1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 782 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 783 return nvme_setup_prp_simple(dev, req, 784 &cmnd->rw, &bv); 785 786 if (nvmeq->qid && sgl_threshold && 787 nvme_ctrl_sgl_supported(&dev->ctrl)) 788 return nvme_setup_sgl_simple(dev, req, 789 &cmnd->rw, &bv); 790 } 791 } 792 793 iod->dma_len = 0; 794 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 795 if (!iod->sgt.sgl) 796 return BLK_STS_RESOURCE; 797 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 798 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 799 if (!iod->sgt.orig_nents) 800 goto out_free_sg; 801 802 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 803 DMA_ATTR_NO_WARN); 804 if (rc) { 805 if (rc == -EREMOTEIO) 806 ret = BLK_STS_TARGET; 807 goto out_free_sg; 808 } 809 810 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 811 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 812 else 813 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 814 if (ret != BLK_STS_OK) 815 goto out_unmap_sg; 816 return BLK_STS_OK; 817 818 out_unmap_sg: 819 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 820 out_free_sg: 821 mempool_free(iod->sgt.sgl, dev->iod_mempool); 822 return ret; 823 } 824 825 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 826 struct nvme_command *cmnd) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 830 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 831 rq_dma_dir(req), 0); 832 if (dma_mapping_error(dev->dev, iod->meta_dma)) 833 return BLK_STS_IOERR; 834 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 835 return BLK_STS_OK; 836 } 837 838 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 839 { 840 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 841 blk_status_t ret; 842 843 iod->aborted = false; 844 iod->nr_allocations = -1; 845 iod->sgt.nents = 0; 846 847 ret = nvme_setup_cmd(req->q->queuedata, req); 848 if (ret) 849 return ret; 850 851 if (blk_rq_nr_phys_segments(req)) { 852 ret = nvme_map_data(dev, req, &iod->cmd); 853 if (ret) 854 goto out_free_cmd; 855 } 856 857 if (blk_integrity_rq(req)) { 858 ret = nvme_map_metadata(dev, req, &iod->cmd); 859 if (ret) 860 goto out_unmap_data; 861 } 862 863 nvme_start_request(req); 864 return BLK_STS_OK; 865 out_unmap_data: 866 nvme_unmap_data(dev, req); 867 out_free_cmd: 868 nvme_cleanup_cmd(req); 869 return ret; 870 } 871 872 /* 873 * NOTE: ns is NULL when called on the admin queue. 874 */ 875 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 876 const struct blk_mq_queue_data *bd) 877 { 878 struct nvme_queue *nvmeq = hctx->driver_data; 879 struct nvme_dev *dev = nvmeq->dev; 880 struct request *req = bd->rq; 881 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 882 blk_status_t ret; 883 884 /* 885 * We should not need to do this, but we're still using this to 886 * ensure we can drain requests on a dying queue. 887 */ 888 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 889 return BLK_STS_IOERR; 890 891 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 892 return nvme_fail_nonready_command(&dev->ctrl, req); 893 894 ret = nvme_prep_rq(dev, req); 895 if (unlikely(ret)) 896 return ret; 897 spin_lock(&nvmeq->sq_lock); 898 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 899 nvme_write_sq_db(nvmeq, bd->last); 900 spin_unlock(&nvmeq->sq_lock); 901 return BLK_STS_OK; 902 } 903 904 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 905 { 906 spin_lock(&nvmeq->sq_lock); 907 while (!rq_list_empty(*rqlist)) { 908 struct request *req = rq_list_pop(rqlist); 909 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 910 911 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 912 } 913 nvme_write_sq_db(nvmeq, true); 914 spin_unlock(&nvmeq->sq_lock); 915 } 916 917 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 918 { 919 /* 920 * We should not need to do this, but we're still using this to 921 * ensure we can drain requests on a dying queue. 922 */ 923 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 924 return false; 925 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 926 return false; 927 928 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 929 } 930 931 static void nvme_queue_rqs(struct request **rqlist) 932 { 933 struct request *req, *next, *prev = NULL; 934 struct request *requeue_list = NULL; 935 936 rq_list_for_each_safe(rqlist, req, next) { 937 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 938 939 if (!nvme_prep_rq_batch(nvmeq, req)) { 940 /* detach 'req' and add to remainder list */ 941 rq_list_move(rqlist, &requeue_list, req, prev); 942 943 req = prev; 944 if (!req) 945 continue; 946 } 947 948 if (!next || req->mq_hctx != next->mq_hctx) { 949 /* detach rest of list, and submit */ 950 req->rq_next = NULL; 951 nvme_submit_cmds(nvmeq, rqlist); 952 *rqlist = next; 953 prev = NULL; 954 } else 955 prev = req; 956 } 957 958 *rqlist = requeue_list; 959 } 960 961 static __always_inline void nvme_pci_unmap_rq(struct request *req) 962 { 963 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 964 struct nvme_dev *dev = nvmeq->dev; 965 966 if (blk_integrity_rq(req)) { 967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 968 969 dma_unmap_page(dev->dev, iod->meta_dma, 970 rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); 971 } 972 973 if (blk_rq_nr_phys_segments(req)) 974 nvme_unmap_data(dev, req); 975 } 976 977 static void nvme_pci_complete_rq(struct request *req) 978 { 979 nvme_pci_unmap_rq(req); 980 nvme_complete_rq(req); 981 } 982 983 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 984 { 985 nvme_complete_batch(iob, nvme_pci_unmap_rq); 986 } 987 988 /* We read the CQE phase first to check if the rest of the entry is valid */ 989 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 990 { 991 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 992 993 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 994 } 995 996 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 997 { 998 u16 head = nvmeq->cq_head; 999 1000 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1001 nvmeq->dbbuf_cq_ei)) 1002 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1003 } 1004 1005 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1006 { 1007 if (!nvmeq->qid) 1008 return nvmeq->dev->admin_tagset.tags[0]; 1009 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1010 } 1011 1012 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1013 struct io_comp_batch *iob, u16 idx) 1014 { 1015 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1016 __u16 command_id = READ_ONCE(cqe->command_id); 1017 struct request *req; 1018 1019 /* 1020 * AEN requests are special as they don't time out and can 1021 * survive any kind of queue freeze and often don't respond to 1022 * aborts. We don't even bother to allocate a struct request 1023 * for them but rather special case them here. 1024 */ 1025 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1026 nvme_complete_async_event(&nvmeq->dev->ctrl, 1027 cqe->status, &cqe->result); 1028 return; 1029 } 1030 1031 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1032 if (unlikely(!req)) { 1033 dev_warn(nvmeq->dev->ctrl.device, 1034 "invalid id %d completed on queue %d\n", 1035 command_id, le16_to_cpu(cqe->sq_id)); 1036 return; 1037 } 1038 1039 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1040 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1041 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1042 nvme_pci_complete_batch)) 1043 nvme_pci_complete_rq(req); 1044 } 1045 1046 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1047 { 1048 u32 tmp = nvmeq->cq_head + 1; 1049 1050 if (tmp == nvmeq->q_depth) { 1051 nvmeq->cq_head = 0; 1052 nvmeq->cq_phase ^= 1; 1053 } else { 1054 nvmeq->cq_head = tmp; 1055 } 1056 } 1057 1058 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1059 struct io_comp_batch *iob) 1060 { 1061 int found = 0; 1062 1063 while (nvme_cqe_pending(nvmeq)) { 1064 found++; 1065 /* 1066 * load-load control dependency between phase and the rest of 1067 * the cqe requires a full read memory barrier 1068 */ 1069 dma_rmb(); 1070 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1071 nvme_update_cq_head(nvmeq); 1072 } 1073 1074 if (found) 1075 nvme_ring_cq_doorbell(nvmeq); 1076 return found; 1077 } 1078 1079 static irqreturn_t nvme_irq(int irq, void *data) 1080 { 1081 struct nvme_queue *nvmeq = data; 1082 DEFINE_IO_COMP_BATCH(iob); 1083 1084 if (nvme_poll_cq(nvmeq, &iob)) { 1085 if (!rq_list_empty(iob.req_list)) 1086 nvme_pci_complete_batch(&iob); 1087 return IRQ_HANDLED; 1088 } 1089 return IRQ_NONE; 1090 } 1091 1092 static irqreturn_t nvme_irq_check(int irq, void *data) 1093 { 1094 struct nvme_queue *nvmeq = data; 1095 1096 if (nvme_cqe_pending(nvmeq)) 1097 return IRQ_WAKE_THREAD; 1098 return IRQ_NONE; 1099 } 1100 1101 /* 1102 * Poll for completions for any interrupt driven queue 1103 * Can be called from any context. 1104 */ 1105 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1106 { 1107 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1108 1109 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1110 1111 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1112 nvme_poll_cq(nvmeq, NULL); 1113 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1114 } 1115 1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1117 { 1118 struct nvme_queue *nvmeq = hctx->driver_data; 1119 bool found; 1120 1121 if (!nvme_cqe_pending(nvmeq)) 1122 return 0; 1123 1124 spin_lock(&nvmeq->cq_poll_lock); 1125 found = nvme_poll_cq(nvmeq, iob); 1126 spin_unlock(&nvmeq->cq_poll_lock); 1127 1128 return found; 1129 } 1130 1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1132 { 1133 struct nvme_dev *dev = to_nvme_dev(ctrl); 1134 struct nvme_queue *nvmeq = &dev->queues[0]; 1135 struct nvme_command c = { }; 1136 1137 c.common.opcode = nvme_admin_async_event; 1138 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1139 1140 spin_lock(&nvmeq->sq_lock); 1141 nvme_sq_copy_cmd(nvmeq, &c); 1142 nvme_write_sq_db(nvmeq, true); 1143 spin_unlock(&nvmeq->sq_lock); 1144 } 1145 1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1147 { 1148 struct nvme_command c = { }; 1149 1150 c.delete_queue.opcode = opcode; 1151 c.delete_queue.qid = cpu_to_le16(id); 1152 1153 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1154 } 1155 1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1157 struct nvme_queue *nvmeq, s16 vector) 1158 { 1159 struct nvme_command c = { }; 1160 int flags = NVME_QUEUE_PHYS_CONTIG; 1161 1162 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1163 flags |= NVME_CQ_IRQ_ENABLED; 1164 1165 /* 1166 * Note: we (ab)use the fact that the prp fields survive if no data 1167 * is attached to the request. 