xref: /linux/drivers/nvme/host/pci.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 	struct sg_table *hmb_sgt;
145 
146 	mempool_t *iod_mempool;
147 
148 	/* shadow doorbell buffer support: */
149 	__le32 *dbbuf_dbs;
150 	dma_addr_t dbbuf_dbs_dma_addr;
151 	__le32 *dbbuf_eis;
152 	dma_addr_t dbbuf_eis_dma_addr;
153 
154 	/* host memory buffer support: */
155 	u64 host_mem_size;
156 	u32 nr_host_mem_descs;
157 	u32 host_mem_descs_size;
158 	dma_addr_t host_mem_descs_dma;
159 	struct nvme_host_mem_buf_desc *host_mem_descs;
160 	void **host_mem_desc_bufs;
161 	unsigned int nr_allocated_queues;
162 	unsigned int nr_write_queues;
163 	unsigned int nr_poll_queues;
164 };
165 
166 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
167 {
168 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
169 			NVME_PCI_MAX_QUEUE_SIZE);
170 }
171 
172 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
173 {
174 	return qid * 2 * stride;
175 }
176 
177 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
178 {
179 	return (qid * 2 + 1) * stride;
180 }
181 
182 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
183 {
184 	return container_of(ctrl, struct nvme_dev, ctrl);
185 }
186 
187 /*
188  * An NVM Express queue.  Each device has at least two (one for admin
189  * commands and one for I/O commands).
190  */
191 struct nvme_queue {
192 	struct nvme_dev *dev;
193 	spinlock_t sq_lock;
194 	void *sq_cmds;
195 	 /* only used for poll queues: */
196 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
197 	struct nvme_completion *cqes;
198 	dma_addr_t sq_dma_addr;
199 	dma_addr_t cq_dma_addr;
200 	u32 __iomem *q_db;
201 	u32 q_depth;
202 	u16 cq_vector;
203 	u16 sq_tail;
204 	u16 last_sq_tail;
205 	u16 cq_head;
206 	u16 qid;
207 	u8 cq_phase;
208 	u8 sqes;
209 	unsigned long flags;
210 #define NVMEQ_ENABLED		0
211 #define NVMEQ_SQ_CMB		1
212 #define NVMEQ_DELETE_ERROR	2
213 #define NVMEQ_POLLED		3
214 	__le32 *dbbuf_sq_db;
215 	__le32 *dbbuf_cq_db;
216 	__le32 *dbbuf_sq_ei;
217 	__le32 *dbbuf_cq_ei;
218 	struct completion delete_done;
219 };
220 
221 union nvme_descriptor {
222 	struct nvme_sgl_desc	*sg_list;
223 	__le64			*prp_list;
224 };
225 
226 /*
227  * The nvme_iod describes the data in an I/O.
228  *
229  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
230  * to the actual struct scatterlist.
231  */
232 struct nvme_iod {
233 	struct nvme_request req;
234 	struct nvme_command cmd;
235 	bool aborted;
236 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
237 				   pool in use */
238 	unsigned int dma_len;	/* length of single DMA segment mapping */
239 	dma_addr_t first_dma;
240 	dma_addr_t meta_dma;
241 	struct sg_table sgt;
242 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
243 };
244 
245 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
246 {
247 	return dev->nr_allocated_queues * 8 * dev->db_stride;
248 }
249 
250 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
251 {
252 	unsigned int mem_size = nvme_dbbuf_size(dev);
253 
254 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
255 		return;
256 
257 	if (dev->dbbuf_dbs) {
258 		/*
259 		 * Clear the dbbuf memory so the driver doesn't observe stale
260 		 * values from the previous instantiation.
261 		 */
262 		memset(dev->dbbuf_dbs, 0, mem_size);
263 		memset(dev->dbbuf_eis, 0, mem_size);
264 		return;
265 	}
266 
267 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
268 					    &dev->dbbuf_dbs_dma_addr,
269 					    GFP_KERNEL);
270 	if (!dev->dbbuf_dbs)
271 		goto fail;
272 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
273 					    &dev->dbbuf_eis_dma_addr,
274 					    GFP_KERNEL);
275 	if (!dev->dbbuf_eis)
276 		goto fail_free_dbbuf_dbs;
277 	return;
278 
279 fail_free_dbbuf_dbs:
280 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
281 			  dev->dbbuf_dbs_dma_addr);
282 	dev->dbbuf_dbs = NULL;
283 fail:
284 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
285 }
286 
287 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
288 {
289 	unsigned int mem_size = nvme_dbbuf_size(dev);
290 
291 	if (dev->dbbuf_dbs) {
292 		dma_free_coherent(dev->dev, mem_size,
293 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
294 		dev->dbbuf_dbs = NULL;
295 	}
296 	if (dev->dbbuf_eis) {
297 		dma_free_coherent(dev->dev, mem_size,
298 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
299 		dev->dbbuf_eis = NULL;
300 	}
301 }
302 
303 static void nvme_dbbuf_init(struct nvme_dev *dev,
304 			    struct nvme_queue *nvmeq, int qid)
305 {
306 	if (!dev->dbbuf_dbs || !qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
311 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
312 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
313 }
314 
315 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
316 {
317 	if (!nvmeq->qid)
318 		return;
319 
320 	nvmeq->dbbuf_sq_db = NULL;
321 	nvmeq->dbbuf_cq_db = NULL;
322 	nvmeq->dbbuf_sq_ei = NULL;
323 	nvmeq->dbbuf_cq_ei = NULL;
324 }
325 
326 static void nvme_dbbuf_set(struct nvme_dev *dev)
327 {
328 	struct nvme_command c = { };
329 	unsigned int i;
330 
331 	if (!dev->dbbuf_dbs)
332 		return;
333 
334 	c.dbbuf.opcode = nvme_admin_dbbuf;
335 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
336 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
337 
338 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
339 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
340 		/* Free memory and continue on */
341 		nvme_dbbuf_dma_free(dev);
342 
343 		for (i = 1; i <= dev->online_queues; i++)
344 			nvme_dbbuf_free(&dev->queues[i]);
345 	}
346 }
347 
348 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
349 {
350 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
351 }
352 
353 /* Update dbbuf and return true if an MMIO is required */
354 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
355 					      volatile __le32 *dbbuf_ei)
356 {
357 	if (dbbuf_db) {
358 		u16 old_value, event_idx;
359 
360 		/*
361 		 * Ensure that the queue is written before updating
362 		 * the doorbell in memory
363 		 */
364 		wmb();
365 
366 		old_value = le32_to_cpu(*dbbuf_db);
367 		*dbbuf_db = cpu_to_le32(value);
368 
369 		/*
370 		 * Ensure that the doorbell is updated before reading the event
371 		 * index from memory.  The controller needs to provide similar
372 		 * ordering to ensure the envent index is updated before reading
373 		 * the doorbell.
374 		 */
375 		mb();
376 
377 		event_idx = le32_to_cpu(*dbbuf_ei);
378 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
379 			return false;
380 	}
381 
382 	return true;
383 }
384 
385 /*
386  * Will slightly overestimate the number of pages needed.  This is OK
387  * as it only leads to a small amount of wasted memory for the lifetime of
388  * the I/O.
389  */
390 static int nvme_pci_npages_prp(void)
391 {
392 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
393 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
394 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
395 }
396 
397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 				unsigned int hctx_idx)
399 {
400 	struct nvme_dev *dev = to_nvme_dev(data);
401 	struct nvme_queue *nvmeq = &dev->queues[0];
402 
403 	WARN_ON(hctx_idx != 0);
404 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405 
406 	hctx->driver_data = nvmeq;
407 	return 0;
408 }
409 
410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411 			  unsigned int hctx_idx)
412 {
413 	struct nvme_dev *dev = to_nvme_dev(data);
414 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415 
416 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417 	hctx->driver_data = nvmeq;
418 	return 0;
419 }
420 
421 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
422 		struct request *req, unsigned int hctx_idx,
423 		unsigned int numa_node)
424 {
425 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 
427 	nvme_req(req)->ctrl = set->driver_data;
428 	nvme_req(req)->cmd = &iod->cmd;
429 	return 0;
430 }
431 
432 static int queue_irq_offset(struct nvme_dev *dev)
433 {
434 	/* if we have more than 1 vec, admin queue offsets us by 1 */
435 	if (dev->num_vecs > 1)
436 		return 1;
437 
438 	return 0;
439 }
440 
441 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
442 {
443 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
444 	int i, qoff, offset;
445 
446 	offset = queue_irq_offset(dev);
447 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
448 		struct blk_mq_queue_map *map = &set->map[i];
449 
450 		map->nr_queues = dev->io_queues[i];
451 		if (!map->nr_queues) {
452 			BUG_ON(i == HCTX_TYPE_DEFAULT);
453 			continue;
454 		}
455 
456 		/*
457 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
458 		 * affinity), so use the regular blk-mq cpu mapping
459 		 */
460 		map->queue_offset = qoff;
461 		if (i != HCTX_TYPE_POLL && offset)
462 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
463 		else
464 			blk_mq_map_queues(map);
465 		qoff += map->nr_queues;
466 		offset += map->nr_queues;
467 	}
468 }
469 
470 /*
471  * Write sq tail if we are asked to, or if the next command would wrap.
