xref: /linux/drivers/nvme/host/pci.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/mutex.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45 
46 #include "nvme.h"
47 
48 #define NVME_Q_DEPTH		1024
49 #define NVME_AQ_DEPTH		256
50 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
52 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_NR_AEN_COMMANDS	1
58 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59 
60 unsigned char admin_timeout = 60;
61 module_param(admin_timeout, byte, 0644);
62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
63 
64 unsigned char nvme_io_timeout = 30;
65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
67 
68 unsigned char shutdown_timeout = 5;
69 module_param(shutdown_timeout, byte, 0644);
70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71 
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74 
75 static bool use_cmb_sqes = true;
76 module_param(use_cmb_sqes, bool, 0644);
77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78 
79 static LIST_HEAD(dev_list);
80 static struct task_struct *nvme_thread;
81 static struct workqueue_struct *nvme_workq;
82 static wait_queue_head_t nvme_kthread_wait;
83 
84 struct nvme_dev;
85 struct nvme_queue;
86 
87 static int nvme_reset(struct nvme_dev *dev);
88 static void nvme_process_cq(struct nvme_queue *nvmeq);
89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
91 
92 /*
93  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
94  */
95 struct nvme_dev {
96 	struct list_head node;
97 	struct nvme_queue **queues;
98 	struct blk_mq_tag_set tagset;
99 	struct blk_mq_tag_set admin_tagset;
100 	u32 __iomem *dbs;
101 	struct device *dev;
102 	struct dma_pool *prp_page_pool;
103 	struct dma_pool *prp_small_pool;
104 	unsigned queue_count;
105 	unsigned online_queues;
106 	unsigned max_qid;
107 	int q_depth;
108 	u32 db_stride;
109 	struct msix_entry *entry;
110 	void __iomem *bar;
111 	struct work_struct reset_work;
112 	struct work_struct scan_work;
113 	struct work_struct remove_work;
114 	struct mutex shutdown_lock;
115 	bool subsystem;
116 	void __iomem *cmb;
117 	dma_addr_t cmb_dma_addr;
118 	u64 cmb_size;
119 	u32 cmbsz;
120 	unsigned long flags;
121 
122 #define NVME_CTRL_RESETTING    0
123 
124 	struct nvme_ctrl ctrl;
125 	struct completion ioq_wait;
126 };
127 
128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129 {
130 	return container_of(ctrl, struct nvme_dev, ctrl);
131 }
132 
133 /*
134  * An NVM Express queue.  Each device has at least two (one for admin
135  * commands and one for I/O commands).
136  */
137 struct nvme_queue {
138 	struct device *q_dmadev;
139 	struct nvme_dev *dev;
140 	char irqname[24];	/* nvme4294967295-65535\0 */
141 	spinlock_t q_lock;
142 	struct nvme_command *sq_cmds;
143 	struct nvme_command __iomem *sq_cmds_io;
144 	volatile struct nvme_completion *cqes;
145 	struct blk_mq_tags **tags;
146 	dma_addr_t sq_dma_addr;
147 	dma_addr_t cq_dma_addr;
148 	u32 __iomem *q_db;
149 	u16 q_depth;
150 	s16 cq_vector;
151 	u16 sq_head;
152 	u16 sq_tail;
153 	u16 cq_head;
154 	u16 qid;
155 	u8 cq_phase;
156 	u8 cqe_seen;
157 };
158 
159 /*
160  * The nvme_iod describes the data in an I/O, including the list of PRP
161  * entries.  You can't see it in this data structure because C doesn't let
162  * me express that.  Use nvme_init_iod to ensure there's enough space
163  * allocated to store the PRP list.
164  */
165 struct nvme_iod {
166 	struct nvme_queue *nvmeq;
167 	int aborted;
168 	int npages;		/* In the PRP list. 0 means small pool in use */
169 	int nents;		/* Used in scatterlist */
170 	int length;		/* Of data, in bytes */
171 	dma_addr_t first_dma;
172 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
173 	struct scatterlist *sg;
174 	struct scatterlist inline_sg[0];
175 };
176 
177 /*
178  * Check we didin't inadvertently grow the command struct
179  */
180 static inline void _nvme_check_size(void)
181 {
182 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
187 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
188 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
189 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
193 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
194 }
195 
196 /*
197  * Max size of iod being embedded in the request payload
198  */
199 #define NVME_INT_PAGES		2
200 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
201 
202 /*
203  * Will slightly overestimate the number of pages needed.  This is OK
204  * as it only leads to a small amount of wasted memory for the lifetime of
205  * the I/O.
206  */
207 static int nvme_npages(unsigned size, struct nvme_dev *dev)
208 {
209 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 				      dev->ctrl.page_size);
211 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212 }
213 
214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 		unsigned int size, unsigned int nseg)
216 {
217 	return sizeof(__le64 *) * nvme_npages(size, dev) +
218 			sizeof(struct scatterlist) * nseg;
219 }
220 
221 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222 {
223 	return sizeof(struct nvme_iod) +
224 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
225 }
226 
227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 				unsigned int hctx_idx)
229 {
230 	struct nvme_dev *dev = data;
231 	struct nvme_queue *nvmeq = dev->queues[0];
232 
233 	WARN_ON(hctx_idx != 0);
234 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 	WARN_ON(nvmeq->tags);
236 
237 	hctx->driver_data = nvmeq;
238 	nvmeq->tags = &dev->admin_tagset.tags[0];
239 	return 0;
240 }
241 
242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243 {
244 	struct nvme_queue *nvmeq = hctx->driver_data;
245 
246 	nvmeq->tags = NULL;
247 }
248 
249 static int nvme_admin_init_request(void *data, struct request *req,
250 				unsigned int hctx_idx, unsigned int rq_idx,
251 				unsigned int numa_node)
252 {
253 	struct nvme_dev *dev = data;
254 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
255 	struct nvme_queue *nvmeq = dev->queues[0];
256 
257 	BUG_ON(!nvmeq);
258 	iod->nvmeq = nvmeq;
259 	return 0;
260 }
261 
262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 			  unsigned int hctx_idx)
264 {
265 	struct nvme_dev *dev = data;
266 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
267 
268 	if (!nvmeq->tags)
269 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
270 
271 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
272 	hctx->driver_data = nvmeq;
273 	return 0;
274 }
275 
276 static int nvme_init_request(void *data, struct request *req,
277 				unsigned int hctx_idx, unsigned int rq_idx,
278 				unsigned int numa_node)
279 {
280 	struct nvme_dev *dev = data;
281 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
282 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283 
284 	BUG_ON(!nvmeq);
285 	iod->nvmeq = nvmeq;
286 	return 0;
287 }
288 
289 static void nvme_complete_async_event(struct nvme_dev *dev,
290 		struct nvme_completion *cqe)
291 {
292 	u16 status = le16_to_cpu(cqe->status) >> 1;
293 	u32 result = le32_to_cpu(cqe->result);
294 
295 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
296 		++dev->ctrl.event_limit;
297 	if (status != NVME_SC_SUCCESS)
298 		return;
299 
300 	switch (result & 0xff07) {
301 	case NVME_AER_NOTICE_NS_CHANGED:
302 		dev_info(dev->dev, "rescanning\n");
303 		queue_work(nvme_workq, &dev->scan_work);
304 	default:
305 		dev_warn(dev->dev, "async event result %08x\n", result);
306 	}
307 }
308 
309 /**
310  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
311  * @nvmeq: The queue to use
312  * @cmd: The command to send
313  *
314  * Safe to use from interrupt context
315  */
316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
317 						struct nvme_command *cmd)
318 {
319 	u16 tail = nvmeq->sq_tail;
320 
321 	if (nvmeq->sq_cmds_io)
322 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
323 	else
324 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325 
326 	if (++tail == nvmeq->q_depth)
327 		tail = 0;
328 	writel(tail, nvmeq->q_db);
329 	nvmeq->sq_tail = tail;
330 }
331 
332 static __le64 **iod_list(struct request *req)
333 {
334 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
335 	return (__le64 **)(iod->sg + req->nr_phys_segments);
336 }
337 
338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
339 {
340 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
341 	int nseg = rq->nr_phys_segments;
342 	unsigned size;
343 
344 	if (rq->cmd_flags & REQ_DISCARD)
345 		size = sizeof(struct nvme_dsm_range);
346 	else
347 		size = blk_rq_bytes(rq);
348 
349 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
350 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
351 		if (!iod->sg)
352 			return BLK_MQ_RQ_QUEUE_BUSY;
353 	} else {
354 		iod->sg = iod->inline_sg;
355 	}
356 
357 	iod->aborted = 0;
358 	iod->npages = -1;
359 	iod->nents = 0;
360 	iod->length = size;
361 	return 0;
362 }
363 
364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
365 {
366 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 	const int last_prp = dev->ctrl.page_size / 8 - 1;
368 	int i;
369 	__le64 **list = iod_list(req);
370 	dma_addr_t prp_dma = iod->first_dma;
371 
372 	if (iod->npages == 0)
373 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
374 	for (i = 0; i < iod->npages; i++) {
375 		__le64 *prp_list = list[i];
376 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
377 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
378 		prp_dma = next_prp_dma;
379 	}
380 
381 	if (iod->sg != iod->inline_sg)
382 		kfree(iod->sg);
383 }
384 
385 #ifdef CONFIG_BLK_DEV_INTEGRITY
386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
387 {
388 	if (be32_to_cpu(pi->ref_tag) == v)
389 		pi->ref_tag = cpu_to_be32(p);
390 }
391 
392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
393 {
394 	if (be32_to_cpu(pi->ref_tag) == p)
395 		pi->ref_tag = cpu_to_be32(v);
396 }
397 
398 /**
399  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
400  *
401  * The virtual start sector is the one that was originally submitted by the
402  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
403  * start sector may be different. Remap protection information to match the
404  * physical LBA on writes, and back to the original seed on reads.
