1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/aer.h> 9 #include <linux/async.h> 10 #include <linux/blkdev.h> 11 #include <linux/blk-mq.h> 12 #include <linux/blk-mq-pci.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/once.h> 21 #include <linux/pci.h> 22 #include <linux/suspend.h> 23 #include <linux/t10-pi.h> 24 #include <linux/types.h> 25 #include <linux/io-64-nonatomic-lo-hi.h> 26 #include <linux/io-64-nonatomic-hi-lo.h> 27 #include <linux/sed-opal.h> 28 #include <linux/pci-p2pdma.h> 29 30 #include "trace.h" 31 #include "nvme.h" 32 33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 35 36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 37 38 /* 39 * These can be higher, but we need to ensure that any command doesn't 40 * require an sg allocation that needs more than a page of data. 41 */ 42 #define NVME_MAX_KB_SZ 4096 43 #define NVME_MAX_SEGS 127 44 45 static int use_threaded_interrupts; 46 module_param(use_threaded_interrupts, int, 0); 47 48 static bool use_cmb_sqes = true; 49 module_param(use_cmb_sqes, bool, 0444); 50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 51 52 static unsigned int max_host_mem_size_mb = 128; 53 module_param(max_host_mem_size_mb, uint, 0444); 54 MODULE_PARM_DESC(max_host_mem_size_mb, 55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 56 57 static unsigned int sgl_threshold = SZ_32K; 58 module_param(sgl_threshold, uint, 0644); 59 MODULE_PARM_DESC(sgl_threshold, 60 "Use SGLs when average request segment size is larger or equal to " 61 "this size. Use 0 to disable SGLs."); 62 63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 64 static const struct kernel_param_ops io_queue_depth_ops = { 65 .set = io_queue_depth_set, 66 .get = param_get_uint, 67 }; 68 69 static unsigned int io_queue_depth = 1024; 70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 72 73 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 74 { 75 unsigned int n; 76 int ret; 77 78 ret = kstrtouint(val, 10, &n); 79 if (ret != 0 || n > num_possible_cpus()) 80 return -EINVAL; 81 return param_set_uint(val, kp); 82 } 83 84 static const struct kernel_param_ops io_queue_count_ops = { 85 .set = io_queue_count_set, 86 .get = param_get_uint, 87 }; 88 89 static unsigned int write_queues; 90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 91 MODULE_PARM_DESC(write_queues, 92 "Number of queues to use for writes. If not set, reads and writes " 93 "will share a queue set."); 94 95 static unsigned int poll_queues; 96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 98 99 static bool noacpi; 100 module_param(noacpi, bool, 0444); 101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 102 103 struct nvme_dev; 104 struct nvme_queue; 105 106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 108 109 /* 110 * Represents an NVM Express device. Each nvme_dev is a PCI function. 111 */ 112 struct nvme_dev { 113 struct nvme_queue *queues; 114 struct blk_mq_tag_set tagset; 115 struct blk_mq_tag_set admin_tagset; 116 u32 __iomem *dbs; 117 struct device *dev; 118 struct dma_pool *prp_page_pool; 119 struct dma_pool *prp_small_pool; 120 unsigned online_queues; 121 unsigned max_qid; 122 unsigned io_queues[HCTX_MAX_TYPES]; 123 unsigned int num_vecs; 124 u32 q_depth; 125 int io_sqes; 126 u32 db_stride; 127 void __iomem *bar; 128 unsigned long bar_mapped_size; 129 struct work_struct remove_work; 130 struct mutex shutdown_lock; 131 bool subsystem; 132 u64 cmb_size; 133 bool cmb_use_sqes; 134 u32 cmbsz; 135 u32 cmbloc; 136 struct nvme_ctrl ctrl; 137 u32 last_ps; 138 139 mempool_t *iod_mempool; 140 141 /* shadow doorbell buffer support: */ 142 u32 *dbbuf_dbs; 143 dma_addr_t dbbuf_dbs_dma_addr; 144 u32 *dbbuf_eis; 145 dma_addr_t dbbuf_eis_dma_addr; 146 147 /* host memory buffer support: */ 148 u64 host_mem_size; 149 u32 nr_host_mem_descs; 150 dma_addr_t host_mem_descs_dma; 151 struct nvme_host_mem_buf_desc *host_mem_descs; 152 void **host_mem_desc_bufs; 153 unsigned int nr_allocated_queues; 154 unsigned int nr_write_queues; 155 unsigned int nr_poll_queues; 156 }; 157 158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 159 { 160 int ret; 161 u32 n; 162 163 ret = kstrtou32(val, 10, &n); 164 if (ret != 0 || n < 2) 165 return -EINVAL; 166 167 return param_set_uint(val, kp); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 u32 *dbbuf_sq_db; 213 u32 *dbbuf_cq_db; 214 u32 *dbbuf_sq_ei; 215 u32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 /* 220 * The nvme_iod describes the data in an I/O. 221 * 222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 223 * to the actual struct scatterlist. 224 */ 225 struct nvme_iod { 226 struct nvme_request req; 227 struct nvme_command cmd; 228 struct nvme_queue *nvmeq; 229 bool use_sgl; 230 int aborted; 231 int npages; /* In the PRP list. 0 means small pool in use */ 232 int nents; /* Used in scatterlist */ 233 dma_addr_t first_dma; 234 unsigned int dma_len; /* length of single DMA segment mapping */ 235 dma_addr_t meta_dma; 236 struct scatterlist *sg; 237 }; 238 239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 240 { 241 return dev->nr_allocated_queues * 8 * dev->db_stride; 242 } 243 244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 245 { 246 unsigned int mem_size = nvme_dbbuf_size(dev); 247 248 if (dev->dbbuf_dbs) 249 return 0; 250 251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 252 &dev->dbbuf_dbs_dma_addr, 253 GFP_KERNEL); 254 if (!dev->dbbuf_dbs) 255 return -ENOMEM; 256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 257 &dev->dbbuf_eis_dma_addr, 258 GFP_KERNEL); 259 if (!dev->dbbuf_eis) { 260 dma_free_coherent(dev->dev, mem_size, 261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 262 dev->dbbuf_dbs = NULL; 263 return -ENOMEM; 264 } 265 266 return 0; 267 } 268 269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 270 { 271 unsigned int mem_size = nvme_dbbuf_size(dev); 272 273 if (dev->dbbuf_dbs) { 274 dma_free_coherent(dev->dev, mem_size, 275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 276 dev->dbbuf_dbs = NULL; 277 } 278 if (dev->dbbuf_eis) { 279 dma_free_coherent(dev->dev, mem_size, 280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 281 dev->dbbuf_eis = NULL; 282 } 283 } 284 285 static void nvme_dbbuf_init(struct nvme_dev *dev, 286 struct nvme_queue *nvmeq, int qid) 287 { 288 if (!dev->dbbuf_dbs || !qid) 289 return; 290 291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 295 } 296 297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 298 { 299 if (!nvmeq->qid) 300 return; 301 302 nvmeq->dbbuf_sq_db = NULL; 303 nvmeq->dbbuf_cq_db = NULL; 304 nvmeq->dbbuf_sq_ei = NULL; 305 nvmeq->dbbuf_cq_ei = NULL; 306 } 307 308 static void nvme_dbbuf_set(struct nvme_dev *dev) 309 { 310 struct nvme_command c; 311 unsigned int i; 312 313 if (!dev->dbbuf_dbs) 314 return; 315 316 memset(&c, 0, sizeof(c)); 317 c.dbbuf.opcode = nvme_admin_dbbuf; 318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 320 321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 323 /* Free memory and continue on */ 324 nvme_dbbuf_dma_free(dev); 325 326 for (i = 1; i <= dev->online_queues; i++) 327 nvme_dbbuf_free(&dev->queues[i]); 328 } 329 } 330 331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 332 { 333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 334 } 335 336 /* Update dbbuf and return true if an MMIO is required */ 337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 338 volatile u32 *dbbuf_ei) 339 { 340 if (dbbuf_db) { 341 u16 old_value; 342 343 /* 344 * Ensure that the queue is written before updating 345 * the doorbell in memory 346 */ 347 wmb(); 348 349 old_value = *dbbuf_db; 350 *dbbuf_db = value; 351 352 /* 353 * Ensure that the doorbell is updated before reading the event 354 * index from memory. The controller needs to provide similar 355 * ordering to ensure the envent index is updated before reading 356 * the doorbell. 357 */ 358 mb(); 359 360 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 361 return false; 362 } 363 364 return true; 365 } 366 367 /* 368 * Will slightly overestimate the number of pages needed. This is OK 369 * as it only leads to a small amount of wasted memory for the lifetime of 370 * the I/O. 371 */ 372 static int nvme_pci_npages_prp(void) 373 { 374 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, 375 NVME_CTRL_PAGE_SIZE); 376 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 377 } 378 379 /* 380 * Calculates the number of pages needed for the SGL segments. For example a 4k 381 * page can accommodate 256 SGL descriptors. 382 */ 383 static int nvme_pci_npages_sgl(void) 384 { 385 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), 386 PAGE_SIZE); 387 } 388 389 static size_t nvme_pci_iod_alloc_size(void) 390 { 391 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); 392 393 return sizeof(__le64 *) * npages + 394 sizeof(struct scatterlist) * NVME_MAX_SEGS; 395 } 396 397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 398 unsigned int hctx_idx) 399 { 400 struct nvme_dev *dev = data; 401 struct nvme_queue *nvmeq = &dev->queues[0]; 402 403 WARN_ON(hctx_idx != 0); 404 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 405 406 hctx->driver_data = nvmeq; 407 return 0; 408 } 409 410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 411 unsigned int hctx_idx) 412 { 413 struct nvme_dev *dev = data; 414 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 415 416 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 417 hctx->driver_data = nvmeq; 418 return 0; 419 } 420 421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 422 unsigned int hctx_idx, unsigned int numa_node) 423 { 424 struct nvme_dev *dev = set->driver_data; 425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 426 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 427 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 428 429 BUG_ON(!nvmeq); 430 iod->nvmeq = nvmeq; 431 432 nvme_req(req)->ctrl = &dev->ctrl; 433 nvme_req(req)->cmd = &iod->cmd; 434 return 0; 435 } 436 437 static int queue_irq_offset(struct nvme_dev *dev) 438 { 439 /* if we have more than 1 vec, admin queue offsets us by 1 */ 440 if (dev->num_vecs > 1) 441 return 1; 442 443 return 0; 444 } 445 446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 447 { 448 struct nvme_dev *dev = set->driver_data; 449 int i, qoff, offset; 450 451 offset = queue_irq_offset(dev); 452 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 453 struct blk_mq_queue_map *map = &set->map[i]; 454 455 map->nr_queues = dev->io_queues[i]; 456 if (!map->nr_queues) { 457 BUG_ON(i == HCTX_TYPE_DEFAULT); 458 continue; 459 } 460 461 /* 462 * The poll queue(s) doesn't have an IRQ (and hence IRQ 463 * affinity), so use the regular blk-mq cpu mapping 464 */ 465 map->queue_offset = qoff; 466 if (i != HCTX_TYPE_POLL && offset) 467 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 468 else 469 blk_mq_map_queues(map); 470 qoff += map->nr_queues; 471 offset += map->nr_queues; 472 } 473 474 return 0; 475 } 476 477 /* 478 * Write sq tail if we are asked to, or if the next command would wrap. 479 */ 480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 481 { 482 if (!write_sq) { 483 u16 next_tail = nvmeq->sq_tail + 1; 484 485 if (next_tail == nvmeq->q_depth) 486 next_tail = 0; 487 if (next_tail != nvmeq->last_sq_tail) 488 return; 489 } 490 491 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 492 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 493 writel(nvmeq->sq_tail, nvmeq->q_db); 494 nvmeq->last_sq_tail = nvmeq->sq_tail; 495 } 496 497 /** 498 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 499 * @nvmeq: The queue to use 500 * @cmd: The command to send 501 * @write_sq: whether to write to the SQ doorbell 502 */ 503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 504 bool write_sq) 505 { 506 spin_lock(&nvmeq->sq_lock); 507 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 508 cmd, sizeof(*cmd)); 509 if (++nvmeq->sq_tail == nvmeq->q_depth) 510 nvmeq->sq_tail = 0; 511 nvme_write_sq_db(nvmeq, write_sq); 512 spin_unlock(&nvmeq->sq_lock); 513 } 514 515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 