1168 */ 1169 c.create_cq.opcode = nvme_admin_create_cq; 1170 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1171 c.create_cq.cqid = cpu_to_le16(qid); 1172 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1173 c.create_cq.cq_flags = cpu_to_le16(flags); 1174 c.create_cq.irq_vector = cpu_to_le16(vector); 1175 1176 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1177 } 1178 1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1180 struct nvme_queue *nvmeq) 1181 { 1182 struct nvme_ctrl *ctrl = &dev->ctrl; 1183 struct nvme_command c = { }; 1184 int flags = NVME_QUEUE_PHYS_CONTIG; 1185 1186 /* 1187 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1188 * set. Since URGENT priority is zeroes, it makes all queues 1189 * URGENT. 1190 */ 1191 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1192 flags |= NVME_SQ_PRIO_MEDIUM; 1193 1194 /* 1195 * Note: we (ab)use the fact that the prp fields survive if no data 1196 * is attached to the request. 1197 */ 1198 c.create_sq.opcode = nvme_admin_create_sq; 1199 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1200 c.create_sq.sqid = cpu_to_le16(qid); 1201 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1202 c.create_sq.sq_flags = cpu_to_le16(flags); 1203 c.create_sq.cqid = cpu_to_le16(qid); 1204 1205 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1206 } 1207 1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1209 { 1210 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1211 } 1212 1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1214 { 1215 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1216 } 1217 1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1219 { 1220 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1221 1222 dev_warn(nvmeq->dev->ctrl.device, 1223 "Abort status: 0x%x", nvme_req(req)->status); 1224 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1225 blk_mq_free_request(req); 1226 return RQ_END_IO_NONE; 1227 } 1228 1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1230 { 1231 /* If true, indicates loss of adapter communication, possibly by a 1232 * NVMe Subsystem reset. 1233 */ 1234 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1235 1236 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1237 switch (nvme_ctrl_state(&dev->ctrl)) { 1238 case NVME_CTRL_RESETTING: 1239 case NVME_CTRL_CONNECTING: 1240 return false; 1241 default: 1242 break; 1243 } 1244 1245 /* We shouldn't reset unless the controller is on fatal error state 1246 * _or_ if we lost the communication with it. 1247 */ 1248 if (!(csts & NVME_CSTS_CFS) && !nssro) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1255 { 1256 /* Read a config register to help see what died. */ 1257 u16 pci_status; 1258 int result; 1259 1260 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1261 &pci_status); 1262 if (result == PCIBIOS_SUCCESSFUL) 1263 dev_warn(dev->ctrl.device, 1264 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1265 csts, pci_status); 1266 else 1267 dev_warn(dev->ctrl.device, 1268 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1269 csts, result); 1270 1271 if (csts != ~0) 1272 return; 1273 1274 dev_warn(dev->ctrl.device, 1275 "Does your device have a faulty power saving mode enabled?\n"); 1276 dev_warn(dev->ctrl.device, 1277 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1278 } 1279 1280 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1281 { 1282 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1283 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1284 struct nvme_dev *dev = nvmeq->dev; 1285 struct request *abort_req; 1286 struct nvme_command cmd = { }; 1287 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1288 u8 opcode; 1289 1290 if (nvme_state_terminal(&dev->ctrl)) 1291 goto disable; 1292 1293 /* If PCI error recovery process is happening, we cannot reset or 1294 * the recovery mechanism will surely fail. 1295 */ 1296 mb(); 1297 if (pci_channel_offline(to_pci_dev(dev->dev))) 1298 return BLK_EH_RESET_TIMER; 1299 1300 /* 1301 * Reset immediately if the controller is failed 1302 */ 1303 if (nvme_should_reset(dev, csts)) { 1304 nvme_warn_reset(dev, csts); 1305 goto disable; 1306 } 1307 1308 /* 1309 * Did we miss an interrupt? 1310 */ 1311 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1312 nvme_poll(req->mq_hctx, NULL); 1313 else 1314 nvme_poll_irqdisable(nvmeq); 1315 1316 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1317 dev_warn(dev->ctrl.device, 1318 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1319 req->tag, nvme_cid(req), nvmeq->qid); 1320 return BLK_EH_DONE; 1321 } 1322 1323 /* 1324 * Shutdown immediately if controller times out while starting. The 1325 * reset work will see the pci device disabled when it gets the forced 1326 * cancellation error. All outstanding requests are completed on 1327 * shutdown, so we return BLK_EH_DONE. 1328 */ 1329 switch (nvme_ctrl_state(&dev->ctrl)) { 1330 case NVME_CTRL_CONNECTING: 1331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1332 fallthrough; 1333 case NVME_CTRL_DELETING: 1334 dev_warn_ratelimited(dev->ctrl.device, 1335 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1336 req->tag, nvme_cid(req), nvmeq->qid); 1337 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1338 nvme_dev_disable(dev, true); 1339 return BLK_EH_DONE; 1340 case NVME_CTRL_RESETTING: 1341 return BLK_EH_RESET_TIMER; 1342 default: 1343 break; 1344 } 1345 1346 /* 1347 * Shutdown the controller immediately and schedule a reset if the 1348 * command was already aborted once before and still hasn't been 1349 * returned to the driver, or if this is the admin queue. 1350 */ 1351 opcode = nvme_req(req)->cmd->common.opcode; 1352 if (!nvmeq->qid || iod->aborted) { 1353 dev_warn(dev->ctrl.device, 1354 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1355 req->tag, nvme_cid(req), opcode, 1356 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1357 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1358 goto disable; 1359 } 1360 1361 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1362 atomic_inc(&dev->ctrl.abort_limit); 1363 return BLK_EH_RESET_TIMER; 1364 } 1365 iod->aborted = true; 1366 1367 cmd.abort.opcode = nvme_admin_abort_cmd; 1368 cmd.abort.cid = nvme_cid(req); 1369 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1370 1371 dev_warn(nvmeq->dev->ctrl.device, 1372 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1373 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1374 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1375 blk_rq_bytes(req)); 1376 1377 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1378 BLK_MQ_REQ_NOWAIT); 1379 if (IS_ERR(abort_req)) { 1380 atomic_inc(&dev->ctrl.abort_limit); 1381 return BLK_EH_RESET_TIMER; 1382 } 1383 nvme_init_request(abort_req, &cmd); 1384 1385 abort_req->end_io = abort_endio; 1386 abort_req->end_io_data = NULL; 1387 blk_execute_rq_nowait(abort_req, false); 1388 1389 /* 1390 * The aborted req will be completed on receiving the abort req. 1391 * We enable the timer again. If hit twice, it'll cause a device reset, 1392 * as the device then is in a faulty state. 1393 */ 1394 return BLK_EH_RESET_TIMER; 1395 1396 disable: 1397 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1398 if (nvme_state_terminal(&dev->ctrl)) 1399 nvme_dev_disable(dev, true); 1400 return BLK_EH_DONE; 1401 } 1402 1403 nvme_dev_disable(dev, false); 1404 if (nvme_try_sched_reset(&dev->ctrl)) 1405 nvme_unquiesce_io_queues(&dev->ctrl); 1406 return BLK_EH_DONE; 1407 } 1408 1409 static void nvme_free_queue(struct nvme_queue *nvmeq) 1410 { 1411 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1412 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1413 if (!nvmeq->sq_cmds) 1414 return; 1415 1416 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1417 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1418 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1419 } else { 1420 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1421 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1422 } 1423 } 1424 1425 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1426 { 1427 int i; 1428 1429 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1430 dev->ctrl.queue_count--; 1431 nvme_free_queue(&dev->queues[i]); 1432 } 1433 } 1434 1435 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1436 { 1437 struct nvme_queue *nvmeq = &dev->queues[qid]; 1438 1439 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1440 return; 1441 1442 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1443 mb(); 1444 1445 nvmeq->dev->online_queues--; 1446 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1447 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1448 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1449 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1450 } 1451 1452 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1453 { 1454 int i; 1455 1456 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1457 nvme_suspend_queue(dev, i); 1458 } 1459 1460 /* 1461 * Called only on a device that has been disabled and after all other threads 1462 * that can check this device's completion queues have synced, except 1463 * nvme_poll(). This is the last chance for the driver to see a natural 1464 * completion before nvme_cancel_request() terminates all incomplete requests. 