xref: /linux/drivers/nvme/host/pci.c (revision a68e9da48568a0adf5dc817ef81971c0d1aa0672)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 #define NVME_PCI_MIN_QUEUE_SIZE 2
64 #define NVME_PCI_MAX_QUEUE_SIZE 4095
65 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
66 static const struct kernel_param_ops io_queue_depth_ops = {
67 	.set = io_queue_depth_set,
68 	.get = param_get_uint,
69 };
70 
71 static unsigned int io_queue_depth = 1024;
72 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
73 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
74 
75 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
76 {
77 	unsigned int n;
78 	int ret;
79 
80 	ret = kstrtouint(val, 10, &n);
81 	if (ret != 0 || n > num_possible_cpus())
82 		return -EINVAL;
83 	return param_set_uint(val, kp);
84 }
85 
86 static const struct kernel_param_ops io_queue_count_ops = {
87 	.set = io_queue_count_set,
88 	.get = param_get_uint,
89 };
90 
91 static unsigned int write_queues;
92 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
93 MODULE_PARM_DESC(write_queues,
94 	"Number of queues to use for writes. If not set, reads and writes "
95 	"will share a queue set.");
96 
97 static unsigned int poll_queues;
98 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
99 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
100 
101 static bool noacpi;
102 module_param(noacpi, bool, 0444);
103 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
104 
105 struct nvme_dev;
106 struct nvme_queue;
107 
108 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
109 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
110 
111 /*
112  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
113  */
114 struct nvme_dev {
115 	struct nvme_queue *queues;
116 	struct blk_mq_tag_set tagset;
117 	struct blk_mq_tag_set admin_tagset;
118 	u32 __iomem *dbs;
119 	struct device *dev;
120 	struct dma_pool *prp_page_pool;
121 	struct dma_pool *prp_small_pool;
122 	unsigned online_queues;
123 	unsigned max_qid;
124 	unsigned io_queues[HCTX_MAX_TYPES];
125 	unsigned int num_vecs;
126 	u32 q_depth;
127 	int io_sqes;
128 	u32 db_stride;
129 	void __iomem *bar;
130 	unsigned long bar_mapped_size;
131 	struct work_struct remove_work;
132 	struct mutex shutdown_lock;
133 	bool subsystem;
134 	u64 cmb_size;
135 	bool cmb_use_sqes;
136 	u32 cmbsz;
137 	u32 cmbloc;
138 	struct nvme_ctrl ctrl;
139 	u32 last_ps;
140 	bool hmb;
141 
142 	mempool_t *iod_mempool;
143 
144 	/* shadow doorbell buffer support: */
145 	u32 *dbbuf_dbs;
146 	dma_addr_t dbbuf_dbs_dma_addr;
147 	u32 *dbbuf_eis;
148 	dma_addr_t dbbuf_eis_dma_addr;
149 
150 	/* host memory buffer support: */
151 	u64 host_mem_size;
152 	u32 nr_host_mem_descs;
153 	dma_addr_t host_mem_descs_dma;
154 	struct nvme_host_mem_buf_desc *host_mem_descs;
155 	void **host_mem_desc_bufs;
156 	unsigned int nr_allocated_queues;
157 	unsigned int nr_write_queues;
158 	unsigned int nr_poll_queues;
159 
160 	bool attrs_added;
161 };
162 
163 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
164 {
165 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
166 			NVME_PCI_MAX_QUEUE_SIZE);
167 }
168 
169 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
170 {
171 	return qid * 2 * stride;
172 }
173 
174 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
175 {
176 	return (qid * 2 + 1) * stride;
177 }
178 
179 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_dev, ctrl);
182 }
183 
184 /*
185  * An NVM Express queue.  Each device has at least two (one for admin
186  * commands and one for I/O commands).
187  */
188 struct nvme_queue {
189 	struct nvme_dev *dev;
190 	spinlock_t sq_lock;
191 	void *sq_cmds;
192 	 /* only used for poll queues: */
193 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
194 	struct nvme_completion *cqes;
195 	dma_addr_t sq_dma_addr;
196 	dma_addr_t cq_dma_addr;
197 	u32 __iomem *q_db;
198 	u32 q_depth;
199 	u16 cq_vector;
200 	u16 sq_tail;
201 	u16 last_sq_tail;
202 	u16 cq_head;
203 	u16 qid;
204 	u8 cq_phase;
205 	u8 sqes;
206 	unsigned long flags;
207 #define NVMEQ_ENABLED		0
208 #define NVMEQ_SQ_CMB		1
209 #define NVMEQ_DELETE_ERROR	2
210 #define NVMEQ_POLLED		3
211 	u32 *dbbuf_sq_db;
212 	u32 *dbbuf_cq_db;
213 	u32 *dbbuf_sq_ei;
214 	u32 *dbbuf_cq_ei;
215 	struct completion delete_done;
216 };
217 
218 /*
219  * The nvme_iod describes the data in an I/O.
220  *
221  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
222  * to the actual struct scatterlist.
223  */
224 struct nvme_iod {
225 	struct nvme_request req;
226 	struct nvme_command cmd;
227 	struct nvme_queue *nvmeq;
228 	bool use_sgl;
229 	int aborted;
230 	int npages;		/* In the PRP list. 0 means small pool in use */
231 	int nents;		/* Used in scatterlist */
232 	dma_addr_t first_dma;
233 	unsigned int dma_len;	/* length of single DMA segment mapping */
234 	dma_addr_t meta_dma;
235 	struct scatterlist *sg;
236 };
237 
238 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
239 {
240 	return dev->nr_allocated_queues * 8 * dev->db_stride;
241 }
242 
243 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
244 {
245 	unsigned int mem_size = nvme_dbbuf_size(dev);
246 
247 	if (dev->dbbuf_dbs)
248 		return 0;
249 
250 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
251 					    &dev->dbbuf_dbs_dma_addr,
252 					    GFP_KERNEL);
253 	if (!dev->dbbuf_dbs)
254 		return -ENOMEM;
255 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
256 					    &dev->dbbuf_eis_dma_addr,
257 					    GFP_KERNEL);
258 	if (!dev->dbbuf_eis) {
259 		dma_free_coherent(dev->dev, mem_size,
260 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
261 		dev->dbbuf_dbs = NULL;
262 		return -ENOMEM;
263 	}
264 
265 	return 0;
266 }
267 
268 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
269 {
270 	unsigned int mem_size = nvme_dbbuf_size(dev);
271 
272 	if (dev->dbbuf_dbs) {
273 		dma_free_coherent(dev->dev, mem_size,
274 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
275 		dev->dbbuf_dbs = NULL;
276 	}
277 	if (dev->dbbuf_eis) {
278 		dma_free_coherent(dev->dev, mem_size,
279 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
280 		dev->dbbuf_eis = NULL;
281 	}
282 }
283 
284 static void nvme_dbbuf_init(struct nvme_dev *dev,
285 			    struct nvme_queue *nvmeq, int qid)
286 {
287 	if (!dev->dbbuf_dbs || !qid)
288 		return;
289 
290 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
291 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
294 }
295 
296 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
297 {
298 	if (!nvmeq->qid)
299 		return;
300 
301 	nvmeq->dbbuf_sq_db = NULL;
302 	nvmeq->dbbuf_cq_db = NULL;
303 	nvmeq->dbbuf_sq_ei = NULL;
304 	nvmeq->dbbuf_cq_ei = NULL;
305 }
306 
307 static void nvme_dbbuf_set(struct nvme_dev *dev)
308 {
309 	struct nvme_command c = { };
310 	unsigned int i;
311 
312 	if (!dev->dbbuf_dbs)
313 		return;
314 
315 	c.dbbuf.opcode = nvme_admin_dbbuf;
316 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
317 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
318 
319 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
320 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
321 		/* Free memory and continue on */
322 		nvme_dbbuf_dma_free(dev);
323 
324 		for (i = 1; i <= dev->online_queues; i++)
325 			nvme_dbbuf_free(&dev->queues[i]);
326 	}
327 }
328 
329 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
330 {
331 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
332 }
333 
334 /* Update dbbuf and return true if an MMIO is required */
335 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
336 					      volatile u32 *dbbuf_ei)
337 {
338 	if (dbbuf_db) {
339 		u16 old_value;
340 
341 		/*
342 		 * Ensure that the queue is written before updating
343 		 * the doorbell in memory
344 		 */
345 		wmb();
346 
347 		old_value = *dbbuf_db;
348 		*dbbuf_db = value;
349 
350 		/*
351 		 * Ensure that the doorbell is updated before reading the event
352 		 * index from memory.  The controller needs to provide similar
353 		 * ordering to ensure the envent index is updated before reading
354 		 * the doorbell.
355 		 */
356 		mb();
357 
358 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
359 			return false;
360 	}
361 
362 	return true;
363 }
364 
365 /*
366  * Will slightly overestimate the number of pages needed.  This is OK
367  * as it only leads to a small amount of wasted memory for the lifetime of
368  * the I/O.
369  */
370 static int nvme_pci_npages_prp(void)
371 {
372 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
373 				      NVME_CTRL_PAGE_SIZE);
374 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
375 }
376 
377 /*
378  * Calculates the number of pages needed for the SGL segments. For example a 4k
379  * page can accommodate 256 SGL descriptors.
380  */
381 static int nvme_pci_npages_sgl(void)
382 {
383 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
384 			PAGE_SIZE);
385 }
386 
387 static size_t nvme_pci_iod_alloc_size(void)
388 {
389 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
390 
391 	return sizeof(__le64 *) * npages +
392 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = data;
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = data;
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
420 		unsigned int hctx_idx, unsigned int numa_node)
421 {
422 	struct nvme_dev *dev = set->driver_data;
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
425 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
426 
427 	BUG_ON(!nvmeq);
428 	iod->nvmeq = nvmeq;
429 
430 	nvme_req(req)->ctrl = &dev->ctrl;
431 	nvme_req(req)->cmd = &iod->cmd;
432 	return 0;
433 }
434 
435 static int queue_irq_offset(struct nvme_dev *dev)
436 {
437 	/* if we have more than 1 vec, admin queue offsets us by 1 */
438 	if (dev->num_vecs > 1)
439 		return 1;
440 
441 	return 0;
442 }
443 
444 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
445 {
446 	struct nvme_dev *dev = set->driver_data;
447 	int i, qoff, offset;
448 
449 	offset = queue_irq_offset(dev);
450 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
451 		struct blk_mq_queue_map *map = &set->map[i];
452 
453 		map->nr_queues = dev->io_queues[i];
454 		if (!map->nr_queues) {
455 			BUG_ON(i == HCTX_TYPE_DEFAULT);
456 			continue;
457 		}
458 
459 		/*
460 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
461 		 * affinity), so use the regular blk-mq cpu mapping
462 		 */
463 		map->queue_offset = qoff;
464 		if (i != HCTX_TYPE_POLL && offset)
465 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
466 		else
467 			blk_mq_map_queues(map);
468 		qoff += map->nr_queues;
469 		offset += map->nr_queues;
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * Write sq tail if we are asked to, or if the next command would wrap.