516 { 517 struct nvme_queue *nvmeq = hctx->driver_data; 518 519 spin_lock(&nvmeq->sq_lock); 520 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 521 nvme_write_sq_db(nvmeq, true); 522 spin_unlock(&nvmeq->sq_lock); 523 } 524 525 static void **nvme_pci_iod_list(struct request *req) 526 { 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 529 } 530 531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 532 { 533 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 534 int nseg = blk_rq_nr_phys_segments(req); 535 unsigned int avg_seg_size; 536 537 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 538 539 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 540 return false; 541 if (!iod->nvmeq->qid) 542 return false; 543 if (!sgl_threshold || avg_seg_size < sgl_threshold) 544 return false; 545 return true; 546 } 547 548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 549 { 550 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 551 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 552 dma_addr_t dma_addr = iod->first_dma; 553 int i; 554 555 for (i = 0; i < iod->npages; i++) { 556 __le64 *prp_list = nvme_pci_iod_list(req)[i]; 557 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 558 559 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 560 dma_addr = next_dma_addr; 561 } 562 563 } 564 565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req) 566 { 567 const int last_sg = SGES_PER_PAGE - 1; 568 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 569 dma_addr_t dma_addr = iod->first_dma; 570 int i; 571 572 for (i = 0; i < iod->npages; i++) { 573 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i]; 574 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr); 575 576 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr); 577 dma_addr = next_dma_addr; 578 } 579 580 } 581 582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req) 583 { 584 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 585 586 if (is_pci_p2pdma_page(sg_page(iod->sg))) 587 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, 588 rq_dma_dir(req)); 589 else 590 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); 591 } 592 593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 594 { 595 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 596 597 if (iod->dma_len) { 598 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 599 rq_dma_dir(req)); 600 return; 601 } 602 603 WARN_ON_ONCE(!iod->nents); 604 605 nvme_unmap_sg(dev, req); 606 if (iod->npages == 0) 607 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 608 iod->first_dma); 609 else if (iod->use_sgl) 610 nvme_free_sgls(dev, req); 611 else 612 nvme_free_prps(dev, req); 613 mempool_free(iod->sg, dev->iod_mempool); 614 } 615 616 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 617 { 618 int i; 619 struct scatterlist *sg; 620 621 for_each_sg(sgl, sg, nents, i) { 622 dma_addr_t phys = sg_phys(sg); 623 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 624 "dma_address:%pad dma_length:%d\n", 625 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 626 sg_dma_len(sg)); 627 } 628 } 629 630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 631 struct request *req, struct nvme_rw_command *cmnd) 632 { 633 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 634 struct dma_pool *pool; 635 int length = blk_rq_payload_bytes(req); 636 struct scatterlist *sg = iod->sg; 637 int dma_len = sg_dma_len(sg); 638 u64 dma_addr = sg_dma_address(sg); 639 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 640 __le64 *prp_list; 641 void **list = nvme_pci_iod_list(req); 642 dma_addr_t prp_dma; 643 int nprps, i; 644 645 length -= (NVME_CTRL_PAGE_SIZE - offset); 646 if (length <= 0) { 647 iod->first_dma = 0; 648 goto done; 649 } 650 651 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 652 if (dma_len) { 653 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 654 } else { 655 sg = sg_next(sg); 656 dma_addr = sg_dma_address(sg); 657 dma_len = sg_dma_len(sg); 658 } 659 660 if (length <= NVME_CTRL_PAGE_SIZE) { 661 iod->first_dma = dma_addr; 662 goto done; 663 } 664 665 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 666 if (nprps <= (256 / 8)) { 667 pool = dev->prp_small_pool; 668 iod->npages = 0; 669 } else { 670 pool = dev->prp_page_pool; 671 iod->npages = 1; 672 } 673 674 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 675 if (!prp_list) { 676 iod->first_dma = dma_addr; 677 iod->npages = -1; 678 return BLK_STS_RESOURCE; 679 } 680 list[0] = prp_list; 681 iod->first_dma = prp_dma; 682 i = 0; 683 for (;;) { 684 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 685 __le64 *old_prp_list = prp_list; 686 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 687 if (!prp_list) 688 goto free_prps; 689 list[iod->npages++] = prp_list; 690 prp_list[0] = old_prp_list[i - 1]; 691 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 692 i = 1; 693 } 694 prp_list[i++] = cpu_to_le64(dma_addr); 695 dma_len -= NVME_CTRL_PAGE_SIZE; 696 dma_addr += NVME_CTRL_PAGE_SIZE; 697 length -= NVME_CTRL_PAGE_SIZE; 698 if (length <= 0) 699 break; 700 if (dma_len > 0) 701 continue; 702 if (unlikely(dma_len < 0)) 703 goto bad_sgl; 704 sg = sg_next(sg); 705 dma_addr = sg_dma_address(sg); 706 dma_len = sg_dma_len(sg); 707 } 708 done: 709 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 710 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 711 return BLK_STS_OK; 712 free_prps: 713 nvme_free_prps(dev, req); 714 return BLK_STS_RESOURCE; 715 bad_sgl: 716 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 717 "Invalid SGL for payload:%d nents:%d\n", 718 blk_rq_payload_bytes(req), iod->nents); 719 return BLK_STS_IOERR; 720 } 721 722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 723 struct scatterlist *sg) 724 { 725 sge->addr = cpu_to_le64(sg_dma_address(sg)); 726 sge->length = cpu_to_le32(sg_dma_len(sg)); 727 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 728 } 729 730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 731 dma_addr_t dma_addr, int entries) 732 { 733 sge->addr = cpu_to_le64(dma_addr); 734 if (entries < SGES_PER_PAGE) { 735 sge->length = cpu_to_le32(entries * sizeof(*sge)); 736 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 737 } else { 738 sge->length = cpu_to_le32(PAGE_SIZE); 739 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 740 } 741 } 742 743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 744 struct request *req, struct nvme_rw_command *cmd, int entries) 745 { 746 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 747 struct dma_pool *pool; 748 struct nvme_sgl_desc *sg_list; 749 struct scatterlist *sg = iod->sg; 750 dma_addr_t sgl_dma; 751 int i = 0; 752 753 /* setting the transfer type as SGL */ 754 cmd->flags = NVME_CMD_SGL_METABUF; 755 756 if (entries == 1) { 757 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 758 return BLK_STS_OK; 759 } 760 761 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 762 pool = dev->prp_small_pool; 763 iod->npages = 0; 764 } else { 765 pool = dev->prp_page_pool; 766 iod->npages = 1; 767 } 768 769 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 770 if (!sg_list) { 771 iod->npages = -1; 772 return BLK_STS_RESOURCE; 773 } 774 775 nvme_pci_iod_list(req)[0] = sg_list; 776 iod->first_dma = sgl_dma; 777 778 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 779 780 do { 781 if (i == SGES_PER_PAGE) { 782 struct nvme_sgl_desc *old_sg_desc = sg_list; 783 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 784 785 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 786 if (!sg_list) 787 goto free_sgls; 788 789 i = 0; 790 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 791 sg_list[i++] = *link; 792 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 793 } 794 795 nvme_pci_sgl_set_data(&sg_list[i++], sg); 796 sg = sg_next(sg); 797 } while (--entries > 0); 798 799 return BLK_STS_OK; 800 free_sgls: 801 nvme_free_sgls(dev, req); 802 return BLK_STS_RESOURCE; 803 } 804 805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 806 struct request *req, struct nvme_rw_command *cmnd, 807 struct bio_vec *bv) 808 { 809 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 810 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 811 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 812 813 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 814 if (dma_mapping_error(dev->dev, iod->first_dma)) 815 return BLK_STS_RESOURCE; 816 iod->dma_len = bv->bv_len; 817 818 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 819 if (bv->bv_len > first_prp_len) 820 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 821 return BLK_STS_OK; 822 } 823 824 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 825 struct request *req, struct nvme_rw_command *cmnd, 826 struct bio_vec *bv) 827 { 828 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 829 830 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 831 if (dma_mapping_error(dev->dev, iod->first_dma)) 832 return BLK_STS_RESOURCE; 833 iod->dma_len = bv->bv_len; 834 835 cmnd->flags = NVME_CMD_SGL_METABUF; 836 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 837 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 838 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 839 return BLK_STS_OK; 840 } 841 842 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 843 struct nvme_command *cmnd) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 blk_status_t ret = BLK_STS_RESOURCE; 847 int nr_mapped; 848 849 if (blk_rq_nr_phys_segments(req) == 1) { 850 struct bio_vec bv = req_bvec(req); 851 852 if (!is_pci_p2pdma_page(bv.bv_page)) { 853 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 854 return nvme_setup_prp_simple(dev, req, 855 &cmnd->rw, &bv); 856 857 if (iod->nvmeq->qid && sgl_threshold && 858 dev->ctrl.sgls & ((1 << 0) | (1 << 1))) 859 return nvme_setup_sgl_simple(dev, req, 860 &cmnd->rw, &bv); 861 } 862 } 863 864 iod->dma_len = 0; 865 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 866 if (!iod->sg) 867 return BLK_STS_RESOURCE; 868 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 869 iod->nents = blk_rq_map_sg(req->q, req, iod->sg); 870 if (!iod->nents) 871 goto out_free_sg; 872 873 if (is_pci_p2pdma_page(sg_page(iod->sg))) 874 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, 875 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); 876 else 877 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 878 rq_dma_dir(req), DMA_ATTR_NO_WARN); 879 if (!nr_mapped) 880 goto out_free_sg; 881 882 iod->use_sgl = nvme_pci_use_sgls(dev, req); 883 if (iod->use_sgl) 884 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 885 else 886 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 887 if (ret != BLK_STS_OK) 888 goto out_unmap_sg; 889 return BLK_STS_OK; 890 891 out_unmap_sg: 892 nvme_unmap_sg(dev, req); 893 out_free_sg: 894 mempool_free(iod->sg, dev->iod_mempool); 895 return ret; 896 } 897 898 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 899 struct nvme_command *cmnd) 900 { 901 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 902 903 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 904 rq_dma_dir(req), 0); 905 if (dma_mapping_error(dev->dev, iod->meta_dma)) 906 return BLK_STS_IOERR; 907 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 908 return BLK_STS_OK; 909 } 910 911 /* 912 * NOTE: ns is NULL when called on the admin queue. 913 */ 914 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 915 const struct blk_mq_queue_data *bd) 916 { 917 struct nvme_ns *ns = hctx->queue->queuedata; 918 struct nvme_queue *nvmeq = hctx->driver_data; 919 struct nvme_dev *dev = nvmeq->dev; 920 struct request *req = bd->rq; 921 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 922 struct nvme_command *cmnd = &iod->cmd; 923 blk_status_t ret; 924 925 iod->aborted = 0; 926 iod->npages = -1; 927 iod->nents = 0; 928 929 /* 930 * We should not need to do this, but we're still using this to 931 * ensure we can drain requests on a dying queue. 