1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/cpu.h> 20 #include <linux/delay.h> 21 #include <linux/errno.h> 22 #include <linux/fs.h> 23 #include <linux/genhd.h> 24 #include <linux/hdreg.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/io.h> 29 #include <linux/kdev_t.h> 30 #include <linux/kthread.h> 31 #include <linux/kernel.h> 32 #include <linux/mm.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mutex.h> 36 #include <linux/pci.h> 37 #include <linux/poison.h> 38 #include <linux/ptrace.h> 39 #include <linux/sched.h> 40 #include <linux/slab.h> 41 #include <linux/t10-pi.h> 42 #include <linux/types.h> 43 #include <linux/io-64-nonatomic-lo-hi.h> 44 #include <asm/unaligned.h> 45 46 #include "nvme.h" 47 48 #define NVME_Q_DEPTH 1024 49 #define NVME_AQ_DEPTH 256 50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 52 53 /* 54 * We handle AEN commands ourselves and don't even let the 55 * block layer know about them. 56 */ 57 #define NVME_NR_AEN_COMMANDS 1 58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS) 59 60 unsigned char admin_timeout = 60; 61 module_param(admin_timeout, byte, 0644); 62 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 63 64 unsigned char nvme_io_timeout = 30; 65 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 66 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 67 68 unsigned char shutdown_timeout = 5; 69 module_param(shutdown_timeout, byte, 0644); 70 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 71 72 static int use_threaded_interrupts; 73 module_param(use_threaded_interrupts, int, 0); 74 75 static bool use_cmb_sqes = true; 76 module_param(use_cmb_sqes, bool, 0644); 77 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 78 79 static LIST_HEAD(dev_list); 80 static struct task_struct *nvme_thread; 81 static struct workqueue_struct *nvme_workq; 82 static wait_queue_head_t nvme_kthread_wait; 83 84 struct nvme_dev; 85 struct nvme_queue; 86 87 static int nvme_reset(struct nvme_dev *dev); 88 static void nvme_process_cq(struct nvme_queue *nvmeq); 89 static void nvme_remove_dead_ctrl(struct nvme_dev *dev); 90 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 91 92 /* 93 * Represents an NVM Express device. Each nvme_dev is a PCI function. 94 */ 95 struct nvme_dev { 96 struct list_head node; 97 struct nvme_queue **queues; 98 struct blk_mq_tag_set tagset; 99 struct blk_mq_tag_set admin_tagset; 100 u32 __iomem *dbs; 101 struct device *dev; 102 struct dma_pool *prp_page_pool; 103 struct dma_pool *prp_small_pool; 104 unsigned queue_count; 105 unsigned online_queues; 106 unsigned max_qid; 107 int q_depth; 108 u32 db_stride; 109 struct msix_entry *entry; 110 void __iomem *bar; 111 struct work_struct reset_work; 112 struct work_struct scan_work; 113 struct work_struct remove_work; 114 struct mutex shutdown_lock; 115 bool subsystem; 116 void __iomem *cmb; 117 dma_addr_t cmb_dma_addr; 118 u64 cmb_size; 119 u32 cmbsz; 120 unsigned long flags; 121 122 #define NVME_CTRL_RESETTING 0 123 124 struct nvme_ctrl ctrl; 125 struct completion ioq_wait; 126 }; 127 128 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 129 { 130 return container_of(ctrl, struct nvme_dev, ctrl); 131 } 132 133 /* 134 * An NVM Express queue. Each device has at least two (one for admin 135 * commands and one for I/O commands). 136 */ 137 struct nvme_queue { 138 struct device *q_dmadev; 139 struct nvme_dev *dev; 140 char irqname[24]; /* nvme4294967295-65535\0 */ 141 spinlock_t q_lock; 142 struct nvme_command *sq_cmds; 143 struct nvme_command __iomem *sq_cmds_io; 144 volatile struct nvme_completion *cqes; 145 struct blk_mq_tags **tags; 146 dma_addr_t sq_dma_addr; 147 dma_addr_t cq_dma_addr; 148 u32 __iomem *q_db; 149 u16 q_depth; 150 s16 cq_vector; 151 u16 sq_head; 152 u16 sq_tail; 153 u16 cq_head; 154 u16 qid; 155 u8 cq_phase; 156 u8 cqe_seen; 157 }; 158 159 /* 160 * The nvme_iod describes the data in an I/O, including the list of PRP 161 * entries. You can't see it in this data structure because C doesn't let 162 * me express that. Use nvme_init_iod to ensure there's enough space 163 * allocated to store the PRP list. 164 */ 165 struct nvme_iod { 166 struct nvme_queue *nvmeq; 167 int aborted; 168 int npages; /* In the PRP list. 0 means small pool in use */ 169 int nents; /* Used in scatterlist */ 170 int length; /* Of data, in bytes */ 171 dma_addr_t first_dma; 172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 173 struct scatterlist *sg; 174 struct scatterlist inline_sg[0]; 175 }; 176 177 /* 178 * Check we didin't inadvertently grow the command struct 179 */ 180 static inline void _nvme_check_size(void) 181 { 182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); 191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); 192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 194 } 195 196 /* 197 * Max size of iod being embedded in the request payload 198 */ 199 #define NVME_INT_PAGES 2 200 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 201 202 /* 203 * Will slightly overestimate the number of pages needed. This is OK 204 * as it only leads to a small amount of wasted memory for the lifetime of 205 * the I/O. 206 */ 207 static int nvme_npages(unsigned size, struct nvme_dev *dev) 208 { 209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 210 dev->ctrl.page_size); 211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 212 } 213 214 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 215 unsigned int size, unsigned int nseg) 216 { 217 return sizeof(__le64 *) * nvme_npages(size, dev) + 218 sizeof(struct scatterlist) * nseg; 219 } 220 221 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 222 { 223 return sizeof(struct nvme_iod) + 224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 225 } 226 227 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 228 unsigned int hctx_idx) 229 { 230 struct nvme_dev *dev = data; 231 struct nvme_queue *nvmeq = dev->queues[0]; 232 233 WARN_ON(hctx_idx != 0); 234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 235 WARN_ON(nvmeq->tags); 236 237 hctx->driver_data = nvmeq; 238 nvmeq->tags = &dev->admin_tagset.tags[0]; 239 return 0; 240 } 241 242 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 243 { 244 struct nvme_queue *nvmeq = hctx->driver_data; 245 246 nvmeq->tags = NULL; 247 } 248 249 static int nvme_admin_init_request(void *data, struct request *req, 250 unsigned int hctx_idx, unsigned int rq_idx, 251 unsigned int numa_node) 252 { 253 struct nvme_dev *dev = data; 254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 255 struct nvme_queue *nvmeq = dev->queues[0]; 256 257 BUG_ON(!nvmeq); 258 iod->nvmeq = nvmeq; 259 return 0; 260 } 261 262 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 263 unsigned int hctx_idx) 264 { 265 struct nvme_dev *dev = data; 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 267 268 if (!nvmeq->tags) 269 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 270 271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 272 hctx->driver_data = nvmeq; 273 return 0; 274 } 275 276 static int nvme_init_request(void *data, struct request *req, 277 unsigned int hctx_idx, unsigned int rq_idx, 278 unsigned int numa_node) 279 { 280 struct nvme_dev *dev = data; 281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 283 284 BUG_ON(!nvmeq); 285 iod->nvmeq = nvmeq; 286 return 0; 287 } 288 289 static void nvme_complete_async_event(struct nvme_dev *dev, 290 struct nvme_completion *cqe) 291 { 292 u16 status = le16_to_cpu(cqe->status) >> 1; 293 u32 result = le32_to_cpu(cqe->result); 294 295 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) 296 ++dev->ctrl.event_limit; 297 if (status != NVME_SC_SUCCESS) 298 return; 299 300 switch (result & 0xff07) { 301 case NVME_AER_NOTICE_NS_CHANGED: 302 