1465 */ 1466 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1467 { 1468 int i; 1469 1470 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1471 spin_lock(&dev->queues[i].cq_poll_lock); 1472 nvme_poll_cq(&dev->queues[i], NULL); 1473 spin_unlock(&dev->queues[i].cq_poll_lock); 1474 } 1475 } 1476 1477 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1478 int entry_size) 1479 { 1480 int q_depth = dev->q_depth; 1481 unsigned q_size_aligned = roundup(q_depth * entry_size, 1482 NVME_CTRL_PAGE_SIZE); 1483 1484 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1485 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1486 1487 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1488 q_depth = div_u64(mem_per_q, entry_size); 1489 1490 /* 1491 * Ensure the reduced q_depth is above some threshold where it 1492 * would be better to map queues in system memory with the 1493 * original depth 1494 */ 1495 if (q_depth < 64) 1496 return -ENOMEM; 1497 } 1498 1499 return q_depth; 1500 } 1501 1502 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1503 int qid) 1504 { 1505 struct pci_dev *pdev = to_pci_dev(dev->dev); 1506 1507 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1508 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1509 if (nvmeq->sq_cmds) { 1510 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1511 nvmeq->sq_cmds); 1512 if (nvmeq->sq_dma_addr) { 1513 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1514 return 0; 1515 } 1516 1517 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1518 } 1519 } 1520 1521 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1522 &nvmeq->sq_dma_addr, GFP_KERNEL); 1523 if (!nvmeq->sq_cmds) 1524 return -ENOMEM; 1525 return 0; 1526 } 1527 1528 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1529 { 1530 struct nvme_queue *nvmeq = &dev->queues[qid]; 1531 1532 if (dev->ctrl.queue_count > qid) 1533 return 0; 1534 1535 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1536 nvmeq->q_depth = depth; 1537 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1538 &nvmeq->cq_dma_addr, GFP_KERNEL); 1539 if (!nvmeq->cqes) 1540 goto free_nvmeq; 1541 1542 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1543 goto free_cqdma; 1544 1545 nvmeq->dev = dev; 1546 spin_lock_init(&nvmeq->sq_lock); 1547 spin_lock_init(&nvmeq->cq_poll_lock); 1548 nvmeq->cq_head = 0; 1549 nvmeq->cq_phase = 1; 1550 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1551 nvmeq->qid = qid; 1552 dev->ctrl.queue_count++; 1553 1554 return 0; 1555 1556 free_cqdma: 1557 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1558 nvmeq->cq_dma_addr); 1559 free_nvmeq: 1560 return -ENOMEM; 1561 } 1562 1563 static int queue_request_irq(struct nvme_queue *nvmeq) 1564 { 1565 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1566 int nr = nvmeq->dev->ctrl.instance; 1567 1568 if (use_threaded_interrupts) { 1569 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1570 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1571 } else { 1572 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1573 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1574 } 1575 } 1576 1577 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1578 { 1579 struct nvme_dev *dev = nvmeq->dev; 1580 1581 nvmeq->sq_tail = 0; 1582 nvmeq->last_sq_tail = 0; 1583 nvmeq->cq_head = 0; 1584 nvmeq->cq_phase = 1; 1585 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1586 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1587 nvme_dbbuf_init(dev, nvmeq, qid); 1588 dev->online_queues++; 1589 wmb(); /* ensure the first interrupt sees the initialization */ 1590 } 1591 1592 /* 1593 * Try getting shutdown_lock while setting up IO queues. 1594 */ 1595 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1596 { 1597 /* 1598 * Give up if the lock is being held by nvme_dev_disable. 1599 */ 1600 if (!mutex_trylock(&dev->shutdown_lock)) 1601 return -ENODEV; 1602 1603 /* 1604 * Controller is in wrong state, fail early. 1605 */ 1606 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1607 mutex_unlock(&dev->shutdown_lock); 1608 return -ENODEV; 1609 } 1610 1611 return 0; 1612 } 1613 1614 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1615 { 1616 struct nvme_dev *dev = nvmeq->dev; 1617 int result; 1618 u16 vector = 0; 1619 1620 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1621 1622 /* 1623 * A queue's vector matches the queue identifier unless the controller 1624 * has only one vector available. 1625 */ 1626 if (!polled) 1627 vector = dev->num_vecs == 1 ? 0 : qid; 1628 else 1629 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1630 1631 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1632 if (result) 1633 return result; 1634 1635 result = adapter_alloc_sq(dev, qid, nvmeq); 1636 if (result < 0) 1637 return result; 1638 if (result) 1639 goto release_cq; 1640 1641 nvmeq->cq_vector = vector; 1642 1643 result = nvme_setup_io_queues_trylock(dev); 1644 if (result) 1645 return result; 1646 nvme_init_queue(nvmeq, qid); 1647 if (!polled) { 1648 result = queue_request_irq(nvmeq); 1649 if (result < 0) 1650 goto release_sq; 1651 } 1652 1653 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1654 mutex_unlock(&dev->shutdown_lock); 1655 return result; 1656 1657 release_sq: 1658 dev->online_queues--; 1659 mutex_unlock(&dev->shutdown_lock); 1660 adapter_delete_sq(dev, qid); 1661 release_cq: 1662 adapter_delete_cq(dev, qid); 1663 return result; 1664 } 1665 1666 static const struct blk_mq_ops nvme_mq_admin_ops = { 1667 .queue_rq = nvme_queue_rq, 1668 .complete = nvme_pci_complete_rq, 1669 .init_hctx = nvme_admin_init_hctx, 1670 .init_request = nvme_pci_init_request, 1671 .timeout = nvme_timeout, 1672 }; 1673 1674 static const struct blk_mq_ops nvme_mq_ops = { 1675 .queue_rq = nvme_queue_rq, 1676 .queue_rqs = nvme_queue_rqs, 1677 .complete = nvme_pci_complete_rq, 1678 .commit_rqs = nvme_commit_rqs, 1679 .init_hctx = nvme_init_hctx, 1680 .init_request = nvme_pci_init_request, 1681 .map_queues = nvme_pci_map_queues, 1682 .timeout = nvme_timeout, 1683 .poll = nvme_poll, 1684 }; 1685 1686 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1687 { 1688 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1689 /* 1690 * If the controller was reset during removal, it's possible 1691 * user requests may be waiting on a stopped queue. Start the 1692 * queue to flush these to completion. 1693 */ 1694 nvme_unquiesce_admin_queue(&dev->ctrl); 1695 nvme_remove_admin_tag_set(&dev->ctrl); 1696 } 1697 } 1698 1699 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1700 { 1701 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1702 } 1703 1704 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1705 { 1706 struct pci_dev *pdev = to_pci_dev(dev->dev); 1707 1708 if (size <= dev->bar_mapped_size) 1709 return 0; 1710 if (size > pci_resource_len(pdev, 0)) 1711 return -ENOMEM; 1712 if (dev->bar) 1713 iounmap(dev->bar); 1714 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1715 if (!dev->bar) { 1716 dev->bar_mapped_size = 0; 1717 return -ENOMEM; 1718 } 1719 dev->bar_mapped_size = size; 1720 dev->dbs = dev->bar + NVME_REG_DBS; 1721 1722 return 0; 1723 } 1724 1725 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1726 { 1727 int result; 1728 u32 aqa; 1729 struct nvme_queue *nvmeq; 1730 1731 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1732 if (result < 0) 1733 return result; 1734 1735 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1736 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1737 1738 if (dev->subsystem && 1739 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1740 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1741 1742 /* 1743 * If the device has been passed off to us in an enabled state, just 1744 * clear the enabled bit. The spec says we should set the 'shutdown 1745 * notification bits', but doing so may cause the device to complete 1746 * commands to the admin queue ... and we don't know what memory that 1747 * might be pointing at! 1748 */ 1749 result = nvme_disable_ctrl(&dev->ctrl, false); 1750 if (result < 0) 1751 return result; 1752 1753 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1754 if (result) 1755 return result; 1756 1757 dev->ctrl.numa_node = dev_to_node(dev->dev); 1758 1759 nvmeq = &dev->queues[0]; 1760 aqa = nvmeq->q_depth - 1; 1761 aqa |= aqa << 16; 1762 1763 writel(aqa, dev->bar + NVME_REG_AQA); 1764 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1765 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1766 1767 result = nvme_enable_ctrl(&dev->ctrl); 1768 if (result) 1769 return result; 1770 1771 nvmeq->cq_vector = 0; 1772 nvme_init_queue(nvmeq, 0); 1773 result = queue_request_irq(nvmeq); 1774 if (result) { 1775 dev->online_queues--; 1776 return result; 1777 } 1778 1779 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1780 return result; 1781 } 1782 1783 static int nvme_create_io_queues(struct nvme_dev *dev) 1784 { 1785 unsigned i, max, rw_queues; 1786 int ret = 0; 1787 1788 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1789 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1790 ret = -ENOMEM; 1791 break; 1792 } 1793 } 1794 1795 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1796 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1797 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1798 dev->io_queues[HCTX_TYPE_READ]; 1799 } else { 1800 rw_queues = max; 1801 } 1802 1803 for (i = dev->online_queues; i <= max; i++) { 1804 bool polled = i > rw_queues; 1805 1806 ret = nvme_create_queue(&dev->queues[i], i, polled); 1807 if (ret) 1808 break; 1809 } 1810 1811 /* 1812 * Ignore failing Create SQ/CQ commands, we can continue with less 1813 * than the desired amount of queues, and even a controller without 1814 * I/O queues can still be used to issue admin commands. This might 1815 * be useful to upgrade a buggy firmware for example. 1816 */ 1817 return ret >= 0 ? 0 : ret; 1818 } 1819 1820 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1821 { 1822 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1823 1824 return 1ULL << (12 + 4 * szu); 1825 } 1826 1827 static u32 nvme_cmb_size(struct nvme_dev *dev) 1828 { 1829 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1830 } 1831 1832 static void nvme_map_cmb(struct nvme_dev *dev) 1833 { 1834 u64 size, offset; 1835 resource_size_t bar_size; 1836 struct pci_dev *pdev = to_pci_dev(dev->dev); 1837 int bar; 1838 1839 if (dev->cmb_size) 1840 return; 1841 1842 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1843 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1844 1845 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1846 if (!dev->cmbsz) 1847 return; 1848 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1849 1850 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1851 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1852 bar = NVME_CMB_BIR(dev->cmbloc); 1853 bar_size = pci_resource_len(pdev, bar); 1854 1855 if (offset > bar_size) 1856 return; 1857 1858 /* 1859 * Tell the controller about the host side address mapping the CMB, 1860 * and enable CMB decoding for the NVMe 1.4+ scheme: 1861 */ 1862 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1863 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1864 (pci_bus_address(pdev, bar) + offset), 1865 dev->bar + NVME_REG_CMBMSC); 1866 } 1867 1868 /* 1869 * Controllers may support a CMB size larger than their BAR, 1870 * for example, due to being behind a bridge. Reduce the CMB to 1871 * the reported size of the BAR 1872 */ 1873 if (size > bar_size - offset) 1874 size = bar_size - offset; 1875 1876 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1877 dev_warn(dev->ctrl.device, 1878 "failed to register the CMB\n"); 1879 return; 1880 } 1881 1882 dev->cmb_size = size; 1883 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1884 1885 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1886 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1887 pci_p2pmem_publish(pdev, true); 1888 1889 nvme_update_attrs(dev); 1890 } 1891 1892 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1893 { 1894 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1895 u64 dma_addr = dev->host_mem_descs_dma; 1896 struct nvme_command c = { }; 1897 int ret; 1898 1899 c.features.opcode = nvme_admin_set_features; 1900 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1901 c.features.dword11 = cpu_to_le32(bits); 1902 c.features.dword12 = cpu_to_le32(host_mem_size); 1903 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1904 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1905 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1906 1907 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1908 if (ret) { 1909 dev_warn(dev->ctrl.device, 1910 "failed to set host mem (err %d, flags %#x).