932 */ 933 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 934 return BLK_STS_IOERR; 935 936 ret = nvme_setup_cmd(ns, req); 937 if (ret) 938 return ret; 939 940 if (blk_rq_nr_phys_segments(req)) { 941 ret = nvme_map_data(dev, req, cmnd); 942 if (ret) 943 goto out_free_cmd; 944 } 945 946 if (blk_integrity_rq(req)) { 947 ret = nvme_map_metadata(dev, req, cmnd); 948 if (ret) 949 goto out_unmap_data; 950 } 951 952 blk_mq_start_request(req); 953 nvme_submit_cmd(nvmeq, cmnd, bd->last); 954 return BLK_STS_OK; 955 out_unmap_data: 956 nvme_unmap_data(dev, req); 957 out_free_cmd: 958 nvme_cleanup_cmd(req); 959 return ret; 960 } 961 962 static void nvme_pci_complete_rq(struct request *req) 963 { 964 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 965 struct nvme_dev *dev = iod->nvmeq->dev; 966 967 if (blk_integrity_rq(req)) 968 dma_unmap_page(dev->dev, iod->meta_dma, 969 rq_integrity_vec(req)->bv_len, rq_data_dir(req)); 970 if (blk_rq_nr_phys_segments(req)) 971 nvme_unmap_data(dev, req); 972 nvme_complete_rq(req); 973 } 974 975 /* We read the CQE phase first to check if the rest of the entry is valid */ 976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 977 { 978 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 979 980 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 981 } 982 983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 984 { 985 u16 head = nvmeq->cq_head; 986 987 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 988 nvmeq->dbbuf_cq_ei)) 989 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 990 } 991 992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 993 { 994 if (!nvmeq->qid) 995 return nvmeq->dev->admin_tagset.tags[0]; 996 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 997 } 998 999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 1000 { 1001 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1002 __u16 command_id = READ_ONCE(cqe->command_id); 1003 struct request *req; 1004 1005 /* 1006 * AEN requests are special as they don't time out and can 1007 * survive any kind of queue freeze and often don't respond to 1008 * aborts. We don't even bother to allocate a struct request 1009 * for them but rather special case them here. 1010 */ 1011 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1012 nvme_complete_async_event(&nvmeq->dev->ctrl, 1013 cqe->status, &cqe->result); 1014 return; 1015 } 1016 1017 req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id); 1018 if (unlikely(!req)) { 1019 dev_warn(nvmeq->dev->ctrl.device, 1020 "invalid id %d completed on queue %d\n", 1021 command_id, le16_to_cpu(cqe->sq_id)); 1022 return; 1023 } 1024 1025 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1026 if (!nvme_try_complete_req(req, cqe->status, cqe->result)) 1027 nvme_pci_complete_rq(req); 1028 } 1029 1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1031 { 1032 u16 tmp = nvmeq->cq_head + 1; 1033 1034 if (tmp == nvmeq->q_depth) { 1035 nvmeq->cq_head = 0; 1036 nvmeq->cq_phase ^= 1; 1037 } else { 1038 nvmeq->cq_head = tmp; 1039 } 1040 } 1041 1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq) 1043 { 1044 int found = 0; 1045 1046 while (nvme_cqe_pending(nvmeq)) { 1047 found++; 1048 /* 1049 * load-load control dependency between phase and the rest of 1050 * the cqe requires a full read memory barrier 1051 */ 1052 dma_rmb(); 1053 nvme_handle_cqe(nvmeq, nvmeq->cq_head); 1054 nvme_update_cq_head(nvmeq); 1055 } 1056 1057 if (found) 1058 nvme_ring_cq_doorbell(nvmeq); 1059 return found; 1060 } 1061 1062 static irqreturn_t nvme_irq(int irq, void *data) 1063 { 1064 struct nvme_queue *nvmeq = data; 1065 1066 if (nvme_process_cq(nvmeq)) 1067 return IRQ_HANDLED; 1068 return IRQ_NONE; 1069 } 1070 1071 static irqreturn_t nvme_irq_check(int irq, void *data) 1072 { 1073 struct nvme_queue *nvmeq = data; 1074 1075 if (nvme_cqe_pending(nvmeq)) 1076 return IRQ_WAKE_THREAD; 1077 return IRQ_NONE; 1078 } 1079 1080 /* 1081 * Poll for completions for any interrupt driven queue 1082 * Can be called from any context. 1083 */ 1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1085 { 1086 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1087 1088 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1089 1090 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1091 nvme_process_cq(nvmeq); 1092 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1093 } 1094 1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1096 { 1097 struct nvme_queue *nvmeq = hctx->driver_data; 1098 bool found; 1099 1100 if (!nvme_cqe_pending(nvmeq)) 1101 return 0; 1102 1103 spin_lock(&nvmeq->cq_poll_lock); 1104 found = nvme_process_cq(nvmeq); 1105 spin_unlock(&nvmeq->cq_poll_lock); 1106 1107 return found; 1108 } 1109 1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1111 { 1112 struct nvme_dev *dev = to_nvme_dev(ctrl); 1113 struct nvme_queue *nvmeq = &dev->queues[0]; 1114 struct nvme_command c; 1115 1116 memset(&c, 0, sizeof(c)); 1117 c.common.opcode = nvme_admin_async_event; 1118 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1119 nvme_submit_cmd(nvmeq, &c, true); 1120 } 1121 1122 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1123 { 1124 struct nvme_command c; 1125 1126 memset(&c, 0, sizeof(c)); 1127 c.delete_queue.opcode = opcode; 1128 c.delete_queue.qid = cpu_to_le16(id); 1129 1130 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1131 } 1132 1133 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1134 struct nvme_queue *nvmeq, s16 vector) 1135 { 1136 struct nvme_command c; 1137 int flags = NVME_QUEUE_PHYS_CONTIG; 1138 1139 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1140 flags |= NVME_CQ_IRQ_ENABLED; 1141 1142 /* 1143 * Note: we (ab)use the fact that the prp fields survive if no data 1144 * is attached to the request. 1145 */ 1146 memset(&c, 0, sizeof(c)); 1147 c.create_cq.opcode = nvme_admin_create_cq; 1148 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1149 c.create_cq.cqid = cpu_to_le16(qid); 1150 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1151 c.create_cq.cq_flags = cpu_to_le16(flags); 1152 c.create_cq.irq_vector = cpu_to_le16(vector); 1153 1154 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1155 } 1156 1157 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1158 struct nvme_queue *nvmeq) 1159 { 1160 struct nvme_ctrl *ctrl = &dev->ctrl; 1161 struct nvme_command c; 1162 int flags = NVME_QUEUE_PHYS_CONTIG; 1163 1164 /* 1165 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1166 * set. Since URGENT priority is zeroes, it makes all queues 1167 * URGENT. 1168 */ 1169 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1170 flags |= NVME_SQ_PRIO_MEDIUM; 1171 1172 /* 1173 * Note: we (ab)use the fact that the prp fields survive if no data 1174 * is attached to the request. 1175 */ 1176 memset(&c, 0, sizeof(c)); 1177 c.create_sq.opcode = nvme_admin_create_sq; 1178 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1179 c.create_sq.sqid = cpu_to_le16(qid); 1180 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1181 c.create_sq.sq_flags = cpu_to_le16(flags); 1182 c.create_sq.cqid = cpu_to_le16(qid); 1183 1184 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1185 } 1186 1187 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1188 { 1189 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1190 } 1191 1192 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1193 { 1194 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1195 } 1196 1197 static void abort_endio(struct request *req, blk_status_t error) 1198 { 1199 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1200 struct nvme_queue *nvmeq = iod->nvmeq; 1201 1202 dev_warn(nvmeq->dev->ctrl.device, 1203 "Abort status: 0x%x", nvme_req(req)->status); 1204 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1205 blk_mq_free_request(req); 1206 } 1207 1208 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1209 { 1210 /* If true, indicates loss of adapter communication, possibly by a 1211 * NVMe Subsystem reset. 1212 */ 1213 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1214 1215 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1216 switch (dev->ctrl.state) { 1217 case NVME_CTRL_RESETTING: 1218 case NVME_CTRL_CONNECTING: 1219 return false; 1220 default: 1221 break; 1222 } 1223 1224 /* We shouldn't reset unless the controller is on fatal error state 1225 * _or_ if we lost the communication with it. 1226 */ 1227 if (!(csts & NVME_CSTS_CFS) && !nssro) 1228 return false; 1229 1230 return true; 1231 } 1232 1233 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1234 { 1235 /* Read a config register to help see what died. */ 1236 u16 pci_status; 1237 int result; 1238 1239 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1240 &pci_status); 1241 if (result == PCIBIOS_SUCCESSFUL) 1242 dev_warn(dev->ctrl.device, 1243 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1244 csts, pci_status); 1245 else 1246 dev_warn(dev->ctrl.device, 1247 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1248 csts, result); 1249 } 1250 1251 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1252 { 1253 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1254 struct nvme_queue *nvmeq = iod->nvmeq; 1255 struct nvme_dev *dev = nvmeq->dev; 1256 struct request *abort_req; 1257 struct nvme_command cmd; 1258 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1259 1260 /* If PCI error recovery process is happening, we cannot reset or 1261 * the recovery mechanism will surely fail. 1262 */ 1263 mb(); 1264 if (pci_channel_offline(to_pci_dev(dev->dev))) 1265 return BLK_EH_RESET_TIMER; 1266 1267 /* 1268 * Reset immediately if the controller is failed 1269 */ 1270 if (nvme_should_reset(dev, csts)) { 1271 nvme_warn_reset(dev, csts); 1272 nvme_dev_disable(dev, false); 1273 nvme_reset_ctrl(&dev->ctrl); 1274 return BLK_EH_DONE; 1275 } 1276 1277 /* 1278 * Did we miss an interrupt? 1279 */ 1280 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1281 nvme_poll(req->mq_hctx); 1282 else 1283 nvme_poll_irqdisable(nvmeq); 1284 1285 if (blk_mq_request_completed(req)) { 1286 dev_warn(dev->ctrl.device, 1287 "I/O %d QID %d timeout, completion polled\n", 1288 req->tag, nvmeq->qid); 1289 return BLK_EH_DONE; 1290 } 1291 1292 /* 1293 * Shutdown immediately if controller times out while starting. The 1294 * reset work will see the pci device disabled when it gets the forced 1295 * cancellation error. All outstanding requests are completed on 1296 * shutdown, so we return BLK_EH_DONE. 1297 */ 1298 switch (dev->ctrl.state) { 1299 case NVME_CTRL_CONNECTING: 1300 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1301 fallthrough; 1302 case NVME_CTRL_DELETING: 1303 dev_warn_ratelimited(dev->ctrl.device, 1304 "I/O %d QID %d timeout, disable controller\n", 1305 req->tag, nvmeq->qid); 1306 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1307 nvme_dev_disable(dev, true); 1308 return BLK_EH_DONE; 1309 case NVME_CTRL_RESETTING: 1310 return BLK_EH_RESET_TIMER; 1311 default: 1312 break; 1313 } 1314 1315 /* 1316 * Shutdown the controller immediately and schedule a reset if the 1317 * command was already aborted once before and still hasn't been 1318 * returned to the driver, or if this is the admin queue. 1319 */ 1320 if (!nvmeq->qid || iod->aborted) { 1321 dev_warn(dev->ctrl.device, 1322 "I/O %d QID %d timeout, reset controller\n", 1323 req->tag, nvmeq->qid); 1324 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1325 nvme_dev_disable(dev, false); 1326 nvme_reset_ctrl(&dev->ctrl); 1327 1328 return BLK_EH_DONE; 1329 } 1330 1331 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1332 atomic_inc(&dev->ctrl.abort_limit); 1333 return BLK_EH_RESET_TIMER; 1334 } 1335 iod->aborted = 1; 1336 1337 memset(&cmd, 0, sizeof(cmd)); 1338 cmd.abort.opcode = nvme_admin_abort_cmd; 1339 cmd.abort.cid = req->tag; 1340 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1341 1342 dev_warn(nvmeq->dev->ctrl.device, 1343 "I/O %d QID %d timeout, aborting\n", 1344 req->tag, nvmeq->qid); 1345 1346 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1347 BLK_MQ_REQ_NOWAIT); 1348 if (IS_ERR(abort_req)) { 1349 atomic_inc(&dev->ctrl.abort_limit); 1350 return BLK_EH_RESET_TIMER; 1351 } 1352 1353 abort_req->end_io_data = NULL; 1354 blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio); 1355 1356 /* 1357 * The aborted req will be completed on receiving the abort req. 1358 * We enable the timer again. If hit twice, it'll cause a device reset, 1359 * as the device then is in a faulty state. 