1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/dmi.h> 21 #include <linux/init.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/pci.h> 28 #include <linux/poison.h> 29 #include <linux/t10-pi.h> 30 #include <linux/timer.h> 31 #include <linux/types.h> 32 #include <linux/io-64-nonatomic-lo-hi.h> 33 #include <asm/unaligned.h> 34 #include <linux/sed-opal.h> 35 36 #include "nvme.h" 37 38 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 39 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 40 41 /* 42 * We handle AEN commands ourselves and don't even let the 43 * block layer know about them. 44 */ 45 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 46 47 static int use_threaded_interrupts; 48 module_param(use_threaded_interrupts, int, 0); 49 50 static bool use_cmb_sqes = true; 51 module_param(use_cmb_sqes, bool, 0644); 52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 53 54 static unsigned int max_host_mem_size_mb = 128; 55 module_param(max_host_mem_size_mb, uint, 0444); 56 MODULE_PARM_DESC(max_host_mem_size_mb, 57 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 58 59 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 60 static const struct kernel_param_ops io_queue_depth_ops = { 61 .set = io_queue_depth_set, 62 .get = param_get_int, 63 }; 64 65 static int io_queue_depth = 1024; 66 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 67 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 68 69 struct nvme_dev; 70 struct nvme_queue; 71 72 static void nvme_process_cq(struct nvme_queue *nvmeq); 73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 74 75 /* 76 * Represents an NVM Express device. Each nvme_dev is a PCI function. 77 */ 78 struct nvme_dev { 79 struct nvme_queue **queues; 80 struct blk_mq_tag_set tagset; 81 struct blk_mq_tag_set admin_tagset; 82 u32 __iomem *dbs; 83 struct device *dev; 84 struct dma_pool *prp_page_pool; 85 struct dma_pool *prp_small_pool; 86 unsigned online_queues; 87 unsigned max_qid; 88 int q_depth; 89 u32 db_stride; 90 void __iomem *bar; 91 unsigned long bar_mapped_size; 92 struct work_struct remove_work; 93 struct mutex shutdown_lock; 94 bool subsystem; 95 void __iomem *cmb; 96 dma_addr_t cmb_dma_addr; 97 u64 cmb_size; 98 u32 cmbsz; 99 u32 cmbloc; 100 struct nvme_ctrl ctrl; 101 struct completion ioq_wait; 102 103 /* shadow doorbell buffer support: */ 104 u32 *dbbuf_dbs; 105 dma_addr_t dbbuf_dbs_dma_addr; 106 u32 *dbbuf_eis; 107 dma_addr_t dbbuf_eis_dma_addr; 108 109 /* host memory buffer support: */ 110 u64 host_mem_size; 111 u32 nr_host_mem_descs; 112 struct nvme_host_mem_buf_desc *host_mem_descs; 113 void **host_mem_desc_bufs; 114 }; 115 116 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 117 { 118 int n = 0, ret; 119 120 ret = kstrtoint(val, 10, &n); 121 if (ret != 0 || n < 2) 122 return -EINVAL; 123 124 return param_set_int(val, kp); 125 } 126 127 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 128 { 129 return qid * 2 * stride; 130 } 131 132 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 133 { 134 return (qid * 2 + 1) * stride; 135 } 136 137 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 138 { 139 return container_of(ctrl, struct nvme_dev, ctrl); 140 } 141 142 /* 143 * An NVM Express queue. Each device has at least two (one for admin 144 * commands and one for I/O commands). 145 */ 146 struct nvme_queue { 147 struct device *q_dmadev; 148 struct nvme_dev *dev; 149 spinlock_t q_lock; 150 struct nvme_command *sq_cmds; 151 struct nvme_command __iomem *sq_cmds_io; 152 volatile struct nvme_completion *cqes; 153 struct blk_mq_tags **tags; 154 dma_addr_t sq_dma_addr; 155 dma_addr_t cq_dma_addr; 156 u32 __iomem *q_db; 157 u16 q_depth; 158 s16 cq_vector; 159 u16 sq_tail; 160 u16 cq_head; 161 u16 qid; 162 u8 cq_phase; 163 u8 cqe_seen; 164 u32 *dbbuf_sq_db; 165 u32 *dbbuf_cq_db; 166 u32 *dbbuf_sq_ei; 167 u32 *dbbuf_cq_ei; 168 }; 169 170 /* 171 * The nvme_iod describes the data in an I/O, including the list of PRP 172 * entries. You can't see it in this data structure because C doesn't let 173 * me express that. Use nvme_init_iod to ensure there's enough space 174 * allocated to store the PRP list. 175 */ 176 struct nvme_iod { 177 struct nvme_request req; 178 struct nvme_queue *nvmeq; 179 int aborted; 180 int npages; /* In the PRP list. 0 means small pool in use */ 181 int nents; /* Used in scatterlist */ 182 int length; /* Of data, in bytes */ 183 dma_addr_t first_dma; 184 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 185 struct scatterlist *sg; 186 struct scatterlist inline_sg[0]; 187 }; 188 189 /* 190 * Check we didin't inadvertently grow the command struct 191 */ 192 static inline void _nvme_check_size(void) 193 { 194 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 195 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 196 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 197 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 198 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 199 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 200 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 201 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 202 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 203 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 204 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 205 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 206 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 207 } 208 209 static inline unsigned int nvme_dbbuf_size(u32 stride) 210 { 211 return ((num_possible_cpus() + 1) * 8 * stride); 212 } 213 214 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 215 { 216 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 217 218 if (dev->dbbuf_dbs) 219 return 0; 220 221 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 222 &dev->dbbuf_dbs_dma_addr, 223 GFP_KERNEL); 224 if (!dev->dbbuf_dbs) 225 return -ENOMEM; 226 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 227 &dev->dbbuf_eis_dma_addr, 228 GFP_KERNEL); 229 if (!dev->dbbuf_eis) { 230 dma_free_coherent(dev->dev, mem_size, 231 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 232 dev->dbbuf_dbs = NULL; 233 return -ENOMEM; 234 } 235 236 return 0; 237 } 238 239 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 240 { 241 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 242 243 if (dev->dbbuf_dbs) { 244 dma_free_coherent(dev->dev, mem_size, 245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 246 dev->dbbuf_dbs = NULL; 247 } 248 if (dev->dbbuf_eis) { 249 dma_free_coherent(dev->dev, mem_size, 250 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 251 dev->dbbuf_eis = NULL; 252 } 253 } 254 255 static void nvme_dbbuf_init(struct nvme_dev *dev, 256 struct nvme_queue *nvmeq, int qid) 257 { 258 if (!dev->dbbuf_dbs || !qid) 259 return; 260 261 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 262 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 263 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 264 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 265 } 266 267 static void nvme_dbbuf_set(struct nvme_dev *dev) 268 { 269 struct nvme_command c; 270 271 if (!dev->dbbuf_dbs) 272 return; 273 274 memset(&c, 0, sizeof(c)); 275 c.dbbuf.opcode = nvme_admin_dbbuf; 276 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 277 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 278 279 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 280 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 281 /* Free memory and continue on */ 282 nvme_dbbuf_dma_free(dev); 283 } 284 } 285 286 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 287 { 288 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 289 } 290 291 /* Update dbbuf and return true if an MMIO is required */ 292 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 293 volatile u32 *dbbuf_ei) 294 { 295 if (dbbuf_db) { 296 u16 old_value; 297 298 /* 299 * Ensure that the queue is written before updating 300 * the doorbell in memory 301 */ 302 wmb(); 303 304 old_value = *dbbuf_db; 305 *dbbuf_db = value; 306 307 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 308 return false; 309 } 310 311 return true; 312 } 313 314 /* 315 * Max size of iod being embedded in the request payload 316 */ 317 #define NVME_INT_PAGES 2 318 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 319 320 /* 321 * Will slightly overestimate the number of pages needed. This is OK 322 * as it only leads to a small amount of wasted memory for the lifetime of 323 * the I/O. 324 */ 325 static int nvme_npages(unsigned size, struct nvme_dev *dev) 326 { 327 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 328 dev->ctrl.page_size); 329 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 330 } 331 332 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 333 unsigned int size, unsigned int nseg) 334 { 335 return sizeof(__le64 *) * nvme_npages(size, dev) + 336 sizeof(struct scatterlist) * nseg; 