178 } 3179 3180 static void nvme_reset_prepare(struct pci_dev *pdev) 3181 { 3182 struct nvme_dev *dev = pci_get_drvdata(pdev); 3183 3184 /* 3185 * We don't need to check the return value from waiting for the reset 3186 * state as pci_dev device lock is held, making it impossible to race 3187 * with ->remove(). 3188 */ 3189 nvme_disable_prepare_reset(dev, false); 3190 nvme_sync_queues(&dev->ctrl); 3191 } 3192 3193 static void nvme_reset_done(struct pci_dev *pdev) 3194 { 3195 struct nvme_dev *dev = pci_get_drvdata(pdev); 3196 3197 if (!nvme_try_sched_reset(&dev->ctrl)) 3198 flush_work(&dev->ctrl.reset_work); 3199 } 3200 3201 static void nvme_shutdown(struct pci_dev *pdev) 3202 { 3203 struct nvme_dev *dev = pci_get_drvdata(pdev); 3204 3205 nvme_disable_prepare_reset(dev, true); 3206 } 3207 3208 /* 3209 * The driver's remove may be called on a device in a partially initialized 3210 * state. This function must not have any dependencies on the device state in 3211 * order to proceed. 3212 */ 3213 static void nvme_remove(struct pci_dev *pdev) 3214 { 3215 struct nvme_dev *dev = pci_get_drvdata(pdev); 3216 3217 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3218 pci_set_drvdata(pdev, NULL); 3219 3220 if (!pci_device_is_present(pdev)) { 3221 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3222 nvme_dev_disable(dev, true); 3223 } 3224 3225 flush_work(&dev->ctrl.reset_work); 3226 nvme_stop_ctrl(&dev->ctrl); 3227 nvme_remove_namespaces(&dev->ctrl); 3228 nvme_dev_disable(dev, true); 3229 nvme_free_host_mem(dev); 3230 nvme_dev_remove_admin(dev); 3231 nvme_dbbuf_dma_free(dev); 3232 nvme_free_queues(dev, 0); 3233 mempool_destroy(dev->iod_mempool); 3234 nvme_release_prp_pools(dev); 3235 nvme_dev_unmap(dev); 3236 nvme_uninit_ctrl(&dev->ctrl); 3237 } 3238 3239 #ifdef CONFIG_PM_SLEEP 3240 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3241 { 3242 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3243 } 3244 3245 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3246 { 3247 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3248 } 3249 3250 static int nvme_resume(struct device *dev) 3251 { 3252 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3253 struct nvme_ctrl *ctrl = &ndev->ctrl; 3254 3255 if (ndev->last_ps == U32_MAX || 3256 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3257 goto reset; 3258 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3259 goto reset; 3260 3261 return 0; 3262 reset: 3263 return nvme_try_sched_reset(ctrl); 3264 } 3265 3266 static int nvme_suspend(struct device *dev) 3267 { 3268 struct pci_dev *pdev = to_pci_dev(dev); 3269 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3270 struct nvme_ctrl *ctrl = &ndev->ctrl; 3271 int ret = -EBUSY; 3272 3273 ndev->last_ps = U32_MAX; 3274 3275 /* 3276 * The platform does not remove power for a kernel managed suspend so 3277 * use host managed nvme power settings for lowest idle power if 3278 * possible. This should have quicker resume latency than a full device 3279 * shutdown. But if the firmware is involved after the suspend or the 3280 * device does not support any non-default power states, shut down the 3281 * device fully. 3282 * 3283 * If ASPM is not enabled for the device, shut down the device and allow 3284 * the PCI bus layer to put it into D3 in order to take the PCIe link 3285 * down, so as to allow the platform to achieve its minimum low-power 3286 * state (which may not be possible if the link is up). 3287 */ 3288 if (pm_suspend_via_firmware() || !ctrl->npss || 3289 !pcie_aspm_enabled(pdev) || 3290 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3291 return nvme_disable_prepare_reset(ndev, true); 3292 3293 nvme_start_freeze(ctrl); 3294 nvme_wait_freeze(ctrl); 3295 nvme_sync_queues(ctrl); 3296 3297 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3298 goto unfreeze; 3299 3300 /* 3301 * Host memory access may not be successful in a system suspend state, 3302 * but the specification allows the controller to access memory in a 3303 * non-operational power state. 3304 */ 3305 if (ndev->hmb) { 3306 ret = nvme_set_host_mem(ndev, 0); 3307 if (ret < 0) 3308 goto unfreeze; 3309 } 3310 3311 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3312 if (ret < 0) 3313 goto unfreeze; 3314 3315 /* 3316 * A saved state prevents pci pm from generically controlling the 3317 * device's power. If we're using protocol specific settings, we don't 3318 * want pci interfering. 3319 */ 3320 pci_save_state(pdev); 3321 3322 ret = nvme_set_power_state(ctrl, ctrl->npss); 3323 if (ret < 0) 3324 goto unfreeze; 3325 3326 if (ret) { 3327 /* discard the saved state */ 3328 pci_load_saved_state(pdev, NULL); 3329 3330 /* 3331 * Clearing npss forces a controller reset on resume. The 3332 * correct value will be rediscovered then. 3333 */ 3334 ret = nvme_disable_prepare_reset(ndev, true); 3335 ctrl->npss = 0; 3336 } 3337 unfreeze: 3338 nvme_unfreeze(ctrl); 3339 return ret; 3340 } 3341 3342 static int nvme_simple_suspend(struct device *dev) 3343 { 3344 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3345 3346 return nvme_disable_prepare_reset(ndev, true); 3347 } 3348 3349 static int nvme_simple_resume(struct device *dev) 3350 { 3351 struct pci_dev *pdev = to_pci_dev(dev); 3352 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3353 3354 return nvme_try_sched_reset(&ndev->ctrl); 3355 } 3356 3357 static const struct dev_pm_ops nvme_dev_pm_ops = { 3358 .suspend = nvme_suspend, 3359 .resume = nvme_resume, 3360 .freeze = nvme_simple_suspend, 3361 .thaw = nvme_simple_resume, 3362 .poweroff = nvme_simple_suspend, 3363 .restore = nvme_simple_resume, 3364 }; 3365 #endif /* CONFIG_PM_SLEEP */ 3366 3367 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3368 pci_channel_state_t state) 3369 { 3370 struct nvme_dev *dev = pci_get_drvdata(pdev); 3371 3372 /* 3373 * A frozen channel requires a reset. When detected, this method will 3374 * shutdown the controller to quiesce. The controller will be restarted 3375 * after the slot reset through driver's slot_reset callback. 