xref: /linux/drivers/nvme/host/pci.c (revision 9c39c6ffe0c2945c7cf814814c096bc23b63f53d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	u32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	u32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	dma_addr_t host_mem_descs_dma;
151 	struct nvme_host_mem_buf_desc *host_mem_descs;
152 	void **host_mem_desc_bufs;
153 	unsigned int nr_allocated_queues;
154 	unsigned int nr_write_queues;
155 	unsigned int nr_poll_queues;
156 };
157 
158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 	int ret;
161 	u32 n;
162 
163 	ret = kstrtou32(val, 10, &n);
164 	if (ret != 0 || n < 2)
165 		return -EINVAL;
166 
167 	return param_set_uint(val, kp);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	u32 *dbbuf_sq_db;
213 	u32 *dbbuf_cq_db;
214 	u32 *dbbuf_sq_ei;
215 	u32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs)
249 		return 0;
250 
251 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 					    &dev->dbbuf_dbs_dma_addr,
253 					    GFP_KERNEL);
254 	if (!dev->dbbuf_dbs)
255 		return -ENOMEM;
256 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 					    &dev->dbbuf_eis_dma_addr,
258 					    GFP_KERNEL);
259 	if (!dev->dbbuf_eis) {
260 		dma_free_coherent(dev->dev, mem_size,
261 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 		dev->dbbuf_dbs = NULL;
263 		return -ENOMEM;
264 	}
265 
266 	return 0;
267 }
268 
269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 	unsigned int mem_size = nvme_dbbuf_size(dev);
272 
273 	if (dev->dbbuf_dbs) {
274 		dma_free_coherent(dev->dev, mem_size,
275 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 		dev->dbbuf_dbs = NULL;
277 	}
278 	if (dev->dbbuf_eis) {
279 		dma_free_coherent(dev->dev, mem_size,
280 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 		dev->dbbuf_eis = NULL;
282 	}
283 }
284 
285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 			    struct nvme_queue *nvmeq, int qid)
287 {
288 	if (!dev->dbbuf_dbs || !qid)
289 		return;
290 
291 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296 
297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 	if (!nvmeq->qid)
300 		return;
301 
302 	nvmeq->dbbuf_sq_db = NULL;
303 	nvmeq->dbbuf_cq_db = NULL;
304 	nvmeq->dbbuf_sq_ei = NULL;
305 	nvmeq->dbbuf_cq_ei = NULL;
306 }
307 
308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 	struct nvme_command c;
311 	unsigned int i;
312 
313 	if (!dev->dbbuf_dbs)
314 		return;
315 
316 	memset(&c, 0, sizeof(c));
317 	c.dbbuf.opcode = nvme_admin_dbbuf;
318 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320 
321 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 		/* Free memory and continue on */
324 		nvme_dbbuf_dma_free(dev);
325 
326 		for (i = 1; i <= dev->online_queues; i++)
327 			nvme_dbbuf_free(&dev->queues[i]);
328 	}
329 }
330 
331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335 
336 /* Update dbbuf and return true if an MMIO is required */
337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
338 					      volatile u32 *dbbuf_ei)
339 {
340 	if (dbbuf_db) {
341 		u16 old_value;
342 
343 		/*
344 		 * Ensure that the queue is written before updating
345 		 * the doorbell in memory
346 		 */
347 		wmb();
348 
349 		old_value = *dbbuf_db;
350 		*dbbuf_db = value;
351 
352 		/*
353 		 * Ensure that the doorbell is updated before reading the event
354 		 * index from memory.  The controller needs to provide similar
355 		 * ordering to ensure the envent index is updated before reading
356 		 * the doorbell.
357 		 */
358 		mb();
359 
360 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
361 			return false;
362 	}
363 
364 	return true;
365 }
366 
367 /*
368  * Will slightly overestimate the number of pages needed.  This is OK
369  * as it only leads to a small amount of wasted memory for the lifetime of
370  * the I/O.
371  */
372 static int nvme_pci_npages_prp(void)
373 {
374 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
375 				      NVME_CTRL_PAGE_SIZE);
376 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
377 }
378 
379 /*
380  * Calculates the number of pages needed for the SGL segments. For example a 4k
381  * page can accommodate 256 SGL descriptors.
382  */
383 static int nvme_pci_npages_sgl(void)
384 {
385 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
386 			PAGE_SIZE);
387 }
388 
389 static size_t nvme_pci_iod_alloc_size(void)
390 {
391 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392 
393 	return sizeof(__le64 *) * npages +
394 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
395 }
396 
397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 				unsigned int hctx_idx)
399 {
400 	struct nvme_dev *dev = data;
401 	struct nvme_queue *nvmeq = &dev->queues[0];
402 
403 	WARN_ON(hctx_idx != 0);
404 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405 
406 	hctx->driver_data = nvmeq;
407 	return 0;
408 }
409 
410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411 			  unsigned int hctx_idx)
412 {
413 	struct nvme_dev *dev = data;
414 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415 
416 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417 	hctx->driver_data = nvmeq;
418 	return 0;
419 }
420 
421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
422 		unsigned int hctx_idx, unsigned int numa_node)
423 {
424 	struct nvme_dev *dev = set->driver_data;
425 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
427 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
428 
429 	BUG_ON(!nvmeq);
430 	iod->nvmeq = nvmeq;
431 
432 	nvme_req(req)->ctrl = &dev->ctrl;
433 	nvme_req(req)->cmd = &iod->cmd;
434 	return 0;
435 }
436 
437 static int queue_irq_offset(struct nvme_dev *dev)
438 {
439 	/* if we have more than 1 vec, admin queue offsets us by 1 */
440 	if (dev->num_vecs > 1)
441 		return 1;
442 
443 	return 0;
444 }
445 
446 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
447 {
448 	struct nvme_dev *dev = set->driver_data;
449 	int i, qoff, offset;
450 
451 	offset = queue_irq_offset(dev);
452 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
453 		struct blk_mq_queue_map *map = &set->map[i];
454 
455 		map->nr_queues = dev->io_queues[i];
456 		if (!map->nr_queues) {
457 			BUG_ON(i == HCTX_TYPE_DEFAULT);
458 			continue;
459 		}
460 
461 		/*
462 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
463 		 * affinity), so use the regular blk-mq cpu mapping
464 		 */
465 		map->queue_offset = qoff;
466 		if (i != HCTX_TYPE_POLL && offset)
467 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
468 		else
469 			blk_mq_map_queues(map);
470 		qoff += map->nr_queues;
471 		offset += map->nr_queues;
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  * Write sq tail if we are asked to, or if the next command would wrap.