1360 */ 1361 return BLK_EH_RESET_TIMER; 1362 } 1363 1364 static void nvme_free_queue(struct nvme_queue *nvmeq) 1365 { 1366 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1367 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1368 if (!nvmeq->sq_cmds) 1369 return; 1370 1371 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1372 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1373 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1374 } else { 1375 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1376 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1377 } 1378 } 1379 1380 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1381 { 1382 int i; 1383 1384 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1385 dev->ctrl.queue_count--; 1386 nvme_free_queue(&dev->queues[i]); 1387 } 1388 } 1389 1390 /** 1391 * nvme_suspend_queue - put queue into suspended state 1392 * @nvmeq: queue to suspend 1393 */ 1394 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1395 { 1396 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1397 return 1; 1398 1399 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1400 mb(); 1401 1402 nvmeq->dev->online_queues--; 1403 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1404 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1405 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1406 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1407 return 0; 1408 } 1409 1410 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1411 { 1412 int i; 1413 1414 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1415 nvme_suspend_queue(&dev->queues[i]); 1416 } 1417 1418 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1419 { 1420 struct nvme_queue *nvmeq = &dev->queues[0]; 1421 1422 if (shutdown) 1423 nvme_shutdown_ctrl(&dev->ctrl); 1424 else 1425 nvme_disable_ctrl(&dev->ctrl); 1426 1427 nvme_poll_irqdisable(nvmeq); 1428 } 1429 1430 /* 1431 * Called only on a device that has been disabled and after all other threads 1432 * that can check this device's completion queues have synced, except 1433 * nvme_poll(). This is the last chance for the driver to see a natural 1434 * completion before nvme_cancel_request() terminates all incomplete requests. 1435 */ 1436 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1437 { 1438 int i; 1439 1440 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1441 spin_lock(&dev->queues[i].cq_poll_lock); 1442 nvme_process_cq(&dev->queues[i]); 1443 spin_unlock(&dev->queues[i].cq_poll_lock); 1444 } 1445 } 1446 1447 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1448 int entry_size) 1449 { 1450 int q_depth = dev->q_depth; 1451 unsigned q_size_aligned = roundup(q_depth * entry_size, 1452 NVME_CTRL_PAGE_SIZE); 1453 1454 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1455 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1456 1457 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1458 q_depth = div_u64(mem_per_q, entry_size); 1459 1460 /* 1461 * Ensure the reduced q_depth is above some threshold where it 1462 * would be better to map queues in system memory with the 1463 * original depth 1464 */ 1465 if (q_depth < 64) 1466 return -ENOMEM; 1467 } 1468 1469 return q_depth; 1470 } 1471 1472 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1473 int qid) 1474 { 1475 struct pci_dev *pdev = to_pci_dev(dev->dev); 1476 1477 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1478 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1479 if (nvmeq->sq_cmds) { 1480 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1481 nvmeq->sq_cmds); 1482 if (nvmeq->sq_dma_addr) { 1483 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1484 return 0; 1485 } 1486 1487 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1488 } 1489 } 1490 1491 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1492 &nvmeq->sq_dma_addr, GFP_KERNEL); 1493 if (!nvmeq->sq_cmds) 1494 return -ENOMEM; 1495 return 0; 1496 } 1497 1498 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1499 { 1500 struct nvme_queue *nvmeq = &dev->queues[qid]; 1501 1502 if (dev->ctrl.queue_count > qid) 1503 return 0; 1504 1505 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1506 nvmeq->q_depth = depth; 1507 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1508 &nvmeq->cq_dma_addr, GFP_KERNEL); 1509 if (!nvmeq->cqes) 1510 goto free_nvmeq; 1511 1512 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1513 goto free_cqdma; 1514 1515 nvmeq->dev = dev; 1516 spin_lock_init(&nvmeq->sq_lock); 1517 spin_lock_init(&nvmeq->cq_poll_lock); 1518 nvmeq->cq_head = 0; 1519 nvmeq->cq_phase = 1; 1520 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1521 nvmeq->qid = qid; 1522 dev->ctrl.queue_count++; 1523 1524 return 0; 1525 1526 free_cqdma: 1527 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1528 nvmeq->cq_dma_addr); 1529 free_nvmeq: 1530 return -ENOMEM; 1531 } 1532 1533 static int queue_request_irq(struct nvme_queue *nvmeq) 1534 { 1535 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1536 int nr = nvmeq->dev->ctrl.instance; 1537 1538 if (use_threaded_interrupts) { 1539 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1540 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1541 } else { 1542 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1543 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1544 } 1545 } 1546 1547 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1548 { 1549 struct nvme_dev *dev = nvmeq->dev; 1550 1551 nvmeq->sq_tail = 0; 1552 nvmeq->last_sq_tail = 0; 1553 nvmeq->cq_head = 0; 1554 nvmeq->cq_phase = 1; 1555 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1556 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1557 nvme_dbbuf_init(dev, nvmeq, qid); 1558 dev->online_queues++; 1559 wmb(); /* ensure the first interrupt sees the initialization */ 1560 } 1561 1562 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1563 { 1564 struct nvme_dev *dev = nvmeq->dev; 1565 int result; 1566 u16 vector = 0; 1567 1568 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1569 1570 /* 1571 * A queue's vector matches the queue identifier unless the controller 1572 * has only one vector available. 1573 */ 1574 if (!polled) 1575 vector = dev->num_vecs == 1 ? 0 : qid; 1576 else 1577 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1578 1579 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1580 if (result) 1581 return result; 1582 1583 result = adapter_alloc_sq(dev, qid, nvmeq); 1584 if (result < 0) 1585 return result; 1586 if (result) 1587 goto release_cq; 1588 1589 nvmeq->cq_vector = vector; 1590 nvme_init_queue(nvmeq, qid); 1591 1592 if (!polled) { 1593 result = queue_request_irq(nvmeq); 1594 if (result < 0) 1595 goto release_sq; 1596 } 1597 1598 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1599 return result; 1600 1601 release_sq: 1602 dev->online_queues--; 1603 adapter_delete_sq(dev, qid); 1604 release_cq: 1605 adapter_delete_cq(dev, qid); 1606 return result; 1607 } 1608 1609 static const struct blk_mq_ops nvme_mq_admin_ops = { 1610 .queue_rq = nvme_queue_rq, 1611 .complete = nvme_pci_complete_rq, 1612 .init_hctx = nvme_admin_init_hctx, 1613 .init_request = nvme_init_request, 1614 .timeout = nvme_timeout, 1615 }; 1616 1617 static const struct blk_mq_ops nvme_mq_ops = { 1618 .queue_rq = nvme_queue_rq, 1619 .complete = nvme_pci_complete_rq, 1620 .commit_rqs = nvme_commit_rqs, 1621 .init_hctx = nvme_init_hctx, 1622 .init_request = nvme_init_request, 1623 .map_queues = nvme_pci_map_queues, 1624 .timeout = nvme_timeout, 1625 .poll = nvme_poll, 1626 }; 1627 1628 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1629 { 1630 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1631 /* 1632 * If the controller was reset during removal, it's possible 1633 * user requests may be waiting on a stopped queue. Start the 1634 * queue to flush these to completion. 1635 */ 1636 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1637 blk_cleanup_queue(dev->ctrl.admin_q); 1638 blk_mq_free_tag_set(&dev->admin_tagset); 1639 } 1640 } 1641 1642 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1643 { 1644 if (!dev->ctrl.admin_q) { 1645 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1646 dev->admin_tagset.nr_hw_queues = 1; 1647 1648 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1649 dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; 1650 dev->admin_tagset.numa_node = dev->ctrl.numa_node; 1651 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); 1652 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1653 dev->admin_tagset.driver_data = dev; 1654 1655 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1656 return -ENOMEM; 1657 dev->ctrl.admin_tagset = &dev->admin_tagset; 1658 1659 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1660 if (IS_ERR(dev->ctrl.admin_q)) { 1661 blk_mq_free_tag_set(&dev->admin_tagset); 1662 return -ENOMEM; 1663 } 1664 if (!blk_get_queue(dev->ctrl.admin_q)) { 1665 nvme_dev_remove_admin(dev); 1666 dev->ctrl.admin_q = NULL; 1667 return -ENODEV; 1668 } 1669 } else 1670 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1671 1672 return 0; 1673 } 1674 1675 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1676 { 1677 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1678 } 1679 1680 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1681 { 1682 struct pci_dev *pdev = to_pci_dev(dev->dev); 1683 1684 if (size <= dev->bar_mapped_size) 1685 return 0; 1686 if (size > pci_resource_len(pdev, 0)) 1687 return -ENOMEM; 1688 if (dev->bar) 1689 iounmap(dev->bar); 1690 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1691 if (!dev->bar) { 1692 dev->bar_mapped_size = 0; 1693 return -ENOMEM; 1694 } 1695 dev->bar_mapped_size = size; 1696 dev->dbs = dev->bar + NVME_REG_DBS; 1697 1698 return 0; 1699 } 1700 1701 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1702 { 1703 int result; 1704 u32 aqa; 1705 struct nvme_queue *nvmeq; 1706 1707 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1708 if (result < 0) 1709 return result; 1710 1711 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1712 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1713 1714 if (dev->subsystem && 1715 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1716 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1717 1718 result = nvme_disable_ctrl(&dev->ctrl); 1719 if (result < 0) 1720 return result; 1721 1722 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1723 if (result) 1724 return result; 1725 1726 dev->ctrl.numa_node = dev_to_node(dev->dev); 1727 1728 nvmeq = &dev->queues[0]; 1729 aqa = nvmeq->q_depth - 1; 1730 aqa |= aqa << 16; 1731 1732 writel(aqa, dev->bar + NVME_REG_AQA); 1733 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1734 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1735 1736 result = nvme_enable_ctrl(&dev->ctrl); 1737 if (result) 1738 return result; 1739 1740 nvmeq->cq_vector = 0; 1741 nvme_init_queue(nvmeq, 0); 1742 result = queue_request_irq(nvmeq); 1743 if (result) { 1744 dev->online_queues--; 1745 return result; 1746 } 1747 1748 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1749 return result; 1750 } 1751 1752 static int nvme_create_io_queues(struct nvme_dev *dev) 1753 { 1754 unsigned i, max, rw_queues; 1755 int ret = 0; 1756 1757 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1758 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1759 ret = -ENOMEM; 1760 break; 1761 } 1762 } 1763 1764 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1765 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1766 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1767 dev->io_queues[HCTX_TYPE_READ]; 1768 } else { 1769 rw_queues = max; 1770 } 1771 1772 for (i = dev->online_queues; i <= max; i++) { 1773 bool polled = i > rw_queues; 1774 1775 ret = nvme_create_queue(&dev->queues[i], i, polled); 1776 if (ret) 1777 break; 1778 } 1779 1780 /* 1781 * Ignore failing Create SQ/CQ commands, we can continue with less 1782 * than the desired amount of queues, and even a controller without 1783 * I/O queues can still be used to issue admin commands. This might 1784 * be useful to upgrade a buggy firmware for example. 