dev_info(dev->dev, "rescanning\n"); 303 queue_work(nvme_workq, &dev->scan_work); 304 default: 305 dev_warn(dev->dev, "async event result %08x\n", result); 306 } 307 } 308 309 /** 310 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 311 * @nvmeq: The queue to use 312 * @cmd: The command to send 313 * 314 * Safe to use from interrupt context 315 */ 316 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 317 struct nvme_command *cmd) 318 { 319 u16 tail = nvmeq->sq_tail; 320 321 if (nvmeq->sq_cmds_io) 322 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 323 else 324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 325 326 if (++tail == nvmeq->q_depth) 327 tail = 0; 328 writel(tail, nvmeq->q_db); 329 nvmeq->sq_tail = tail; 330 } 331 332 static __le64 **iod_list(struct request *req) 333 { 334 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 335 return (__le64 **)(iod->sg + req->nr_phys_segments); 336 } 337 338 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev) 339 { 340 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 341 int nseg = rq->nr_phys_segments; 342 unsigned size; 343 344 if (rq->cmd_flags & REQ_DISCARD) 345 size = sizeof(struct nvme_dsm_range); 346 else 347 size = blk_rq_bytes(rq); 348 349 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 350 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 351 if (!iod->sg) 352 return BLK_MQ_RQ_QUEUE_BUSY; 353 } else { 354 iod->sg = iod->inline_sg; 355 } 356 357 iod->aborted = 0; 358 iod->npages = -1; 359 iod->nents = 0; 360 iod->length = size; 361 return 0; 362 } 363 364 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 365 { 366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 367 const int last_prp = dev->ctrl.page_size / 8 - 1; 368 int i; 369 __le64 **list = iod_list(req); 370 dma_addr_t prp_dma = iod->first_dma; 371 372 if (iod->npages == 0) 373 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 374 for (i = 0; i < iod->npages; i++) { 375 __le64 *prp_list = list[i]; 376 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 377 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 378 prp_dma = next_prp_dma; 379 } 380 381 if (iod->sg != iod->inline_sg) 382 kfree(iod->sg); 383 } 384 385 #ifdef CONFIG_BLK_DEV_INTEGRITY 386 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 387 { 388 if (be32_to_cpu(pi->ref_tag) == v) 389 pi->ref_tag = cpu_to_be32(p); 390 } 391 392 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 393 { 394 if (be32_to_cpu(pi->ref_tag) == p) 395 pi->ref_tag = cpu_to_be32(v); 396 } 397 398 /** 399 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 400 * 401 * The virtual start sector is the one that was originally submitted by the 402 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 403 * start sector may be different. Remap protection information to match the 404 * physical LBA on writes, and back to the original seed on reads. 405 * 406 * Type 0 and 3 do not have a ref tag, so no remapping required. 407 */ 408 static void nvme_dif_remap(struct request *req, 409 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 410 { 411 struct nvme_ns *ns = req->rq_disk->private_data; 412 struct bio_integrity_payload *bip; 413 struct t10_pi_tuple *pi; 414 void *p, *pmap; 415 u32 i, nlb, ts, phys, virt; 416 417 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 418 return; 419 420 bip = bio_integrity(req->bio); 421 if (!bip) 422 return; 423 424 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 425 426 p = pmap; 427 virt = bip_get_seed(bip); 428 phys = nvme_block_nr(ns, blk_rq_pos(req)); 429 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 430 ts = ns->disk->queue->integrity.tuple_size; 431 432 for (i = 0; i < nlb; i++, virt++, phys++) { 433 pi = (struct t10_pi_tuple *)p; 434 dif_swap(phys, virt, pi); 435 p += ts; 436 } 437 kunmap_atomic(pmap); 438 } 439 #else /* CONFIG_BLK_DEV_INTEGRITY */ 440 static void nvme_dif_remap(struct request *req, 441 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 442 { 443 } 444 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 445 { 446 } 447 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 448 { 449 } 450 #endif 451 452 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, 453 int total_len) 454 { 455 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 456 struct dma_pool *pool; 457 int length = total_len; 458 struct scatterlist *sg = iod->sg; 459 int dma_len = sg_dma_len(sg); 460 u64 dma_addr = sg_dma_address(sg); 461 u32 page_size = dev->ctrl.page_size; 462 int offset = dma_addr & (page_size - 1); 463 __le64 *prp_list; 464 __le64 **list = iod_list(req); 465 dma_addr_t prp_dma; 466 int nprps, i; 467 468 length -= (page_size - offset); 469 if (length <= 0) 470 return true; 471 472 dma_len -= (page_size - offset); 473 if (dma_len) { 474 dma_addr += (page_size - offset); 475 } else { 476 sg = sg_next(sg); 477 dma_addr = sg_dma_address(sg); 478 dma_len = sg_dma_len(sg); 479 } 480 481 if (length <= page_size) { 482 iod->first_dma = dma_addr; 483 return true; 484 } 485 486 nprps = DIV_ROUND_UP(length, page_size); 487 if (nprps <= (256 / 8)) { 488 pool = dev->prp_small_pool; 489 iod->npages = 0; 490 } else { 491 pool = dev->prp_page_pool; 492 iod->npages = 1; 493 } 494 495 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 496 if (!prp_list) { 497 iod->first_dma = dma_addr; 498 iod->npages = -1; 499 return false; 500 } 501 list[0] = prp_list; 502 iod->first_dma = prp_dma; 503 i = 0; 504 for (;;) { 505 if (i == page_size >> 3) { 506 __le64 *old_prp_list = prp_list; 507 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 508 if (!prp_list) 509 return false; 510 list[iod->npages++] = prp_list; 511 prp_list[0] = old_prp_list[i - 1]; 512 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 513 i = 1; 514 } 515 prp_list[i++] = cpu_to_le64(dma_addr); 516 dma_len -= page_size; 517 dma_addr += page_size; 518 length -= page_size; 519 if (length <= 0) 520 break; 521 if (dma_len > 0) 522 continue; 523 BUG_ON(dma_len < 0); 524 sg = sg_next(sg); 525 dma_addr = sg_dma_address(sg); 526 dma_len = sg_dma_len(sg); 527 } 528 529 return true; 530 } 531 532 static int nvme_map_data(struct nvme_dev *dev, struct request *req, 533 struct nvme_command *cmnd) 534 { 535 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 536 struct request_queue *q = req->q; 537 enum dma_data_direction dma_dir = rq_data_dir(req) ? 538 DMA_TO_DEVICE : DMA_FROM_DEVICE; 539 int ret = BLK_MQ_RQ_QUEUE_ERROR; 540 541 sg_init_table(iod->sg, req->nr_phys_segments); 542 iod->nents = blk_rq_map_sg(q, req, iod->sg); 543 if (!iod->nents) 544 goto out; 545 546 ret = BLK_MQ_RQ_QUEUE_BUSY; 547 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) 548 goto out; 549 550 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req))) 551 goto out_unmap; 552 553 ret = BLK_MQ_RQ_QUEUE_ERROR; 554 if (blk_integrity_rq(req)) { 555 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 556 goto out_unmap; 557 558 sg_init_table(&iod->meta_sg, 1); 559 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 560 goto out_unmap; 561 562 if (rq_data_dir(req)) 563 nvme_dif_remap(req, nvme_dif_prep); 564 565 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 566 goto out_unmap; 567 } 568 569 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 570 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma); 571 if (blk_integrity_rq(req)) 572 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 573 return BLK_MQ_RQ_QUEUE_OK; 574 575 out_unmap: 576 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 577 out: 578 return ret; 579 } 580 581 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 582 { 583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 584 enum dma_data_direction dma_dir = rq_data_dir(req) ? 