479  */
480 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
481 {
482 	if (!write_sq) {
483 		u16 next_tail = nvmeq->sq_tail + 1;
484 
485 		if (next_tail == nvmeq->q_depth)
486 			next_tail = 0;
487 		if (next_tail != nvmeq->last_sq_tail)
488 			return;
489 	}
490 
491 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
492 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
493 		writel(nvmeq->sq_tail, nvmeq->q_db);
494 	nvmeq->last_sq_tail = nvmeq->sq_tail;
495 }
496 
497 /**
498  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
499  * @nvmeq: The queue to use
500  * @cmd: The command to send
501  * @write_sq: whether to write to the SQ doorbell
502  */
503 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
504 			    bool write_sq)
505 {
506 	spin_lock(&nvmeq->sq_lock);
507 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 	       cmd, sizeof(*cmd));
509 	if (++nvmeq->sq_tail == nvmeq->q_depth)
510 		nvmeq->sq_tail = 0;
511 	nvme_write_sq_db(nvmeq, write_sq);
512 	spin_unlock(&nvmeq->sq_lock);
513 }
514 
515 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
516 {
517 	struct nvme_queue *nvmeq = hctx->driver_data;
518 
519 	spin_lock(&nvmeq->sq_lock);
520 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
521 		nvme_write_sq_db(nvmeq, true);
522 	spin_unlock(&nvmeq->sq_lock);
523 }
524 
525 static void **nvme_pci_iod_list(struct request *req)
526 {
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
529 }
530 
531 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
532 {
533 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
534 	int nseg = blk_rq_nr_phys_segments(req);
535 	unsigned int avg_seg_size;
536 
537 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
538 
539 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
540 		return false;
541 	if (!iod->nvmeq->qid)
542 		return false;
543 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
544 		return false;
545 	return true;
546 }
547 
548 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
549 {
550 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
551 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
552 	dma_addr_t dma_addr = iod->first_dma;
553 	int i;
554 
555 	for (i = 0; i < iod->npages; i++) {
556 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
557 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
558 
559 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
560 		dma_addr = next_dma_addr;
561 	}
562 
563 }
564 
565 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
566 {
567 	const int last_sg = SGES_PER_PAGE - 1;
568 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
569 	dma_addr_t dma_addr = iod->first_dma;
570 	int i;
571 
572 	for (i = 0; i < iod->npages; i++) {
573 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
574 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
575 
576 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
577 		dma_addr = next_dma_addr;
578 	}
579 
580 }
581 
582 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
583 {
584 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
585 
586 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
587 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
588 				    rq_dma_dir(req));
589 	else
590 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
591 }
592 
593 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
594 {
595 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
596 
597 	if (iod->dma_len) {
598 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
599 			       rq_dma_dir(req));
600 		return;
601 	}
602 
603 	WARN_ON_ONCE(!iod->nents);
604 
605 	nvme_unmap_sg(dev, req);
606 	if (iod->npages == 0)
607 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
608 			      iod->first_dma);
609 	else if (iod->use_sgl)
610 		nvme_free_sgls(dev, req);
611 	else
612 		nvme_free_prps(dev, req);
613 	mempool_free(iod->sg, dev->iod_mempool);
614 }
615 
616 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
617 {
618 	int i;
619 	struct scatterlist *sg;
620 
621 	for_each_sg(sgl, sg, nents, i) {
622 		dma_addr_t phys = sg_phys(sg);
623 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
624 			"dma_address:%pad dma_length:%d\n",
625 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
626 			sg_dma_len(sg));
627 	}
628 }
629 
630 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
631 		struct request *req, struct nvme_rw_command *cmnd)
632 {
633 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
634 	struct dma_pool *pool;
635 	int length = blk_rq_payload_bytes(req);
636 	struct scatterlist *sg = iod->sg;
637 	int dma_len = sg_dma_len(sg);
638 	u64 dma_addr = sg_dma_address(sg);
639 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
640 	__le64 *prp_list;
641 	void **list = nvme_pci_iod_list(req);
642 	dma_addr_t prp_dma;
643 	int nprps, i;
644 
645 	length -= (NVME_CTRL_PAGE_SIZE - offset);
646 	if (length <= 0) {
647 		iod->first_dma = 0;
648 		goto done;
649 	}
650 
651 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
652 	if (dma_len) {
653 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
654 	} else {
655 		sg = sg_next(sg);
656 		dma_addr = sg_dma_address(sg);
657 		dma_len = sg_dma_len(sg);
658 	}
659 
660 	if (length <= NVME_CTRL_PAGE_SIZE) {
661 		iod->first_dma = dma_addr;
662 		goto done;
663 	}
664 
665 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
666 	if (nprps <= (256 / 8)) {
667 		pool = dev->prp_small_pool;
668 		iod->npages = 0;
669 	} else {
670 		pool = dev->prp_page_pool;
671 		iod->npages = 1;
672 	}
673 
674 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
675 	if (!prp_list) {
676 		iod->first_dma = dma_addr;
677 		iod->npages = -1;
678 		return BLK_STS_RESOURCE;
679 	}
680 	list[0] = prp_list;
681 	iod->first_dma = prp_dma;
682 	i = 0;
683 	for (;;) {
684 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
685 			__le64 *old_prp_list = prp_list;
686 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
687 			if (!prp_list)
688 				goto free_prps;
689 			list[iod->npages++] = prp_list;
690 			prp_list[0] = old_prp_list[i - 1];
691 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
692 			i = 1;
693 		}
694 		prp_list[i++] = cpu_to_le64(dma_addr);
695 		dma_len -= NVME_CTRL_PAGE_SIZE;
696 		dma_addr += NVME_CTRL_PAGE_SIZE;
697 		length -= NVME_CTRL_PAGE_SIZE;
698 		if (length <= 0)
699 			break;
700 		if (dma_len > 0)
701 			continue;
702 		if (unlikely(dma_len < 0))
703 			goto bad_sgl;
704 		sg = sg_next(sg);
705 		dma_addr = sg_dma_address(sg);
706 		dma_len = sg_dma_len(sg);
707 	}
708 done:
709 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
710 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
711 	return BLK_STS_OK;
712 free_prps:
713 	nvme_free_prps(dev, req);
714 	return BLK_STS_RESOURCE;
715 bad_sgl:
716 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
717 			"Invalid SGL for payload:%d nents:%d\n",
718 			blk_rq_payload_bytes(req), iod->nents);
719 	return BLK_STS_IOERR;
720 }
721 
722 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
723 		struct scatterlist *sg)
724 {
725 	sge->addr = cpu_to_le64(sg_dma_address(sg));
726 	sge->length = cpu_to_le32(sg_dma_len(sg));
727 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
728 }
729 
730 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
731 		dma_addr_t dma_addr, int entries)
732 {
733 	sge->addr = cpu_to_le64(dma_addr);
734 	if (entries < SGES_PER_PAGE) {
735 		sge->length = cpu_to_le32(entries * sizeof(*sge));
736 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
737 	} else {
738 		sge->length = cpu_to_le32(PAGE_SIZE);
739 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
740 	}
741 }
742 
743 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
744 		struct request *req, struct nvme_rw_command *cmd, int entries)
745 {
746 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
747 	struct dma_pool *pool;
748 	struct nvme_sgl_desc *sg_list;
749 	struct scatterlist *sg = iod->sg;
750 	dma_addr_t sgl_dma;
751 	int i = 0;
752 
753 	/* setting the transfer type as SGL */
754 	cmd->flags = NVME_CMD_SGL_METABUF;
755 
756 	if (entries == 1) {
757 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
758 		return BLK_STS_OK;
759 	}
760 
761 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
762 		pool = dev->prp_small_pool;
763 		iod->npages = 0;
764 	} else {
765 		pool = dev->prp_page_pool;
766 		iod->npages = 1;
767 	}
768 
769 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
770 	if (!sg_list) {
771 		iod->npages = -1;
772 		return BLK_STS_RESOURCE;
773 	}
774 
775 	nvme_pci_iod_list(req)[0] = sg_list;
776 	iod->first_dma = sgl_dma;
777 
778 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
779 
780 	do {
781 		if (i == SGES_PER_PAGE) {
782 			struct nvme_sgl_desc *old_sg_desc = sg_list;
783 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
784 
785 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