477  */
478 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
479 {
480 	if (!write_sq) {
481 		u16 next_tail = nvmeq->sq_tail + 1;
482 
483 		if (next_tail == nvmeq->q_depth)
484 			next_tail = 0;
485 		if (next_tail != nvmeq->last_sq_tail)
486 			return;
487 	}
488 
489 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
490 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
491 		writel(nvmeq->sq_tail, nvmeq->q_db);
492 	nvmeq->last_sq_tail = nvmeq->sq_tail;
493 }
494 
495 /**
496  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
497  * @nvmeq: The queue to use
498  * @cmd: The command to send
499  * @write_sq: whether to write to the SQ doorbell
500  */
501 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
502 			    bool write_sq)
503 {
504 	spin_lock(&nvmeq->sq_lock);
505 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
506 	       cmd, sizeof(*cmd));
507 	if (++nvmeq->sq_tail == nvmeq->q_depth)
508 		nvmeq->sq_tail = 0;
509 	nvme_write_sq_db(nvmeq, write_sq);
510 	spin_unlock(&nvmeq->sq_lock);
511 }
512 
513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
514 {
515 	struct nvme_queue *nvmeq = hctx->driver_data;
516 
517 	spin_lock(&nvmeq->sq_lock);
518 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
519 		nvme_write_sq_db(nvmeq, true);
520 	spin_unlock(&nvmeq->sq_lock);
521 }
522 
523 static void **nvme_pci_iod_list(struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
527 }
528 
529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
530 {
531 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
532 	int nseg = blk_rq_nr_phys_segments(req);
533 	unsigned int avg_seg_size;
534 
535 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
536 
537 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
538 		return false;
539 	if (!iod->nvmeq->qid)
540 		return false;
541 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
542 		return false;
543 	return true;
544 }
545 
546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
547 {
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550 	dma_addr_t dma_addr = iod->first_dma;
551 	int i;
552 
553 	for (i = 0; i < iod->npages; i++) {
554 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
555 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
556 
557 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
558 		dma_addr = next_dma_addr;
559 	}
560 }
561 
562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
563 {
564 	const int last_sg = SGES_PER_PAGE - 1;
565 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 	dma_addr_t dma_addr = iod->first_dma;
567 	int i;
568 
569 	for (i = 0; i < iod->npages; i++) {
570 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
571 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
572 
573 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
574 		dma_addr = next_dma_addr;
575 	}
576 }
577 
578 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
579 {
580 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
581 
582 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
583 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
584 				    rq_dma_dir(req));
585 	else
586 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
587 }
588 
589 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
590 {
591 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
592 
593 	if (iod->dma_len) {
594 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
595 			       rq_dma_dir(req));
596 		return;
597 	}
598 
599 	WARN_ON_ONCE(!iod->nents);
600 
601 	nvme_unmap_sg(dev, req);
602 	if (iod->npages == 0)
603 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
604 			      iod->first_dma);
605 	else if (iod->use_sgl)
606 		nvme_free_sgls(dev, req);
607 	else
608 		nvme_free_prps(dev, req);
609 	mempool_free(iod->sg, dev->iod_mempool);
610 }
611 
612 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
613 {
614 	int i;
615 	struct scatterlist *sg;
616 
617 	for_each_sg(sgl, sg, nents, i) {
618 		dma_addr_t phys = sg_phys(sg);
619 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
620 			"dma_address:%pad dma_length:%d\n",
621 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
622 			sg_dma_len(sg));
623 	}
624 }
625 
626 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
627 		struct request *req, struct nvme_rw_command *cmnd)
628 {
629 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
630 	struct dma_pool *pool;
631 	int length = blk_rq_payload_bytes(req);
632 	struct scatterlist *sg = iod->sg;
633 	int dma_len = sg_dma_len(sg);
634 	u64 dma_addr = sg_dma_address(sg);
635 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
636 	__le64 *prp_list;
637 	void **list = nvme_pci_iod_list(req);
638 	dma_addr_t prp_dma;
639 	int nprps, i;
640 
641 	length -= (NVME_CTRL_PAGE_SIZE - offset);
642 	if (length <= 0) {
643 		iod->first_dma = 0;
644 		goto done;
645 	}
646 
647 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
648 	if (dma_len) {
649 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
650 	} else {
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 
656 	if (length <= NVME_CTRL_PAGE_SIZE) {
657 		iod->first_dma = dma_addr;
658 		goto done;
659 	}
660 
661 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
662 	if (nprps <= (256 / 8)) {
663 		pool = dev->prp_small_pool;
664 		iod->npages = 0;
665 	} else {
666 		pool = dev->prp_page_pool;
667 		iod->npages = 1;
668 	}
669 
670 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
671 	if (!prp_list) {
672 		iod->first_dma = dma_addr;
673 		iod->npages = -1;
674 		return BLK_STS_RESOURCE;
675 	}
676 	list[0] = prp_list;
677 	iod->first_dma = prp_dma;
678 	i = 0;
679 	for (;;) {
680 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
681 			__le64 *old_prp_list = prp_list;
682 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
683 			if (!prp_list)
684 				goto free_prps;
685 			list[iod->npages++] = prp_list;
686 			prp_list[0] = old_prp_list[i - 1];
687 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
688 			i = 1;
689 		}
690 		prp_list[i++] = cpu_to_le64(dma_addr);
691 		dma_len -= NVME_CTRL_PAGE_SIZE;
692 		dma_addr += NVME_CTRL_PAGE_SIZE;
693 		length -= NVME_CTRL_PAGE_SIZE;
694 		if (length <= 0)
695 			break;
696 		if (dma_len > 0)
697 			continue;
698 		if (unlikely(dma_len < 0))
699 			goto bad_sgl;
700 		sg = sg_next(sg);
701 		dma_addr = sg_dma_address(sg);
702 		dma_len = sg_dma_len(sg);
703 	}
704 done:
705 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
706 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
707 	return BLK_STS_OK;
708 free_prps:
709 	nvme_free_prps(dev, req);
710 	return BLK_STS_RESOURCE;
711 bad_sgl:
712 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
713 			"Invalid SGL for payload:%d nents:%d\n",
714 			blk_rq_payload_bytes(req), iod->nents);
715 	return BLK_STS_IOERR;
716 }
717 
718 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
719 		struct scatterlist *sg)
720 {
721 	sge->addr = cpu_to_le64(sg_dma_address(sg));
722 	sge->length = cpu_to_le32(sg_dma_len(sg));
723 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
724 }
725 
726 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
727 		dma_addr_t dma_addr, int entries)
728 {
729 	sge->addr = cpu_to_le64(dma_addr);
730 	if (entries < SGES_PER_PAGE) {
731 		sge->length = cpu_to_le32(entries * sizeof(*sge));
732 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
733 	} else {
734 		sge->length = cpu_to_le32(PAGE_SIZE);
735 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
736 	}
737 }
738 
739 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
740 		struct request *req, struct nvme_rw_command *cmd, int entries)
741 {
742 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
743 	struct dma_pool *pool;
744 	struct nvme_sgl_desc *sg_list;
745 	struct scatterlist *sg = iod->sg;
746 	dma_addr_t sgl_dma;
747 	int i = 0;
748 
749 	/* setting the transfer type as SGL */
750 	cmd->flags = NVME_CMD_SGL_METABUF;
751 
752 	if (entries == 1) {
753 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
754 		return BLK_STS_OK;
755 	}
756 
757 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
758 		pool = dev->prp_small_pool;
759 		iod->npages = 0;
760 	} else {
761 		pool = dev->prp_page_pool;
762 		iod->npages = 1;
763 	}
764 
765 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
766 	if (!sg_list) {
767 		iod->npages = -1;
768 		return BLK_STS_RESOURCE;
769 	}
770 
771 	nvme_pci_iod_list(req)[0] = sg_list;
772 	iod->first_dma = sgl_dma;
773 
774 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
775 
776 	do {
777 		if (i == SGES_PER_PAGE) {
778 			struct nvme_sgl_desc *old_sg_desc = sg_list;
779 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
780 
781 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
782 			if (!sg_list)
783 				goto free_sgls;
784 
785 			i = 0;
786 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
787 			sg_list[i++] = *link;
788 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
789 		}
790 
791 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
792 		sg = sg_next(sg);
793 	} while (--entries > 0);
794 
795 	return BLK_STS_OK;
796 free_sgls:
797 	nvme_free_sgls(dev, req);
798 	return BLK_STS_RESOURCE;
799 }
800 
801 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
802 		struct request *req, struct nvme_rw_command *cmnd,
803 		struct bio_vec *bv)
804 {
805 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
806 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
807 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
808 
809 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
810 	if (dma_mapping_error(dev->dev, iod->first_dma))
811 		return BLK_STS_RESOURCE;
812 	iod->dma_len = bv->bv_len;
813 
814 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
815 	if (bv->bv_len > first_prp_len)
816 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
817 	return BLK_STS_OK;
818 }
819 
820 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
821 		struct request *req, struct nvme_rw_command *cmnd,
822 		struct bio_vec *bv)
823 {
824 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
825 
826 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
827 	if (dma_mapping_error(dev->dev, iod->first_dma))
828 		return BLK_STS_RESOURCE;
829 	iod->dma_len = bv->bv_len;
830 
831 	cmnd->flags = NVME_CMD_SGL_METABUF;
832 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
833 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
834 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
835 	return BLK_STS_OK;
836 }
837 
838 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
839 		struct nvme_command *cmnd)
840 {
841 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
842 	blk_status_t ret = BLK_STS_RESOURCE;
843 	int nr_mapped;
844 
845 	if (blk_rq_nr_phys_segments(req) == 1) {
846 		struct bio_vec bv = req_bvec(req);
847 
848 		if (!is_pci_p2pdma_page(bv.bv_page)) {
849 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
850 				return nvme_setup_prp_simple(dev, req,
851 							     &cmnd->rw, &bv);
852 
853 			if (iod->nvmeq->qid && sgl_threshold &&
854 			    nvme_ctrl_sgl_supported(&dev->ctrl))
855 				return nvme_setup_sgl_simple(dev, req,
856 							     &cmnd->rw, &bv);
857 		}
858 	}
859 
860 	iod->dma_len = 0;
861 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
862 	if (!iod->sg)
863 		return BLK_STS_RESOURCE;
864 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
865 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
866 	if (!iod->nents)
867 		goto out_free_sg;
868 
869 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
870 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
871 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
872 	else
873 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
874 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
875 	if (!nr_mapped)
876 		goto out_free_sg;
877 
878 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
879 	if (iod->use_sgl)
880 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
881 	else
882 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
883 	if (ret != BLK_STS_OK)
884 		goto out_unmap_sg;
885 	return BLK_STS_OK;
886 
887 out_unmap_sg:
888 	nvme_unmap_sg(dev, req);
889 out_free_sg:
890 	mempool_free(iod->sg, dev->iod_mempool);
891 	return ret;
892 }
893 
894 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
895 		struct nvme_command *cmnd)
896 {
897 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
898 
899 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
900 			rq_dma_dir(req), 0);
901 	if (dma_mapping_error(dev->dev, iod->meta_dma))
902 		return BLK_STS_IOERR;
903 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
904 	return BLK_STS_OK;
905 }
906 
907 /*
908  * NOTE: ns is NULL when called on the admin queue.
909  */
910 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
911 			 const struct blk_mq_queue_data *bd)
912 {
913 	struct nvme_ns *ns = hctx->queue->queuedata;
914 	struct nvme_queue *nvmeq = hctx->driver_data;
915 	struct nvme_dev *dev = nvmeq->dev;
916 	struct request *req = bd->rq;
917 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918 	struct nvme_command *cmnd = &iod->cmd;
919 	blk_status_t ret;
920 
921 	iod->aborted = 0;
922 	iod->npages = -1;
923 	iod->nents = 0;
924 
925 	/*
926 	 * We should not need to do this, but we're still using this to
927 	 * ensure we can drain requests on a dying queue.