3376 */ 3377 switch (state) { 3378 case pci_channel_io_normal: 3379 return PCI_ERS_RESULT_CAN_RECOVER; 3380 case pci_channel_io_frozen: 3381 dev_warn(dev->ctrl.device, 3382 "frozen state error detected, reset controller\n"); 3383 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3384 nvme_dev_disable(dev, true); 3385 return PCI_ERS_RESULT_DISCONNECT; 3386 } 3387 nvme_dev_disable(dev, false); 3388 return PCI_ERS_RESULT_NEED_RESET; 3389 case pci_channel_io_perm_failure: 3390 dev_warn(dev->ctrl.device, 3391 "failure state error detected, request disconnect\n"); 3392 return PCI_ERS_RESULT_DISCONNECT; 3393 } 3394 return PCI_ERS_RESULT_NEED_RESET; 3395 } 3396 3397 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3398 { 3399 struct nvme_dev *dev = pci_get_drvdata(pdev); 3400 3401 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3402 pci_restore_state(pdev); 3403 if (!nvme_try_sched_reset(&dev->ctrl)) 3404 nvme_unquiesce_io_queues(&dev->ctrl); 3405 return PCI_ERS_RESULT_RECOVERED; 3406 } 3407 3408 static void nvme_error_resume(struct pci_dev *pdev) 3409 { 3410 struct nvme_dev *dev = pci_get_drvdata(pdev); 3411 3412 flush_work(&dev->ctrl.reset_work); 3413 } 3414 3415 static const struct pci_error_handlers nvme_err_handler = { 3416 .error_detected = nvme_error_detected, 3417 .slot_reset = nvme_slot_reset, 3418 .resume = nvme_error_resume, 3419 .reset_prepare = nvme_reset_prepare, 3420 .reset_done = nvme_reset_done, 3421 }; 3422 3423 static const struct pci_device_id nvme_id_table[] = { 3424 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3425 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3426 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3427 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3428 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3429 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3430 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3431 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3432 NVME_QUIRK_DEALLOCATE_ZEROES | 3433 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3434 NVME_QUIRK_BOGUS_NID, }, 3435 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3436 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3437 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3438 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3439 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3440 NVME_QUIRK_MEDIUM_PRIO_SQ | 3441 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3442 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3443 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3444 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3445 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3446 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3447 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3448 NVME_QUIRK_BOGUS_NID, }, 3449 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3450 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3451 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3452 .driver_data = NVME_QUIRK_QDEPTH_ONE }, 3453 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3454 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3455 NVME_QUIRK_BOGUS_NID, }, 3456 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3457 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3458 NVME_QUIRK_BOGUS_NID, }, 3459 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3460 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3461 NVME_QUIRK_NO_NS_DESC_LIST, }, 3462 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3463 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3464 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3465 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3466 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3467 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3468 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3469 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3470 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3471 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3472 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3473 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3474 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3475 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3476 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3477 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3478 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3479 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3480 NVME_QUIRK_BOGUS_NID, }, 3481 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3482 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3483 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3484 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3485 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3486 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3487 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3488 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3489 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3490 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3491 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3492 NVME_QUIRK_BOGUS_NID, }, 3493 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3494 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3495 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3496 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3497 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3498 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3499 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3500 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3501 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3502 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3503 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3504 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3505 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3506 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3507 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3508 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3509 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3510 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3511 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3512 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3513 