405  *
406  * Type 0 and 3 do not have a ref tag, so no remapping required.
407  */
408 static void nvme_dif_remap(struct request *req,
409 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
410 {
411 	struct nvme_ns *ns = req->rq_disk->private_data;
412 	struct bio_integrity_payload *bip;
413 	struct t10_pi_tuple *pi;
414 	void *p, *pmap;
415 	u32 i, nlb, ts, phys, virt;
416 
417 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
418 		return;
419 
420 	bip = bio_integrity(req->bio);
421 	if (!bip)
422 		return;
423 
424 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
425 
426 	p = pmap;
427 	virt = bip_get_seed(bip);
428 	phys = nvme_block_nr(ns, blk_rq_pos(req));
429 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
430 	ts = ns->disk->queue->integrity.tuple_size;
431 
432 	for (i = 0; i < nlb; i++, virt++, phys++) {
433 		pi = (struct t10_pi_tuple *)p;
434 		dif_swap(phys, virt, pi);
435 		p += ts;
436 	}
437 	kunmap_atomic(pmap);
438 }
439 #else /* CONFIG_BLK_DEV_INTEGRITY */
440 static void nvme_dif_remap(struct request *req,
441 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
442 {
443 }
444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
445 {
446 }
447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
448 {
449 }
450 #endif
451 
452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
453 		int total_len)
454 {
455 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456 	struct dma_pool *pool;
457 	int length = total_len;
458 	struct scatterlist *sg = iod->sg;
459 	int dma_len = sg_dma_len(sg);
460 	u64 dma_addr = sg_dma_address(sg);
461 	u32 page_size = dev->ctrl.page_size;
462 	int offset = dma_addr & (page_size - 1);
463 	__le64 *prp_list;
464 	__le64 **list = iod_list(req);
465 	dma_addr_t prp_dma;
466 	int nprps, i;
467 
468 	length -= (page_size - offset);
469 	if (length <= 0)
470 		return true;
471 
472 	dma_len -= (page_size - offset);
473 	if (dma_len) {
474 		dma_addr += (page_size - offset);
475 	} else {
476 		sg = sg_next(sg);
477 		dma_addr = sg_dma_address(sg);
478 		dma_len = sg_dma_len(sg);
479 	}
480 
481 	if (length <= page_size) {
482 		iod->first_dma = dma_addr;
483 		return true;
484 	}
485 
486 	nprps = DIV_ROUND_UP(length, page_size);
487 	if (nprps <= (256 / 8)) {
488 		pool = dev->prp_small_pool;
489 		iod->npages = 0;
490 	} else {
491 		pool = dev->prp_page_pool;
492 		iod->npages = 1;
493 	}
494 
495 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
496 	if (!prp_list) {
497 		iod->first_dma = dma_addr;
498 		iod->npages = -1;
499 		return false;
500 	}
501 	list[0] = prp_list;
502 	iod->first_dma = prp_dma;
503 	i = 0;
504 	for (;;) {
505 		if (i == page_size >> 3) {
506 			__le64 *old_prp_list = prp_list;
507 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
508 			if (!prp_list)
509 				return false;
510 			list[iod->npages++] = prp_list;
511 			prp_list[0] = old_prp_list[i - 1];
512 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
513 			i = 1;
514 		}
515 		prp_list[i++] = cpu_to_le64(dma_addr);
516 		dma_len -= page_size;
517 		dma_addr += page_size;
518 		length -= page_size;
519 		if (length <= 0)
520 			break;
521 		if (dma_len > 0)
522 			continue;
523 		BUG_ON(dma_len < 0);
524 		sg = sg_next(sg);
525 		dma_addr = sg_dma_address(sg);
526 		dma_len = sg_dma_len(sg);
527 	}
528 
529 	return true;
530 }
531 
532 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
533 		struct nvme_command *cmnd)
534 {
535 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
536 	struct request_queue *q = req->q;
537 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
540 
541 	sg_init_table(iod->sg, req->nr_phys_segments);
542 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
543 	if (!iod->nents)
544 		goto out;
545 
546 	ret = BLK_MQ_RQ_QUEUE_BUSY;
547 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
548 		goto out;
549 
550 	if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
551 		goto out_unmap;
552 
553 	ret = BLK_MQ_RQ_QUEUE_ERROR;
554 	if (blk_integrity_rq(req)) {
555 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
556 			goto out_unmap;
557 
558 		sg_init_table(&iod->meta_sg, 1);
559 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
560 			goto out_unmap;
561 
562 		if (rq_data_dir(req))
563 			nvme_dif_remap(req, nvme_dif_prep);
564 
565 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
566 			goto out_unmap;
567 	}
568 
569 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
570 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
571 	if (blk_integrity_rq(req))
572 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
573 	return BLK_MQ_RQ_QUEUE_OK;
574 
575 out_unmap:
576 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
577 out:
578 	return ret;
579 }
580 
581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
585 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
586 
587 	if (iod->nents) {
588 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
589 		if (blk_integrity_rq(req)) {
590 			if (!rq_data_dir(req))
591 				nvme_dif_remap(req, nvme_dif_complete);
592 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
593 		}
594 	}
595 
596 	nvme_free_iod(dev, req);
597 }
598 
599 /*
600  * We reuse the small pool to allocate the 16-byte range here as it is not
601  * worth having a special pool for these or additional cases to handle freeing
602  * the iod.
603  */
604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
605 		struct request *req, struct nvme_command *cmnd)
606 {
607 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
608 	struct nvme_dsm_range *range;
609 
610 	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
611 						&iod->first_dma);
612 	if (!range)
613 		return BLK_MQ_RQ_QUEUE_BUSY;
614 	iod_list(req)[0] = (__le64 *)range;
615 	iod->npages = 0;
616 
617 	range->cattr = cpu_to_le32(0);
618 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
619 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
620 
621 	memset(cmnd, 0, sizeof(*cmnd));
622 	cmnd->dsm.opcode = nvme_cmd_dsm;
623 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
624 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
625 	cmnd->dsm.nr = 0;
626 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
627 	return BLK_MQ_RQ_QUEUE_OK;
628 }
629 
630 /*
631  * NOTE: ns is NULL when called on the admin queue.