928 	 */
929 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
930 		return BLK_STS_IOERR;
931 
932 	if (!nvme_check_ready(&dev->ctrl, req, true))
933 		return nvme_fail_nonready_command(&dev->ctrl, req);
934 
935 	ret = nvme_setup_cmd(ns, req);
936 	if (ret)
937 		return ret;
938 
939 	if (blk_rq_nr_phys_segments(req)) {
940 		ret = nvme_map_data(dev, req, cmnd);
941 		if (ret)
942 			goto out_free_cmd;
943 	}
944 
945 	if (blk_integrity_rq(req)) {
946 		ret = nvme_map_metadata(dev, req, cmnd);
947 		if (ret)
948 			goto out_unmap_data;
949 	}
950 
951 	blk_mq_start_request(req);
952 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
953 	return BLK_STS_OK;
954 out_unmap_data:
955 	nvme_unmap_data(dev, req);
956 out_free_cmd:
957 	nvme_cleanup_cmd(req);
958 	return ret;
959 }
960 
961 static void nvme_pci_complete_rq(struct request *req)
962 {
963 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
964 	struct nvme_dev *dev = iod->nvmeq->dev;
965 
966 	if (blk_integrity_rq(req))
967 		dma_unmap_page(dev->dev, iod->meta_dma,
968 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
969 	if (blk_rq_nr_phys_segments(req))
970 		nvme_unmap_data(dev, req);
971 	nvme_complete_rq(req);
972 }
973 
974 /* We read the CQE phase first to check if the rest of the entry is valid */
975 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
976 {
977 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
978 
979 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
980 }
981 
982 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
983 {
984 	u16 head = nvmeq->cq_head;
985 
986 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
987 					      nvmeq->dbbuf_cq_ei))
988 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
989 }
990 
991 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
992 {
993 	if (!nvmeq->qid)
994 		return nvmeq->dev->admin_tagset.tags[0];
995 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
996 }
997 
998 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
999 {
1000 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1001 	__u16 command_id = READ_ONCE(cqe->command_id);
1002 	struct request *req;
1003 
1004 	/*
1005 	 * AEN requests are special as they don't time out and can
1006 	 * survive any kind of queue freeze and often don't respond to
1007 	 * aborts.  We don't even bother to allocate a struct request
1008 	 * for them but rather special case them here.
1009 	 */
1010 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1011 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1012 				cqe->status, &cqe->result);
1013 		return;
1014 	}
1015 
1016 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1017 	if (unlikely(!req)) {
1018 		dev_warn(nvmeq->dev->ctrl.device,
1019 			"invalid id %d completed on queue %d\n",
1020 			command_id, le16_to_cpu(cqe->sq_id));
1021 		return;
1022 	}
1023 
1024 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1025 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1026 		nvme_pci_complete_rq(req);
1027 }
1028 
1029 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1030 {
1031 	u32 tmp = nvmeq->cq_head + 1;
1032 
1033 	if (tmp == nvmeq->q_depth) {
1034 		nvmeq->cq_head = 0;
1035 		nvmeq->cq_phase ^= 1;
1036 	} else {
1037 		nvmeq->cq_head = tmp;
1038 	}
1039 }
1040 
1041 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1042 {
1043 	int found = 0;
1044 
1045 	while (nvme_cqe_pending(nvmeq)) {
1046 		found++;
1047 		/*
1048 		 * load-load control dependency between phase and the rest of
1049 		 * the cqe requires a full read memory barrier
1050 		 */
1051 		dma_rmb();
1052 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1053 		nvme_update_cq_head(nvmeq);
1054 	}
1055 
1056 	if (found)
1057 		nvme_ring_cq_doorbell(nvmeq);
1058 	return found;
1059 }
1060 
1061 static irqreturn_t nvme_irq(int irq, void *data)
1062 {
1063 	struct nvme_queue *nvmeq = data;
1064 
1065 	if (nvme_process_cq(nvmeq))
1066 		return IRQ_HANDLED;
1067 	return IRQ_NONE;
1068 }
1069 
1070 static irqreturn_t nvme_irq_check(int irq, void *data)
1071 {
1072 	struct nvme_queue *nvmeq = data;
1073 
1074 	if (nvme_cqe_pending(nvmeq))
1075 		return IRQ_WAKE_THREAD;
1076 	return IRQ_NONE;
1077 }
1078 
1079 /*
1080  * Poll for completions for any interrupt driven queue
1081  * Can be called from any context.
1082  */
1083 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1084 {
1085 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1086 
1087 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1088 
1089 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1090 	nvme_process_cq(nvmeq);
1091 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1092 }
1093 
1094 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1095 {
1096 	struct nvme_queue *nvmeq = hctx->driver_data;
1097 	bool found;
1098 
1099 	if (!nvme_cqe_pending(nvmeq))
1100 		return 0;
1101 
1102 	spin_lock(&nvmeq->cq_poll_lock);
1103 	found = nvme_process_cq(nvmeq);
1104 	spin_unlock(&nvmeq->cq_poll_lock);
1105 
1106 	return found;
1107 }
1108 
1109 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1110 {
1111 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1112 	struct nvme_queue *nvmeq = &dev->queues[0];
1113 	struct nvme_command c = { };
1114 
1115 	c.common.opcode = nvme_admin_async_event;
1116 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1117 	nvme_submit_cmd(nvmeq, &c, true);
1118 }
1119 
1120 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1121 {
1122 	struct nvme_command c = { };
1123 
1124 	c.delete_queue.opcode = opcode;
1125 	c.delete_queue.qid = cpu_to_le16(id);
1126 
1127 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1128 }
1129 
1130 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1131 		struct nvme_queue *nvmeq, s16 vector)
1132 {
1133 	struct nvme_command c = { };
1134 	int flags = NVME_QUEUE_PHYS_CONTIG;
1135 
1136 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1137 		flags |= NVME_CQ_IRQ_ENABLED;
1138 
1139 	/*
1140 	 * Note: we (ab)use the fact that the prp fields survive if no data
1141 	 * is attached to the request.
1142 	 */
1143 	c.create_cq.opcode = nvme_admin_create_cq;
1144 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1145 	c.create_cq.cqid = cpu_to_le16(qid);
1146 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1147 	c.create_cq.cq_flags = cpu_to_le16(flags);
1148 	c.create_cq.irq_vector = cpu_to_le16(vector);
1149 
1150 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1151 }
1152 
1153 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1154 						struct nvme_queue *nvmeq)
1155 {
1156 	struct nvme_ctrl *ctrl = &dev->ctrl;
1157 	struct nvme_command c = { };
1158 	int flags = NVME_QUEUE_PHYS_CONTIG;
1159 
1160 	/*
1161 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1162 	 * set. Since URGENT priority is zeroes, it makes all queues
1163 	 * URGENT.
1164 	 */
1165 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1166 		flags |= NVME_SQ_PRIO_MEDIUM;
1167 
1168 	/*
1169 	 * Note: we (ab)use the fact that the prp fields survive if no data
1170 	 * is attached to the request.
1171 	 */
1172 	c.create_sq.opcode = nvme_admin_create_sq;
1173 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1174 	c.create_sq.sqid = cpu_to_le16(qid);
1175 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1176 	c.create_sq.sq_flags = cpu_to_le16(flags);
1177 	c.create_sq.cqid = cpu_to_le16(qid);
1178 
1179 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1180 }
1181 
1182 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1183 {
1184 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1185 }
1186 
1187 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1188 {
1189 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1190 }
1191 
1192 static void abort_endio(struct request *req, blk_status_t error)
1193 {
1194 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1195 	struct nvme_queue *nvmeq = iod->nvmeq;
1196 
1197 	dev_warn(nvmeq->dev->ctrl.device,
1198 		 "Abort status: 0x%x", nvme_req(req)->status);
1199 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1200 	blk_mq_free_request(req);
1201 }
1202 
1203 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1204 {
1205 	/* If true, indicates loss of adapter communication, possibly by a
1206 	 * NVMe Subsystem reset.
1207 	 */
1208 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1209 
1210 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1211 	switch (dev->ctrl.state) {
1212 	case NVME_CTRL_RESETTING:
1213 	case NVME_CTRL_CONNECTING:
1214 		return false;
1215 	default:
1216 		break;
1217 	}
1218 
1219 	/* We shouldn't reset unless the controller is on fatal error state
1220 	 * _or_ if we lost the communication with it.
1221 	 */
1222 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1223 		return false;
1224 
1225 	return true;
1226 }
1227 
1228 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1229 {
1230 	/* Read a config register to help see what died. */
1231 	u16 pci_status;
1232 	int result;
1233 
1234 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1235 				      &pci_status);
1236 	if (result == PCIBIOS_SUCCESSFUL)
1237 		dev_warn(dev->ctrl.device,
1238 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1239 			 csts, pci_status);
1240 	else
1241 		dev_warn(dev->ctrl.device,
1242 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1243 			 csts, result);
1244 }
1245 
1246 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1247 {
1248 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1249 	struct nvme_queue *nvmeq = iod->nvmeq;
1250 	struct nvme_dev *dev = nvmeq->dev;
1251 	struct request *abort_req;
1252 	struct nvme_command cmd = { };
1253 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1254 
1255 	/* If PCI error recovery process is happening, we cannot reset or
1256 	 * the recovery mechanism will surely fail.
1257 	 */
1258 	mb();
1259 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1260 		return BLK_EH_RESET_TIMER;
1261 
1262 	/*
1263 	 * Reset immediately if the controller is failed
1264 	 */
1265 	if (nvme_should_reset(dev, csts)) {
1266 		nvme_warn_reset(dev, csts);
1267 		nvme_dev_disable(dev, false);
1268 		nvme_reset_ctrl(&dev->ctrl);
1269 		return BLK_EH_DONE;
1270 	}
1271 
1272 	/*
1273 	 * Did we miss an interrupt?
1274 	 */
1275 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1276 		nvme_poll(req->mq_hctx);
1277 	else
1278 		nvme_poll_irqdisable(nvmeq);
1279 
1280 	if (blk_mq_request_completed(req)) {
1281 		dev_warn(dev->ctrl.device,
1282 			 "I/O %d QID %d timeout, completion polled\n",
1283 			 req->tag, nvmeq->qid);
1284 		return BLK_EH_DONE;
1285 	}
1286 
1287 	/*
1288 	 * Shutdown immediately if controller times out while starting. The
1289 	 * reset work will see the pci device disabled when it gets the forced
1290 	 * cancellation error. All outstanding requests are completed on
1291 	 * shutdown, so we return BLK_EH_DONE.
1292 	 */
1293 	switch (dev->ctrl.state) {
1294 	case NVME_CTRL_CONNECTING:
1295 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1296 		fallthrough;
1297 	case NVME_CTRL_DELETING:
1298 		dev_warn_ratelimited(dev->ctrl.device,
1299 			 "I/O %d QID %d timeout, disable controller\n",
1300 			 req->tag, nvmeq->qid);
1301 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1302 		nvme_dev_disable(dev, true);
1303 		return BLK_EH_DONE;
1304 	case NVME_CTRL_RESETTING:
1305 		return BLK_EH_RESET_TIMER;
1306 	default:
1307 		break;
1308 	}
1309 
1310 	/*
1311 	 * Shutdown the controller immediately and schedule a reset if the
1312 	 * command was already aborted once before and still hasn't been
1313 	 * returned to the driver, or if this is the admin queue.