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3514 NVME_QUIRK_BOGUS_NID, }, 3515 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3516 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3517 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3518 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3519 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3520 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3521 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3522 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3523 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3524 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3525 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3526 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3527 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3528 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3529 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3530 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3531 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3532 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3533 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3534 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3535 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3536 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3537 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3538 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3539 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3540 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3541 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3542 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3543 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3544 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3545 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3546 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3547 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3548 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3549 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3550 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3551 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3552 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3553 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3554 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3555 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3556 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3557 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3558 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3559 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3560 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3561 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3562 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3563 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3564 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3565 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3566 .driver_data = NVME_QUIRK_BOGUS_NID | 3567 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3568 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3569 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3570 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3571 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3572 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3573 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3574 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3575 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3576 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3577 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3578 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3579 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3580 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3581 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3582 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3583 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3584 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3585 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3586 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3587 /* 3588 * Fix for the Apple controller found in the MacBook8,1 and 3589 * some MacBook7,1 to avoid controller resets and data loss. 3590 */ 3591 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3592 NVME_QUIRK_QDEPTH_ONE }, 3593 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3594 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3595 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3596 NVME_QUIRK_128_BYTES_SQES | 3597 NVME_QUIRK_SHARED_TAGS | 3598 NVME_QUIRK_SKIP_CID_GEN | 3599 NVME_QUIRK_IDENTIFY_CNS }, 3600 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3601 { 0, } 3602 }; 3603 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3604 3605 static struct pci_driver nvme_driver = { 3606 .name = "nvme", 3607 .id_table = nvme_id_table, 3608 .probe = nvme_probe, 3609 .remove = nvme_remove, 3610 .shutdown = nvme_shutdown, 3611 .driver = { 3612 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3613 #ifdef CONFIG_PM_SLEEP 3614 .pm = &nvme_dev_pm_ops, 3615 #endif 3616 }, 3617 .sriov_configure = pci_sriov_configure_simple, 3618 .err_handler = &nvme_err_handler, 3619 }; 3620 3621 static int __init nvme_init(void) 3622 { 3623 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3624 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3625 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3626 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3627 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3628 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3629 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3630 3631 return pci_register_driver(&nvme_driver); 3632 } 3633 3634 static void __exit nvme_exit(void) 3635 { 3636 pci_unregister_driver(&nvme_driver); 3637 flush_workqueue(nvme_wq); 3638 } 3639 3640 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3641 MODULE_LICENSE("GPL"); 3642 MODULE_VERSION("1.0"); 3643 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3644 module_init(nvme_init); 3645 module_exit(nvme_exit); 3646