585 DMA_TO_DEVICE : DMA_FROM_DEVICE; 586 587 if (iod->nents) { 588 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 589 if (blk_integrity_rq(req)) { 590 if (!rq_data_dir(req)) 591 nvme_dif_remap(req, nvme_dif_complete); 592 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 593 } 594 } 595 596 nvme_free_iod(dev, req); 597 } 598 599 /* 600 * We reuse the small pool to allocate the 16-byte range here as it is not 601 * worth having a special pool for these or additional cases to handle freeing 602 * the iod. 603 */ 604 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, 605 struct request *req, struct nvme_command *cmnd) 606 { 607 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 608 struct nvme_dsm_range *range; 609 610 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC, 611 &iod->first_dma); 612 if (!range) 613 return BLK_MQ_RQ_QUEUE_BUSY; 614 iod_list(req)[0] = (__le64 *)range; 615 iod->npages = 0; 616 617 range->cattr = cpu_to_le32(0); 618 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); 619 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 620 621 memset(cmnd, 0, sizeof(*cmnd)); 622 cmnd->dsm.opcode = nvme_cmd_dsm; 623 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 624 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma); 625 cmnd->dsm.nr = 0; 626 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 627 return BLK_MQ_RQ_QUEUE_OK; 628 } 629 630 /* 631 * NOTE: ns is NULL when called on the admin queue. 632 */ 633 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 634 const struct blk_mq_queue_data *bd) 635 { 636 struct nvme_ns *ns = hctx->queue->queuedata; 637 struct nvme_queue *nvmeq = hctx->driver_data; 638 struct nvme_dev *dev = nvmeq->dev; 639 struct request *req = bd->rq; 640 struct nvme_command cmnd; 641 int ret = BLK_MQ_RQ_QUEUE_OK; 642 643 /* 644 * If formated with metadata, require the block layer provide a buffer 645 * unless this namespace is formated such that the metadata can be 646 * stripped/generated by the controller with PRACT=1. 647 */ 648 if (ns && ns->ms && !blk_integrity_rq(req)) { 649 if (!(ns->pi_type && ns->ms == 8) && 650 req->cmd_type != REQ_TYPE_DRV_PRIV) { 651 blk_mq_end_request(req, -EFAULT); 652 return BLK_MQ_RQ_QUEUE_OK; 653 } 654 } 655 656 ret = nvme_init_iod(req, dev); 657 if (ret) 658 return ret; 659 660 if (req->cmd_flags & REQ_DISCARD) { 661 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd); 662 } else { 663 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 664 memcpy(&cmnd, req->cmd, sizeof(cmnd)); 665 else if (req->cmd_flags & REQ_FLUSH) 666 nvme_setup_flush(ns, &cmnd); 667 else 668 nvme_setup_rw(ns, req, &cmnd); 669 670 if (req->nr_phys_segments) 671 ret = nvme_map_data(dev, req, &cmnd); 672 } 673 674 if (ret) 675 goto out; 676 677 cmnd.common.command_id = req->tag; 678 blk_mq_start_request(req); 679 680 spin_lock_irq(&nvmeq->q_lock); 681 __nvme_submit_cmd(nvmeq, &cmnd); 682 nvme_process_cq(nvmeq); 683 spin_unlock_irq(&nvmeq->q_lock); 684 return BLK_MQ_RQ_QUEUE_OK; 685 out: 686 nvme_free_iod(dev, req); 687 return ret; 688 } 689 690 static void nvme_complete_rq(struct request *req) 691 { 692 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 693 struct nvme_dev *dev = iod->nvmeq->dev; 694 int error = 0; 695 696 nvme_unmap_data(dev, req); 697 698 if (unlikely(req->errors)) { 699 if (nvme_req_needs_retry(req, req->errors)) { 700 nvme_requeue_req(req); 701 return; 702 } 703 704 if (req->cmd_type == REQ_TYPE_DRV_PRIV) 705 error = req->errors; 706 else 707 error = nvme_error_status(req->errors); 708 } 709 710 if (unlikely(iod->aborted)) { 711 dev_warn(dev->dev, 712 "completing aborted command with status: %04x\n", 713 req->errors); 714 } 715 716 blk_mq_end_request(req, error); 717 } 718 719 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) 720 { 721 u16 head, phase; 722 723 head = nvmeq->cq_head; 724 phase = nvmeq->cq_phase; 725 726 for (;;) { 727 struct nvme_completion cqe = nvmeq->cqes[head]; 728 u16 status = le16_to_cpu(cqe.status); 729 struct request *req; 730 731 if ((status & 1) != phase) 732 break; 733 nvmeq->sq_head = le16_to_cpu(cqe.sq_head); 734 if (++head == nvmeq->q_depth) { 735 head = 0; 736 phase = !phase; 737 } 738 739 if (tag && *tag == cqe.command_id) 740 *tag = -1; 741 742 if (unlikely(cqe.command_id >= nvmeq->q_depth)) { 743 dev_warn(nvmeq->q_dmadev, 744 "invalid id %d completed on queue %d\n", 745 cqe.command_id, le16_to_cpu(cqe.sq_id)); 746 continue; 747 } 748 749 /* 750 * AEN requests are special as they don't time out and can 751 * survive any kind of queue freeze and often don't respond to 752 * aborts. We don't even bother to allocate a struct request 753 * for them but rather special case them here. 754 */ 755 if (unlikely(nvmeq->qid == 0 && 756 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { 757 nvme_complete_async_event(nvmeq->dev, &cqe); 758 continue; 759 } 760 761 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); 762 if (req->cmd_type == REQ_TYPE_DRV_PRIV) { 763 u32 result = le32_to_cpu(cqe.result); 764 req->special = (void *)(uintptr_t)result; 765 } 766 blk_mq_complete_request(req, status >> 1); 767 768 } 769 770 /* If the controller ignores the cq head doorbell and continuously 771 * writes to the queue, it is theoretically possible to wrap around 772 * the queue twice and mistakenly return IRQ_NONE. Linux only 773 * requires that 0.1% of your interrupts are handled, so this isn't 774 * a big problem. 775 */ 776 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) 777 return; 778 779 if (likely(nvmeq->cq_vector >= 0)) 780 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 781 nvmeq->cq_head = head; 782 nvmeq->cq_phase = phase; 783 784 nvmeq->cqe_seen = 1; 785 } 786 787 static void nvme_process_cq(struct nvme_queue *nvmeq) 788 { 789 __nvme_process_cq(nvmeq, NULL); 790 } 791 792 static irqreturn_t nvme_irq(int irq, void *data) 793 { 794 irqreturn_t result; 795 struct nvme_queue *nvmeq = data; 796 spin_lock(&nvmeq->q_lock); 797 nvme_process_cq(nvmeq); 798 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 799 nvmeq->cqe_seen = 0; 800 spin_unlock(&nvmeq->q_lock); 801 return result; 802 } 803 804 static irqreturn_t nvme_irq_check(int irq, void *data) 805 { 806 struct nvme_queue *nvmeq = data; 807 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; 808 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) 809 return IRQ_NONE; 810 return IRQ_WAKE_THREAD; 811 } 812 813 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 814 { 815 struct nvme_queue *nvmeq = hctx->driver_data; 816 817 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 818 nvmeq->cq_phase) { 819 spin_lock_irq(&nvmeq->q_lock); 820 __nvme_process_cq(nvmeq, &tag); 821 spin_unlock_irq(&nvmeq->q_lock); 822 823 if (tag == -1) 824 return 1; 825 } 826 827 return 0; 828 } 829 830 static void nvme_submit_async_event(struct nvme_dev *dev) 831 { 832 struct nvme_command c; 833 834 memset(&c, 0, sizeof(c)); 835 c.common.opcode = nvme_admin_async_event; 836 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit; 837 838 __nvme_submit_cmd(dev->queues[0], &c); 839 } 840 841 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 842 { 843 struct nvme_command c; 844 845 memset(&c, 0, sizeof(c)); 846 c.delete_queue.opcode = opcode; 847 c.delete_queue.qid = cpu_to_le16(id); 848 849 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 850 } 851 852 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 853 struct nvme_queue *nvmeq) 854 { 855 struct nvme_command c; 856 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 857 858 /* 859 * Note: we (ab)use the fact the the prp fields survive if no data 860 * is attached to the request. 