472  */
473 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
474 {
475 	if (!write_sq) {
476 		u16 next_tail = nvmeq->sq_tail + 1;
477 
478 		if (next_tail == nvmeq->q_depth)
479 			next_tail = 0;
480 		if (next_tail != nvmeq->last_sq_tail)
481 			return;
482 	}
483 
484 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
485 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
486 		writel(nvmeq->sq_tail, nvmeq->q_db);
487 	nvmeq->last_sq_tail = nvmeq->sq_tail;
488 }
489 
490 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
491 				    struct nvme_command *cmd)
492 {
493 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
494 		absolute_pointer(cmd), sizeof(*cmd));
495 	if (++nvmeq->sq_tail == nvmeq->q_depth)
496 		nvmeq->sq_tail = 0;
497 }
498 
499 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
500 {
501 	struct nvme_queue *nvmeq = hctx->driver_data;
502 
503 	spin_lock(&nvmeq->sq_lock);
504 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
505 		nvme_write_sq_db(nvmeq, true);
506 	spin_unlock(&nvmeq->sq_lock);
507 }
508 
509 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
510 				     int nseg)
511 {
512 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
513 	unsigned int avg_seg_size;
514 
515 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
516 
517 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
518 		return false;
519 	if (!nvmeq->qid)
520 		return false;
521 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
522 		return false;
523 	return true;
524 }
525 
526 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
527 {
528 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
529 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
530 	dma_addr_t dma_addr = iod->first_dma;
531 	int i;
532 
533 	for (i = 0; i < iod->nr_allocations; i++) {
534 		__le64 *prp_list = iod->list[i].prp_list;
535 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
536 
537 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
538 		dma_addr = next_dma_addr;
539 	}
540 }
541 
542 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
543 {
544 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 
546 	if (iod->dma_len) {
547 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
548 			       rq_dma_dir(req));
549 		return;
550 	}
551 
552 	WARN_ON_ONCE(!iod->sgt.nents);
553 
554 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
555 
556 	if (iod->nr_allocations == 0)
557 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
558 			      iod->first_dma);
559 	else if (iod->nr_allocations == 1)
560 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
561 			      iod->first_dma);
562 	else
563 		nvme_free_prps(dev, req);
564 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
565 }
566 
567 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
568 {
569 	int i;
570 	struct scatterlist *sg;
571 
572 	for_each_sg(sgl, sg, nents, i) {
573 		dma_addr_t phys = sg_phys(sg);
574 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
575 			"dma_address:%pad dma_length:%d\n",
576 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
577 			sg_dma_len(sg));
578 	}
579 }
580 
581 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
582 		struct request *req, struct nvme_rw_command *cmnd)
583 {
584 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585 	struct dma_pool *pool;
586 	int length = blk_rq_payload_bytes(req);
587 	struct scatterlist *sg = iod->sgt.sgl;
588 	int dma_len = sg_dma_len(sg);
589 	u64 dma_addr = sg_dma_address(sg);
590 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
591 	__le64 *prp_list;
592 	dma_addr_t prp_dma;
593 	int nprps, i;
594 
595 	length -= (NVME_CTRL_PAGE_SIZE - offset);
596 	if (length <= 0) {
597 		iod->first_dma = 0;
598 		goto done;
599 	}
600 
601 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
602 	if (dma_len) {
603 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
604 	} else {
605 		sg = sg_next(sg);
606 		dma_addr = sg_dma_address(sg);
607 		dma_len = sg_dma_len(sg);
608 	}
609 
610 	if (length <= NVME_CTRL_PAGE_SIZE) {
611 		iod->first_dma = dma_addr;
612 		goto done;
613 	}
614 
615 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
616 	if (nprps <= (256 / 8)) {
617 		pool = dev->prp_small_pool;
618 		iod->nr_allocations = 0;
619 	} else {
620 		pool = dev->prp_page_pool;
621 		iod->nr_allocations = 1;
622 	}
623 
624 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
625 	if (!prp_list) {
626 		iod->nr_allocations = -1;
627 		return BLK_STS_RESOURCE;
628 	}
629 	iod->list[0].prp_list = prp_list;
630 	iod->first_dma = prp_dma;
631 	i = 0;
632 	for (;;) {
633 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
634 			__le64 *old_prp_list = prp_list;
635 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
636 			if (!prp_list)
637 				goto free_prps;
638 			iod->list[iod->nr_allocations++].prp_list = prp_list;
639 			prp_list[0] = old_prp_list[i - 1];
640 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
641 			i = 1;
642 		}
643 		prp_list[i++] = cpu_to_le64(dma_addr);
644 		dma_len -= NVME_CTRL_PAGE_SIZE;
645 		dma_addr += NVME_CTRL_PAGE_SIZE;
646 		length -= NVME_CTRL_PAGE_SIZE;
647 		if (length <= 0)
648 			break;
649 		if (dma_len > 0)
650 			continue;
651 		if (unlikely(dma_len < 0))
652 			goto bad_sgl;
653 		sg = sg_next(sg);
654 		dma_addr = sg_dma_address(sg);
655 		dma_len = sg_dma_len(sg);
656 	}
657 done:
658 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
659 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
660 	return BLK_STS_OK;
661 free_prps:
662 	nvme_free_prps(dev, req);
663 	return BLK_STS_RESOURCE;
664 bad_sgl:
665 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
666 			"Invalid SGL for payload:%d nents:%d\n",
667 			blk_rq_payload_bytes(req), iod->sgt.nents);
668 	return BLK_STS_IOERR;
669 }
670 
671 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
672 		struct scatterlist *sg)
673 {
674 	sge->addr = cpu_to_le64(sg_dma_address(sg));
675 	sge->length = cpu_to_le32(sg_dma_len(sg));
676 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
677 }
678 
679 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
680 		dma_addr_t dma_addr, int entries)
681 {
682 	sge->addr = cpu_to_le64(dma_addr);
683 	sge->length = cpu_to_le32(entries * sizeof(*sge));
684 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
685 }
686 
687 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
688 		struct request *req, struct nvme_rw_command *cmd)
689 {
690 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 	struct dma_pool *pool;
692 	struct nvme_sgl_desc *sg_list;
693 	struct scatterlist *sg = iod->sgt.sgl;
694 	unsigned int entries = iod->sgt.nents;
695 	dma_addr_t sgl_dma;
696 	int i = 0;
697 
698 	/* setting the transfer type as SGL */
699 	cmd->flags = NVME_CMD_SGL_METABUF;
700 
701 	if (entries == 1) {
702 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
703 		return BLK_STS_OK;
704 	}
705 
706 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
707 		pool = dev->prp_small_pool;
708 		iod->nr_allocations = 0;
709 	} else {
710 		pool = dev->prp_page_pool;
711 		iod->nr_allocations = 1;
712 	}
713 
714 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
715 	if (!sg_list) {
716 		iod->nr_allocations = -1;
717 		return BLK_STS_RESOURCE;
718 	}
719 
720 	iod->list[0].sg_list = sg_list;
721 	iod->first_dma = sgl_dma;
722 
723 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
724 	do {
725 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
726 		sg = sg_next(sg);
727 	} while (--entries > 0);
728 
729 	return BLK_STS_OK;
730 }
731 
732 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
733 		struct request *req, struct nvme_rw_command *cmnd,
734 		struct bio_vec *bv)
735 {
736 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
737 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
738 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
739 
740 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
741 	if (dma_mapping_error(dev->dev, iod->first_dma))
742 		return BLK_STS_RESOURCE;
743 	iod->dma_len = bv->bv_len;
744 
745 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
746 	if (bv->bv_len > first_prp_len)
747 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
748 	else
749 		cmnd->dptr.prp2 = 0;
750 	return BLK_STS_OK;
751 }
752 
753 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
754 		struct request *req, struct nvme_rw_command *cmnd,
755 		struct bio_vec *bv)
756 {
757 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
758 
759 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
760 	if (dma_mapping_error(dev->dev, iod->first_dma))
761 		return BLK_STS_RESOURCE;
762 	iod->dma_len = bv->bv_len;
763 
764 	cmnd->flags = NVME_CMD_SGL_METABUF;
765 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
766 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
767 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
768 	return BLK_STS_OK;
769 }
770 
771 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
772 		struct nvme_command *cmnd)
773 {
774 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
775 	blk_status_t ret = BLK_STS_RESOURCE;
776 	int rc;
777 
778 	if (blk_rq_nr_phys_segments(req) == 1) {
779 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
780 		struct bio_vec bv = req_bvec(req);
781 
782 		if (!is_pci_p2pdma_page(bv.bv_page)) {
783 			if ((bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
784 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
785 				return nvme_setup_prp_simple(dev, req,
786 							     &cmnd->rw, &bv);
787 
788 			if (nvmeq->qid && sgl_threshold &&
789 			    nvme_ctrl_sgl_supported(&dev->ctrl))
790 				return nvme_setup_sgl_simple(dev, req,
791 							     &cmnd->rw, &bv);
792 		}
793 	}
794 
795 	iod->dma_len = 0;
796 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
797 	if (!iod->sgt.sgl)
798 		return BLK_STS_RESOURCE;
799 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
800 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
801 	if (!iod->sgt.orig_nents)
802 		goto out_free_sg;
803 
804 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
805 			     DMA_ATTR_NO_WARN);
806 	if (rc) {
807 		if (rc == -EREMOTEIO)
808 			ret = BLK_STS_TARGET;
809 		goto out_free_sg;
810 	}
811 
812 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
813 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
814 	else
815 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
816 	if (ret != BLK_STS_OK)
817 		goto out_unmap_sg;
818 	return BLK_STS_OK;
819 
820 out_unmap_sg:
821 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
822 out_free_sg:
823 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
824 	return ret;
825 }
826 
827 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
828 		struct nvme_command *cmnd)
829 {
830 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
831 	struct bio_vec bv = rq_integrity_vec(req);
832 
833 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
834 	if (dma_mapping_error(dev->dev, iod->meta_dma))
835 		return BLK_STS_IOERR;
836 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
837 	return BLK_STS_OK;
838 }
839 
840 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
841 {
842 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
843 	blk_status_t ret;
844 
845 	iod->aborted = false;
846 	iod->nr_allocations = -1;
847 	iod->sgt.nents = 0;
848 
849 	ret = nvme_setup_cmd(req->q->queuedata, req);
850 	if (ret)
851 		return ret;
852 
853 	if (blk_rq_nr_phys_segments(req)) {
854 		ret = nvme_map_data(dev, req, &iod->cmd);
855 		if (ret)
856 			goto out_free_cmd;
857 	}
858 
859 	if (blk_integrity_rq(req)) {
860 		ret = nvme_map_metadata(dev, req, &iod->cmd);
861 		if (ret)
862 			goto out_unmap_data;
863 	}
864 
865 	nvme_start_request(req);
866 	return BLK_STS_OK;
867 out_unmap_data:
868 	if (blk_rq_nr_phys_segments(req))
869 		nvme_unmap_data(dev, req);
870 out_free_cmd:
871 	nvme_cleanup_cmd(req);
872 	return ret;
873 }
874 
875 /*
876  * NOTE: ns is NULL when called on the admin queue.
877  */
878 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
879 			 const struct blk_mq_queue_data *bd)
880 {
881 	struct nvme_queue *nvmeq = hctx->driver_data;
882 	struct nvme_dev *dev = nvmeq->dev;
883 	struct request *req = bd->rq;
884 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
885 	blk_status_t ret;
886 
887 	/*
888 	 * We should not need to do this, but we're still using this to
889 	 * ensure we can drain requests on a dying queue.
890 	 */
891 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
892 		return BLK_STS_IOERR;
893 
894 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
895 		return nvme_fail_nonready_command(&dev->ctrl, req);
896 
897 	ret = nvme_prep_rq(dev, req);
898 	if (unlikely(ret))
899 		return ret;
900 	spin_lock(&nvmeq->sq_lock);
901 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
902 	nvme_write_sq_db(nvmeq, bd->last);
903 	spin_unlock(&nvmeq->sq_lock);
904 	return BLK_STS_OK;
905 }
906 
907 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
908 {
909 	struct request *req;
910 
911 	spin_lock(&nvmeq->sq_lock);
912 	while ((req = rq_list_pop(rqlist))) {
913 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
914 
915 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
916 	}
917 	nvme_write_sq_db(nvmeq, true);
918 	spin_unlock(&nvmeq->sq_lock);
919 }
920 
921 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
922 {
923 	/*
924 	 * We should not need to do this, but we're still using this to
925 	 * ensure we can drain requests on a dying queue.
926 	 */
927 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
928 		return false;
929 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
930 		return false;
931 
932 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
933 }
934 
935 static void nvme_queue_rqs(struct rq_list *rqlist)
936 {
937 	struct rq_list submit_list = { };
938 	struct rq_list requeue_list = { };
939 	struct nvme_queue *nvmeq = NULL;
940 	struct request *req;
941 
942 	while ((req = rq_list_pop(rqlist))) {
943 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
944 			nvme_submit_cmds(nvmeq, &submit_list);
945 		nvmeq = req->mq_hctx->driver_data;
946 
947 		if (nvme_prep_rq_batch(nvmeq, req))
948 			rq_list_add_tail(&submit_list, req);
949 		else
950 			rq_list_add_tail(&requeue_list, req);
951 	}
952 
953 	if (nvmeq)
954 		nvme_submit_cmds(nvmeq, &submit_list);
955 	*rqlist = requeue_list;
956 }
957 
958 static __always_inline void nvme_pci_unmap_rq(struct request *req)
959 {
960 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
961 	struct nvme_dev *dev = nvmeq->dev;
962 
963 	if (blk_integrity_rq(req)) {
964 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965 
966 		dma_unmap_page(dev->dev, iod->meta_dma,
967 			       rq_integrity_vec(req).bv_len, rq_dma_dir(req));
968 	}
969 
970 	if (blk_rq_nr_phys_segments(req))
971 		nvme_unmap_data(dev, req);
972 }
973 
974 static void nvme_pci_complete_rq(struct request *req)
975 {
976 	nvme_pci_unmap_rq(req);
977 	nvme_complete_rq(req);
978 }
979 
980 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
981 {
982 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
983 }
984 
985 /* We read the CQE phase first to check if the rest of the entry is valid */
986 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
987 {
988 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
989 
990 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
991 }
992 
993 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
994 {
995 	u16 head = nvmeq->cq_head;
996 
997 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
998 					      nvmeq->dbbuf_cq_ei))
999 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1000 }
1001 
1002 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1003 {
1004 	if (!nvmeq->qid)
1005 		return nvmeq->dev->admin_tagset.tags[0];
1006 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1007 }
1008 
1009 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1010 				   struct io_comp_batch *iob, u16 idx)
1011 {
1012 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1013 	__u16 command_id = READ_ONCE(cqe->command_id);
1014 	struct request *req;
1015 
1016 	/*
1017 	 * AEN requests are special as they don't time out and can
1018 	 * survive any kind of queue freeze and often don't respond to
1019 	 * aborts.  We don't even bother to allocate a struct request
1020 	 * for them but rather special case them here.