\n", 1911 ret, bits); 1912 } else 1913 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1914 1915 return ret; 1916 } 1917 1918 static void nvme_free_host_mem(struct nvme_dev *dev) 1919 { 1920 int i; 1921 1922 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1923 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1924 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1925 1926 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1927 le64_to_cpu(desc->addr), 1928 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1929 } 1930 1931 kfree(dev->host_mem_desc_bufs); 1932 dev->host_mem_desc_bufs = NULL; 1933 dma_free_coherent(dev->dev, 1934 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1935 dev->host_mem_descs, dev->host_mem_descs_dma); 1936 dev->host_mem_descs = NULL; 1937 dev->nr_host_mem_descs = 0; 1938 } 1939 1940 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1941 u32 chunk_size) 1942 { 1943 struct nvme_host_mem_buf_desc *descs; 1944 u32 max_entries, len; 1945 dma_addr_t descs_dma; 1946 int i = 0; 1947 void **bufs; 1948 u64 size, tmp; 1949 1950 tmp = (preferred + chunk_size - 1); 1951 do_div(tmp, chunk_size); 1952 max_entries = tmp; 1953 1954 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1955 max_entries = dev->ctrl.hmmaxd; 1956 1957 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1958 &descs_dma, GFP_KERNEL); 1959 if (!descs) 1960 goto out; 1961 1962 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1963 if (!bufs) 1964 goto out_free_descs; 1965 1966 for (size = 0; size < preferred && i < max_entries; size += len) { 1967 dma_addr_t dma_addr; 1968 1969 len = min_t(u64, chunk_size, preferred - size); 1970 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1971 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1972 if (!bufs[i]) 1973 break; 1974 1975 descs[i].addr = cpu_to_le64(dma_addr); 1976 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1977 i++; 1978 } 1979 1980 if (!size) 1981 goto out_free_bufs; 1982 1983 dev->nr_host_mem_descs = i; 1984 dev->host_mem_size = size; 1985 dev->host_mem_descs = descs; 1986 dev->host_mem_descs_dma = descs_dma; 1987 dev->host_mem_desc_bufs = bufs; 1988 return 0; 1989 1990 out_free_bufs: 1991 while (--i >= 0) { 1992 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1993 1994 dma_free_attrs(dev->dev, size, bufs[i], 1995 le64_to_cpu(descs[i].addr), 1996 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1997 } 1998 1999 kfree(bufs); 2000 out_free_descs: 2001 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 2002 descs_dma); 2003 out: 2004 dev->host_mem_descs = NULL; 2005 return -ENOMEM; 2006 } 2007 2008 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2009 { 2010 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2011 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2012 u64 chunk_size; 2013 2014 /* start big and work our way down */ 2015 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2016 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2017 if (!min || dev->host_mem_size >= min) 2018 return 0; 2019 nvme_free_host_mem(dev); 2020 } 2021 } 2022 2023 return -ENOMEM; 2024 } 2025 2026 static int nvme_setup_host_mem(struct nvme_dev *dev) 2027 { 2028 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2029 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2030 u64 min = (u64)dev->ctrl.hmmin * 4096; 2031 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2032 int ret; 2033 2034 if (!dev->ctrl.hmpre) 2035 return 0; 2036 2037 preferred = min(preferred, max); 2038 if (min > max) { 2039 dev_warn(dev->ctrl.device, 2040 "min host memory (%lld MiB) above limit (%d MiB).\n", 2041 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2042 nvme_free_host_mem(dev); 2043 return 0; 2044 } 2045 2046 /* 2047 * If we already have a buffer allocated check if we can reuse it. 2048 */ 2049 if (dev->host_mem_descs) { 2050 if (dev->host_mem_size >= min) 2051 enable_bits |= NVME_HOST_MEM_RETURN; 2052 else 2053 nvme_free_host_mem(dev); 2054 } 2055 2056 if (!dev->host_mem_descs) { 2057 if (nvme_alloc_host_mem(dev, min, preferred)) { 2058 dev_warn(dev->ctrl.device, 2059 "failed to allocate host memory buffer.\n"); 2060 return 0; /* controller must work without HMB */ 2061 } 2062 2063 dev_info(dev->ctrl.device, 2064 "allocated %lld MiB host memory buffer.\n", 2065 dev->host_mem_size >> ilog2(SZ_1M)); 2066 } 2067 2068 ret = nvme_set_host_mem(dev, enable_bits); 2069 if (ret) 2070 nvme_free_host_mem(dev); 2071 return ret; 2072 } 2073 2074 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2075 char *buf) 2076 { 2077 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2078 2079 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2080 ndev->cmbloc, ndev->cmbsz); 2081 } 2082 static DEVICE_ATTR_RO(cmb); 2083 2084 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2085 char *buf) 2086 { 2087 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2088 2089 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2090 } 2091 static DEVICE_ATTR_RO(cmbloc); 2092 2093 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2094 char *buf) 2095 { 2096 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2097 2098 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2099 } 2100 static DEVICE_ATTR_RO(cmbsz); 2101 2102 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2103 char *buf) 2104 { 2105 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2106 2107 return sysfs_emit(buf, "%d\n", ndev->hmb); 2108 } 2109 2110 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2111 const char *buf, size_t count) 2112 { 2113 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2114 bool new; 2115 int ret; 2116 2117 if (kstrtobool(buf, &new) < 0) 2118 return -EINVAL; 2119 2120 if (new == ndev->hmb) 2121 return count; 2122 2123 if (new) { 2124 ret = nvme_setup_host_mem(ndev); 2125 } else { 2126 ret = nvme_set_host_mem(ndev, 0); 2127 if (!ret) 2128 nvme_free_host_mem(ndev); 2129 } 2130 2131 if (ret < 0) 2132 return ret; 2133 2134 return count; 2135 } 2136 static DEVICE_ATTR_RW(hmb); 2137 2138 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2139 struct attribute *a, int n) 2140 { 2141 struct nvme_ctrl *ctrl = 2142 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2143 struct nvme_dev *dev = to_nvme_dev(ctrl); 2144 2145 if (a == &dev_attr_cmb.attr || 2146 a == &dev_attr_cmbloc.attr || 2147 a == &dev_attr_cmbsz.attr) { 2148 if (!dev->cmbsz) 2149 return 0; 2150 } 2151 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2152 return 0; 2153 2154 return a->mode; 2155 } 2156 2157 static struct attribute *nvme_pci_attrs[] = { 2158 &dev_attr_cmb.attr, 2159 &dev_attr_cmbloc.attr, 2160 &dev_attr_cmbsz.attr, 2161 &dev_attr_hmb.attr, 2162 NULL, 2163 }; 2164 2165 static const struct attribute_group nvme_pci_dev_attrs_group = { 2166 .attrs = nvme_pci_attrs, 2167 .is_visible = nvme_pci_attrs_are_visible, 2168 }; 2169 2170 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2171 &nvme_dev_attrs_group, 2172 &nvme_pci_dev_attrs_group, 2173 NULL, 2174 }; 2175 2176 static void nvme_update_attrs(struct nvme_dev *dev) 2177 { 2178 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2179 } 2180 2181 /* 2182 * nirqs is the number of interrupts available for write and read 2183 * queues. The core already reserved an interrupt for the admin queue. 2184 */ 2185 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2186 { 2187 struct nvme_dev *dev = affd->priv; 2188 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2189 2190 /* 2191 * If there is no interrupt available for queues, ensure that 2192 * the default queue is set to 1. The affinity set size is 2193 * also set to one, but the irq core ignores it for this case. 2194 * 2195 * If only one interrupt is available or 'write_queue' == 0, combine 2196 * write and read queues. 2197 * 2198 * If 'write_queues' > 0, ensure it leaves room for at least one read 2199 * queue. 2200 */ 2201 if (!nrirqs) { 2202 nrirqs = 1; 2203 nr_read_queues = 0; 2204 } else if (nrirqs == 1 || !nr_write_queues) { 2205 nr_read_queues = 0; 2206 } else if (nr_write_queues >= nrirqs) { 2207 nr_read_queues = 1; 2208 } else { 2209 nr_read_queues = nrirqs - nr_write_queues; 2210 } 2211 2212 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2213 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2214 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2215 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2216 affd->nr_sets = nr_read_queues ? 2 : 1; 2217 } 2218 2219 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2220 { 2221 struct pci_dev *pdev = to_pci_dev(dev->dev); 2222 struct irq_affinity affd = { 2223 .pre_vectors = 1, 2224 .calc_sets = nvme_calc_irq_sets, 2225 .priv = dev, 2226 }; 2227 unsigned int irq_queues, poll_queues; 2228 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2229 2230 /* 2231 * Poll queues don't need interrupts, but we need at least one I/O queue 2232 * left over for non-polled I/O. 2233 */ 2234 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2235 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2236 2237 /* 2238 * Initialize for the single interrupt case, will be updated in 2239 * nvme_calc_irq_sets(). 2240 */ 2241 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2242 dev->io_queues[HCTX_TYPE_READ] = 0; 2243 2244 /* 2245 * We need interrupts for the admin queue and each non-polled I/O queue, 2246 * but some Apple controllers require all queues to use the first 2247 * vector. 2248 */ 2249 irq_queues = 1; 2250 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2251 irq_queues += (nr_io_queues - poll_queues); 2252 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2253 flags &= ~PCI_IRQ_MSI; 2254 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2255 &affd); 2256 } 2257 2258 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2259 { 2260 /* 2261 * If tags are shared with admin queue (Apple bug), then 2262 * make sure we only use one IO queue. 