861 */ 862 memset(&c, 0, sizeof(c)); 863 c.create_cq.opcode = nvme_admin_create_cq; 864 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 865 c.create_cq.cqid = cpu_to_le16(qid); 866 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 867 c.create_cq.cq_flags = cpu_to_le16(flags); 868 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 869 870 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 871 } 872 873 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 874 struct nvme_queue *nvmeq) 875 { 876 struct nvme_command c; 877 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; 878 879 /* 880 * Note: we (ab)use the fact the the prp fields survive if no data 881 * is attached to the request. 882 */ 883 memset(&c, 0, sizeof(c)); 884 c.create_sq.opcode = nvme_admin_create_sq; 885 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 886 c.create_sq.sqid = cpu_to_le16(qid); 887 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 888 c.create_sq.sq_flags = cpu_to_le16(flags); 889 c.create_sq.cqid = cpu_to_le16(qid); 890 891 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 892 } 893 894 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 895 { 896 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 897 } 898 899 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 900 { 901 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 902 } 903 904 static void abort_endio(struct request *req, int error) 905 { 906 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 907 struct nvme_queue *nvmeq = iod->nvmeq; 908 u32 result = (u32)(uintptr_t)req->special; 909 u16 status = req->errors; 910 911 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result); 912 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 913 914 blk_mq_free_request(req); 915 } 916 917 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 918 { 919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 920 struct nvme_queue *nvmeq = iod->nvmeq; 921 struct nvme_dev *dev = nvmeq->dev; 922 struct request *abort_req; 923 struct nvme_command cmd; 924 925 /* 926 * Shutdown immediately if controller times out while starting. The 927 * reset work will see the pci device disabled when it gets the forced 928 * cancellation error. All outstanding requests are completed on 929 * shutdown, so we return BLK_EH_HANDLED. 930 */ 931 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) { 932 dev_warn(dev->dev, 933 "I/O %d QID %d timeout, disable controller\n", 934 req->tag, nvmeq->qid); 935 nvme_dev_disable(dev, false); 936 req->errors = NVME_SC_CANCELLED; 937 return BLK_EH_HANDLED; 938 } 939 940 /* 941 * Shutdown the controller immediately and schedule a reset if the 942 * command was already aborted once before and still hasn't been 943 * returned to the driver, or if this is the admin queue. 944 */ 945 if (!nvmeq->qid || iod->aborted) { 946 dev_warn(dev->dev, 947 "I/O %d QID %d timeout, reset controller\n", 948 req->tag, nvmeq->qid); 949 nvme_dev_disable(dev, false); 950 queue_work(nvme_workq, &dev->reset_work); 951 952 /* 953 * Mark the request as handled, since the inline shutdown 954 * forces all outstanding requests to complete. 955 */ 956 req->errors = NVME_SC_CANCELLED; 957 return BLK_EH_HANDLED; 958 } 959 960 iod->aborted = 1; 961 962 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 963 atomic_inc(&dev->ctrl.abort_limit); 964 return BLK_EH_RESET_TIMER; 965 } 966 967 memset(&cmd, 0, sizeof(cmd)); 968 cmd.abort.opcode = nvme_admin_abort_cmd; 969 cmd.abort.cid = req->tag; 970 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 971 972 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n", 973 req->tag, nvmeq->qid); 974 975 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 976 BLK_MQ_REQ_NOWAIT); 977 if (IS_ERR(abort_req)) { 978 atomic_inc(&dev->ctrl.abort_limit); 979 return BLK_EH_RESET_TIMER; 980 } 981 982 abort_req->timeout = ADMIN_TIMEOUT; 983 abort_req->end_io_data = NULL; 984 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 985 986 /* 987 * The aborted req will be completed on receiving the abort req. 988 * We enable the timer again. If hit twice, it'll cause a device reset, 989 * as the device then is in a faulty state. 990 */ 991 return BLK_EH_RESET_TIMER; 992 } 993 994 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) 995 { 996 struct nvme_queue *nvmeq = data; 997 int status; 998 999 if (!blk_mq_request_started(req)) 1000 return; 1001 1002 dev_warn(nvmeq->q_dmadev, 1003 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid); 1004 1005 status = NVME_SC_ABORT_REQ; 1006 if (blk_queue_dying(req->q)) 1007 status |= NVME_SC_DNR; 1008 blk_mq_complete_request(req, status); 1009 } 1010 1011 static void nvme_free_queue(struct nvme_queue *nvmeq) 1012 { 1013 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1014 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1015 if (nvmeq->sq_cmds) 1016 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1017 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1018 kfree(nvmeq); 1019 } 1020 1021 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1022 { 1023 int i; 1024 1025 for (i = dev->queue_count - 1; i >= lowest; i--) { 1026 struct nvme_queue *nvmeq = dev->queues[i]; 1027 dev->queue_count--; 1028 dev->queues[i] = NULL; 1029 nvme_free_queue(nvmeq); 1030 } 1031 } 1032 1033 /** 1034 * nvme_suspend_queue - put queue into suspended state 1035 * @nvmeq - queue to suspend 1036 */ 1037 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1038 { 1039 int vector; 1040 1041 spin_lock_irq(&nvmeq->q_lock); 1042 if (nvmeq->cq_vector == -1) { 1043 spin_unlock_irq(&nvmeq->q_lock); 1044 return 1; 1045 } 1046 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; 1047 nvmeq->dev->online_queues--; 1048 nvmeq->cq_vector = -1; 1049 spin_unlock_irq(&nvmeq->q_lock); 1050 1051 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1052 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 1053 1054 irq_set_affinity_hint(vector, NULL); 1055 free_irq(vector, nvmeq); 1056 1057 return 0; 1058 } 1059 1060 static void nvme_clear_queue(struct nvme_queue *nvmeq) 1061 { 1062 spin_lock_irq(&nvmeq->q_lock); 1063 if (nvmeq->tags && *nvmeq->tags) 1064 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); 1065 spin_unlock_irq(&nvmeq->q_lock); 1066 } 1067 1068 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1069 { 1070 struct nvme_queue *nvmeq = dev->queues[0]; 1071 1072 if (!nvmeq) 1073 return; 1074 if (nvme_suspend_queue(nvmeq)) 1075 return; 1076 1077 if (shutdown) 1078 nvme_shutdown_ctrl(&dev->ctrl); 1079 else 1080 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1081 dev->bar + NVME_REG_CAP)); 1082 1083 spin_lock_irq(&nvmeq->q_lock); 1084 nvme_process_cq(nvmeq); 1085 spin_unlock_irq(&nvmeq->q_lock); 1086 } 1087 1088 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1089 int entry_size) 1090 { 1091 int q_depth = dev->q_depth; 1092 unsigned q_size_aligned = roundup(q_depth * entry_size, 1093 dev->ctrl.page_size); 1094 1095 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1096 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1097 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1098 q_depth = div_u64(mem_per_q, entry_size); 1099 1100 /* 1101 * Ensure the reduced q_depth is above some threshold where it 1102 * would be better to map queues in system memory with the 1103 * original depth 1104 */ 1105 if (q_depth < 64) 1106 return -ENOMEM; 1107 } 1108 1109 return q_depth; 1110 } 1111 1112 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1113 int qid, int depth) 1114 { 1115 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1116 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1117 dev->ctrl.page_size); 1118 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1119 nvmeq->sq_cmds_io = dev->cmb + offset; 1120 } else { 1121 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1122 &nvmeq->sq_dma_addr, GFP_KERNEL); 