1314 	 */
1315 	if (!nvmeq->qid || iod->aborted) {
1316 		dev_warn(dev->ctrl.device,
1317 			 "I/O %d QID %d timeout, reset controller\n",
1318 			 req->tag, nvmeq->qid);
1319 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1320 		nvme_dev_disable(dev, false);
1321 		nvme_reset_ctrl(&dev->ctrl);
1322 
1323 		return BLK_EH_DONE;
1324 	}
1325 
1326 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1327 		atomic_inc(&dev->ctrl.abort_limit);
1328 		return BLK_EH_RESET_TIMER;
1329 	}
1330 	iod->aborted = 1;
1331 
1332 	cmd.abort.opcode = nvme_admin_abort_cmd;
1333 	cmd.abort.cid = req->tag;
1334 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1335 
1336 	dev_warn(nvmeq->dev->ctrl.device,
1337 		"I/O %d QID %d timeout, aborting\n",
1338 		 req->tag, nvmeq->qid);
1339 
1340 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1341 			BLK_MQ_REQ_NOWAIT);
1342 	if (IS_ERR(abort_req)) {
1343 		atomic_inc(&dev->ctrl.abort_limit);
1344 		return BLK_EH_RESET_TIMER;
1345 	}
1346 
1347 	abort_req->end_io_data = NULL;
1348 	blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1349 
1350 	/*
1351 	 * The aborted req will be completed on receiving the abort req.
1352 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1353 	 * as the device then is in a faulty state.
1354 	 */
1355 	return BLK_EH_RESET_TIMER;
1356 }
1357 
1358 static void nvme_free_queue(struct nvme_queue *nvmeq)
1359 {
1360 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1361 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1362 	if (!nvmeq->sq_cmds)
1363 		return;
1364 
1365 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1366 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1367 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1368 	} else {
1369 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1370 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1371 	}
1372 }
1373 
1374 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1375 {
1376 	int i;
1377 
1378 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1379 		dev->ctrl.queue_count--;
1380 		nvme_free_queue(&dev->queues[i]);
1381 	}
1382 }
1383 
1384 /**
1385  * nvme_suspend_queue - put queue into suspended state
1386  * @nvmeq: queue to suspend
1387  */
1388 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1389 {
1390 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1391 		return 1;
1392 
1393 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1394 	mb();
1395 
1396 	nvmeq->dev->online_queues--;
1397 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1398 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1399 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1400 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1401 	return 0;
1402 }
1403 
1404 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1405 {
1406 	int i;
1407 
1408 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1409 		nvme_suspend_queue(&dev->queues[i]);
1410 }
1411 
1412 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1413 {
1414 	struct nvme_queue *nvmeq = &dev->queues[0];
1415 
1416 	if (shutdown)
1417 		nvme_shutdown_ctrl(&dev->ctrl);
1418 	else
1419 		nvme_disable_ctrl(&dev->ctrl);
1420 
1421 	nvme_poll_irqdisable(nvmeq);
1422 }
1423 
1424 /*
1425  * Called only on a device that has been disabled and after all other threads
1426  * that can check this device's completion queues have synced, except
1427  * nvme_poll(). This is the last chance for the driver to see a natural
1428  * completion before nvme_cancel_request() terminates all incomplete requests.
1429  */
1430 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1431 {
1432 	int i;
1433 
1434 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1435 		spin_lock(&dev->queues[i].cq_poll_lock);
1436 		nvme_process_cq(&dev->queues[i]);
1437 		spin_unlock(&dev->queues[i].cq_poll_lock);
1438 	}
1439 }
1440 
1441 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1442 				int entry_size)
1443 {
1444 	int q_depth = dev->q_depth;
1445 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1446 					  NVME_CTRL_PAGE_SIZE);
1447 
1448 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1449 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1450 
1451 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1452 		q_depth = div_u64(mem_per_q, entry_size);
1453 
1454 		/*
1455 		 * Ensure the reduced q_depth is above some threshold where it
1456 		 * would be better to map queues in system memory with the
1457 		 * original depth
1458 		 */
1459 		if (q_depth < 64)
1460 			return -ENOMEM;
1461 	}
1462 
1463 	return q_depth;
1464 }
1465 
1466 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1467 				int qid)
1468 {
1469 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1470 
1471 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1472 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1473 		if (nvmeq->sq_cmds) {
1474 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1475 							nvmeq->sq_cmds);
1476 			if (nvmeq->sq_dma_addr) {
1477 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1478 				return 0;
1479 			}
1480 
1481 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1482 		}
1483 	}
1484 
1485 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1486 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1487 	if (!nvmeq->sq_cmds)
1488 		return -ENOMEM;
1489 	return 0;
1490 }
1491 
1492 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1493 {
1494 	struct nvme_queue *nvmeq = &dev->queues[qid];
1495 
1496 	if (dev->ctrl.queue_count > qid)
1497 		return 0;
1498 
1499 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1500 	nvmeq->q_depth = depth;
1501 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1502 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1503 	if (!nvmeq->cqes)
1504 		goto free_nvmeq;
1505 
1506 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1507 		goto free_cqdma;
1508 
1509 	nvmeq->dev = dev;
1510 	spin_lock_init(&nvmeq->sq_lock);
1511 	spin_lock_init(&nvmeq->cq_poll_lock);
1512 	nvmeq->cq_head = 0;
1513 	nvmeq->cq_phase = 1;
1514 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1515 	nvmeq->qid = qid;
1516 	dev->ctrl.queue_count++;
1517 
1518 	return 0;
1519 
1520  free_cqdma:
1521 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1522 			  nvmeq->cq_dma_addr);
1523  free_nvmeq:
1524 	return -ENOMEM;
1525 }
1526 
1527 static int queue_request_irq(struct nvme_queue *nvmeq)
1528 {
1529 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1530 	int nr = nvmeq->dev->ctrl.instance;
1531 
1532 	if (use_threaded_interrupts) {
1533 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1534 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1535 	} else {
1536 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1537 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1538 	}
1539 }
1540 
1541 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1542 {
1543 	struct nvme_dev *dev = nvmeq->dev;
1544 
1545 	nvmeq->sq_tail = 0;
1546 	nvmeq->last_sq_tail = 0;
1547 	nvmeq->cq_head = 0;
1548 	nvmeq->cq_phase = 1;
1549 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1550 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1551 	nvme_dbbuf_init(dev, nvmeq, qid);
1552 	dev->online_queues++;
1553 	wmb(); /* ensure the first interrupt sees the initialization */
1554 }
1555 
1556 /*
1557  * Try getting shutdown_lock while setting up IO queues.
1558  */
1559 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1560 {
1561 	/*
1562 	 * Give up if the lock is being held by nvme_dev_disable.
1563 	 */
1564 	if (!mutex_trylock(&dev->shutdown_lock))
1565 		return -ENODEV;
1566 
1567 	/*
1568 	 * Controller is in wrong state, fail early.
1569 	 */
1570 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1571 		mutex_unlock(&dev->shutdown_lock);
1572 		return -ENODEV;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1579 {
1580 	struct nvme_dev *dev = nvmeq->dev;
1581 	int result;
1582 	u16 vector = 0;
1583 
1584 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1585 
1586 	/*
1587 	 * A queue's vector matches the queue identifier unless the controller
1588 	 * has only one vector available.
1589 	 */
1590 	if (!polled)
1591 		vector = dev->num_vecs == 1 ? 0 : qid;
1592 	else
1593 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1594 
1595 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1596 	if (result)
1597 		return result;
1598 
1599 	result = adapter_alloc_sq(dev, qid, nvmeq);
1600 	if (result < 0)
1601 		return result;
1602 	if (result)
1603 		goto release_cq;
1604 
1605 	nvmeq->cq_vector = vector;
1606 
1607 	result = nvme_setup_io_queues_trylock(dev);
1608 	if (result)
1609 		return result;
1610 	nvme_init_queue(nvmeq, qid);
1611 	if (!polled) {
1612 		result = queue_request_irq(nvmeq);
1613 		if (result < 0)
1614 			goto release_sq;
1615 	}
1616 
1617 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1618 	mutex_unlock(&dev->shutdown_lock);
1619 	return result;
1620 
1621 release_sq:
1622 	dev->online_queues--;
1623 	mutex_unlock(&dev->shutdown_lock);
1624 	adapter_delete_sq(dev, qid);
1625 release_cq:
1626 	adapter_delete_cq(dev, qid);
1627 	return result;
1628 }
1629 
1630 static const struct blk_mq_ops nvme_mq_admin_ops = {
1631 	.queue_rq	= nvme_queue_rq,
1632 	.complete	= nvme_pci_complete_rq,
1633 	.init_hctx	= nvme_admin_init_hctx,
1634 	.init_request	= nvme_init_request,
1635 	.timeout	= nvme_timeout,
1636 };
1637 
1638 static const struct blk_mq_ops nvme_mq_ops = {
1639 	.queue_rq	= nvme_queue_rq,
1640 	.complete	= nvme_pci_complete_rq,
1641 	.commit_rqs	= nvme_commit_rqs,
1642 	.init_hctx	= nvme_init_hctx,
1643 	.init_request	= nvme_init_request,
1644 	.map_queues	= nvme_pci_map_queues,
1645 	.timeout	= nvme_timeout,
1646 	.poll		= nvme_poll,
1647 };
1648 
1649 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1650 {
1651 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1652 		/*
1653 		 * If the controller was reset during removal, it's possible
1654 		 * user requests may be waiting on a stopped queue. Start the
1655 		 * queue to flush these to completion.
1656 		 */
1657 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1658 		blk_cleanup_queue(dev->ctrl.admin_q);
1659 		blk_mq_free_tag_set(&dev->admin_tagset);
1660 	}
1661 }
1662 
1663 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1664 {
1665 	if (!dev->ctrl.admin_q) {
1666 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1667 		dev->admin_tagset.nr_hw_queues = 1;
1668 
1669 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1670 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1671 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1672 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1673 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1674 		dev->admin_tagset.driver_data = dev;
1675 
1676 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1677 			return -ENOMEM;
1678 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1679 
1680 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1681 		if (IS_ERR(dev->ctrl.admin_q)) {
1682 			blk_mq_free_tag_set(&dev->admin_tagset);
1683 			return -ENOMEM;
1684 		}
1685 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1686 			nvme_dev_remove_admin(dev);
1687 			dev->ctrl.admin_q = NULL;
1688 			return -ENODEV;
1689 		}
1690 	} else
1691 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1692 
1693 	return 0;
1694 }
1695 
1696 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1697 {
1698 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1699 }
1700 
1701 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1702 {
1703 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1704 
1705 	if (size <= dev->bar_mapped_size)
1706 		return 0;
1707 	if (size > pci_resource_len(pdev, 0))
1708 		return -ENOMEM;
1709 	if (dev->bar)
1710 		iounmap(dev->bar);
1711 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1712 	if (!dev->bar) {
1713 		dev->bar_mapped_size = 0;
1714 		return -ENOMEM;
1715 	}
1716 	dev->bar_mapped_size = size;
1717 	dev->dbs = dev->bar + NVME_REG_DBS;
1718 
1719 	return 0;
1720 }
1721 
1722 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1723 {
1724 	int result;
1725 	u32 aqa;
1726 	struct nvme_queue *nvmeq;
1727 
1728 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1729 	if (result < 0)
1730 		return result;
1731 
1732 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1733 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1734 
1735 	if (dev->subsystem &&
1736 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1737 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1738 
1739 	result = nvme_disable_ctrl(&dev->ctrl);
1740 	if (result < 0)
1741 		return result;
1742 
1743 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1744 	if (result)
1745 		return result;
1746 
1747 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1748 
1749 	nvmeq = &dev->queues[0];
1750 	aqa = nvmeq->q_depth - 1;
1751 	aqa |= aqa << 16;
1752 
1753 	writel(aqa, dev->bar + NVME_REG_AQA);
1754 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1755 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1756 
1757 	result = nvme_enable_ctrl(&dev->ctrl);
1758 	if (result)
1759 		return result;
1760 
1761 	nvmeq->cq_vector = 0;
1762 	nvme_init_queue(nvmeq, 0);
1763 	result = queue_request_irq(nvmeq);
1764 	if (result) {
1765 		dev->online_queues--;
1766 		return result;
1767 	}
1768 
1769 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1770 	return result;
1771 }
1772 
1773 static int nvme_create_io_queues(struct nvme_dev *dev)
1774 {
1775 	unsigned i, max, rw_queues;
1776 	int ret = 0;
1777 
1778 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1779 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1780 			ret = -ENOMEM;
1781 			break;
1782 		}
1783 	}
1784 
1785 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1786 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1787 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1788 				dev->io_queues[HCTX_TYPE_READ];
1789 	} else {
1790 		rw_queues = max;
1791 	}
1792 
1793 	for (i = dev->online_queues; i <= max; i++) {
1794 		bool polled = i > rw_queues;
1795 
1796 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1797 		if (ret)
1798 			break;
1799 	}
1800 
1801 	/*
1802 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1803 	 * than the desired amount of queues, and even a controller without
1804 	 * I/O queues can still be used to issue admin commands.  This might
1805 	 * be useful to upgrade a buggy firmware for example.