1785 */ 1786 return ret >= 0 ? 0 : ret; 1787 } 1788 1789 static ssize_t nvme_cmb_show(struct device *dev, 1790 struct device_attribute *attr, 1791 char *buf) 1792 { 1793 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1794 1795 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1796 ndev->cmbloc, ndev->cmbsz); 1797 } 1798 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1799 1800 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1801 { 1802 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1803 1804 return 1ULL << (12 + 4 * szu); 1805 } 1806 1807 static u32 nvme_cmb_size(struct nvme_dev *dev) 1808 { 1809 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1810 } 1811 1812 static void nvme_map_cmb(struct nvme_dev *dev) 1813 { 1814 u64 size, offset; 1815 resource_size_t bar_size; 1816 struct pci_dev *pdev = to_pci_dev(dev->dev); 1817 int bar; 1818 1819 if (dev->cmb_size) 1820 return; 1821 1822 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1823 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1824 1825 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1826 if (!dev->cmbsz) 1827 return; 1828 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1829 1830 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1831 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1832 bar = NVME_CMB_BIR(dev->cmbloc); 1833 bar_size = pci_resource_len(pdev, bar); 1834 1835 if (offset > bar_size) 1836 return; 1837 1838 /* 1839 * Tell the controller about the host side address mapping the CMB, 1840 * and enable CMB decoding for the NVMe 1.4+ scheme: 1841 */ 1842 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1843 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1844 (pci_bus_address(pdev, bar) + offset), 1845 dev->bar + NVME_REG_CMBMSC); 1846 } 1847 1848 /* 1849 * Controllers may support a CMB size larger than their BAR, 1850 * for example, due to being behind a bridge. Reduce the CMB to 1851 * the reported size of the BAR 1852 */ 1853 if (size > bar_size - offset) 1854 size = bar_size - offset; 1855 1856 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1857 dev_warn(dev->ctrl.device, 1858 "failed to register the CMB\n"); 1859 return; 1860 } 1861 1862 dev->cmb_size = size; 1863 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1864 1865 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1866 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1867 pci_p2pmem_publish(pdev, true); 1868 1869 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1870 &dev_attr_cmb.attr, NULL)) 1871 dev_warn(dev->ctrl.device, 1872 "failed to add sysfs attribute for CMB\n"); 1873 } 1874 1875 static inline void nvme_release_cmb(struct nvme_dev *dev) 1876 { 1877 if (dev->cmb_size) { 1878 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1879 &dev_attr_cmb.attr, NULL); 1880 dev->cmb_size = 0; 1881 } 1882 } 1883 1884 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1885 { 1886 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1887 u64 dma_addr = dev->host_mem_descs_dma; 1888 struct nvme_command c; 1889 int ret; 1890 1891 memset(&c, 0, sizeof(c)); 1892 c.features.opcode = nvme_admin_set_features; 1893 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1894 c.features.dword11 = cpu_to_le32(bits); 1895 c.features.dword12 = cpu_to_le32(host_mem_size); 1896 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1897 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1898 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1899 1900 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1901 if (ret) { 1902 dev_warn(dev->ctrl.device, 1903 "failed to set host mem (err %d, flags %#x).\n", 1904 ret, bits); 1905 } 1906 return ret; 1907 } 1908 1909 static void nvme_free_host_mem(struct nvme_dev *dev) 1910 { 1911 int i; 1912 1913 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1914 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1915 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1916 1917 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1918 le64_to_cpu(desc->addr), 1919 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1920 } 1921 1922 kfree(dev->host_mem_desc_bufs); 1923 dev->host_mem_desc_bufs = NULL; 1924 dma_free_coherent(dev->dev, 1925 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1926 dev->host_mem_descs, dev->host_mem_descs_dma); 1927 dev->host_mem_descs = NULL; 1928 dev->nr_host_mem_descs = 0; 1929 } 1930 1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1932 u32 chunk_size) 1933 { 1934 struct nvme_host_mem_buf_desc *descs; 1935 u32 max_entries, len; 1936 dma_addr_t descs_dma; 1937 int i = 0; 1938 void **bufs; 1939 u64 size, tmp; 1940 1941 tmp = (preferred + chunk_size - 1); 1942 do_div(tmp, chunk_size); 1943 max_entries = tmp; 1944 1945 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1946 max_entries = dev->ctrl.hmmaxd; 1947 1948 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1949 &descs_dma, GFP_KERNEL); 1950 if (!descs) 1951 goto out; 1952 1953 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1954 if (!bufs) 1955 goto out_free_descs; 1956 1957 for (size = 0; size < preferred && i < max_entries; size += len) { 1958 dma_addr_t dma_addr; 1959 1960 len = min_t(u64, chunk_size, preferred - size); 1961 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1962 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1963 if (!bufs[i]) 1964 break; 1965 1966 descs[i].addr = cpu_to_le64(dma_addr); 1967 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1968 i++; 1969 } 1970 1971 if (!size) 1972 goto out_free_bufs; 1973 1974 dev->nr_host_mem_descs = i; 1975 dev->host_mem_size = size; 1976 dev->host_mem_descs = descs; 1977 dev->host_mem_descs_dma = descs_dma; 1978 dev->host_mem_desc_bufs = bufs; 1979 return 0; 1980 1981 out_free_bufs: 1982 while (--i >= 0) { 1983 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1984 1985 dma_free_attrs(dev->dev, size, bufs[i], 1986 le64_to_cpu(descs[i].addr), 1987 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1988 } 1989 1990 kfree(bufs); 1991 out_free_descs: 1992 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1993 descs_dma); 1994 out: 1995 dev->host_mem_descs = NULL; 1996 return -ENOMEM; 1997 } 1998 1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2000 { 2001 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2002 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2003 u64 chunk_size; 2004 2005 /* start big and work our way down */ 2006 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2007 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2008 if (!min || dev->host_mem_size >= min) 2009 return 0; 2010 nvme_free_host_mem(dev); 2011 } 2012 } 2013 2014 return -ENOMEM; 2015 } 2016 2017 static int nvme_setup_host_mem(struct nvme_dev *dev) 2018 { 2019 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2020 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2021 u64 min = (u64)dev->ctrl.hmmin * 4096; 2022 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2023 int ret; 2024 2025 preferred = min(preferred, max); 2026 if (min > max) { 2027 dev_warn(dev->ctrl.device, 2028 "min host memory (%lld MiB) above limit (%d MiB).\n", 2029 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2030 nvme_free_host_mem(dev); 2031 return 0; 2032 } 2033 2034 /* 2035 * If we already have a buffer allocated check if we can reuse it. 2036 */ 2037 if (dev->host_mem_descs) { 2038 if (dev->host_mem_size >= min) 2039 enable_bits |= NVME_HOST_MEM_RETURN; 2040 else 2041 nvme_free_host_mem(dev); 2042 } 2043 2044 if (!dev->host_mem_descs) { 2045 if (nvme_alloc_host_mem(dev, min, preferred)) { 2046 dev_warn(dev->ctrl.device, 2047 "failed to allocate host memory buffer.\n"); 2048 return 0; /* controller must work without HMB */ 2049 } 2050 2051 dev_info(dev->ctrl.device, 2052 "allocated %lld MiB host memory buffer.\n", 2053 dev->host_mem_size >> ilog2(SZ_1M)); 2054 } 2055 2056 ret = nvme_set_host_mem(dev, enable_bits); 2057 if (ret) 2058 nvme_free_host_mem(dev); 2059 return ret; 2060 } 2061 2062 /* 2063 * nirqs is the number of interrupts available for write and read 2064 * queues. The core already reserved an interrupt for the admin queue. 2065 */ 2066 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2067 { 2068 struct nvme_dev *dev = affd->priv; 2069 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2070 2071 /* 2072 * If there is no interrupt available for queues, ensure that 2073 * the default queue is set to 1. The affinity set size is 2074 * also set to one, but the irq core ignores it for this case. 2075 * 2076 * If only one interrupt is available or 'write_queue' == 0, combine 2077 * write and read queues. 2078 * 2079 * If 'write_queues' > 0, ensure it leaves room for at least one read 2080 * queue. 2081 */ 2082 if (!nrirqs) { 2083 nrirqs = 1; 2084 nr_read_queues = 0; 2085 } else if (nrirqs == 1 || !nr_write_queues) { 2086 nr_read_queues = 0; 2087 } else if (nr_write_queues >= nrirqs) { 2088 nr_read_queues = 1; 2089 } else { 2090 nr_read_queues = nrirqs - nr_write_queues; 2091 } 2092 2093 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2094 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2095 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2096 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2097 affd->nr_sets = nr_read_queues ? 2 : 1; 2098 } 2099 2100 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2101 { 2102 struct pci_dev *pdev = to_pci_dev(dev->dev); 2103 struct irq_affinity affd = { 2104 .pre_vectors = 1, 2105 .calc_sets = nvme_calc_irq_sets, 2106 .priv = dev, 2107 }; 2108 unsigned int irq_queues, poll_queues; 2109 2110 /* 2111 * Poll queues don't need interrupts, but we need at least one I/O queue 2112 * left over for non-polled I/O. 2113 */ 2114 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2115 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2116 2117 /* 2118 * Initialize for the single interrupt case, will be updated in 2119 * nvme_calc_irq_sets(). 2120 */ 2121 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2122 dev->io_queues[HCTX_TYPE_READ] = 0; 2123 2124 /* 2125 * We need interrupts for the admin queue and each non-polled I/O queue, 2126 * but some Apple controllers require all queues to use the first 2127 * vector. 2128 */ 2129 irq_queues = 1; 2130 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2131 irq_queues += (nr_io_queues - poll_queues); 2132 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2133 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2134 } 2135 2136 static void nvme_disable_io_queues(struct nvme_dev *dev) 2137 { 2138 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2139 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2140 } 2141 2142 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2143 { 2144 /* 2145 * If tags are shared with admin queue (Apple bug), then 2146 * make sure we only use one IO queue. 2147 */ 2148 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2149 return 1; 2150 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2151 } 2152 2153 static int nvme_setup_io_queues(struct nvme_dev *dev) 2154 { 2155 struct nvme_queue *adminq = &dev->queues[0]; 2156 struct pci_dev *pdev = to_pci_dev(dev->dev); 2157 unsigned int nr_io_queues; 2158 unsigned long size; 2159 int result; 2160 2161 /* 2162 * Sample the module parameters once at reset time so that we have 2163 * stable values to work with. 2164 */ 2165 dev->nr_write_queues = write_queues; 2166 dev->nr_poll_queues = poll_queues; 2167 2168 nr_io_queues = dev->nr_allocated_queues - 1; 2169 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2170 if (result < 0) 2171 return result; 2172 2173 if (nr_io_queues == 0) 2174 return 0; 2175 2176 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2177 2178 if (dev->cmb_use_sqes) { 2179 result = nvme_cmb_qdepth(dev, nr_io_queues, 2180 sizeof(struct nvme_command)); 2181 if (result > 0) 2182 dev->q_depth = result; 2183 else 2184 dev->cmb_use_sqes = false; 2185 } 2186 2187 do { 2188 size = db_bar_size(dev, nr_io_queues); 2189 result = nvme_remap_bar(dev, size); 2190 if (!result) 2191 break; 2192 if (!