1021 	 */
1022 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1023 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1024 				cqe->status, &cqe->result);
1025 		return;
1026 	}
1027 
1028 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1029 	if (unlikely(!req)) {
1030 		dev_warn(nvmeq->dev->ctrl.device,
1031 			"invalid id %d completed on queue %d\n",
1032 			command_id, le16_to_cpu(cqe->sq_id));
1033 		return;
1034 	}
1035 
1036 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1037 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1038 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1039 					nvme_pci_complete_batch))
1040 		nvme_pci_complete_rq(req);
1041 }
1042 
1043 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1044 {
1045 	u32 tmp = nvmeq->cq_head + 1;
1046 
1047 	if (tmp == nvmeq->q_depth) {
1048 		nvmeq->cq_head = 0;
1049 		nvmeq->cq_phase ^= 1;
1050 	} else {
1051 		nvmeq->cq_head = tmp;
1052 	}
1053 }
1054 
1055 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1056 			       struct io_comp_batch *iob)
1057 {
1058 	int found = 0;
1059 
1060 	while (nvme_cqe_pending(nvmeq)) {
1061 		found++;
1062 		/*
1063 		 * load-load control dependency between phase and the rest of
1064 		 * the cqe requires a full read memory barrier
1065 		 */
1066 		dma_rmb();
1067 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1068 		nvme_update_cq_head(nvmeq);
1069 	}
1070 
1071 	if (found)
1072 		nvme_ring_cq_doorbell(nvmeq);
1073 	return found;
1074 }
1075 
1076 static irqreturn_t nvme_irq(int irq, void *data)
1077 {
1078 	struct nvme_queue *nvmeq = data;
1079 	DEFINE_IO_COMP_BATCH(iob);
1080 
1081 	if (nvme_poll_cq(nvmeq, &iob)) {
1082 		if (!rq_list_empty(&iob.req_list))
1083 			nvme_pci_complete_batch(&iob);
1084 		return IRQ_HANDLED;
1085 	}
1086 	return IRQ_NONE;
1087 }
1088 
1089 static irqreturn_t nvme_irq_check(int irq, void *data)
1090 {
1091 	struct nvme_queue *nvmeq = data;
1092 
1093 	if (nvme_cqe_pending(nvmeq))
1094 		return IRQ_WAKE_THREAD;
1095 	return IRQ_NONE;
1096 }
1097 
1098 /*
1099  * Poll for completions for any interrupt driven queue
1100  * Can be called from any context.
1101  */
1102 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1103 {
1104 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1105 
1106 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1107 
1108 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1109 	nvme_poll_cq(nvmeq, NULL);
1110 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1111 }
1112 
1113 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1114 {
1115 	struct nvme_queue *nvmeq = hctx->driver_data;
1116 	bool found;
1117 
1118 	if (!nvme_cqe_pending(nvmeq))
1119 		return 0;
1120 
1121 	spin_lock(&nvmeq->cq_poll_lock);
1122 	found = nvme_poll_cq(nvmeq, iob);
1123 	spin_unlock(&nvmeq->cq_poll_lock);
1124 
1125 	return found;
1126 }
1127 
1128 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1129 {
1130 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1131 	struct nvme_queue *nvmeq = &dev->queues[0];
1132 	struct nvme_command c = { };
1133 
1134 	c.common.opcode = nvme_admin_async_event;
1135 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1136 
1137 	spin_lock(&nvmeq->sq_lock);
1138 	nvme_sq_copy_cmd(nvmeq, &c);
1139 	nvme_write_sq_db(nvmeq, true);
1140 	spin_unlock(&nvmeq->sq_lock);
1141 }
1142 
1143 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1144 {
1145 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1146 	int ret = 0;
1147 
1148 	/*
1149 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1150 	 * altered by reset_work. Holding this lock before the RESETTING state
1151 	 * change, if successful, also ensures nvme_remove won't be able to
1152 	 * proceed to iounmap until we're done.
1153 	 */
1154 	mutex_lock(&dev->shutdown_lock);
1155 	if (!dev->bar_mapped_size) {
1156 		ret = -ENODEV;
1157 		goto unlock;
1158 	}
1159 
1160 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1161 		ret = -EBUSY;
1162 		goto unlock;
1163 	}
1164 
1165 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1166 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1167 
1168 	/*
1169 	 * Read controller status to flush the previous write and trigger a
1170 	 * pcie read error.
1171 	 */
1172 	readl(dev->bar + NVME_REG_CSTS);
1173 unlock:
1174 	mutex_unlock(&dev->shutdown_lock);
1175 	return ret;
1176 }
1177 
1178 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1179 {
1180 	struct nvme_command c = { };
1181 
1182 	c.delete_queue.opcode = opcode;
1183 	c.delete_queue.qid = cpu_to_le16(id);
1184 
1185 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1186 }
1187 
1188 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1189 		struct nvme_queue *nvmeq, s16 vector)
1190 {
1191 	struct nvme_command c = { };
1192 	int flags = NVME_QUEUE_PHYS_CONTIG;
1193 
1194 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1195 		flags |= NVME_CQ_IRQ_ENABLED;
1196 
1197 	/*
1198 	 * Note: we (ab)use the fact that the prp fields survive if no data
1199 	 * is attached to the request.
1200 	 */
1201 	c.create_cq.opcode = nvme_admin_create_cq;
1202 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1203 	c.create_cq.cqid = cpu_to_le16(qid);
1204 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1205 	c.create_cq.cq_flags = cpu_to_le16(flags);
1206 	c.create_cq.irq_vector = cpu_to_le16(vector);
1207 
1208 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210 
1211 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1212 						struct nvme_queue *nvmeq)
1213 {
1214 	struct nvme_ctrl *ctrl = &dev->ctrl;
1215 	struct nvme_command c = { };
1216 	int flags = NVME_QUEUE_PHYS_CONTIG;
1217 
1218 	/*
1219 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1220 	 * set. Since URGENT priority is zeroes, it makes all queues
1221 	 * URGENT.
1222 	 */
1223 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1224 		flags |= NVME_SQ_PRIO_MEDIUM;
1225 
1226 	/*
1227 	 * Note: we (ab)use the fact that the prp fields survive if no data
1228 	 * is attached to the request.
1229 	 */
1230 	c.create_sq.opcode = nvme_admin_create_sq;
1231 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1232 	c.create_sq.sqid = cpu_to_le16(qid);
1233 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1234 	c.create_sq.sq_flags = cpu_to_le16(flags);
1235 	c.create_sq.cqid = cpu_to_le16(qid);
1236 
1237 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1238 }
1239 
1240 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1241 {
1242 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1243 }
1244 
1245 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1246 {
1247 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1248 }
1249 
1250 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1251 {
1252 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1253 
1254 	dev_warn(nvmeq->dev->ctrl.device,
1255 		 "Abort status: 0x%x", nvme_req(req)->status);
1256 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1257 	blk_mq_free_request(req);
1258 	return RQ_END_IO_NONE;
1259 }
1260 
1261 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1262 {
1263 	/* If true, indicates loss of adapter communication, possibly by a
1264 	 * NVMe Subsystem reset.
1265 	 */
1266 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267 
1268 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1269 	switch (nvme_ctrl_state(&dev->ctrl)) {
1270 	case NVME_CTRL_RESETTING:
1271 	case NVME_CTRL_CONNECTING:
1272 		return false;
1273 	default:
1274 		break;
1275 	}
1276 
1277 	/* We shouldn't reset unless the controller is on fatal error state
1278 	 * _or_ if we lost the communication with it.
1279 	 */
1280 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1281 		return false;
1282 
1283 	return true;
1284 }
1285 
1286 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1287 {
1288 	/* Read a config register to help see what died. */
1289 	u16 pci_status;
1290 	int result;
1291 
1292 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1293 				      &pci_status);
1294 	if (result == PCIBIOS_SUCCESSFUL)
1295 		dev_warn(dev->ctrl.device,
1296 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1297 			 csts, pci_status);
1298 	else
1299 		dev_warn(dev->ctrl.device,
1300 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1301 			 csts, result);
1302 
1303 	if (csts != ~0)
1304 		return;
1305 
1306 	dev_warn(dev->ctrl.device,
1307 		 "Does your device have a faulty power saving mode enabled?\n");
1308 	dev_warn(dev->ctrl.device,
1309 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1310 }
1311 
1312 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1313 {
1314 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1315 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1316 	struct nvme_dev *dev = nvmeq->dev;
1317 	struct request *abort_req;
1318 	struct nvme_command cmd = { };
1319 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1320 	u8 opcode;
1321 
1322 	if (nvme_state_terminal(&dev->ctrl))
1323 		goto disable;
1324 
1325 	/* If PCI error recovery process is happening, we cannot reset or
1326 	 * the recovery mechanism will surely fail.
1327 	 */
1328 	mb();
1329 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1330 		return BLK_EH_RESET_TIMER;
1331 
1332 	/*
1333 	 * Reset immediately if the controller is failed
1334 	 */
1335 	if (nvme_should_reset(dev, csts)) {
1336 		nvme_warn_reset(dev, csts);
1337 		goto disable;
1338 	}
1339 
1340 	/*
1341 	 * Did we miss an interrupt?
1342 	 */
1343 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1344 		nvme_poll(req->mq_hctx, NULL);
1345 	else
1346 		nvme_poll_irqdisable(nvmeq);
1347 
1348 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1349 		dev_warn(dev->ctrl.device,
1350 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1351 			 req->tag, nvme_cid(req), nvmeq->qid);
1352 		return BLK_EH_DONE;
1353 	}
1354 
1355 	/*
1356 	 * Shutdown immediately if controller times out while starting. The
1357 	 * reset work will see the pci device disabled when it gets the forced
1358 	 * cancellation error. All outstanding requests are completed on
1359 	 * shutdown, so we return BLK_EH_DONE.
1360 	 */
1361 	switch (nvme_ctrl_state(&dev->ctrl)) {
1362 	case NVME_CTRL_CONNECTING:
1363 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1364 		fallthrough;
1365 	case NVME_CTRL_DELETING:
1366 		dev_warn_ratelimited(dev->ctrl.device,
1367 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1368 			 req->tag, nvme_cid(req), nvmeq->qid);
1369 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1370 		nvme_dev_disable(dev, true);
1371 		return BLK_EH_DONE;
1372 	case NVME_CTRL_RESETTING:
1373 		return BLK_EH_RESET_TIMER;
1374 	default:
1375 		break;
1376 	}
1377 
1378 	/*
1379 	 * Shutdown the controller immediately and schedule a reset if the
1380 	 * command was already aborted once before and still hasn't been
1381 	 * returned to the driver, or if this is the admin queue.
1382 	 */
1383 	opcode = nvme_req(req)->cmd->common.opcode;
1384 	if (!nvmeq->qid || iod->aborted) {
1385 		dev_warn(dev->ctrl.device,
1386 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1387 			 req->tag, nvme_cid(req), opcode,
1388 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1389 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1390 		goto disable;
1391 	}
1392 
1393 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1394 		atomic_inc(&dev->ctrl.abort_limit);
1395 		return BLK_EH_RESET_TIMER;
1396 	}
1397 	iod->aborted = true;
1398 
1399 	cmd.abort.opcode = nvme_admin_abort_cmd;
1400 	cmd.abort.cid = nvme_cid(req);
1401 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1402 
1403 	dev_warn(nvmeq->dev->ctrl.device,
1404 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1405 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1406 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1407 		 blk_rq_bytes(req));
1408 
1409 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1410 					 BLK_MQ_REQ_NOWAIT);
1411 	if (IS_ERR(abort_req)) {
1412 		atomic_inc(&dev->ctrl.abort_limit);
1413 		return BLK_EH_RESET_TIMER;
1414 	}
1415 	nvme_init_request(abort_req, &cmd);
1416 
1417 	abort_req->end_io = abort_endio;
1418 	abort_req->end_io_data = NULL;
1419 	blk_execute_rq_nowait(abort_req, false);
1420 
1421 	/*
1422 	 * The aborted req will be completed on receiving the abort req.
1423 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1424 	 * as the device then is in a faulty state.