1806 	 */
1807 	return ret >= 0 ? 0 : ret;
1808 }
1809 
1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811 {
1812 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813 
1814 	return 1ULL << (12 + 4 * szu);
1815 }
1816 
1817 static u32 nvme_cmb_size(struct nvme_dev *dev)
1818 {
1819 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820 }
1821 
1822 static void nvme_map_cmb(struct nvme_dev *dev)
1823 {
1824 	u64 size, offset;
1825 	resource_size_t bar_size;
1826 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1827 	int bar;
1828 
1829 	if (dev->cmb_size)
1830 		return;
1831 
1832 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1833 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1834 
1835 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1836 	if (!dev->cmbsz)
1837 		return;
1838 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1839 
1840 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842 	bar = NVME_CMB_BIR(dev->cmbloc);
1843 	bar_size = pci_resource_len(pdev, bar);
1844 
1845 	if (offset > bar_size)
1846 		return;
1847 
1848 	/*
1849 	 * Tell the controller about the host side address mapping the CMB,
1850 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1851 	 */
1852 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854 			     (pci_bus_address(pdev, bar) + offset),
1855 			     dev->bar + NVME_REG_CMBMSC);
1856 	}
1857 
1858 	/*
1859 	 * Controllers may support a CMB size larger than their BAR,
1860 	 * for example, due to being behind a bridge. Reduce the CMB to
1861 	 * the reported size of the BAR
1862 	 */
1863 	if (size > bar_size - offset)
1864 		size = bar_size - offset;
1865 
1866 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867 		dev_warn(dev->ctrl.device,
1868 			 "failed to register the CMB\n");
1869 		return;
1870 	}
1871 
1872 	dev->cmb_size = size;
1873 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874 
1875 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877 		pci_p2pmem_publish(pdev, true);
1878 }
1879 
1880 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1881 {
1882 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1883 	u64 dma_addr = dev->host_mem_descs_dma;
1884 	struct nvme_command c = { };
1885 	int ret;
1886 
1887 	c.features.opcode	= nvme_admin_set_features;
1888 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1889 	c.features.dword11	= cpu_to_le32(bits);
1890 	c.features.dword12	= cpu_to_le32(host_mem_size);
1891 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1892 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1893 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1894 
1895 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1896 	if (ret) {
1897 		dev_warn(dev->ctrl.device,
1898 			 "failed to set host mem (err %d, flags %#x).\n",
1899 			 ret, bits);
1900 	} else
1901 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1902 
1903 	return ret;
1904 }
1905 
1906 static void nvme_free_host_mem(struct nvme_dev *dev)
1907 {
1908 	int i;
1909 
1910 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1911 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1912 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1913 
1914 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1915 			       le64_to_cpu(desc->addr),
1916 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1917 	}
1918 
1919 	kfree(dev->host_mem_desc_bufs);
1920 	dev->host_mem_desc_bufs = NULL;
1921 	dma_free_coherent(dev->dev,
1922 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1923 			dev->host_mem_descs, dev->host_mem_descs_dma);
1924 	dev->host_mem_descs = NULL;
1925 	dev->nr_host_mem_descs = 0;
1926 }
1927 
1928 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1929 		u32 chunk_size)
1930 {
1931 	struct nvme_host_mem_buf_desc *descs;
1932 	u32 max_entries, len;
1933 	dma_addr_t descs_dma;
1934 	int i = 0;
1935 	void **bufs;
1936 	u64 size, tmp;
1937 
1938 	tmp = (preferred + chunk_size - 1);
1939 	do_div(tmp, chunk_size);
1940 	max_entries = tmp;
1941 
1942 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1943 		max_entries = dev->ctrl.hmmaxd;
1944 
1945 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1946 				   &descs_dma, GFP_KERNEL);
1947 	if (!descs)
1948 		goto out;
1949 
1950 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1951 	if (!bufs)
1952 		goto out_free_descs;
1953 
1954 	for (size = 0; size < preferred && i < max_entries; size += len) {
1955 		dma_addr_t dma_addr;
1956 
1957 		len = min_t(u64, chunk_size, preferred - size);
1958 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1959 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1960 		if (!bufs[i])
1961 			break;
1962 
1963 		descs[i].addr = cpu_to_le64(dma_addr);
1964 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1965 		i++;
1966 	}
1967 
1968 	if (!size)
1969 		goto out_free_bufs;
1970 
1971 	dev->nr_host_mem_descs = i;
1972 	dev->host_mem_size = size;
1973 	dev->host_mem_descs = descs;
1974 	dev->host_mem_descs_dma = descs_dma;
1975 	dev->host_mem_desc_bufs = bufs;
1976 	return 0;
1977 
1978 out_free_bufs:
1979 	while (--i >= 0) {
1980 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1981 
1982 		dma_free_attrs(dev->dev, size, bufs[i],
1983 			       le64_to_cpu(descs[i].addr),
1984 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1985 	}
1986 
1987 	kfree(bufs);
1988 out_free_descs:
1989 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1990 			descs_dma);
1991 out:
1992 	dev->host_mem_descs = NULL;
1993 	return -ENOMEM;
1994 }
1995 
1996 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1997 {
1998 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1999 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2000 	u64 chunk_size;
2001 
2002 	/* start big and work our way down */
2003 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2004 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2005 			if (!min || dev->host_mem_size >= min)
2006 				return 0;
2007 			nvme_free_host_mem(dev);
2008 		}
2009 	}
2010 
2011 	return -ENOMEM;
2012 }
2013 
2014 static int nvme_setup_host_mem(struct nvme_dev *dev)
2015 {
2016 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2017 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2018 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2019 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2020 	int ret;
2021 
2022 	preferred = min(preferred, max);
2023 	if (min > max) {
2024 		dev_warn(dev->ctrl.device,
2025 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2026 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2027 		nvme_free_host_mem(dev);
2028 		return 0;
2029 	}
2030 
2031 	/*
2032 	 * If we already have a buffer allocated check if we can reuse it.
2033 	 */
2034 	if (dev->host_mem_descs) {
2035 		if (dev->host_mem_size >= min)
2036 			enable_bits |= NVME_HOST_MEM_RETURN;
2037 		else
2038 			nvme_free_host_mem(dev);
2039 	}
2040 
2041 	if (!dev->host_mem_descs) {
2042 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2043 			dev_warn(dev->ctrl.device,
2044 				"failed to allocate host memory buffer.\n");
2045 			return 0; /* controller must work without HMB */
2046 		}
2047 
2048 		dev_info(dev->ctrl.device,
2049 			"allocated %lld MiB host memory buffer.\n",
2050 			dev->host_mem_size >> ilog2(SZ_1M));
2051 	}
2052 
2053 	ret = nvme_set_host_mem(dev, enable_bits);
2054 	if (ret)
2055 		nvme_free_host_mem(dev);
2056 	return ret;
2057 }
2058 
2059 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2060 		char *buf)
2061 {
2062 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2063 
2064 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2065 		       ndev->cmbloc, ndev->cmbsz);
2066 }
2067 static DEVICE_ATTR_RO(cmb);
2068 
2069 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2070 		char *buf)
2071 {
2072 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2073 
2074 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2075 }
2076 static DEVICE_ATTR_RO(cmbloc);
2077 
2078 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2079 		char *buf)
2080 {
2081 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2082 
2083 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2084 }
2085 static DEVICE_ATTR_RO(cmbsz);
2086 
2087 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2088 			char *buf)
2089 {
2090 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2091 
2092 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2093 }
2094 
2095 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2096 			 const char *buf, size_t count)
2097 {
2098 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2099 	bool new;
2100 	int ret;
2101 
2102 	if (strtobool(buf, &new) < 0)
2103 		return -EINVAL;
2104 
2105 	if (new == ndev->hmb)
2106 		return count;
2107 
2108 	if (new) {
2109 		ret = nvme_setup_host_mem(ndev);
2110 	} else {
2111 		ret = nvme_set_host_mem(ndev, 0);
2112 		if (!ret)
2113 			nvme_free_host_mem(ndev);
2114 	}
2115 
2116 	if (ret < 0)
2117 		return ret;
2118 
2119 	return count;
2120 }
2121 static DEVICE_ATTR_RW(hmb);
2122 
2123 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2124 		struct attribute *a, int n)
2125 {
2126 	struct nvme_ctrl *ctrl =
2127 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2128 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2129 
2130 	if (a == &dev_attr_cmb.attr ||
2131 	    a == &dev_attr_cmbloc.attr ||
2132 	    a == &dev_attr_cmbsz.attr) {
2133 	    	if (!dev->cmbsz)
2134 			return 0;
2135 	}
2136 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2137 		return 0;
2138 
2139 	return a->mode;
2140 }
2141 
2142 static struct attribute *nvme_pci_attrs[] = {
2143 	&dev_attr_cmb.attr,
2144 	&dev_attr_cmbloc.attr,
2145 	&dev_attr_cmbsz.attr,
2146 	&dev_attr_hmb.attr,
2147 	NULL,
2148 };
2149 
2150 static const struct attribute_group nvme_pci_attr_group = {
2151 	.attrs		= nvme_pci_attrs,
2152 	.is_visible	= nvme_pci_attrs_are_visible,
2153 };
2154 
2155 /*
2156  * nirqs is the number of interrupts available for write and read
2157  * queues. The core already reserved an interrupt for the admin queue.
2158  */
2159 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2160 {
2161 	struct nvme_dev *dev = affd->priv;
2162 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2163 
2164 	/*
2165 	 * If there is no interrupt available for queues, ensure that
2166 	 * the default queue is set to 1. The affinity set size is
2167 	 * also set to one, but the irq core ignores it for this case.
2168 	 *
2169 	 * If only one interrupt is available or 'write_queue' == 0, combine
2170 	 * write and read queues.
2171 	 *
2172 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2173 	 * queue.
2174 	 */
2175 	if (!nrirqs) {
2176 		nrirqs = 1;
2177 		nr_read_queues = 0;
2178 	} else if (nrirqs == 1 || !nr_write_queues) {
2179 		nr_read_queues = 0;
2180 	} else if (nr_write_queues >= nrirqs) {
2181 		nr_read_queues = 1;
2182 	} else {
2183 		nr_read_queues = nrirqs - nr_write_queues;
2184 	}
2185 
2186 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2187 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2188 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2189 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2190 	affd->nr_sets = nr_read_queues ? 2 : 1;
2191 }
2192 
2193 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2194 {
2195 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2196 	struct irq_affinity affd = {
2197 		.pre_vectors	= 1,
2198 		.calc_sets	= nvme_calc_irq_sets,
2199 		.priv		= dev,
2200 	};
2201 	unsigned int irq_queues, poll_queues;
2202 
2203 	/*
2204 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2205 	 * left over for non-polled I/O.