2263 */ 2264 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2265 return 1; 2266 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2267 } 2268 2269 static int nvme_setup_io_queues(struct nvme_dev *dev) 2270 { 2271 struct nvme_queue *adminq = &dev->queues[0]; 2272 struct pci_dev *pdev = to_pci_dev(dev->dev); 2273 unsigned int nr_io_queues; 2274 unsigned long size; 2275 int result; 2276 2277 /* 2278 * Sample the module parameters once at reset time so that we have 2279 * stable values to work with. 2280 */ 2281 dev->nr_write_queues = write_queues; 2282 dev->nr_poll_queues = poll_queues; 2283 2284 nr_io_queues = dev->nr_allocated_queues - 1; 2285 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2286 if (result < 0) 2287 return result; 2288 2289 if (nr_io_queues == 0) 2290 return 0; 2291 2292 /* 2293 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2294 * from set to unset. If there is a window to it is truely freed, 2295 * pci_free_irq_vectors() jumping into this window will crash. 2296 * And take lock to avoid racing with pci_free_irq_vectors() in 2297 * nvme_dev_disable() path. 2298 */ 2299 result = nvme_setup_io_queues_trylock(dev); 2300 if (result) 2301 return result; 2302 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2303 pci_free_irq(pdev, 0, adminq); 2304 2305 if (dev->cmb_use_sqes) { 2306 result = nvme_cmb_qdepth(dev, nr_io_queues, 2307 sizeof(struct nvme_command)); 2308 if (result > 0) { 2309 dev->q_depth = result; 2310 dev->ctrl.sqsize = result - 1; 2311 } else { 2312 dev->cmb_use_sqes = false; 2313 } 2314 } 2315 2316 do { 2317 size = db_bar_size(dev, nr_io_queues); 2318 result = nvme_remap_bar(dev, size); 2319 if (!result) 2320 break; 2321 if (!--nr_io_queues) { 2322 result = -ENOMEM; 2323 goto out_unlock; 2324 } 2325 } while (1); 2326 adminq->q_db = dev->dbs; 2327 2328 retry: 2329 /* Deregister the admin queue's interrupt */ 2330 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2331 pci_free_irq(pdev, 0, adminq); 2332 2333 /* 2334 * If we enable msix early due to not intx, disable it again before 2335 * setting up the full range we need. 2336 */ 2337 pci_free_irq_vectors(pdev); 2338 2339 result = nvme_setup_irqs(dev, nr_io_queues); 2340 if (result <= 0) { 2341 result = -EIO; 2342 goto out_unlock; 2343 } 2344 2345 dev->num_vecs = result; 2346 result = max(result - 1, 1); 2347 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2348 2349 /* 2350 * Should investigate if there's a performance win from allocating 2351 * more queues than interrupt vectors; it might allow the submission 2352 * path to scale better, even if the receive path is limited by the 2353 * number of interrupts. 2354 */ 2355 result = queue_request_irq(adminq); 2356 if (result) 2357 goto out_unlock; 2358 set_bit(NVMEQ_ENABLED, &adminq->flags); 2359 mutex_unlock(&dev->shutdown_lock); 2360 2361 result = nvme_create_io_queues(dev); 2362 if (result || dev->online_queues < 2) 2363 return result; 2364 2365 if (dev->online_queues - 1 < dev->max_qid) { 2366 nr_io_queues = dev->online_queues - 1; 2367 nvme_delete_io_queues(dev); 2368 result = nvme_setup_io_queues_trylock(dev); 2369 if (result) 2370 return result; 2371 nvme_suspend_io_queues(dev); 2372 goto retry; 2373 } 2374 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2375 dev->io_queues[HCTX_TYPE_DEFAULT], 2376 dev->io_queues[HCTX_TYPE_READ], 2377 dev->io_queues[HCTX_TYPE_POLL]); 2378 return 0; 2379 out_unlock: 2380 mutex_unlock(&dev->shutdown_lock); 2381 return result; 2382 } 2383 2384 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2385 blk_status_t error) 2386 { 2387 struct nvme_queue *nvmeq = req->end_io_data; 2388 2389 blk_mq_free_request(req); 2390 complete(&nvmeq->delete_done); 2391 return RQ_END_IO_NONE; 2392 } 2393 2394 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2395 blk_status_t error) 2396 { 2397 struct nvme_queue *nvmeq = req->end_io_data; 2398 2399 if (error) 2400 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2401 2402 return nvme_del_queue_end(req, error); 2403 } 2404 2405 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2406 { 2407 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2408 struct request *req; 2409 struct nvme_command cmd = { }; 2410 2411 cmd.delete_queue.opcode = opcode; 2412 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2413 2414 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2415 if (IS_ERR(req)) 2416 return PTR_ERR(req); 2417 nvme_init_request(req, &cmd); 2418 2419 if (opcode == nvme_admin_delete_cq) 2420 req->end_io = nvme_del_cq_end; 2421 else 2422 req->end_io = nvme_del_queue_end; 2423 req->end_io_data = nvmeq; 2424 2425 init_completion(&nvmeq->delete_done); 2426 blk_execute_rq_nowait(req, false); 2427 return 0; 2428 } 2429 2430 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2431 { 2432 int nr_queues = dev->online_queues - 1, sent = 0; 2433 unsigned long timeout; 2434 2435 retry: 2436 timeout = NVME_ADMIN_TIMEOUT; 2437 while (nr_queues > 0) { 2438 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2439 break; 2440 nr_queues--; 2441 sent++; 2442 } 2443 while (sent) { 2444 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2445 2446 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2447 timeout); 2448 if (timeout == 0) 2449 return false; 2450 2451 sent--; 2452 if (nr_queues) 2453 goto retry; 2454 } 2455 return true; 2456 } 2457 2458 static void nvme_delete_io_queues(struct nvme_dev *dev) 2459 { 2460 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2461 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2462 } 2463 2464 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2465 { 2466 if (dev->io_queues[HCTX_TYPE_POLL]) 2467 return 3; 2468 if (dev->io_queues[HCTX_TYPE_READ]) 2469 return 2; 2470 return 1; 2471 } 2472 2473 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2474 { 2475 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2476 /* free previously allocated queues that are no longer usable */ 2477 nvme_free_queues(dev, dev->online_queues); 2478 } 2479 2480 static int nvme_pci_enable(struct nvme_dev *dev) 2481 { 2482 int result = -ENOMEM; 2483 struct pci_dev *pdev = to_pci_dev(dev->dev); 2484 unsigned int flags = PCI_IRQ_ALL_TYPES; 2485 2486 if (pci_enable_device_mem(pdev)) 2487 return result; 2488 2489 pci_set_master(pdev); 2490 2491 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2492 result = -ENODEV; 2493 goto disable; 2494 } 2495 2496 /* 2497 * Some devices and/or platforms don't advertise or work with INTx 2498 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2499 * adjust this later. 2500 */ 2501 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2502 flags &= ~PCI_IRQ_MSI; 2503 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2504 if (result < 0) 2505 goto disable; 2506 2507 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2508 2509 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2510 io_queue_depth); 2511 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2512 dev->dbs = dev->bar + 4096; 2513 2514 /* 2515 * Some Apple controllers require a non-standard SQE size. 2516 * Interestingly they also seem to ignore the CC:IOSQES register 2517 * so we don't bother updating it here. 2518 */ 2519 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2520 dev->io_sqes = 7; 2521 else 2522 dev->io_sqes = NVME_NVM_IOSQES; 2523 2524 /* 2525 * Temporary fix for the Apple controller found in the MacBook8,1 and 2526 * some MacBook7,1 to avoid controller resets and data loss. 2527 */ 2528 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2529 dev->q_depth = 2; 2530 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2531 "set queue depth=%u to work around controller resets\n", 2532 dev->q_depth); 2533 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2534 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2535 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2536 dev->q_depth = 64; 2537 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2538 "set queue depth=%u\n", dev->q_depth); 2539 } 2540 2541 /* 2542 * Controllers with the shared tags quirk need the IO queue to be 2543 * big enough so that we get 32 tags for the admin queue 2544 */ 2545 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2546 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2547 dev->q_depth = NVME_AQ_DEPTH + 2; 2548 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2549 dev->q_depth); 2550 } 2551 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2552 2553 nvme_map_cmb(dev); 2554 2555 pci_save_state(pdev); 2556 2557 result = nvme_pci_configure_admin_queue(dev); 2558 if (result) 2559 goto free_irq; 2560 return result; 2561 2562 free_irq: 2563 pci_free_irq_vectors(pdev); 2564 disable: 2565 pci_disable_device(pdev); 2566 return result; 2567 } 2568 2569 static void nvme_dev_unmap(struct nvme_dev *dev) 2570 { 2571 if (dev->bar) 2572 iounmap(dev->bar); 2573 pci_release_mem_regions(to_pci_dev(dev->dev)); 2574 } 2575 2576 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2577 { 2578 struct pci_dev *pdev = to_pci_dev(dev->dev); 2579 u32 csts; 2580 2581 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2582 return true; 2583 if (pdev->error_state != pci_channel_io_normal) 2584 return true; 2585 2586 csts = readl(dev->bar + NVME_REG_CSTS); 2587 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2588 } 2589 2590 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2591 { 2592 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2593 struct pci_dev *pdev = to_pci_dev(dev->dev); 2594 bool dead; 2595 2596 mutex_lock(&dev->shutdown_lock); 2597 dead = nvme_pci_ctrl_is_dead(dev); 2598 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2599 if (pci_is_enabled(pdev)) 2600 nvme_start_freeze(&dev->ctrl); 2601 /* 2602 * Give the controller a chance to complete all entered requests 2603 * if doing a safe shutdown. 2604 */ 2605 if (!dead && shutdown) 2606 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2607 } 2608 2609 nvme_quiesce_io_queues(&dev->ctrl); 2610 2611 if (!dead && dev->ctrl.queue_count > 0) { 2612 nvme_delete_io_queues(dev); 2613 nvme_disable_ctrl(&dev->ctrl, shutdown); 2614 nvme_poll_irqdisable(&dev->queues[0]); 2615 } 2616 nvme_suspend_io_queues(dev); 2617 nvme_suspend_queue(dev, 0); 2618 pci_free_irq_vectors(pdev); 2619 if (pci_is_enabled(pdev)) 2620 pci_disable_device(pdev); 2621 nvme_reap_pending_cqes(dev); 2622 2623 nvme_cancel_tagset(&dev->ctrl); 2624 nvme_cancel_admin_tagset(&dev->ctrl); 2625 2626 /* 2627 * The driver will not be starting up queues again if shutting down so 2628 * must flush all entered requests to their failed completion to avoid 2629 * deadlocking blk-mq hot-cpu notifier. 