1425 	 */
1426 	return BLK_EH_RESET_TIMER;
1427 
1428 disable:
1429 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1430 		if (nvme_state_terminal(&dev->ctrl))
1431 			nvme_dev_disable(dev, true);
1432 		return BLK_EH_DONE;
1433 	}
1434 
1435 	nvme_dev_disable(dev, false);
1436 	if (nvme_try_sched_reset(&dev->ctrl))
1437 		nvme_unquiesce_io_queues(&dev->ctrl);
1438 	return BLK_EH_DONE;
1439 }
1440 
1441 static void nvme_free_queue(struct nvme_queue *nvmeq)
1442 {
1443 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1444 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1445 	if (!nvmeq->sq_cmds)
1446 		return;
1447 
1448 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1449 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1450 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1451 	} else {
1452 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1453 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1454 	}
1455 }
1456 
1457 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1458 {
1459 	int i;
1460 
1461 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1462 		dev->ctrl.queue_count--;
1463 		nvme_free_queue(&dev->queues[i]);
1464 	}
1465 }
1466 
1467 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1468 {
1469 	struct nvme_queue *nvmeq = &dev->queues[qid];
1470 
1471 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1472 		return;
1473 
1474 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1475 	mb();
1476 
1477 	nvmeq->dev->online_queues--;
1478 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1479 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1480 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1481 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1482 }
1483 
1484 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1485 {
1486 	int i;
1487 
1488 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1489 		nvme_suspend_queue(dev, i);
1490 }
1491 
1492 /*
1493  * Called only on a device that has been disabled and after all other threads
1494  * that can check this device's completion queues have synced, except
1495  * nvme_poll(). This is the last chance for the driver to see a natural
1496  * completion before nvme_cancel_request() terminates all incomplete requests.
1497  */
1498 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1499 {
1500 	int i;
1501 
1502 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1503 		spin_lock(&dev->queues[i].cq_poll_lock);
1504 		nvme_poll_cq(&dev->queues[i], NULL);
1505 		spin_unlock(&dev->queues[i].cq_poll_lock);
1506 	}
1507 }
1508 
1509 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1510 				int entry_size)
1511 {
1512 	int q_depth = dev->q_depth;
1513 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1514 					  NVME_CTRL_PAGE_SIZE);
1515 
1516 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1517 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1518 
1519 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1520 		q_depth = div_u64(mem_per_q, entry_size);
1521 
1522 		/*
1523 		 * Ensure the reduced q_depth is above some threshold where it
1524 		 * would be better to map queues in system memory with the
1525 		 * original depth
1526 		 */
1527 		if (q_depth < 64)
1528 			return -ENOMEM;
1529 	}
1530 
1531 	return q_depth;
1532 }
1533 
1534 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1535 				int qid)
1536 {
1537 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1538 
1539 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1540 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1541 		if (nvmeq->sq_cmds) {
1542 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1543 							nvmeq->sq_cmds);
1544 			if (nvmeq->sq_dma_addr) {
1545 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1546 				return 0;
1547 			}
1548 
1549 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1550 		}
1551 	}
1552 
1553 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1554 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1555 	if (!nvmeq->sq_cmds)
1556 		return -ENOMEM;
1557 	return 0;
1558 }
1559 
1560 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1561 {
1562 	struct nvme_queue *nvmeq = &dev->queues[qid];
1563 
1564 	if (dev->ctrl.queue_count > qid)
1565 		return 0;
1566 
1567 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1568 	nvmeq->q_depth = depth;
1569 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1570 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1571 	if (!nvmeq->cqes)
1572 		goto free_nvmeq;
1573 
1574 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1575 		goto free_cqdma;
1576 
1577 	nvmeq->dev = dev;
1578 	spin_lock_init(&nvmeq->sq_lock);
1579 	spin_lock_init(&nvmeq->cq_poll_lock);
1580 	nvmeq->cq_head = 0;
1581 	nvmeq->cq_phase = 1;
1582 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1583 	nvmeq->qid = qid;
1584 	dev->ctrl.queue_count++;
1585 
1586 	return 0;
1587 
1588  free_cqdma:
1589 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1590 			  nvmeq->cq_dma_addr);
1591  free_nvmeq:
1592 	return -ENOMEM;
1593 }
1594 
1595 static int queue_request_irq(struct nvme_queue *nvmeq)
1596 {
1597 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1598 	int nr = nvmeq->dev->ctrl.instance;
1599 
1600 	if (use_threaded_interrupts) {
1601 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1602 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1603 	} else {
1604 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1605 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1606 	}
1607 }
1608 
1609 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1610 {
1611 	struct nvme_dev *dev = nvmeq->dev;
1612 
1613 	nvmeq->sq_tail = 0;
1614 	nvmeq->last_sq_tail = 0;
1615 	nvmeq->cq_head = 0;
1616 	nvmeq->cq_phase = 1;
1617 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1618 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1619 	nvme_dbbuf_init(dev, nvmeq, qid);
1620 	dev->online_queues++;
1621 	wmb(); /* ensure the first interrupt sees the initialization */
1622 }
1623 
1624 /*
1625  * Try getting shutdown_lock while setting up IO queues.
1626  */
1627 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1628 {
1629 	/*
1630 	 * Give up if the lock is being held by nvme_dev_disable.
1631 	 */
1632 	if (!mutex_trylock(&dev->shutdown_lock))
1633 		return -ENODEV;
1634 
1635 	/*
1636 	 * Controller is in wrong state, fail early.
1637 	 */
1638 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1639 		mutex_unlock(&dev->shutdown_lock);
1640 		return -ENODEV;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1647 {
1648 	struct nvme_dev *dev = nvmeq->dev;
1649 	int result;
1650 	u16 vector = 0;
1651 
1652 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1653 
1654 	/*
1655 	 * A queue's vector matches the queue identifier unless the controller
1656 	 * has only one vector available.
1657 	 */
1658 	if (!polled)
1659 		vector = dev->num_vecs == 1 ? 0 : qid;
1660 	else
1661 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1662 
1663 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1664 	if (result)
1665 		return result;
1666 
1667 	result = adapter_alloc_sq(dev, qid, nvmeq);
1668 	if (result < 0)
1669 		return result;
1670 	if (result)
1671 		goto release_cq;
1672 
1673 	nvmeq->cq_vector = vector;
1674 
1675 	result = nvme_setup_io_queues_trylock(dev);
1676 	if (result)
1677 		return result;
1678 	nvme_init_queue(nvmeq, qid);
1679 	if (!polled) {
1680 		result = queue_request_irq(nvmeq);
1681 		if (result < 0)
1682 			goto release_sq;
1683 	}
1684 
1685 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1686 	mutex_unlock(&dev->shutdown_lock);
1687 	return result;
1688 
1689 release_sq:
1690 	dev->online_queues--;
1691 	mutex_unlock(&dev->shutdown_lock);
1692 	adapter_delete_sq(dev, qid);
1693 release_cq:
1694 	adapter_delete_cq(dev, qid);
1695 	return result;
1696 }
1697 
1698 static const struct blk_mq_ops nvme_mq_admin_ops = {
1699 	.queue_rq	= nvme_queue_rq,
1700 	.complete	= nvme_pci_complete_rq,
1701 	.init_hctx	= nvme_admin_init_hctx,
1702 	.init_request	= nvme_pci_init_request,
1703 	.timeout	= nvme_timeout,
1704 };
1705 
1706 static const struct blk_mq_ops nvme_mq_ops = {
1707 	.queue_rq	= nvme_queue_rq,
1708 	.queue_rqs	= nvme_queue_rqs,
1709 	.complete	= nvme_pci_complete_rq,
1710 	.commit_rqs	= nvme_commit_rqs,
1711 	.init_hctx	= nvme_init_hctx,
1712 	.init_request	= nvme_pci_init_request,
1713 	.map_queues	= nvme_pci_map_queues,
1714 	.timeout	= nvme_timeout,
1715 	.poll		= nvme_poll,
1716 };
1717 
1718 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1719 {
1720 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1721 		/*
1722 		 * If the controller was reset during removal, it's possible
1723 		 * user requests may be waiting on a stopped queue. Start the
1724 		 * queue to flush these to completion.
1725 		 */
1726 		nvme_unquiesce_admin_queue(&dev->ctrl);
1727 		nvme_remove_admin_tag_set(&dev->ctrl);
1728 	}
1729 }
1730 
1731 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1732 {
1733 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1734 }
1735 
1736 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1737 {
1738 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1739 
1740 	if (size <= dev->bar_mapped_size)
1741 		return 0;
1742 	if (size > pci_resource_len(pdev, 0))
1743 		return -ENOMEM;
1744 	if (dev->bar)
1745 		iounmap(dev->bar);
1746 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1747 	if (!dev->bar) {
1748 		dev->bar_mapped_size = 0;
1749 		return -ENOMEM;
1750 	}
1751 	dev->bar_mapped_size = size;
1752 	dev->dbs = dev->bar + NVME_REG_DBS;
1753 
1754 	return 0;
1755 }
1756 
1757 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1758 {
1759 	int result;
1760 	u32 aqa;
1761 	struct nvme_queue *nvmeq;
1762 
1763 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1764 	if (result < 0)
1765 		return result;
1766 
1767 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1768 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1769 
1770 	if (dev->subsystem &&
1771 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1772 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1773 
1774 	/*
1775 	 * If the device has been passed off to us in an enabled state, just
1776 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1777 	 * notification bits', but doing so may cause the device to complete
1778 	 * commands to the admin queue ... and we don't know what memory that
1779 	 * might be pointing at!
1780 	 */
1781 	result = nvme_disable_ctrl(&dev->ctrl, false);
1782 	if (result < 0)
1783 		return result;
1784 
1785 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1786 	if (result)
1787 		return result;
1788 
1789 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1790 
1791 	nvmeq = &dev->queues[0];
1792 	aqa = nvmeq->q_depth - 1;
1793 	aqa |= aqa << 16;
1794 
1795 	writel(aqa, dev->bar + NVME_REG_AQA);
1796 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1797 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1798 
1799 	result = nvme_enable_ctrl(&dev->ctrl);
1800 	if (result)
1801 		return result;
1802 
1803 	nvmeq->cq_vector = 0;
1804 	nvme_init_queue(nvmeq, 0);
1805 	result = queue_request_irq(nvmeq);
1806 	if (result) {
1807 		dev->online_queues--;
1808 		return result;
1809 	}
1810 
1811 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1812 	return result;
1813 }
1814 
1815 static int nvme_create_io_queues(struct nvme_dev *dev)
1816 {
1817 	unsigned i, max, rw_queues;
1818 	int ret = 0;
1819 
1820 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1821 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1822 			ret = -ENOMEM;
1823 			break;
1824 		}
1825 	}
1826 
1827 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1828 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1829 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1830 				dev->io_queues[HCTX_TYPE_READ];
1831 	} else {
1832 		rw_queues = max;
1833 	}
1834 
1835 	for (i = dev->online_queues; i <= max; i++) {
1836 		bool polled = i > rw_queues;
1837 
1838 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1839 		if (ret)
1840 			break;
1841 	}
1842 
1843 	/*
1844 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1845 	 * than the desired amount of queues, and even a controller without
1846 	 * I/O queues can still be used to issue admin commands.  This might
1847 	 * be useful to upgrade a buggy firmware for example.
