xref: /linux/drivers/nvme/host/pci.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/list_sort.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/pr.h>
43 #include <scsi/sg.h>
44 #include <linux/io-64-nonatomic-lo-hi.h>
45 #include <asm/unaligned.h>
46 
47 #include <uapi/linux/nvme_ioctl.h>
48 #include "nvme.h"
49 
50 #define NVME_MINORS		(1U << MINORBITS)
51 #define NVME_Q_DEPTH		1024
52 #define NVME_AQ_DEPTH		256
53 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
55 #define ADMIN_TIMEOUT		(admin_timeout * HZ)
56 #define SHUTDOWN_TIMEOUT	(shutdown_timeout * HZ)
57 
58 static unsigned char admin_timeout = 60;
59 module_param(admin_timeout, byte, 0644);
60 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
61 
62 unsigned char nvme_io_timeout = 30;
63 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
64 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
65 
66 static unsigned char shutdown_timeout = 5;
67 module_param(shutdown_timeout, byte, 0644);
68 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
69 
70 static int nvme_major;
71 module_param(nvme_major, int, 0);
72 
73 static int nvme_char_major;
74 module_param(nvme_char_major, int, 0);
75 
76 static int use_threaded_interrupts;
77 module_param(use_threaded_interrupts, int, 0);
78 
79 static bool use_cmb_sqes = true;
80 module_param(use_cmb_sqes, bool, 0644);
81 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
82 
83 static DEFINE_SPINLOCK(dev_list_lock);
84 static LIST_HEAD(dev_list);
85 static struct task_struct *nvme_thread;
86 static struct workqueue_struct *nvme_workq;
87 static wait_queue_head_t nvme_kthread_wait;
88 
89 static struct class *nvme_class;
90 
91 static int __nvme_reset(struct nvme_dev *dev);
92 static int nvme_reset(struct nvme_dev *dev);
93 static void nvme_process_cq(struct nvme_queue *nvmeq);
94 static void nvme_dead_ctrl(struct nvme_dev *dev);
95 
96 struct async_cmd_info {
97 	struct kthread_work work;
98 	struct kthread_worker *worker;
99 	struct request *req;
100 	u32 result;
101 	int status;
102 	void *ctx;
103 };
104 
105 /*
106  * An NVM Express queue.  Each device has at least two (one for admin
107  * commands and one for I/O commands).
108  */
109 struct nvme_queue {
110 	struct device *q_dmadev;
111 	struct nvme_dev *dev;
112 	char irqname[24];	/* nvme4294967295-65535\0 */
113 	spinlock_t q_lock;
114 	struct nvme_command *sq_cmds;
115 	struct nvme_command __iomem *sq_cmds_io;
116 	volatile struct nvme_completion *cqes;
117 	struct blk_mq_tags **tags;
118 	dma_addr_t sq_dma_addr;
119 	dma_addr_t cq_dma_addr;
120 	u32 __iomem *q_db;
121 	u16 q_depth;
122 	s16 cq_vector;
123 	u16 sq_head;
124 	u16 sq_tail;
125 	u16 cq_head;
126 	u16 qid;
127 	u8 cq_phase;
128 	u8 cqe_seen;
129 	struct async_cmd_info cmdinfo;
130 };
131 
132 /*
133  * Check we didin't inadvertently grow the command struct
134  */
135 static inline void _nvme_check_size(void)
136 {
137 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
138 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
139 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
140 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
141 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
142 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
143 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
144 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
145 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
146 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
147 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
148 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
149 }
150 
151 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
152 						struct nvme_completion *);
153 
154 struct nvme_cmd_info {
155 	nvme_completion_fn fn;
156 	void *ctx;
157 	int aborted;
158 	struct nvme_queue *nvmeq;
159 	struct nvme_iod iod[0];
160 };
161 
162 /*
163  * Max size of iod being embedded in the request payload
164  */
165 #define NVME_INT_PAGES		2
166 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->page_size)
167 #define NVME_INT_MASK		0x01
168 
169 /*
170  * Will slightly overestimate the number of pages needed.  This is OK
171  * as it only leads to a small amount of wasted memory for the lifetime of
172  * the I/O.
173  */
174 static int nvme_npages(unsigned size, struct nvme_dev *dev)
175 {
176 	unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
177 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
178 }
179 
180 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
181 {
182 	unsigned int ret = sizeof(struct nvme_cmd_info);
183 
184 	ret += sizeof(struct nvme_iod);
185 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
186 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
187 
188 	return ret;
189 }
190 
191 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
192 				unsigned int hctx_idx)
193 {
194 	struct nvme_dev *dev = data;
195 	struct nvme_queue *nvmeq = dev->queues[0];
196 
197 	WARN_ON(hctx_idx != 0);
198 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
199 	WARN_ON(nvmeq->tags);
200 
201 	hctx->driver_data = nvmeq;
202 	nvmeq->tags = &dev->admin_tagset.tags[0];
203 	return 0;
204 }
205 
206 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
207 {
208 	struct nvme_queue *nvmeq = hctx->driver_data;
209 
210 	nvmeq->tags = NULL;
211 }
212 
213 static int nvme_admin_init_request(void *data, struct request *req,
214 				unsigned int hctx_idx, unsigned int rq_idx,
215 				unsigned int numa_node)
216 {
217 	struct nvme_dev *dev = data;
218 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
219 	struct nvme_queue *nvmeq = dev->queues[0];
220 
221 	BUG_ON(!nvmeq);
222 	cmd->nvmeq = nvmeq;
223 	return 0;
224 }
225 
226 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
227 			  unsigned int hctx_idx)
228 {
229 	struct nvme_dev *dev = data;
230 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
231 
232 	if (!nvmeq->tags)
233 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
234 
235 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
236 	hctx->driver_data = nvmeq;
237 	return 0;
238 }
239 
240 static int nvme_init_request(void *data, struct request *req,
241 				unsigned int hctx_idx, unsigned int rq_idx,
242 				unsigned int numa_node)
243 {
244 	struct nvme_dev *dev = data;
245 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
246 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
247 
248 	BUG_ON(!nvmeq);
249 	cmd->nvmeq = nvmeq;
250 	return 0;
251 }
252 
253 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
254 				nvme_completion_fn handler)
255 {
256 	cmd->fn = handler;
257 	cmd->ctx = ctx;
258 	cmd->aborted = 0;
259 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
260 }
261 
262 static void *iod_get_private(struct nvme_iod *iod)
263 {
264 	return (void *) (iod->private & ~0x1UL);
265 }
266 
267 /*
268  * If bit 0 is set, the iod is embedded in the request payload.
269  */
270 static bool iod_should_kfree(struct nvme_iod *iod)
271 {
272 	return (iod->private & NVME_INT_MASK) == 0;
273 }
274 
275 /* Special values must be less than 0x1000 */
276 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
277 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
278 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
279 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
280 
281 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
282 						struct nvme_completion *cqe)
283 {
284 	if (ctx == CMD_CTX_CANCELLED)
285 		return;
286 	if (ctx == CMD_CTX_COMPLETED) {
287 		dev_warn(nvmeq->q_dmadev,
288 				"completed id %d twice on queue %d\n",
289 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
290 		return;
291 	}
292 	if (ctx == CMD_CTX_INVALID) {
293 		dev_warn(nvmeq->q_dmadev,
294 				"invalid id %d completed on queue %d\n",
295 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
296 		return;
297 	}
298 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
299 }
300 
301 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
302 {
303 	void *ctx;
304 
305 	if (fn)
306 		*fn = cmd->fn;
307 	ctx = cmd->ctx;
308 	cmd->fn = special_completion;
309 	cmd->ctx = CMD_CTX_CANCELLED;
310 	return ctx;
311 }
312 
313 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
314 						struct nvme_completion *cqe)
315 {
316 	u32 result = le32_to_cpup(&cqe->result);
317 	u16 status = le16_to_cpup(&cqe->status) >> 1;
318 
319 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
320 		++nvmeq->dev->event_limit;
321 	if (status != NVME_SC_SUCCESS)
322 		return;
323 
324 	switch (result & 0xff07) {
325 	case NVME_AER_NOTICE_NS_CHANGED:
326 		dev_info(nvmeq->q_dmadev, "rescanning\n");
327 		schedule_work(&nvmeq->dev->scan_work);
328 	default:
329 		dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
330 	}
331 }
332 
333 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
334 						struct nvme_completion *cqe)
335 {
336 	struct request *req = ctx;
337 
338 	u16 status = le16_to_cpup(&cqe->status) >> 1;
339 	u32 result = le32_to_cpup(&cqe->result);
340 
341 	blk_mq_free_request(req);
342 
343 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
344 	++nvmeq->dev->abort_limit;
345 }
346 
347 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
348 						struct nvme_completion *cqe)
349 {
350 	struct async_cmd_info *cmdinfo = ctx;
351 	cmdinfo->result = le32_to_cpup(&cqe->result);
352 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
353 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
354 	blk_mq_free_request(cmdinfo->req);
355 }
356 
357 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
358 				  unsigned int tag)
359 {
360 	struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
361 
362 	return blk_mq_rq_to_pdu(req);
363 }
364 
365 /*
366  * Called with local interrupts disabled and the q_lock held.  May not sleep.
367  */
368 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
369 						nvme_completion_fn *fn)
370 {
371 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
372 	void *ctx;
373 	if (tag >= nvmeq->q_depth) {
374 		*fn = special_completion;
375 		return CMD_CTX_INVALID;
376 	}
377 	if (fn)
378 		*fn = cmd->fn;
379 	ctx = cmd->ctx;
380 	cmd->fn = special_completion;
381 	cmd->ctx = CMD_CTX_COMPLETED;
382 	return ctx;
383 }
384 
385 /**
386  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
387  * @nvmeq: The queue to use
388  * @cmd: The command to send
389  *
390  * Safe to use from interrupt context
391  */
392 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
393 						struct nvme_command *cmd)
394 {
395 	u16 tail = nvmeq->sq_tail;
396 
397 	if (nvmeq->sq_cmds_io)
398 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
399 	else
400 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
401 
402 	if (++tail == nvmeq->q_depth)
403 		tail = 0;
404 	writel(tail, nvmeq->q_db);
405 	nvmeq->sq_tail = tail;
406 }
407 
408 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
409 {
410 	unsigned long flags;
411 	spin_lock_irqsave(&nvmeq->q_lock, flags);
412 	__nvme_submit_cmd(nvmeq, cmd);
413 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
414 }
415 
416 static __le64 **iod_list(struct nvme_iod *iod)
417 {
418 	return ((void *)iod) + iod->offset;
419 }
420 
421 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
422 			    unsigned nseg, unsigned long private)
423 {
424 	iod->private = private;
425 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
426 	iod->npages = -1;
427 	iod->length = nbytes;
428 	iod->nents = 0;
429 }
430 
431 static struct nvme_iod *
432 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
433 		 unsigned long priv, gfp_t gfp)
434 {
435 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
436 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
437 				sizeof(struct scatterlist) * nseg, gfp);
438 
439 	if (iod)
440 		iod_init(iod, bytes, nseg, priv);
441 
442 	return iod;
443 }
444 
445 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
446 			               gfp_t gfp)
447 {
448 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
449                                                 sizeof(struct nvme_dsm_range);
450 	struct nvme_iod *iod;
451 
452 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
453 	    size <= NVME_INT_BYTES(dev)) {
454 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
455 
456 		iod = cmd->iod;
457 		iod_init(iod, size, rq->nr_phys_segments,
458 				(unsigned long) rq | NVME_INT_MASK);
459 		return iod;
460 	}
461 
462 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
463 				(unsigned long) rq, gfp);
464 }
465 
466 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
467 {
468 	const int last_prp = dev->page_size / 8 - 1;
469 	int i;
470 	__le64 **list = iod_list(iod);
471 	dma_addr_t prp_dma = iod->first_dma;
472 
473 	if (iod->npages == 0)
474 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
475 	for (i = 0; i < iod->npages; i++) {
476 		__le64 *prp_list = list[i];
477 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
478 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
479 		prp_dma = next_prp_dma;
480 	}
481 
482 	if (iod_should_kfree(iod))
483 		kfree(iod);
484 }
485 
486 static int nvme_error_status(u16 status)
487 {
488 	switch (status & 0x7ff) {
489 	case NVME_SC_SUCCESS:
490 		return 0;
491 	case NVME_SC_CAP_EXCEEDED:
492 		return -ENOSPC;
493 	default:
494 		return -EIO;
495 	}
496 }
497 
498 #ifdef CONFIG_BLK_DEV_INTEGRITY
499 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
500 {
501 	if (be32_to_cpu(pi->ref_tag) == v)
502 		pi->ref_tag = cpu_to_be32(p);
503 }
504 
505 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
506 {
507 	if (be32_to_cpu(pi->ref_tag) == p)
508 		pi->ref_tag = cpu_to_be32(v);
509 }
510 
511 /**
512  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
513  *
514  * The virtual start sector is the one that was originally submitted by the
515  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
516  * start sector may be different. Remap protection information to match the
517  * physical LBA on writes, and back to the original seed on reads.
518  *
519  * Type 0 and 3 do not have a ref tag, so no remapping required.