632  */
633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
634 			 const struct blk_mq_queue_data *bd)
635 {
636 	struct nvme_ns *ns = hctx->queue->queuedata;
637 	struct nvme_queue *nvmeq = hctx->driver_data;
638 	struct nvme_dev *dev = nvmeq->dev;
639 	struct request *req = bd->rq;
640 	struct nvme_command cmnd;
641 	int ret = BLK_MQ_RQ_QUEUE_OK;
642 
643 	/*
644 	 * If formated with metadata, require the block layer provide a buffer
645 	 * unless this namespace is formated such that the metadata can be
646 	 * stripped/generated by the controller with PRACT=1.
647 	 */
648 	if (ns && ns->ms && !blk_integrity_rq(req)) {
649 		if (!(ns->pi_type && ns->ms == 8) &&
650 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
651 			blk_mq_end_request(req, -EFAULT);
652 			return BLK_MQ_RQ_QUEUE_OK;
653 		}
654 	}
655 
656 	ret = nvme_init_iod(req, dev);
657 	if (ret)
658 		return ret;
659 
660 	if (req->cmd_flags & REQ_DISCARD) {
661 		ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
662 	} else {
663 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
664 			memcpy(&cmnd, req->cmd, sizeof(cmnd));
665 		else if (req->cmd_flags & REQ_FLUSH)
666 			nvme_setup_flush(ns, &cmnd);
667 		else
668 			nvme_setup_rw(ns, req, &cmnd);
669 
670 		if (req->nr_phys_segments)
671 			ret = nvme_map_data(dev, req, &cmnd);
672 	}
673 
674 	if (ret)
675 		goto out;
676 
677 	cmnd.common.command_id = req->tag;
678 	blk_mq_start_request(req);
679 
680 	spin_lock_irq(&nvmeq->q_lock);
681 	__nvme_submit_cmd(nvmeq, &cmnd);
682 	nvme_process_cq(nvmeq);
683 	spin_unlock_irq(&nvmeq->q_lock);
684 	return BLK_MQ_RQ_QUEUE_OK;
685 out:
686 	nvme_free_iod(dev, req);
687 	return ret;
688 }
689 
690 static void nvme_complete_rq(struct request *req)
691 {
692 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
693 	struct nvme_dev *dev = iod->nvmeq->dev;
694 	int error = 0;
695 
696 	nvme_unmap_data(dev, req);
697 
698 	if (unlikely(req->errors)) {
699 		if (nvme_req_needs_retry(req, req->errors)) {
700 			nvme_requeue_req(req);
701 			return;
702 		}
703 
704 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
705 			error = req->errors;
706 		else
707 			error = nvme_error_status(req->errors);
708 	}
709 
710 	if (unlikely(iod->aborted)) {
711 		dev_warn(dev->dev,
712 			"completing aborted command with status: %04x\n",
713 			req->errors);
714 	}
715 
716 	blk_mq_end_request(req, error);
717 }
718 
719 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
720 {
721 	u16 head, phase;
722 
723 	head = nvmeq->cq_head;
724 	phase = nvmeq->cq_phase;
725 
726 	for (;;) {
727 		struct nvme_completion cqe = nvmeq->cqes[head];
728 		u16 status = le16_to_cpu(cqe.status);
729 		struct request *req;
730 
731 		if ((status & 1) != phase)
732 			break;
733 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
734 		if (++head == nvmeq->q_depth) {
735 			head = 0;
736 			phase = !phase;
737 		}
738 
739 		if (tag && *tag == cqe.command_id)
740 			*tag = -1;
741 
742 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
743 			dev_warn(nvmeq->q_dmadev,
744 				"invalid id %d completed on queue %d\n",
745 				cqe.command_id, le16_to_cpu(cqe.sq_id));
746 			continue;
747 		}
748 
749 		/*
750 		 * AEN requests are special as they don't time out and can
751 		 * survive any kind of queue freeze and often don't respond to
752 		 * aborts.  We don't even bother to allocate a struct request
753 		 * for them but rather special case them here.
754 		 */
755 		if (unlikely(nvmeq->qid == 0 &&
756 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
757 			nvme_complete_async_event(nvmeq->dev, &cqe);
758 			continue;
759 		}
760 
761 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
762 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
763 			u32 result = le32_to_cpu(cqe.result);
764 			req->special = (void *)(uintptr_t)result;
765 		}
766 		blk_mq_complete_request(req, status >> 1);
767 
768 	}
769 
770 	/* If the controller ignores the cq head doorbell and continuously
771 	 * writes to the queue, it is theoretically possible to wrap around
772 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
773 	 * requires that 0.1% of your interrupts are handled, so this isn't
774 	 * a big problem.
775 	 */
776 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
777 		return;
778 
779 	if (likely(nvmeq->cq_vector >= 0))
780 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
781 	nvmeq->cq_head = head;
782 	nvmeq->cq_phase = phase;
783 
784 	nvmeq->cqe_seen = 1;
785 }
786 
787 static void nvme_process_cq(struct nvme_queue *nvmeq)
788 {
789 	__nvme_process_cq(nvmeq, NULL);
790 }
791 
792 static irqreturn_t nvme_irq(int irq, void *data)
793 {
794 	irqreturn_t result;
795 	struct nvme_queue *nvmeq = data;
796 	spin_lock(&nvmeq->q_lock);
797 	nvme_process_cq(nvmeq);
798 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
799 	nvmeq->cqe_seen = 0;
800 	spin_unlock(&nvmeq->q_lock);
801 	return result;
802 }
803 
804 static irqreturn_t nvme_irq_check(int irq, void *data)
805 {
806 	struct nvme_queue *nvmeq = data;
807 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
808 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
809 		return IRQ_NONE;
810 	return IRQ_WAKE_THREAD;
811 }
812 
813 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
814 {
815 	struct nvme_queue *nvmeq = hctx->driver_data;
816 
817 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
818 	    nvmeq->cq_phase) {
819 		spin_lock_irq(&nvmeq->q_lock);
820 		__nvme_process_cq(nvmeq, &tag);
821 		spin_unlock_irq(&nvmeq->q_lock);
822 
823 		if (tag == -1)
824 			return 1;
825 	}
826 
827 	return 0;
828 }
829 
830 static void nvme_submit_async_event(struct nvme_dev *dev)
831 {
832 	struct nvme_command c;
833 
834 	memset(&c, 0, sizeof(c));
835 	c.common.opcode = nvme_admin_async_event;
836 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
837 
838 	__nvme_submit_cmd(dev->queues[0], &c);
839 }
840 
841 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
842 {
843 	struct nvme_command c;
844 
845 	memset(&c, 0, sizeof(c));
846 	c.delete_queue.opcode = opcode;
847 	c.delete_queue.qid = cpu_to_le16(id);
848 
849 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
850 }
851 
852 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
853 						struct nvme_queue *nvmeq)
854 {
855 	struct nvme_command c;
856 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
857 
858 	/*
859 	 * Note: we (ab)use the fact the the prp fields survive if no data
860 	 * is attached to the request.
861 	 */
862 	memset(&c, 0, sizeof(c));
863 	c.create_cq.opcode = nvme_admin_create_cq;
864 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
865 	c.create_cq.cqid = cpu_to_le16(qid);
866 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
867 	c.create_cq.cq_flags = cpu_to_le16(flags);
868 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
869 
870 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
871 }
872 
873 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
874 						struct nvme_queue *nvmeq)
875 {
876 	struct nvme_command c;
877 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
878 
879 	/*
880 	 * Note: we (ab)use the fact the the prp fields survive if no data
881 	 * is attached to the request.
882 	 */
883 	memset(&c, 0, sizeof(c));
884 	c.create_sq.opcode = nvme_admin_create_sq;
885 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
886 	c.create_sq.sqid = cpu_to_le16(qid);
887 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
888 	c.create_sq.sq_flags = cpu_to_le16(flags);
889 	c.create_sq.cqid = cpu_to_le16(qid);
890 
891 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
892 }
893 
894 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
895 {
896 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
897 }
898 
899 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
900 {
901 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
902 }
903 
904 static void abort_endio(struct request *req, int error)
905 {
906 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
907 	struct nvme_queue *nvmeq = iod->nvmeq;
908 	u32 result = (u32)(uintptr_t)req->special;
909 	u16 status = req->errors;
910 
911 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
912 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
913 
914 	blk_mq_free_request(req);
915 }
916 
917 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
918 {
919 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 	struct nvme_queue *nvmeq = iod->nvmeq;
921 	struct nvme_dev *dev = nvmeq->dev;
922 	struct request *abort_req;
923 	struct nvme_command cmd;
924 
925 	/*
926 	 * Shutdown immediately if controller times out while starting. The
927 	 * reset work will see the pci device disabled when it gets the forced
928 	 * cancellation error. All outstanding requests are completed on
929 	 * shutdown, so we return BLK_EH_HANDLED.