1848 	 */
1849 	return ret >= 0 ? 0 : ret;
1850 }
1851 
1852 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1853 {
1854 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1855 
1856 	return 1ULL << (12 + 4 * szu);
1857 }
1858 
1859 static u32 nvme_cmb_size(struct nvme_dev *dev)
1860 {
1861 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1862 }
1863 
1864 static void nvme_map_cmb(struct nvme_dev *dev)
1865 {
1866 	u64 size, offset;
1867 	resource_size_t bar_size;
1868 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1869 	int bar;
1870 
1871 	if (dev->cmb_size)
1872 		return;
1873 
1874 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1875 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1876 
1877 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1878 	if (!dev->cmbsz)
1879 		return;
1880 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1881 
1882 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1883 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1884 	bar = NVME_CMB_BIR(dev->cmbloc);
1885 	bar_size = pci_resource_len(pdev, bar);
1886 
1887 	if (offset > bar_size)
1888 		return;
1889 
1890 	/*
1891 	 * Tell the controller about the host side address mapping the CMB,
1892 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1893 	 */
1894 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1895 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1896 			     (pci_bus_address(pdev, bar) + offset),
1897 			     dev->bar + NVME_REG_CMBMSC);
1898 	}
1899 
1900 	/*
1901 	 * Controllers may support a CMB size larger than their BAR,
1902 	 * for example, due to being behind a bridge. Reduce the CMB to
1903 	 * the reported size of the BAR
1904 	 */
1905 	if (size > bar_size - offset)
1906 		size = bar_size - offset;
1907 
1908 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1909 		dev_warn(dev->ctrl.device,
1910 			 "failed to register the CMB\n");
1911 		return;
1912 	}
1913 
1914 	dev->cmb_size = size;
1915 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1916 
1917 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1918 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1919 		pci_p2pmem_publish(pdev, true);
1920 
1921 	nvme_update_attrs(dev);
1922 }
1923 
1924 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1925 {
1926 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1927 	u64 dma_addr = dev->host_mem_descs_dma;
1928 	struct nvme_command c = { };
1929 	int ret;
1930 
1931 	c.features.opcode	= nvme_admin_set_features;
1932 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1933 	c.features.dword11	= cpu_to_le32(bits);
1934 	c.features.dword12	= cpu_to_le32(host_mem_size);
1935 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1936 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1937 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1938 
1939 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1940 	if (ret) {
1941 		dev_warn(dev->ctrl.device,
1942 			 "failed to set host mem (err %d, flags %#x).\n",
1943 			 ret, bits);
1944 	} else
1945 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1946 
1947 	return ret;
1948 }
1949 
1950 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
1951 {
1952 	int i;
1953 
1954 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1955 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1956 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1957 
1958 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1959 			       le64_to_cpu(desc->addr),
1960 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1961 	}
1962 
1963 	kfree(dev->host_mem_desc_bufs);
1964 	dev->host_mem_desc_bufs = NULL;
1965 }
1966 
1967 static void nvme_free_host_mem(struct nvme_dev *dev)
1968 {
1969 	if (dev->hmb_sgt)
1970 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
1971 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
1972 	else
1973 		nvme_free_host_mem_multi(dev);
1974 
1975 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
1976 			dev->host_mem_descs, dev->host_mem_descs_dma);
1977 	dev->host_mem_descs = NULL;
1978 	dev->host_mem_descs_size = 0;
1979 	dev->nr_host_mem_descs = 0;
1980 }
1981 
1982 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
1983 {
1984 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
1985 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
1986 	if (!dev->hmb_sgt)
1987 		return -ENOMEM;
1988 
1989 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
1990 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
1991 			GFP_KERNEL);
1992 	if (!dev->host_mem_descs) {
1993 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
1994 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
1995 		dev->hmb_sgt = NULL;
1996 		return -ENOMEM;
1997 	}
1998 	dev->host_mem_size = size;
1999 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2000 	dev->nr_host_mem_descs = 1;
2001 
2002 	dev->host_mem_descs[0].addr =
2003 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2004 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2005 	return 0;
2006 }
2007 
2008 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2009 		u32 chunk_size)
2010 {
2011 	struct nvme_host_mem_buf_desc *descs;
2012 	u32 max_entries, len, descs_size;
2013 	dma_addr_t descs_dma;
2014 	int i = 0;
2015 	void **bufs;
2016 	u64 size, tmp;
2017 
2018 	tmp = (preferred + chunk_size - 1);
2019 	do_div(tmp, chunk_size);
2020 	max_entries = tmp;
2021 
2022 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2023 		max_entries = dev->ctrl.hmmaxd;
2024 
2025 	descs_size = max_entries * sizeof(*descs);
2026 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2027 			GFP_KERNEL);
2028 	if (!descs)
2029 		goto out;
2030 
2031 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2032 	if (!bufs)
2033 		goto out_free_descs;
2034 
2035 	for (size = 0; size < preferred && i < max_entries; size += len) {
2036 		dma_addr_t dma_addr;
2037 
2038 		len = min_t(u64, chunk_size, preferred - size);
2039 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2040 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2041 		if (!bufs[i])
2042 			break;
2043 
2044 		descs[i].addr = cpu_to_le64(dma_addr);
2045 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2046 		i++;
2047 	}
2048 
2049 	if (!size)
2050 		goto out_free_bufs;
2051 
2052 	dev->nr_host_mem_descs = i;
2053 	dev->host_mem_size = size;
2054 	dev->host_mem_descs = descs;
2055 	dev->host_mem_descs_dma = descs_dma;
2056 	dev->host_mem_descs_size = descs_size;
2057 	dev->host_mem_desc_bufs = bufs;
2058 	return 0;
2059 
2060 out_free_bufs:
2061 	while (--i >= 0) {
2062 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2063 
2064 		dma_free_attrs(dev->dev, size, bufs[i],
2065 			       le64_to_cpu(descs[i].addr),
2066 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2067 	}
2068 
2069 	kfree(bufs);
2070 out_free_descs:
2071 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2072 out:
2073 	dev->host_mem_descs = NULL;
2074 	return -ENOMEM;
2075 }
2076 
2077 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2078 {
2079 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2080 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2081 	u64 chunk_size;
2082 
2083 	/*
2084 	 * If there is an IOMMU that can merge pages, try a virtually
2085 	 * non-contiguous allocation for a single segment first.
2086 	 */
2087 	if (!(PAGE_SIZE & dma_get_merge_boundary(dev->dev))) {
2088 		if (!nvme_alloc_host_mem_single(dev, preferred))
2089 			return 0;
2090 	}
2091 
2092 	/* start big and work our way down */
2093 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2094 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2095 			if (!min || dev->host_mem_size >= min)
2096 				return 0;
2097 			nvme_free_host_mem(dev);
2098 		}
2099 	}
2100 
2101 	return -ENOMEM;
2102 }
2103 
2104 static int nvme_setup_host_mem(struct nvme_dev *dev)
2105 {
2106 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2107 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2108 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2109 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2110 	int ret;
2111 
2112 	if (!dev->ctrl.hmpre)
2113 		return 0;
2114 
2115 	preferred = min(preferred, max);
2116 	if (min > max) {
2117 		dev_warn(dev->ctrl.device,
2118 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2119 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2120 		nvme_free_host_mem(dev);
2121 		return 0;
2122 	}
2123 
2124 	/*
2125 	 * If we already have a buffer allocated check if we can reuse it.
2126 	 */
2127 	if (dev->host_mem_descs) {
2128 		if (dev->host_mem_size >= min)
2129 			enable_bits |= NVME_HOST_MEM_RETURN;
2130 		else
2131 			nvme_free_host_mem(dev);
2132 	}
2133 
2134 	if (!dev->host_mem_descs) {
2135 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2136 			dev_warn(dev->ctrl.device,
2137 				"failed to allocate host memory buffer.\n");
2138 			return 0; /* controller must work without HMB */
2139 		}
2140 
2141 		dev_info(dev->ctrl.device,
2142 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2143 			dev->host_mem_size >> ilog2(SZ_1M),
2144 			dev->nr_host_mem_descs,
2145 			str_plural(dev->nr_host_mem_descs));
2146 	}
2147 
2148 	ret = nvme_set_host_mem(dev, enable_bits);
2149 	if (ret)
2150 		nvme_free_host_mem(dev);
2151 	return ret;
2152 }
2153 
2154 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2155 		char *buf)
2156 {
2157 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2158 
2159 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2160 		       ndev->cmbloc, ndev->cmbsz);
2161 }
2162 static DEVICE_ATTR_RO(cmb);
2163 
2164 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2165 		char *buf)
2166 {
2167 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2168 
2169 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2170 }
2171 static DEVICE_ATTR_RO(cmbloc);
2172 
2173 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2174 		char *buf)
2175 {
2176 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2177 
2178 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2179 }
2180 static DEVICE_ATTR_RO(cmbsz);
2181 
2182 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2183 			char *buf)
2184 {
2185 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2186 
2187 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2188 }
2189 
2190 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2191 			 const char *buf, size_t count)
2192 {
2193 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2194 	bool new;
2195 	int ret;
2196 
2197 	if (kstrtobool(buf, &new) < 0)
2198 		return -EINVAL;
2199 
2200 	if (new == ndev->hmb)
2201 		return count;
2202 
2203 	if (new) {
2204 		ret = nvme_setup_host_mem(ndev);
2205 	} else {
2206 		ret = nvme_set_host_mem(ndev, 0);
2207 		if (!ret)
2208 			nvme_free_host_mem(ndev);
2209 	}
2210 
2211 	if (ret < 0)
2212 		return ret;
2213 
2214 	return count;
2215 }
2216 static DEVICE_ATTR_RW(hmb);
2217 
2218 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2219 		struct attribute *a, int n)
2220 {
2221 	struct nvme_ctrl *ctrl =
2222 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2223 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2224 
2225 	if (a == &dev_attr_cmb.attr ||
2226 	    a == &dev_attr_cmbloc.attr ||
2227 	    a == &dev_attr_cmbsz.attr) {
2228 	    	if (!dev->cmbsz)
2229 			return 0;
2230 	}
2231 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2232 		return 0;
2233 
2234 	return a->mode;
2235 }
2236 
2237 static struct attribute *nvme_pci_attrs[] = {
2238 	&dev_attr_cmb.attr,
2239 	&dev_attr_cmbloc.attr,
2240 	&dev_attr_cmbsz.attr,
2241 	&dev_attr_hmb.attr,
2242 	NULL,
2243 };
2244 
2245 static const struct attribute_group nvme_pci_dev_attrs_group = {
2246 	.attrs		= nvme_pci_attrs,
2247 	.is_visible	= nvme_pci_attrs_are_visible,
2248 };
2249 
2250 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2251 	&nvme_dev_attrs_group,
2252 	&nvme_pci_dev_attrs_group,
2253 	NULL,
2254 };
2255 
2256 static void nvme_update_attrs(struct nvme_dev *dev)
2257 {
2258 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2259 }
2260 
2261 /*
2262  * nirqs is the number of interrupts available for write and read
2263  * queues. The core already reserved an interrupt for the admin queue.
2264  */
2265 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2266 {
2267 	struct nvme_dev *dev = affd->priv;
2268 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2269 
2270 	/*
2271 	 * If there is no interrupt available for queues, ensure that
2272 	 * the default queue is set to 1. The affinity set size is
2273 	 * also set to one, but the irq core ignores it for this case.
2274 	 *
2275 	 * If only one interrupt is available or 'write_queue' == 0, combine
2276 	 * write and read queues.
2277 	 *
2278 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2279 	 * queue.
2280 	 */
2281 	if (!nrirqs) {
2282 		nrirqs = 1;
2283 		nr_read_queues = 0;
2284 	} else if (nrirqs == 1 || !nr_write_queues) {
2285 		nr_read_queues = 0;
2286 	} else if (nr_write_queues >= nrirqs) {
2287 		nr_read_queues = 1;
2288 	} else {
2289 		nr_read_queues = nrirqs - nr_write_queues;
2290 	}
2291 
2292 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2293 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2294 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2295 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2296 	affd->nr_sets = nr_read_queues ? 2 : 1;
2297 }
2298 
2299 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2300 {
2301 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2302 	struct irq_affinity affd = {
2303 		.pre_vectors	= 1,
2304 		.calc_sets	= nvme_calc_irq_sets,
2305 		.priv		= dev,
2306 	};
2307 	unsigned int irq_queues, poll_queues;
2308 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2309 
2310 	/*
2311 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2312 	 * left over for non-polled I/O.
2313 	 */
2314 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2315 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2316 
2317 	/*
2318 	 * Initialize for the single interrupt case, will be updated in
2319 	 * nvme_calc_irq_sets().
2320 	 */
2321 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2322 	dev->io_queues[HCTX_TYPE_READ] = 0;
2323 
2324 	/*
2325 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2326 	 * but some Apple controllers require all queues to use the first
2327 	 * vector.
2328 	 */
2329 	irq_queues = 1;
2330 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2331 		irq_queues += (nr_io_queues - poll_queues);
2332 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2333 		flags &= ~PCI_IRQ_MSI;
2334 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2335 					      &affd);
2336 }
2337 
2338 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2339 {
2340 	/*
2341 	 * If tags are shared with admin queue (Apple bug), then
2342 	 * make sure we only use one IO queue.
2343 	 */
2344 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2345 		return 1;
2346 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2347 }
2348 
2349 static int nvme_setup_io_queues(struct nvme_dev *dev)
2350 {
2351 	struct nvme_queue *adminq = &dev->queues[0];
2352 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2353 	unsigned int nr_io_queues;
2354 	unsigned long size;
2355 	int result;
2356 
2357 	/*
2358 	 * Sample the module parameters once at reset time so that we have
2359 	 * stable values to work with.
2360 	 */
2361 	dev->nr_write_queues = write_queues;
2362 	dev->nr_poll_queues = poll_queues;
2363 
2364 	nr_io_queues = dev->nr_allocated_queues - 1;
2365 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2366 	if (result < 0)
2367 		return result;
2368 
2369 	if (nr_io_queues == 0)
2370 		return 0;
2371 
2372 	/*
2373 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2374 	 * from set to unset. If there is a window to it is truely freed,
2375 	 * pci_free_irq_vectors() jumping into this window will crash.