520  */
521 static void nvme_dif_remap(struct request *req,
522 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
523 {
524 	struct nvme_ns *ns = req->rq_disk->private_data;
525 	struct bio_integrity_payload *bip;
526 	struct t10_pi_tuple *pi;
527 	void *p, *pmap;
528 	u32 i, nlb, ts, phys, virt;
529 
530 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
531 		return;
532 
533 	bip = bio_integrity(req->bio);
534 	if (!bip)
535 		return;
536 
537 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
538 
539 	p = pmap;
540 	virt = bip_get_seed(bip);
541 	phys = nvme_block_nr(ns, blk_rq_pos(req));
542 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
543 	ts = ns->disk->queue->integrity.tuple_size;
544 
545 	for (i = 0; i < nlb; i++, virt++, phys++) {
546 		pi = (struct t10_pi_tuple *)p;
547 		dif_swap(phys, virt, pi);
548 		p += ts;
549 	}
550 	kunmap_atomic(pmap);
551 }
552 
553 static void nvme_init_integrity(struct nvme_ns *ns)
554 {
555 	struct blk_integrity integrity;
556 
557 	switch (ns->pi_type) {
558 	case NVME_NS_DPS_PI_TYPE3:
559 		integrity.profile = &t10_pi_type3_crc;
560 		break;
561 	case NVME_NS_DPS_PI_TYPE1:
562 	case NVME_NS_DPS_PI_TYPE2:
563 		integrity.profile = &t10_pi_type1_crc;
564 		break;
565 	default:
566 		integrity.profile = NULL;
567 		break;
568 	}
569 	integrity.tuple_size = ns->ms;
570 	blk_integrity_register(ns->disk, &integrity);
571 	blk_queue_max_integrity_segments(ns->queue, 1);
572 }
573 #else /* CONFIG_BLK_DEV_INTEGRITY */
574 static void nvme_dif_remap(struct request *req,
575 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
576 {
577 }
578 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
579 {
580 }
581 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
582 {
583 }
584 static void nvme_init_integrity(struct nvme_ns *ns)
585 {
586 }
587 #endif
588 
589 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
590 						struct nvme_completion *cqe)
591 {
592 	struct nvme_iod *iod = ctx;
593 	struct request *req = iod_get_private(iod);
594 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
595 	u16 status = le16_to_cpup(&cqe->status) >> 1;
596 	bool requeue = false;
597 	int error = 0;
598 
599 	if (unlikely(status)) {
600 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
601 		    && (jiffies - req->start_time) < req->timeout) {
602 			unsigned long flags;
603 
604 			requeue = true;
605 			blk_mq_requeue_request(req);
606 			spin_lock_irqsave(req->q->queue_lock, flags);
607 			if (!blk_queue_stopped(req->q))
608 				blk_mq_kick_requeue_list(req->q);
609 			spin_unlock_irqrestore(req->q->queue_lock, flags);
610 			goto release_iod;
611 		}
612 
613 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
614 			if (cmd_rq->ctx == CMD_CTX_CANCELLED)
615 				error = -EINTR;
616 			else
617 				error = status;
618 		} else {
619 			error = nvme_error_status(status);
620 		}
621 	}
622 
623 	if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
624 		u32 result = le32_to_cpup(&cqe->result);
625 		req->special = (void *)(uintptr_t)result;
626 	}
627 
628 	if (cmd_rq->aborted)
629 		dev_warn(nvmeq->dev->dev,
630 			"completing aborted command with status:%04x\n",
631 			error);
632 
633 release_iod:
634 	if (iod->nents) {
635 		dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
636 			rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
637 		if (blk_integrity_rq(req)) {
638 			if (!rq_data_dir(req))
639 				nvme_dif_remap(req, nvme_dif_complete);
640 			dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
641 				rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
642 		}
643 	}
644 	nvme_free_iod(nvmeq->dev, iod);
645 
646 	if (likely(!requeue))
647 		blk_mq_complete_request(req, error);
648 }
649 
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652 		int total_len, gfp_t gfp)
653 {
654 	struct dma_pool *pool;
655 	int length = total_len;
656 	struct scatterlist *sg = iod->sg;
657 	int dma_len = sg_dma_len(sg);
658 	u64 dma_addr = sg_dma_address(sg);
659 	u32 page_size = dev->page_size;
660 	int offset = dma_addr & (page_size - 1);
661 	__le64 *prp_list;
662 	__le64 **list = iod_list(iod);
663 	dma_addr_t prp_dma;
664 	int nprps, i;
665 
666 	length -= (page_size - offset);
667 	if (length <= 0)
668 		return total_len;
669 
670 	dma_len -= (page_size - offset);
671 	if (dma_len) {
672 		dma_addr += (page_size - offset);
673 	} else {
674 		sg = sg_next(sg);
675 		dma_addr = sg_dma_address(sg);
676 		dma_len = sg_dma_len(sg);
677 	}
678 
679 	if (length <= page_size) {
680 		iod->first_dma = dma_addr;
681 		return total_len;
682 	}
683 
684 	nprps = DIV_ROUND_UP(length, page_size);
685 	if (nprps <= (256 / 8)) {
686 		pool = dev->prp_small_pool;
687 		iod->npages = 0;
688 	} else {
689 		pool = dev->prp_page_pool;
690 		iod->npages = 1;
691 	}
692 
693 	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694 	if (!prp_list) {
695 		iod->first_dma = dma_addr;
696 		iod->npages = -1;
697 		return (total_len - length) + page_size;
698 	}
699 	list[0] = prp_list;
700 	iod->first_dma = prp_dma;
701 	i = 0;
702 	for (;;) {
703 		if (i == page_size >> 3) {
704 			__le64 *old_prp_list = prp_list;
705 			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706 			if (!prp_list)
707 				return total_len - length;
708 			list[iod->npages++] = prp_list;
709 			prp_list[0] = old_prp_list[i - 1];
710 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711 			i = 1;
712 		}
713 		prp_list[i++] = cpu_to_le64(dma_addr);
714 		dma_len -= page_size;
715 		dma_addr += page_size;
716 		length -= page_size;
717 		if (length <= 0)
718 			break;
719 		if (dma_len > 0)
720 			continue;
721 		BUG_ON(dma_len < 0);
722 		sg = sg_next(sg);
723 		dma_addr = sg_dma_address(sg);
724 		dma_len = sg_dma_len(sg);
725 	}
726 
727 	return total_len;
728 }
729 
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731 		struct nvme_iod *iod)
732 {
733 	struct nvme_command cmnd;
734 
735 	memcpy(&cmnd, req->cmd, sizeof(cmnd));
736 	cmnd.rw.command_id = req->tag;
737 	if (req->nr_phys_segments) {
738 		cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739 		cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
740 	}
741 
742 	__nvme_submit_cmd(nvmeq, &cmnd);
743 }
744 
745 /*
746  * We reuse the small pool to allocate the 16-byte range here as it is not
747  * worth having a special pool for these or additional cases to handle freeing
748  * the iod.
749  */
750 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
751 		struct request *req, struct nvme_iod *iod)
752 {
753 	struct nvme_dsm_range *range =
754 				(struct nvme_dsm_range *)iod_list(iod)[0];
755 	struct nvme_command cmnd;
756 
757 	range->cattr = cpu_to_le32(0);
758 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
759 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
760 
761 	memset(&cmnd, 0, sizeof(cmnd));
762 	cmnd.dsm.opcode = nvme_cmd_dsm;
763 	cmnd.dsm.command_id = req->tag;
764 	cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
765 	cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
766 	cmnd.dsm.nr = 0;
767 	cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
768 
769 	__nvme_submit_cmd(nvmeq, &cmnd);
770 }
771 
772 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
773 								int cmdid)
774 {
775 	struct nvme_command cmnd;
776 
777 	memset(&cmnd, 0, sizeof(cmnd));
778 	cmnd.common.opcode = nvme_cmd_flush;
779 	cmnd.common.command_id = cmdid;
780 	cmnd.common.nsid = cpu_to_le32(ns->ns_id);
781 
782 	__nvme_submit_cmd(nvmeq, &cmnd);
783 }
784 
785 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
786 							struct nvme_ns *ns)
787 {
788 	struct request *req = iod_get_private(iod);
789 	struct nvme_command cmnd;
790 	u16 control = 0;
791 	u32 dsmgmt = 0;
792 
793 	if (req->cmd_flags & REQ_FUA)
794 		control |= NVME_RW_FUA;
795 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796 		control |= NVME_RW_LR;
797 
798 	if (req->cmd_flags & REQ_RAHEAD)
799 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800 
801 	memset(&cmnd, 0, sizeof(cmnd));
802 	cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
803 	cmnd.rw.command_id = req->tag;
804 	cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
805 	cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
806 	cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
807 	cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
808 	cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
809 
810 	if (ns->ms) {
811 		switch (ns->pi_type) {
812 		case NVME_NS_DPS_PI_TYPE3:
813 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
814 			break;
815 		case NVME_NS_DPS_PI_TYPE1:
816 		case NVME_NS_DPS_PI_TYPE2:
817 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
818 					NVME_RW_PRINFO_PRCHK_REF;
819 			cmnd.rw.reftag = cpu_to_le32(
820 					nvme_block_nr(ns, blk_rq_pos(req)));
821 			break;
822 		}
823 		if (blk_integrity_rq(req))
824 			cmnd.rw.metadata =
825 				cpu_to_le64(sg_dma_address(iod->meta_sg));
826 		else
827 			control |= NVME_RW_PRINFO_PRACT;
828 	}
829 
830 	cmnd.rw.control = cpu_to_le16(control);
831 	cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
832 
833 	__nvme_submit_cmd(nvmeq, &cmnd);
834 
835 	return 0;
836 }
837 
838 /*
839  * NOTE: ns is NULL when called on the admin queue.
840  */
841 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
842 			 const struct blk_mq_queue_data *bd)
843 {
844 	struct nvme_ns *ns = hctx->queue->queuedata;
845 	struct nvme_queue *nvmeq = hctx->driver_data;
846 	struct nvme_dev *dev = nvmeq->dev;
847 	struct request *req = bd->rq;
848 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
849 	struct nvme_iod *iod;
850 	enum dma_data_direction dma_dir;
851 
852 	/*
853 	 * If formated with metadata, require the block layer provide a buffer
854 	 * unless this namespace is formated such that the metadata can be
855 	 * stripped/generated by the controller with PRACT=1.
856 	 */
857 	if (ns && ns->ms && !blk_integrity_rq(req)) {
858 		if (!(ns->pi_type && ns->ms == 8) &&
859 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
860 			blk_mq_complete_request(req, -EFAULT);
861 			return BLK_MQ_RQ_QUEUE_OK;
862 		}
863 	}
864 
865 	iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
866 	if (!iod)
867 		return BLK_MQ_RQ_QUEUE_BUSY;
868 
869 	if (req->cmd_flags & REQ_DISCARD) {
870 		void *range;
871 		/*
872 		 * We reuse the small pool to allocate the 16-byte range here
873 		 * as it is not worth having a special pool for these or
874 		 * additional cases to handle freeing the iod.
875 		 */
876 		range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
877 						&iod->first_dma);
878 		if (!range)
879 			goto retry_cmd;
880 		iod_list(iod)[0] = (__le64 *)range;
881 		iod->npages = 0;
882 	} else if (req->nr_phys_segments) {
883 		dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
884 
885 		sg_init_table(iod->sg, req->nr_phys_segments);
886 		iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
887 		if (!iod->nents)
888 			goto error_cmd;
889 
890 		if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
891 			goto retry_cmd;
892 
893 		if (blk_rq_bytes(req) !=
894                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
895 			dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
896 			goto retry_cmd;
897 		}
898 		if (blk_integrity_rq(req)) {
899 			if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
900 				goto error_cmd;
901 
902 			sg_init_table(iod->meta_sg, 1);
903 			if (blk_rq_map_integrity_sg(
904 					req->q, req->bio, iod->meta_sg) != 1)
905 				goto error_cmd;
906 
907 			if (rq_data_dir(req))
908 				nvme_dif_remap(req, nvme_dif_prep);
909 
910 			if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
911 				goto error_cmd;
912 		}
913 	}
914 
915 	nvme_set_info(cmd, iod, req_completion);
916 	spin_lock_irq(&nvmeq->q_lock);
917 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
918 		nvme_submit_priv(nvmeq, req, iod);
919 	else if (req->cmd_flags & REQ_DISCARD)
920 		nvme_submit_discard(nvmeq, ns, req, iod);
921 	else if (req->cmd_flags & REQ_FLUSH)
922 		nvme_submit_flush(nvmeq, ns, req->tag);
923 	else
924 		nvme_submit_iod(nvmeq, iod, ns);
925 
926 	nvme_process_cq(nvmeq);
927 	spin_unlock_irq(&nvmeq->q_lock);
928 	return BLK_MQ_RQ_QUEUE_OK;
929 
930  error_cmd:
931 	nvme_free_iod(dev, iod);
932 	return BLK_MQ_RQ_QUEUE_ERROR;
933  retry_cmd:
934 	nvme_free_iod(dev, iod);
935 	return BLK_MQ_RQ_QUEUE_BUSY;
936 }
937 
938 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
939 {
940 	u16 head, phase;
941 
942 	head = nvmeq->cq_head;
943 	phase = nvmeq->cq_phase;
944 
945 	for (;;) {
946 		void *ctx;
947 		nvme_completion_fn fn;
948 		struct nvme_completion cqe = nvmeq->cqes[head];
949 		if ((le16_to_cpu(cqe.status) & 1) != phase)
950 			break;
951 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
952 		if (++head == nvmeq->q_depth) {
953 			head = 0;
954 			phase = !phase;
955 		}
956 		if (tag && *tag == cqe.command_id)
957 			*tag = -1;
958 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
959 		fn(nvmeq, ctx, &cqe);
960 	}
961 
962 	/* If the controller ignores the cq head doorbell and continuously
963 	 * writes to the queue, it is theoretically possible to wrap around
964 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
965 	 * requires that 0.1% of your interrupts are handled, so this isn't
966 	 * a big problem.