930 	 */
931 	if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
932 		dev_warn(dev->dev,
933 			 "I/O %d QID %d timeout, disable controller\n",
934 			 req->tag, nvmeq->qid);
935 		nvme_dev_disable(dev, false);
936 		req->errors = NVME_SC_CANCELLED;
937 		return BLK_EH_HANDLED;
938 	}
939 
940 	/*
941  	 * Shutdown the controller immediately and schedule a reset if the
942  	 * command was already aborted once before and still hasn't been
943  	 * returned to the driver, or if this is the admin queue.
944 	 */
945 	if (!nvmeq->qid || iod->aborted) {
946 		dev_warn(dev->dev,
947 			 "I/O %d QID %d timeout, reset controller\n",
948 			 req->tag, nvmeq->qid);
949 		nvme_dev_disable(dev, false);
950 		queue_work(nvme_workq, &dev->reset_work);
951 
952 		/*
953 		 * Mark the request as handled, since the inline shutdown
954 		 * forces all outstanding requests to complete.
955 		 */
956 		req->errors = NVME_SC_CANCELLED;
957 		return BLK_EH_HANDLED;
958 	}
959 
960 	iod->aborted = 1;
961 
962 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
963 		atomic_inc(&dev->ctrl.abort_limit);
964 		return BLK_EH_RESET_TIMER;
965 	}
966 
967 	memset(&cmd, 0, sizeof(cmd));
968 	cmd.abort.opcode = nvme_admin_abort_cmd;
969 	cmd.abort.cid = req->tag;
970 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
971 
972 	dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
973 				 req->tag, nvmeq->qid);
974 
975 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
976 			BLK_MQ_REQ_NOWAIT);
977 	if (IS_ERR(abort_req)) {
978 		atomic_inc(&dev->ctrl.abort_limit);
979 		return BLK_EH_RESET_TIMER;
980 	}
981 
982 	abort_req->timeout = ADMIN_TIMEOUT;
983 	abort_req->end_io_data = NULL;
984 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
985 
986 	/*
987 	 * The aborted req will be completed on receiving the abort req.
988 	 * We enable the timer again. If hit twice, it'll cause a device reset,
989 	 * as the device then is in a faulty state.
990 	 */
991 	return BLK_EH_RESET_TIMER;
992 }
993 
994 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
995 {
996 	struct nvme_queue *nvmeq = data;
997 	int status;
998 
999 	if (!blk_mq_request_started(req))
1000 		return;
1001 
1002 	dev_warn(nvmeq->q_dmadev,
1003 		 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1004 
1005 	status = NVME_SC_ABORT_REQ;
1006 	if (blk_queue_dying(req->q))
1007 		status |= NVME_SC_DNR;
1008 	blk_mq_complete_request(req, status);
1009 }
1010 
1011 static void nvme_free_queue(struct nvme_queue *nvmeq)
1012 {
1013 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1014 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1015 	if (nvmeq->sq_cmds)
1016 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1017 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1018 	kfree(nvmeq);
1019 }
1020 
1021 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1022 {
1023 	int i;
1024 
1025 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1026 		struct nvme_queue *nvmeq = dev->queues[i];
1027 		dev->queue_count--;
1028 		dev->queues[i] = NULL;
1029 		nvme_free_queue(nvmeq);
1030 	}
1031 }
1032 
1033 /**
1034  * nvme_suspend_queue - put queue into suspended state
1035  * @nvmeq - queue to suspend
1036  */
1037 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1038 {
1039 	int vector;
1040 
1041 	spin_lock_irq(&nvmeq->q_lock);
1042 	if (nvmeq->cq_vector == -1) {
1043 		spin_unlock_irq(&nvmeq->q_lock);
1044 		return 1;
1045 	}
1046 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1047 	nvmeq->dev->online_queues--;
1048 	nvmeq->cq_vector = -1;
1049 	spin_unlock_irq(&nvmeq->q_lock);
1050 
1051 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1052 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1053 
1054 	irq_set_affinity_hint(vector, NULL);
1055 	free_irq(vector, nvmeq);
1056 
1057 	return 0;
1058 }
1059 
1060 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1061 {
1062 	spin_lock_irq(&nvmeq->q_lock);
1063 	if (nvmeq->tags && *nvmeq->tags)
1064 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1065 	spin_unlock_irq(&nvmeq->q_lock);
1066 }
1067 
1068 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1069 {
1070 	struct nvme_queue *nvmeq = dev->queues[0];
1071 
1072 	if (!nvmeq)
1073 		return;
1074 	if (nvme_suspend_queue(nvmeq))
1075 		return;
1076 
1077 	if (shutdown)
1078 		nvme_shutdown_ctrl(&dev->ctrl);
1079 	else
1080 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1081 						dev->bar + NVME_REG_CAP));
1082 
1083 	spin_lock_irq(&nvmeq->q_lock);
1084 	nvme_process_cq(nvmeq);
1085 	spin_unlock_irq(&nvmeq->q_lock);
1086 }
1087 
1088 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1089 				int entry_size)
1090 {
1091 	int q_depth = dev->q_depth;
1092 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1093 					  dev->ctrl.page_size);
1094 
1095 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1096 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1097 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1098 		q_depth = div_u64(mem_per_q, entry_size);
1099 
1100 		/*
1101 		 * Ensure the reduced q_depth is above some threshold where it
1102 		 * would be better to map queues in system memory with the
1103 		 * original depth
1104 		 */
1105 		if (q_depth < 64)
1106 			return -ENOMEM;
1107 	}
1108 
1109 	return q_depth;
1110 }
1111 
1112 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1113 				int qid, int depth)
1114 {
1115 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1116 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1117 						      dev->ctrl.page_size);
1118 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1119 		nvmeq->sq_cmds_io = dev->cmb + offset;
1120 	} else {
1121 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1122 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1123 		if (!nvmeq->sq_cmds)
1124 			return -ENOMEM;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1131 							int depth)
1132 {
1133 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1134 	if (!nvmeq)
1135 		return NULL;
1136 
1137 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1138 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1139 	if (!nvmeq->cqes)
1140 		goto free_nvmeq;
1141 
1142 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1143 		goto free_cqdma;
1144 
1145 	nvmeq->q_dmadev = dev->dev;
1146 	nvmeq->dev = dev;
1147 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1148 			dev->ctrl.instance, qid);
1149 	spin_lock_init(&nvmeq->q_lock);
1150 	nvmeq->cq_head = 0;
1151 	nvmeq->cq_phase = 1;
1152 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1153 	nvmeq->q_depth = depth;
1154 	nvmeq->qid = qid;
1155 	nvmeq->cq_vector = -1;
1156 	dev->queues[qid] = nvmeq;
1157 
1158 	/* make sure queue descriptor is set before queue count, for kthread */
1159 	mb();
1160 	dev->queue_count++;
1161 
1162 	return nvmeq;
1163 
1164  free_cqdma:
1165 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1166 							nvmeq->cq_dma_addr);
1167  free_nvmeq:
1168 	kfree(nvmeq);
1169 	return NULL;
1170 }
1171 
1172 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1173 							const char *name)
1174 {
1175 	if (use_threaded_interrupts)
1176 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1177 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1178 					name, nvmeq);
1179 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1180 				IRQF_SHARED, name, nvmeq);
1181 }
1182 
1183 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1184 {
1185 	struct nvme_dev *dev = nvmeq->dev;
1186 
1187 	spin_lock_irq(&nvmeq->q_lock);
1188 	nvmeq->sq_tail = 0;
1189 	nvmeq->cq_head = 0;
1190 	nvmeq->cq_phase = 1;
1191 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1192 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1193 	dev->online_queues++;
1194 	spin_unlock_irq(&nvmeq->q_lock);
1195 }
1196 
1197 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1198 {
1199 	struct nvme_dev *dev = nvmeq->dev;
1200 	int result;
1201 
1202 	nvmeq->cq_vector = qid - 1;
1203 	result = adapter_alloc_cq(dev, qid, nvmeq);
1204 	if (result < 0)