2206 	 */
2207 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2208 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2209 
2210 	/*
2211 	 * Initialize for the single interrupt case, will be updated in
2212 	 * nvme_calc_irq_sets().
2213 	 */
2214 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2215 	dev->io_queues[HCTX_TYPE_READ] = 0;
2216 
2217 	/*
2218 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2219 	 * but some Apple controllers require all queues to use the first
2220 	 * vector.
2221 	 */
2222 	irq_queues = 1;
2223 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2224 		irq_queues += (nr_io_queues - poll_queues);
2225 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2226 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2227 }
2228 
2229 static void nvme_disable_io_queues(struct nvme_dev *dev)
2230 {
2231 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2232 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2233 }
2234 
2235 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2236 {
2237 	/*
2238 	 * If tags are shared with admin queue (Apple bug), then
2239 	 * make sure we only use one IO queue.
2240 	 */
2241 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2242 		return 1;
2243 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2244 }
2245 
2246 static int nvme_setup_io_queues(struct nvme_dev *dev)
2247 {
2248 	struct nvme_queue *adminq = &dev->queues[0];
2249 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2250 	unsigned int nr_io_queues;
2251 	unsigned long size;
2252 	int result;
2253 
2254 	/*
2255 	 * Sample the module parameters once at reset time so that we have
2256 	 * stable values to work with.
2257 	 */
2258 	dev->nr_write_queues = write_queues;
2259 	dev->nr_poll_queues = poll_queues;
2260 
2261 	nr_io_queues = dev->nr_allocated_queues - 1;
2262 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2263 	if (result < 0)
2264 		return result;
2265 
2266 	if (nr_io_queues == 0)
2267 		return 0;
2268 
2269 	/*
2270 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2271 	 * from set to unset. If there is a window to it is truely freed,
2272 	 * pci_free_irq_vectors() jumping into this window will crash.
2273 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2274 	 * nvme_dev_disable() path.
2275 	 */
2276 	result = nvme_setup_io_queues_trylock(dev);
2277 	if (result)
2278 		return result;
2279 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2280 		pci_free_irq(pdev, 0, adminq);
2281 
2282 	if (dev->cmb_use_sqes) {
2283 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2284 				sizeof(struct nvme_command));
2285 		if (result > 0)
2286 			dev->q_depth = result;
2287 		else
2288 			dev->cmb_use_sqes = false;
2289 	}
2290 
2291 	do {
2292 		size = db_bar_size(dev, nr_io_queues);
2293 		result = nvme_remap_bar(dev, size);
2294 		if (!result)
2295 			break;
2296 		if (!--nr_io_queues) {
2297 			result = -ENOMEM;
2298 			goto out_unlock;
2299 		}
2300 	} while (1);
2301 	adminq->q_db = dev->dbs;
2302 
2303  retry:
2304 	/* Deregister the admin queue's interrupt */
2305 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2306 		pci_free_irq(pdev, 0, adminq);
2307 
2308 	/*
2309 	 * If we enable msix early due to not intx, disable it again before
2310 	 * setting up the full range we need.
2311 	 */
2312 	pci_free_irq_vectors(pdev);
2313 
2314 	result = nvme_setup_irqs(dev, nr_io_queues);
2315 	if (result <= 0) {
2316 		result = -EIO;
2317 		goto out_unlock;
2318 	}
2319 
2320 	dev->num_vecs = result;
2321 	result = max(result - 1, 1);
2322 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2323 
2324 	/*
2325 	 * Should investigate if there's a performance win from allocating
2326 	 * more queues than interrupt vectors; it might allow the submission
2327 	 * path to scale better, even if the receive path is limited by the
2328 	 * number of interrupts.
2329 	 */
2330 	result = queue_request_irq(adminq);
2331 	if (result)
2332 		goto out_unlock;
2333 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2334 	mutex_unlock(&dev->shutdown_lock);
2335 
2336 	result = nvme_create_io_queues(dev);
2337 	if (result || dev->online_queues < 2)
2338 		return result;
2339 
2340 	if (dev->online_queues - 1 < dev->max_qid) {
2341 		nr_io_queues = dev->online_queues - 1;
2342 		nvme_disable_io_queues(dev);
2343 		result = nvme_setup_io_queues_trylock(dev);
2344 		if (result)
2345 			return result;
2346 		nvme_suspend_io_queues(dev);
2347 		goto retry;
2348 	}
2349 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2350 					dev->io_queues[HCTX_TYPE_DEFAULT],
2351 					dev->io_queues[HCTX_TYPE_READ],
2352 					dev->io_queues[HCTX_TYPE_POLL]);
2353 	return 0;
2354 out_unlock:
2355 	mutex_unlock(&dev->shutdown_lock);
2356 	return result;
2357 }
2358 
2359 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2360 {
2361 	struct nvme_queue *nvmeq = req->end_io_data;
2362 
2363 	blk_mq_free_request(req);
2364 	complete(&nvmeq->delete_done);
2365 }
2366 
2367 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2368 {
2369 	struct nvme_queue *nvmeq = req->end_io_data;
2370 
2371 	if (error)
2372 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2373 
2374 	nvme_del_queue_end(req, error);
2375 }
2376 
2377 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2378 {
2379 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2380 	struct request *req;
2381 	struct nvme_command cmd = { };
2382 
2383 	cmd.delete_queue.opcode = opcode;
2384 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2385 
2386 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2387 	if (IS_ERR(req))
2388 		return PTR_ERR(req);
2389 
2390 	req->end_io_data = nvmeq;
2391 
2392 	init_completion(&nvmeq->delete_done);
2393 	blk_execute_rq_nowait(NULL, req, false,
2394 			opcode == nvme_admin_delete_cq ?
2395 				nvme_del_cq_end : nvme_del_queue_end);
2396 	return 0;
2397 }
2398 
2399 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2400 {
2401 	int nr_queues = dev->online_queues - 1, sent = 0;
2402 	unsigned long timeout;
2403 
2404  retry:
2405 	timeout = NVME_ADMIN_TIMEOUT;
2406 	while (nr_queues > 0) {
2407 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2408 			break;
2409 		nr_queues--;
2410 		sent++;
2411 	}
2412 	while (sent) {
2413 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2414 
2415 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2416 				timeout);
2417 		if (timeout == 0)
2418 			return false;
2419 
2420 		sent--;
2421 		if (nr_queues)
2422 			goto retry;
2423 	}
2424 	return true;
2425 }
2426 
2427 static void nvme_dev_add(struct nvme_dev *dev)
2428 {
2429 	int ret;
2430 
2431 	if (!dev->ctrl.tagset) {
2432 		dev->tagset.ops = &nvme_mq_ops;
2433 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2434 		dev->tagset.nr_maps = 2; /* default + read */
2435 		if (dev->io_queues[HCTX_TYPE_POLL])
2436 			dev->tagset.nr_maps++;
2437 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2438 		dev->tagset.numa_node = dev->ctrl.numa_node;
2439 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2440 						BLK_MQ_MAX_DEPTH) - 1;
2441 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2442 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2443 		dev->tagset.driver_data = dev;
2444 
2445 		/*
2446 		 * Some Apple controllers requires tags to be unique
2447 		 * across admin and IO queue, so reserve the first 32
2448 		 * tags of the IO queue.
2449 		 */
2450 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2451 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2452 
2453 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2454 		if (ret) {
2455 			dev_warn(dev->ctrl.device,
2456 				"IO queues tagset allocation failed %d\n", ret);
2457 			return;
2458 		}
2459 		dev->ctrl.tagset = &dev->tagset;
2460 	} else {
2461 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2462 
2463 		/* Free previously allocated queues that are no longer usable */
2464 		nvme_free_queues(dev, dev->online_queues);
2465 	}
2466 
2467 	nvme_dbbuf_set(dev);
2468 }
2469 
2470 static int nvme_pci_enable(struct nvme_dev *dev)
2471 {
2472 	int result = -ENOMEM;
2473 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2474 	int dma_address_bits = 64;
2475 
2476 	if (pci_enable_device_mem(pdev))
2477 		return result;
2478 
2479 	pci_set_master(pdev);
2480 
2481 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2482 		dma_address_bits = 48;
2483 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2484 		goto disable;
2485 
2486 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2487 		result = -ENODEV;
2488 		goto disable;
2489 	}
2490 
2491 	/*
2492 	 * Some devices and/or platforms don't advertise or work with INTx
2493 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2494 	 * adjust this later.
2495 	 */
2496 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2497 	if (result < 0)
2498 		return result;
2499 
2500 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2501 
2502 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2503 				io_queue_depth);
2504 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2505 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2506 	dev->dbs = dev->bar + 4096;
2507 
2508 	/*
2509 	 * Some Apple controllers require a non-standard SQE size.
2510 	 * Interestingly they also seem to ignore the CC:IOSQES register
2511 	 * so we don't bother updating it here.
2512 	 */
2513 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2514 		dev->io_sqes = 7;
2515 	else
2516 		dev->io_sqes = NVME_NVM_IOSQES;
2517 
2518 	/*
2519 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2520 	 * some MacBook7,1 to avoid controller resets and data loss.
2521 	 */
2522 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2523 		dev->q_depth = 2;
2524 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2525 			"set queue depth=%u to work around controller resets\n",
2526 			dev->q_depth);
2527 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2528 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2529 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2530 		dev->q_depth = 64;
2531 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2532                         "set queue depth=%u\n", dev->q_depth);
2533 	}
2534 
2535 	/*
2536 	 * Controllers with the shared tags quirk need the IO queue to be
2537 	 * big enough so that we get 32 tags for the admin queue
2538 	 */
2539 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2540 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2541 		dev->q_depth = NVME_AQ_DEPTH + 2;
2542 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2543 			 dev->q_depth);
2544 	}
2545 
2546 
2547 	nvme_map_cmb(dev);
2548 
2549 	pci_enable_pcie_error_reporting(pdev);
2550 	pci_save_state(pdev);
2551 	return 0;
2552 
2553  disable:
2554 	pci_disable_device(pdev);
2555 	return result;
2556 }
2557 
2558 static void nvme_dev_unmap(struct nvme_dev *dev)
2559 {
2560 	if (dev->bar)
2561 		iounmap(dev->bar);
2562 	pci_release_mem_regions(to_pci_dev(dev->dev));
2563 }
2564 
2565 static void nvme_pci_disable(struct nvme_dev *dev)
2566 {
2567 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2568 
2569 	pci_free_irq_vectors(pdev);
2570 
2571 	if (pci_is_enabled(pdev)) {
2572 		pci_disable_pcie_error_reporting(pdev);
2573 		pci_disable_device(pdev);
2574 	}
2575 }
2576 
2577 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2578 {
2579 	bool dead = true, freeze = false;
2580 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2581 
2582 	mutex_lock(&dev->shutdown_lock);
2583 	if (pci_is_enabled(pdev)) {
2584 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2585 
2586 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2587 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2588 			freeze = true;
2589 			nvme_start_freeze(&dev->ctrl);
2590 		}
2591 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2592 			pdev->error_state  != pci_channel_io_normal);
2593 	}
2594 
2595 	/*
2596 	 * Give the controller a chance to complete all entered requests if
2597 	 * doing a safe shutdown.