967 	 */
968 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
969 		return;
970 
971 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
972 	nvmeq->cq_head = head;
973 	nvmeq->cq_phase = phase;
974 
975 	nvmeq->cqe_seen = 1;
976 }
977 
978 static void nvme_process_cq(struct nvme_queue *nvmeq)
979 {
980 	__nvme_process_cq(nvmeq, NULL);
981 }
982 
983 static irqreturn_t nvme_irq(int irq, void *data)
984 {
985 	irqreturn_t result;
986 	struct nvme_queue *nvmeq = data;
987 	spin_lock(&nvmeq->q_lock);
988 	nvme_process_cq(nvmeq);
989 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
990 	nvmeq->cqe_seen = 0;
991 	spin_unlock(&nvmeq->q_lock);
992 	return result;
993 }
994 
995 static irqreturn_t nvme_irq_check(int irq, void *data)
996 {
997 	struct nvme_queue *nvmeq = data;
998 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
999 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1000 		return IRQ_NONE;
1001 	return IRQ_WAKE_THREAD;
1002 }
1003 
1004 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1005 {
1006 	struct nvme_queue *nvmeq = hctx->driver_data;
1007 
1008 	if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1009 	    nvmeq->cq_phase) {
1010 		spin_lock_irq(&nvmeq->q_lock);
1011 		__nvme_process_cq(nvmeq, &tag);
1012 		spin_unlock_irq(&nvmeq->q_lock);
1013 
1014 		if (tag == -1)
1015 			return 1;
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1023  * if the result is positive, it's an NVM Express status code
1024  */
1025 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1026 		void *buffer, void __user *ubuffer, unsigned bufflen,
1027 		u32 *result, unsigned timeout)
1028 {
1029 	bool write = cmd->common.opcode & 1;
1030 	struct bio *bio = NULL;
1031 	struct request *req;
1032 	int ret;
1033 
1034 	req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1035 	if (IS_ERR(req))
1036 		return PTR_ERR(req);
1037 
1038 	req->cmd_type = REQ_TYPE_DRV_PRIV;
1039 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
1040 	req->__data_len = 0;
1041 	req->__sector = (sector_t) -1;
1042 	req->bio = req->biotail = NULL;
1043 
1044 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1045 
1046 	req->cmd = (unsigned char *)cmd;
1047 	req->cmd_len = sizeof(struct nvme_command);
1048 	req->special = (void *)0;
1049 
1050 	if (buffer && bufflen) {
1051 		ret = blk_rq_map_kern(q, req, buffer, bufflen,
1052 				      __GFP_DIRECT_RECLAIM);
1053 		if (ret)
1054 			goto out;
1055 	} else if (ubuffer && bufflen) {
1056 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1057 				      __GFP_DIRECT_RECLAIM);
1058 		if (ret)
1059 			goto out;
1060 		bio = req->bio;
1061 	}
1062 
1063 	blk_execute_rq(req->q, NULL, req, 0);
1064 	if (bio)
1065 		blk_rq_unmap_user(bio);
1066 	if (result)
1067 		*result = (u32)(uintptr_t)req->special;
1068 	ret = req->errors;
1069  out:
1070 	blk_mq_free_request(req);
1071 	return ret;
1072 }
1073 
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075 		void *buffer, unsigned bufflen)
1076 {
1077 	return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1078 }
1079 
1080 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1081 {
1082 	struct nvme_queue *nvmeq = dev->queues[0];
1083 	struct nvme_command c;
1084 	struct nvme_cmd_info *cmd_info;
1085 	struct request *req;
1086 
1087 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1088 	if (IS_ERR(req))
1089 		return PTR_ERR(req);
1090 
1091 	req->cmd_flags |= REQ_NO_TIMEOUT;
1092 	cmd_info = blk_mq_rq_to_pdu(req);
1093 	nvme_set_info(cmd_info, NULL, async_req_completion);
1094 
1095 	memset(&c, 0, sizeof(c));
1096 	c.common.opcode = nvme_admin_async_event;
1097 	c.common.command_id = req->tag;
1098 
1099 	blk_mq_free_request(req);
1100 	__nvme_submit_cmd(nvmeq, &c);
1101 	return 0;
1102 }
1103 
1104 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1105 			struct nvme_command *cmd,
1106 			struct async_cmd_info *cmdinfo, unsigned timeout)
1107 {
1108 	struct nvme_queue *nvmeq = dev->queues[0];
1109 	struct request *req;
1110 	struct nvme_cmd_info *cmd_rq;
1111 
1112 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1113 	if (IS_ERR(req))
1114 		return PTR_ERR(req);
1115 
1116 	req->timeout = timeout;
1117 	cmd_rq = blk_mq_rq_to_pdu(req);
1118 	cmdinfo->req = req;
1119 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1120 	cmdinfo->status = -EINTR;
1121 
1122 	cmd->common.command_id = req->tag;
1123 
1124 	nvme_submit_cmd(nvmeq, cmd);
1125 	return 0;
1126 }
1127 
1128 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1129 {
1130 	struct nvme_command c;
1131 
1132 	memset(&c, 0, sizeof(c));
1133 	c.delete_queue.opcode = opcode;
1134 	c.delete_queue.qid = cpu_to_le16(id);
1135 
1136 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1137 }
1138 
1139 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1140 						struct nvme_queue *nvmeq)
1141 {
1142 	struct nvme_command c;
1143 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1144 
1145 	/*
1146 	 * Note: we (ab)use the fact the the prp fields survive if no data
1147 	 * is attached to the request.
1148 	 */
1149 	memset(&c, 0, sizeof(c));
1150 	c.create_cq.opcode = nvme_admin_create_cq;
1151 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1152 	c.create_cq.cqid = cpu_to_le16(qid);
1153 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1154 	c.create_cq.cq_flags = cpu_to_le16(flags);
1155 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1156 
1157 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1158 }
1159 
1160 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1161 						struct nvme_queue *nvmeq)
1162 {
1163 	struct nvme_command c;
1164 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1165 
1166 	/*
1167 	 * Note: we (ab)use the fact the the prp fields survive if no data
1168 	 * is attached to the request.
1169 	 */
1170 	memset(&c, 0, sizeof(c));
1171 	c.create_sq.opcode = nvme_admin_create_sq;
1172 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1173 	c.create_sq.sqid = cpu_to_le16(qid);
1174 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1175 	c.create_sq.sq_flags = cpu_to_le16(flags);
1176 	c.create_sq.cqid = cpu_to_le16(qid);
1177 
1178 	return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1179 }
1180 
1181 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1182 {
1183 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1184 }
1185 
1186 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1187 {
1188 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1189 }
1190 
1191 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1192 {
1193 	struct nvme_command c = { };
1194 	int error;
1195 
1196 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1197 	c.identify.opcode = nvme_admin_identify;
1198 	c.identify.cns = cpu_to_le32(1);
1199 
1200 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1201 	if (!*id)
1202 		return -ENOMEM;
1203 
1204 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1205 			sizeof(struct nvme_id_ctrl));
1206 	if (error)
1207 		kfree(*id);
1208 	return error;
1209 }
1210 
1211 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1212 		struct nvme_id_ns **id)
1213 {
1214 	struct nvme_command c = { };
1215 	int error;
1216 
1217 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1218 	c.identify.opcode = nvme_admin_identify,
1219 	c.identify.nsid = cpu_to_le32(nsid),
1220 
1221 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1222 	if (!*id)
1223 		return -ENOMEM;
1224 
1225 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1226 			sizeof(struct nvme_id_ns));
1227 	if (error)
1228 		kfree(*id);
1229 	return error;
1230 }
1231 
1232 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1233 					dma_addr_t dma_addr, u32 *result)
1234 {
1235 	struct nvme_command c;
1236 
1237 	memset(&c, 0, sizeof(c));
1238 	c.features.opcode = nvme_admin_get_features;
1239 	c.features.nsid = cpu_to_le32(nsid);
1240 	c.features.prp1 = cpu_to_le64(dma_addr);
1241 	c.features.fid = cpu_to_le32(fid);
1242 
1243 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1244 			result, 0);
1245 }
1246 
1247 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1248 					dma_addr_t dma_addr, u32 *result)
1249 {
1250 	struct nvme_command c;
1251 
1252 	memset(&c, 0, sizeof(c));
1253 	c.features.opcode = nvme_admin_set_features;
1254 	c.features.prp1 = cpu_to_le64(dma_addr);
1255 	c.features.fid = cpu_to_le32(fid);
1256 	c.features.dword11 = cpu_to_le32(dword11);
1257 
1258 	return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1259 			result, 0);
1260 }
1261 
1262 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1263 {
1264 	struct nvme_command c = { };
1265 	int error;
1266 
1267 	c.common.opcode = nvme_admin_get_log_page,
1268 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1269 	c.common.cdw10[0] = cpu_to_le32(
1270 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1271 			 NVME_LOG_SMART),
1272 
1273 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1274 	if (!*log)
1275 		return -ENOMEM;
1276 
1277 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1278 			sizeof(struct nvme_smart_log));
1279 	if (error)
1280 		kfree(*log);
1281 	return error;
1282 }
1283 
1284 /**
1285  * nvme_abort_req - Attempt aborting a request
1286  *
1287  * Schedule controller reset if the command was already aborted once before and
1288  * still hasn't been returned to the driver, or if this is the admin queue.
1289  */
1290 static void nvme_abort_req(struct request *req)
1291 {
1292 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1293 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1294 	struct nvme_dev *dev = nvmeq->dev;
1295 	struct request *abort_req;
1296 	struct nvme_cmd_info *abort_cmd;
1297 	struct nvme_command cmd;
1298 
1299 	if (!nvmeq->qid || cmd_rq->aborted) {
1300 		spin_lock(&dev_list_lock);
1301 		if (!__nvme_reset(dev)) {
1302 			dev_warn(dev->dev,
1303 				 "I/O %d QID %d timeout, reset controller\n",
1304 				 req->tag, nvmeq->qid);
1305 		}
1306 		spin_unlock(&dev_list_lock);
1307 		return;
1308 	}
1309 
1310 	if (!dev->abort_limit)
1311 		return;
1312 
1313 	abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1314 									false);
1315 	if (IS_ERR(abort_req))
1316 		return;
1317 
1318 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1319 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1320 
1321 	memset(&cmd, 0, sizeof(cmd));
1322 	cmd.abort.opcode = nvme_admin_abort_cmd;
1323 	cmd.abort.cid = req->tag;
1324 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1325 	cmd.abort.command_id = abort_req->tag;
1326 
1327 	--dev->abort_limit;
1328 	cmd_rq->aborted = 1;
1329 
1330 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1331 							nvmeq->qid);
1332 	nvme_submit_cmd(dev->queues[0], &cmd);
1333 }
1334 
1335 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1336 {
1337 	struct nvme_queue *nvmeq = data;
1338 	void *ctx;
1339 	nvme_completion_fn fn;
1340 	struct nvme_cmd_info *cmd;
1341 	struct nvme_completion cqe;
1342 
1343 	if (!blk_mq_request_started(req))
1344 		return;
1345 
1346 	cmd = blk_mq_rq_to_pdu(req);
1347 
1348 	if (cmd->ctx == CMD_CTX_CANCELLED)
1349 		return;
1350 
1351 	if (blk_queue_dying(req->q))
1352 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1353 	else
1354 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1355 
1356 
1357 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1358 						req->tag, nvmeq->qid);
1359 	ctx = cancel_cmd_info(cmd, &fn);
1360 	fn(nvmeq, ctx, &cqe);
1361 }
1362 
1363 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1364 {
1365 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1366 	struct nvme_queue *nvmeq = cmd->nvmeq;
1367 
1368 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1369 							nvmeq->qid);
1370 	spin_lock_irq(&nvmeq->q_lock);
1371 	nvme_abort_req(req);
1372 	spin_unlock_irq(&nvmeq->q_lock);
1373 
1374 	/*
1375 	 * The aborted req will be completed on receiving the abort req.
1376 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1377 	 * as the device then is in a faulty state.