1205 		return result;
1206 
1207 	result = adapter_alloc_sq(dev, qid, nvmeq);
1208 	if (result < 0)
1209 		goto release_cq;
1210 
1211 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1212 	if (result < 0)
1213 		goto release_sq;
1214 
1215 	nvme_init_queue(nvmeq, qid);
1216 	return result;
1217 
1218  release_sq:
1219 	adapter_delete_sq(dev, qid);
1220  release_cq:
1221 	adapter_delete_cq(dev, qid);
1222 	return result;
1223 }
1224 
1225 static struct blk_mq_ops nvme_mq_admin_ops = {
1226 	.queue_rq	= nvme_queue_rq,
1227 	.complete	= nvme_complete_rq,
1228 	.map_queue	= blk_mq_map_queue,
1229 	.init_hctx	= nvme_admin_init_hctx,
1230 	.exit_hctx      = nvme_admin_exit_hctx,
1231 	.init_request	= nvme_admin_init_request,
1232 	.timeout	= nvme_timeout,
1233 };
1234 
1235 static struct blk_mq_ops nvme_mq_ops = {
1236 	.queue_rq	= nvme_queue_rq,
1237 	.complete	= nvme_complete_rq,
1238 	.map_queue	= blk_mq_map_queue,
1239 	.init_hctx	= nvme_init_hctx,
1240 	.init_request	= nvme_init_request,
1241 	.timeout	= nvme_timeout,
1242 	.poll		= nvme_poll,
1243 };
1244 
1245 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1246 {
1247 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1248 		blk_cleanup_queue(dev->ctrl.admin_q);
1249 		blk_mq_free_tag_set(&dev->admin_tagset);
1250 	}
1251 }
1252 
1253 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1254 {
1255 	if (!dev->ctrl.admin_q) {
1256 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1257 		dev->admin_tagset.nr_hw_queues = 1;
1258 
1259 		/*
1260 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1261 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1262 		 */
1263 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1264 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1265 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1266 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1267 		dev->admin_tagset.driver_data = dev;
1268 
1269 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1270 			return -ENOMEM;
1271 
1272 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1273 		if (IS_ERR(dev->ctrl.admin_q)) {
1274 			blk_mq_free_tag_set(&dev->admin_tagset);
1275 			return -ENOMEM;
1276 		}
1277 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1278 			nvme_dev_remove_admin(dev);
1279 			dev->ctrl.admin_q = NULL;
1280 			return -ENODEV;
1281 		}
1282 	} else
1283 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1284 
1285 	return 0;
1286 }
1287 
1288 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1289 {
1290 	int result;
1291 	u32 aqa;
1292 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1293 	struct nvme_queue *nvmeq;
1294 
1295 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1296 						NVME_CAP_NSSRC(cap) : 0;
1297 
1298 	if (dev->subsystem &&
1299 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1300 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1301 
1302 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1303 	if (result < 0)
1304 		return result;
1305 
1306 	nvmeq = dev->queues[0];
1307 	if (!nvmeq) {
1308 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1309 		if (!nvmeq)
1310 			return -ENOMEM;
1311 	}
1312 
1313 	aqa = nvmeq->q_depth - 1;
1314 	aqa |= aqa << 16;
1315 
1316 	writel(aqa, dev->bar + NVME_REG_AQA);
1317 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1318 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1319 
1320 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1321 	if (result)
1322 		goto free_nvmeq;
1323 
1324 	nvmeq->cq_vector = 0;
1325 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1326 	if (result) {
1327 		nvmeq->cq_vector = -1;
1328 		goto free_nvmeq;
1329 	}
1330 
1331 	return result;
1332 
1333  free_nvmeq:
1334 	nvme_free_queues(dev, 0);
1335 	return result;
1336 }
1337 
1338 static int nvme_kthread(void *data)
1339 {
1340 	struct nvme_dev *dev, *next;
1341 
1342 	while (!kthread_should_stop()) {
1343 		set_current_state(TASK_INTERRUPTIBLE);
1344 		spin_lock(&dev_list_lock);
1345 		list_for_each_entry_safe(dev, next, &dev_list, node) {
1346 			int i;
1347 			u32 csts = readl(dev->bar + NVME_REG_CSTS);
1348 
1349 			/*
1350 			 * Skip controllers currently under reset.
1351 			 */
1352 			if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1353 				continue;
1354 
1355 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1356 							csts & NVME_CSTS_CFS) {
1357 				if (queue_work(nvme_workq, &dev->reset_work)) {
1358 					dev_warn(dev->dev,
1359 						"Failed status: %x, reset controller\n",
1360 						readl(dev->bar + NVME_REG_CSTS));
1361 				}
1362 				continue;
1363 			}
1364 			for (i = 0; i < dev->queue_count; i++) {
1365 				struct nvme_queue *nvmeq = dev->queues[i];
1366 				if (!nvmeq)
1367 					continue;
1368 				spin_lock_irq(&nvmeq->q_lock);
1369 				nvme_process_cq(nvmeq);
1370 
1371 				while (i == 0 && dev->ctrl.event_limit > 0)
1372 					nvme_submit_async_event(dev);
1373 				spin_unlock_irq(&nvmeq->q_lock);
1374 			}
1375 		}
1376 		spin_unlock(&dev_list_lock);
1377 		schedule_timeout(round_jiffies_relative(HZ));
1378 	}
1379 	return 0;
1380 }
1381 
1382 static int nvme_create_io_queues(struct nvme_dev *dev)
1383 {
1384 	unsigned i;
1385 	int ret = 0;
1386 
1387 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1388 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1389 			ret = -ENOMEM;
1390 			break;
1391 		}
1392 	}
1393 
1394 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1395 		ret = nvme_create_queue(dev->queues[i], i);
1396 		if (ret) {
1397 			nvme_free_queues(dev, i);
1398 			break;
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1404 	 * than the desired aount of queues, and even a controller without
1405 	 * I/O queues an still be used to issue admin commands.  This might
1406 	 * be useful to upgrade a buggy firmware for example.
1407 	 */
1408 	return ret >= 0 ? 0 : ret;
1409 }
1410 
1411 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1412 {
1413 	u64 szu, size, offset;
1414 	u32 cmbloc;
1415 	resource_size_t bar_size;
1416 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1417 	void __iomem *cmb;
1418 	dma_addr_t dma_addr;
1419 
1420 	if (!use_cmb_sqes)
1421 		return NULL;
1422 
1423 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1424 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1425 		return NULL;
1426 
1427 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1428 
1429 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1430 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1431 	offset = szu * NVME_CMB_OFST(cmbloc);
1432 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1433 
1434 	if (offset > bar_size)
1435 		return NULL;
1436 
1437 	/*
1438 	 * Controllers may support a CMB size larger than their BAR,
1439 	 * for example, due to being behind a bridge. Reduce the CMB to
1440 	 * the reported size of the BAR
1441 	 */
1442 	if (size > bar_size - offset)
1443 		size = bar_size - offset;
1444 
1445 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1446 	cmb = ioremap_wc(dma_addr, size);
1447 	if (!cmb)
1448 		return NULL;
1449 
1450 	dev->cmb_dma_addr = dma_addr;
1451 	dev->cmb_size = size;
1452 	return cmb;
1453 }
1454 
1455 static inline void nvme_release_cmb(struct nvme_dev *dev)
1456 {
1457 	if (dev->cmb) {
1458 		iounmap(dev->cmb);
1459 		dev->cmb = NULL;
1460 	}
1461 }
1462 
1463 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1464 {
1465 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1466 }
1467 
1468 static int nvme_setup_io_queues(struct nvme_dev *dev)
1469 {
1470 	struct nvme_queue *adminq = dev->queues[0];
1471 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1472 	int result, i, vecs, nr_io_queues, size;
1473 
1474 	nr_io_queues = num_possible_cpus();
1475 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1476 	if (result < 0)
1477 		return result;
1478 
1479 	/*
1480 	 * Degraded controllers might return an error when setting the queue
1481 	 * count.  We still want to be able to bring them online and offer
1482 	 * access to the admin queue, as that might be only way to fix them up.