337 } 338 339 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 340 { 341 return sizeof(struct nvme_iod) + 342 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 343 } 344 345 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 346 unsigned int hctx_idx) 347 { 348 struct nvme_dev *dev = data; 349 struct nvme_queue *nvmeq = dev->queues[0]; 350 351 WARN_ON(hctx_idx != 0); 352 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 353 WARN_ON(nvmeq->tags); 354 355 hctx->driver_data = nvmeq; 356 nvmeq->tags = &dev->admin_tagset.tags[0]; 357 return 0; 358 } 359 360 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 361 { 362 struct nvme_queue *nvmeq = hctx->driver_data; 363 364 nvmeq->tags = NULL; 365 } 366 367 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 368 unsigned int hctx_idx) 369 { 370 struct nvme_dev *dev = data; 371 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 372 373 if (!nvmeq->tags) 374 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 375 376 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 377 hctx->driver_data = nvmeq; 378 return 0; 379 } 380 381 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 382 unsigned int hctx_idx, unsigned int numa_node) 383 { 384 struct nvme_dev *dev = set->driver_data; 385 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 386 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 387 struct nvme_queue *nvmeq = dev->queues[queue_idx]; 388 389 BUG_ON(!nvmeq); 390 iod->nvmeq = nvmeq; 391 return 0; 392 } 393 394 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 395 { 396 struct nvme_dev *dev = set->driver_data; 397 398 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 399 } 400 401 /** 402 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 403 * @nvmeq: The queue to use 404 * @cmd: The command to send 405 * 406 * Safe to use from interrupt context 407 */ 408 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 409 struct nvme_command *cmd) 410 { 411 u16 tail = nvmeq->sq_tail; 412 413 if (nvmeq->sq_cmds_io) 414 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 415 else 416 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 417 418 if (++tail == nvmeq->q_depth) 419 tail = 0; 420 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db, 421 nvmeq->dbbuf_sq_ei)) 422 writel(tail, nvmeq->q_db); 423 nvmeq->sq_tail = tail; 424 } 425 426 static __le64 **iod_list(struct request *req) 427 { 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 430 } 431 432 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) 433 { 434 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 435 int nseg = blk_rq_nr_phys_segments(rq); 436 unsigned int size = blk_rq_payload_bytes(rq); 437 438 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 439 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 440 if (!iod->sg) 441 return BLK_STS_RESOURCE; 442 } else { 443 iod->sg = iod->inline_sg; 444 } 445 446 iod->aborted = 0; 447 iod->npages = -1; 448 iod->nents = 0; 449 iod->length = size; 450 451 return BLK_STS_OK; 452 } 453 454 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 455 { 456 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 457 const int last_prp = dev->ctrl.page_size / 8 - 1; 458 int i; 459 __le64 **list = iod_list(req); 460 dma_addr_t prp_dma = iod->first_dma; 461 462 if (iod->npages == 0) 463 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 464 for (i = 0; i < iod->npages; i++) { 465 __le64 *prp_list = list[i]; 466 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 467 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 468 prp_dma = next_prp_dma; 469 } 470 471 if (iod->sg != iod->inline_sg) 472 kfree(iod->sg); 473 } 474 475 #ifdef CONFIG_BLK_DEV_INTEGRITY 476 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 477 { 478 if (be32_to_cpu(pi->ref_tag) == v) 479 pi->ref_tag = cpu_to_be32(p); 480 } 481 482 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 483 { 484 if (be32_to_cpu(pi->ref_tag) == p) 485 pi->ref_tag = cpu_to_be32(v); 486 } 487 488 /** 489 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 490 * 491 * The virtual start sector is the one that was originally submitted by the 492 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 493 * start sector may be different. Remap protection information to match the 494 * physical LBA on writes, and back to the original seed on reads. 495 * 496 * Type 0 and 3 do not have a ref tag, so no remapping required. 497 */ 498 static void nvme_dif_remap(struct request *req, 499 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 500 { 501 struct nvme_ns *ns = req->rq_disk->private_data; 502 struct bio_integrity_payload *bip; 503 struct t10_pi_tuple *pi; 504 void *p, *pmap; 505 u32 i, nlb, ts, phys, virt; 506 507 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 508 return; 509 510 bip = bio_integrity(req->bio); 511 if (!bip) 512 return; 513 514 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 515 516 p = pmap; 517 virt = bip_get_seed(bip); 518 phys = nvme_block_nr(ns, blk_rq_pos(req)); 519 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 520 ts = ns->disk->queue->integrity.tuple_size; 521 522 for (i = 0; i < nlb; i++, virt++, phys++) { 523 pi = (struct t10_pi_tuple *)p; 524 dif_swap(phys, virt, pi); 525 p += ts; 526 } 527 kunmap_atomic(pmap); 528 } 529 #else /* CONFIG_BLK_DEV_INTEGRITY */ 530 static void nvme_dif_remap(struct request *req, 531 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 532 { 533 } 534 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 535 { 536 } 537 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 538 { 539 } 540 #endif 541 542 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req) 543 { 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 545 struct dma_pool *pool; 546 int length = blk_rq_payload_bytes(req); 547 struct scatterlist *sg = iod->sg; 548 int dma_len = sg_dma_len(sg); 549 u64 dma_addr = sg_dma_address(sg); 550 u32 page_size = dev->ctrl.page_size; 551 int offset = dma_addr & (page_size - 1); 552 __le64 *prp_list; 553 __le64 **list = iod_list(req); 554 dma_addr_t prp_dma; 555 int nprps, i; 556 557 length -= (page_size - offset); 558 if (length <= 0) 559 return BLK_STS_OK; 560 561 dma_len -= (page_size - offset); 562 if (dma_len) { 563 dma_addr += (page_size - offset); 564 } else { 565 sg = sg_next(sg); 566 dma_addr = sg_dma_address(sg); 567 dma_len = sg_dma_len(sg); 568 } 569 570 if (length <= page_size) { 571 iod->first_dma = dma_addr; 572 return BLK_STS_OK; 573 } 574 575 nprps = DIV_ROUND_UP(length, page_size); 576 if (nprps <= (256 / 8)) { 577 pool = dev->prp_small_pool; 578 iod->npages = 0; 579 } else { 580 pool = dev->prp_page_pool; 581 iod->npages = 1; 582 } 583 584 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 585 if (!prp_list) { 586 iod->first_dma = dma_addr; 587 iod->npages = -1; 588 return BLK_STS_RESOURCE; 589 } 590 list[0] = prp_list; 591 iod->first_dma = prp_dma; 592 i = 0; 593 for (;;) { 594 if (i == page_size >> 3) { 595 __le64 *old_prp_list = prp_list; 596 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 597 if (!prp_list) 598 return BLK_STS_RESOURCE; 599 list[iod->npages++] = prp_list; 600 prp_list[0] = old_prp_list[i - 1]; 601 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 602 i = 1; 603 } 604 prp_list[i++] = cpu_to_le64(dma_addr); 605 dma_len -= page_size; 606 dma_addr += page_size; 607 length -= page_size; 608 if (length <= 0) 609 break; 610 if (dma_len > 0) 611 continue; 612 if (unlikely(dma_len < 0)) 613 goto bad_sgl; 614 sg = sg_next(sg); 615 dma_addr = sg_dma_address(sg); 616 dma_len = sg_dma_len(sg); 617 } 618 619 return BLK_STS_OK; 620 621 bad_sgl: 622 if (WARN_ONCE(1, "Invalid SGL for payload:%d nents:%d\n", 623 blk_rq_payload_bytes(req), iod->nents)) { 624 for_each_sg(iod->sg, sg, iod->nents, i) { 625 dma_addr_t phys = sg_phys(sg); 626 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 627 "dma_address:%pad dma_length:%d\n", i, &phys, 628 sg->offset, sg->length, 629 &sg_dma_address(sg), 630 sg_dma_len(sg)); 631 } 632 } 633 return BLK_STS_IOERR; 634 635 } 636 637 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 638 struct nvme_command *cmnd) 639 { 640 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 641 struct request_queue *q = req->q; 642 enum dma_data_direction dma_dir = rq_data_dir(req) ? 