1378 	 */
1379 	return BLK_EH_RESET_TIMER;
1380 }
1381 
1382 static void nvme_free_queue(struct nvme_queue *nvmeq)
1383 {
1384 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1385 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1386 	if (nvmeq->sq_cmds)
1387 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1388 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1389 	kfree(nvmeq);
1390 }
1391 
1392 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1393 {
1394 	int i;
1395 
1396 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1397 		struct nvme_queue *nvmeq = dev->queues[i];
1398 		dev->queue_count--;
1399 		dev->queues[i] = NULL;
1400 		nvme_free_queue(nvmeq);
1401 	}
1402 }
1403 
1404 /**
1405  * nvme_suspend_queue - put queue into suspended state
1406  * @nvmeq - queue to suspend
1407  */
1408 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1409 {
1410 	int vector;
1411 
1412 	spin_lock_irq(&nvmeq->q_lock);
1413 	if (nvmeq->cq_vector == -1) {
1414 		spin_unlock_irq(&nvmeq->q_lock);
1415 		return 1;
1416 	}
1417 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1418 	nvmeq->dev->online_queues--;
1419 	nvmeq->cq_vector = -1;
1420 	spin_unlock_irq(&nvmeq->q_lock);
1421 
1422 	if (!nvmeq->qid && nvmeq->dev->admin_q)
1423 		blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1424 
1425 	irq_set_affinity_hint(vector, NULL);
1426 	free_irq(vector, nvmeq);
1427 
1428 	return 0;
1429 }
1430 
1431 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1432 {
1433 	spin_lock_irq(&nvmeq->q_lock);
1434 	if (nvmeq->tags && *nvmeq->tags)
1435 		blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1436 	spin_unlock_irq(&nvmeq->q_lock);
1437 }
1438 
1439 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1440 {
1441 	struct nvme_queue *nvmeq = dev->queues[qid];
1442 
1443 	if (!nvmeq)
1444 		return;
1445 	if (nvme_suspend_queue(nvmeq))
1446 		return;
1447 
1448 	/* Don't tell the adapter to delete the admin queue.
1449 	 * Don't tell a removed adapter to delete IO queues. */
1450 	if (qid && readl(&dev->bar->csts) != -1) {
1451 		adapter_delete_sq(dev, qid);
1452 		adapter_delete_cq(dev, qid);
1453 	}
1454 
1455 	spin_lock_irq(&nvmeq->q_lock);
1456 	nvme_process_cq(nvmeq);
1457 	spin_unlock_irq(&nvmeq->q_lock);
1458 }
1459 
1460 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1461 				int entry_size)
1462 {
1463 	int q_depth = dev->q_depth;
1464 	unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1465 
1466 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1467 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1468 		mem_per_q = round_down(mem_per_q, dev->page_size);
1469 		q_depth = div_u64(mem_per_q, entry_size);
1470 
1471 		/*
1472 		 * Ensure the reduced q_depth is above some threshold where it
1473 		 * would be better to map queues in system memory with the
1474 		 * original depth
1475 		 */
1476 		if (q_depth < 64)
1477 			return -ENOMEM;
1478 	}
1479 
1480 	return q_depth;
1481 }
1482 
1483 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1484 				int qid, int depth)
1485 {
1486 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1487 		unsigned offset = (qid - 1) *
1488 					roundup(SQ_SIZE(depth), dev->page_size);
1489 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1490 		nvmeq->sq_cmds_io = dev->cmb + offset;
1491 	} else {
1492 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1493 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1494 		if (!nvmeq->sq_cmds)
1495 			return -ENOMEM;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1502 							int depth)
1503 {
1504 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1505 	if (!nvmeq)
1506 		return NULL;
1507 
1508 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1509 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1510 	if (!nvmeq->cqes)
1511 		goto free_nvmeq;
1512 
1513 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1514 		goto free_cqdma;
1515 
1516 	nvmeq->q_dmadev = dev->dev;
1517 	nvmeq->dev = dev;
1518 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1519 			dev->instance, qid);
1520 	spin_lock_init(&nvmeq->q_lock);
1521 	nvmeq->cq_head = 0;
1522 	nvmeq->cq_phase = 1;
1523 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1524 	nvmeq->q_depth = depth;
1525 	nvmeq->qid = qid;
1526 	nvmeq->cq_vector = -1;
1527 	dev->queues[qid] = nvmeq;
1528 
1529 	/* make sure queue descriptor is set before queue count, for kthread */
1530 	mb();
1531 	dev->queue_count++;
1532 
1533 	return nvmeq;
1534 
1535  free_cqdma:
1536 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1537 							nvmeq->cq_dma_addr);
1538  free_nvmeq:
1539 	kfree(nvmeq);
1540 	return NULL;
1541 }
1542 
1543 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1544 							const char *name)
1545 {
1546 	if (use_threaded_interrupts)
1547 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1548 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1549 					name, nvmeq);
1550 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1551 				IRQF_SHARED, name, nvmeq);
1552 }
1553 
1554 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1555 {
1556 	struct nvme_dev *dev = nvmeq->dev;
1557 
1558 	spin_lock_irq(&nvmeq->q_lock);
1559 	nvmeq->sq_tail = 0;
1560 	nvmeq->cq_head = 0;
1561 	nvmeq->cq_phase = 1;
1562 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1563 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1564 	dev->online_queues++;
1565 	spin_unlock_irq(&nvmeq->q_lock);
1566 }
1567 
1568 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1569 {
1570 	struct nvme_dev *dev = nvmeq->dev;
1571 	int result;
1572 
1573 	nvmeq->cq_vector = qid - 1;
1574 	result = adapter_alloc_cq(dev, qid, nvmeq);
1575 	if (result < 0)
1576 		return result;
1577 
1578 	result = adapter_alloc_sq(dev, qid, nvmeq);
1579 	if (result < 0)
1580 		goto release_cq;
1581 
1582 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1583 	if (result < 0)
1584 		goto release_sq;
1585 
1586 	nvme_init_queue(nvmeq, qid);
1587 	return result;
1588 
1589  release_sq:
1590 	adapter_delete_sq(dev, qid);
1591  release_cq:
1592 	adapter_delete_cq(dev, qid);
1593 	return result;
1594 }
1595 
1596 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1597 {
1598 	unsigned long timeout;
1599 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1600 
1601 	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1602 
1603 	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1604 		msleep(100);
1605 		if (fatal_signal_pending(current))
1606 			return -EINTR;
1607 		if (time_after(jiffies, timeout)) {
1608 			dev_err(dev->dev,
1609 				"Device not ready; aborting %s\n", enabled ?
1610 						"initialisation" : "reset");
1611 			return -ENODEV;
1612 		}
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * If the device has been passed off to us in an enabled state, just clear
1620  * the enabled bit.  The spec says we should set the 'shutdown notification
1621  * bits', but doing so may cause the device to complete commands to the
1622  * admin queue ... and we don't know what memory that might be pointing at!
1623  */
1624 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1625 {
1626 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1627 	dev->ctrl_config &= ~NVME_CC_ENABLE;
1628 	writel(dev->ctrl_config, &dev->bar->cc);
1629 
1630 	return nvme_wait_ready(dev, cap, false);
1631 }
1632 
1633 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1634 {
1635 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1636 	dev->ctrl_config |= NVME_CC_ENABLE;
1637 	writel(dev->ctrl_config, &dev->bar->cc);
1638 
1639 	return nvme_wait_ready(dev, cap, true);
1640 }
1641 
1642 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1643 {
1644 	unsigned long timeout;
1645 
1646 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1647 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1648 
1649 	writel(dev->ctrl_config, &dev->bar->cc);
1650 
1651 	timeout = SHUTDOWN_TIMEOUT + jiffies;
1652 	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1653 							NVME_CSTS_SHST_CMPLT) {
1654 		msleep(100);
1655 		if (fatal_signal_pending(current))
1656 			return -EINTR;
1657 		if (time_after(jiffies, timeout)) {
1658 			dev_err(dev->dev,
1659 				"Device shutdown incomplete; abort shutdown\n");
1660 			return -ENODEV;
1661 		}
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static struct blk_mq_ops nvme_mq_admin_ops = {
1668 	.queue_rq	= nvme_queue_rq,
1669 	.map_queue	= blk_mq_map_queue,
1670 	.init_hctx	= nvme_admin_init_hctx,
1671 	.exit_hctx      = nvme_admin_exit_hctx,
1672 	.init_request	= nvme_admin_init_request,
1673 	.timeout	= nvme_timeout,
1674 };
1675 
1676 static struct blk_mq_ops nvme_mq_ops = {
1677 	.queue_rq	= nvme_queue_rq,
1678 	.map_queue	= blk_mq_map_queue,
1679 	.init_hctx	= nvme_init_hctx,
1680 	.init_request	= nvme_init_request,
1681 	.timeout	= nvme_timeout,
1682 	.poll		= nvme_poll,
1683 };
1684 
1685 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1686 {
1687 	if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1688 		blk_cleanup_queue(dev->admin_q);
1689 		blk_mq_free_tag_set(&dev->admin_tagset);
1690 	}
1691 }
1692 
1693 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1694 {
1695 	if (!dev->admin_q) {
1696 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1697 		dev->admin_tagset.nr_hw_queues = 1;
1698 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1699 		dev->admin_tagset.reserved_tags = 1;
1700 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1701 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1702 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1703 		dev->admin_tagset.driver_data = dev;
1704 
1705 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1706 			return -ENOMEM;
1707 
1708 		dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1709 		if (IS_ERR(dev->admin_q)) {
1710 			blk_mq_free_tag_set(&dev->admin_tagset);
1711 			return -ENOMEM;
1712 		}
1713 		if (!blk_get_queue(dev->admin_q)) {
1714 			nvme_dev_remove_admin(dev);
1715 			dev->admin_q = NULL;
1716 			return -ENODEV;
1717 		}
1718 	} else
1719 		blk_mq_unfreeze_queue(dev->admin_q);
1720 
1721 	return 0;
1722 }
1723 
1724 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1725 {
1726 	int result;
1727 	u32 aqa;
1728 	u64 cap = lo_hi_readq(&dev->bar->cap);
1729 	struct nvme_queue *nvmeq;
1730 	unsigned page_shift = PAGE_SHIFT;
1731 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1732 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1733 
1734 	if (page_shift < dev_page_min) {
1735 		dev_err(dev->dev,
1736 				"Minimum device page size (%u) too large for "
1737 				"host (%u)\n", 1 << dev_page_min,
1738 				1 << page_shift);
1739 		return -ENODEV;
1740 	}
1741 	if (page_shift > dev_page_max) {
1742 		dev_info(dev->dev,
1743 				"Device maximum page size (%u) smaller than "
1744 				"host (%u); enabling work-around\n",
1745 				1 << dev_page_max, 1 << page_shift);
1746 		page_shift = dev_page_max;
1747 	}
1748 
1749 	dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1750 						NVME_CAP_NSSRC(cap) : 0;
1751 
1752 	if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1753 		writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1754 
1755 	result = nvme_disable_ctrl(dev, cap);
1756 	if (result < 0)
1757 		return result;
1758 
1759 	nvmeq = dev->queues[0];
1760 	if (!nvmeq) {
1761 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1762 		if (!nvmeq)
1763 			return -ENOMEM;
1764 	}
1765 
1766 	aqa = nvmeq->q_depth - 1;
1767 	aqa |= aqa << 16;
1768 
1769 	dev->page_size = 1 << page_shift;
1770 
1771 	dev->ctrl_config = NVME_CC_CSS_NVM;
1772 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1773 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1774 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1775 
1776 	writel(aqa, &dev->bar->aqa);
1777 	lo_hi_writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1778 	lo_hi_writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1779 
1780 	result = nvme_enable_ctrl(dev, cap);
1781 	if (result)
1782 		goto free_nvmeq;
1783 
1784 	nvmeq->cq_vector = 0;
1785 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1786 	if (result) {
1787 		nvmeq->cq_vector = -1;
1788 		goto free_nvmeq;
1789 	}
1790 
1791 	return result;
1792 
1793  free_nvmeq:
1794 	nvme_free_queues(dev, 0);
1795 	return result;
1796 }
1797 
1798 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1799 {
1800 	struct nvme_dev *dev = ns->dev;
1801 	struct nvme_user_io io;
1802 	struct nvme_command c;
1803 	unsigned length, meta_len;
1804 	int status, write;
1805 	dma_addr_t meta_dma = 0;
1806 	void *meta = NULL;
1807 	void __user *metadata;
1808 
1809 	if (copy_from_user(&io, uio, sizeof(io)))
1810 		return -EFAULT;
1811 
1812 	switch (io.opcode) {
1813 	case nvme_cmd_write:
1814 	case nvme_cmd_read:
1815 	case nvme_cmd_compare:
1816 		break;
1817 	default:
1818 		return -EINVAL;
1819 	}
1820 
1821 	length = (io.nblocks + 1) << ns->lba_shift;
1822 	meta_len = (io.nblocks + 1) * ns->ms;
1823 	metadata = (void __user *)(uintptr_t)io.metadata;
1824 	write = io.opcode & 1;
1825 
1826 	if (ns->ext) {
1827 		length += meta_len;
1828 		meta_len = 0;
1829 	}
1830 	if (meta_len) {
1831 		if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1832 			return -EINVAL;
1833 
1834 		meta = dma_alloc_coherent(dev->dev, meta_len,
1835 						&meta_dma, GFP_KERNEL);
1836 
1837 		if (!meta) {
1838 			status = -ENOMEM;
1839 			goto unmap;
1840 		}
1841 		if (write) {
1842 			if (copy_from_user(meta, metadata, meta_len)) {
1843 				status = -EFAULT;
1844 				goto unmap;
1845 			}
1846 		}
1847 	}
1848 
1849 	memset(&c, 0, sizeof(c));
1850 	c.rw.opcode = io.opcode;
1851 	c.rw.flags = io.flags;