2630 */ 2631 if (shutdown) { 2632 nvme_unquiesce_io_queues(&dev->ctrl); 2633 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2634 nvme_unquiesce_admin_queue(&dev->ctrl); 2635 } 2636 mutex_unlock(&dev->shutdown_lock); 2637 } 2638 2639 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2640 { 2641 if (!nvme_wait_reset(&dev->ctrl)) 2642 return -EBUSY; 2643 nvme_dev_disable(dev, shutdown); 2644 return 0; 2645 } 2646 2647 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2648 { 2649 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2650 NVME_CTRL_PAGE_SIZE, 2651 NVME_CTRL_PAGE_SIZE, 0); 2652 if (!dev->prp_page_pool) 2653 return -ENOMEM; 2654 2655 /* Optimisation for I/Os between 4k and 128k */ 2656 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2657 256, 256, 0); 2658 if (!dev->prp_small_pool) { 2659 dma_pool_destroy(dev->prp_page_pool); 2660 return -ENOMEM; 2661 } 2662 return 0; 2663 } 2664 2665 static void nvme_release_prp_pools(struct nvme_dev *dev) 2666 { 2667 dma_pool_destroy(dev->prp_page_pool); 2668 dma_pool_destroy(dev->prp_small_pool); 2669 } 2670 2671 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2672 { 2673 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2674 2675 dev->iod_mempool = mempool_create_node(1, 2676 mempool_kmalloc, mempool_kfree, 2677 (void *)alloc_size, GFP_KERNEL, 2678 dev_to_node(dev->dev)); 2679 if (!dev->iod_mempool) 2680 return -ENOMEM; 2681 return 0; 2682 } 2683 2684 static void nvme_free_tagset(struct nvme_dev *dev) 2685 { 2686 if (dev->tagset.tags) 2687 nvme_remove_io_tag_set(&dev->ctrl); 2688 dev->ctrl.tagset = NULL; 2689 } 2690 2691 /* pairs with nvme_pci_alloc_dev */ 2692 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2693 { 2694 struct nvme_dev *dev = to_nvme_dev(ctrl); 2695 2696 nvme_free_tagset(dev); 2697 put_device(dev->dev); 2698 kfree(dev->queues); 2699 kfree(dev); 2700 } 2701 2702 static void nvme_reset_work(struct work_struct *work) 2703 { 2704 struct nvme_dev *dev = 2705 container_of(work, struct nvme_dev, ctrl.reset_work); 2706 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2707 int result; 2708 2709 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2710 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2711 dev->ctrl.state); 2712 result = -ENODEV; 2713 goto out; 2714 } 2715 2716 /* 2717 * If we're called to reset a live controller first shut it down before 2718 * moving on. 2719 */ 2720 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2721 nvme_dev_disable(dev, false); 2722 nvme_sync_queues(&dev->ctrl); 2723 2724 mutex_lock(&dev->shutdown_lock); 2725 result = nvme_pci_enable(dev); 2726 if (result) 2727 goto out_unlock; 2728 nvme_unquiesce_admin_queue(&dev->ctrl); 2729 mutex_unlock(&dev->shutdown_lock); 2730 2731 /* 2732 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2733 * initializing procedure here. 2734 */ 2735 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2736 dev_warn(dev->ctrl.device, 2737 "failed to mark controller CONNECTING\n"); 2738 result = -EBUSY; 2739 goto out; 2740 } 2741 2742 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2743 if (result) 2744 goto out; 2745 2746 nvme_dbbuf_dma_alloc(dev); 2747 2748 result = nvme_setup_host_mem(dev); 2749 if (result < 0) 2750 goto out; 2751 2752 result = nvme_setup_io_queues(dev); 2753 if (result) 2754 goto out; 2755 2756 /* 2757 * Freeze and update the number of I/O queues as thos might have 2758 * changed. If there are no I/O queues left after this reset, keep the 2759 * controller around but remove all namespaces. 2760 */ 2761 if (dev->online_queues > 1) { 2762 nvme_dbbuf_set(dev); 2763 nvme_unquiesce_io_queues(&dev->ctrl); 2764 nvme_wait_freeze(&dev->ctrl); 2765 nvme_pci_update_nr_queues(dev); 2766 nvme_unfreeze(&dev->ctrl); 2767 } else { 2768 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2769 nvme_mark_namespaces_dead(&dev->ctrl); 2770 nvme_unquiesce_io_queues(&dev->ctrl); 2771 nvme_remove_namespaces(&dev->ctrl); 2772 nvme_free_tagset(dev); 2773 } 2774 2775 /* 2776 * If only admin queue live, keep it to do further investigation or 2777 * recovery. 2778 */ 2779 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2780 dev_warn(dev->ctrl.device, 2781 "failed to mark controller live state\n"); 2782 result = -ENODEV; 2783 goto out; 2784 } 2785 2786 nvme_start_ctrl(&dev->ctrl); 2787 return; 2788 2789 out_unlock: 2790 mutex_unlock(&dev->shutdown_lock); 2791 out: 2792 /* 2793 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2794 * may be holding this pci_dev's device lock. 2795 */ 2796 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2797 result); 2798 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2799 nvme_dev_disable(dev, true); 2800 nvme_sync_queues(&dev->ctrl); 2801 nvme_mark_namespaces_dead(&dev->ctrl); 2802 nvme_unquiesce_io_queues(&dev->ctrl); 2803 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2804 } 2805 2806 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2807 { 2808 *val = readl(to_nvme_dev(ctrl)->bar + off); 2809 return 0; 2810 } 2811 2812 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2813 { 2814 writel(val, to_nvme_dev(ctrl)->bar + off); 2815 return 0; 2816 } 2817 2818 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2819 { 2820 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2821 return 0; 2822 } 2823 2824 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2825 { 2826 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2827 2828 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2829 } 2830 2831 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2832 { 2833 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2834 struct nvme_subsystem *subsys = ctrl->subsys; 2835 2836 dev_err(ctrl->device, 2837 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2838 pdev->vendor, pdev->device, 2839 nvme_strlen(subsys->model, sizeof(subsys->model)), 2840 subsys->model, nvme_strlen(subsys->firmware_rev, 2841 sizeof(subsys->firmware_rev)), 2842 subsys->firmware_rev); 2843 } 2844 2845 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2846 { 2847 struct nvme_dev *dev = to_nvme_dev(ctrl); 2848 2849 return dma_pci_p2pdma_supported(dev->dev); 2850 } 2851 2852 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2853 .name = "pcie", 2854 .module = THIS_MODULE, 2855 .flags = NVME_F_METADATA_SUPPORTED, 2856 .dev_attr_groups = nvme_pci_dev_attr_groups, 2857 .reg_read32 = nvme_pci_reg_read32, 2858 .reg_write32 = nvme_pci_reg_write32, 2859 .reg_read64 = nvme_pci_reg_read64, 2860 .free_ctrl = nvme_pci_free_ctrl, 2861 .submit_async_event = nvme_pci_submit_async_event, 2862 .get_address = nvme_pci_get_address, 2863 .print_device_info = nvme_pci_print_device_info, 2864 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2865 }; 2866 2867 static int nvme_dev_map(struct nvme_dev *dev) 2868 { 2869 struct pci_dev *pdev = to_pci_dev(dev->dev); 2870 2871 if (pci_request_mem_regions(pdev, "nvme")) 2872 return -ENODEV; 2873 2874 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2875 goto release; 2876 2877 return 0; 2878 release: 2879 pci_release_mem_regions(pdev); 2880 return -ENODEV; 2881 } 2882 2883 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2884 { 2885 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2886 /* 2887 * Several Samsung devices seem to drop off the PCIe bus 2888 * randomly when APST is on and uses the deepest sleep state. 2889 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2890 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2891 * 950 PRO 256GB", but it seems to be restricted to two Dell 2892 * laptops. 2893 */ 2894 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2895 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2896 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2897 return NVME_QUIRK_NO_DEEPEST_PS; 2898 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2899 /* 2900 * Samsung SSD 960 EVO drops off the PCIe bus after system 2901 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2902 * within few minutes after bootup on a Coffee Lake board - 2903 * ASUS PRIME Z370-A 2904 */ 2905 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2906 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2907 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2908 return NVME_QUIRK_NO_APST; 2909 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2910 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2911 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2912 /* 2913 * Forcing to use host managed nvme power settings for 2914 * lowest idle power with quick resume latency on 2915 * Samsung and Toshiba SSDs based on suspend behavior 2916 * on Coffee Lake board for LENOVO C640 2917 */ 2918 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2919 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2920 return NVME_QUIRK_SIMPLE_SUSPEND; 2921 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2922 pdev->device == 0x500f)) { 2923 /* 2924 * Exclude some Kingston NV1 and A2000 devices from 2925 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2926 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2927 */ 2928 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2929 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2930 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2931 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2932 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2933 } 2934 2935 return 0; 2936 } 2937 2938 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2939 const struct pci_device_id *id) 2940 { 2941 unsigned long quirks = id->driver_data; 2942 int node = dev_to_node(&pdev->dev); 2943 struct nvme_dev *dev; 2944 int ret = -ENOMEM; 2945 2946 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2947 if (!dev) 2948 return ERR_PTR(-ENOMEM); 2949 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2950 mutex_init(&dev->shutdown_lock); 2951 2952 dev->nr_write_queues = write_queues; 2953 dev->nr_poll_queues = poll_queues; 2954 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2955 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2956 sizeof(struct nvme_queue), GFP_KERNEL, node); 2957 if (!dev->queues) 2958 goto out_free_dev; 2959 2960 dev->dev = get_device(&pdev->dev); 2961 2962 quirks |= check_vendor_combination_bug(pdev); 2963 if (!noacpi && 2964 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 2965 acpi_storage_d3(&pdev->dev)) { 2966 /* 2967 * Some systems use a bios work around to ask for D3 on 2968 * platforms that support kernel managed suspend. 2969 */ 2970 dev_info(&pdev->dev, 2971 "platform quirk: setting simple suspend\n"); 2972 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2973 } 2974 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2975 quirks); 2976 if (ret) 2977 goto out_put_device; 2978 2979 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2980 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2981 else 2982 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2983 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2984 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2985 2986 /* 2987 * Limit the max command size to prevent iod->sg allocations going 2988 * over a single page. 2989 */ 2990 dev->ctrl.max_hw_sectors = min_t(u32, 2991 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 2992 dev->ctrl.max_segments = NVME_MAX_SEGS; 2993 2994 /* 2995 * There is no support for SGLs for metadata (yet), so we are limited to 2996 * a single integrity segment for the separate metadata pointer. 