786 			if (!sg_list)
787 				goto free_sgls;
788 
789 			i = 0;
790 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
791 			sg_list[i++] = *link;
792 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
793 		}
794 
795 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
796 		sg = sg_next(sg);
797 	} while (--entries > 0);
798 
799 	return BLK_STS_OK;
800 free_sgls:
801 	nvme_free_sgls(dev, req);
802 	return BLK_STS_RESOURCE;
803 }
804 
805 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
806 		struct request *req, struct nvme_rw_command *cmnd,
807 		struct bio_vec *bv)
808 {
809 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
810 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
811 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
812 
813 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
814 	if (dma_mapping_error(dev->dev, iod->first_dma))
815 		return BLK_STS_RESOURCE;
816 	iod->dma_len = bv->bv_len;
817 
818 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
819 	if (bv->bv_len > first_prp_len)
820 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
821 	return BLK_STS_OK;
822 }
823 
824 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
825 		struct request *req, struct nvme_rw_command *cmnd,
826 		struct bio_vec *bv)
827 {
828 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
829 
830 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
831 	if (dma_mapping_error(dev->dev, iod->first_dma))
832 		return BLK_STS_RESOURCE;
833 	iod->dma_len = bv->bv_len;
834 
835 	cmnd->flags = NVME_CMD_SGL_METABUF;
836 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
837 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
838 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
839 	return BLK_STS_OK;
840 }
841 
842 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
843 		struct nvme_command *cmnd)
844 {
845 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846 	blk_status_t ret = BLK_STS_RESOURCE;
847 	int nr_mapped;
848 
849 	if (blk_rq_nr_phys_segments(req) == 1) {
850 		struct bio_vec bv = req_bvec(req);
851 
852 		if (!is_pci_p2pdma_page(bv.bv_page)) {
853 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
854 				return nvme_setup_prp_simple(dev, req,
855 							     &cmnd->rw, &bv);
856 
857 			if (iod->nvmeq->qid && sgl_threshold &&
858 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
859 				return nvme_setup_sgl_simple(dev, req,
860 							     &cmnd->rw, &bv);
861 		}
862 	}
863 
864 	iod->dma_len = 0;
865 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
866 	if (!iod->sg)
867 		return BLK_STS_RESOURCE;
868 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
869 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
870 	if (!iod->nents)
871 		goto out_free_sg;
872 
873 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
874 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
875 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
876 	else
877 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
878 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
879 	if (!nr_mapped)
880 		goto out_free_sg;
881 
882 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
883 	if (iod->use_sgl)
884 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
885 	else
886 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
887 	if (ret != BLK_STS_OK)
888 		goto out_unmap_sg;
889 	return BLK_STS_OK;
890 
891 out_unmap_sg:
892 	nvme_unmap_sg(dev, req);
893 out_free_sg:
894 	mempool_free(iod->sg, dev->iod_mempool);
895 	return ret;
896 }
897 
898 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
899 		struct nvme_command *cmnd)
900 {
901 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
902 
903 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
904 			rq_dma_dir(req), 0);
905 	if (dma_mapping_error(dev->dev, iod->meta_dma))
906 		return BLK_STS_IOERR;
907 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
908 	return BLK_STS_OK;
909 }
910 
911 /*
912  * NOTE: ns is NULL when called on the admin queue.
913  */
914 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
915 			 const struct blk_mq_queue_data *bd)
916 {
917 	struct nvme_ns *ns = hctx->queue->queuedata;
918 	struct nvme_queue *nvmeq = hctx->driver_data;
919 	struct nvme_dev *dev = nvmeq->dev;
920 	struct request *req = bd->rq;
921 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
922 	struct nvme_command *cmnd = &iod->cmd;
923 	blk_status_t ret;
924 
925 	iod->aborted = 0;
926 	iod->npages = -1;
927 	iod->nents = 0;
928 
929 	/*
930 	 * We should not need to do this, but we're still using this to
931 	 * ensure we can drain requests on a dying queue.
932 	 */
933 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
934 		return BLK_STS_IOERR;
935 
936 	ret = nvme_setup_cmd(ns, req);
937 	if (ret)
938 		return ret;
939 
940 	if (blk_rq_nr_phys_segments(req)) {
941 		ret = nvme_map_data(dev, req, cmnd);
942 		if (ret)
943 			goto out_free_cmd;
944 	}
945 
946 	if (blk_integrity_rq(req)) {
947 		ret = nvme_map_metadata(dev, req, cmnd);
948 		if (ret)
949 			goto out_unmap_data;
950 	}
951 
952 	blk_mq_start_request(req);
953 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
954 	return BLK_STS_OK;
955 out_unmap_data:
956 	nvme_unmap_data(dev, req);
957 out_free_cmd:
958 	nvme_cleanup_cmd(req);
959 	return ret;
960 }
961 
962 static void nvme_pci_complete_rq(struct request *req)
963 {
964 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
965 	struct nvme_dev *dev = iod->nvmeq->dev;
966 
967 	if (blk_integrity_rq(req))
968 		dma_unmap_page(dev->dev, iod->meta_dma,
969 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
970 	if (blk_rq_nr_phys_segments(req))
971 		nvme_unmap_data(dev, req);
972 	nvme_complete_rq(req);
973 }
974 
975 /* We read the CQE phase first to check if the rest of the entry is valid */
976 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
977 {
978 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
979 
980 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
981 }
982 
983 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
984 {
985 	u16 head = nvmeq->cq_head;
986 
987 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
988 					      nvmeq->dbbuf_cq_ei))
989 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
990 }
991 
992 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
993 {
994 	if (!nvmeq->qid)
995 		return nvmeq->dev->admin_tagset.tags[0];
996 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
997 }
998 
999 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1000 {
1001 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1002 	__u16 command_id = READ_ONCE(cqe->command_id);
1003 	struct request *req;
1004 
1005 	/*
1006 	 * AEN requests are special as they don't time out and can
1007 	 * survive any kind of queue freeze and often don't respond to
1008 	 * aborts.  We don't even bother to allocate a struct request
1009 	 * for them but rather special case them here.
1010 	 */
1011 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1012 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1013 				cqe->status, &cqe->result);
1014 		return;
1015 	}
1016 
1017 	req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), command_id);
1018 	if (unlikely(!req)) {
1019 		dev_warn(nvmeq->dev->ctrl.device,
1020 			"invalid id %d completed on queue %d\n",
1021 			command_id, le16_to_cpu(cqe->sq_id));
1022 		return;
1023 	}
1024 
1025 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1026 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1027 		nvme_pci_complete_rq(req);
1028 }
1029 
1030 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1031 {
1032 	u16 tmp = nvmeq->cq_head + 1;
1033 
1034 	if (tmp == nvmeq->q_depth) {
1035 		nvmeq->cq_head = 0;
1036 		nvmeq->cq_phase ^= 1;
1037 	} else {
1038 		nvmeq->cq_head = tmp;
1039 	}
1040 }
1041 
1042 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1043 {
1044 	int found = 0;
1045 
1046 	while (nvme_cqe_pending(nvmeq)) {
1047 		found++;
1048 		/*
1049 		 * load-load control dependency between phase and the rest of
1050 		 * the cqe requires a full read memory barrier
1051 		 */
1052 		dma_rmb();
1053 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1054 		nvme_update_cq_head(nvmeq);
1055 	}
1056 
1057 	if (found)
1058 		nvme_ring_cq_doorbell(nvmeq);
1059 	return found;
1060 }
1061 
1062 static irqreturn_t nvme_irq(int irq, void *data)
1063 {
1064 	struct nvme_queue *nvmeq = data;
1065 
1066 	if (nvme_process_cq(nvmeq))
1067 		return IRQ_HANDLED;
1068 	return IRQ_NONE;
1069 }
1070 
1071 static irqreturn_t nvme_irq_check(int irq, void *data)
1072 {
1073 	struct nvme_queue *nvmeq = data;
1074 
1075 	if (nvme_cqe_pending(nvmeq))
1076 		return IRQ_WAKE_THREAD;
1077 	return IRQ_NONE;
1078 }
1079 
1080 /*
1081  * Poll for completions for any interrupt driven queue
1082  * Can be called from any context.