1852 	c.rw.nsid = cpu_to_le32(ns->ns_id);
1853 	c.rw.slba = cpu_to_le64(io.slba);
1854 	c.rw.length = cpu_to_le16(io.nblocks);
1855 	c.rw.control = cpu_to_le16(io.control);
1856 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1857 	c.rw.reftag = cpu_to_le32(io.reftag);
1858 	c.rw.apptag = cpu_to_le16(io.apptag);
1859 	c.rw.appmask = cpu_to_le16(io.appmask);
1860 	c.rw.metadata = cpu_to_le64(meta_dma);
1861 
1862 	status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1863 			(void __user *)(uintptr_t)io.addr, length, NULL, 0);
1864  unmap:
1865 	if (meta) {
1866 		if (status == NVME_SC_SUCCESS && !write) {
1867 			if (copy_to_user(metadata, meta, meta_len))
1868 				status = -EFAULT;
1869 		}
1870 		dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1871 	}
1872 	return status;
1873 }
1874 
1875 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1876 			struct nvme_passthru_cmd __user *ucmd)
1877 {
1878 	struct nvme_passthru_cmd cmd;
1879 	struct nvme_command c;
1880 	unsigned timeout = 0;
1881 	int status;
1882 
1883 	if (!capable(CAP_SYS_ADMIN))
1884 		return -EACCES;
1885 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1886 		return -EFAULT;
1887 
1888 	memset(&c, 0, sizeof(c));
1889 	c.common.opcode = cmd.opcode;
1890 	c.common.flags = cmd.flags;
1891 	c.common.nsid = cpu_to_le32(cmd.nsid);
1892 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1893 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1894 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1895 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1896 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1897 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1898 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1899 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1900 
1901 	if (cmd.timeout_ms)
1902 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1903 
1904 	status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1905 			NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1906 			&cmd.result, timeout);
1907 	if (status >= 0) {
1908 		if (put_user(cmd.result, &ucmd->result))
1909 			return -EFAULT;
1910 	}
1911 
1912 	return status;
1913 }
1914 
1915 static int nvme_subsys_reset(struct nvme_dev *dev)
1916 {
1917 	if (!dev->subsystem)
1918 		return -ENOTTY;
1919 
1920 	writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1921 	return 0;
1922 }
1923 
1924 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1925 							unsigned long arg)
1926 {
1927 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1928 
1929 	switch (cmd) {
1930 	case NVME_IOCTL_ID:
1931 		force_successful_syscall_return();
1932 		return ns->ns_id;
1933 	case NVME_IOCTL_ADMIN_CMD:
1934 		return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1935 	case NVME_IOCTL_IO_CMD:
1936 		return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1937 	case NVME_IOCTL_SUBMIT_IO:
1938 		return nvme_submit_io(ns, (void __user *)arg);
1939 	case SG_GET_VERSION_NUM:
1940 		return nvme_sg_get_version_num((void __user *)arg);
1941 	case SG_IO:
1942 		return nvme_sg_io(ns, (void __user *)arg);
1943 	default:
1944 		return -ENOTTY;
1945 	}
1946 }
1947 
1948 #ifdef CONFIG_COMPAT
1949 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1950 					unsigned int cmd, unsigned long arg)
1951 {
1952 	switch (cmd) {
1953 	case SG_IO:
1954 		return -ENOIOCTLCMD;
1955 	}
1956 	return nvme_ioctl(bdev, mode, cmd, arg);
1957 }
1958 #else
1959 #define nvme_compat_ioctl	NULL
1960 #endif
1961 
1962 static void nvme_free_dev(struct kref *kref);
1963 static void nvme_free_ns(struct kref *kref)
1964 {
1965 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1966 
1967 	if (ns->type == NVME_NS_LIGHTNVM)
1968 		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1969 
1970 	spin_lock(&dev_list_lock);
1971 	ns->disk->private_data = NULL;
1972 	spin_unlock(&dev_list_lock);
1973 
1974 	kref_put(&ns->dev->kref, nvme_free_dev);
1975 	put_disk(ns->disk);
1976 	kfree(ns);
1977 }
1978 
1979 static int nvme_open(struct block_device *bdev, fmode_t mode)
1980 {
1981 	int ret = 0;
1982 	struct nvme_ns *ns;
1983 
1984 	spin_lock(&dev_list_lock);
1985 	ns = bdev->bd_disk->private_data;
1986 	if (!ns)
1987 		ret = -ENXIO;
1988 	else if (!kref_get_unless_zero(&ns->kref))
1989 		ret = -ENXIO;
1990 	spin_unlock(&dev_list_lock);
1991 
1992 	return ret;
1993 }
1994 
1995 static void nvme_release(struct gendisk *disk, fmode_t mode)
1996 {
1997 	struct nvme_ns *ns = disk->private_data;
1998 	kref_put(&ns->kref, nvme_free_ns);
1999 }
2000 
2001 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
2002 {
2003 	/* some standard values */
2004 	geo->heads = 1 << 6;
2005 	geo->sectors = 1 << 5;
2006 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
2007 	return 0;
2008 }
2009 
2010 static void nvme_config_discard(struct nvme_ns *ns)
2011 {
2012 	u32 logical_block_size = queue_logical_block_size(ns->queue);
2013 	ns->queue->limits.discard_zeroes_data = 0;
2014 	ns->queue->limits.discard_alignment = logical_block_size;
2015 	ns->queue->limits.discard_granularity = logical_block_size;
2016 	blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
2017 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
2018 }
2019 
2020 static int nvme_revalidate_disk(struct gendisk *disk)
2021 {
2022 	struct nvme_ns *ns = disk->private_data;
2023 	struct nvme_dev *dev = ns->dev;
2024 	struct nvme_id_ns *id;
2025 	u8 lbaf, pi_type;
2026 	u16 old_ms;
2027 	unsigned short bs;
2028 
2029 	if (nvme_identify_ns(dev, ns->ns_id, &id)) {
2030 		dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2031 						dev->instance, ns->ns_id);
2032 		return -ENODEV;
2033 	}
2034 	if (id->ncap == 0) {
2035 		kfree(id);
2036 		return -ENODEV;
2037 	}
2038 
2039 	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
2040 		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
2041 			dev_warn(dev->dev,
2042 				"%s: LightNVM init failure\n", __func__);
2043 			kfree(id);
2044 			return -ENODEV;
2045 		}
2046 		ns->type = NVME_NS_LIGHTNVM;
2047 	}
2048 
2049 	old_ms = ns->ms;
2050 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2051 	ns->lba_shift = id->lbaf[lbaf].ds;
2052 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2053 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2054 
2055 	/*
2056 	 * If identify namespace failed, use default 512 byte block size so
2057 	 * block layer can use before failing read/write for 0 capacity.
2058 	 */
2059 	if (ns->lba_shift == 0)
2060 		ns->lba_shift = 9;
2061 	bs = 1 << ns->lba_shift;
2062 
2063 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
2064 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2065 					id->dps & NVME_NS_DPS_PI_MASK : 0;
2066 
2067 	blk_mq_freeze_queue(disk->queue);
2068 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2069 				ns->ms != old_ms ||
2070 				bs != queue_logical_block_size(disk->queue) ||
2071 				(ns->ms && ns->ext)))
2072 		blk_integrity_unregister(disk);
2073 
2074 	ns->pi_type = pi_type;
2075 	blk_queue_logical_block_size(ns->queue, bs);
2076 
2077 	if (ns->ms && !ns->ext)
2078 		nvme_init_integrity(ns);
2079 
2080 	if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
2081 						!blk_get_integrity(disk)) ||
2082 						ns->type == NVME_NS_LIGHTNVM)
2083 		set_capacity(disk, 0);
2084 	else
2085 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2086 
2087 	if (dev->oncs & NVME_CTRL_ONCS_DSM)
2088 		nvme_config_discard(ns);
2089 	blk_mq_unfreeze_queue(disk->queue);
2090 
2091 	kfree(id);
2092 	return 0;
2093 }
2094 
2095 static char nvme_pr_type(enum pr_type type)
2096 {
2097 	switch (type) {
2098 	case PR_WRITE_EXCLUSIVE:
2099 		return 1;
2100 	case PR_EXCLUSIVE_ACCESS:
2101 		return 2;
2102 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2103 		return 3;
2104 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2105 		return 4;
2106 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2107 		return 5;
2108 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2109 		return 6;
2110 	default:
2111 		return 0;
2112 	}
2113 };
2114 
2115 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2116 				u64 key, u64 sa_key, u8 op)
2117 {
2118 	struct nvme_ns *ns = bdev->bd_disk->private_data;
2119 	struct nvme_command c;
2120 	u8 data[16] = { 0, };
2121 
2122 	put_unaligned_le64(key, &data[0]);
2123 	put_unaligned_le64(sa_key, &data[8]);
2124 
2125 	memset(&c, 0, sizeof(c));
2126 	c.common.opcode = op;
2127 	c.common.nsid = cpu_to_le32(ns->ns_id);
2128 	c.common.cdw10[0] = cpu_to_le32(cdw10);
2129 
2130 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2131 }
2132 
2133 static int nvme_pr_register(struct block_device *bdev, u64 old,
2134 		u64 new, unsigned flags)
2135 {
2136 	u32 cdw10;
2137 
2138 	if (flags & ~PR_FL_IGNORE_KEY)
2139 		return -EOPNOTSUPP;
2140 
2141 	cdw10 = old ? 2 : 0;
2142 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2143 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2144 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2145 }
2146 
2147 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2148 		enum pr_type type, unsigned flags)
2149 {
2150 	u32 cdw10;
2151 
2152 	if (flags & ~PR_FL_IGNORE_KEY)
2153 		return -EOPNOTSUPP;
2154 
2155 	cdw10 = nvme_pr_type(type) << 8;
2156 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2157 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2158 }
2159 
2160 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2161 		enum pr_type type, bool abort)
2162 {
2163 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2164 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2165 }
2166 
2167 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2168 {
2169 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2170 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2171 }
2172 
2173 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2174 {
2175 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2176 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2177 }
2178 
2179 static const struct pr_ops nvme_pr_ops = {
2180 	.pr_register	= nvme_pr_register,
2181 	.pr_reserve	= nvme_pr_reserve,
2182 	.pr_release	= nvme_pr_release,
2183 	.pr_preempt	= nvme_pr_preempt,
2184 	.pr_clear	= nvme_pr_clear,
2185 };
2186 
2187 static const struct block_device_operations nvme_fops = {
2188 	.owner		= THIS_MODULE,
2189 	.ioctl		= nvme_ioctl,
2190 	.compat_ioctl	= nvme_compat_ioctl,
2191 	.open		= nvme_open,
2192 	.release	= nvme_release,
2193 	.getgeo		= nvme_getgeo,
2194 	.revalidate_disk= nvme_revalidate_disk,
2195 	.pr_ops		= &nvme_pr_ops,
2196 };
2197 
2198 static int nvme_kthread(void *data)
2199 {
2200 	struct nvme_dev *dev, *next;
2201 
2202 	while (!kthread_should_stop()) {
2203 		set_current_state(TASK_INTERRUPTIBLE);
2204 		spin_lock(&dev_list_lock);
2205 		list_for_each_entry_safe(dev, next, &dev_list, node) {
2206 			int i;
2207 			u32 csts = readl(&dev->bar->csts);
2208 
2209 			if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2210 							csts & NVME_CSTS_CFS) {
2211 				if (!__nvme_reset(dev)) {
2212 					dev_warn(dev->dev,
2213 						"Failed status: %x, reset controller\n",
2214 						readl(&dev->bar->csts));
2215 				}
2216 				continue;
2217 			}
2218 			for (i = 0; i < dev->queue_count; i++) {
2219 				struct nvme_queue *nvmeq = dev->queues[i];
2220 				if (!nvmeq)
2221 					continue;
2222 				spin_lock_irq(&nvmeq->q_lock);
2223 				nvme_process_cq(nvmeq);
2224 
2225 				while ((i == 0) && (dev->event_limit > 0)) {
2226 					if (nvme_submit_async_admin_req(dev))
2227 						break;
2228 					dev->event_limit--;
2229 				}
2230 				spin_unlock_irq(&nvmeq->q_lock);
2231 			}
2232 		}
2233 		spin_unlock(&dev_list_lock);
2234 		schedule_timeout(round_jiffies_relative(HZ));
2235 	}
2236 	return 0;
2237 }
2238 
2239 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2240 {
2241 	struct nvme_ns *ns;
2242 	struct gendisk *disk;
2243 	int node = dev_to_node(dev->dev);
2244 
2245 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2246 	if (!ns)
2247 		return;
2248 
2249 	ns->queue = blk_mq_init_queue(&dev->tagset);
2250 	if (IS_ERR(ns->queue))
2251 		goto out_free_ns;
2252 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2253 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2254 	ns->dev = dev;
2255 	ns->queue->queuedata = ns;
2256 
2257 	disk = alloc_disk_node(0, node);
2258 	if (!disk)
2259 		goto out_free_queue;
2260 
2261 	kref_init(&ns->kref);
2262 	ns->ns_id = nsid;
2263 	ns->disk = disk;
2264 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2265 	list_add_tail(&ns->list, &dev->namespaces);
2266 
2267 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2268 	if (dev->max_hw_sectors) {
2269 		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2270 		blk_queue_max_segments(ns->queue,
2271 			((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2272 	}
2273 	if (dev->stripe_size)
2274 		blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2275 	if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2276 		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2277 	blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
2278 
2279 	disk->major = nvme_major;
2280 	disk->first_minor = 0;
2281 	disk->fops = &nvme_fops;
2282 	disk->private_data = ns;
2283 	disk->queue = ns->queue;
2284 	disk->driverfs_dev = dev->device;
2285 	disk->flags = GENHD_FL_EXT_DEVT;
2286 	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2287 
2288 	/*
2289 	 * Initialize capacity to 0 until we establish the namespace format and
2290 	 * setup integrity extentions if necessary. The revalidate_disk after
2291 	 * add_disk allows the driver to register with integrity if the format
2292 	 * requires it.