2376 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2377 	 * nvme_dev_disable() path.
2378 	 */
2379 	result = nvme_setup_io_queues_trylock(dev);
2380 	if (result)
2381 		return result;
2382 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2383 		pci_free_irq(pdev, 0, adminq);
2384 
2385 	if (dev->cmb_use_sqes) {
2386 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2387 				sizeof(struct nvme_command));
2388 		if (result > 0) {
2389 			dev->q_depth = result;
2390 			dev->ctrl.sqsize = result - 1;
2391 		} else {
2392 			dev->cmb_use_sqes = false;
2393 		}
2394 	}
2395 
2396 	do {
2397 		size = db_bar_size(dev, nr_io_queues);
2398 		result = nvme_remap_bar(dev, size);
2399 		if (!result)
2400 			break;
2401 		if (!--nr_io_queues) {
2402 			result = -ENOMEM;
2403 			goto out_unlock;
2404 		}
2405 	} while (1);
2406 	adminq->q_db = dev->dbs;
2407 
2408  retry:
2409 	/* Deregister the admin queue's interrupt */
2410 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2411 		pci_free_irq(pdev, 0, adminq);
2412 
2413 	/*
2414 	 * If we enable msix early due to not intx, disable it again before
2415 	 * setting up the full range we need.
2416 	 */
2417 	pci_free_irq_vectors(pdev);
2418 
2419 	result = nvme_setup_irqs(dev, nr_io_queues);
2420 	if (result <= 0) {
2421 		result = -EIO;
2422 		goto out_unlock;
2423 	}
2424 
2425 	dev->num_vecs = result;
2426 	result = max(result - 1, 1);
2427 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2428 
2429 	/*
2430 	 * Should investigate if there's a performance win from allocating
2431 	 * more queues than interrupt vectors; it might allow the submission
2432 	 * path to scale better, even if the receive path is limited by the
2433 	 * number of interrupts.
2434 	 */
2435 	result = queue_request_irq(adminq);
2436 	if (result)
2437 		goto out_unlock;
2438 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2439 	mutex_unlock(&dev->shutdown_lock);
2440 
2441 	result = nvme_create_io_queues(dev);
2442 	if (result || dev->online_queues < 2)
2443 		return result;
2444 
2445 	if (dev->online_queues - 1 < dev->max_qid) {
2446 		nr_io_queues = dev->online_queues - 1;
2447 		nvme_delete_io_queues(dev);
2448 		result = nvme_setup_io_queues_trylock(dev);
2449 		if (result)
2450 			return result;
2451 		nvme_suspend_io_queues(dev);
2452 		goto retry;
2453 	}
2454 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2455 					dev->io_queues[HCTX_TYPE_DEFAULT],
2456 					dev->io_queues[HCTX_TYPE_READ],
2457 					dev->io_queues[HCTX_TYPE_POLL]);
2458 	return 0;
2459 out_unlock:
2460 	mutex_unlock(&dev->shutdown_lock);
2461 	return result;
2462 }
2463 
2464 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2465 					     blk_status_t error)
2466 {
2467 	struct nvme_queue *nvmeq = req->end_io_data;
2468 
2469 	blk_mq_free_request(req);
2470 	complete(&nvmeq->delete_done);
2471 	return RQ_END_IO_NONE;
2472 }
2473 
2474 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2475 					  blk_status_t error)
2476 {
2477 	struct nvme_queue *nvmeq = req->end_io_data;
2478 
2479 	if (error)
2480 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2481 
2482 	return nvme_del_queue_end(req, error);
2483 }
2484 
2485 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2486 {
2487 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2488 	struct request *req;
2489 	struct nvme_command cmd = { };
2490 
2491 	cmd.delete_queue.opcode = opcode;
2492 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2493 
2494 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2495 	if (IS_ERR(req))
2496 		return PTR_ERR(req);
2497 	nvme_init_request(req, &cmd);
2498 
2499 	if (opcode == nvme_admin_delete_cq)
2500 		req->end_io = nvme_del_cq_end;
2501 	else
2502 		req->end_io = nvme_del_queue_end;
2503 	req->end_io_data = nvmeq;
2504 
2505 	init_completion(&nvmeq->delete_done);
2506 	blk_execute_rq_nowait(req, false);
2507 	return 0;
2508 }
2509 
2510 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2511 {
2512 	int nr_queues = dev->online_queues - 1, sent = 0;
2513 	unsigned long timeout;
2514 
2515  retry:
2516 	timeout = NVME_ADMIN_TIMEOUT;
2517 	while (nr_queues > 0) {
2518 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2519 			break;
2520 		nr_queues--;
2521 		sent++;
2522 	}
2523 	while (sent) {
2524 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2525 
2526 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2527 				timeout);
2528 		if (timeout == 0)
2529 			return false;
2530 
2531 		sent--;
2532 		if (nr_queues)
2533 			goto retry;
2534 	}
2535 	return true;
2536 }
2537 
2538 static void nvme_delete_io_queues(struct nvme_dev *dev)
2539 {
2540 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2541 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2542 }
2543 
2544 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2545 {
2546 	if (dev->io_queues[HCTX_TYPE_POLL])
2547 		return 3;
2548 	if (dev->io_queues[HCTX_TYPE_READ])
2549 		return 2;
2550 	return 1;
2551 }
2552 
2553 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2554 {
2555 	if (!dev->ctrl.tagset) {
2556 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2557 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2558 		return true;
2559 	}
2560 
2561 	/* Give up if we are racing with nvme_dev_disable() */
2562 	if (!mutex_trylock(&dev->shutdown_lock))
2563 		return false;
2564 
2565 	/* Check if nvme_dev_disable() has been executed already */
2566 	if (!dev->online_queues) {
2567 		mutex_unlock(&dev->shutdown_lock);
2568 		return false;
2569 	}
2570 
2571 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2572 	/* free previously allocated queues that are no longer usable */
2573 	nvme_free_queues(dev, dev->online_queues);
2574 	mutex_unlock(&dev->shutdown_lock);
2575 	return true;
2576 }
2577 
2578 static int nvme_pci_enable(struct nvme_dev *dev)
2579 {
2580 	int result = -ENOMEM;
2581 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2582 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2583 
2584 	if (pci_enable_device_mem(pdev))
2585 		return result;
2586 
2587 	pci_set_master(pdev);
2588 
2589 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2590 		result = -ENODEV;
2591 		goto disable;
2592 	}
2593 
2594 	/*
2595 	 * Some devices and/or platforms don't advertise or work with INTx
2596 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2597 	 * adjust this later.
2598 	 */
2599 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2600 		flags &= ~PCI_IRQ_MSI;
2601 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2602 	if (result < 0)
2603 		goto disable;
2604 
2605 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2606 
2607 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2608 				io_queue_depth);
2609 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2610 	dev->dbs = dev->bar + 4096;
2611 
2612 	/*
2613 	 * Some Apple controllers require a non-standard SQE size.
2614 	 * Interestingly they also seem to ignore the CC:IOSQES register
2615 	 * so we don't bother updating it here.
2616 	 */
2617 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2618 		dev->io_sqes = 7;
2619 	else
2620 		dev->io_sqes = NVME_NVM_IOSQES;
2621 
2622 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2623 		dev->q_depth = 2;
2624 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2625 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2626 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2627 		dev->q_depth = 64;
2628 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2629                         "set queue depth=%u\n", dev->q_depth);
2630 	}
2631 
2632 	/*
2633 	 * Controllers with the shared tags quirk need the IO queue to be
2634 	 * big enough so that we get 32 tags for the admin queue
2635 	 */
2636 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2637 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2638 		dev->q_depth = NVME_AQ_DEPTH + 2;
2639 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2640 			 dev->q_depth);
2641 	}
2642 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2643 
2644 	nvme_map_cmb(dev);
2645 
2646 	pci_save_state(pdev);
2647 
2648 	result = nvme_pci_configure_admin_queue(dev);
2649 	if (result)
2650 		goto free_irq;
2651 	return result;
2652 
2653  free_irq:
2654 	pci_free_irq_vectors(pdev);
2655  disable:
2656 	pci_disable_device(pdev);
2657 	return result;
2658 }
2659 
2660 static void nvme_dev_unmap(struct nvme_dev *dev)
2661 {
2662 	if (dev->bar)
2663 		iounmap(dev->bar);
2664 	pci_release_mem_regions(to_pci_dev(dev->dev));
2665 }
2666 
2667 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2668 {
2669 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2670 	u32 csts;
2671 
2672 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2673 		return true;
2674 	if (pdev->error_state != pci_channel_io_normal)
2675 		return true;
2676 
2677 	csts = readl(dev->bar + NVME_REG_CSTS);
2678 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2679 }
2680 
2681 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2682 {
2683 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2684 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2685 	bool dead;
2686 
2687 	mutex_lock(&dev->shutdown_lock);
2688 	dead = nvme_pci_ctrl_is_dead(dev);
2689 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2690 		if (pci_is_enabled(pdev))
2691 			nvme_start_freeze(&dev->ctrl);
2692 		/*
2693 		 * Give the controller a chance to complete all entered requests
2694 		 * if doing a safe shutdown.
2695 		 */
2696 		if (!dead && shutdown)
2697 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2698 	}
2699 
2700 	nvme_quiesce_io_queues(&dev->ctrl);
2701 
2702 	if (!dead && dev->ctrl.queue_count > 0) {
2703 		nvme_delete_io_queues(dev);
2704 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2705 		nvme_poll_irqdisable(&dev->queues[0]);
2706 	}
2707 	nvme_suspend_io_queues(dev);
2708 	nvme_suspend_queue(dev, 0);
2709 	pci_free_irq_vectors(pdev);
2710 	if (pci_is_enabled(pdev))
2711 		pci_disable_device(pdev);
2712 	nvme_reap_pending_cqes(dev);
2713 
2714 	nvme_cancel_tagset(&dev->ctrl);
2715 	nvme_cancel_admin_tagset(&dev->ctrl);
2716 
2717 	/*
2718 	 * The driver will not be starting up queues again if shutting down so
2719 	 * must flush all entered requests to their failed completion to avoid
2720 	 * deadlocking blk-mq hot-cpu notifier.
2721 	 */
2722 	if (shutdown) {
2723 		nvme_unquiesce_io_queues(&dev->ctrl);
2724 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2725 			nvme_unquiesce_admin_queue(&dev->ctrl);
2726 	}
2727 	mutex_unlock(&dev->shutdown_lock);
2728 }
2729 
2730 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2731 {
2732 	if (!nvme_wait_reset(&dev->ctrl))
2733 		return -EBUSY;
2734 	nvme_dev_disable(dev, shutdown);
2735 	return 0;
2736 }
2737 
2738 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2739 {
2740 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2741 						NVME_CTRL_PAGE_SIZE,
2742 						NVME_CTRL_PAGE_SIZE, 0);
2743 	if (!dev->prp_page_pool)
2744 		return -ENOMEM;
2745 
2746 	/* Optimisation for I/Os between 4k and 128k */
2747 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2748 						256, 256, 0);
2749 	if (!dev->prp_small_pool) {
2750 		dma_pool_destroy(dev->prp_page_pool);
2751 		return -ENOMEM;
2752 	}
2753 	return 0;
2754 }
2755 
2756 static void nvme_release_prp_pools(struct nvme_dev *dev)
2757 {
2758 	dma_pool_destroy(dev->prp_page_pool);
2759 	dma_pool_destroy(dev->prp_small_pool);
2760 }
2761 
2762 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2763 {
2764 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2765 
2766 	dev->iod_mempool = mempool_create_node(1,
2767 			mempool_kmalloc, mempool_kfree,
2768 			(void *)alloc_size, GFP_KERNEL,
2769 			dev_to_node(dev->dev));
2770 	if (!dev->iod_mempool)
2771 		return -ENOMEM;
2772 	return 0;
2773 }
2774 
2775 static void nvme_free_tagset(struct nvme_dev *dev)
2776 {
2777 	if (dev->tagset.tags)
2778 		nvme_remove_io_tag_set(&dev->ctrl);
2779 	dev->ctrl.tagset = NULL;
2780 }
2781 
2782 /* pairs with nvme_pci_alloc_dev */
2783 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2784 {
2785 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2786 
2787 	nvme_free_tagset(dev);
2788 	put_device(dev->dev);
2789 	kfree(dev->queues);
2790 	kfree(dev);
2791 }
2792 
2793 static void nvme_reset_work(struct work_struct *work)
2794 {
2795 	struct nvme_dev *dev =
2796 		container_of(work, struct nvme_dev, ctrl.reset_work);
2797 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2798 	int result;
2799 
2800 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2801 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2802 			 dev->ctrl.state);
2803 		result = -ENODEV;
2804 		goto out;
2805 	}
2806 
2807 	/*
2808 	 * If we're called to reset a live controller first shut it down before
2809 	 * moving on.