643 DMA_TO_DEVICE : DMA_FROM_DEVICE; 644 blk_status_t ret = BLK_STS_IOERR; 645 646 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 647 iod->nents = blk_rq_map_sg(q, req, iod->sg); 648 if (!iod->nents) 649 goto out; 650 651 ret = BLK_STS_RESOURCE; 652 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 653 DMA_ATTR_NO_WARN)) 654 goto out; 655 656 ret = nvme_setup_prps(dev, req); 657 if (ret != BLK_STS_OK) 658 goto out_unmap; 659 660 ret = BLK_STS_IOERR; 661 if (blk_integrity_rq(req)) { 662 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 663 goto out_unmap; 664 665 sg_init_table(&iod->meta_sg, 1); 666 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 667 goto out_unmap; 668 669 if (rq_data_dir(req)) 670 nvme_dif_remap(req, nvme_dif_prep); 671 672 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 673 goto out_unmap; 674 } 675 676 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 677 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 678 if (blk_integrity_rq(req)) 679 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 680 return BLK_STS_OK; 681 682 out_unmap: 683 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 684 out: 685 return ret; 686 } 687 688 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 689 { 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 691 enum dma_data_direction dma_dir = rq_data_dir(req) ? 692 DMA_TO_DEVICE : DMA_FROM_DEVICE; 693 694 if (iod->nents) { 695 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 696 if (blk_integrity_rq(req)) { 697 if (!rq_data_dir(req)) 698 nvme_dif_remap(req, nvme_dif_complete); 699 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 700 } 701 } 702 703 nvme_cleanup_cmd(req); 704 nvme_free_iod(dev, req); 705 } 706 707 /* 708 * NOTE: ns is NULL when called on the admin queue. 709 */ 710 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 711 const struct blk_mq_queue_data *bd) 712 { 713 struct nvme_ns *ns = hctx->queue->queuedata; 714 struct nvme_queue *nvmeq = hctx->driver_data; 715 struct nvme_dev *dev = nvmeq->dev; 716 struct request *req = bd->rq; 717 struct nvme_command cmnd; 718 blk_status_t ret; 719 720 ret = nvme_setup_cmd(ns, req, &cmnd); 721 if (ret) 722 return ret; 723 724 ret = nvme_init_iod(req, dev); 725 if (ret) 726 goto out_free_cmd; 727 728 if (blk_rq_nr_phys_segments(req)) { 729 ret = nvme_map_data(dev, req, &cmnd); 730 if (ret) 731 goto out_cleanup_iod; 732 } 733 734 blk_mq_start_request(req); 735 736 spin_lock_irq(&nvmeq->q_lock); 737 if (unlikely(nvmeq->cq_vector < 0)) { 738 ret = BLK_STS_IOERR; 739 spin_unlock_irq(&nvmeq->q_lock); 740 goto out_cleanup_iod; 741 } 742 __nvme_submit_cmd(nvmeq, &cmnd); 743 nvme_process_cq(nvmeq); 744 spin_unlock_irq(&nvmeq->q_lock); 745 return BLK_STS_OK; 746 out_cleanup_iod: 747 nvme_free_iod(dev, req); 748 out_free_cmd: 749 nvme_cleanup_cmd(req); 750 return ret; 751 } 752 753 static void nvme_pci_complete_rq(struct request *req) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 nvme_unmap_data(iod->nvmeq->dev, req); 758 nvme_complete_rq(req); 759 } 760 761 /* We read the CQE phase first to check if the rest of the entry is valid */ 762 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 763 u16 phase) 764 { 765 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 766 } 767 768 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 769 { 770 u16 head = nvmeq->cq_head; 771 772 if (likely(nvmeq->cq_vector >= 0)) { 773 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 774 nvmeq->dbbuf_cq_ei)) 775 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 776 } 777 } 778 779 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 780 struct nvme_completion *cqe) 781 { 782 struct request *req; 783 784 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 785 dev_warn(nvmeq->dev->ctrl.device, 786 "invalid id %d completed on queue %d\n", 787 cqe->command_id, le16_to_cpu(cqe->sq_id)); 788 return; 789 } 790 791 /* 792 * AEN requests are special as they don't time out and can 793 * survive any kind of queue freeze and often don't respond to 794 * aborts. We don't even bother to allocate a struct request 795 * for them but rather special case them here. 796 */ 797 if (unlikely(nvmeq->qid == 0 && 798 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) { 799 nvme_complete_async_event(&nvmeq->dev->ctrl, 800 cqe->status, &cqe->result); 801 return; 802 } 803 804 nvmeq->cqe_seen = 1; 805 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 806 nvme_end_request(req, cqe->status, cqe->result); 807 } 808 809 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq, 810 struct nvme_completion *cqe) 811 { 812 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 813 *cqe = nvmeq->cqes[nvmeq->cq_head]; 814 815 if (++nvmeq->cq_head == nvmeq->q_depth) { 816 nvmeq->cq_head = 0; 817 nvmeq->cq_phase = !nvmeq->cq_phase; 818 } 819 return true; 820 } 821 return false; 822 } 823 824 static void nvme_process_cq(struct nvme_queue *nvmeq) 825 { 826 struct nvme_completion cqe; 827 int consumed = 0; 828 829 while (nvme_read_cqe(nvmeq, &cqe)) { 830 nvme_handle_cqe(nvmeq, &cqe); 831 consumed++; 832 } 833 834 if (consumed) 835 nvme_ring_cq_doorbell(nvmeq); 836 } 837 838 static irqreturn_t nvme_irq(int irq, void *data) 839 { 840 irqreturn_t result; 841 struct nvme_queue *nvmeq = data; 842 spin_lock(&nvmeq->q_lock); 843 nvme_process_cq(nvmeq); 844 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 845 nvmeq->cqe_seen = 0; 846 spin_unlock(&nvmeq->q_lock); 847 return result; 848 } 849 850 static irqreturn_t nvme_irq_check(int irq, void *data) 851 { 852 struct nvme_queue *nvmeq = data; 853 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 854 return IRQ_WAKE_THREAD; 855 return IRQ_NONE; 856 } 857 858 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) 859 { 860 struct nvme_completion cqe; 861 int found = 0, consumed = 0; 862 863 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 864 return 0; 865 866 spin_lock_irq(&nvmeq->q_lock); 867 while (nvme_read_cqe(nvmeq, &cqe)) { 868 nvme_handle_cqe(nvmeq, &cqe); 869 consumed++; 870 871 if (tag == cqe.command_id) { 872 found = 1; 873 break; 874 } 875 } 876 877 if (consumed) 878 nvme_ring_cq_doorbell(nvmeq); 879 spin_unlock_irq(&nvmeq->q_lock); 880 881 return found; 882 } 883 884 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 885 { 886 struct nvme_queue *nvmeq = hctx->driver_data; 887 888 return __nvme_poll(nvmeq, tag); 889 } 890 891 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 892 { 893 struct nvme_dev *dev = to_nvme_dev(ctrl); 894 struct nvme_queue *nvmeq = dev->queues[0]; 895 struct nvme_command c; 896 897 memset(&c, 0, sizeof(c)); 898 c.common.opcode = nvme_admin_async_event; 899 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 900 901 spin_lock_irq(&nvmeq->q_lock); 902 __nvme_submit_cmd(nvmeq, &c); 903 spin_unlock_irq(&nvmeq->q_lock); 904 } 905 906 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 907 { 908 struct nvme_command c; 909 910 memset(&c, 0, sizeof(c)); 911 c.delete_queue.opcode = opcode; 912 c.delete_queue.qid = cpu_to_le16(id); 913 914 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 915 } 916 917 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 918 struct nvme_queue *nvmeq) 919 { 920 struct nvme_command c; 921 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 922 923 /* 924 * Note: we (ab)use the fact the the prp fields survive if no data 925 * is attached to the request. 926 */ 927 memset(&c, 0, sizeof(c)); 928 c.create_cq.opcode = nvme_admin_create_cq; 929 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 930 c.create_cq.cqid = cpu_to_le16(qid); 931 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 932 c.create_cq.cq_flags = cpu_to_le16(flags); 933 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 934 935 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 936 } 937 938 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 939 struct nvme_queue *nvmeq) 940 { 941 struct nvme_command c; 942 int flags = NVME_QUEUE_PHYS_CONTIG; 943 944 /* 945 * Note: we (ab)use the fact the the prp fields survive if no data 946 * is attached to the request. 947 */ 948 memset(&c, 0, sizeof(c)); 949 c.create_sq.opcode = nvme_admin_create_sq; 950 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 951 c.create_sq.sqid = cpu_to_le16(qid); 952 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 953 c.create_sq.sq_flags = cpu_to_le16(flags); 954 c.create_sq.cqid = cpu_to_le16(qid); 955 956 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 957 } 958 959 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 960 { 961 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 962 } 963 964 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 965 { 966 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 967 } 968 969 static void abort_endio(struct request *req, blk_status_t error) 970 { 971 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 972 struct nvme_queue *nvmeq = iod->nvmeq; 973 974 dev_warn(nvmeq->dev->ctrl.device, 975 "Abort status: 0x%x", nvme_req(req)->status); 976 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 977 blk_mq_free_request(req); 978 } 979 980 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 981 { 982 983 /* If true, indicates loss of adapter communication, possibly by a 984 * NVMe Subsystem reset. 985 */ 986 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 987 988 /* If there is a reset ongoing, we shouldn't reset again. */ 989 if (dev->ctrl.state == NVME_CTRL_RESETTING) 990 return false; 991 992 /* We shouldn't reset unless the controller is on fatal error state 993 * _or_ if we lost the communication with it. 994 */ 995 if (!