1123 if (!nvmeq->sq_cmds) 1124 return -ENOMEM; 1125 } 1126 1127 return 0; 1128 } 1129 1130 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1131 int depth) 1132 { 1133 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); 1134 if (!nvmeq) 1135 return NULL; 1136 1137 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1138 &nvmeq->cq_dma_addr, GFP_KERNEL); 1139 if (!nvmeq->cqes) 1140 goto free_nvmeq; 1141 1142 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1143 goto free_cqdma; 1144 1145 nvmeq->q_dmadev = dev->dev; 1146 nvmeq->dev = dev; 1147 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", 1148 dev->ctrl.instance, qid); 1149 spin_lock_init(&nvmeq->q_lock); 1150 nvmeq->cq_head = 0; 1151 nvmeq->cq_phase = 1; 1152 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1153 nvmeq->q_depth = depth; 1154 nvmeq->qid = qid; 1155 nvmeq->cq_vector = -1; 1156 dev->queues[qid] = nvmeq; 1157 1158 /* make sure queue descriptor is set before queue count, for kthread */ 1159 mb(); 1160 dev->queue_count++; 1161 1162 return nvmeq; 1163 1164 free_cqdma: 1165 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1166 nvmeq->cq_dma_addr); 1167 free_nvmeq: 1168 kfree(nvmeq); 1169 return NULL; 1170 } 1171 1172 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1173 const char *name) 1174 { 1175 if (use_threaded_interrupts) 1176 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, 1177 nvme_irq_check, nvme_irq, IRQF_SHARED, 1178 name, nvmeq); 1179 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, 1180 IRQF_SHARED, name, nvmeq); 1181 } 1182 1183 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1184 { 1185 struct nvme_dev *dev = nvmeq->dev; 1186 1187 spin_lock_irq(&nvmeq->q_lock); 1188 nvmeq->sq_tail = 0; 1189 nvmeq->cq_head = 0; 1190 nvmeq->cq_phase = 1; 1191 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1192 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1193 dev->online_queues++; 1194 spin_unlock_irq(&nvmeq->q_lock); 1195 } 1196 1197 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1198 { 1199 struct nvme_dev *dev = nvmeq->dev; 1200 int result; 1201 1202 nvmeq->cq_vector = qid - 1; 1203 result = adapter_alloc_cq(dev, qid, nvmeq); 1204 if (result < 0) 1205 return result; 1206 1207 result = adapter_alloc_sq(dev, qid, nvmeq); 1208 if (result < 0) 1209 goto release_cq; 1210 1211 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1212 if (result < 0) 1213 goto release_sq; 1214 1215 nvme_init_queue(nvmeq, qid); 1216 return result; 1217 1218 release_sq: 1219 adapter_delete_sq(dev, qid); 1220 release_cq: 1221 adapter_delete_cq(dev, qid); 1222 return result; 1223 } 1224 1225 static struct blk_mq_ops nvme_mq_admin_ops = { 1226 .queue_rq = nvme_queue_rq, 1227 .complete = nvme_complete_rq, 1228 .map_queue = blk_mq_map_queue, 1229 .init_hctx = nvme_admin_init_hctx, 1230 .exit_hctx = nvme_admin_exit_hctx, 1231 .init_request = nvme_admin_init_request, 1232 .timeout = nvme_timeout, 1233 }; 1234 1235 static struct blk_mq_ops nvme_mq_ops = { 1236 .queue_rq = nvme_queue_rq, 1237 .complete = nvme_complete_rq, 1238 .map_queue = blk_mq_map_queue, 1239 .init_hctx = nvme_init_hctx, 1240 .init_request = nvme_init_request, 1241 .timeout = nvme_timeout, 1242 .poll = nvme_poll, 1243 }; 1244 1245 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1246 { 1247 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1248 blk_cleanup_queue(dev->ctrl.admin_q); 1249 blk_mq_free_tag_set(&dev->admin_tagset); 1250 } 1251 } 1252 1253 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1254 { 1255 if (!dev->ctrl.admin_q) { 1256 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1257 dev->admin_tagset.nr_hw_queues = 1; 1258 1259 /* 1260 * Subtract one to leave an empty queue entry for 'Full Queue' 1261 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1262 */ 1263 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1264 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1265 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1266 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1267 dev->admin_tagset.driver_data = dev; 1268 1269 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1270 return -ENOMEM; 1271 1272 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1273 if (IS_ERR(dev->ctrl.admin_q)) { 1274 blk_mq_free_tag_set(&dev->admin_tagset); 1275 return -ENOMEM; 1276 } 1277 if (!blk_get_queue(dev->ctrl.admin_q)) { 1278 nvme_dev_remove_admin(dev); 1279 dev->ctrl.admin_q = NULL; 1280 return -ENODEV; 1281 } 1282 } else 1283 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1284 1285 return 0; 1286 } 1287 1288 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1289 { 1290 int result; 1291 u32 aqa; 1292 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1293 struct nvme_queue *nvmeq; 1294 1295 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? 1296 NVME_CAP_NSSRC(cap) : 0; 1297 1298 if (dev->subsystem && 1299 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1300 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1301 1302 result = nvme_disable_ctrl(&dev->ctrl, cap); 1303 if (result < 0) 1304 return result; 1305 1306 nvmeq = dev->queues[0]; 1307 if (!nvmeq) { 1308 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1309 if (!nvmeq) 1310 return -ENOMEM; 1311 } 1312 1313 aqa = nvmeq->q_depth - 1; 1314 aqa |= aqa << 16; 1315 1316 writel(aqa, dev->bar + NVME_REG_AQA); 1317 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1318 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1319 1320 result = nvme_enable_ctrl(&dev->ctrl, cap); 1321 if (result) 1322 goto free_nvmeq; 1323 1324 nvmeq->cq_vector = 0; 1325 result = queue_request_irq(dev, nvmeq, nvmeq->irqname); 1326 if (result) { 1327 nvmeq->cq_vector = -1; 1328 goto free_nvmeq; 1329 } 1330 1331 return result; 1332 1333 free_nvmeq: 1334 nvme_free_queues(dev, 0); 1335 return result; 1336 } 1337 1338 static int nvme_kthread(void *data) 1339 { 1340 struct nvme_dev *dev, *next; 1341 1342 while (!kthread_should_stop()) { 1343 set_current_state(TASK_INTERRUPTIBLE); 1344 spin_lock(&dev_list_lock); 1345 list_for_each_entry_safe(dev, next, &dev_list, node) { 1346 int i; 1347 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1348 1349 /* 1350 * Skip controllers currently under reset. 1351 */ 1352 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work)) 1353 continue; 1354 1355 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) || 1356 csts & NVME_CSTS_CFS) { 1357 if (queue_work(nvme_workq, &dev->reset_work)) { 1358 dev_warn(dev->dev, 1359 "Failed status: %x, reset controller\n", 1360 readl(dev->bar + NVME_REG_CSTS)); 1361 } 1362 continue; 1363 } 1364 for (i = 0; i < dev->queue_count; i++) { 1365 struct nvme_queue *nvmeq = dev->queues[i]; 1366 if (!nvmeq) 1367 continue; 1368 spin_lock_irq(&nvmeq->q_lock); 1369 nvme_process_cq(nvmeq); 1370 1371 while (i == 0 && dev->ctrl.event_limit > 0) 1372 nvme_submit_async_event(dev); 1373 spin_unlock_irq(&nvmeq->q_lock); 1374 } 1375 } 1376 spin_unlock(&dev_list_lock); 1377 schedule_timeout(round_jiffies_relative(HZ)); 1378 } 1379 return 0; 1380 } 1381 1382 static int nvme_create_io_queues(struct nvme_dev *dev) 1383 { 1384 unsigned i; 1385 int ret = 0; 1386 1387 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1388 if (!nvme_alloc_queue(dev, i, dev->q_depth)) { 1389 ret = -ENOMEM; 1390 break; 1391 } 1392 } 1393 1394 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) { 1395 ret = nvme_create_queue(dev->queues[i], i); 1396 if (ret) { 1397 nvme_free_queues(dev, i); 1398 break; 1399 } 1400 } 1401 1402 /* 1403 * Ignore failing Create SQ/CQ commands, we can continue with less 1404 * than the desired aount of queues, and even a controller without 1405 * I/O queues an still be used to issue admin commands. This might 1406 * be useful to upgrade a buggy firmware for example. 