1083  */
1084 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1085 {
1086 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1087 
1088 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1089 
1090 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1091 	nvme_process_cq(nvmeq);
1092 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1093 }
1094 
1095 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1096 {
1097 	struct nvme_queue *nvmeq = hctx->driver_data;
1098 	bool found;
1099 
1100 	if (!nvme_cqe_pending(nvmeq))
1101 		return 0;
1102 
1103 	spin_lock(&nvmeq->cq_poll_lock);
1104 	found = nvme_process_cq(nvmeq);
1105 	spin_unlock(&nvmeq->cq_poll_lock);
1106 
1107 	return found;
1108 }
1109 
1110 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1111 {
1112 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1113 	struct nvme_queue *nvmeq = &dev->queues[0];
1114 	struct nvme_command c;
1115 
1116 	memset(&c, 0, sizeof(c));
1117 	c.common.opcode = nvme_admin_async_event;
1118 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1119 	nvme_submit_cmd(nvmeq, &c, true);
1120 }
1121 
1122 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1123 {
1124 	struct nvme_command c;
1125 
1126 	memset(&c, 0, sizeof(c));
1127 	c.delete_queue.opcode = opcode;
1128 	c.delete_queue.qid = cpu_to_le16(id);
1129 
1130 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131 }
1132 
1133 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1134 		struct nvme_queue *nvmeq, s16 vector)
1135 {
1136 	struct nvme_command c;
1137 	int flags = NVME_QUEUE_PHYS_CONTIG;
1138 
1139 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1140 		flags |= NVME_CQ_IRQ_ENABLED;
1141 
1142 	/*
1143 	 * Note: we (ab)use the fact that the prp fields survive if no data
1144 	 * is attached to the request.
1145 	 */
1146 	memset(&c, 0, sizeof(c));
1147 	c.create_cq.opcode = nvme_admin_create_cq;
1148 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1149 	c.create_cq.cqid = cpu_to_le16(qid);
1150 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1151 	c.create_cq.cq_flags = cpu_to_le16(flags);
1152 	c.create_cq.irq_vector = cpu_to_le16(vector);
1153 
1154 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1155 }
1156 
1157 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1158 						struct nvme_queue *nvmeq)
1159 {
1160 	struct nvme_ctrl *ctrl = &dev->ctrl;
1161 	struct nvme_command c;
1162 	int flags = NVME_QUEUE_PHYS_CONTIG;
1163 
1164 	/*
1165 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1166 	 * set. Since URGENT priority is zeroes, it makes all queues
1167 	 * URGENT.
1168 	 */
1169 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1170 		flags |= NVME_SQ_PRIO_MEDIUM;
1171 
1172 	/*
1173 	 * Note: we (ab)use the fact that the prp fields survive if no data
1174 	 * is attached to the request.
1175 	 */
1176 	memset(&c, 0, sizeof(c));
1177 	c.create_sq.opcode = nvme_admin_create_sq;
1178 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1179 	c.create_sq.sqid = cpu_to_le16(qid);
1180 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1181 	c.create_sq.sq_flags = cpu_to_le16(flags);
1182 	c.create_sq.cqid = cpu_to_le16(qid);
1183 
1184 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1185 }
1186 
1187 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1188 {
1189 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1190 }
1191 
1192 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1193 {
1194 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1195 }
1196 
1197 static void abort_endio(struct request *req, blk_status_t error)
1198 {
1199 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1200 	struct nvme_queue *nvmeq = iod->nvmeq;
1201 
1202 	dev_warn(nvmeq->dev->ctrl.device,
1203 		 "Abort status: 0x%x", nvme_req(req)->status);
1204 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1205 	blk_mq_free_request(req);
1206 }
1207 
1208 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1209 {
1210 	/* If true, indicates loss of adapter communication, possibly by a
1211 	 * NVMe Subsystem reset.
1212 	 */
1213 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1214 
1215 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1216 	switch (dev->ctrl.state) {
1217 	case NVME_CTRL_RESETTING:
1218 	case NVME_CTRL_CONNECTING:
1219 		return false;
1220 	default:
1221 		break;
1222 	}
1223 
1224 	/* We shouldn't reset unless the controller is on fatal error state
1225 	 * _or_ if we lost the communication with it.
1226 	 */
1227 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1228 		return false;
1229 
1230 	return true;
1231 }
1232 
1233 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1234 {
1235 	/* Read a config register to help see what died. */
1236 	u16 pci_status;
1237 	int result;
1238 
1239 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1240 				      &pci_status);
1241 	if (result == PCIBIOS_SUCCESSFUL)
1242 		dev_warn(dev->ctrl.device,
1243 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1244 			 csts, pci_status);
1245 	else
1246 		dev_warn(dev->ctrl.device,
1247 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1248 			 csts, result);
1249 }
1250 
1251 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1252 {
1253 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1254 	struct nvme_queue *nvmeq = iod->nvmeq;
1255 	struct nvme_dev *dev = nvmeq->dev;
1256 	struct request *abort_req;
1257 	struct nvme_command cmd;
1258 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1259 
1260 	/* If PCI error recovery process is happening, we cannot reset or
1261 	 * the recovery mechanism will surely fail.
1262 	 */
1263 	mb();
1264 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1265 		return BLK_EH_RESET_TIMER;
1266 
1267 	/*
1268 	 * Reset immediately if the controller is failed
1269 	 */
1270 	if (nvme_should_reset(dev, csts)) {
1271 		nvme_warn_reset(dev, csts);
1272 		nvme_dev_disable(dev, false);
1273 		nvme_reset_ctrl(&dev->ctrl);
1274 		return BLK_EH_DONE;
1275 	}
1276 
1277 	/*
1278 	 * Did we miss an interrupt?
1279 	 */
1280 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1281 		nvme_poll(req->mq_hctx);
1282 	else
1283 		nvme_poll_irqdisable(nvmeq);
1284 
1285 	if (blk_mq_request_completed(req)) {
1286 		dev_warn(dev->ctrl.device,
1287 			 "I/O %d QID %d timeout, completion polled\n",
1288 			 req->tag, nvmeq->qid);
1289 		return BLK_EH_DONE;
1290 	}
1291 
1292 	/*
1293 	 * Shutdown immediately if controller times out while starting. The
1294 	 * reset work will see the pci device disabled when it gets the forced
1295 	 * cancellation error. All outstanding requests are completed on
1296 	 * shutdown, so we return BLK_EH_DONE.