2810 	 */
2811 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2812 		nvme_dev_disable(dev, false);
2813 	nvme_sync_queues(&dev->ctrl);
2814 
2815 	mutex_lock(&dev->shutdown_lock);
2816 	result = nvme_pci_enable(dev);
2817 	if (result)
2818 		goto out_unlock;
2819 	nvme_unquiesce_admin_queue(&dev->ctrl);
2820 	mutex_unlock(&dev->shutdown_lock);
2821 
2822 	/*
2823 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2824 	 * initializing procedure here.
2825 	 */
2826 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2827 		dev_warn(dev->ctrl.device,
2828 			"failed to mark controller CONNECTING\n");
2829 		result = -EBUSY;
2830 		goto out;
2831 	}
2832 
2833 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2834 	if (result)
2835 		goto out;
2836 
2837 	nvme_dbbuf_dma_alloc(dev);
2838 
2839 	result = nvme_setup_host_mem(dev);
2840 	if (result < 0)
2841 		goto out;
2842 
2843 	result = nvme_setup_io_queues(dev);
2844 	if (result)
2845 		goto out;
2846 
2847 	/*
2848 	 * Freeze and update the number of I/O queues as thos might have
2849 	 * changed.  If there are no I/O queues left after this reset, keep the
2850 	 * controller around but remove all namespaces.
2851 	 */
2852 	if (dev->online_queues > 1) {
2853 		nvme_dbbuf_set(dev);
2854 		nvme_unquiesce_io_queues(&dev->ctrl);
2855 		nvme_wait_freeze(&dev->ctrl);
2856 		if (!nvme_pci_update_nr_queues(dev))
2857 			goto out;
2858 		nvme_unfreeze(&dev->ctrl);
2859 	} else {
2860 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2861 		nvme_mark_namespaces_dead(&dev->ctrl);
2862 		nvme_unquiesce_io_queues(&dev->ctrl);
2863 		nvme_remove_namespaces(&dev->ctrl);
2864 		nvme_free_tagset(dev);
2865 	}
2866 
2867 	/*
2868 	 * If only admin queue live, keep it to do further investigation or
2869 	 * recovery.
2870 	 */
2871 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2872 		dev_warn(dev->ctrl.device,
2873 			"failed to mark controller live state\n");
2874 		result = -ENODEV;
2875 		goto out;
2876 	}
2877 
2878 	nvme_start_ctrl(&dev->ctrl);
2879 	return;
2880 
2881  out_unlock:
2882 	mutex_unlock(&dev->shutdown_lock);
2883  out:
2884 	/*
2885 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2886 	 * may be holding this pci_dev's device lock.
2887 	 */
2888 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2889 		 result);
2890 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2891 	nvme_dev_disable(dev, true);
2892 	nvme_sync_queues(&dev->ctrl);
2893 	nvme_mark_namespaces_dead(&dev->ctrl);
2894 	nvme_unquiesce_io_queues(&dev->ctrl);
2895 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2896 }
2897 
2898 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2899 {
2900 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2901 	return 0;
2902 }
2903 
2904 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2905 {
2906 	writel(val, to_nvme_dev(ctrl)->bar + off);
2907 	return 0;
2908 }
2909 
2910 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2911 {
2912 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2913 	return 0;
2914 }
2915 
2916 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2917 {
2918 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2919 
2920 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2921 }
2922 
2923 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2924 {
2925 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2926 	struct nvme_subsystem *subsys = ctrl->subsys;
2927 
2928 	dev_err(ctrl->device,
2929 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2930 		pdev->vendor, pdev->device,
2931 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2932 		subsys->model, nvme_strlen(subsys->firmware_rev,
2933 					   sizeof(subsys->firmware_rev)),
2934 		subsys->firmware_rev);
2935 }
2936 
2937 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2938 {
2939 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2940 
2941 	return dma_pci_p2pdma_supported(dev->dev);
2942 }
2943 
2944 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2945 	.name			= "pcie",
2946 	.module			= THIS_MODULE,
2947 	.flags			= NVME_F_METADATA_SUPPORTED,
2948 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2949 	.reg_read32		= nvme_pci_reg_read32,
2950 	.reg_write32		= nvme_pci_reg_write32,
2951 	.reg_read64		= nvme_pci_reg_read64,
2952 	.free_ctrl		= nvme_pci_free_ctrl,
2953 	.submit_async_event	= nvme_pci_submit_async_event,
2954 	.subsystem_reset	= nvme_pci_subsystem_reset,
2955 	.get_address		= nvme_pci_get_address,
2956 	.print_device_info	= nvme_pci_print_device_info,
2957 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2958 };
2959 
2960 static int nvme_dev_map(struct nvme_dev *dev)
2961 {
2962 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2963 
2964 	if (pci_request_mem_regions(pdev, "nvme"))
2965 		return -ENODEV;
2966 
2967 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2968 		goto release;
2969 
2970 	return 0;
2971   release:
2972 	pci_release_mem_regions(pdev);
2973 	return -ENODEV;
2974 }
2975 
2976 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2977 {
2978 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2979 		/*
2980 		 * Several Samsung devices seem to drop off the PCIe bus
2981 		 * randomly when APST is on and uses the deepest sleep state.
2982 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2983 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2984 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2985 		 * laptops.
2986 		 */
2987 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2988 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2989 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2990 			return NVME_QUIRK_NO_DEEPEST_PS;
2991 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2992 		/*
2993 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2994 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2995 		 * within few minutes after bootup on a Coffee Lake board -
2996 		 * ASUS PRIME Z370-A
2997 		 */
2998 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2999 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3000 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3001 			return NVME_QUIRK_NO_APST;
3002 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3003 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3004 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3005 		/*
3006 		 * Forcing to use host managed nvme power settings for
3007 		 * lowest idle power with quick resume latency on
3008 		 * Samsung and Toshiba SSDs based on suspend behavior
3009 		 * on Coffee Lake board for LENOVO C640
3010 		 */
3011 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3012 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3013 			return NVME_QUIRK_SIMPLE_SUSPEND;
3014 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3015 		   pdev->device == 0x500f)) {
3016 		/*
3017 		 * Exclude some Kingston NV1 and A2000 devices from
3018 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3019 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3020 		 */
3021 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3022 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3023 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3024 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3025 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3026 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3027 		/*
3028 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3029 		 * because of high power consumption (> 2 Watt) in s2idle
3030 		 * sleep. Only some boards with Intel CPU are affected.
3031 		 */
3032 		if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3033 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3034 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3035 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3036 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3037 	}
3038 
3039 	/*
3040 	 * NVMe SSD drops off the PCIe bus after system idle
3041 	 * for 10 hours on a Lenovo N60z board.
3042 	 */
3043 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3044 		return NVME_QUIRK_NO_APST;
3045 
3046 	return 0;
3047 }
3048 
3049 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3050 		const struct pci_device_id *id)
3051 {
3052 	unsigned long quirks = id->driver_data;
3053 	int node = dev_to_node(&pdev->dev);
3054 	struct nvme_dev *dev;
3055 	int ret = -ENOMEM;
3056 
3057 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3058 	if (!dev)
3059 		return ERR_PTR(-ENOMEM);
3060 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3061 	mutex_init(&dev->shutdown_lock);
3062 
3063 	dev->nr_write_queues = write_queues;
3064 	dev->nr_poll_queues = poll_queues;
3065 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3066 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3067 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3068 	if (!dev->queues)
3069 		goto out_free_dev;
3070 
3071 	dev->dev = get_device(&pdev->dev);
3072 
3073 	quirks |= check_vendor_combination_bug(pdev);
3074 	if (!noacpi &&
3075 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3076 	    acpi_storage_d3(&pdev->dev)) {
3077 		/*
3078 		 * Some systems use a bios work around to ask for D3 on
3079 		 * platforms that support kernel managed suspend.
3080 		 */
3081 		dev_info(&pdev->dev,
3082 			 "platform quirk: setting simple suspend\n");
3083 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3084 	}
3085 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3086 			     quirks);
3087 	if (ret)
3088 		goto out_put_device;
3089 
3090 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3091 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3092 	else
3093 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3094 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3095 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3096 
3097 	/*
3098 	 * Limit the max command size to prevent iod->sg allocations going
3099 	 * over a single page.
3100 	 */
3101 	dev->ctrl.max_hw_sectors = min_t(u32,
3102 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3103 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3104 
3105 	/*
3106 	 * There is no support for SGLs for metadata (yet), so we are limited to
3107 	 * a single integrity segment for the separate metadata pointer.
3108 	 */
3109 	dev->ctrl.max_integrity_segments = 1;
3110 	return dev;
3111 
3112 out_put_device:
3113 	put_device(dev->dev);
3114 	kfree(dev->queues);
3115 out_free_dev:
3116 	kfree(dev);
3117 	return ERR_PTR(ret);
3118 }
3119 
3120 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3121 {
3122 	struct nvme_dev *dev;
3123 	int result = -ENOMEM;
3124 
3125 	dev = nvme_pci_alloc_dev(pdev, id);
3126 	if (IS_ERR(dev))
3127 		return PTR_ERR(dev);
3128 
3129 	result = nvme_add_ctrl(&dev->ctrl);
3130 	if (result)
3131 		goto out_put_ctrl;
3132 
3133 	result = nvme_dev_map(dev);
3134 	if (result)
3135 		goto out_uninit_ctrl;
3136 
3137 	result = nvme_setup_prp_pools(dev);
3138 	if (result)
3139 		goto out_dev_unmap;
3140 
3141 	result = nvme_pci_alloc_iod_mempool(dev);
3142 	if (result)
3143 		goto out_release_prp_pools;
3144 
3145 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3146 
3147 	result = nvme_pci_enable(dev);
3148 	if (result)
3149 		goto out_release_iod_mempool;
3150 
3151 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3152 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3153 	if (result)
3154 		goto out_disable;
3155 
3156 	/*
3157 	 * Mark the controller as connecting before sending admin commands to
3158 	 * allow the timeout handler to do the right thing.
3159 	 */
3160 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3161 		dev_warn(dev->ctrl.device,
3162 			"failed to mark controller CONNECTING\n");
3163 		result = -EBUSY;
3164 		goto out_disable;
3165 	}
3166 
3167 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3168 	if (result)
3169 		goto out_disable;
3170 
3171 	nvme_dbbuf_dma_alloc(dev);
3172 
3173 	result = nvme_setup_host_mem(dev);
3174 	if (result < 0)
3175 		goto out_disable;
3176 
3177 	result = nvme_setup_io_queues(dev);
3178 	if (result)
3179 		goto out_disable;
3180 
3181 	if (dev->online_queues > 1) {
3182 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3183 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3184 		nvme_dbbuf_set(dev);
3185 	}
3186 
3187 	if (!dev->ctrl.tagset)
3188 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3189 
3190 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3191 		dev_warn(dev->ctrl.device,
3192 			"failed to mark controller live state\n");
3193 		result = -ENODEV;
3194 		goto out_disable;
3195 	}
3196 
3197 	pci_set_drvdata(pdev, dev);
3198 
3199 	nvme_start_ctrl(&dev->ctrl);
3200 	nvme_put_ctrl(&dev->ctrl);
3201 	flush_work(&dev->ctrl.scan_work);
3202 	return 0;
3203 
3204 out_disable:
3205 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3206 	nvme_dev_disable(dev, true);
3207 	nvme_free_host_mem(dev);
3208 	nvme_dev_remove_admin(dev);
3209 	nvme_dbbuf_dma_free(dev);
3210 	nvme_free_queues(dev, 0);
3211 out_release_iod_mempool:
3212 	mempool_destroy(dev->iod_mempool);
3213 out_release_prp_pools:
3214 	nvme_release_prp_pools(dev);
3215 out_dev_unmap:
3216 	nvme_dev_unmap(dev);
3217 out_uninit_ctrl:
3218 	nvme_uninit_ctrl(&dev->ctrl);
3219 out_put_ctrl:
3220 	nvme_put_ctrl(&dev->ctrl);
3221 	return result;
3222 }
3223 
3224 static void nvme_reset_prepare(struct pci_dev *pdev)
3225 {
3226 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3227 
3228 	/*
3229 	 * We don't need to check the return value from waiting for the reset
3230 	 * state as pci_dev device lock is held, making it impossible to race
3231 	 * with ->remove().