1483 	 */
1484 	if (result > 0) {
1485 		dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1486 		nr_io_queues = 0;
1487 		result = 0;
1488 	}
1489 
1490 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1491 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1492 				sizeof(struct nvme_command));
1493 		if (result > 0)
1494 			dev->q_depth = result;
1495 		else
1496 			nvme_release_cmb(dev);
1497 	}
1498 
1499 	size = db_bar_size(dev, nr_io_queues);
1500 	if (size > 8192) {
1501 		iounmap(dev->bar);
1502 		do {
1503 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1504 			if (dev->bar)
1505 				break;
1506 			if (!--nr_io_queues)
1507 				return -ENOMEM;
1508 			size = db_bar_size(dev, nr_io_queues);
1509 		} while (1);
1510 		dev->dbs = dev->bar + 4096;
1511 		adminq->q_db = dev->dbs;
1512 	}
1513 
1514 	/* Deregister the admin queue's interrupt */
1515 	free_irq(dev->entry[0].vector, adminq);
1516 
1517 	/*
1518 	 * If we enable msix early due to not intx, disable it again before
1519 	 * setting up the full range we need.
1520 	 */
1521 	if (!pdev->irq)
1522 		pci_disable_msix(pdev);
1523 
1524 	for (i = 0; i < nr_io_queues; i++)
1525 		dev->entry[i].entry = i;
1526 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1527 	if (vecs < 0) {
1528 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1529 		if (vecs < 0) {
1530 			vecs = 1;
1531 		} else {
1532 			for (i = 0; i < vecs; i++)
1533 				dev->entry[i].vector = i + pdev->irq;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * Should investigate if there's a performance win from allocating
1539 	 * more queues than interrupt vectors; it might allow the submission
1540 	 * path to scale better, even if the receive path is limited by the
1541 	 * number of interrupts.
1542 	 */
1543 	nr_io_queues = vecs;
1544 	dev->max_qid = nr_io_queues;
1545 
1546 	result = queue_request_irq(dev, adminq, adminq->irqname);
1547 	if (result) {
1548 		adminq->cq_vector = -1;
1549 		goto free_queues;
1550 	}
1551 
1552 	/* Free previously allocated queues that are no longer usable */
1553 	nvme_free_queues(dev, nr_io_queues + 1);
1554 	return nvme_create_io_queues(dev);
1555 
1556  free_queues:
1557 	nvme_free_queues(dev, 1);
1558 	return result;
1559 }
1560 
1561 static void nvme_set_irq_hints(struct nvme_dev *dev)
1562 {
1563 	struct nvme_queue *nvmeq;
1564 	int i;
1565 
1566 	for (i = 0; i < dev->online_queues; i++) {
1567 		nvmeq = dev->queues[i];
1568 
1569 		if (!nvmeq->tags || !(*nvmeq->tags))
1570 			continue;
1571 
1572 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1573 					blk_mq_tags_cpumask(*nvmeq->tags));
1574 	}
1575 }
1576 
1577 static void nvme_dev_scan(struct work_struct *work)
1578 {
1579 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1580 
1581 	if (!dev->tagset.tags)
1582 		return;
1583 	nvme_scan_namespaces(&dev->ctrl);
1584 	nvme_set_irq_hints(dev);
1585 }
1586 
1587 static void nvme_del_queue_end(struct request *req, int error)
1588 {
1589 	struct nvme_queue *nvmeq = req->end_io_data;
1590 
1591 	blk_mq_free_request(req);
1592 	complete(&nvmeq->dev->ioq_wait);
1593 }
1594 
1595 static void nvme_del_cq_end(struct request *req, int error)
1596 {
1597 	struct nvme_queue *nvmeq = req->end_io_data;
1598 
1599 	if (!error) {
1600 		unsigned long flags;
1601 
1602 		spin_lock_irqsave(&nvmeq->q_lock, flags);
1603 		nvme_process_cq(nvmeq);
1604 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1605 	}
1606 
1607 	nvme_del_queue_end(req, error);
1608 }
1609 
1610 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1611 {
1612 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1613 	struct request *req;
1614 	struct nvme_command cmd;
1615 
1616 	memset(&cmd, 0, sizeof(cmd));
1617 	cmd.delete_queue.opcode = opcode;
1618 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1619 
1620 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1621 	if (IS_ERR(req))
1622 		return PTR_ERR(req);
1623 
1624 	req->timeout = ADMIN_TIMEOUT;
1625 	req->end_io_data = nvmeq;
1626 
1627 	blk_execute_rq_nowait(q, NULL, req, false,
1628 			opcode == nvme_admin_delete_cq ?
1629 				nvme_del_cq_end : nvme_del_queue_end);
1630 	return 0;
1631 }
1632 
1633 static void nvme_disable_io_queues(struct nvme_dev *dev)
1634 {
1635 	int pass;
1636 	unsigned long timeout;
1637 	u8 opcode = nvme_admin_delete_sq;
1638 
1639 	for (pass = 0; pass < 2; pass++) {
1640 		int sent = 0, i = dev->queue_count - 1;
1641 
1642 		reinit_completion(&dev->ioq_wait);
1643  retry:
1644 		timeout = ADMIN_TIMEOUT;
1645 		for (; i > 0; i--) {
1646 			struct nvme_queue *nvmeq = dev->queues[i];
1647 
1648 			if (!pass)
1649 				nvme_suspend_queue(nvmeq);
1650 			if (nvme_delete_queue(nvmeq, opcode))
1651 				break;
1652 			++sent;
1653 		}
1654 		while (sent--) {
1655 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1656 			if (timeout == 0)
1657 				return;
1658 			if (i)
1659 				goto retry;
1660 		}
1661 		opcode = nvme_admin_delete_cq;
1662 	}
1663 }
1664 
1665 /*
1666  * Return: error value if an error occurred setting up the queues or calling
1667  * Identify Device.  0 if these succeeded, even if adding some of the
1668  * namespaces failed.  At the moment, these failures are silent.  TBD which
1669  * failures should be reported.
1670  */
1671 static int nvme_dev_add(struct nvme_dev *dev)
1672 {
1673 	if (!dev->ctrl.tagset) {
1674 		dev->tagset.ops = &nvme_mq_ops;
1675 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1676 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1677 		dev->tagset.numa_node = dev_to_node(dev->dev);
1678 		dev->tagset.queue_depth =
1679 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1680 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1681 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1682 		dev->tagset.driver_data = dev;
1683 
1684 		if (blk_mq_alloc_tag_set(&dev->tagset))
1685 			return 0;
1686 		dev->ctrl.tagset = &dev->tagset;
1687 	}
1688 	queue_work(nvme_workq, &dev->scan_work);
1689 	return 0;
1690 }
1691 
1692 static int nvme_dev_map(struct nvme_dev *dev)
1693 {
1694 	u64 cap;
1695 	int bars, result = -ENOMEM;
1696 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1697 
1698 	if (pci_enable_device_mem(pdev))
1699 		return result;
1700 
1701 	dev->entry[0].vector = pdev->irq;
1702 	pci_set_master(pdev);
1703 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1704 	if (!bars)
1705 		goto disable_pci;
1706 
1707 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1708 		goto disable_pci;
1709 
1710 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1711 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1712 		goto disable;
1713 
1714 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1715 	if (!dev->bar)
1716 		goto disable;
1717 
1718 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1719 		result = -ENODEV;
1720 		goto unmap;
1721 	}
1722 
1723 	/*
1724 	 * Some devices don't advertse INTx interrupts, pre-enable a single
1725 	 * MSIX vec for setup. We'll adjust this later.