2997 */ 2998 dev->ctrl.max_integrity_segments = 1; 2999 return dev; 3000 3001 out_put_device: 3002 put_device(dev->dev); 3003 kfree(dev->queues); 3004 out_free_dev: 3005 kfree(dev); 3006 return ERR_PTR(ret); 3007 } 3008 3009 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3010 { 3011 struct nvme_dev *dev; 3012 int result = -ENOMEM; 3013 3014 dev = nvme_pci_alloc_dev(pdev, id); 3015 if (IS_ERR(dev)) 3016 return PTR_ERR(dev); 3017 3018 result = nvme_dev_map(dev); 3019 if (result) 3020 goto out_uninit_ctrl; 3021 3022 result = nvme_setup_prp_pools(dev); 3023 if (result) 3024 goto out_dev_unmap; 3025 3026 result = nvme_pci_alloc_iod_mempool(dev); 3027 if (result) 3028 goto out_release_prp_pools; 3029 3030 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3031 3032 result = nvme_pci_enable(dev); 3033 if (result) 3034 goto out_release_iod_mempool; 3035 3036 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3037 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3038 if (result) 3039 goto out_disable; 3040 3041 /* 3042 * Mark the controller as connecting before sending admin commands to 3043 * allow the timeout handler to do the right thing. 3044 */ 3045 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3046 dev_warn(dev->ctrl.device, 3047 "failed to mark controller CONNECTING\n"); 3048 result = -EBUSY; 3049 goto out_disable; 3050 } 3051 3052 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3053 if (result) 3054 goto out_disable; 3055 3056 nvme_dbbuf_dma_alloc(dev); 3057 3058 result = nvme_setup_host_mem(dev); 3059 if (result < 0) 3060 goto out_disable; 3061 3062 result = nvme_setup_io_queues(dev); 3063 if (result) 3064 goto out_disable; 3065 3066 if (dev->online_queues > 1) { 3067 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3068 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3069 nvme_dbbuf_set(dev); 3070 } 3071 3072 if (!dev->ctrl.tagset) 3073 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3074 3075 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3076 dev_warn(dev->ctrl.device, 3077 "failed to mark controller live state\n"); 3078 result = -ENODEV; 3079 goto out_disable; 3080 } 3081 3082 pci_set_drvdata(pdev, dev); 3083 3084 nvme_start_ctrl(&dev->ctrl); 3085 nvme_put_ctrl(&dev->ctrl); 3086 flush_work(&dev->ctrl.scan_work); 3087 return 0; 3088 3089 out_disable: 3090 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3091 nvme_dev_disable(dev, true); 3092 nvme_free_host_mem(dev); 3093 nvme_dev_remove_admin(dev); 3094 nvme_dbbuf_dma_free(dev); 3095 nvme_free_queues(dev, 0); 3096 out_release_iod_mempool: 3097 mempool_destroy(dev->iod_mempool); 3098 out_release_prp_pools: 3099 nvme_release_prp_pools(dev); 3100 out_dev_unmap: 3101 nvme_dev_unmap(dev); 3102 out_uninit_ctrl: 3103 nvme_uninit_ctrl(&dev->ctrl); 3104 nvme_put_ctrl(&dev->ctrl); 3105 return result; 3106 } 3107 3108 static void nvme_reset_prepare(struct pci_dev *pdev) 3109 { 3110 struct nvme_dev *dev = pci_get_drvdata(pdev); 3111 3112 /* 3113 * We don't need to check the return value from waiting for the reset 3114 * state as pci_dev device lock is held, making it impossible to race 3115 * with ->remove(). 3116 */ 3117 nvme_disable_prepare_reset(dev, false); 3118 nvme_sync_queues(&dev->ctrl); 3119 } 3120 3121 static void nvme_reset_done(struct pci_dev *pdev) 3122 { 3123 struct nvme_dev *dev = pci_get_drvdata(pdev); 3124 3125 if (!nvme_try_sched_reset(&dev->ctrl)) 3126 flush_work(&dev->ctrl.reset_work); 3127 } 3128 3129 static void nvme_shutdown(struct pci_dev *pdev) 3130 { 3131 struct nvme_dev *dev = pci_get_drvdata(pdev); 3132 3133 nvme_disable_prepare_reset(dev, true); 3134 } 3135 3136 /* 3137 * The driver's remove may be called on a device in a partially initialized 3138 * state. This function must not have any dependencies on the device state in 3139 * order to proceed. 3140 */ 3141 static void nvme_remove(struct pci_dev *pdev) 3142 { 3143 struct nvme_dev *dev = pci_get_drvdata(pdev); 3144 3145 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3146 pci_set_drvdata(pdev, NULL); 3147 3148 if (!pci_device_is_present(pdev)) { 3149 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3150 nvme_dev_disable(dev, true); 3151 } 3152 3153 flush_work(&dev->ctrl.reset_work); 3154 nvme_stop_ctrl(&dev->ctrl); 3155 nvme_remove_namespaces(&dev->ctrl); 3156 nvme_dev_disable(dev, true); 3157 nvme_free_host_mem(dev); 3158 nvme_dev_remove_admin(dev); 3159 nvme_dbbuf_dma_free(dev); 3160 nvme_free_queues(dev, 0); 3161 mempool_destroy(dev->iod_mempool); 3162 nvme_release_prp_pools(dev); 3163 nvme_dev_unmap(dev); 3164 nvme_uninit_ctrl(&dev->ctrl); 3165 } 3166 3167 #ifdef CONFIG_PM_SLEEP 3168 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3169 { 3170 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3171 } 3172 3173 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3174 { 3175 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3176 } 3177 3178 static int nvme_resume(struct device *dev) 3179 { 3180 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3181 struct nvme_ctrl *ctrl = &ndev->ctrl; 3182 3183 if (ndev->last_ps == U32_MAX || 3184 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3185 goto reset; 3186 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3187 goto reset; 3188 3189 return 0; 3190 reset: 3191 return nvme_try_sched_reset(ctrl); 3192 } 3193 3194 static int nvme_suspend(struct device *dev) 3195 { 3196 struct pci_dev *pdev = to_pci_dev(dev); 3197 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3198 struct nvme_ctrl *ctrl = &ndev->ctrl; 3199 int ret = -EBUSY; 3200 3201 ndev->last_ps = U32_MAX; 3202 3203 /* 3204 * The platform does not remove power for a kernel managed suspend so 3205 * use host managed nvme power settings for lowest idle power if 3206 * possible. This should have quicker resume latency than a full device 3207 * shutdown. But if the firmware is involved after the suspend or the 3208 * device does not support any non-default power states, shut down the 3209 * device fully. 3210 * 3211 * If ASPM is not enabled for the device, shut down the device and allow 3212 * the PCI bus layer to put it into D3 in order to take the PCIe link 3213 * down, so as to allow the platform to achieve its minimum low-power 3214 * state (which may not be possible if the link is up). 3215 */ 3216 if (pm_suspend_via_firmware() || !ctrl->npss || 3217 !pcie_aspm_enabled(pdev) || 3218 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3219 return nvme_disable_prepare_reset(ndev, true); 3220 3221 nvme_start_freeze(ctrl); 3222 nvme_wait_freeze(ctrl); 3223 nvme_sync_queues(ctrl); 3224 3225 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3226 goto unfreeze; 3227 3228 /* 3229 * Host memory access may not be successful in a system suspend state, 3230 * but the specification allows the controller to access memory in a 3231 * non-operational power state. 3232 */ 3233 if (ndev->hmb) { 3234 ret = nvme_set_host_mem(ndev, 0); 3235 if (ret < 0) 3236 goto unfreeze; 3237 } 3238 3239 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3240 if (ret < 0) 3241 goto unfreeze; 3242 3243 /* 3244 * A saved state prevents pci pm from generically controlling the 3245 * device's power. If we're using protocol specific settings, we don't 3246 * want pci interfering. 3247 */ 3248 pci_save_state(pdev); 3249 3250 ret = nvme_set_power_state(ctrl, ctrl->npss); 3251 if (ret < 0) 3252 goto unfreeze; 3253 3254 if (ret) { 3255 /* discard the saved state */ 3256 pci_load_saved_state(pdev, NULL); 3257 3258 /* 3259 * Clearing npss forces a controller reset on resume. The 3260 * correct value will be rediscovered then. 3261 */ 3262 ret = nvme_disable_prepare_reset(ndev, true); 3263 ctrl->npss = 0; 3264 } 3265 unfreeze: 3266 nvme_unfreeze(ctrl); 3267 return ret; 3268 } 3269 3270 static int nvme_simple_suspend(struct device *dev) 3271 { 3272 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3273 3274 return nvme_disable_prepare_reset(ndev, true); 3275 } 3276 3277 static int nvme_simple_resume(struct device *dev) 3278 { 3279 struct pci_dev *pdev = to_pci_dev(dev); 3280 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3281 3282 return nvme_try_sched_reset(&ndev->ctrl); 3283 } 3284 3285 static const struct dev_pm_ops nvme_dev_pm_ops = { 3286 .suspend = nvme_suspend, 3287 .resume = nvme_resume, 3288 .freeze = nvme_simple_suspend, 3289 .thaw = nvme_simple_resume, 3290 .poweroff = nvme_simple_suspend, 3291 .restore = nvme_simple_resume, 3292 }; 3293 #endif /* CONFIG_PM_SLEEP */ 3294 3295 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3296 pci_channel_state_t state) 3297 { 3298 struct nvme_dev *dev = pci_get_drvdata(pdev); 3299 3300 /* 3301 * A frozen channel requires a reset. When detected, this method will 3302 * shutdown the controller to quiesce. The controller will be restarted 3303 * after the slot reset through driver's slot_reset callback. 