1297 	 */
1298 	switch (dev->ctrl.state) {
1299 	case NVME_CTRL_CONNECTING:
1300 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1301 		fallthrough;
1302 	case NVME_CTRL_DELETING:
1303 		dev_warn_ratelimited(dev->ctrl.device,
1304 			 "I/O %d QID %d timeout, disable controller\n",
1305 			 req->tag, nvmeq->qid);
1306 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1307 		nvme_dev_disable(dev, true);
1308 		return BLK_EH_DONE;
1309 	case NVME_CTRL_RESETTING:
1310 		return BLK_EH_RESET_TIMER;
1311 	default:
1312 		break;
1313 	}
1314 
1315 	/*
1316 	 * Shutdown the controller immediately and schedule a reset if the
1317 	 * command was already aborted once before and still hasn't been
1318 	 * returned to the driver, or if this is the admin queue.
1319 	 */
1320 	if (!nvmeq->qid || iod->aborted) {
1321 		dev_warn(dev->ctrl.device,
1322 			 "I/O %d QID %d timeout, reset controller\n",
1323 			 req->tag, nvmeq->qid);
1324 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1325 		nvme_dev_disable(dev, false);
1326 		nvme_reset_ctrl(&dev->ctrl);
1327 
1328 		return BLK_EH_DONE;
1329 	}
1330 
1331 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1332 		atomic_inc(&dev->ctrl.abort_limit);
1333 		return BLK_EH_RESET_TIMER;
1334 	}
1335 	iod->aborted = 1;
1336 
1337 	memset(&cmd, 0, sizeof(cmd));
1338 	cmd.abort.opcode = nvme_admin_abort_cmd;
1339 	cmd.abort.cid = req->tag;
1340 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1341 
1342 	dev_warn(nvmeq->dev->ctrl.device,
1343 		"I/O %d QID %d timeout, aborting\n",
1344 		 req->tag, nvmeq->qid);
1345 
1346 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1347 			BLK_MQ_REQ_NOWAIT);
1348 	if (IS_ERR(abort_req)) {
1349 		atomic_inc(&dev->ctrl.abort_limit);
1350 		return BLK_EH_RESET_TIMER;
1351 	}
1352 
1353 	abort_req->end_io_data = NULL;
1354 	blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1355 
1356 	/*
1357 	 * The aborted req will be completed on receiving the abort req.
1358 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1359 	 * as the device then is in a faulty state.
1360 	 */
1361 	return BLK_EH_RESET_TIMER;
1362 }
1363 
1364 static void nvme_free_queue(struct nvme_queue *nvmeq)
1365 {
1366 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1367 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1368 	if (!nvmeq->sq_cmds)
1369 		return;
1370 
1371 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1372 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1373 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1374 	} else {
1375 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1376 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1377 	}
1378 }
1379 
1380 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1381 {
1382 	int i;
1383 
1384 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1385 		dev->ctrl.queue_count--;
1386 		nvme_free_queue(&dev->queues[i]);
1387 	}
1388 }
1389 
1390 /**
1391  * nvme_suspend_queue - put queue into suspended state
1392  * @nvmeq: queue to suspend
1393  */
1394 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1395 {
1396 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1397 		return 1;
1398 
1399 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1400 	mb();
1401 
1402 	nvmeq->dev->online_queues--;
1403 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1404 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1405 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1406 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1407 	return 0;
1408 }
1409 
1410 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1411 {
1412 	int i;
1413 
1414 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1415 		nvme_suspend_queue(&dev->queues[i]);
1416 }
1417 
1418 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1419 {
1420 	struct nvme_queue *nvmeq = &dev->queues[0];
1421 
1422 	if (shutdown)
1423 		nvme_shutdown_ctrl(&dev->ctrl);
1424 	else
1425 		nvme_disable_ctrl(&dev->ctrl);
1426 
1427 	nvme_poll_irqdisable(nvmeq);
1428 }
1429 
1430 /*
1431  * Called only on a device that has been disabled and after all other threads
1432  * that can check this device's completion queues have synced, except
1433  * nvme_poll(). This is the last chance for the driver to see a natural
1434  * completion before nvme_cancel_request() terminates all incomplete requests.
1435  */
1436 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1437 {
1438 	int i;
1439 
1440 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1441 		spin_lock(&dev->queues[i].cq_poll_lock);
1442 		nvme_process_cq(&dev->queues[i]);
1443 		spin_unlock(&dev->queues[i].cq_poll_lock);
1444 	}
1445 }
1446 
1447 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1448 				int entry_size)
1449 {
1450 	int q_depth = dev->q_depth;
1451 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1452 					  NVME_CTRL_PAGE_SIZE);
1453 
1454 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1455 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1456 
1457 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1458 		q_depth = div_u64(mem_per_q, entry_size);
1459 
1460 		/*
1461 		 * Ensure the reduced q_depth is above some threshold where it
1462 		 * would be better to map queues in system memory with the
1463 		 * original depth
1464 		 */
1465 		if (q_depth < 64)
1466 			return -ENOMEM;
1467 	}
1468 
1469 	return q_depth;
1470 }
1471 
1472 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1473 				int qid)
1474 {
1475 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1476 
1477 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1478 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1479 		if (nvmeq->sq_cmds) {
1480 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1481 							nvmeq->sq_cmds);
1482 			if (nvmeq->sq_dma_addr) {
1483 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1484 				return 0;
1485 			}
1486 
1487 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1488 		}
1489 	}
1490 
1491 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1492 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1493 	if (!nvmeq->sq_cmds)
1494 		return -ENOMEM;
1495 	return 0;
1496 }
1497 
1498 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1499 {
1500 	struct nvme_queue *nvmeq = &dev->queues[qid];
1501 
1502 	if (dev->ctrl.queue_count > qid)
1503 		return 0;
1504 
1505 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1506 	nvmeq->q_depth = depth;
1507 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1508 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1509 	if (!nvmeq->cqes)
1510 		goto free_nvmeq;
1511 
1512 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1513 		goto free_cqdma;
1514 
1515 	nvmeq->dev = dev;
1516 	spin_lock_init(&nvmeq->sq_lock);
1517 	spin_lock_init(&nvmeq->cq_poll_lock);
1518 	nvmeq->cq_head = 0;
1519 	nvmeq->cq_phase = 1;
1520 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1521 	nvmeq->qid = qid;
1522 	dev->ctrl.queue_count++;
1523 
1524 	return 0;
1525 
1526  free_cqdma:
1527 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1528 			  nvmeq->cq_dma_addr);
1529  free_nvmeq:
1530 	return -ENOMEM;
1531 }
1532 
1533 static int queue_request_irq(struct nvme_queue *nvmeq)
1534 {
1535 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1536 	int nr = nvmeq->dev->ctrl.instance;
1537 
1538 	if (use_threaded_interrupts) {
1539 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1540 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1541 	} else {
1542 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1543 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1544 	}
1545 }
1546 
1547 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1548 {
1549 	struct nvme_dev *dev = nvmeq->dev;
1550 
1551 	nvmeq->sq_tail = 0;
1552 	nvmeq->last_sq_tail = 0;
1553 	nvmeq->cq_head = 0;
1554 	nvmeq->cq_phase = 1;
1555 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1556 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1557 	nvme_dbbuf_init(dev, nvmeq, qid);
1558 	dev->online_queues++;
1559 	wmb(); /* ensure the first interrupt sees the initialization */
1560 }
1561 
1562 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1563 {
1564 	struct nvme_dev *dev = nvmeq->dev;
1565 	int result;
1566 	u16 vector = 0;
1567 
1568 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1569 
1570 	/*
1571 	 * A queue's vector matches the queue identifier unless the controller
1572 	 * has only one vector available.