2598 	 */
2599 	if (!dead && shutdown && freeze)
2600 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2601 
2602 	nvme_stop_queues(&dev->ctrl);
2603 
2604 	if (!dead && dev->ctrl.queue_count > 0) {
2605 		nvme_disable_io_queues(dev);
2606 		nvme_disable_admin_queue(dev, shutdown);
2607 	}
2608 	nvme_suspend_io_queues(dev);
2609 	nvme_suspend_queue(&dev->queues[0]);
2610 	nvme_pci_disable(dev);
2611 	nvme_reap_pending_cqes(dev);
2612 
2613 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2614 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2615 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2616 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2617 
2618 	/*
2619 	 * The driver will not be starting up queues again if shutting down so
2620 	 * must flush all entered requests to their failed completion to avoid
2621 	 * deadlocking blk-mq hot-cpu notifier.
2622 	 */
2623 	if (shutdown) {
2624 		nvme_start_queues(&dev->ctrl);
2625 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2626 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2627 	}
2628 	mutex_unlock(&dev->shutdown_lock);
2629 }
2630 
2631 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2632 {
2633 	if (!nvme_wait_reset(&dev->ctrl))
2634 		return -EBUSY;
2635 	nvme_dev_disable(dev, shutdown);
2636 	return 0;
2637 }
2638 
2639 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2640 {
2641 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2642 						NVME_CTRL_PAGE_SIZE,
2643 						NVME_CTRL_PAGE_SIZE, 0);
2644 	if (!dev->prp_page_pool)
2645 		return -ENOMEM;
2646 
2647 	/* Optimisation for I/Os between 4k and 128k */
2648 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2649 						256, 256, 0);
2650 	if (!dev->prp_small_pool) {
2651 		dma_pool_destroy(dev->prp_page_pool);
2652 		return -ENOMEM;
2653 	}
2654 	return 0;
2655 }
2656 
2657 static void nvme_release_prp_pools(struct nvme_dev *dev)
2658 {
2659 	dma_pool_destroy(dev->prp_page_pool);
2660 	dma_pool_destroy(dev->prp_small_pool);
2661 }
2662 
2663 static void nvme_free_tagset(struct nvme_dev *dev)
2664 {
2665 	if (dev->tagset.tags)
2666 		blk_mq_free_tag_set(&dev->tagset);
2667 	dev->ctrl.tagset = NULL;
2668 }
2669 
2670 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2671 {
2672 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2673 
2674 	nvme_dbbuf_dma_free(dev);
2675 	nvme_free_tagset(dev);
2676 	if (dev->ctrl.admin_q)
2677 		blk_put_queue(dev->ctrl.admin_q);
2678 	free_opal_dev(dev->ctrl.opal_dev);
2679 	mempool_destroy(dev->iod_mempool);
2680 	put_device(dev->dev);
2681 	kfree(dev->queues);
2682 	kfree(dev);
2683 }
2684 
2685 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2686 {
2687 	/*
2688 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2689 	 * may be holding this pci_dev's device lock.
2690 	 */
2691 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2692 	nvme_get_ctrl(&dev->ctrl);
2693 	nvme_dev_disable(dev, false);
2694 	nvme_kill_queues(&dev->ctrl);
2695 	if (!queue_work(nvme_wq, &dev->remove_work))
2696 		nvme_put_ctrl(&dev->ctrl);
2697 }
2698 
2699 static void nvme_reset_work(struct work_struct *work)
2700 {
2701 	struct nvme_dev *dev =
2702 		container_of(work, struct nvme_dev, ctrl.reset_work);
2703 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2704 	int result;
2705 
2706 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2707 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2708 			 dev->ctrl.state);
2709 		result = -ENODEV;
2710 		goto out;
2711 	}
2712 
2713 	/*
2714 	 * If we're called to reset a live controller first shut it down before
2715 	 * moving on.
2716 	 */
2717 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2718 		nvme_dev_disable(dev, false);
2719 	nvme_sync_queues(&dev->ctrl);
2720 
2721 	mutex_lock(&dev->shutdown_lock);
2722 	result = nvme_pci_enable(dev);
2723 	if (result)
2724 		goto out_unlock;
2725 
2726 	result = nvme_pci_configure_admin_queue(dev);
2727 	if (result)
2728 		goto out_unlock;
2729 
2730 	result = nvme_alloc_admin_tags(dev);
2731 	if (result)
2732 		goto out_unlock;
2733 
2734 	/*
2735 	 * Limit the max command size to prevent iod->sg allocations going
2736 	 * over a single page.
2737 	 */
2738 	dev->ctrl.max_hw_sectors = min_t(u32,
2739 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2740 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2741 
2742 	/*
2743 	 * Don't limit the IOMMU merged segment size.
2744 	 */
2745 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2746 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2747 
2748 	mutex_unlock(&dev->shutdown_lock);
2749 
2750 	/*
2751 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2752 	 * initializing procedure here.
2753 	 */
2754 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2755 		dev_warn(dev->ctrl.device,
2756 			"failed to mark controller CONNECTING\n");
2757 		result = -EBUSY;
2758 		goto out;
2759 	}
2760 
2761 	/*
2762 	 * We do not support an SGL for metadata (yet), so we are limited to a
2763 	 * single integrity segment for the separate metadata pointer.
2764 	 */
2765 	dev->ctrl.max_integrity_segments = 1;
2766 
2767 	result = nvme_init_ctrl_finish(&dev->ctrl);
2768 	if (result)
2769 		goto out;
2770 
2771 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2772 		if (!dev->ctrl.opal_dev)
2773 			dev->ctrl.opal_dev =
2774 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2775 		else if (was_suspend)
2776 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2777 	} else {
2778 		free_opal_dev(dev->ctrl.opal_dev);
2779 		dev->ctrl.opal_dev = NULL;
2780 	}
2781 
2782 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2783 		result = nvme_dbbuf_dma_alloc(dev);
2784 		if (result)
2785 			dev_warn(dev->dev,
2786 				 "unable to allocate dma for dbbuf\n");
2787 	}
2788 
2789 	if (dev->ctrl.hmpre) {
2790 		result = nvme_setup_host_mem(dev);
2791 		if (result < 0)
2792 			goto out;
2793 	}
2794 
2795 	result = nvme_setup_io_queues(dev);
2796 	if (result)
2797 		goto out;
2798 
2799 	/*
2800 	 * Keep the controller around but remove all namespaces if we don't have
2801 	 * any working I/O queue.
2802 	 */
2803 	if (dev->online_queues < 2) {
2804 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2805 		nvme_kill_queues(&dev->ctrl);
2806 		nvme_remove_namespaces(&dev->ctrl);
2807 		nvme_free_tagset(dev);
2808 	} else {
2809 		nvme_start_queues(&dev->ctrl);
2810 		nvme_wait_freeze(&dev->ctrl);
2811 		nvme_dev_add(dev);
2812 		nvme_unfreeze(&dev->ctrl);
2813 	}
2814 
2815 	/*
2816 	 * If only admin queue live, keep it to do further investigation or
2817 	 * recovery.
2818 	 */
2819 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2820 		dev_warn(dev->ctrl.device,
2821 			"failed to mark controller live state\n");
2822 		result = -ENODEV;
2823 		goto out;
2824 	}
2825 
2826 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2827 			&nvme_pci_attr_group))
2828 		dev->attrs_added = true;
2829 
2830 	nvme_start_ctrl(&dev->ctrl);
2831 	return;
2832 
2833  out_unlock:
2834 	mutex_unlock(&dev->shutdown_lock);
2835  out:
2836 	if (result)
2837 		dev_warn(dev->ctrl.device,
2838 			 "Removing after probe failure status: %d\n", result);
2839 	nvme_remove_dead_ctrl(dev);
2840 }
2841 
2842 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2843 {
2844 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2845 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2846 
2847 	if (pci_get_drvdata(pdev))
2848 		device_release_driver(&pdev->dev);
2849 	nvme_put_ctrl(&dev->ctrl);
2850 }
2851 
2852 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2853 {
2854 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2855 	return 0;
2856 }
2857 
2858 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2859 {
2860 	writel(val, to_nvme_dev(ctrl)->bar + off);
2861 	return 0;
2862 }
2863 
2864 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2865 {
2866 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2867 	return 0;
2868 }
2869 
2870 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2871 {
2872 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2873 
2874 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2875 }
2876 
2877 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2878 	.name			= "pcie",
2879 	.module			= THIS_MODULE,
2880 	.flags			= NVME_F_METADATA_SUPPORTED |
2881 				  NVME_F_PCI_P2PDMA,
2882 	.reg_read32		= nvme_pci_reg_read32,
2883 	.reg_write32		= nvme_pci_reg_write32,
2884 	.reg_read64		= nvme_pci_reg_read64,
2885 	.free_ctrl		= nvme_pci_free_ctrl,
2886 	.submit_async_event	= nvme_pci_submit_async_event,
2887 	.get_address		= nvme_pci_get_address,
2888 };
2889 
2890 static int nvme_dev_map(struct nvme_dev *dev)
2891 {
2892 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2893 
2894 	if (pci_request_mem_regions(pdev, "nvme"))
2895 		return -ENODEV;
2896 
2897 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2898 		goto release;
2899 
2900 	return 0;
2901   release:
2902 	pci_release_mem_regions(pdev);
2903 	return -ENODEV;
2904 }
2905 
2906 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2907 {
2908 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2909 		/*
2910 		 * Several Samsung devices seem to drop off the PCIe bus
2911 		 * randomly when APST is on and uses the deepest sleep state.
2912 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2913 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2914 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2915 		 * laptops.
2916 		 */
2917 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2918 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2919 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2920 			return NVME_QUIRK_NO_DEEPEST_PS;
2921 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2922 		/*
2923 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2924 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2925 		 * within few minutes after bootup on a Coffee Lake board -
2926 		 * ASUS PRIME Z370-A
2927 		 */
2928 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2929 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2930 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2931 			return NVME_QUIRK_NO_APST;
2932 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2933 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2934 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2935 		/*
2936 		 * Forcing to use host managed nvme power settings for
2937 		 * lowest idle power with quick resume latency on
2938 		 * Samsung and Toshiba SSDs based on suspend behavior
2939 		 * on Coffee Lake board for LENOVO C640
2940 		 */
2941 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2942 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2943 			return NVME_QUIRK_SIMPLE_SUSPEND;
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static void nvme_async_probe(void *data, async_cookie_t cookie)
2950 {
2951 	struct nvme_dev *dev = data;
2952 
2953 	flush_work(&dev->ctrl.reset_work);
2954 	flush_work(&dev->ctrl.scan_work);
2955 	nvme_put_ctrl(&dev->ctrl);
2956 }
2957 
2958 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2959 {
2960 	int node, result = -ENOMEM;
2961 	struct nvme_dev *dev;
2962 	unsigned long quirks = id->driver_data;
2963 	size_t alloc_size;
2964 
2965 	node = dev_to_node(&pdev->dev);
2966 	if (node == NUMA_NO_NODE)
2967 		set_dev_node(&pdev->dev, first_memory_node);
2968 
2969 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2970 	if (!dev)
2971 		return -ENOMEM;
2972 
2973 	dev->nr_write_queues = write_queues;
2974 	dev->nr_poll_queues = poll_queues;
2975 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2976 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2977 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2978 	if (!dev->queues)
2979 		goto free;
2980 
2981 	dev->dev = get_device(&pdev->dev);
2982 	pci_set_drvdata(pdev, dev);
2983 
2984 	result = nvme_dev_map(dev);
2985 	if (result)
2986 		goto put_pci;
2987 
2988 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2989 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2990 	mutex_init(&dev->shutdown_lock);
2991 
2992 	result = nvme_setup_prp_pools(dev);
2993 	if (result)
2994 		goto unmap;
2995 
2996 	quirks |= check_vendor_combination_bug(pdev);
2997 
2998 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2999 		/*
3000 		 * Some systems use a bios work around to ask for D3 on
3001 		 * platforms that support kernel managed suspend.