3304 */ 3305 switch (state) { 3306 case pci_channel_io_normal: 3307 return PCI_ERS_RESULT_CAN_RECOVER; 3308 case pci_channel_io_frozen: 3309 dev_warn(dev->ctrl.device, 3310 "frozen state error detected, reset controller\n"); 3311 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3312 nvme_dev_disable(dev, true); 3313 return PCI_ERS_RESULT_DISCONNECT; 3314 } 3315 nvme_dev_disable(dev, false); 3316 return PCI_ERS_RESULT_NEED_RESET; 3317 case pci_channel_io_perm_failure: 3318 dev_warn(dev->ctrl.device, 3319 "failure state error detected, request disconnect\n"); 3320 return PCI_ERS_RESULT_DISCONNECT; 3321 } 3322 return PCI_ERS_RESULT_NEED_RESET; 3323 } 3324 3325 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3326 { 3327 struct nvme_dev *dev = pci_get_drvdata(pdev); 3328 3329 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3330 pci_restore_state(pdev); 3331 if (!nvme_try_sched_reset(&dev->ctrl)) 3332 nvme_unquiesce_io_queues(&dev->ctrl); 3333 return PCI_ERS_RESULT_RECOVERED; 3334 } 3335 3336 static void nvme_error_resume(struct pci_dev *pdev) 3337 { 3338 struct nvme_dev *dev = pci_get_drvdata(pdev); 3339 3340 flush_work(&dev->ctrl.reset_work); 3341 } 3342 3343 static const struct pci_error_handlers nvme_err_handler = { 3344 .error_detected = nvme_error_detected, 3345 .slot_reset = nvme_slot_reset, 3346 .resume = nvme_error_resume, 3347 .reset_prepare = nvme_reset_prepare, 3348 .reset_done = nvme_reset_done, 3349 }; 3350 3351 static const struct pci_device_id nvme_id_table[] = { 3352 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3353 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3354 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3355 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3356 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3357 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3358 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3359 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3360 NVME_QUIRK_DEALLOCATE_ZEROES | 3361 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3362 NVME_QUIRK_BOGUS_NID, }, 3363 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3364 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3365 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3366 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3367 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3368 NVME_QUIRK_MEDIUM_PRIO_SQ | 3369 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3370 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3371 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3372 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3373 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3374 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3375 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3376 NVME_QUIRK_BOGUS_NID, }, 3377 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3378 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3379 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3380 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3381 NVME_QUIRK_BOGUS_NID, }, 3382 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3383 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3384 NVME_QUIRK_BOGUS_NID, }, 3385 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3386 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3387 NVME_QUIRK_NO_NS_DESC_LIST, }, 3388 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3389 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3390 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3391 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3392 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3393 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3394 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3395 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3396 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3397 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3398 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3399 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3400 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3401 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3402 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3403 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3404 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3405 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3406 NVME_QUIRK_BOGUS_NID, }, 3407 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3408 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3409 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3410 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3411 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3412 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3413 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3414 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3415 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3416 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3417 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3418 NVME_QUIRK_BOGUS_NID, }, 3419 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3420 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3421 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3422 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3423 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3424 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3425 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3426 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3427 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3428 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3429 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3430 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3431 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3432 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3433 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3434 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3435 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3436 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3437 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3438 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3439 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3440 NVME_QUIRK_BOGUS_NID, }, 3441 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3442 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3443 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3444 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3445 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3446 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3447 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3448 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3449 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3450 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3451 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3452 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3453 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3454 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3455 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3456 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3457 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3458 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3459 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3460 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3461 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3462 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3463 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3464 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3465 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3466 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3467 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3468 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3469 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3470 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3471 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3472 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3473 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3474 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3475 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3476 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3477 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3478 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3479 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3480 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3481 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3482 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3483 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3484 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3485 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3486 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3487 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3488 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3489 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3490 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3491 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3492 .driver_data = NVME_QUIRK_BOGUS_NID | 3493 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3494 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3495 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3496 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3497 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3498 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3499 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3500 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3501 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3502 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3503 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3504 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3505 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3506 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3507 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3508 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3509 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3510 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3511 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3512 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3513 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3514 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3515 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3516 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3517 NVME_QUIRK_128_BYTES_SQES | 3518 NVME_QUIRK_SHARED_TAGS | 3519 NVME_QUIRK_SKIP_CID_GEN | 3520 NVME_QUIRK_IDENTIFY_CNS }, 3521 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3522 { 0, } 3523 }; 3524 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3525 3526 static struct pci_driver nvme_driver = { 3527 .name = "nvme", 3528 .id_table = nvme_id_table, 3529 .probe = nvme_probe, 3530 .remove = nvme_remove, 3531 .shutdown = nvme_shutdown, 3532 .driver = { 3533 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3534 #ifdef CONFIG_PM_SLEEP 3535 .pm = &nvme_dev_pm_ops, 3536 #endif 3537 }, 3538 .sriov_configure = pci_sriov_configure_simple, 3539 .err_handler = &nvme_err_handler, 3540 }; 3541 3542 static int __init nvme_init(void) 3543 { 3544 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3545 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3546 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3547 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3548 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3549 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3550 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3551 3552 return pci_register_driver(&nvme_driver); 3553 } 3554 3555 static void __exit nvme_exit(void) 3556 { 3557 pci_unregister_driver(&nvme_driver); 3558 flush_workqueue(nvme_wq); 3559 } 3560 3561 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3562 MODULE_LICENSE("GPL"); 3563 MODULE_VERSION("1.0"); 3564 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3565 module_init(nvme_init); 3566 module_exit(nvme_exit); 3567