1573 	 */
1574 	if (!polled)
1575 		vector = dev->num_vecs == 1 ? 0 : qid;
1576 	else
1577 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1578 
1579 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1580 	if (result)
1581 		return result;
1582 
1583 	result = adapter_alloc_sq(dev, qid, nvmeq);
1584 	if (result < 0)
1585 		return result;
1586 	if (result)
1587 		goto release_cq;
1588 
1589 	nvmeq->cq_vector = vector;
1590 	nvme_init_queue(nvmeq, qid);
1591 
1592 	if (!polled) {
1593 		result = queue_request_irq(nvmeq);
1594 		if (result < 0)
1595 			goto release_sq;
1596 	}
1597 
1598 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1599 	return result;
1600 
1601 release_sq:
1602 	dev->online_queues--;
1603 	adapter_delete_sq(dev, qid);
1604 release_cq:
1605 	adapter_delete_cq(dev, qid);
1606 	return result;
1607 }
1608 
1609 static const struct blk_mq_ops nvme_mq_admin_ops = {
1610 	.queue_rq	= nvme_queue_rq,
1611 	.complete	= nvme_pci_complete_rq,
1612 	.init_hctx	= nvme_admin_init_hctx,
1613 	.init_request	= nvme_init_request,
1614 	.timeout	= nvme_timeout,
1615 };
1616 
1617 static const struct blk_mq_ops nvme_mq_ops = {
1618 	.queue_rq	= nvme_queue_rq,
1619 	.complete	= nvme_pci_complete_rq,
1620 	.commit_rqs	= nvme_commit_rqs,
1621 	.init_hctx	= nvme_init_hctx,
1622 	.init_request	= nvme_init_request,
1623 	.map_queues	= nvme_pci_map_queues,
1624 	.timeout	= nvme_timeout,
1625 	.poll		= nvme_poll,
1626 };
1627 
1628 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1629 {
1630 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1631 		/*
1632 		 * If the controller was reset during removal, it's possible
1633 		 * user requests may be waiting on a stopped queue. Start the
1634 		 * queue to flush these to completion.
1635 		 */
1636 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1637 		blk_cleanup_queue(dev->ctrl.admin_q);
1638 		blk_mq_free_tag_set(&dev->admin_tagset);
1639 	}
1640 }
1641 
1642 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1643 {
1644 	if (!dev->ctrl.admin_q) {
1645 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1646 		dev->admin_tagset.nr_hw_queues = 1;
1647 
1648 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1649 		dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1650 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1651 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1652 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1653 		dev->admin_tagset.driver_data = dev;
1654 
1655 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1656 			return -ENOMEM;
1657 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1658 
1659 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1660 		if (IS_ERR(dev->ctrl.admin_q)) {
1661 			blk_mq_free_tag_set(&dev->admin_tagset);
1662 			return -ENOMEM;
1663 		}
1664 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1665 			nvme_dev_remove_admin(dev);
1666 			dev->ctrl.admin_q = NULL;
1667 			return -ENODEV;
1668 		}
1669 	} else
1670 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1671 
1672 	return 0;
1673 }
1674 
1675 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1676 {
1677 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1678 }
1679 
1680 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1681 {
1682 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1683 
1684 	if (size <= dev->bar_mapped_size)
1685 		return 0;
1686 	if (size > pci_resource_len(pdev, 0))
1687 		return -ENOMEM;
1688 	if (dev->bar)
1689 		iounmap(dev->bar);
1690 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1691 	if (!dev->bar) {
1692 		dev->bar_mapped_size = 0;
1693 		return -ENOMEM;
1694 	}
1695 	dev->bar_mapped_size = size;
1696 	dev->dbs = dev->bar + NVME_REG_DBS;
1697 
1698 	return 0;
1699 }
1700 
1701 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1702 {
1703 	int result;
1704 	u32 aqa;
1705 	struct nvme_queue *nvmeq;
1706 
1707 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1708 	if (result < 0)
1709 		return result;
1710 
1711 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1712 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1713 
1714 	if (dev->subsystem &&
1715 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1716 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1717 
1718 	result = nvme_disable_ctrl(&dev->ctrl);
1719 	if (result < 0)
1720 		return result;
1721 
1722 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1723 	if (result)
1724 		return result;
1725 
1726 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1727 
1728 	nvmeq = &dev->queues[0];
1729 	aqa = nvmeq->q_depth - 1;
1730 	aqa |= aqa << 16;
1731 
1732 	writel(aqa, dev->bar + NVME_REG_AQA);
1733 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1734 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1735 
1736 	result = nvme_enable_ctrl(&dev->ctrl);
1737 	if (result)
1738 		return result;
1739 
1740 	nvmeq->cq_vector = 0;
1741 	nvme_init_queue(nvmeq, 0);
1742 	result = queue_request_irq(nvmeq);
1743 	if (result) {
1744 		dev->online_queues--;
1745 		return result;
1746 	}
1747 
1748 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1749 	return result;
1750 }
1751 
1752 static int nvme_create_io_queues(struct nvme_dev *dev)
1753 {
1754 	unsigned i, max, rw_queues;
1755 	int ret = 0;
1756 
1757 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1758 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1759 			ret = -ENOMEM;
1760 			break;
1761 		}
1762 	}
1763 
1764 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1765 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1766 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1767 				dev->io_queues[HCTX_TYPE_READ];
1768 	} else {
1769 		rw_queues = max;
1770 	}
1771 
1772 	for (i = dev->online_queues; i <= max; i++) {
1773 		bool polled = i > rw_queues;
1774 
1775 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1776 		if (ret)
1777 			break;
1778 	}
1779 
1780 	/*
1781 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1782 	 * than the desired amount of queues, and even a controller without
1783 	 * I/O queues can still be used to issue admin commands.  This might
1784 	 * be useful to upgrade a buggy firmware for example.