3002 		 */
3003 		dev_info(&pdev->dev,
3004 			 "platform quirk: setting simple suspend\n");
3005 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3006 	}
3007 
3008 	/*
3009 	 * Double check that our mempool alloc size will cover the biggest
3010 	 * command we support.
3011 	 */
3012 	alloc_size = nvme_pci_iod_alloc_size();
3013 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3014 
3015 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3016 						mempool_kfree,
3017 						(void *) alloc_size,
3018 						GFP_KERNEL, node);
3019 	if (!dev->iod_mempool) {
3020 		result = -ENOMEM;
3021 		goto release_pools;
3022 	}
3023 
3024 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3025 			quirks);
3026 	if (result)
3027 		goto release_mempool;
3028 
3029 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3030 
3031 	nvme_reset_ctrl(&dev->ctrl);
3032 	async_schedule(nvme_async_probe, dev);
3033 
3034 	return 0;
3035 
3036  release_mempool:
3037 	mempool_destroy(dev->iod_mempool);
3038  release_pools:
3039 	nvme_release_prp_pools(dev);
3040  unmap:
3041 	nvme_dev_unmap(dev);
3042  put_pci:
3043 	put_device(dev->dev);
3044  free:
3045 	kfree(dev->queues);
3046 	kfree(dev);
3047 	return result;
3048 }
3049 
3050 static void nvme_reset_prepare(struct pci_dev *pdev)
3051 {
3052 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3053 
3054 	/*
3055 	 * We don't need to check the return value from waiting for the reset
3056 	 * state as pci_dev device lock is held, making it impossible to race
3057 	 * with ->remove().
3058 	 */
3059 	nvme_disable_prepare_reset(dev, false);
3060 	nvme_sync_queues(&dev->ctrl);
3061 }
3062 
3063 static void nvme_reset_done(struct pci_dev *pdev)
3064 {
3065 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3066 
3067 	if (!nvme_try_sched_reset(&dev->ctrl))
3068 		flush_work(&dev->ctrl.reset_work);
3069 }
3070 
3071 static void nvme_shutdown(struct pci_dev *pdev)
3072 {
3073 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3074 
3075 	nvme_disable_prepare_reset(dev, true);
3076 }
3077 
3078 static void nvme_remove_attrs(struct nvme_dev *dev)
3079 {
3080 	if (dev->attrs_added)
3081 		sysfs_remove_group(&dev->ctrl.device->kobj,
3082 				   &nvme_pci_attr_group);
3083 }
3084 
3085 /*
3086  * The driver's remove may be called on a device in a partially initialized
3087  * state. This function must not have any dependencies on the device state in
3088  * order to proceed.
3089  */
3090 static void nvme_remove(struct pci_dev *pdev)
3091 {
3092 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3093 
3094 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3095 	pci_set_drvdata(pdev, NULL);
3096 
3097 	if (!pci_device_is_present(pdev)) {
3098 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3099 		nvme_dev_disable(dev, true);
3100 	}
3101 
3102 	flush_work(&dev->ctrl.reset_work);
3103 	nvme_stop_ctrl(&dev->ctrl);
3104 	nvme_remove_namespaces(&dev->ctrl);
3105 	nvme_dev_disable(dev, true);
3106 	nvme_remove_attrs(dev);
3107 	nvme_free_host_mem(dev);
3108 	nvme_dev_remove_admin(dev);
3109 	nvme_free_queues(dev, 0);
3110 	nvme_release_prp_pools(dev);
3111 	nvme_dev_unmap(dev);
3112 	nvme_uninit_ctrl(&dev->ctrl);
3113 }
3114 
3115 #ifdef CONFIG_PM_SLEEP
3116 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3117 {
3118 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3119 }
3120 
3121 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3122 {
3123 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3124 }
3125 
3126 static int nvme_resume(struct device *dev)
3127 {
3128 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3129 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3130 
3131 	if (ndev->last_ps == U32_MAX ||
3132 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3133 		goto reset;
3134 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3135 		goto reset;
3136 
3137 	return 0;
3138 reset:
3139 	return nvme_try_sched_reset(ctrl);
3140 }
3141 
3142 static int nvme_suspend(struct device *dev)
3143 {
3144 	struct pci_dev *pdev = to_pci_dev(dev);
3145 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3146 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3147 	int ret = -EBUSY;
3148 
3149 	ndev->last_ps = U32_MAX;
3150 
3151 	/*
3152 	 * The platform does not remove power for a kernel managed suspend so
3153 	 * use host managed nvme power settings for lowest idle power if
3154 	 * possible. This should have quicker resume latency than a full device
3155 	 * shutdown.  But if the firmware is involved after the suspend or the
3156 	 * device does not support any non-default power states, shut down the
3157 	 * device fully.
3158 	 *
3159 	 * If ASPM is not enabled for the device, shut down the device and allow
3160 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3161 	 * down, so as to allow the platform to achieve its minimum low-power
3162 	 * state (which may not be possible if the link is up).
3163 	 */
3164 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3165 	    !pcie_aspm_enabled(pdev) ||
3166 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3167 		return nvme_disable_prepare_reset(ndev, true);
3168 
3169 	nvme_start_freeze(ctrl);
3170 	nvme_wait_freeze(ctrl);
3171 	nvme_sync_queues(ctrl);
3172 
3173 	if (ctrl->state != NVME_CTRL_LIVE)
3174 		goto unfreeze;
3175 
3176 	/*
3177 	 * Host memory access may not be successful in a system suspend state,
3178 	 * but the specification allows the controller to access memory in a
3179 	 * non-operational power state.
3180 	 */
3181 	if (ndev->hmb) {
3182 		ret = nvme_set_host_mem(ndev, 0);
3183 		if (ret < 0)
3184 			goto unfreeze;
3185 	}
3186 
3187 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3188 	if (ret < 0)
3189 		goto unfreeze;
3190 
3191 	/*
3192 	 * A saved state prevents pci pm from generically controlling the
3193 	 * device's power. If we're using protocol specific settings, we don't
3194 	 * want pci interfering.
3195 	 */
3196 	pci_save_state(pdev);
3197 
3198 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3199 	if (ret < 0)
3200 		goto unfreeze;
3201 
3202 	if (ret) {
3203 		/* discard the saved state */
3204 		pci_load_saved_state(pdev, NULL);
3205 
3206 		/*
3207 		 * Clearing npss forces a controller reset on resume. The
3208 		 * correct value will be rediscovered then.
3209 		 */
3210 		ret = nvme_disable_prepare_reset(ndev, true);
3211 		ctrl->npss = 0;
3212 	}
3213 unfreeze:
3214 	nvme_unfreeze(ctrl);
3215 	return ret;
3216 }
3217 
3218 static int nvme_simple_suspend(struct device *dev)
3219 {
3220 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3221 
3222 	return nvme_disable_prepare_reset(ndev, true);
3223 }
3224 
3225 static int nvme_simple_resume(struct device *dev)
3226 {
3227 	struct pci_dev *pdev = to_pci_dev(dev);
3228 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3229 
3230 	return nvme_try_sched_reset(&ndev->ctrl);
3231 }
3232 
3233 static const struct dev_pm_ops nvme_dev_pm_ops = {
3234 	.suspend	= nvme_suspend,
3235 	.resume		= nvme_resume,
3236 	.freeze		= nvme_simple_suspend,
3237 	.thaw		= nvme_simple_resume,
3238 	.poweroff	= nvme_simple_suspend,
3239 	.restore	= nvme_simple_resume,
3240 };
3241 #endif /* CONFIG_PM_SLEEP */
3242 
3243 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3244 						pci_channel_state_t state)
3245 {
3246 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3247 
3248 	/*
3249 	 * A frozen channel requires a reset. When detected, this method will
3250 	 * shutdown the controller to quiesce. The controller will be restarted
3251 	 * after the slot reset through driver's slot_reset callback.
3252 	 */
3253 	switch (state) {
3254 	case pci_channel_io_normal:
3255 		return PCI_ERS_RESULT_CAN_RECOVER;
3256 	case pci_channel_io_frozen:
3257 		dev_warn(dev->ctrl.device,
3258 			"frozen state error detected, reset controller\n");
3259 		nvme_dev_disable(dev, false);
3260 		return PCI_ERS_RESULT_NEED_RESET;
3261 	case pci_channel_io_perm_failure:
3262 		dev_warn(dev->ctrl.device,
3263 			"failure state error detected, request disconnect\n");
3264 		return PCI_ERS_RESULT_DISCONNECT;
3265 	}
3266 	return PCI_ERS_RESULT_NEED_RESET;
3267 }
3268 
3269 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3270 {
3271 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3272 
3273 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3274 	pci_restore_state(pdev);
3275 	nvme_reset_ctrl(&dev->ctrl);
3276 	return PCI_ERS_RESULT_RECOVERED;
3277 }
3278 
3279 static void nvme_error_resume(struct pci_dev *pdev)
3280 {
3281 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3282 
3283 	flush_work(&dev->ctrl.reset_work);
3284 }
3285 
3286 static const struct pci_error_handlers nvme_err_handler = {
3287 	.error_detected	= nvme_error_detected,
3288 	.slot_reset	= nvme_slot_reset,
3289 	.resume		= nvme_error_resume,
3290 	.reset_prepare	= nvme_reset_prepare,
3291 	.reset_done	= nvme_reset_done,
3292 };
3293 
3294 static const struct pci_device_id nvme_id_table[] = {
3295 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3296 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3297 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3298 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3299 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3300 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3301 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3302 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3303 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3304 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3305 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3306 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3307 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3308 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3309 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3310 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3311 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3312 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3313 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3314 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3315 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3316 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3317 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3318 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3319 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3320 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3321 				NVME_QUIRK_NO_NS_DESC_LIST, },
3322 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3323 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3324 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3325 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3326 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3327 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3328 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3329 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3330 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3331 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3332 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3333 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3334 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3335 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3336 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3337 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3338 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3339 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3340 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3341 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3342 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3343 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3344 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3345 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3346 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3347 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3348 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3349 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3350 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3351 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3352 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3353 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3354 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3355 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3356 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3357 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3358 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3359 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3360 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3361 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3362 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3363 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3364 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3365 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3366 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3367 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3368 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3369 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3370 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3371 				NVME_QUIRK_128_BYTES_SQES |
3372 				NVME_QUIRK_SHARED_TAGS },
3373 
3374 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3375 	{ 0, }
3376 };
3377 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3378 
3379 static struct pci_driver nvme_driver = {
3380 	.name		= "nvme",
3381 	.id_table	= nvme_id_table,
3382 	.probe		= nvme_probe,
3383 	.remove		= nvme_remove,
3384 	.shutdown	= nvme_shutdown,
3385 #ifdef CONFIG_PM_SLEEP
3386 	.driver		= {
3387 		.pm	= &nvme_dev_pm_ops,
3388 	},
3389 #endif
3390 	.sriov_configure = pci_sriov_configure_simple,
3391 	.err_handler	= &nvme_err_handler,
3392 };
3393 
3394 static int __init nvme_init(void)
3395 {
3396 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3397 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3398 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3399 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3400 
3401 	return pci_register_driver(&nvme_driver);
3402 }
3403 
3404 static void __exit nvme_exit(void)
3405 {
3406 	pci_unregister_driver(&nvme_driver);
3407 	flush_workqueue(nvme_wq);
3408 }
3409 
3410 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3411 MODULE_LICENSE("GPL");
3412 MODULE_VERSION("1.0");
3413 module_init(nvme_init);
3414 module_exit(nvme_exit);
3415