2293 	 */
2294 	set_capacity(disk, 0);
2295 	if (nvme_revalidate_disk(ns->disk))
2296 		goto out_free_disk;
2297 
2298 	kref_get(&dev->kref);
2299 	if (ns->type != NVME_NS_LIGHTNVM) {
2300 		add_disk(ns->disk);
2301 		if (ns->ms) {
2302 			struct block_device *bd = bdget_disk(ns->disk, 0);
2303 			if (!bd)
2304 				return;
2305 			if (blkdev_get(bd, FMODE_READ, NULL)) {
2306 				bdput(bd);
2307 				return;
2308 			}
2309 			blkdev_reread_part(bd);
2310 			blkdev_put(bd, FMODE_READ);
2311 		}
2312 	}
2313 	return;
2314  out_free_disk:
2315 	kfree(disk);
2316 	list_del(&ns->list);
2317  out_free_queue:
2318 	blk_cleanup_queue(ns->queue);
2319  out_free_ns:
2320 	kfree(ns);
2321 }
2322 
2323 /*
2324  * Create I/O queues.  Failing to create an I/O queue is not an issue,
2325  * we can continue with less than the desired amount of queues, and
2326  * even a controller without I/O queues an still be used to issue
2327  * admin commands.  This might be useful to upgrade a buggy firmware
2328  * for example.
2329  */
2330 static void nvme_create_io_queues(struct nvme_dev *dev)
2331 {
2332 	unsigned i;
2333 
2334 	for (i = dev->queue_count; i <= dev->max_qid; i++)
2335 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
2336 			break;
2337 
2338 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2339 		if (nvme_create_queue(dev->queues[i], i)) {
2340 			nvme_free_queues(dev, i);
2341 			break;
2342 		}
2343 }
2344 
2345 static int set_queue_count(struct nvme_dev *dev, int count)
2346 {
2347 	int status;
2348 	u32 result;
2349 	u32 q_count = (count - 1) | ((count - 1) << 16);
2350 
2351 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2352 								&result);
2353 	if (status < 0)
2354 		return status;
2355 	if (status > 0) {
2356 		dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2357 		return 0;
2358 	}
2359 	return min(result & 0xffff, result >> 16) + 1;
2360 }
2361 
2362 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2363 {
2364 	u64 szu, size, offset;
2365 	u32 cmbloc;
2366 	resource_size_t bar_size;
2367 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2368 	void __iomem *cmb;
2369 	dma_addr_t dma_addr;
2370 
2371 	if (!use_cmb_sqes)
2372 		return NULL;
2373 
2374 	dev->cmbsz = readl(&dev->bar->cmbsz);
2375 	if (!(NVME_CMB_SZ(dev->cmbsz)))
2376 		return NULL;
2377 
2378 	cmbloc = readl(&dev->bar->cmbloc);
2379 
2380 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2381 	size = szu * NVME_CMB_SZ(dev->cmbsz);
2382 	offset = szu * NVME_CMB_OFST(cmbloc);
2383 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2384 
2385 	if (offset > bar_size)
2386 		return NULL;
2387 
2388 	/*
2389 	 * Controllers may support a CMB size larger than their BAR,
2390 	 * for example, due to being behind a bridge. Reduce the CMB to
2391 	 * the reported size of the BAR
2392 	 */
2393 	if (size > bar_size - offset)
2394 		size = bar_size - offset;
2395 
2396 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2397 	cmb = ioremap_wc(dma_addr, size);
2398 	if (!cmb)
2399 		return NULL;
2400 
2401 	dev->cmb_dma_addr = dma_addr;
2402 	dev->cmb_size = size;
2403 	return cmb;
2404 }
2405 
2406 static inline void nvme_release_cmb(struct nvme_dev *dev)
2407 {
2408 	if (dev->cmb) {
2409 		iounmap(dev->cmb);
2410 		dev->cmb = NULL;
2411 	}
2412 }
2413 
2414 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2415 {
2416 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2417 }
2418 
2419 static int nvme_setup_io_queues(struct nvme_dev *dev)
2420 {
2421 	struct nvme_queue *adminq = dev->queues[0];
2422 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2423 	int result, i, vecs, nr_io_queues, size;
2424 
2425 	nr_io_queues = num_possible_cpus();
2426 	result = set_queue_count(dev, nr_io_queues);
2427 	if (result <= 0)
2428 		return result;
2429 	if (result < nr_io_queues)
2430 		nr_io_queues = result;
2431 
2432 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2433 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2434 				sizeof(struct nvme_command));
2435 		if (result > 0)
2436 			dev->q_depth = result;
2437 		else
2438 			nvme_release_cmb(dev);
2439 	}
2440 
2441 	size = db_bar_size(dev, nr_io_queues);
2442 	if (size > 8192) {
2443 		iounmap(dev->bar);
2444 		do {
2445 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2446 			if (dev->bar)
2447 				break;
2448 			if (!--nr_io_queues)
2449 				return -ENOMEM;
2450 			size = db_bar_size(dev, nr_io_queues);
2451 		} while (1);
2452 		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2453 		adminq->q_db = dev->dbs;
2454 	}
2455 
2456 	/* Deregister the admin queue's interrupt */
2457 	free_irq(dev->entry[0].vector, adminq);
2458 
2459 	/*
2460 	 * If we enable msix early due to not intx, disable it again before
2461 	 * setting up the full range we need.
2462 	 */
2463 	if (!pdev->irq)
2464 		pci_disable_msix(pdev);
2465 
2466 	for (i = 0; i < nr_io_queues; i++)
2467 		dev->entry[i].entry = i;
2468 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2469 	if (vecs < 0) {
2470 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2471 		if (vecs < 0) {
2472 			vecs = 1;
2473 		} else {
2474 			for (i = 0; i < vecs; i++)
2475 				dev->entry[i].vector = i + pdev->irq;
2476 		}
2477 	}
2478 
2479 	/*
2480 	 * Should investigate if there's a performance win from allocating
2481 	 * more queues than interrupt vectors; it might allow the submission
2482 	 * path to scale better, even if the receive path is limited by the
2483 	 * number of interrupts.
2484 	 */
2485 	nr_io_queues = vecs;
2486 	dev->max_qid = nr_io_queues;
2487 
2488 	result = queue_request_irq(dev, adminq, adminq->irqname);
2489 	if (result) {
2490 		adminq->cq_vector = -1;
2491 		goto free_queues;
2492 	}
2493 
2494 	/* Free previously allocated queues that are no longer usable */
2495 	nvme_free_queues(dev, nr_io_queues + 1);
2496 	nvme_create_io_queues(dev);
2497 
2498 	return 0;
2499 
2500  free_queues:
2501 	nvme_free_queues(dev, 1);
2502 	return result;
2503 }
2504 
2505 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2506 {
2507 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2508 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2509 
2510 	return nsa->ns_id - nsb->ns_id;
2511 }
2512 
2513 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2514 {
2515 	struct nvme_ns *ns;
2516 
2517 	list_for_each_entry(ns, &dev->namespaces, list) {
2518 		if (ns->ns_id == nsid)
2519 			return ns;
2520 		if (ns->ns_id > nsid)
2521 			break;
2522 	}
2523 	return NULL;
2524 }
2525 
2526 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2527 {
2528 	return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2529 							dev->online_queues < 2);
2530 }
2531 
2532 static void nvme_ns_remove(struct nvme_ns *ns)
2533 {
2534 	bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2535 
2536 	if (kill)
2537 		blk_set_queue_dying(ns->queue);
2538 	if (ns->disk->flags & GENHD_FL_UP)
2539 		del_gendisk(ns->disk);
2540 	if (kill || !blk_queue_dying(ns->queue)) {
2541 		blk_mq_abort_requeue_list(ns->queue);
2542 		blk_cleanup_queue(ns->queue);
2543 	}
2544 	list_del_init(&ns->list);
2545 	kref_put(&ns->kref, nvme_free_ns);
2546 }
2547 
2548 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2549 {
2550 	struct nvme_ns *ns, *next;
2551 	unsigned i;
2552 
2553 	for (i = 1; i <= nn; i++) {
2554 		ns = nvme_find_ns(dev, i);
2555 		if (ns) {
2556 			if (revalidate_disk(ns->disk))
2557 				nvme_ns_remove(ns);
2558 		} else
2559 			nvme_alloc_ns(dev, i);
2560 	}
2561 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2562 		if (ns->ns_id > nn)
2563 			nvme_ns_remove(ns);
2564 	}
2565 	list_sort(NULL, &dev->namespaces, ns_cmp);
2566 }
2567 
2568 static void nvme_set_irq_hints(struct nvme_dev *dev)
2569 {
2570 	struct nvme_queue *nvmeq;
2571 	int i;
2572 
2573 	for (i = 0; i < dev->online_queues; i++) {
2574 		nvmeq = dev->queues[i];
2575 
2576 		if (!nvmeq->tags || !(*nvmeq->tags))
2577 			continue;
2578 
2579 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2580 					blk_mq_tags_cpumask(*nvmeq->tags));
2581 	}
2582 }
2583 
2584 static void nvme_dev_scan(struct work_struct *work)
2585 {
2586 	struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2587 	struct nvme_id_ctrl *ctrl;
2588 
2589 	if (!dev->tagset.tags)
2590 		return;
2591 	if (nvme_identify_ctrl(dev, &ctrl))
2592 		return;
2593 	nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2594 	kfree(ctrl);
2595 	nvme_set_irq_hints(dev);
2596 }
2597 
2598 /*
2599  * Return: error value if an error occurred setting up the queues or calling
2600  * Identify Device.  0 if these succeeded, even if adding some of the
2601  * namespaces failed.  At the moment, these failures are silent.  TBD which
2602  * failures should be reported.
2603  */
2604 static int nvme_dev_add(struct nvme_dev *dev)
2605 {
2606 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2607 	int res;
2608 	struct nvme_id_ctrl *ctrl;
2609 	int shift = NVME_CAP_MPSMIN(lo_hi_readq(&dev->bar->cap)) + 12;
2610 
2611 	res = nvme_identify_ctrl(dev, &ctrl);
2612 	if (res) {
2613 		dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2614 		return -EIO;
2615 	}
2616 
2617 	dev->oncs = le16_to_cpup(&ctrl->oncs);
2618 	dev->abort_limit = ctrl->acl + 1;
2619 	dev->vwc = ctrl->vwc;
2620 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2621 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2622 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2623 	if (ctrl->mdts)
2624 		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2625 	else
2626 		dev->max_hw_sectors = UINT_MAX;
2627 	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2628 			(pdev->device == 0x0953) && ctrl->vs[3]) {
2629 		unsigned int max_hw_sectors;
2630 
2631 		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2632 		max_hw_sectors = dev->stripe_size >> (shift - 9);
2633 		if (dev->max_hw_sectors) {
2634 			dev->max_hw_sectors = min(max_hw_sectors,
2635 							dev->max_hw_sectors);
2636 		} else
2637 			dev->max_hw_sectors = max_hw_sectors;
2638 	}
2639 	kfree(ctrl);
2640 
2641 	if (!dev->tagset.tags) {
2642 		dev->tagset.ops = &nvme_mq_ops;
2643 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2644 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2645 		dev->tagset.numa_node = dev_to_node(dev->dev);
2646 		dev->tagset.queue_depth =
2647 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2648 		dev->tagset.cmd_size = nvme_cmd_size(dev);
2649 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2650 		dev->tagset.driver_data = dev;
2651 
2652 		if (blk_mq_alloc_tag_set(&dev->tagset))
2653 			return 0;
2654 	}
2655 	schedule_work(&dev->scan_work);
2656 	return 0;
2657 }
2658 
2659 static int nvme_dev_map(struct nvme_dev *dev)
2660 {
2661 	u64 cap;
2662 	int bars, result = -ENOMEM;
2663 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2664 
2665 	if (pci_enable_device_mem(pdev))
2666 		return result;
2667 
2668 	dev->entry[0].vector = pdev->irq;
2669 	pci_set_master(pdev);
2670 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2671 	if (!bars)
2672 		goto disable_pci;
2673 
2674 	if (pci_request_selected_regions(pdev, bars, "nvme"))
2675 		goto disable_pci;
2676 
2677 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2678 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2679 		goto disable;
2680 
2681 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2682 	if (!dev->bar)
2683 		goto disable;
2684 
2685 	if (readl(&dev->bar->csts) == -1) {
2686 		result = -ENODEV;
2687 		goto unmap;
2688 	}
2689 
2690 	/*
2691 	 * Some devices don't advertse INTx interrupts, pre-enable a single
2692 	 * MSIX vec for setup. We'll adjust this later.