1407 */ 1408 return ret >= 0 ? 0 : ret; 1409 } 1410 1411 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1412 { 1413 u64 szu, size, offset; 1414 u32 cmbloc; 1415 resource_size_t bar_size; 1416 struct pci_dev *pdev = to_pci_dev(dev->dev); 1417 void __iomem *cmb; 1418 dma_addr_t dma_addr; 1419 1420 if (!use_cmb_sqes) 1421 return NULL; 1422 1423 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1424 if (!(NVME_CMB_SZ(dev->cmbsz))) 1425 return NULL; 1426 1427 cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1428 1429 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1430 size = szu * NVME_CMB_SZ(dev->cmbsz); 1431 offset = szu * NVME_CMB_OFST(cmbloc); 1432 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); 1433 1434 if (offset > bar_size) 1435 return NULL; 1436 1437 /* 1438 * Controllers may support a CMB size larger than their BAR, 1439 * for example, due to being behind a bridge. Reduce the CMB to 1440 * the reported size of the BAR 1441 */ 1442 if (size > bar_size - offset) 1443 size = bar_size - offset; 1444 1445 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; 1446 cmb = ioremap_wc(dma_addr, size); 1447 if (!cmb) 1448 return NULL; 1449 1450 dev->cmb_dma_addr = dma_addr; 1451 dev->cmb_size = size; 1452 return cmb; 1453 } 1454 1455 static inline void nvme_release_cmb(struct nvme_dev *dev) 1456 { 1457 if (dev->cmb) { 1458 iounmap(dev->cmb); 1459 dev->cmb = NULL; 1460 } 1461 } 1462 1463 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1464 { 1465 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); 1466 } 1467 1468 static int nvme_setup_io_queues(struct nvme_dev *dev) 1469 { 1470 struct nvme_queue *adminq = dev->queues[0]; 1471 struct pci_dev *pdev = to_pci_dev(dev->dev); 1472 int result, i, vecs, nr_io_queues, size; 1473 1474 nr_io_queues = num_possible_cpus(); 1475 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1476 if (result < 0) 1477 return result; 1478 1479 /* 1480 * Degraded controllers might return an error when setting the queue 1481 * count. We still want to be able to bring them online and offer 1482 * access to the admin queue, as that might be only way to fix them up. 1483 */ 1484 if (result > 0) { 1485 dev_err(dev->dev, "Could not set queue count (%d)\n", result); 1486 nr_io_queues = 0; 1487 result = 0; 1488 } 1489 1490 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1491 result = nvme_cmb_qdepth(dev, nr_io_queues, 1492 sizeof(struct nvme_command)); 1493 if (result > 0) 1494 dev->q_depth = result; 1495 else 1496 nvme_release_cmb(dev); 1497 } 1498 1499 size = db_bar_size(dev, nr_io_queues); 1500 if (size > 8192) { 1501 iounmap(dev->bar); 1502 do { 1503 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1504 if (dev->bar) 1505 break; 1506 if (!--nr_io_queues) 1507 return -ENOMEM; 1508 size = db_bar_size(dev, nr_io_queues); 1509 } while (1); 1510 dev->dbs = dev->bar + 4096; 1511 adminq->q_db = dev->dbs; 1512 } 1513 1514 /* Deregister the admin queue's interrupt */ 1515 free_irq(dev->entry[0].vector, adminq); 1516 1517 /* 1518 * If we enable msix early due to not intx, disable it again before 1519 * setting up the full range we need. 1520 */ 1521 if (!pdev->irq) 1522 pci_disable_msix(pdev); 1523 1524 for (i = 0; i < nr_io_queues; i++) 1525 dev->entry[i].entry = i; 1526 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); 1527 if (vecs < 0) { 1528 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); 1529 if (vecs < 0) { 1530 vecs = 1; 1531 } else { 1532 for (i = 0; i < vecs; i++) 1533 dev->entry[i].vector = i + pdev->irq; 1534 } 1535 } 1536 1537 /* 1538 * Should investigate if there's a performance win from allocating 1539 * more queues than interrupt vectors; it might allow the submission 1540 * path to scale better, even if the receive path is limited by the 1541 * number of interrupts. 1542 */ 1543 nr_io_queues = vecs; 1544 dev->max_qid = nr_io_queues; 1545 1546 result = queue_request_irq(dev, adminq, adminq->irqname); 1547 if (result) { 1548 adminq->cq_vector = -1; 1549 goto free_queues; 1550 } 1551 1552 /* Free previously allocated queues that are no longer usable */ 1553 nvme_free_queues(dev, nr_io_queues + 1); 1554 return nvme_create_io_queues(dev); 1555 1556 free_queues: 1557 nvme_free_queues(dev, 1); 1558 return result; 1559 } 1560 1561 static void nvme_set_irq_hints(struct nvme_dev *dev) 1562 { 1563 struct nvme_queue *nvmeq; 1564 int i; 1565 1566 for (i = 0; i < dev->online_queues; i++) { 1567 nvmeq = dev->queues[i]; 1568 1569 if (!nvmeq->tags || !(*nvmeq->tags)) 1570 continue; 1571 1572 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, 1573 blk_mq_tags_cpumask(*nvmeq->tags)); 1574 } 1575 } 1576 1577 static void nvme_dev_scan(struct work_struct *work) 1578 { 1579 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); 1580 1581 if (!dev->tagset.tags) 1582 return; 1583 nvme_scan_namespaces(&dev->ctrl); 1584 nvme_set_irq_hints(dev); 1585 } 1586 1587 static void nvme_del_queue_end(struct request *req, int error) 1588 { 1589 struct nvme_queue *nvmeq = req->end_io_data; 1590 1591 blk_mq_free_request(req); 1592 complete(&nvmeq->dev->ioq_wait); 1593 } 1594 1595 static void nvme_del_cq_end(struct request *req, int error) 1596 { 1597 struct nvme_queue *nvmeq = req->end_io_data; 1598 1599 if (!error) { 1600 unsigned long flags; 1601 1602 spin_lock_irqsave(&nvmeq->q_lock, flags); 1603 nvme_process_cq(nvmeq); 1604 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1605 } 1606 1607 nvme_del_queue_end(req, error); 1608 } 1609 1610 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1611 { 1612 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1613 struct request *req; 1614 struct nvme_command cmd; 1615 1616 memset(&cmd, 0, sizeof(cmd)); 1617 cmd.delete_queue.opcode = opcode; 1618 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1619 1620 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 1621 if (IS_ERR(req)) 1622 return PTR_ERR(req); 1623 1624 req->timeout = ADMIN_TIMEOUT; 1625 req->end_io_data = nvmeq; 1626 1627 blk_execute_rq_nowait(q, NULL, req, false, 1628 opcode == nvme_admin_delete_cq ? 1629 nvme_del_cq_end : nvme_del_queue_end); 1630 return 0; 1631 } 1632 1633 static void nvme_disable_io_queues(struct nvme_dev *dev) 1634 { 1635 int pass; 1636 unsigned long timeout; 1637 u8 opcode = nvme_admin_delete_sq; 1638 1639 for (pass = 0; pass < 2; pass++) { 1640 int sent = 0, i = dev->queue_count - 1; 1641 1642 reinit_completion(&dev->ioq_wait); 1643 retry: 1644 timeout = ADMIN_TIMEOUT; 1645 for (; i > 0; i--) { 1646 struct nvme_queue *nvmeq = dev->queues[i]; 1647 1648 if (!pass) 1649 nvme_suspend_queue(nvmeq); 1650 if (nvme_delete_queue(nvmeq, opcode)) 1651 break; 1652 ++sent; 1653 } 1654 while (sent--) { 1655 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1656 if (timeout == 0) 1657 return; 1658 if (i) 1659 goto retry; 1660 } 1661 opcode = nvme_admin_delete_cq; 1662 } 1663 } 1664 1665 /* 1666 * Return: error value if an error occurred setting up the queues or calling 1667 * Identify Device. 0 if these succeeded, even if adding some of the 1668 * namespaces failed. At the moment, these failures are silent. TBD which 1669 * failures should be reported. 