1726 	 */
1727 	if (!pdev->irq) {
1728 		result = pci_enable_msix(pdev, dev->entry, 1);
1729 		if (result < 0)
1730 			goto unmap;
1731 	}
1732 
1733 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1734 
1735 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1736 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1737 	dev->dbs = dev->bar + 4096;
1738 
1739 	/*
1740 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1741 	 * some MacBook7,1 to avoid controller resets and data loss.
1742 	 */
1743 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1744 		dev->q_depth = 2;
1745 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1746 			"queue depth=%u to work around controller resets\n",
1747 			dev->q_depth);
1748 	}
1749 
1750 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1751 		dev->cmb = nvme_map_cmb(dev);
1752 
1753 	pci_enable_pcie_error_reporting(pdev);
1754 	pci_save_state(pdev);
1755 	return 0;
1756 
1757  unmap:
1758 	iounmap(dev->bar);
1759 	dev->bar = NULL;
1760  disable:
1761 	pci_release_regions(pdev);
1762  disable_pci:
1763 	pci_disable_device(pdev);
1764 	return result;
1765 }
1766 
1767 static void nvme_dev_unmap(struct nvme_dev *dev)
1768 {
1769 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1770 
1771 	if (pdev->msi_enabled)
1772 		pci_disable_msi(pdev);
1773 	else if (pdev->msix_enabled)
1774 		pci_disable_msix(pdev);
1775 
1776 	if (dev->bar) {
1777 		iounmap(dev->bar);
1778 		dev->bar = NULL;
1779 		pci_release_regions(pdev);
1780 	}
1781 
1782 	if (pci_is_enabled(pdev)) {
1783 		pci_disable_pcie_error_reporting(pdev);
1784 		pci_disable_device(pdev);
1785 	}
1786 }
1787 
1788 static int nvme_dev_list_add(struct nvme_dev *dev)
1789 {
1790 	bool start_thread = false;
1791 
1792 	spin_lock(&dev_list_lock);
1793 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1794 		start_thread = true;
1795 		nvme_thread = NULL;
1796 	}
1797 	list_add(&dev->node, &dev_list);
1798 	spin_unlock(&dev_list_lock);
1799 
1800 	if (start_thread) {
1801 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1802 		wake_up_all(&nvme_kthread_wait);
1803 	} else
1804 		wait_event_killable(nvme_kthread_wait, nvme_thread);
1805 
1806 	if (IS_ERR_OR_NULL(nvme_thread))
1807 		return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813 * Remove the node from the device list and check
1814 * for whether or not we need to stop the nvme_thread.
1815 */
1816 static void nvme_dev_list_remove(struct nvme_dev *dev)
1817 {
1818 	struct task_struct *tmp = NULL;
1819 
1820 	spin_lock(&dev_list_lock);
1821 	list_del_init(&dev->node);
1822 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1823 		tmp = nvme_thread;
1824 		nvme_thread = NULL;
1825 	}
1826 	spin_unlock(&dev_list_lock);
1827 
1828 	if (tmp)
1829 		kthread_stop(tmp);
1830 }
1831 
1832 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1833 {
1834 	int i;
1835 	u32 csts = -1;
1836 
1837 	nvme_dev_list_remove(dev);
1838 
1839 	mutex_lock(&dev->shutdown_lock);
1840 	if (dev->bar) {
1841 		nvme_stop_queues(&dev->ctrl);
1842 		csts = readl(dev->bar + NVME_REG_CSTS);
1843 	}
1844 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1845 		for (i = dev->queue_count - 1; i >= 0; i--) {
1846 			struct nvme_queue *nvmeq = dev->queues[i];
1847 			nvme_suspend_queue(nvmeq);
1848 		}
1849 	} else {
1850 		nvme_disable_io_queues(dev);
1851 		nvme_disable_admin_queue(dev, shutdown);
1852 	}
1853 	nvme_dev_unmap(dev);
1854 
1855 	for (i = dev->queue_count - 1; i >= 0; i--)
1856 		nvme_clear_queue(dev->queues[i]);
1857 	mutex_unlock(&dev->shutdown_lock);
1858 }
1859 
1860 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1861 {
1862 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1863 						PAGE_SIZE, PAGE_SIZE, 0);
1864 	if (!dev->prp_page_pool)
1865 		return -ENOMEM;
1866 
1867 	/* Optimisation for I/Os between 4k and 128k */
1868 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1869 						256, 256, 0);
1870 	if (!dev->prp_small_pool) {
1871 		dma_pool_destroy(dev->prp_page_pool);
1872 		return -ENOMEM;
1873 	}
1874 	return 0;
1875 }
1876 
1877 static void nvme_release_prp_pools(struct nvme_dev *dev)
1878 {
1879 	dma_pool_destroy(dev->prp_page_pool);
1880 	dma_pool_destroy(dev->prp_small_pool);
1881 }
1882 
1883 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1884 {
1885 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1886 
1887 	put_device(dev->dev);
1888 	if (dev->tagset.tags)
1889 		blk_mq_free_tag_set(&dev->tagset);
1890 	if (dev->ctrl.admin_q)
1891 		blk_put_queue(dev->ctrl.admin_q);
1892 	kfree(dev->queues);
1893 	kfree(dev->entry);
1894 	kfree(dev);
1895 }
1896 
1897 static void nvme_reset_work(struct work_struct *work)
1898 {
1899 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1900 	int result;
1901 
1902 	if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1903 		goto out;
1904 
1905 	/*
1906 	 * If we're called to reset a live controller first shut it down before
1907 	 * moving on.
1908 	 */
1909 	if (dev->bar)
1910 		nvme_dev_disable(dev, false);
1911 
1912 	set_bit(NVME_CTRL_RESETTING, &dev->flags);
1913 
1914 	result = nvme_dev_map(dev);
1915 	if (result)
1916 		goto out;
1917 
1918 	result = nvme_configure_admin_queue(dev);
1919 	if (result)
1920 		goto unmap;
1921 
1922 	nvme_init_queue(dev->queues[0], 0);
1923 	result = nvme_alloc_admin_tags(dev);
1924 	if (result)
1925 		goto disable;
1926 
1927 	result = nvme_init_identify(&dev->ctrl);
1928 	if (result)
1929 		goto free_tags;
1930 
1931 	result = nvme_setup_io_queues(dev);
1932 	if (result)
1933 		goto free_tags;
1934 
1935 	dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1936 
1937 	result = nvme_dev_list_add(dev);
1938 	if (result)
1939 		goto remove;
1940 
1941 	/*
1942 	 * Keep the controller around but remove all namespaces if we don't have
1943 	 * any working I/O queue.