1785 	 */
1786 	return ret >= 0 ? 0 : ret;
1787 }
1788 
1789 static ssize_t nvme_cmb_show(struct device *dev,
1790 			     struct device_attribute *attr,
1791 			     char *buf)
1792 {
1793 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1794 
1795 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1796 		       ndev->cmbloc, ndev->cmbsz);
1797 }
1798 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1799 
1800 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1801 {
1802 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1803 
1804 	return 1ULL << (12 + 4 * szu);
1805 }
1806 
1807 static u32 nvme_cmb_size(struct nvme_dev *dev)
1808 {
1809 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1810 }
1811 
1812 static void nvme_map_cmb(struct nvme_dev *dev)
1813 {
1814 	u64 size, offset;
1815 	resource_size_t bar_size;
1816 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1817 	int bar;
1818 
1819 	if (dev->cmb_size)
1820 		return;
1821 
1822 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1823 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1824 
1825 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1826 	if (!dev->cmbsz)
1827 		return;
1828 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1829 
1830 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1831 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1832 	bar = NVME_CMB_BIR(dev->cmbloc);
1833 	bar_size = pci_resource_len(pdev, bar);
1834 
1835 	if (offset > bar_size)
1836 		return;
1837 
1838 	/*
1839 	 * Tell the controller about the host side address mapping the CMB,
1840 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1841 	 */
1842 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1843 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1844 			     (pci_bus_address(pdev, bar) + offset),
1845 			     dev->bar + NVME_REG_CMBMSC);
1846 	}
1847 
1848 	/*
1849 	 * Controllers may support a CMB size larger than their BAR,
1850 	 * for example, due to being behind a bridge. Reduce the CMB to
1851 	 * the reported size of the BAR
1852 	 */
1853 	if (size > bar_size - offset)
1854 		size = bar_size - offset;
1855 
1856 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1857 		dev_warn(dev->ctrl.device,
1858 			 "failed to register the CMB\n");
1859 		return;
1860 	}
1861 
1862 	dev->cmb_size = size;
1863 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1864 
1865 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1866 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1867 		pci_p2pmem_publish(pdev, true);
1868 
1869 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1870 				    &dev_attr_cmb.attr, NULL))
1871 		dev_warn(dev->ctrl.device,
1872 			 "failed to add sysfs attribute for CMB\n");
1873 }
1874 
1875 static inline void nvme_release_cmb(struct nvme_dev *dev)
1876 {
1877 	if (dev->cmb_size) {
1878 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1879 					     &dev_attr_cmb.attr, NULL);
1880 		dev->cmb_size = 0;
1881 	}
1882 }
1883 
1884 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1885 {
1886 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1887 	u64 dma_addr = dev->host_mem_descs_dma;
1888 	struct nvme_command c;
1889 	int ret;
1890 
1891 	memset(&c, 0, sizeof(c));
1892 	c.features.opcode	= nvme_admin_set_features;
1893 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1894 	c.features.dword11	= cpu_to_le32(bits);
1895 	c.features.dword12	= cpu_to_le32(host_mem_size);
1896 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1897 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1898 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1899 
1900 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1901 	if (ret) {
1902 		dev_warn(dev->ctrl.device,
1903 			 "failed to set host mem (err %d, flags %#x).\n",
1904 			 ret, bits);
1905 	}
1906 	return ret;
1907 }
1908 
1909 static void nvme_free_host_mem(struct nvme_dev *dev)
1910 {
1911 	int i;
1912 
1913 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1914 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1915 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1916 
1917 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1918 			       le64_to_cpu(desc->addr),
1919 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1920 	}
1921 
1922 	kfree(dev->host_mem_desc_bufs);
1923 	dev->host_mem_desc_bufs = NULL;
1924 	dma_free_coherent(dev->dev,
1925 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1926 			dev->host_mem_descs, dev->host_mem_descs_dma);
1927 	dev->host_mem_descs = NULL;
1928 	dev->nr_host_mem_descs = 0;
1929 }
1930 
1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1932 		u32 chunk_size)
1933 {
1934 	struct nvme_host_mem_buf_desc *descs;
1935 	u32 max_entries, len;
1936 	dma_addr_t descs_dma;
1937 	int i = 0;
1938 	void **bufs;
1939 	u64 size, tmp;
1940 
1941 	tmp = (preferred + chunk_size - 1);
1942 	do_div(tmp, chunk_size);
1943 	max_entries = tmp;
1944 
1945 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1946 		max_entries = dev->ctrl.hmmaxd;
1947 
1948 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1949 				   &descs_dma, GFP_KERNEL);
1950 	if (!descs)
1951 		goto out;
1952 
1953 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1954 	if (!bufs)
1955 		goto out_free_descs;
1956 
1957 	for (size = 0; size < preferred && i < max_entries; size += len) {
1958 		dma_addr_t dma_addr;
1959 
1960 		len = min_t(u64, chunk_size, preferred - size);
1961 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1962 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1963 		if (!bufs[i])
1964 			break;
1965 
1966 		descs[i].addr = cpu_to_le64(dma_addr);
1967 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968 		i++;
1969 	}
1970 
1971 	if (!size)
1972 		goto out_free_bufs;
1973 
1974 	dev->nr_host_mem_descs = i;
1975 	dev->host_mem_size = size;
1976 	dev->host_mem_descs = descs;
1977 	dev->host_mem_descs_dma = descs_dma;
1978 	dev->host_mem_desc_bufs = bufs;
1979 	return 0;
1980 
1981 out_free_bufs:
1982 	while (--i >= 0) {
1983 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1984 
1985 		dma_free_attrs(dev->dev, size, bufs[i],
1986 			       le64_to_cpu(descs[i].addr),
1987 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1988 	}
1989 
1990 	kfree(bufs);
1991 out_free_descs:
1992 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1993 			descs_dma);
1994 out:
1995 	dev->host_mem_descs = NULL;
1996 	return -ENOMEM;
1997 }
1998 
1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2000 {
2001 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2002 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2003 	u64 chunk_size;
2004 
2005 	/* start big and work our way down */
2006 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2007 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2008 			if (!min || dev->host_mem_size >= min)
2009 				return 0;
2010 			nvme_free_host_mem(dev);
2011 		}
2012 	}
2013 
2014 	return -ENOMEM;
2015 }
2016 
2017 static int nvme_setup_host_mem(struct nvme_dev *dev)
2018 {
2019 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2020 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2021 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2022 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2023 	int ret;
2024 
2025 	preferred = min(preferred, max);
2026 	if (min > max) {
2027 		dev_warn(dev->ctrl.device,
2028 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2029 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2030 		nvme_free_host_mem(dev);
2031 		return 0;
2032 	}
2033 
2034 	/*
2035 	 * If we already have a buffer allocated check if we can reuse it.
2036 	 */
2037 	if (dev->host_mem_descs) {
2038 		if (dev->host_mem_size >= min)
2039 			enable_bits |= NVME_HOST_MEM_RETURN;
2040 		else
2041 			nvme_free_host_mem(dev);
2042 	}
2043 
2044 	if (!dev->host_mem_descs) {
2045 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2046 			dev_warn(dev->ctrl.device,
2047 				"failed to allocate host memory buffer.\n");
2048 			return 0; /* controller must work without HMB */
2049 		}
2050 
2051 		dev_info(dev->ctrl.device,
2052 			"allocated %lld MiB host memory buffer.\n",
2053 			dev->host_mem_size >> ilog2(SZ_1M));
2054 	}
2055 
2056 	ret = nvme_set_host_mem(dev, enable_bits);
2057 	if (ret)
2058 		nvme_free_host_mem(dev);
2059 	return ret;
2060 }
2061 
2062 /*
2063  * nirqs is the number of interrupts available for write and read
2064  * queues. The core already reserved an interrupt for the admin queue.
2065  */
2066 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2067 {
2068 	struct nvme_dev *dev = affd->priv;
2069 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2070 
2071 	/*
2072 	 * If there is no interrupt available for queues, ensure that
2073 	 * the default queue is set to 1. The affinity set size is
2074 	 * also set to one, but the irq core ignores it for this case.
2075 	 *
2076 	 * If only one interrupt is available or 'write_queue' == 0, combine
2077 	 * write and read queues.
2078 	 *
2079 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2080 	 * queue.
2081 	 */
2082 	if (!nrirqs) {
2083 		nrirqs = 1;
2084 		nr_read_queues = 0;
2085 	} else if (nrirqs == 1 || !nr_write_queues) {
2086 		nr_read_queues = 0;
2087 	} else if (nr_write_queues >= nrirqs) {
2088 		nr_read_queues = 1;
2089 	} else {
2090 		nr_read_queues = nrirqs - nr_write_queues;
2091 	}
2092 
2093 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2094 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2095 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2096 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2097 	affd->nr_sets = nr_read_queues ? 2 : 1;
2098 }
2099 
2100 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2101 {
2102 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2103 	struct irq_affinity affd = {
2104 		.pre_vectors	= 1,
2105 		.calc_sets	= nvme_calc_irq_sets,
2106 		.priv		= dev,
2107 	};
2108 	unsigned int irq_queues, poll_queues;
2109 
2110 	/*
2111 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2112 	 * left over for non-polled I/O.