2693 	 */
2694 	if (!pdev->irq) {
2695 		result = pci_enable_msix(pdev, dev->entry, 1);
2696 		if (result < 0)
2697 			goto unmap;
2698 	}
2699 
2700 	cap = lo_hi_readq(&dev->bar->cap);
2701 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2702 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2703 	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2704 	if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2705 		dev->cmb = nvme_map_cmb(dev);
2706 
2707 	return 0;
2708 
2709  unmap:
2710 	iounmap(dev->bar);
2711 	dev->bar = NULL;
2712  disable:
2713 	pci_release_regions(pdev);
2714  disable_pci:
2715 	pci_disable_device(pdev);
2716 	return result;
2717 }
2718 
2719 static void nvme_dev_unmap(struct nvme_dev *dev)
2720 {
2721 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2722 
2723 	if (pdev->msi_enabled)
2724 		pci_disable_msi(pdev);
2725 	else if (pdev->msix_enabled)
2726 		pci_disable_msix(pdev);
2727 
2728 	if (dev->bar) {
2729 		iounmap(dev->bar);
2730 		dev->bar = NULL;
2731 		pci_release_regions(pdev);
2732 	}
2733 
2734 	if (pci_is_enabled(pdev))
2735 		pci_disable_device(pdev);
2736 }
2737 
2738 struct nvme_delq_ctx {
2739 	struct task_struct *waiter;
2740 	struct kthread_worker *worker;
2741 	atomic_t refcount;
2742 };
2743 
2744 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2745 {
2746 	dq->waiter = current;
2747 	mb();
2748 
2749 	for (;;) {
2750 		set_current_state(TASK_KILLABLE);
2751 		if (!atomic_read(&dq->refcount))
2752 			break;
2753 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2754 					fatal_signal_pending(current)) {
2755 			/*
2756 			 * Disable the controller first since we can't trust it
2757 			 * at this point, but leave the admin queue enabled
2758 			 * until all queue deletion requests are flushed.
2759 			 * FIXME: This may take a while if there are more h/w
2760 			 * queues than admin tags.
2761 			 */
2762 			set_current_state(TASK_RUNNING);
2763 			nvme_disable_ctrl(dev, lo_hi_readq(&dev->bar->cap));
2764 			nvme_clear_queue(dev->queues[0]);
2765 			flush_kthread_worker(dq->worker);
2766 			nvme_disable_queue(dev, 0);
2767 			return;
2768 		}
2769 	}
2770 	set_current_state(TASK_RUNNING);
2771 }
2772 
2773 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2774 {
2775 	atomic_dec(&dq->refcount);
2776 	if (dq->waiter)
2777 		wake_up_process(dq->waiter);
2778 }
2779 
2780 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2781 {
2782 	atomic_inc(&dq->refcount);
2783 	return dq;
2784 }
2785 
2786 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2787 {
2788 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2789 	nvme_put_dq(dq);
2790 }
2791 
2792 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2793 						kthread_work_func_t fn)
2794 {
2795 	struct nvme_command c;
2796 
2797 	memset(&c, 0, sizeof(c));
2798 	c.delete_queue.opcode = opcode;
2799 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2800 
2801 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2802 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2803 								ADMIN_TIMEOUT);
2804 }
2805 
2806 static void nvme_del_cq_work_handler(struct kthread_work *work)
2807 {
2808 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2809 							cmdinfo.work);
2810 	nvme_del_queue_end(nvmeq);
2811 }
2812 
2813 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2814 {
2815 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2816 						nvme_del_cq_work_handler);
2817 }
2818 
2819 static void nvme_del_sq_work_handler(struct kthread_work *work)
2820 {
2821 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2822 							cmdinfo.work);
2823 	int status = nvmeq->cmdinfo.status;
2824 
2825 	if (!status)
2826 		status = nvme_delete_cq(nvmeq);
2827 	if (status)
2828 		nvme_del_queue_end(nvmeq);
2829 }
2830 
2831 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2832 {
2833 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2834 						nvme_del_sq_work_handler);
2835 }
2836 
2837 static void nvme_del_queue_start(struct kthread_work *work)
2838 {
2839 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2840 							cmdinfo.work);
2841 	if (nvme_delete_sq(nvmeq))
2842 		nvme_del_queue_end(nvmeq);
2843 }
2844 
2845 static void nvme_disable_io_queues(struct nvme_dev *dev)
2846 {
2847 	int i;
2848 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2849 	struct nvme_delq_ctx dq;
2850 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2851 					&worker, "nvme%d", dev->instance);
2852 
2853 	if (IS_ERR(kworker_task)) {
2854 		dev_err(dev->dev,
2855 			"Failed to create queue del task\n");
2856 		for (i = dev->queue_count - 1; i > 0; i--)
2857 			nvme_disable_queue(dev, i);
2858 		return;
2859 	}
2860 
2861 	dq.waiter = NULL;
2862 	atomic_set(&dq.refcount, 0);
2863 	dq.worker = &worker;
2864 	for (i = dev->queue_count - 1; i > 0; i--) {
2865 		struct nvme_queue *nvmeq = dev->queues[i];
2866 
2867 		if (nvme_suspend_queue(nvmeq))
2868 			continue;
2869 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2870 		nvmeq->cmdinfo.worker = dq.worker;
2871 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2872 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2873 	}
2874 	nvme_wait_dq(&dq, dev);
2875 	kthread_stop(kworker_task);
2876 }
2877 
2878 /*
2879 * Remove the node from the device list and check
2880 * for whether or not we need to stop the nvme_thread.
2881 */
2882 static void nvme_dev_list_remove(struct nvme_dev *dev)
2883 {
2884 	struct task_struct *tmp = NULL;
2885 
2886 	spin_lock(&dev_list_lock);
2887 	list_del_init(&dev->node);
2888 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2889 		tmp = nvme_thread;
2890 		nvme_thread = NULL;
2891 	}
2892 	spin_unlock(&dev_list_lock);
2893 
2894 	if (tmp)
2895 		kthread_stop(tmp);
2896 }
2897 
2898 static void nvme_freeze_queues(struct nvme_dev *dev)
2899 {
2900 	struct nvme_ns *ns;
2901 
2902 	list_for_each_entry(ns, &dev->namespaces, list) {
2903 		blk_mq_freeze_queue_start(ns->queue);
2904 
2905 		spin_lock_irq(ns->queue->queue_lock);
2906 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2907 		spin_unlock_irq(ns->queue->queue_lock);
2908 
2909 		blk_mq_cancel_requeue_work(ns->queue);
2910 		blk_mq_stop_hw_queues(ns->queue);
2911 	}
2912 }
2913 
2914 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2915 {
2916 	struct nvme_ns *ns;
2917 
2918 	list_for_each_entry(ns, &dev->namespaces, list) {
2919 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2920 		blk_mq_unfreeze_queue(ns->queue);
2921 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2922 		blk_mq_kick_requeue_list(ns->queue);
2923 	}
2924 }
2925 
2926 static void nvme_dev_shutdown(struct nvme_dev *dev)
2927 {
2928 	int i;
2929 	u32 csts = -1;
2930 
2931 	nvme_dev_list_remove(dev);
2932 
2933 	if (dev->bar) {
2934 		nvme_freeze_queues(dev);
2935 		csts = readl(&dev->bar->csts);
2936 	}
2937 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2938 		for (i = dev->queue_count - 1; i >= 0; i--) {
2939 			struct nvme_queue *nvmeq = dev->queues[i];
2940 			nvme_suspend_queue(nvmeq);
2941 		}
2942 	} else {
2943 		nvme_disable_io_queues(dev);
2944 		nvme_shutdown_ctrl(dev);
2945 		nvme_disable_queue(dev, 0);
2946 	}
2947 	nvme_dev_unmap(dev);
2948 
2949 	for (i = dev->queue_count - 1; i >= 0; i--)
2950 		nvme_clear_queue(dev->queues[i]);
2951 }
2952 
2953 static void nvme_dev_remove(struct nvme_dev *dev)
2954 {
2955 	struct nvme_ns *ns, *next;
2956 
2957 	list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2958 		nvme_ns_remove(ns);
2959 }
2960 
2961 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2962 {
2963 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2964 						PAGE_SIZE, PAGE_SIZE, 0);
2965 	if (!dev->prp_page_pool)
2966 		return -ENOMEM;
2967 
2968 	/* Optimisation for I/Os between 4k and 128k */
2969 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2970 						256, 256, 0);
2971 	if (!dev->prp_small_pool) {
2972 		dma_pool_destroy(dev->prp_page_pool);
2973 		return -ENOMEM;
2974 	}
2975 	return 0;
2976 }
2977 
2978 static void nvme_release_prp_pools(struct nvme_dev *dev)
2979 {
2980 	dma_pool_destroy(dev->prp_page_pool);
2981 	dma_pool_destroy(dev->prp_small_pool);
2982 }
2983 
2984 static DEFINE_IDA(nvme_instance_ida);
2985 
2986 static int nvme_set_instance(struct nvme_dev *dev)
2987 {
2988 	int instance, error;
2989 
2990 	do {
2991 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2992 			return -ENODEV;
2993 
2994 		spin_lock(&dev_list_lock);
2995 		error = ida_get_new(&nvme_instance_ida, &instance);
2996 		spin_unlock(&dev_list_lock);
2997 	} while (error == -EAGAIN);
2998 
2999 	if (error)
3000 		return -ENODEV;
3001 
3002 	dev->instance = instance;
3003 	return 0;
3004 }
3005 
3006 static void nvme_release_instance(struct nvme_dev *dev)
3007 {
3008 	spin_lock(&dev_list_lock);
3009 	ida_remove(&nvme_instance_ida, dev->instance);
3010 	spin_unlock(&dev_list_lock);
3011 }
3012 
3013 static void nvme_free_dev(struct kref *kref)
3014 {
3015 	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
3016 
3017 	put_device(dev->dev);
3018 	put_device(dev->device);
3019 	nvme_release_instance(dev);
3020 	if (dev->tagset.tags)
3021 		blk_mq_free_tag_set(&dev->tagset);
3022 	if (dev->admin_q)
3023 		blk_put_queue(dev->admin_q);
3024 	kfree(dev->queues);
3025 	kfree(dev->entry);
3026 	kfree(dev);
3027 }
3028 
3029 static int nvme_dev_open(struct inode *inode, struct file *f)
3030 {
3031 	struct nvme_dev *dev;
3032 	int instance = iminor(inode);
3033 	int ret = -ENODEV;
3034 
3035 	spin_lock(&dev_list_lock);
3036 	list_for_each_entry(dev, &dev_list, node) {
3037 		if (dev->instance == instance) {
3038 			if (!dev->admin_q) {
3039 				ret = -EWOULDBLOCK;
3040 				break;
3041 			}
3042 			if (!kref_get_unless_zero(&dev->kref))
3043 				break;
3044 			f->private_data = dev;
3045 			ret = 0;
3046 			break;
3047 		}
3048 	}
3049 	spin_unlock(&dev_list_lock);
3050 
3051 	return ret;
3052 }
3053 
3054 static int nvme_dev_release(struct inode *inode, struct file *f)
3055 {
3056 	struct nvme_dev *dev = f->private_data;
3057 	kref_put(&dev->kref, nvme_free_dev);
3058 	return 0;
3059 }
3060 
3061 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3062 {
3063 	struct nvme_dev *dev = f->private_data;
3064 	struct nvme_ns *ns;
3065 
3066 	switch (cmd) {
3067 	case NVME_IOCTL_ADMIN_CMD:
3068 		return nvme_user_cmd(dev, NULL, (void __user *)arg);
3069 	case NVME_IOCTL_IO_CMD:
3070 		if (list_empty(&dev->namespaces))
3071 			return -ENOTTY;
3072 		ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
3073 		return nvme_user_cmd(dev, ns, (void __user *)arg);
3074 	case NVME_IOCTL_RESET:
3075 		dev_warn(dev->dev, "resetting controller\n");
3076 		return nvme_reset(dev);
3077 	case NVME_IOCTL_SUBSYS_RESET:
3078 		return nvme_subsys_reset(dev);
3079 	default:
3080 		return -ENOTTY;
3081 	}
3082 }
3083 
3084 static const struct file_operations nvme_dev_fops = {
3085 	.owner		= THIS_MODULE,
3086 	.open		= nvme_dev_open,
3087 	.release	= nvme_dev_release,
3088 	.unlocked_ioctl	= nvme_dev_ioctl,
3089 	.compat_ioctl	= nvme_dev_ioctl,
3090 };
3091 
3092 static void nvme_probe_work(struct work_struct *work)
3093 {
3094 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3095 	bool start_thread = false;
3096 	int result;
3097 
3098 	result = nvme_dev_map(dev);
3099 	if (result)
3100 		goto out;
3101 
3102 	result = nvme_configure_admin_queue(dev);
3103 	if (result)
3104 		goto unmap;
3105 
3106 	spin_lock(&dev_list_lock);
3107 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3108 		start_thread = true;
3109 		nvme_thread = NULL;
3110 	}
3111 	list_add(&dev->node, &dev_list);
3112 	spin_unlock(&dev_list_lock);
3113 
3114 	if (start_thread) {
3115 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
3116 		wake_up_all(&nvme_kthread_wait);
3117 	} else
3118 		wait_event_killable(nvme_kthread_wait, nvme_thread);
3119 
3120 	if (IS_ERR_OR_NULL(nvme_thread)) {
3121 		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3122 		goto disable;
3123 	}
3124 
3125 	nvme_init_queue(dev->queues[0], 0);
3126 	result = nvme_alloc_admin_tags(dev);
3127 	if (result)
3128 		goto disable;
3129 
3130 	result = nvme_setup_io_queues(dev);
3131 	if (result)
3132 		goto free_tags;
3133 
3134 	dev->event_limit = 1;
3135 
3136 	/*
3137 	 * Keep the controller around but remove all namespaces if we don't have
3138 	 * any working I/O queue.