3232 	 */
3233 	nvme_disable_prepare_reset(dev, false);
3234 	nvme_sync_queues(&dev->ctrl);
3235 }
3236 
3237 static void nvme_reset_done(struct pci_dev *pdev)
3238 {
3239 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3240 
3241 	if (!nvme_try_sched_reset(&dev->ctrl))
3242 		flush_work(&dev->ctrl.reset_work);
3243 }
3244 
3245 static void nvme_shutdown(struct pci_dev *pdev)
3246 {
3247 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3248 
3249 	nvme_disable_prepare_reset(dev, true);
3250 }
3251 
3252 /*
3253  * The driver's remove may be called on a device in a partially initialized
3254  * state. This function must not have any dependencies on the device state in
3255  * order to proceed.
3256  */
3257 static void nvme_remove(struct pci_dev *pdev)
3258 {
3259 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3260 
3261 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3262 	pci_set_drvdata(pdev, NULL);
3263 
3264 	if (!pci_device_is_present(pdev)) {
3265 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3266 		nvme_dev_disable(dev, true);
3267 	}
3268 
3269 	flush_work(&dev->ctrl.reset_work);
3270 	nvme_stop_ctrl(&dev->ctrl);
3271 	nvme_remove_namespaces(&dev->ctrl);
3272 	nvme_dev_disable(dev, true);
3273 	nvme_free_host_mem(dev);
3274 	nvme_dev_remove_admin(dev);
3275 	nvme_dbbuf_dma_free(dev);
3276 	nvme_free_queues(dev, 0);
3277 	mempool_destroy(dev->iod_mempool);
3278 	nvme_release_prp_pools(dev);
3279 	nvme_dev_unmap(dev);
3280 	nvme_uninit_ctrl(&dev->ctrl);
3281 }
3282 
3283 #ifdef CONFIG_PM_SLEEP
3284 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3285 {
3286 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3287 }
3288 
3289 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3290 {
3291 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3292 }
3293 
3294 static int nvme_resume(struct device *dev)
3295 {
3296 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3297 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3298 
3299 	if (ndev->last_ps == U32_MAX ||
3300 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3301 		goto reset;
3302 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3303 		goto reset;
3304 
3305 	return 0;
3306 reset:
3307 	return nvme_try_sched_reset(ctrl);
3308 }
3309 
3310 static int nvme_suspend(struct device *dev)
3311 {
3312 	struct pci_dev *pdev = to_pci_dev(dev);
3313 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3314 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3315 	int ret = -EBUSY;
3316 
3317 	ndev->last_ps = U32_MAX;
3318 
3319 	/*
3320 	 * The platform does not remove power for a kernel managed suspend so
3321 	 * use host managed nvme power settings for lowest idle power if
3322 	 * possible. This should have quicker resume latency than a full device
3323 	 * shutdown.  But if the firmware is involved after the suspend or the
3324 	 * device does not support any non-default power states, shut down the
3325 	 * device fully.
3326 	 *
3327 	 * If ASPM is not enabled for the device, shut down the device and allow
3328 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3329 	 * down, so as to allow the platform to achieve its minimum low-power
3330 	 * state (which may not be possible if the link is up).
3331 	 */
3332 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3333 	    !pcie_aspm_enabled(pdev) ||
3334 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3335 		return nvme_disable_prepare_reset(ndev, true);
3336 
3337 	nvme_start_freeze(ctrl);
3338 	nvme_wait_freeze(ctrl);
3339 	nvme_sync_queues(ctrl);
3340 
3341 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3342 		goto unfreeze;
3343 
3344 	/*
3345 	 * Host memory access may not be successful in a system suspend state,
3346 	 * but the specification allows the controller to access memory in a
3347 	 * non-operational power state.
3348 	 */
3349 	if (ndev->hmb) {
3350 		ret = nvme_set_host_mem(ndev, 0);
3351 		if (ret < 0)
3352 			goto unfreeze;
3353 	}
3354 
3355 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3356 	if (ret < 0)
3357 		goto unfreeze;
3358 
3359 	/*
3360 	 * A saved state prevents pci pm from generically controlling the
3361 	 * device's power. If we're using protocol specific settings, we don't
3362 	 * want pci interfering.
3363 	 */
3364 	pci_save_state(pdev);
3365 
3366 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3367 	if (ret < 0)
3368 		goto unfreeze;
3369 
3370 	if (ret) {
3371 		/* discard the saved state */
3372 		pci_load_saved_state(pdev, NULL);
3373 
3374 		/*
3375 		 * Clearing npss forces a controller reset on resume. The
3376 		 * correct value will be rediscovered then.
3377 		 */
3378 		ret = nvme_disable_prepare_reset(ndev, true);
3379 		ctrl->npss = 0;
3380 	}
3381 unfreeze:
3382 	nvme_unfreeze(ctrl);
3383 	return ret;
3384 }
3385 
3386 static int nvme_simple_suspend(struct device *dev)
3387 {
3388 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3389 
3390 	return nvme_disable_prepare_reset(ndev, true);
3391 }
3392 
3393 static int nvme_simple_resume(struct device *dev)
3394 {
3395 	struct pci_dev *pdev = to_pci_dev(dev);
3396 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3397 
3398 	return nvme_try_sched_reset(&ndev->ctrl);
3399 }
3400 
3401 static const struct dev_pm_ops nvme_dev_pm_ops = {
3402 	.suspend	= nvme_suspend,
3403 	.resume		= nvme_resume,
3404 	.freeze		= nvme_simple_suspend,
3405 	.thaw		= nvme_simple_resume,
3406 	.poweroff	= nvme_simple_suspend,
3407 	.restore	= nvme_simple_resume,
3408 };
3409 #endif /* CONFIG_PM_SLEEP */
3410 
3411 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3412 						pci_channel_state_t state)
3413 {
3414 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3415 
3416 	/*
3417 	 * A frozen channel requires a reset. When detected, this method will
3418 	 * shutdown the controller to quiesce. The controller will be restarted
3419 	 * after the slot reset through driver's slot_reset callback.
3420 	 */
3421 	switch (state) {
3422 	case pci_channel_io_normal:
3423 		return PCI_ERS_RESULT_CAN_RECOVER;
3424 	case pci_channel_io_frozen:
3425 		dev_warn(dev->ctrl.device,
3426 			"frozen state error detected, reset controller\n");
3427 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3428 			nvme_dev_disable(dev, true);
3429 			return PCI_ERS_RESULT_DISCONNECT;
3430 		}
3431 		nvme_dev_disable(dev, false);
3432 		return PCI_ERS_RESULT_NEED_RESET;
3433 	case pci_channel_io_perm_failure:
3434 		dev_warn(dev->ctrl.device,
3435 			"failure state error detected, request disconnect\n");
3436 		return PCI_ERS_RESULT_DISCONNECT;
3437 	}
3438 	return PCI_ERS_RESULT_NEED_RESET;
3439 }
3440 
3441 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3442 {
3443 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3444 
3445 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3446 	pci_restore_state(pdev);
3447 	if (!nvme_try_sched_reset(&dev->ctrl))
3448 		nvme_unquiesce_io_queues(&dev->ctrl);
3449 	return PCI_ERS_RESULT_RECOVERED;
3450 }
3451 
3452 static void nvme_error_resume(struct pci_dev *pdev)
3453 {
3454 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3455 
3456 	flush_work(&dev->ctrl.reset_work);
3457 }
3458 
3459 static const struct pci_error_handlers nvme_err_handler = {
3460 	.error_detected	= nvme_error_detected,
3461 	.slot_reset	= nvme_slot_reset,
3462 	.resume		= nvme_error_resume,
3463 	.reset_prepare	= nvme_reset_prepare,
3464 	.reset_done	= nvme_reset_done,
3465 };
3466 
3467 static const struct pci_device_id nvme_id_table[] = {
3468 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3469 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3470 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3471 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3472 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3473 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3474 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3475 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3476 				NVME_QUIRK_DEALLOCATE_ZEROES |
3477 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3478 				NVME_QUIRK_BOGUS_NID, },
3479 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3480 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3481 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3482 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3483 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3484 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3485 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3486 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3487 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3488 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3489 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3490 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3491 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3492 				NVME_QUIRK_BOGUS_NID, },
3493 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3494 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3495 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3496 		.driver_data = NVME_QUIRK_QDEPTH_ONE },
3497 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3498 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3499 				NVME_QUIRK_BOGUS_NID, },
3500 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3501 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3502 				NVME_QUIRK_BOGUS_NID, },
3503 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3504 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3505 				NVME_QUIRK_NO_NS_DESC_LIST, },
3506 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3507 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3508 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3509 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3510 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3511 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3512 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3513 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3514 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3515 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3516 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3517 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3518 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3519 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3520 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3521 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3522 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3523 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3524 				NVME_QUIRK_BOGUS_NID, },
3525 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3526 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3527 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3528 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3529 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3530 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3531 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3532 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3533 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3534 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3535 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3536 				NVME_QUIRK_BOGUS_NID, },
3537 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3538 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3539 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3540 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3541 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3542 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3543 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3544 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3545 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3546 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3547 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3548 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3549 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3550 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3551 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3552 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3553 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3554 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3555 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3556 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3557 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3558 				NVME_QUIRK_BOGUS_NID, },
3559 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3560 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3561 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3562 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3563 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3564 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3565 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3566 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3567 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3568 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3569 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3570 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3571 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3572 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3573 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3574 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3575 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3576 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3577 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3578 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3579 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3580 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3581 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3582 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3583 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3584 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3585 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3586 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3587 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3588 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3589 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3590 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3591 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3592 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3593 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3594 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3595 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3596 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3597 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3598 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3599 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3600 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3601 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3602 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3603 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3604 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3605 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3606 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3607 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3608 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3609 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3610 		.driver_data = NVME_QUIRK_BOGUS_NID |
3611 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3612 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3613 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3614 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3615 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3616 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3617 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3618 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3619 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3620 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3621 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3622 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3623 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3624 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3625 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3626 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3627 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3628 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3629 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3630 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3631 		/*
3632 		 * Fix for the Apple controller found in the MacBook8,1 and
3633 		 * some MacBook7,1 to avoid controller resets and data loss.
3634 		 */
3635 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3636 				NVME_QUIRK_QDEPTH_ONE },
3637 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3638 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3639 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3640 				NVME_QUIRK_128_BYTES_SQES |
3641 				NVME_QUIRK_SHARED_TAGS |
3642 				NVME_QUIRK_SKIP_CID_GEN |
3643 				NVME_QUIRK_IDENTIFY_CNS },
3644 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3645 	{ 0, }
3646 };
3647 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3648 
3649 static struct pci_driver nvme_driver = {
3650 	.name		= "nvme",
3651 	.id_table	= nvme_id_table,
3652 	.probe		= nvme_probe,
3653 	.remove		= nvme_remove,
3654 	.shutdown	= nvme_shutdown,
3655 	.driver		= {
3656 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3657 #ifdef CONFIG_PM_SLEEP
3658 		.pm		= &nvme_dev_pm_ops,
3659 #endif
3660 	},
3661 	.sriov_configure = pci_sriov_configure_simple,
3662 	.err_handler	= &nvme_err_handler,
3663 };
3664 
3665 static int __init nvme_init(void)
3666 {
3667 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3668 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3669 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3670 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3671 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3672 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3673 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3674 
3675 	return pci_register_driver(&nvme_driver);
3676 }
3677 
3678 static void __exit nvme_exit(void)
3679 {
3680 	pci_unregister_driver(&nvme_driver);
3681 	flush_workqueue(nvme_wq);
3682 }
3683 
3684 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3685 MODULE_LICENSE("GPL");
3686 MODULE_VERSION("1.0");
3687 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3688 module_init(nvme_init);
3689 module_exit(nvme_exit);
3690