--nr_io_queues) 2193 return -ENOMEM; 2194 } while (1); 2195 adminq->q_db = dev->dbs; 2196 2197 retry: 2198 /* Deregister the admin queue's interrupt */ 2199 pci_free_irq(pdev, 0, adminq); 2200 2201 /* 2202 * If we enable msix early due to not intx, disable it again before 2203 * setting up the full range we need. 2204 */ 2205 pci_free_irq_vectors(pdev); 2206 2207 result = nvme_setup_irqs(dev, nr_io_queues); 2208 if (result <= 0) 2209 return -EIO; 2210 2211 dev->num_vecs = result; 2212 result = max(result - 1, 1); 2213 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2214 2215 /* 2216 * Should investigate if there's a performance win from allocating 2217 * more queues than interrupt vectors; it might allow the submission 2218 * path to scale better, even if the receive path is limited by the 2219 * number of interrupts. 2220 */ 2221 result = queue_request_irq(adminq); 2222 if (result) 2223 return result; 2224 set_bit(NVMEQ_ENABLED, &adminq->flags); 2225 2226 result = nvme_create_io_queues(dev); 2227 if (result || dev->online_queues < 2) 2228 return result; 2229 2230 if (dev->online_queues - 1 < dev->max_qid) { 2231 nr_io_queues = dev->online_queues - 1; 2232 nvme_disable_io_queues(dev); 2233 nvme_suspend_io_queues(dev); 2234 goto retry; 2235 } 2236 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2237 dev->io_queues[HCTX_TYPE_DEFAULT], 2238 dev->io_queues[HCTX_TYPE_READ], 2239 dev->io_queues[HCTX_TYPE_POLL]); 2240 return 0; 2241 } 2242 2243 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2244 { 2245 struct nvme_queue *nvmeq = req->end_io_data; 2246 2247 blk_mq_free_request(req); 2248 complete(&nvmeq->delete_done); 2249 } 2250 2251 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2252 { 2253 struct nvme_queue *nvmeq = req->end_io_data; 2254 2255 if (error) 2256 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2257 2258 nvme_del_queue_end(req, error); 2259 } 2260 2261 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2262 { 2263 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2264 struct request *req; 2265 struct nvme_command cmd; 2266 2267 memset(&cmd, 0, sizeof(cmd)); 2268 cmd.delete_queue.opcode = opcode; 2269 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2270 2271 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); 2272 if (IS_ERR(req)) 2273 return PTR_ERR(req); 2274 2275 req->end_io_data = nvmeq; 2276 2277 init_completion(&nvmeq->delete_done); 2278 blk_execute_rq_nowait(NULL, req, false, 2279 opcode == nvme_admin_delete_cq ? 2280 nvme_del_cq_end : nvme_del_queue_end); 2281 return 0; 2282 } 2283 2284 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2285 { 2286 int nr_queues = dev->online_queues - 1, sent = 0; 2287 unsigned long timeout; 2288 2289 retry: 2290 timeout = NVME_ADMIN_TIMEOUT; 2291 while (nr_queues > 0) { 2292 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2293 break; 2294 nr_queues--; 2295 sent++; 2296 } 2297 while (sent) { 2298 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2299 2300 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2301 timeout); 2302 if (timeout == 0) 2303 return false; 2304 2305 sent--; 2306 if (nr_queues) 2307 goto retry; 2308 } 2309 return true; 2310 } 2311 2312 static void nvme_dev_add(struct nvme_dev *dev) 2313 { 2314 int ret; 2315 2316 if (!dev->ctrl.tagset) { 2317 dev->tagset.ops = &nvme_mq_ops; 2318 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2319 dev->tagset.nr_maps = 2; /* default + read */ 2320 if (dev->io_queues[HCTX_TYPE_POLL]) 2321 dev->tagset.nr_maps++; 2322 dev->tagset.timeout = NVME_IO_TIMEOUT; 2323 dev->tagset.numa_node = dev->ctrl.numa_node; 2324 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, 2325 BLK_MQ_MAX_DEPTH) - 1; 2326 dev->tagset.cmd_size = sizeof(struct nvme_iod); 2327 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2328 dev->tagset.driver_data = dev; 2329 2330 /* 2331 * Some Apple controllers requires tags to be unique 2332 * across admin and IO queue, so reserve the first 32 2333 * tags of the IO queue. 2334 */ 2335 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2336 dev->tagset.reserved_tags = NVME_AQ_DEPTH; 2337 2338 ret = blk_mq_alloc_tag_set(&dev->tagset); 2339 if (ret) { 2340 dev_warn(dev->ctrl.device, 2341 "IO queues tagset allocation failed %d\n", ret); 2342 return; 2343 } 2344 dev->ctrl.tagset = &dev->tagset; 2345 } else { 2346 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2347 2348 /* Free previously allocated queues that are no longer usable */ 2349 nvme_free_queues(dev, dev->online_queues); 2350 } 2351 2352 nvme_dbbuf_set(dev); 2353 } 2354 2355 static int nvme_pci_enable(struct nvme_dev *dev) 2356 { 2357 int result = -ENOMEM; 2358 struct pci_dev *pdev = to_pci_dev(dev->dev); 2359 int dma_address_bits = 64; 2360 2361 if (pci_enable_device_mem(pdev)) 2362 return result; 2363 2364 pci_set_master(pdev); 2365 2366 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2367 dma_address_bits = 48; 2368 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits))) 2369 goto disable; 2370 2371 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2372 result = -ENODEV; 2373 goto disable; 2374 } 2375 2376 /* 2377 * Some devices and/or platforms don't advertise or work with INTx 2378 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2379 * adjust this later. 2380 */ 2381 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2382 if (result < 0) 2383 return result; 2384 2385 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2386 2387 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2388 io_queue_depth); 2389 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2390 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2391 dev->dbs = dev->bar + 4096; 2392 2393 /* 2394 * Some Apple controllers require a non-standard SQE size. 2395 * Interestingly they also seem to ignore the CC:IOSQES register 2396 * so we don't bother updating it here. 2397 */ 2398 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2399 dev->io_sqes = 7; 2400 else 2401 dev->io_sqes = NVME_NVM_IOSQES; 2402 2403 /* 2404 * Temporary fix for the Apple controller found in the MacBook8,1 and 2405 * some MacBook7,1 to avoid controller resets and data loss. 2406 */ 2407 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2408 dev->q_depth = 2; 2409 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2410 "set queue depth=%u to work around controller resets\n", 2411 dev->q_depth); 2412 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2413 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2414 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2415 dev->q_depth = 64; 2416 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2417 "set queue depth=%u\n", dev->q_depth); 2418 } 2419 2420 /* 2421 * Controllers with the shared tags quirk need the IO queue to be 2422 * big enough so that we get 32 tags for the admin queue 2423 */ 2424 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2425 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2426 dev->q_depth = NVME_AQ_DEPTH + 2; 2427 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2428 dev->q_depth); 2429 } 2430 2431 2432 nvme_map_cmb(dev); 2433 2434 pci_enable_pcie_error_reporting(pdev); 2435 pci_save_state(pdev); 2436 return 0; 2437 2438 disable: 2439 pci_disable_device(pdev); 2440 return result; 2441 } 2442 2443 static void nvme_dev_unmap(struct nvme_dev *dev) 2444 { 2445 if (dev->bar) 2446 iounmap(dev->bar); 2447 pci_release_mem_regions(to_pci_dev(dev->dev)); 2448 } 2449 2450 static void nvme_pci_disable(struct nvme_dev *dev) 2451 { 2452 struct pci_dev *pdev = to_pci_dev(dev->dev); 2453 2454 pci_free_irq_vectors(pdev); 2455 2456 if (pci_is_enabled(pdev)) { 2457 pci_disable_pcie_error_reporting(pdev); 2458 pci_disable_device(pdev); 2459 } 2460 } 2461 2462 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2463 { 2464 bool dead = true, freeze = false; 2465 struct pci_dev *pdev = to_pci_dev(dev->dev); 2466 2467 mutex_lock(&dev->shutdown_lock); 2468 if (pci_is_enabled(pdev)) { 2469 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2470 2471 if (dev->ctrl.state == NVME_CTRL_LIVE || 2472 dev->ctrl.state == NVME_CTRL_RESETTING) { 2473 freeze = true; 2474 nvme_start_freeze(&dev->ctrl); 2475 } 2476 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2477 pdev->error_state != pci_channel_io_normal); 2478 } 2479 2480 /* 2481 * Give the controller a chance to complete all entered requests if 2482 * doing a safe shutdown. 2483 */ 2484 if (!dead && shutdown && freeze) 2485 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2486 2487 nvme_stop_queues(&dev->ctrl); 2488 2489 if (!dead && dev->ctrl.queue_count > 0) { 2490 nvme_disable_io_queues(dev); 2491 nvme_disable_admin_queue(dev, shutdown); 2492 } 2493 nvme_suspend_io_queues(dev); 2494 nvme_suspend_queue(&dev->queues[0]); 2495 nvme_pci_disable(dev); 2496 nvme_reap_pending_cqes(dev); 2497 2498 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2499 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2500 blk_mq_tagset_wait_completed_request(&dev->tagset); 2501 blk_mq_tagset_wait_completed_request(&dev->admin_tagset); 2502 2503 /* 2504 * The driver will not be starting up queues again if shutting down so 2505 * must flush all entered requests to their failed completion to avoid 2506 * deadlocking blk-mq hot-cpu notifier. 2507 */ 2508 if (shutdown) { 2509 nvme_start_queues(&dev->ctrl); 2510 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2511 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 2512 } 2513 mutex_unlock(&dev->shutdown_lock); 2514 } 2515 2516 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2517 { 2518 if (!nvme_wait_reset(&dev->ctrl)) 2519 return -EBUSY; 2520 nvme_dev_disable(dev, shutdown); 2521 return 0; 2522 } 2523 2524 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2525 { 2526 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2527 NVME_CTRL_PAGE_SIZE, 2528 NVME_CTRL_PAGE_SIZE, 0); 2529 if (!dev->prp_page_pool) 2530 return -ENOMEM; 2531 2532 /* Optimisation for I/Os between 4k and 128k */ 2533 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2534 256, 256, 0); 2535 if (!dev->prp_small_pool) { 2536 dma_pool_destroy(dev->prp_page_pool); 2537 return -ENOMEM; 2538 } 2539 return 0; 2540 } 2541 2542 static void nvme_release_prp_pools(struct nvme_dev *dev) 2543 { 2544 dma_pool_destroy(dev->prp_page_pool); 2545 dma_pool_destroy(dev->prp_small_pool); 2546 } 2547 2548 static void nvme_free_tagset(struct nvme_dev *dev) 2549 { 2550 if (dev->tagset.tags) 2551 blk_mq_free_tag_set(&dev->tagset); 2552 dev->ctrl.tagset = NULL; 2553 } 2554 2555 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2556 { 2557 struct nvme_dev *dev = to_nvme_dev(ctrl); 2558 2559 nvme_dbbuf_dma_free(dev); 2560 nvme_free_tagset(dev); 2561 if (dev->ctrl.admin_q) 2562 blk_put_queue(dev->ctrl.admin_q); 2563 free_opal_dev(dev->ctrl.opal_dev); 2564 mempool_destroy(dev->iod_mempool); 2565 put_device(dev->dev); 2566 kfree(dev->queues); 2567 kfree(dev); 2568 } 2569 2570 static void nvme_remove_dead_ctrl(struct nvme_dev *dev) 2571 { 2572 /* 2573 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2574 * may be holding this pci_dev's device lock. 2575 */ 2576 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2577 nvme_get_ctrl(&dev->ctrl); 2578 nvme_dev_disable(dev, false); 2579 nvme_kill_queues(&dev->ctrl); 2580 if (!queue_work(nvme_wq, &dev->remove_work)) 2581 nvme_put_ctrl(&dev->ctrl); 2582 } 2583 2584 static void nvme_reset_work(struct work_struct *work) 2585 { 2586 struct nvme_dev *dev = 2587 container_of(work, struct nvme_dev, ctrl.reset_work); 2588 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2589 int result; 2590 2591 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { 2592 result = -ENODEV; 2593 goto out; 2594 } 2595 2596 /* 2597 * If we're called to reset a live controller first shut it down before 2598 * moving on. 2599 */ 2600 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2601 nvme_dev_disable(dev, false); 2602 nvme_sync_queues(&dev->ctrl); 2603 2604 mutex_lock(&dev->shutdown_lock); 2605 result = nvme_pci_enable(dev); 2606 if (result) 2607 goto out_unlock; 2608 2609 result = nvme_pci_configure_admin_queue(dev); 2610 if (result) 2611 goto out_unlock; 2612 2613 result = nvme_alloc_admin_tags(dev); 2614 if (result) 2615 goto out_unlock; 2616 2617 /* 2618 * Limit the max command size to prevent iod->sg allocations going 2619 * over a single page. 2620 */ 2621 dev->ctrl.max_hw_sectors = min_t(u32, 2622 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); 2623 dev->ctrl.max_segments = NVME_MAX_SEGS; 2624 2625 /* 2626 * Don't limit the IOMMU merged segment size. 2627 */ 2628 dma_set_max_seg_size(dev->dev, 0xffffffff); 2629 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1); 2630 2631 mutex_unlock(&dev->shutdown_lock); 2632 2633 /* 2634 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2635 * initializing procedure here. 2636 */ 2637 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2638 dev_warn(dev->ctrl.device, 2639 "failed to mark controller CONNECTING\n"); 2640 result = -EBUSY; 2641 goto out; 2642 } 2643 2644 /* 2645 * We do not support an SGL for metadata (yet), so we are limited to a 2646 * single integrity segment for the separate metadata pointer. 