1670 */ 1671 static int nvme_dev_add(struct nvme_dev *dev) 1672 { 1673 if (!dev->ctrl.tagset) { 1674 dev->tagset.ops = &nvme_mq_ops; 1675 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1676 dev->tagset.timeout = NVME_IO_TIMEOUT; 1677 dev->tagset.numa_node = dev_to_node(dev->dev); 1678 dev->tagset.queue_depth = 1679 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1680 dev->tagset.cmd_size = nvme_cmd_size(dev); 1681 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1682 dev->tagset.driver_data = dev; 1683 1684 if (blk_mq_alloc_tag_set(&dev->tagset)) 1685 return 0; 1686 dev->ctrl.tagset = &dev->tagset; 1687 } 1688 queue_work(nvme_workq, &dev->scan_work); 1689 return 0; 1690 } 1691 1692 static int nvme_dev_map(struct nvme_dev *dev) 1693 { 1694 u64 cap; 1695 int bars, result = -ENOMEM; 1696 struct pci_dev *pdev = to_pci_dev(dev->dev); 1697 1698 if (pci_enable_device_mem(pdev)) 1699 return result; 1700 1701 dev->entry[0].vector = pdev->irq; 1702 pci_set_master(pdev); 1703 bars = pci_select_bars(pdev, IORESOURCE_MEM); 1704 if (!bars) 1705 goto disable_pci; 1706 1707 if (pci_request_selected_regions(pdev, bars, "nvme")) 1708 goto disable_pci; 1709 1710 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1711 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1712 goto disable; 1713 1714 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); 1715 if (!dev->bar) 1716 goto disable; 1717 1718 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1719 result = -ENODEV; 1720 goto unmap; 1721 } 1722 1723 /* 1724 * Some devices don't advertse INTx interrupts, pre-enable a single 1725 * MSIX vec for setup. We'll adjust this later. 1726 */ 1727 if (!pdev->irq) { 1728 result = pci_enable_msix(pdev, dev->entry, 1); 1729 if (result < 0) 1730 goto unmap; 1731 } 1732 1733 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1734 1735 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1736 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1737 dev->dbs = dev->bar + 4096; 1738 1739 /* 1740 * Temporary fix for the Apple controller found in the MacBook8,1 and 1741 * some MacBook7,1 to avoid controller resets and data loss. 1742 */ 1743 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1744 dev->q_depth = 2; 1745 dev_warn(dev->dev, "detected Apple NVMe controller, set " 1746 "queue depth=%u to work around controller resets\n", 1747 dev->q_depth); 1748 } 1749 1750 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) 1751 dev->cmb = nvme_map_cmb(dev); 1752 1753 pci_enable_pcie_error_reporting(pdev); 1754 pci_save_state(pdev); 1755 return 0; 1756 1757 unmap: 1758 iounmap(dev->bar); 1759 dev->bar = NULL; 1760 disable: 1761 pci_release_regions(pdev); 1762 disable_pci: 1763 pci_disable_device(pdev); 1764 return result; 1765 } 1766 1767 static void nvme_dev_unmap(struct nvme_dev *dev) 1768 { 1769 struct pci_dev *pdev = to_pci_dev(dev->dev); 1770 1771 if (pdev->msi_enabled) 1772 pci_disable_msi(pdev); 1773 else if (pdev->msix_enabled) 1774 pci_disable_msix(pdev); 1775 1776 if (dev->bar) { 1777 iounmap(dev->bar); 1778 dev->bar = NULL; 1779 pci_release_regions(pdev); 1780 } 1781 1782 if (pci_is_enabled(pdev)) { 1783 pci_disable_pcie_error_reporting(pdev); 1784 pci_disable_device(pdev); 1785 } 1786 } 1787 1788 static int nvme_dev_list_add(struct nvme_dev *dev) 1789 { 1790 bool start_thread = false; 1791 1792 spin_lock(&dev_list_lock); 1793 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) { 1794 start_thread = true; 1795 nvme_thread = NULL; 1796 } 1797 list_add(&dev->node, &dev_list); 1798 spin_unlock(&dev_list_lock); 1799 1800 if (start_thread) { 1801 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); 1802 wake_up_all(&nvme_kthread_wait); 1803 } else 1804 wait_event_killable(nvme_kthread_wait, nvme_thread); 1805 1806 if (IS_ERR_OR_NULL(nvme_thread)) 1807 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR; 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * Remove the node from the device list and check 1814 * for whether or not we need to stop the nvme_thread. 1815 */ 1816 static void nvme_dev_list_remove(struct nvme_dev *dev) 1817 { 1818 struct task_struct *tmp = NULL; 1819 1820 spin_lock(&dev_list_lock); 1821 list_del_init(&dev->node); 1822 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) { 1823 tmp = nvme_thread; 1824 nvme_thread = NULL; 1825 } 1826 spin_unlock(&dev_list_lock); 1827 1828 if (tmp) 1829 kthread_stop(tmp); 1830 } 1831 1832 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1833 { 1834 int i; 1835 u32 csts = -1; 1836 1837 nvme_dev_list_remove(dev); 1838 1839 mutex_lock(&dev->shutdown_lock); 1840 if (dev->bar) { 1841 nvme_stop_queues(&dev->ctrl); 1842 csts = readl(dev->bar + NVME_REG_CSTS); 1843 } 1844 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { 1845 for (i = dev->queue_count - 1; i >= 0; i--) { 1846 struct nvme_queue *nvmeq = dev->queues[i]; 1847 nvme_suspend_queue(nvmeq); 1848 } 1849 } else { 1850 nvme_disable_io_queues(dev); 1851 nvme_disable_admin_queue(dev, shutdown); 1852 } 1853 nvme_dev_unmap(dev); 1854 1855 for (i = dev->queue_count - 1; i >= 0; i--) 1856 nvme_clear_queue(dev->queues[i]); 1857 mutex_unlock(&dev->shutdown_lock); 1858 } 1859 1860 static int nvme_setup_prp_pools(struct nvme_dev *dev) 1861 { 1862 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 1863 PAGE_SIZE, PAGE_SIZE, 0); 1864 if (!dev->prp_page_pool) 1865 return -ENOMEM; 1866 1867 /* Optimisation for I/Os between 4k and 128k */ 1868 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 1869 256, 256, 0); 1870 if (!dev->prp_small_pool) { 1871 dma_pool_destroy(dev->prp_page_pool); 1872 return -ENOMEM; 1873 } 1874 return 0; 1875 } 1876 1877 static void nvme_release_prp_pools(struct nvme_dev *dev) 1878 { 1879 dma_pool_destroy(dev->prp_page_pool); 1880 dma_pool_destroy(dev->prp_small_pool); 1881 } 1882 1883 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 1884 { 1885 struct nvme_dev *dev = to_nvme_dev(ctrl); 1886 1887 put_device(dev->dev); 1888 if (dev->tagset.tags) 1889 blk_mq_free_tag_set(&dev->tagset); 1890 if (dev->ctrl.admin_q) 1891 blk_put_queue(dev->ctrl.admin_q); 1892 kfree(dev->queues); 1893 kfree(dev->entry); 1894 kfree(dev); 1895 } 1896 1897 static void nvme_reset_work(struct work_struct *work) 1898 { 1899 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); 1900 int result; 1901 1902 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags))) 1903 goto out; 1904 1905 /* 1906 * If we're called to reset a live controller first shut it down before 1907 * moving on. 1908 */ 1909 if (dev->bar) 1910 nvme_dev_disable(dev, false); 1911 1912 set_bit(NVME_CTRL_RESETTING, &dev->flags); 1913 1914 result = nvme_dev_map(dev); 1915 if (result) 1916 goto out; 1917 1918 result = nvme_configure_admin_queue(dev); 1919 if (result) 1920 goto unmap; 1921 1922 nvme_init_queue(dev->queues[0], 0); 1923 result = nvme_alloc_admin_tags(dev); 1924 if (result) 1925 goto disable; 1926 1927 result = nvme_init_identify(&dev->ctrl); 1928 if (result) 1929 goto free_tags; 1930 1931 result = nvme_setup_io_queues(dev); 1932 if (result) 1933 goto free_tags; 1934 1935 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS; 1936 1937 result = nvme_dev_list_add(dev); 1938 if (result) 1939 goto remove; 1940 1941 /* 1942 * Keep the controller around but remove all namespaces if we don't have 1943 * any working I/O queue. 