(csts & NVME_CSTS_CFS) && !nssro) 996 return false; 997 998 /* If PCI error recovery process is happening, we cannot reset or 999 * the recovery mechanism will surely fail. 1000 */ 1001 if (pci_channel_offline(to_pci_dev(dev->dev))) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1008 { 1009 /* Read a config register to help see what died. */ 1010 u16 pci_status; 1011 int result; 1012 1013 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1014 &pci_status); 1015 if (result == PCIBIOS_SUCCESSFUL) 1016 dev_warn(dev->ctrl.device, 1017 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1018 csts, pci_status); 1019 else 1020 dev_warn(dev->ctrl.device, 1021 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1022 csts, result); 1023 } 1024 1025 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1026 { 1027 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1028 struct nvme_queue *nvmeq = iod->nvmeq; 1029 struct nvme_dev *dev = nvmeq->dev; 1030 struct request *abort_req; 1031 struct nvme_command cmd; 1032 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1033 1034 /* 1035 * Reset immediately if the controller is failed 1036 */ 1037 if (nvme_should_reset(dev, csts)) { 1038 nvme_warn_reset(dev, csts); 1039 nvme_dev_disable(dev, false); 1040 nvme_reset_ctrl(&dev->ctrl); 1041 return BLK_EH_HANDLED; 1042 } 1043 1044 /* 1045 * Did we miss an interrupt? 1046 */ 1047 if (__nvme_poll(nvmeq, req->tag)) { 1048 dev_warn(dev->ctrl.device, 1049 "I/O %d QID %d timeout, completion polled\n", 1050 req->tag, nvmeq->qid); 1051 return BLK_EH_HANDLED; 1052 } 1053 1054 /* 1055 * Shutdown immediately if controller times out while starting. The 1056 * reset work will see the pci device disabled when it gets the forced 1057 * cancellation error. All outstanding requests are completed on 1058 * shutdown, so we return BLK_EH_HANDLED. 1059 */ 1060 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 1061 dev_warn(dev->ctrl.device, 1062 "I/O %d QID %d timeout, disable controller\n", 1063 req->tag, nvmeq->qid); 1064 nvme_dev_disable(dev, false); 1065 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1066 return BLK_EH_HANDLED; 1067 } 1068 1069 /* 1070 * Shutdown the controller immediately and schedule a reset if the 1071 * command was already aborted once before and still hasn't been 1072 * returned to the driver, or if this is the admin queue. 1073 */ 1074 if (!nvmeq->qid || iod->aborted) { 1075 dev_warn(dev->ctrl.device, 1076 "I/O %d QID %d timeout, reset controller\n", 1077 req->tag, nvmeq->qid); 1078 nvme_dev_disable(dev, false); 1079 nvme_reset_ctrl(&dev->ctrl); 1080 1081 /* 1082 * Mark the request as handled, since the inline shutdown 1083 * forces all outstanding requests to complete. 1084 */ 1085 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1086 return BLK_EH_HANDLED; 1087 } 1088 1089 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1090 atomic_inc(&dev->ctrl.abort_limit); 1091 return BLK_EH_RESET_TIMER; 1092 } 1093 iod->aborted = 1; 1094 1095 memset(&cmd, 0, sizeof(cmd)); 1096 cmd.abort.opcode = nvme_admin_abort_cmd; 1097 cmd.abort.cid = req->tag; 1098 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1099 1100 dev_warn(nvmeq->dev->ctrl.device, 1101 "I/O %d QID %d timeout, aborting\n", 1102 req->tag, nvmeq->qid); 1103 1104 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1105 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1106 if (IS_ERR(abort_req)) { 1107 atomic_inc(&dev->ctrl.abort_limit); 1108 return BLK_EH_RESET_TIMER; 1109 } 1110 1111 abort_req->timeout = ADMIN_TIMEOUT; 1112 abort_req->end_io_data = NULL; 1113 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1114 1115 /* 1116 * The aborted req will be completed on receiving the abort req. 1117 * We enable the timer again. If hit twice, it'll cause a device reset, 1118 * as the device then is in a faulty state. 1119 */ 1120 return BLK_EH_RESET_TIMER; 1121 } 1122 1123 static void nvme_free_queue(struct nvme_queue *nvmeq) 1124 { 1125 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1126 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1127 if (nvmeq->sq_cmds) 1128 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1129 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1130 kfree(nvmeq); 1131 } 1132 1133 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1134 { 1135 int i; 1136 1137 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1138 struct nvme_queue *nvmeq = dev->queues[i]; 1139 dev->ctrl.queue_count--; 1140 dev->queues[i] = NULL; 1141 nvme_free_queue(nvmeq); 1142 } 1143 } 1144 1145 /** 1146 * nvme_suspend_queue - put queue into suspended state 1147 * @nvmeq - queue to suspend 1148 */ 1149 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1150 { 1151 int vector; 1152 1153 spin_lock_irq(&nvmeq->q_lock); 1154 if (nvmeq->cq_vector == -1) { 1155 spin_unlock_irq(&nvmeq->q_lock); 1156 return 1; 1157 } 1158 vector = nvmeq->cq_vector; 1159 nvmeq->dev->online_queues--; 1160 nvmeq->cq_vector = -1; 1161 spin_unlock_irq(&nvmeq->q_lock); 1162 1163 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1164 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1165 1166 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); 1167 1168 return 0; 1169 } 1170 1171 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1172 { 1173 struct nvme_queue *nvmeq = dev->queues[0]; 1174 1175 if (!nvmeq) 1176 return; 1177 if (nvme_suspend_queue(nvmeq)) 1178 return; 1179 1180 if (shutdown) 1181 nvme_shutdown_ctrl(&dev->ctrl); 1182 else 1183 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1184 1185 spin_lock_irq(&nvmeq->q_lock); 1186 nvme_process_cq(nvmeq); 1187 spin_unlock_irq(&nvmeq->q_lock); 1188 } 1189 1190 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1191 int entry_size) 1192 { 1193 int q_depth = dev->q_depth; 1194 unsigned q_size_aligned = roundup(q_depth * entry_size, 1195 dev->ctrl.page_size); 1196 1197 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1198 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1199 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1200 q_depth = div_u64(mem_per_q, entry_size); 1201 1202 /* 1203 * Ensure the reduced q_depth is above some threshold where it 1204 * would be better to map queues in system memory with the 1205 * original depth 1206 */ 1207 if (q_depth < 64) 1208 return -ENOMEM; 1209 } 1210 1211 return q_depth; 1212 } 1213 1214 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1215 int qid, int depth) 1216 { 1217 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1218 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1219 dev->ctrl.page_size); 1220 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1221 nvmeq->sq_cmds_io = dev->cmb + offset; 1222 } else { 1223 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1224 &nvmeq->sq_dma_addr, GFP_KERNEL); 1225 if (!nvmeq->sq_cmds) 1226 return -ENOMEM; 1227 } 1228 1229 return 0; 1230 } 1231 1232 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1233 int depth, int node) 1234 { 1235 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1236 node); 1237 if (!nvmeq) 1238 return NULL; 1239 1240 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1241 &nvmeq->cq_dma_addr, GFP_KERNEL); 1242 if (!nvmeq->cqes) 1243 goto free_nvmeq; 1244 1245 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1246 goto free_cqdma; 1247 1248 nvmeq->q_dmadev = dev->dev; 1249 nvmeq->dev = dev; 1250 spin_lock_init(&nvmeq->q_lock); 1251 nvmeq->cq_head = 0; 1252 nvmeq->cq_phase = 1; 1253 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1254 nvmeq->q_depth = depth; 1255 nvmeq->qid = qid; 1256 nvmeq->cq_vector = -1; 1257 dev->queues[qid] = nvmeq; 1258 dev->ctrl.queue_count++; 1259 1260 return nvmeq; 1261 1262 free_cqdma: 1263 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1264 nvmeq->cq_dma_addr); 1265 free_nvmeq: 1266 kfree(nvmeq); 1267 return NULL; 1268 } 1269 1270 static int queue_request_irq(struct nvme_queue *nvmeq) 1271 { 1272 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1273 int nr = nvmeq->dev->ctrl.instance; 1274 1275 if (use_threaded_interrupts) { 1276 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1277 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1278 } else { 1279 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1280 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1281 } 1282 } 1283 1284 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1285 { 1286 struct nvme_dev *dev = nvmeq->dev; 1287 1288 spin_lock_irq(&nvmeq->q_lock); 1289 nvmeq->sq_tail = 0; 1290 nvmeq->cq_head = 0; 1291 nvmeq->cq_phase = 1; 1292 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1293 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1294 nvme_dbbuf_init(dev, nvmeq, qid); 1295 dev->online_queues++; 1296 spin_unlock_irq(&nvmeq->q_lock); 1297 } 1298 1299 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1300 { 1301 struct nvme_dev *dev = nvmeq->dev; 1302 int result; 1303 1304 nvmeq->cq_vector = qid - 1; 1305 result = adapter_alloc_cq(dev, qid, nvmeq); 1306 if (result < 0) 1307 return result; 1308 1309 result = adapter_alloc_sq(dev, qid, nvmeq); 1310 if (result < 0) 1311 goto release_cq; 1312 1313 result = queue_request_irq(nvmeq); 1314 if (result < 0) 1315 goto release_sq; 1316 1317 nvme_init_queue(nvmeq, qid); 1318 return result; 1319 1320 release_sq: 1321 adapter_delete_sq(dev, qid); 1322 release_cq: 1323 adapter_delete_cq(dev, qid); 1324 return result; 1325 } 1326 1327 static const struct blk_mq_ops nvme_mq_admin_ops = { 1328 .queue_rq = nvme_queue_rq, 1329 .complete = nvme_pci_complete_rq, 1330 .init_hctx = nvme_admin_init_hctx, 1331 .exit_hctx = nvme_admin_exit_hctx, 1332 .init_request = nvme_init_request, 1333 .timeout = nvme_timeout, 1334 }; 1335 1336 static const struct blk_mq_ops nvme_mq_ops = { 1337 .queue_rq = nvme_queue_rq, 1338 .complete = nvme_pci_complete_rq, 1339 .init_hctx = nvme_init_hctx, 1340 .init_request = nvme_init_request, 1341 .map_queues = nvme_pci_map_queues, 1342 .timeout = nvme_timeout, 1343 .poll = nvme_poll, 1344 }; 1345 1346 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1347 { 1348 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1349 /* 1350 * If the controller was reset during removal, it's possible 1351 * user requests may be waiting on a stopped queue. Start the 1352 * queue to flush these to completion. 1353 */ 1354 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1355 blk_cleanup_queue(dev->ctrl.admin_q); 1356 blk_mq_free_tag_set(&dev->admin_tagset); 1357 } 1358 } 1359 1360 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1361 { 1362 if (!dev->ctrl.admin_q) { 1363 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1364 dev->admin_tagset.nr_hw_queues = 1; 1365 1366 /* 1367 * Subtract one to leave an empty queue entry for 'Full Queue' 1368 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1369 */ 1370 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1371 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1372 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1373 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1374 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1375 dev->admin_tagset.driver_data = dev; 1376 1377 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1378 return -ENOMEM; 1379 1380 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1381 if (IS_ERR(dev->ctrl.admin_q)) { 1382 blk_mq_free_tag_set(&dev->admin_tagset); 1383 return -ENOMEM; 1384 } 1385 if (!blk_get_queue(dev->ctrl.admin_q)) { 1386 nvme_dev_remove_admin(dev); 1387 dev->ctrl.admin_q = NULL; 1388 return -ENODEV; 1389 } 1390 } else 1391 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1392 1393 return 0; 1394 } 1395 1396 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1397 { 1398 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1399 } 1400 1401 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1402 { 1403 struct pci_dev *pdev = to_pci_dev(dev->dev); 1404 1405 if (size <= dev->bar_mapped_size) 1406 return 0; 1407 if (size > pci_resource_len(pdev, 0)) 1408 return -ENOMEM; 1409 if (dev->bar) 1410 iounmap(dev->bar); 1411 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1412 if (!dev->bar) { 1413 dev->bar_mapped_size = 0; 1414 return -ENOMEM; 1415 } 1416 dev->bar_mapped_size = size; 1417 dev->dbs = dev->bar + NVME_REG_DBS; 1418 1419 return 0; 1420 } 1421 1422 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1423 { 1424 int result; 1425 u32 aqa; 1426 struct nvme_queue *nvmeq; 1427 1428 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1429 if (result < 0) 1430 return result; 1431 1432 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1433 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1434 1435 if (dev->subsystem && 1436 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1437 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1438 1439 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1440 if (result < 0) 1441 return result; 1442 1443 nvmeq = dev->queues[0]; 1444 if (!nvmeq) { 1445 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1446 dev_to_node(dev->dev)); 1447 if (!nvmeq) 1448 return -ENOMEM; 1449 } 1450 1451 aqa = nvmeq->q_depth - 1; 1452 aqa |= aqa << 16; 1453 1454 writel(aqa, dev->bar + NVME_REG_AQA); 1455 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1456 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1457 1458 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1459 if (result) 1460 return result; 1461 1462 nvmeq->cq_vector = 0; 1463 result = queue_request_irq(nvmeq); 1464 if (result) { 1465 nvmeq->cq_vector = -1; 1466 return result; 1467 } 1468 1469 return result; 1470 } 1471 1472 static int nvme_create_io_queues(struct nvme_dev *dev) 1473 { 1474 unsigned i, max; 1475 int ret = 0; 1476 1477 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1478 /* vector == qid - 1, match nvme_create_queue */ 1479 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1480 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1481 ret = -ENOMEM; 1482 break; 1483 } 1484 } 1485 1486 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1487 for (i = dev->online_queues; i <= max; i++) { 1488 ret = nvme_create_queue(dev->queues[i], i); 1489 if (ret) 1490 break; 1491 } 1492 1493 /* 1494 * Ignore failing Create SQ/CQ commands, we can continue with less 1495 * than the desired aount of queues, and even a controller without 1496 * I/O queues an still be used to issue admin commands. This might 1497 * be useful to upgrade a buggy firmware for example. 1498 */ 1499 return ret >= 0 ? 0 : ret; 1500 } 1501 1502 static ssize_t nvme_cmb_show(struct device *dev, 1503 struct device_attribute *attr, 1504 char *buf) 1505 { 1506 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1507 1508 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1509 ndev->cmbloc, ndev->cmbsz); 1510 } 1511 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1512 1513 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1514 { 1515 u64 szu, size, offset; 1516 resource_size_t bar_size; 1517 struct pci_dev *pdev = to_pci_dev(dev->dev); 1518 void __iomem *cmb; 1519 dma_addr_t dma_addr; 1520 1521 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1522 if (!(NVME_CMB_SZ(dev->cmbsz))) 1523 return NULL; 1524 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1525 1526 if (!use_cmb_sqes) 1527 return NULL; 1528 1529 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1530 size = szu * NVME_CMB_SZ(dev->cmbsz); 1531 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1532 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1533 1534 if (offset > bar_size) 1535 return NULL; 1536 1537 /* 1538 * Controllers may support a CMB size larger than their BAR, 1539 * for example, due to being behind a bridge. Reduce the CMB to 1540 * the reported size of the BAR 1541 */ 1542 if (size > bar_size - offset) 1543 size = bar_size - offset; 1544 1545 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1546 cmb = ioremap_wc(dma_addr, size); 1547 if (!cmb) 1548 return NULL; 1549 1550 dev->cmb_dma_addr = dma_addr; 1551 dev->cmb_size = size; 1552 return cmb; 1553 } 1554 1555 static inline void nvme_release_cmb(struct nvme_dev *dev) 1556 { 1557 if (dev->cmb) { 1558 iounmap(dev->cmb); 1559 dev->cmb = NULL; 1560 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1561 &dev_attr_cmb.attr, NULL); 1562 dev->cmbsz = 0; 1563 } 1564 } 1565 1566 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1567 { 1568 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs); 1569 struct nvme_command c; 1570 u64 dma_addr; 1571 int ret; 1572 1573 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len, 1574 DMA_TO_DEVICE); 1575 if (dma_mapping_error(dev->dev, dma_addr)) 1576 return -ENOMEM; 1577 1578 memset(&c, 0, sizeof(c)); 1579 c.features.opcode = nvme_admin_set_features; 1580 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1581 c.features.dword11 = cpu_to_le32(bits); 1582 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1583 ilog2(dev->ctrl.page_size)); 1584 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1585 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1586 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1587 1588 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1589 if (ret) { 1590 dev_warn(dev->ctrl.device, 1591 "failed to set host mem (err %d, flags %#x).