1944 	 */
1945 	if (dev->online_queues < 2) {
1946 		dev_warn(dev->dev, "IO queues not created\n");
1947 		nvme_remove_namespaces(&dev->ctrl);
1948 	} else {
1949 		nvme_start_queues(&dev->ctrl);
1950 		nvme_dev_add(dev);
1951 	}
1952 
1953 	clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1954 	return;
1955 
1956  remove:
1957 	nvme_dev_list_remove(dev);
1958  free_tags:
1959 	nvme_dev_remove_admin(dev);
1960 	blk_put_queue(dev->ctrl.admin_q);
1961 	dev->ctrl.admin_q = NULL;
1962 	dev->queues[0]->tags = NULL;
1963  disable:
1964 	nvme_disable_admin_queue(dev, false);
1965  unmap:
1966 	nvme_dev_unmap(dev);
1967  out:
1968 	nvme_remove_dead_ctrl(dev);
1969 }
1970 
1971 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1972 {
1973 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1974 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1975 
1976 	if (pci_get_drvdata(pdev))
1977 		pci_stop_and_remove_bus_device_locked(pdev);
1978 	nvme_put_ctrl(&dev->ctrl);
1979 }
1980 
1981 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1982 {
1983 	dev_warn(dev->dev, "Removing after probe failure\n");
1984 	kref_get(&dev->ctrl.kref);
1985 	if (!schedule_work(&dev->remove_work))
1986 		nvme_put_ctrl(&dev->ctrl);
1987 }
1988 
1989 static int nvme_reset(struct nvme_dev *dev)
1990 {
1991 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1992 		return -ENODEV;
1993 
1994 	if (!queue_work(nvme_workq, &dev->reset_work))
1995 		return -EBUSY;
1996 
1997 	flush_work(&dev->reset_work);
1998 	return 0;
1999 }
2000 
2001 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2002 {
2003 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2004 	return 0;
2005 }
2006 
2007 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2008 {
2009 	writel(val, to_nvme_dev(ctrl)->bar + off);
2010 	return 0;
2011 }
2012 
2013 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2014 {
2015 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2016 	return 0;
2017 }
2018 
2019 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2020 {
2021 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2022 
2023 	return !dev->bar || dev->online_queues < 2;
2024 }
2025 
2026 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2027 {
2028 	return nvme_reset(to_nvme_dev(ctrl));
2029 }
2030 
2031 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2032 	.reg_read32		= nvme_pci_reg_read32,
2033 	.reg_write32		= nvme_pci_reg_write32,
2034 	.reg_read64		= nvme_pci_reg_read64,
2035 	.io_incapable		= nvme_pci_io_incapable,
2036 	.reset_ctrl		= nvme_pci_reset_ctrl,
2037 	.free_ctrl		= nvme_pci_free_ctrl,
2038 };
2039 
2040 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2041 {
2042 	int node, result = -ENOMEM;
2043 	struct nvme_dev *dev;
2044 
2045 	node = dev_to_node(&pdev->dev);
2046 	if (node == NUMA_NO_NODE)
2047 		set_dev_node(&pdev->dev, 0);
2048 
2049 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2050 	if (!dev)
2051 		return -ENOMEM;
2052 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2053 							GFP_KERNEL, node);
2054 	if (!dev->entry)
2055 		goto free;
2056 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2057 							GFP_KERNEL, node);
2058 	if (!dev->queues)
2059 		goto free;
2060 
2061 	dev->dev = get_device(&pdev->dev);
2062 	pci_set_drvdata(pdev, dev);
2063 
2064 	INIT_LIST_HEAD(&dev->node);
2065 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
2066 	INIT_WORK(&dev->reset_work, nvme_reset_work);
2067 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2068 	mutex_init(&dev->shutdown_lock);
2069 	init_completion(&dev->ioq_wait);
2070 
2071 	result = nvme_setup_prp_pools(dev);
2072 	if (result)
2073 		goto put_pci;
2074 
2075 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2076 			id->driver_data);
2077 	if (result)
2078 		goto release_pools;
2079 
2080 	queue_work(nvme_workq, &dev->reset_work);
2081 	return 0;
2082 
2083  release_pools:
2084 	nvme_release_prp_pools(dev);
2085  put_pci:
2086 	put_device(dev->dev);
2087  free:
2088 	kfree(dev->queues);
2089 	kfree(dev->entry);
2090 	kfree(dev);
2091 	return result;
2092 }
2093 
2094 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2095 {
2096 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2097 
2098 	if (prepare)
2099 		nvme_dev_disable(dev, false);
2100 	else
2101 		queue_work(nvme_workq, &dev->reset_work);
2102 }
2103 
2104 static void nvme_shutdown(struct pci_dev *pdev)
2105 {
2106 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2107 	nvme_dev_disable(dev, true);
2108 }
2109 
2110 static void nvme_remove(struct pci_dev *pdev)
2111 {
2112 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2113 
2114 	spin_lock(&dev_list_lock);
2115 	list_del_init(&dev->node);
2116 	spin_unlock(&dev_list_lock);
2117 
2118 	pci_set_drvdata(pdev, NULL);
2119 	flush_work(&dev->reset_work);
2120 	flush_work(&dev->scan_work);
2121 	nvme_remove_namespaces(&dev->ctrl);
2122 	nvme_uninit_ctrl(&dev->ctrl);
2123 	nvme_dev_disable(dev, true);
2124 	nvme_dev_remove_admin(dev);
2125 	nvme_free_queues(dev, 0);
2126 	nvme_release_cmb(dev);
2127 	nvme_release_prp_pools(dev);
2128 	nvme_put_ctrl(&dev->ctrl);
2129 }
2130 
2131 #ifdef CONFIG_PM_SLEEP
2132 static int nvme_suspend(struct device *dev)
2133 {
2134 	struct pci_dev *pdev = to_pci_dev(dev);
2135 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2136 
2137 	nvme_dev_disable(ndev, true);
2138 	return 0;
2139 }
2140 
2141 static int nvme_resume(struct device *dev)
2142 {
2143 	struct pci_dev *pdev = to_pci_dev(dev);
2144 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2145 
2146 	queue_work(nvme_workq, &ndev->reset_work);
2147 	return 0;
2148 }
2149 #endif
2150 
2151 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2152 
2153 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2154 						pci_channel_state_t state)
2155 {
2156 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2157 
2158 	/*
2159 	 * A frozen channel requires a reset. When detected, this method will
2160 	 * shutdown the controller to quiesce. The controller will be restarted
2161 	 * after the slot reset through driver's slot_reset callback.
2162 	 */
2163 	dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2164 	switch (state) {
2165 	case pci_channel_io_normal:
2166 		return PCI_ERS_RESULT_CAN_RECOVER;
2167 	case pci_channel_io_frozen:
2168 		nvme_dev_disable(dev, false);
2169 		return PCI_ERS_RESULT_NEED_RESET;
2170 	case pci_channel_io_perm_failure:
2171 		return PCI_ERS_RESULT_DISCONNECT;
2172 	}
2173 	return PCI_ERS_RESULT_NEED_RESET;
2174 }
2175 
2176 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2177 {
2178 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2179 
2180 	dev_info(&pdev->dev, "restart after slot reset\n");
2181 	pci_restore_state(pdev);
2182 	queue_work(nvme_workq, &dev->reset_work);
2183 	return PCI_ERS_RESULT_RECOVERED;
2184 }
2185 
2186 static void nvme_error_resume(struct pci_dev *pdev)
2187 {
2188 	pci_cleanup_aer_uncorrect_error_status(pdev);
2189 }
2190 
2191 static const struct pci_error_handlers nvme_err_handler = {
2192 	.error_detected	= nvme_error_detected,
2193 	.slot_reset	= nvme_slot_reset,
2194 	.resume		= nvme_error_resume,
2195 	.reset_notify	= nvme_reset_notify,
2196 };
2197 
2198 /* Move to pci_ids.h later */
2199 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2200 
2201 static const struct pci_device_id nvme_id_table[] = {
2202 	{ PCI_VDEVICE(INTEL, 0x0953),
2203 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
2204 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2205 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2206 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2207 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2208 	{ 0, }
2209 };
2210 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2211 
2212 static struct pci_driver nvme_driver = {
2213 	.name		= "nvme",
2214 	.id_table	= nvme_id_table,
2215 	.probe		= nvme_probe,
2216 	.remove		= nvme_remove,
2217 	.shutdown	= nvme_shutdown,
2218 	.driver		= {
2219 		.pm	= &nvme_dev_pm_ops,
2220 	},
2221 	.err_handler	= &nvme_err_handler,
2222 };
2223 
2224 static int __init nvme_init(void)
2225 {
2226 	int result;
2227 
2228 	init_waitqueue_head(&nvme_kthread_wait);
2229 
2230 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2231 	if (!nvme_workq)
2232 		return -ENOMEM;
2233 
2234 	result = nvme_core_init();
2235 	if (result < 0)
2236 		goto kill_workq;
2237 
2238 	result = pci_register_driver(&nvme_driver);
2239 	if (result)
2240 		goto core_exit;
2241 	return 0;
2242 
2243  core_exit:
2244 	nvme_core_exit();
2245  kill_workq:
2246 	destroy_workqueue(nvme_workq);
2247 	return result;
2248 }
2249 
2250 static void __exit nvme_exit(void)
2251 {
2252 	pci_unregister_driver(&nvme_driver);
2253 	nvme_core_exit();
2254 	destroy_workqueue(nvme_workq);
2255 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2256 	_nvme_check_size();
2257 }
2258 
2259 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2260 MODULE_LICENSE("GPL");
2261 MODULE_VERSION("1.0");
2262 module_init(nvme_init);
2263 module_exit(nvme_exit);
2264