3139 	 */
3140 	if (dev->online_queues < 2) {
3141 		dev_warn(dev->dev, "IO queues not created\n");
3142 		nvme_dev_remove(dev);
3143 	} else {
3144 		nvme_unfreeze_queues(dev);
3145 		nvme_dev_add(dev);
3146 	}
3147 
3148 	return;
3149 
3150  free_tags:
3151 	nvme_dev_remove_admin(dev);
3152 	blk_put_queue(dev->admin_q);
3153 	dev->admin_q = NULL;
3154 	dev->queues[0]->tags = NULL;
3155  disable:
3156 	nvme_disable_queue(dev, 0);
3157 	nvme_dev_list_remove(dev);
3158  unmap:
3159 	nvme_dev_unmap(dev);
3160  out:
3161 	if (!work_busy(&dev->reset_work))
3162 		nvme_dead_ctrl(dev);
3163 }
3164 
3165 static int nvme_remove_dead_ctrl(void *arg)
3166 {
3167 	struct nvme_dev *dev = (struct nvme_dev *)arg;
3168 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3169 
3170 	if (pci_get_drvdata(pdev))
3171 		pci_stop_and_remove_bus_device_locked(pdev);
3172 	kref_put(&dev->kref, nvme_free_dev);
3173 	return 0;
3174 }
3175 
3176 static void nvme_dead_ctrl(struct nvme_dev *dev)
3177 {
3178 	dev_warn(dev->dev, "Device failed to resume\n");
3179 	kref_get(&dev->kref);
3180 	if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3181 						dev->instance))) {
3182 		dev_err(dev->dev,
3183 			"Failed to start controller remove task\n");
3184 		kref_put(&dev->kref, nvme_free_dev);
3185 	}
3186 }
3187 
3188 static void nvme_reset_work(struct work_struct *ws)
3189 {
3190 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
3191 	bool in_probe = work_busy(&dev->probe_work);
3192 
3193 	nvme_dev_shutdown(dev);
3194 
3195 	/* Synchronize with device probe so that work will see failure status
3196 	 * and exit gracefully without trying to schedule another reset */
3197 	flush_work(&dev->probe_work);
3198 
3199 	/* Fail this device if reset occured during probe to avoid
3200 	 * infinite initialization loops. */
3201 	if (in_probe) {
3202 		nvme_dead_ctrl(dev);
3203 		return;
3204 	}
3205 	/* Schedule device resume asynchronously so the reset work is available
3206 	 * to cleanup errors that may occur during reinitialization */
3207 	schedule_work(&dev->probe_work);
3208 }
3209 
3210 static int __nvme_reset(struct nvme_dev *dev)
3211 {
3212 	if (work_pending(&dev->reset_work))
3213 		return -EBUSY;
3214 	list_del_init(&dev->node);
3215 	queue_work(nvme_workq, &dev->reset_work);
3216 	return 0;
3217 }
3218 
3219 static int nvme_reset(struct nvme_dev *dev)
3220 {
3221 	int ret;
3222 
3223 	if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3224 		return -ENODEV;
3225 
3226 	spin_lock(&dev_list_lock);
3227 	ret = __nvme_reset(dev);
3228 	spin_unlock(&dev_list_lock);
3229 
3230 	if (!ret) {
3231 		flush_work(&dev->reset_work);
3232 		flush_work(&dev->probe_work);
3233 		return 0;
3234 	}
3235 
3236 	return ret;
3237 }
3238 
3239 static ssize_t nvme_sysfs_reset(struct device *dev,
3240 				struct device_attribute *attr, const char *buf,
3241 				size_t count)
3242 {
3243 	struct nvme_dev *ndev = dev_get_drvdata(dev);
3244 	int ret;
3245 
3246 	ret = nvme_reset(ndev);
3247 	if (ret < 0)
3248 		return ret;
3249 
3250 	return count;
3251 }
3252 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3253 
3254 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3255 {
3256 	int node, result = -ENOMEM;
3257 	struct nvme_dev *dev;
3258 
3259 	node = dev_to_node(&pdev->dev);
3260 	if (node == NUMA_NO_NODE)
3261 		set_dev_node(&pdev->dev, 0);
3262 
3263 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3264 	if (!dev)
3265 		return -ENOMEM;
3266 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3267 							GFP_KERNEL, node);
3268 	if (!dev->entry)
3269 		goto free;
3270 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3271 							GFP_KERNEL, node);
3272 	if (!dev->queues)
3273 		goto free;
3274 
3275 	INIT_LIST_HEAD(&dev->namespaces);
3276 	INIT_WORK(&dev->reset_work, nvme_reset_work);
3277 	dev->dev = get_device(&pdev->dev);
3278 	pci_set_drvdata(pdev, dev);
3279 	result = nvme_set_instance(dev);
3280 	if (result)
3281 		goto put_pci;
3282 
3283 	result = nvme_setup_prp_pools(dev);
3284 	if (result)
3285 		goto release;
3286 
3287 	kref_init(&dev->kref);
3288 	dev->device = device_create(nvme_class, &pdev->dev,
3289 				MKDEV(nvme_char_major, dev->instance),
3290 				dev, "nvme%d", dev->instance);
3291 	if (IS_ERR(dev->device)) {
3292 		result = PTR_ERR(dev->device);
3293 		goto release_pools;
3294 	}
3295 	get_device(dev->device);
3296 	dev_set_drvdata(dev->device, dev);
3297 
3298 	result = device_create_file(dev->device, &dev_attr_reset_controller);
3299 	if (result)
3300 		goto put_dev;
3301 
3302 	INIT_LIST_HEAD(&dev->node);
3303 	INIT_WORK(&dev->scan_work, nvme_dev_scan);
3304 	INIT_WORK(&dev->probe_work, nvme_probe_work);
3305 	schedule_work(&dev->probe_work);
3306 	return 0;
3307 
3308  put_dev:
3309 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3310 	put_device(dev->device);
3311  release_pools:
3312 	nvme_release_prp_pools(dev);
3313  release:
3314 	nvme_release_instance(dev);
3315  put_pci:
3316 	put_device(dev->dev);
3317  free:
3318 	kfree(dev->queues);
3319 	kfree(dev->entry);
3320 	kfree(dev);
3321 	return result;
3322 }
3323 
3324 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3325 {
3326 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3327 
3328 	if (prepare)
3329 		nvme_dev_shutdown(dev);
3330 	else
3331 		schedule_work(&dev->probe_work);
3332 }
3333 
3334 static void nvme_shutdown(struct pci_dev *pdev)
3335 {
3336 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3337 	nvme_dev_shutdown(dev);
3338 }
3339 
3340 static void nvme_remove(struct pci_dev *pdev)
3341 {
3342 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3343 
3344 	spin_lock(&dev_list_lock);
3345 	list_del_init(&dev->node);
3346 	spin_unlock(&dev_list_lock);
3347 
3348 	pci_set_drvdata(pdev, NULL);
3349 	flush_work(&dev->probe_work);
3350 	flush_work(&dev->reset_work);
3351 	flush_work(&dev->scan_work);
3352 	device_remove_file(dev->device, &dev_attr_reset_controller);
3353 	nvme_dev_remove(dev);
3354 	nvme_dev_shutdown(dev);
3355 	nvme_dev_remove_admin(dev);
3356 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3357 	nvme_free_queues(dev, 0);
3358 	nvme_release_cmb(dev);
3359 	nvme_release_prp_pools(dev);
3360 	kref_put(&dev->kref, nvme_free_dev);
3361 }
3362 
3363 /* These functions are yet to be implemented */
3364 #define nvme_error_detected NULL
3365 #define nvme_dump_registers NULL
3366 #define nvme_link_reset NULL
3367 #define nvme_slot_reset NULL
3368 #define nvme_error_resume NULL
3369 
3370 #ifdef CONFIG_PM_SLEEP
3371 static int nvme_suspend(struct device *dev)
3372 {
3373 	struct pci_dev *pdev = to_pci_dev(dev);
3374 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3375 
3376 	nvme_dev_shutdown(ndev);
3377 	return 0;
3378 }
3379 
3380 static int nvme_resume(struct device *dev)
3381 {
3382 	struct pci_dev *pdev = to_pci_dev(dev);
3383 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3384 
3385 	schedule_work(&ndev->probe_work);
3386 	return 0;
3387 }
3388 #endif
3389 
3390 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3391 
3392 static const struct pci_error_handlers nvme_err_handler = {
3393 	.error_detected	= nvme_error_detected,
3394 	.mmio_enabled	= nvme_dump_registers,
3395 	.link_reset	= nvme_link_reset,
3396 	.slot_reset	= nvme_slot_reset,
3397 	.resume		= nvme_error_resume,
3398 	.reset_notify	= nvme_reset_notify,
3399 };
3400 
3401 /* Move to pci_ids.h later */
3402 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
3403 
3404 static const struct pci_device_id nvme_id_table[] = {
3405 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3406 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3407 	{ 0, }
3408 };
3409 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3410 
3411 static struct pci_driver nvme_driver = {
3412 	.name		= "nvme",
3413 	.id_table	= nvme_id_table,
3414 	.probe		= nvme_probe,
3415 	.remove		= nvme_remove,
3416 	.shutdown	= nvme_shutdown,
3417 	.driver		= {
3418 		.pm	= &nvme_dev_pm_ops,
3419 	},
3420 	.err_handler	= &nvme_err_handler,
3421 };
3422 
3423 static int __init nvme_init(void)
3424 {
3425 	int result;
3426 
3427 	init_waitqueue_head(&nvme_kthread_wait);
3428 
3429 	nvme_workq = create_singlethread_workqueue("nvme");
3430 	if (!nvme_workq)
3431 		return -ENOMEM;
3432 
3433 	result = register_blkdev(nvme_major, "nvme");
3434 	if (result < 0)
3435 		goto kill_workq;
3436 	else if (result > 0)
3437 		nvme_major = result;
3438 
3439 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3440 							&nvme_dev_fops);
3441 	if (result < 0)
3442 		goto unregister_blkdev;
3443 	else if (result > 0)
3444 		nvme_char_major = result;
3445 
3446 	nvme_class = class_create(THIS_MODULE, "nvme");
3447 	if (IS_ERR(nvme_class)) {
3448 		result = PTR_ERR(nvme_class);
3449 		goto unregister_chrdev;
3450 	}
3451 
3452 	result = pci_register_driver(&nvme_driver);
3453 	if (result)
3454 		goto destroy_class;
3455 	return 0;
3456 
3457  destroy_class:
3458 	class_destroy(nvme_class);
3459  unregister_chrdev:
3460 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3461  unregister_blkdev:
3462 	unregister_blkdev(nvme_major, "nvme");
3463  kill_workq:
3464 	destroy_workqueue(nvme_workq);
3465 	return result;
3466 }
3467 
3468 static void __exit nvme_exit(void)
3469 {
3470 	pci_unregister_driver(&nvme_driver);
3471 	unregister_blkdev(nvme_major, "nvme");
3472 	destroy_workqueue(nvme_workq);
3473 	class_destroy(nvme_class);
3474 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3475 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3476 	_nvme_check_size();
3477 }
3478 
3479 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3480 MODULE_LICENSE("GPL");
3481 MODULE_VERSION("1.0");
3482 module_init(nvme_init);
3483 module_exit(nvme_exit);
3484