\n", 1592 ret, bits); 1593 } 1594 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE); 1595 return ret; 1596 } 1597 1598 static void nvme_free_host_mem(struct nvme_dev *dev) 1599 { 1600 int i; 1601 1602 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1603 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1604 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1605 1606 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i], 1607 le64_to_cpu(desc->addr)); 1608 } 1609 1610 kfree(dev->host_mem_desc_bufs); 1611 dev->host_mem_desc_bufs = NULL; 1612 kfree(dev->host_mem_descs); 1613 dev->host_mem_descs = NULL; 1614 } 1615 1616 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1617 { 1618 struct nvme_host_mem_buf_desc *descs; 1619 u32 chunk_size, max_entries, len; 1620 int i = 0; 1621 void **bufs; 1622 u64 size = 0, tmp; 1623 1624 /* start big and work our way down */ 1625 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER); 1626 retry: 1627 tmp = (preferred + chunk_size - 1); 1628 do_div(tmp, chunk_size); 1629 max_entries = tmp; 1630 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL); 1631 if (!descs) 1632 goto out; 1633 1634 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1635 if (!bufs) 1636 goto out_free_descs; 1637 1638 for (size = 0; size < preferred; size += len) { 1639 dma_addr_t dma_addr; 1640 1641 len = min_t(u64, chunk_size, preferred - size); 1642 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1643 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1644 if (!bufs[i]) 1645 break; 1646 1647 descs[i].addr = cpu_to_le64(dma_addr); 1648 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1649 i++; 1650 } 1651 1652 if (!size || (min && size < min)) { 1653 dev_warn(dev->ctrl.device, 1654 "failed to allocate host memory buffer.\n"); 1655 goto out_free_bufs; 1656 } 1657 1658 dev_info(dev->ctrl.device, 1659 "allocated %lld MiB host memory buffer.\n", 1660 size >> ilog2(SZ_1M)); 1661 dev->nr_host_mem_descs = i; 1662 dev->host_mem_size = size; 1663 dev->host_mem_descs = descs; 1664 dev->host_mem_desc_bufs = bufs; 1665 return 0; 1666 1667 out_free_bufs: 1668 while (--i >= 0) { 1669 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1670 1671 dma_free_coherent(dev->dev, size, bufs[i], 1672 le64_to_cpu(descs[i].addr)); 1673 } 1674 1675 kfree(bufs); 1676 out_free_descs: 1677 kfree(descs); 1678 out: 1679 /* try a smaller chunk size if we failed early */ 1680 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) { 1681 chunk_size /= 2; 1682 goto retry; 1683 } 1684 dev->host_mem_descs = NULL; 1685 return -ENOMEM; 1686 } 1687 1688 static void nvme_setup_host_mem(struct nvme_dev *dev) 1689 { 1690 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1691 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1692 u64 min = (u64)dev->ctrl.hmmin * 4096; 1693 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1694 1695 preferred = min(preferred, max); 1696 if (min > max) { 1697 dev_warn(dev->ctrl.device, 1698 "min host memory (%lld MiB) above limit (%d MiB).\n", 1699 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1700 nvme_free_host_mem(dev); 1701 return; 1702 } 1703 1704 /* 1705 * If we already have a buffer allocated check if we can reuse it. 1706 */ 1707 if (dev->host_mem_descs) { 1708 if (dev->host_mem_size >= min) 1709 enable_bits |= NVME_HOST_MEM_RETURN; 1710 else 1711 nvme_free_host_mem(dev); 1712 } 1713 1714 if (!dev->host_mem_descs) { 1715 if (nvme_alloc_host_mem(dev, min, preferred)) 1716 return; 1717 } 1718 1719 if (nvme_set_host_mem(dev, enable_bits)) 1720 nvme_free_host_mem(dev); 1721 } 1722 1723 static int nvme_setup_io_queues(struct nvme_dev *dev) 1724 { 1725 struct nvme_queue *adminq = dev->queues[0]; 1726 struct pci_dev *pdev = to_pci_dev(dev->dev); 1727 int result, nr_io_queues; 1728 unsigned long size; 1729 1730 nr_io_queues = num_present_cpus(); 1731 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1732 if (result < 0) 1733 return result; 1734 1735 if (nr_io_queues == 0) 1736 return 0; 1737 1738 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1739 result = nvme_cmb_qdepth(dev, nr_io_queues, 1740 sizeof(struct nvme_command)); 1741 if (result > 0) 1742 dev->q_depth = result; 1743 else 1744 nvme_release_cmb(dev); 1745 } 1746 1747 do { 1748 size = db_bar_size(dev, nr_io_queues); 1749 result = nvme_remap_bar(dev, size); 1750 if (!result) 1751 break; 1752 if (!--nr_io_queues) 1753 return -ENOMEM; 1754 } while (1); 1755 adminq->q_db = dev->dbs; 1756 1757 /* Deregister the admin queue's interrupt */ 1758 pci_free_irq(pdev, 0, adminq); 1759 1760 /* 1761 * If we enable msix early due to not intx, disable it again before 1762 * setting up the full range we need. 1763 */ 1764 pci_free_irq_vectors(pdev); 1765 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1766 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1767 if (nr_io_queues <= 0) 1768 return -EIO; 1769 dev->max_qid = nr_io_queues; 1770 1771 /* 1772 * Should investigate if there's a performance win from allocating 1773 * more queues than interrupt vectors; it might allow the submission 1774 * path to scale better, even if the receive path is limited by the 1775 * number of interrupts. 1776 */ 1777 1778 result = queue_request_irq(adminq); 1779 if (result) { 1780 adminq->cq_vector = -1; 1781 return result; 1782 } 1783 return nvme_create_io_queues(dev); 1784 } 1785 1786 static void nvme_del_queue_end(struct request *req, blk_status_t error) 1787 { 1788 struct nvme_queue *nvmeq = req->end_io_data; 1789 1790 blk_mq_free_request(req); 1791 complete(&nvmeq->dev->ioq_wait); 1792 } 1793 1794 static void nvme_del_cq_end(struct request *req, blk_status_t error) 1795 { 1796 struct nvme_queue *nvmeq = req->end_io_data; 1797 1798 if (!error) { 1799 unsigned long flags; 1800 1801 /* 1802 * We might be called with the AQ q_lock held 1803 * and the I/O queue q_lock should always 1804 * nest inside the AQ one. 1805 */ 1806 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1807 SINGLE_DEPTH_NESTING); 1808 nvme_process_cq(nvmeq); 1809 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1810 } 1811 1812 nvme_del_queue_end(req, error); 1813 } 1814 1815 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1816 { 1817 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1818 struct request *req; 1819 struct nvme_command cmd; 1820 1821 memset(&cmd, 0, sizeof(cmd)); 1822 cmd.delete_queue.opcode = opcode; 1823 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1824 1825 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1826 if (IS_ERR(req)) 1827 return PTR_ERR(req); 1828 1829 req->timeout = ADMIN_TIMEOUT; 1830 req->end_io_data = nvmeq; 1831 1832 blk_execute_rq_nowait(q, NULL, req, false, 1833 opcode == nvme_admin_delete_cq ? 1834 nvme_del_cq_end : nvme_del_queue_end); 1835 return 0; 1836 } 1837 1838 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1839 { 1840 int pass; 1841 unsigned long timeout; 1842 u8 opcode = nvme_admin_delete_sq; 1843 1844 for (pass = 0; pass < 2; pass++) { 1845 int sent = 0, i = queues; 1846 1847 reinit_completion(&dev->ioq_wait); 1848 retry: 1849 timeout = ADMIN_TIMEOUT; 1850 for (; i > 0; i--, sent++) 1851 if (nvme_delete_queue(dev->queues[i], opcode)) 1852 break; 1853 1854 while (sent--) { 1855 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1856 if (timeout == 0) 1857 return; 1858 if (i) 1859 goto retry; 1860 } 1861 opcode = nvme_admin_delete_cq; 1862 } 1863 } 1864 1865 /* 1866 * Return: error value if an error occurred setting up the queues or calling 1867 * Identify Device. 0 if these succeeded, even if adding some of the 1868 * namespaces failed. At the moment, these failures are silent. TBD which 1869 * failures should be reported. 1870 */ 1871 static int nvme_dev_add(struct nvme_dev *dev) 1872 { 1873 if (!dev->ctrl.tagset) { 1874 dev->tagset.ops = &nvme_mq_ops; 1875 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1876 dev->tagset.timeout = NVME_IO_TIMEOUT; 1877 dev->tagset.numa_node = dev_to_node(dev->dev); 1878 dev->tagset.queue_depth = 1879 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1880 dev->tagset.cmd_size = nvme_cmd_size(dev); 1881 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1882 dev->tagset.driver_data = dev; 1883 1884 if (blk_mq_alloc_tag_set(&dev->tagset)) 1885 return 0; 1886 dev->ctrl.tagset = &dev->tagset; 1887 1888 nvme_dbbuf_set(dev); 1889 } else { 1890 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1891 1892 /* Free previously allocated queues that are no longer usable */ 1893 nvme_free_queues(dev, dev->online_queues); 1894 } 1895 1896 return 0; 1897 } 1898 1899 static int nvme_pci_enable(struct nvme_dev *dev) 1900 { 1901 int result = -ENOMEM; 1902 struct pci_dev *pdev = to_pci_dev(dev->dev); 1903 1904 if (pci_enable_device_mem(pdev)) 1905 return result; 1906 1907 pci_set_master(pdev); 1908 1909 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1910 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1911 goto disable; 1912 1913 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1914 result = -ENODEV; 1915 goto disable; 1916 } 1917 1918 /* 1919 * Some devices and/or platforms don't advertise or work with INTx 1920 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1921 * adjust this later. 