2647 */ 2648 dev->ctrl.max_integrity_segments = 1; 2649 2650 result = nvme_init_ctrl_finish(&dev->ctrl); 2651 if (result) 2652 goto out; 2653 2654 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2655 if (!dev->ctrl.opal_dev) 2656 dev->ctrl.opal_dev = 2657 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2658 else if (was_suspend) 2659 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2660 } else { 2661 free_opal_dev(dev->ctrl.opal_dev); 2662 dev->ctrl.opal_dev = NULL; 2663 } 2664 2665 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2666 result = nvme_dbbuf_dma_alloc(dev); 2667 if (result) 2668 dev_warn(dev->dev, 2669 "unable to allocate dma for dbbuf\n"); 2670 } 2671 2672 if (dev->ctrl.hmpre) { 2673 result = nvme_setup_host_mem(dev); 2674 if (result < 0) 2675 goto out; 2676 } 2677 2678 result = nvme_setup_io_queues(dev); 2679 if (result) 2680 goto out; 2681 2682 /* 2683 * Keep the controller around but remove all namespaces if we don't have 2684 * any working I/O queue. 2685 */ 2686 if (dev->online_queues < 2) { 2687 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2688 nvme_kill_queues(&dev->ctrl); 2689 nvme_remove_namespaces(&dev->ctrl); 2690 nvme_free_tagset(dev); 2691 } else { 2692 nvme_start_queues(&dev->ctrl); 2693 nvme_wait_freeze(&dev->ctrl); 2694 nvme_dev_add(dev); 2695 nvme_unfreeze(&dev->ctrl); 2696 } 2697 2698 /* 2699 * If only admin queue live, keep it to do further investigation or 2700 * recovery. 2701 */ 2702 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2703 dev_warn(dev->ctrl.device, 2704 "failed to mark controller live state\n"); 2705 result = -ENODEV; 2706 goto out; 2707 } 2708 2709 nvme_start_ctrl(&dev->ctrl); 2710 return; 2711 2712 out_unlock: 2713 mutex_unlock(&dev->shutdown_lock); 2714 out: 2715 if (result) 2716 dev_warn(dev->ctrl.device, 2717 "Removing after probe failure status: %d\n", result); 2718 nvme_remove_dead_ctrl(dev); 2719 } 2720 2721 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2722 { 2723 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2724 struct pci_dev *pdev = to_pci_dev(dev->dev); 2725 2726 if (pci_get_drvdata(pdev)) 2727 device_release_driver(&pdev->dev); 2728 nvme_put_ctrl(&dev->ctrl); 2729 } 2730 2731 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2732 { 2733 *val = readl(to_nvme_dev(ctrl)->bar + off); 2734 return 0; 2735 } 2736 2737 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2738 { 2739 writel(val, to_nvme_dev(ctrl)->bar + off); 2740 return 0; 2741 } 2742 2743 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2744 { 2745 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2746 return 0; 2747 } 2748 2749 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2750 { 2751 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2752 2753 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2754 } 2755 2756 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2757 .name = "pcie", 2758 .module = THIS_MODULE, 2759 .flags = NVME_F_METADATA_SUPPORTED | 2760 NVME_F_PCI_P2PDMA, 2761 .reg_read32 = nvme_pci_reg_read32, 2762 .reg_write32 = nvme_pci_reg_write32, 2763 .reg_read64 = nvme_pci_reg_read64, 2764 .free_ctrl = nvme_pci_free_ctrl, 2765 .submit_async_event = nvme_pci_submit_async_event, 2766 .get_address = nvme_pci_get_address, 2767 }; 2768 2769 static int nvme_dev_map(struct nvme_dev *dev) 2770 { 2771 struct pci_dev *pdev = to_pci_dev(dev->dev); 2772 2773 if (pci_request_mem_regions(pdev, "nvme")) 2774 return -ENODEV; 2775 2776 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2777 goto release; 2778 2779 return 0; 2780 release: 2781 pci_release_mem_regions(pdev); 2782 return -ENODEV; 2783 } 2784 2785 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2786 { 2787 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2788 /* 2789 * Several Samsung devices seem to drop off the PCIe bus 2790 * randomly when APST is on and uses the deepest sleep state. 2791 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2792 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2793 * 950 PRO 256GB", but it seems to be restricted to two Dell 2794 * laptops. 2795 */ 2796 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2797 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2798 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2799 return NVME_QUIRK_NO_DEEPEST_PS; 2800 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2801 /* 2802 * Samsung SSD 960 EVO drops off the PCIe bus after system 2803 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2804 * within few minutes after bootup on a Coffee Lake board - 2805 * ASUS PRIME Z370-A 2806 */ 2807 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2808 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2809 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2810 return NVME_QUIRK_NO_APST; 2811 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2812 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2813 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2814 /* 2815 * Forcing to use host managed nvme power settings for 2816 * lowest idle power with quick resume latency on 2817 * Samsung and Toshiba SSDs based on suspend behavior 2818 * on Coffee Lake board for LENOVO C640 2819 */ 2820 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2821 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2822 return NVME_QUIRK_SIMPLE_SUSPEND; 2823 } 2824 2825 return 0; 2826 } 2827 2828 #ifdef CONFIG_ACPI 2829 static bool nvme_acpi_storage_d3(struct pci_dev *dev) 2830 { 2831 struct acpi_device *adev; 2832 struct pci_dev *root; 2833 acpi_handle handle; 2834 acpi_status status; 2835 u8 val; 2836 2837 /* 2838 * Look for _DSD property specifying that the storage device on the port 2839 * must use D3 to support deep platform power savings during 2840 * suspend-to-idle. 2841 */ 2842 root = pcie_find_root_port(dev); 2843 if (!root) 2844 return false; 2845 2846 adev = ACPI_COMPANION(&root->dev); 2847 if (!adev) 2848 return false; 2849 2850 /* 2851 * The property is defined in the PXSX device for South complex ports 2852 * and in the PEGP device for North complex ports. 2853 */ 2854 status = acpi_get_handle(adev->handle, "PXSX", &handle); 2855 if (ACPI_FAILURE(status)) { 2856 status = acpi_get_handle(adev->handle, "PEGP", &handle); 2857 if (ACPI_FAILURE(status)) 2858 return false; 2859 } 2860 2861 if (acpi_bus_get_device(handle, &adev)) 2862 return false; 2863 2864 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", 2865 &val)) 2866 return false; 2867 return val == 1; 2868 } 2869 #else 2870 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) 2871 { 2872 return false; 2873 } 2874 #endif /* CONFIG_ACPI */ 2875 2876 static void nvme_async_probe(void *data, async_cookie_t cookie) 2877 { 2878 struct nvme_dev *dev = data; 2879 2880 flush_work(&dev->ctrl.reset_work); 2881 flush_work(&dev->ctrl.scan_work); 2882 nvme_put_ctrl(&dev->ctrl); 2883 } 2884 2885 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2886 { 2887 int node, result = -ENOMEM; 2888 struct nvme_dev *dev; 2889 unsigned long quirks = id->driver_data; 2890 size_t alloc_size; 2891 2892 node = dev_to_node(&pdev->dev); 2893 if (node == NUMA_NO_NODE) 2894 set_dev_node(&pdev->dev, first_memory_node); 2895 2896 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2897 if (!dev) 2898 return -ENOMEM; 2899 2900 dev->nr_write_queues = write_queues; 2901 dev->nr_poll_queues = poll_queues; 2902 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2903 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2904 sizeof(struct nvme_queue), GFP_KERNEL, node); 2905 if (!dev->queues) 2906 goto free; 2907 2908 dev->dev = get_device(&pdev->dev); 2909 pci_set_drvdata(pdev, dev); 2910 2911 result = nvme_dev_map(dev); 2912 if (result) 2913 goto put_pci; 2914 2915 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2916 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2917 mutex_init(&dev->shutdown_lock); 2918 2919 result = nvme_setup_prp_pools(dev); 2920 if (result) 2921 goto unmap; 2922 2923 quirks |= check_vendor_combination_bug(pdev); 2924 2925 if (!noacpi && nvme_acpi_storage_d3(pdev)) { 2926 /* 2927 * Some systems use a bios work around to ask for D3 on 2928 * platforms that support kernel managed suspend. 2929 */ 2930 dev_info(&pdev->dev, 2931 "platform quirk: setting simple suspend\n"); 2932 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2933 } 2934 2935 /* 2936 * Double check that our mempool alloc size will cover the biggest 2937 * command we support. 2938 */ 2939 alloc_size = nvme_pci_iod_alloc_size(); 2940 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2941 2942 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2943 mempool_kfree, 2944 (void *) alloc_size, 2945 GFP_KERNEL, node); 2946 if (!dev->iod_mempool) { 2947 result = -ENOMEM; 2948 goto release_pools; 2949 } 2950 2951 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2952 quirks); 2953 if (result) 2954 goto release_mempool; 2955 2956 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2957 2958 nvme_reset_ctrl(&dev->ctrl); 2959 async_schedule(nvme_async_probe, dev); 2960 2961 return 0; 2962 2963 release_mempool: 2964 mempool_destroy(dev->iod_mempool); 2965 release_pools: 2966 nvme_release_prp_pools(dev); 2967 unmap: 2968 nvme_dev_unmap(dev); 2969 put_pci: 2970 put_device(dev->dev); 2971 free: 2972 kfree(dev->queues); 2973 kfree(dev); 2974 return result; 2975 } 2976 2977 static void nvme_reset_prepare(struct pci_dev *pdev) 2978 { 2979 struct nvme_dev *dev = pci_get_drvdata(pdev); 2980 2981 /* 2982 * We don't need to check the return value from waiting for the reset 2983 * state as pci_dev device lock is held, making it impossible to race 2984 * with ->remove(). 2985 */ 2986 nvme_disable_prepare_reset(dev, false); 2987 nvme_sync_queues(&dev->ctrl); 2988 } 2989 2990 static void nvme_reset_done(struct pci_dev *pdev) 2991 { 2992 struct nvme_dev *dev = pci_get_drvdata(pdev); 2993 2994 if (!nvme_try_sched_reset(&dev->ctrl)) 2995 flush_work(&dev->ctrl.reset_work); 2996 } 2997 2998 static void nvme_shutdown(struct pci_dev *pdev) 2999 { 3000 struct nvme_dev *dev = pci_get_drvdata(pdev); 3001 3002 nvme_disable_prepare_reset(dev, true); 3003 } 3004 3005 /* 3006 * The driver's remove may be called on a device in a partially initialized 3007 * state. This function must not have any dependencies on the device state in 3008 * order to proceed. 