1944 */ 1945 if (dev->online_queues < 2) { 1946 dev_warn(dev->dev, "IO queues not created\n"); 1947 nvme_remove_namespaces(&dev->ctrl); 1948 } else { 1949 nvme_start_queues(&dev->ctrl); 1950 nvme_dev_add(dev); 1951 } 1952 1953 clear_bit(NVME_CTRL_RESETTING, &dev->flags); 1954 return; 1955 1956 remove: 1957 nvme_dev_list_remove(dev); 1958 free_tags: 1959 nvme_dev_remove_admin(dev); 1960 blk_put_queue(dev->ctrl.admin_q); 1961 dev->ctrl.admin_q = NULL; 1962 dev->queues[0]->tags = NULL; 1963 disable: 1964 nvme_disable_admin_queue(dev, false); 1965 unmap: 1966 nvme_dev_unmap(dev); 1967 out: 1968 nvme_remove_dead_ctrl(dev); 1969 } 1970 1971 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 1972 { 1973 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 1974 struct pci_dev *pdev = to_pci_dev(dev->dev); 1975 1976 if (pci_get_drvdata(pdev)) 1977 pci_stop_and_remove_bus_device_locked(pdev); 1978 nvme_put_ctrl(&dev->ctrl); 1979 } 1980 1981 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 1982 { 1983 dev_warn(dev->dev, "Removing after probe failure\n"); 1984 kref_get(&dev->ctrl.kref); 1985 if (!schedule_work(&dev->remove_work)) 1986 nvme_put_ctrl(&dev->ctrl); 1987 } 1988 1989 static int nvme_reset(struct nvme_dev *dev) 1990 { 1991 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) 1992 return -ENODEV; 1993 1994 if (!queue_work(nvme_workq, &dev->reset_work)) 1995 return -EBUSY; 1996 1997 flush_work(&dev->reset_work); 1998 return 0; 1999 } 2000 2001 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2002 { 2003 *val = readl(to_nvme_dev(ctrl)->bar + off); 2004 return 0; 2005 } 2006 2007 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2008 { 2009 writel(val, to_nvme_dev(ctrl)->bar + off); 2010 return 0; 2011 } 2012 2013 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2014 { 2015 *val = readq(to_nvme_dev(ctrl)->bar + off); 2016 return 0; 2017 } 2018 2019 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl) 2020 { 2021 struct nvme_dev *dev = to_nvme_dev(ctrl); 2022 2023 return !dev->bar || dev->online_queues < 2; 2024 } 2025 2026 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) 2027 { 2028 return nvme_reset(to_nvme_dev(ctrl)); 2029 } 2030 2031 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2032 .reg_read32 = nvme_pci_reg_read32, 2033 .reg_write32 = nvme_pci_reg_write32, 2034 .reg_read64 = nvme_pci_reg_read64, 2035 .io_incapable = nvme_pci_io_incapable, 2036 .reset_ctrl = nvme_pci_reset_ctrl, 2037 .free_ctrl = nvme_pci_free_ctrl, 2038 }; 2039 2040 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2041 { 2042 int node, result = -ENOMEM; 2043 struct nvme_dev *dev; 2044 2045 node = dev_to_node(&pdev->dev); 2046 if (node == NUMA_NO_NODE) 2047 set_dev_node(&pdev->dev, 0); 2048 2049 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2050 if (!dev) 2051 return -ENOMEM; 2052 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), 2053 GFP_KERNEL, node); 2054 if (!dev->entry) 2055 goto free; 2056 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2057 GFP_KERNEL, node); 2058 if (!dev->queues) 2059 goto free; 2060 2061 dev->dev = get_device(&pdev->dev); 2062 pci_set_drvdata(pdev, dev); 2063 2064 INIT_LIST_HEAD(&dev->node); 2065 INIT_WORK(&dev->scan_work, nvme_dev_scan); 2066 INIT_WORK(&dev->reset_work, nvme_reset_work); 2067 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2068 mutex_init(&dev->shutdown_lock); 2069 init_completion(&dev->ioq_wait); 2070 2071 result = nvme_setup_prp_pools(dev); 2072 if (result) 2073 goto put_pci; 2074 2075 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2076 id->driver_data); 2077 if (result) 2078 goto release_pools; 2079 2080 queue_work(nvme_workq, &dev->reset_work); 2081 return 0; 2082 2083 release_pools: 2084 nvme_release_prp_pools(dev); 2085 put_pci: 2086 put_device(dev->dev); 2087 free: 2088 kfree(dev->queues); 2089 kfree(dev->entry); 2090 kfree(dev); 2091 return result; 2092 } 2093 2094 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2095 { 2096 struct nvme_dev *dev = pci_get_drvdata(pdev); 2097 2098 if (prepare) 2099 nvme_dev_disable(dev, false); 2100 else 2101 queue_work(nvme_workq, &dev->reset_work); 2102 } 2103 2104 static void nvme_shutdown(struct pci_dev *pdev) 2105 { 2106 struct nvme_dev *dev = pci_get_drvdata(pdev); 2107 nvme_dev_disable(dev, true); 2108 } 2109 2110 static void nvme_remove(struct pci_dev *pdev) 2111 { 2112 struct nvme_dev *dev = pci_get_drvdata(pdev); 2113 2114 spin_lock(&dev_list_lock); 2115 list_del_init(&dev->node); 2116 spin_unlock(&dev_list_lock); 2117 2118 pci_set_drvdata(pdev, NULL); 2119 flush_work(&dev->reset_work); 2120 flush_work(&dev->scan_work); 2121 nvme_remove_namespaces(&dev->ctrl); 2122 nvme_uninit_ctrl(&dev->ctrl); 2123 nvme_dev_disable(dev, true); 2124 nvme_dev_remove_admin(dev); 2125 nvme_free_queues(dev, 0); 2126 nvme_release_cmb(dev); 2127 nvme_release_prp_pools(dev); 2128 nvme_put_ctrl(&dev->ctrl); 2129 } 2130 2131 #ifdef CONFIG_PM_SLEEP 2132 static int nvme_suspend(struct device *dev) 2133 { 2134 struct pci_dev *pdev = to_pci_dev(dev); 2135 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2136 2137 nvme_dev_disable(ndev, true); 2138 return 0; 2139 } 2140 2141 static int nvme_resume(struct device *dev) 2142 { 2143 struct pci_dev *pdev = to_pci_dev(dev); 2144 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2145 2146 queue_work(nvme_workq, &ndev->reset_work); 2147 return 0; 2148 } 2149 #endif 2150 2151 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2152 2153 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2154 pci_channel_state_t state) 2155 { 2156 struct nvme_dev *dev = pci_get_drvdata(pdev); 2157 2158 /* 2159 * A frozen channel requires a reset. When detected, this method will 2160 * shutdown the controller to quiesce. The controller will be restarted 2161 * after the slot reset through driver's slot_reset callback. 2162 */ 2163 dev_warn(&pdev->dev, "error detected: state:%d\n", state); 2164 switch (state) { 2165 case pci_channel_io_normal: 2166 return PCI_ERS_RESULT_CAN_RECOVER; 2167 case pci_channel_io_frozen: 2168 nvme_dev_disable(dev, false); 2169 return PCI_ERS_RESULT_NEED_RESET; 2170 case pci_channel_io_perm_failure: 2171 return PCI_ERS_RESULT_DISCONNECT; 2172 } 2173 return PCI_ERS_RESULT_NEED_RESET; 2174 } 2175 2176 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2177 { 2178 struct nvme_dev *dev = pci_get_drvdata(pdev); 2179 2180 dev_info(&pdev->dev, "restart after slot reset\n"); 2181 pci_restore_state(pdev); 2182 queue_work(nvme_workq, &dev->reset_work); 2183 return PCI_ERS_RESULT_RECOVERED; 2184 } 2185 2186 static void nvme_error_resume(struct pci_dev *pdev) 2187 { 2188 pci_cleanup_aer_uncorrect_error_status(pdev); 2189 } 2190 2191 static const struct pci_error_handlers nvme_err_handler = { 2192 .error_detected = nvme_error_detected, 2193 .slot_reset = nvme_slot_reset, 2194 .resume = nvme_error_resume, 2195 .reset_notify = nvme_reset_notify, 2196 }; 2197 2198 /* Move to pci_ids.h later */ 2199 #define PCI_CLASS_STORAGE_EXPRESS 0x010802 2200 2201 static const struct pci_device_id nvme_id_table[] = { 2202 { PCI_VDEVICE(INTEL, 0x0953), 2203 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 2204 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2205 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2206 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2207 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2208 { 0, } 2209 }; 2210 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2211 2212 static struct pci_driver nvme_driver = { 2213 .name = "nvme", 2214 .id_table = nvme_id_table, 2215 .probe = nvme_probe, 2216 .remove = nvme_remove, 2217 .shutdown = nvme_shutdown, 2218 .driver = { 2219 .pm = &nvme_dev_pm_ops, 2220 }, 2221 .err_handler = &nvme_err_handler, 2222 }; 2223 2224 static int __init nvme_init(void) 2225 { 2226 int result; 2227 2228 init_waitqueue_head(&nvme_kthread_wait); 2229 2230 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 2231 if (!nvme_workq) 2232 return -ENOMEM; 2233 2234 result = nvme_core_init(); 2235 if (result < 0) 2236 goto kill_workq; 2237 2238 result = pci_register_driver(&nvme_driver); 2239 if (result) 2240 goto core_exit; 2241 return 0; 2242 2243 core_exit: 2244 nvme_core_exit(); 2245 kill_workq: 2246 destroy_workqueue(nvme_workq); 2247 return result; 2248 } 2249 2250 static void __exit nvme_exit(void) 2251 { 2252 pci_unregister_driver(&nvme_driver); 2253 nvme_core_exit(); 2254 destroy_workqueue(nvme_workq); 2255 BUG_ON(nvme_thread && !IS_ERR(nvme_thread)); 2256 _nvme_check_size(); 2257 } 2258 2259 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2260 MODULE_LICENSE("GPL"); 2261 MODULE_VERSION("1.0"); 2262 module_init(nvme_init); 2263 module_exit(nvme_exit); 2264