1922 */ 1923 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1924 if (result < 0) 1925 return result; 1926 1927 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1928 1929 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 1930 io_queue_depth); 1931 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 1932 dev->dbs = dev->bar + 4096; 1933 1934 /* 1935 * Temporary fix for the Apple controller found in the MacBook8,1 and 1936 * some MacBook7,1 to avoid controller resets and data loss. 1937 */ 1938 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1939 dev->q_depth = 2; 1940 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 1941 "set queue depth=%u to work around controller resets\n", 1942 dev->q_depth); 1943 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 1944 (pdev->device == 0xa821 || pdev->device == 0xa822) && 1945 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 1946 dev->q_depth = 64; 1947 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 1948 "set queue depth=%u\n", dev->q_depth); 1949 } 1950 1951 /* 1952 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1953 * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group 1954 * has no name we can pass NULL as final argument to 1955 * sysfs_add_file_to_group. 1956 */ 1957 1958 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1959 dev->cmb = nvme_map_cmb(dev); 1960 if (dev->cmb) { 1961 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1962 &dev_attr_cmb.attr, NULL)) 1963 dev_warn(dev->ctrl.device, 1964 "failed to add sysfs attribute for CMB\n"); 1965 } 1966 } 1967 1968 pci_enable_pcie_error_reporting(pdev); 1969 pci_save_state(pdev); 1970 return 0; 1971 1972 disable: 1973 pci_disable_device(pdev); 1974 return result; 1975 } 1976 1977 static void nvme_dev_unmap(struct nvme_dev *dev) 1978 { 1979 if (dev->bar) 1980 iounmap(dev->bar); 1981 pci_release_mem_regions(to_pci_dev(dev->dev)); 1982 } 1983 1984 static void nvme_pci_disable(struct nvme_dev *dev) 1985 { 1986 struct pci_dev *pdev = to_pci_dev(dev->dev); 1987 1988 nvme_release_cmb(dev); 1989 pci_free_irq_vectors(pdev); 1990 1991 if (pci_is_enabled(pdev)) { 1992 pci_disable_pcie_error_reporting(pdev); 1993 pci_disable_device(pdev); 1994 } 1995 } 1996 1997 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1998 { 1999 int i, queues; 2000 bool dead = true; 2001 struct pci_dev *pdev = to_pci_dev(dev->dev); 2002 2003 mutex_lock(&dev->shutdown_lock); 2004 if (pci_is_enabled(pdev)) { 2005 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2006 2007 if (dev->ctrl.state == NVME_CTRL_LIVE || 2008 dev->ctrl.state == NVME_CTRL_RESETTING) 2009 nvme_start_freeze(&dev->ctrl); 2010 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2011 pdev->error_state != pci_channel_io_normal); 2012 } 2013 2014 /* 2015 * Give the controller a chance to complete all entered requests if 2016 * doing a safe shutdown. 2017 */ 2018 if (!dead) { 2019 if (shutdown) 2020 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2021 2022 /* 2023 * If the controller is still alive tell it to stop using the 2024 * host memory buffer. In theory the shutdown / reset should 2025 * make sure that it doesn't access the host memoery anymore, 2026 * but I'd rather be safe than sorry.. 2027 */ 2028 if (dev->host_mem_descs) 2029 nvme_set_host_mem(dev, 0); 2030 2031 } 2032 nvme_stop_queues(&dev->ctrl); 2033 2034 queues = dev->online_queues - 1; 2035 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 2036 nvme_suspend_queue(dev->queues[i]); 2037 2038 if (dead) { 2039 /* A device might become IO incapable very soon during 2040 * probe, before the admin queue is configured. Thus, 2041 * queue_count can be 0 here. 2042 */ 2043 if (dev->ctrl.queue_count) 2044 nvme_suspend_queue(dev->queues[0]); 2045 } else { 2046 nvme_disable_io_queues(dev, queues); 2047 nvme_disable_admin_queue(dev, shutdown); 2048 } 2049 nvme_pci_disable(dev); 2050 2051 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2052 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2053 2054 /* 2055 * The driver will not be starting up queues again if shutting down so 2056 * must flush all entered requests to their failed completion to avoid 2057 * deadlocking blk-mq hot-cpu notifier. 2058 */ 2059 if (shutdown) 2060 nvme_start_queues(&dev->ctrl); 2061 mutex_unlock(&dev->shutdown_lock); 2062 } 2063 2064 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2065 { 2066 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2067 PAGE_SIZE, PAGE_SIZE, 0); 2068 if (!dev->prp_page_pool) 2069 return -ENOMEM; 2070 2071 /* Optimisation for I/Os between 4k and 128k */ 2072 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2073 256, 256, 0); 2074 if (!dev->prp_small_pool) { 2075 dma_pool_destroy(dev->prp_page_pool); 2076 return -ENOMEM; 2077 } 2078 return 0; 2079 } 2080 2081 static void nvme_release_prp_pools(struct nvme_dev *dev) 2082 { 2083 dma_pool_destroy(dev->prp_page_pool); 2084 dma_pool_destroy(dev->prp_small_pool); 2085 } 2086 2087 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2088 { 2089 struct nvme_dev *dev = to_nvme_dev(ctrl); 2090 2091 nvme_dbbuf_dma_free(dev); 2092 put_device(dev->dev); 2093 if (dev->tagset.tags) 2094 blk_mq_free_tag_set(&dev->tagset); 2095 if (dev->ctrl.admin_q) 2096 blk_put_queue(dev->ctrl.admin_q); 2097 kfree(dev->queues); 2098 free_opal_dev(dev->ctrl.opal_dev); 2099 kfree(dev); 2100 } 2101 2102 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 2103 { 2104 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 2105 2106 kref_get(&dev->ctrl.kref); 2107 nvme_dev_disable(dev, false); 2108 if (!schedule_work(&dev->remove_work)) 2109 nvme_put_ctrl(&dev->ctrl); 2110 } 2111 2112 static void nvme_reset_work(struct work_struct *work) 2113 { 2114 struct nvme_dev *dev = 2115 container_of(work, struct nvme_dev, ctrl.reset_work); 2116 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2117 int result = -ENODEV; 2118 2119 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) 2120 goto out; 2121 2122 /* 2123 * If we're called to reset a live controller first shut it down before 2124 * moving on. 2125 */ 2126 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2127 nvme_dev_disable(dev, false); 2128 2129 result = nvme_pci_enable(dev); 2130 if (result) 2131 goto out; 2132 2133 result = nvme_pci_configure_admin_queue(dev); 2134 if (result) 2135 goto out; 2136 2137 nvme_init_queue(dev->queues[0], 0); 2138 result = nvme_alloc_admin_tags(dev); 2139 if (result) 2140 goto out; 2141 2142 result = nvme_init_identify(&dev->ctrl); 2143 if (result) 2144 goto out; 2145 2146 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2147 if (!dev->ctrl.opal_dev) 2148 dev->ctrl.opal_dev = 2149 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2150 else if (was_suspend) 2151 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2152 } else { 2153 free_opal_dev(dev->ctrl.opal_dev); 2154 dev->ctrl.opal_dev = NULL; 2155 } 2156 2157 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2158 result = nvme_dbbuf_dma_alloc(dev); 2159 if (result) 2160 dev_warn(dev->dev, 2161 "unable to allocate dma for dbbuf\n"); 2162 } 2163 2164 if (dev->ctrl.hmpre) 2165 nvme_setup_host_mem(dev); 2166 2167 result = nvme_setup_io_queues(dev); 2168 if (result) 2169 goto out; 2170 2171 /* 2172 * Keep the controller around but remove all namespaces if we don't have 2173 * any working I/O queue. 2174 */ 2175 if (dev->online_queues < 2) { 2176 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2177 nvme_kill_queues(&dev->ctrl); 2178 nvme_remove_namespaces(&dev->ctrl); 2179 } else { 2180 nvme_start_queues(&dev->ctrl); 2181 nvme_wait_freeze(&dev->ctrl); 2182 nvme_dev_add(dev); 2183 nvme_unfreeze(&dev->ctrl); 2184 } 2185 2186 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2187 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 2188 goto out; 2189 } 2190 2191 nvme_start_ctrl(&dev->ctrl); 2192 return; 2193 2194 out: 2195 nvme_remove_dead_ctrl(dev, result); 2196 } 2197 2198 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2199 { 2200 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2201 struct pci_dev *pdev = to_pci_dev(dev->dev); 2202 2203 nvme_kill_queues(&dev->ctrl); 2204 if (pci_get_drvdata(pdev)) 2205 device_release_driver(&pdev->dev); 2206 nvme_put_ctrl(&dev->ctrl); 2207 } 2208 2209 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2210 { 2211 *val = readl(to_nvme_dev(ctrl)->bar + off); 2212 return 0; 2213 } 2214 2215 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2216 { 2217 writel(val, to_nvme_dev(ctrl)->bar + off); 2218 return 0; 2219 } 2220 2221 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2222 { 2223 *val = readq(to_nvme_dev(ctrl)->bar + off); 2224 return 0; 2225 } 2226 2227 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2228 .name = "pcie", 2229 .module = THIS_MODULE, 2230 .flags = NVME_F_METADATA_SUPPORTED, 2231 .reg_read32 = nvme_pci_reg_read32, 2232 .reg_write32 = nvme_pci_reg_write32, 2233 .reg_read64 = nvme_pci_reg_read64, 2234 .free_ctrl = nvme_pci_free_ctrl, 2235 .submit_async_event = nvme_pci_submit_async_event, 2236 }; 2237 2238 static int nvme_dev_map(struct nvme_dev *dev) 2239 { 2240 struct pci_dev *pdev = to_pci_dev(dev->dev); 2241 2242 if (pci_request_mem_regions(pdev, "nvme")) 2243 return -ENODEV; 2244 2245 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2246 goto release; 2247 2248 return 0; 2249 release: 2250 pci_release_mem_regions(pdev); 2251 return -ENODEV; 2252 } 2253 2254 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev) 2255 { 2256 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2257 /* 2258 * Several Samsung devices seem to drop off the PCIe bus 2259 * randomly when APST is on and uses the deepest sleep state. 