3009 */ 3010 static void nvme_remove(struct pci_dev *pdev) 3011 { 3012 struct nvme_dev *dev = pci_get_drvdata(pdev); 3013 3014 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3015 pci_set_drvdata(pdev, NULL); 3016 3017 if (!pci_device_is_present(pdev)) { 3018 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3019 nvme_dev_disable(dev, true); 3020 nvme_dev_remove_admin(dev); 3021 } 3022 3023 flush_work(&dev->ctrl.reset_work); 3024 nvme_stop_ctrl(&dev->ctrl); 3025 nvme_remove_namespaces(&dev->ctrl); 3026 nvme_dev_disable(dev, true); 3027 nvme_release_cmb(dev); 3028 nvme_free_host_mem(dev); 3029 nvme_dev_remove_admin(dev); 3030 nvme_free_queues(dev, 0); 3031 nvme_release_prp_pools(dev); 3032 nvme_dev_unmap(dev); 3033 nvme_uninit_ctrl(&dev->ctrl); 3034 } 3035 3036 #ifdef CONFIG_PM_SLEEP 3037 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3038 { 3039 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3040 } 3041 3042 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3043 { 3044 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3045 } 3046 3047 static int nvme_resume(struct device *dev) 3048 { 3049 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3050 struct nvme_ctrl *ctrl = &ndev->ctrl; 3051 3052 if (ndev->last_ps == U32_MAX || 3053 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3054 return nvme_try_sched_reset(&ndev->ctrl); 3055 return 0; 3056 } 3057 3058 static int nvme_suspend(struct device *dev) 3059 { 3060 struct pci_dev *pdev = to_pci_dev(dev); 3061 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3062 struct nvme_ctrl *ctrl = &ndev->ctrl; 3063 int ret = -EBUSY; 3064 3065 ndev->last_ps = U32_MAX; 3066 3067 /* 3068 * The platform does not remove power for a kernel managed suspend so 3069 * use host managed nvme power settings for lowest idle power if 3070 * possible. This should have quicker resume latency than a full device 3071 * shutdown. But if the firmware is involved after the suspend or the 3072 * device does not support any non-default power states, shut down the 3073 * device fully. 3074 * 3075 * If ASPM is not enabled for the device, shut down the device and allow 3076 * the PCI bus layer to put it into D3 in order to take the PCIe link 3077 * down, so as to allow the platform to achieve its minimum low-power 3078 * state (which may not be possible if the link is up). 3079 * 3080 * If a host memory buffer is enabled, shut down the device as the NVMe 3081 * specification allows the device to access the host memory buffer in 3082 * host DRAM from all power states, but hosts will fail access to DRAM 3083 * during S3. 3084 */ 3085 if (pm_suspend_via_firmware() || !ctrl->npss || 3086 !pcie_aspm_enabled(pdev) || 3087 ndev->nr_host_mem_descs || 3088 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3089 return nvme_disable_prepare_reset(ndev, true); 3090 3091 nvme_start_freeze(ctrl); 3092 nvme_wait_freeze(ctrl); 3093 nvme_sync_queues(ctrl); 3094 3095 if (ctrl->state != NVME_CTRL_LIVE) 3096 goto unfreeze; 3097 3098 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3099 if (ret < 0) 3100 goto unfreeze; 3101 3102 /* 3103 * A saved state prevents pci pm from generically controlling the 3104 * device's power. If we're using protocol specific settings, we don't 3105 * want pci interfering. 3106 */ 3107 pci_save_state(pdev); 3108 3109 ret = nvme_set_power_state(ctrl, ctrl->npss); 3110 if (ret < 0) 3111 goto unfreeze; 3112 3113 if (ret) { 3114 /* discard the saved state */ 3115 pci_load_saved_state(pdev, NULL); 3116 3117 /* 3118 * Clearing npss forces a controller reset on resume. The 3119 * correct value will be rediscovered then. 3120 */ 3121 ret = nvme_disable_prepare_reset(ndev, true); 3122 ctrl->npss = 0; 3123 } 3124 unfreeze: 3125 nvme_unfreeze(ctrl); 3126 return ret; 3127 } 3128 3129 static int nvme_simple_suspend(struct device *dev) 3130 { 3131 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3132 3133 return nvme_disable_prepare_reset(ndev, true); 3134 } 3135 3136 static int nvme_simple_resume(struct device *dev) 3137 { 3138 struct pci_dev *pdev = to_pci_dev(dev); 3139 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3140 3141 return nvme_try_sched_reset(&ndev->ctrl); 3142 } 3143 3144 static const struct dev_pm_ops nvme_dev_pm_ops = { 3145 .suspend = nvme_suspend, 3146 .resume = nvme_resume, 3147 .freeze = nvme_simple_suspend, 3148 .thaw = nvme_simple_resume, 3149 .poweroff = nvme_simple_suspend, 3150 .restore = nvme_simple_resume, 3151 }; 3152 #endif /* CONFIG_PM_SLEEP */ 3153 3154 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3155 pci_channel_state_t state) 3156 { 3157 struct nvme_dev *dev = pci_get_drvdata(pdev); 3158 3159 /* 3160 * A frozen channel requires a reset. When detected, this method will 3161 * shutdown the controller to quiesce. The controller will be restarted 3162 * after the slot reset through driver's slot_reset callback. 3163 */ 3164 switch (state) { 3165 case pci_channel_io_normal: 3166 return PCI_ERS_RESULT_CAN_RECOVER; 3167 case pci_channel_io_frozen: 3168 dev_warn(dev->ctrl.device, 3169 "frozen state error detected, reset controller\n"); 3170 nvme_dev_disable(dev, false); 3171 return PCI_ERS_RESULT_NEED_RESET; 3172 case pci_channel_io_perm_failure: 3173 dev_warn(dev->ctrl.device, 3174 "failure state error detected, request disconnect\n"); 3175 return PCI_ERS_RESULT_DISCONNECT; 3176 } 3177 return PCI_ERS_RESULT_NEED_RESET; 3178 } 3179 3180 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3181 { 3182 struct nvme_dev *dev = pci_get_drvdata(pdev); 3183 3184 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3185 pci_restore_state(pdev); 3186 nvme_reset_ctrl(&dev->ctrl); 3187 return PCI_ERS_RESULT_RECOVERED; 3188 } 3189 3190 static void nvme_error_resume(struct pci_dev *pdev) 3191 { 3192 struct nvme_dev *dev = pci_get_drvdata(pdev); 3193 3194 flush_work(&dev->ctrl.reset_work); 3195 } 3196 3197 static const struct pci_error_handlers nvme_err_handler = { 3198 .error_detected = nvme_error_detected, 3199 .slot_reset = nvme_slot_reset, 3200 .resume = nvme_error_resume, 3201 .reset_prepare = nvme_reset_prepare, 3202 .reset_done = nvme_reset_done, 3203 }; 3204 3205 static const struct pci_device_id nvme_id_table[] = { 3206 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3207 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3208 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3209 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3210 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3211 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3212 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3213 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3214 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3215 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3216 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3217 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3218 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3219 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3220 NVME_QUIRK_MEDIUM_PRIO_SQ | 3221 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3222 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3223 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3224 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3225 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3226 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3227 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3228 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3229 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, 3230 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3231 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3232 NVME_QUIRK_NO_NS_DESC_LIST, }, 3233 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3234 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3235 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3236 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3237 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3238 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3239 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3240 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3241 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3242 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3243 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3244 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3245 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3246 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3247 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3248 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3249 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3250 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 3251 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3252 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 3253 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3254 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 3255 .driver_data = NVME_QUIRK_LIGHTNVM, }, 3256 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3257 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3258 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3259 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3260 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3261 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3262 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3263 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3264 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3265 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3266 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3267 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3268 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3269 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3270 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3271 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3272 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3273 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3274 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3275 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3276 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3277 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3278 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3279 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3280 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3281 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3282 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3283 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3284 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3285 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3286 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3287 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3288 NVME_QUIRK_128_BYTES_SQES | 3289 NVME_QUIRK_SHARED_TAGS }, 3290 3291 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3292 { 0, } 3293 }; 3294 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3295 3296 static struct pci_driver nvme_driver = { 3297 .name = "nvme", 3298 .id_table = nvme_id_table, 3299 .probe = nvme_probe, 3300 .remove = nvme_remove, 3301 .shutdown = nvme_shutdown, 3302 #ifdef CONFIG_PM_SLEEP 3303 .driver = { 3304 .pm = &nvme_dev_pm_ops, 3305 }, 3306 #endif 3307 .sriov_configure = pci_sriov_configure_simple, 3308 .err_handler = &nvme_err_handler, 3309 }; 3310 3311 static int __init nvme_init(void) 3312 { 3313 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3314 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3315 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3316 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3317 3318 return pci_register_driver(&nvme_driver); 3319 } 3320 3321 static void __exit nvme_exit(void) 3322 { 3323 pci_unregister_driver(&nvme_driver); 3324 flush_workqueue(nvme_wq); 3325 } 3326 3327 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3328 MODULE_LICENSE("GPL"); 3329 MODULE_VERSION("1.0"); 3330 module_init(nvme_init); 3331 module_exit(nvme_exit); 3332