2260 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2261 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2262 * 950 PRO 256GB", but it seems to be restricted to two Dell 2263 * laptops. 2264 */ 2265 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2266 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2267 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2268 return NVME_QUIRK_NO_DEEPEST_PS; 2269 } 2270 2271 return 0; 2272 } 2273 2274 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2275 { 2276 int node, result = -ENOMEM; 2277 struct nvme_dev *dev; 2278 unsigned long quirks = id->driver_data; 2279 2280 node = dev_to_node(&pdev->dev); 2281 if (node == NUMA_NO_NODE) 2282 set_dev_node(&pdev->dev, first_memory_node); 2283 2284 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2285 if (!dev) 2286 return -ENOMEM; 2287 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2288 GFP_KERNEL, node); 2289 if (!dev->queues) 2290 goto free; 2291 2292 dev->dev = get_device(&pdev->dev); 2293 pci_set_drvdata(pdev, dev); 2294 2295 result = nvme_dev_map(dev); 2296 if (result) 2297 goto put_pci; 2298 2299 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2300 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2301 mutex_init(&dev->shutdown_lock); 2302 init_completion(&dev->ioq_wait); 2303 2304 result = nvme_setup_prp_pools(dev); 2305 if (result) 2306 goto unmap; 2307 2308 quirks |= check_dell_samsung_bug(pdev); 2309 2310 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2311 quirks); 2312 if (result) 2313 goto release_pools; 2314 2315 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING); 2316 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2317 2318 queue_work(nvme_wq, &dev->ctrl.reset_work); 2319 return 0; 2320 2321 release_pools: 2322 nvme_release_prp_pools(dev); 2323 unmap: 2324 nvme_dev_unmap(dev); 2325 put_pci: 2326 put_device(dev->dev); 2327 free: 2328 kfree(dev->queues); 2329 kfree(dev); 2330 return result; 2331 } 2332 2333 static void nvme_reset_prepare(struct pci_dev *pdev) 2334 { 2335 struct nvme_dev *dev = pci_get_drvdata(pdev); 2336 nvme_dev_disable(dev, false); 2337 } 2338 2339 static void nvme_reset_done(struct pci_dev *pdev) 2340 { 2341 struct nvme_dev *dev = pci_get_drvdata(pdev); 2342 nvme_reset_ctrl(&dev->ctrl); 2343 } 2344 2345 static void nvme_shutdown(struct pci_dev *pdev) 2346 { 2347 struct nvme_dev *dev = pci_get_drvdata(pdev); 2348 nvme_dev_disable(dev, true); 2349 } 2350 2351 /* 2352 * The driver's remove may be called on a device in a partially initialized 2353 * state. This function must not have any dependencies on the device state in 2354 * order to proceed. 2355 */ 2356 static void nvme_remove(struct pci_dev *pdev) 2357 { 2358 struct nvme_dev *dev = pci_get_drvdata(pdev); 2359 2360 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2361 2362 cancel_work_sync(&dev->ctrl.reset_work); 2363 pci_set_drvdata(pdev, NULL); 2364 2365 if (!pci_device_is_present(pdev)) { 2366 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2367 nvme_dev_disable(dev, false); 2368 } 2369 2370 flush_work(&dev->ctrl.reset_work); 2371 nvme_stop_ctrl(&dev->ctrl); 2372 nvme_remove_namespaces(&dev->ctrl); 2373 nvme_dev_disable(dev, true); 2374 nvme_free_host_mem(dev); 2375 nvme_dev_remove_admin(dev); 2376 nvme_free_queues(dev, 0); 2377 nvme_uninit_ctrl(&dev->ctrl); 2378 nvme_release_prp_pools(dev); 2379 nvme_dev_unmap(dev); 2380 nvme_put_ctrl(&dev->ctrl); 2381 } 2382 2383 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2384 { 2385 int ret = 0; 2386 2387 if (numvfs == 0) { 2388 if (pci_vfs_assigned(pdev)) { 2389 dev_warn(&pdev->dev, 2390 "Cannot disable SR-IOV VFs while assigned\n"); 2391 return -EPERM; 2392 } 2393 pci_disable_sriov(pdev); 2394 return 0; 2395 } 2396 2397 ret = pci_enable_sriov(pdev, numvfs); 2398 return ret ? ret : numvfs; 2399 } 2400 2401 #ifdef CONFIG_PM_SLEEP 2402 static int nvme_suspend(struct device *dev) 2403 { 2404 struct pci_dev *pdev = to_pci_dev(dev); 2405 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2406 2407 nvme_dev_disable(ndev, true); 2408 return 0; 2409 } 2410 2411 static int nvme_resume(struct device *dev) 2412 { 2413 struct pci_dev *pdev = to_pci_dev(dev); 2414 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2415 2416 nvme_reset_ctrl(&ndev->ctrl); 2417 return 0; 2418 } 2419 #endif 2420 2421 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2422 2423 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2424 pci_channel_state_t state) 2425 { 2426 struct nvme_dev *dev = pci_get_drvdata(pdev); 2427 2428 /* 2429 * A frozen channel requires a reset. When detected, this method will 2430 * shutdown the controller to quiesce. The controller will be restarted 2431 * after the slot reset through driver's slot_reset callback. 2432 */ 2433 switch (state) { 2434 case pci_channel_io_normal: 2435 return PCI_ERS_RESULT_CAN_RECOVER; 2436 case pci_channel_io_frozen: 2437 dev_warn(dev->ctrl.device, 2438 "frozen state error detected, reset controller\n"); 2439 nvme_dev_disable(dev, false); 2440 return PCI_ERS_RESULT_NEED_RESET; 2441 case pci_channel_io_perm_failure: 2442 dev_warn(dev->ctrl.device, 2443 "failure state error detected, request disconnect\n"); 2444 return PCI_ERS_RESULT_DISCONNECT; 2445 } 2446 return PCI_ERS_RESULT_NEED_RESET; 2447 } 2448 2449 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2450 { 2451 struct nvme_dev *dev = pci_get_drvdata(pdev); 2452 2453 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2454 pci_restore_state(pdev); 2455 nvme_reset_ctrl(&dev->ctrl); 2456 return PCI_ERS_RESULT_RECOVERED; 2457 } 2458 2459 static void nvme_error_resume(struct pci_dev *pdev) 2460 { 2461 pci_cleanup_aer_uncorrect_error_status(pdev); 2462 } 2463 2464 static const struct pci_error_handlers nvme_err_handler = { 2465 .error_detected = nvme_error_detected, 2466 .slot_reset = nvme_slot_reset, 2467 .resume = nvme_error_resume, 2468 .reset_prepare = nvme_reset_prepare, 2469 .reset_done = nvme_reset_done, 2470 }; 2471 2472 static const struct pci_device_id nvme_id_table[] = { 2473 { PCI_VDEVICE(INTEL, 0x0953), 2474 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2475 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2476 { PCI_VDEVICE(INTEL, 0x0a53), 2477 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2478 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2479 { PCI_VDEVICE(INTEL, 0x0a54), 2480 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2481 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2482 { PCI_VDEVICE(INTEL, 0x0a55), 2483 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2484 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2485 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 2486 .driver_data = NVME_QUIRK_NO_DEEPEST_PS }, 2487 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2488 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2489 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2490 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2491 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2492 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2493 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 2494 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2495 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 2496 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2497 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2498 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2499 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2500 { 0, } 2501 }; 2502 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2503 2504 static struct pci_driver nvme_driver = { 2505 .name = "nvme", 2506 .id_table = nvme_id_table, 2507 .probe = nvme_probe, 2508 .remove = nvme_remove, 2509 .shutdown = nvme_shutdown, 2510 .driver = { 2511 .pm = &nvme_dev_pm_ops, 2512 }, 2513 .sriov_configure = nvme_pci_sriov_configure, 2514 .err_handler = &nvme_err_handler, 2515 }; 2516 2517 static int __init nvme_init(void) 2518 { 2519 return pci_register_driver(&nvme_driver); 2520 } 2521 2522 static void __exit nvme_exit(void) 2523 { 2524 pci_unregister_driver(&nvme_driver); 2525 _nvme_check_size(); 2526 } 2527 2528 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2529 MODULE_LICENSE("GPL"); 2530 MODULE_VERSION("1.0"); 2531 module_init(nvme_init); 2532 module_exit(nvme_exit); 2533