2113 	 */
2114 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2115 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2116 
2117 	/*
2118 	 * Initialize for the single interrupt case, will be updated in
2119 	 * nvme_calc_irq_sets().
2120 	 */
2121 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2122 	dev->io_queues[HCTX_TYPE_READ] = 0;
2123 
2124 	/*
2125 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2126 	 * but some Apple controllers require all queues to use the first
2127 	 * vector.
2128 	 */
2129 	irq_queues = 1;
2130 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2131 		irq_queues += (nr_io_queues - poll_queues);
2132 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2133 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2134 }
2135 
2136 static void nvme_disable_io_queues(struct nvme_dev *dev)
2137 {
2138 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2139 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2140 }
2141 
2142 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2143 {
2144 	/*
2145 	 * If tags are shared with admin queue (Apple bug), then
2146 	 * make sure we only use one IO queue.
2147 	 */
2148 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2149 		return 1;
2150 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2151 }
2152 
2153 static int nvme_setup_io_queues(struct nvme_dev *dev)
2154 {
2155 	struct nvme_queue *adminq = &dev->queues[0];
2156 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2157 	unsigned int nr_io_queues;
2158 	unsigned long size;
2159 	int result;
2160 
2161 	/*
2162 	 * Sample the module parameters once at reset time so that we have
2163 	 * stable values to work with.
2164 	 */
2165 	dev->nr_write_queues = write_queues;
2166 	dev->nr_poll_queues = poll_queues;
2167 
2168 	nr_io_queues = dev->nr_allocated_queues - 1;
2169 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2170 	if (result < 0)
2171 		return result;
2172 
2173 	if (nr_io_queues == 0)
2174 		return 0;
2175 
2176 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2177 
2178 	if (dev->cmb_use_sqes) {
2179 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2180 				sizeof(struct nvme_command));
2181 		if (result > 0)
2182 			dev->q_depth = result;
2183 		else
2184 			dev->cmb_use_sqes = false;
2185 	}
2186 
2187 	do {
2188 		size = db_bar_size(dev, nr_io_queues);
2189 		result = nvme_remap_bar(dev, size);
2190 		if (!result)
2191 			break;
2192 		if (!--nr_io_queues)
2193 			return -ENOMEM;
2194 	} while (1);
2195 	adminq->q_db = dev->dbs;
2196 
2197  retry:
2198 	/* Deregister the admin queue's interrupt */
2199 	pci_free_irq(pdev, 0, adminq);
2200 
2201 	/*
2202 	 * If we enable msix early due to not intx, disable it again before
2203 	 * setting up the full range we need.
2204 	 */
2205 	pci_free_irq_vectors(pdev);
2206 
2207 	result = nvme_setup_irqs(dev, nr_io_queues);
2208 	if (result <= 0)
2209 		return -EIO;
2210 
2211 	dev->num_vecs = result;
2212 	result = max(result - 1, 1);
2213 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2214 
2215 	/*
2216 	 * Should investigate if there's a performance win from allocating
2217 	 * more queues than interrupt vectors; it might allow the submission
2218 	 * path to scale better, even if the receive path is limited by the
2219 	 * number of interrupts.
2220 	 */
2221 	result = queue_request_irq(adminq);
2222 	if (result)
2223 		return result;
2224 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2225 
2226 	result = nvme_create_io_queues(dev);
2227 	if (result || dev->online_queues < 2)
2228 		return result;
2229 
2230 	if (dev->online_queues - 1 < dev->max_qid) {
2231 		nr_io_queues = dev->online_queues - 1;
2232 		nvme_disable_io_queues(dev);
2233 		nvme_suspend_io_queues(dev);
2234 		goto retry;
2235 	}
2236 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2237 					dev->io_queues[HCTX_TYPE_DEFAULT],
2238 					dev->io_queues[HCTX_TYPE_READ],
2239 					dev->io_queues[HCTX_TYPE_POLL]);
2240 	return 0;
2241 }
2242 
2243 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2244 {
2245 	struct nvme_queue *nvmeq = req->end_io_data;
2246 
2247 	blk_mq_free_request(req);
2248 	complete(&nvmeq->delete_done);
2249 }
2250 
2251 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2252 {
2253 	struct nvme_queue *nvmeq = req->end_io_data;
2254 
2255 	if (error)
2256 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2257 
2258 	nvme_del_queue_end(req, error);
2259 }
2260 
2261 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2262 {
2263 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2264 	struct request *req;
2265 	struct nvme_command cmd;
2266 
2267 	memset(&cmd, 0, sizeof(cmd));
2268 	cmd.delete_queue.opcode = opcode;
2269 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2270 
2271 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2272 	if (IS_ERR(req))
2273 		return PTR_ERR(req);
2274 
2275 	req->end_io_data = nvmeq;
2276 
2277 	init_completion(&nvmeq->delete_done);
2278 	blk_execute_rq_nowait(NULL, req, false,
2279 			opcode == nvme_admin_delete_cq ?
2280 				nvme_del_cq_end : nvme_del_queue_end);
2281 	return 0;
2282 }
2283 
2284 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2285 {
2286 	int nr_queues = dev->online_queues - 1, sent = 0;
2287 	unsigned long timeout;
2288 
2289  retry:
2290 	timeout = NVME_ADMIN_TIMEOUT;
2291 	while (nr_queues > 0) {
2292 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2293 			break;
2294 		nr_queues--;
2295 		sent++;
2296 	}
2297 	while (sent) {
2298 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2299 
2300 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2301 				timeout);
2302 		if (timeout == 0)
2303 			return false;
2304 
2305 		sent--;
2306 		if (nr_queues)
2307 			goto retry;
2308 	}
2309 	return true;
2310 }
2311 
2312 static void nvme_dev_add(struct nvme_dev *dev)
2313 {
2314 	int ret;
2315 
2316 	if (!dev->ctrl.tagset) {
2317 		dev->tagset.ops = &nvme_mq_ops;
2318 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2319 		dev->tagset.nr_maps = 2; /* default + read */
2320 		if (dev->io_queues[HCTX_TYPE_POLL])
2321 			dev->tagset.nr_maps++;
2322 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2323 		dev->tagset.numa_node = dev->ctrl.numa_node;
2324 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2325 						BLK_MQ_MAX_DEPTH) - 1;
2326 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2327 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2328 		dev->tagset.driver_data = dev;
2329 
2330 		/*
2331 		 * Some Apple controllers requires tags to be unique
2332 		 * across admin and IO queue, so reserve the first 32
2333 		 * tags of the IO queue.
2334 		 */
2335 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2336 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2337 
2338 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2339 		if (ret) {
2340 			dev_warn(dev->ctrl.device,
2341 				"IO queues tagset allocation failed %d\n", ret);
2342 			return;
2343 		}
2344 		dev->ctrl.tagset = &dev->tagset;
2345 	} else {
2346 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2347 
2348 		/* Free previously allocated queues that are no longer usable */
2349 		nvme_free_queues(dev, dev->online_queues);
2350 	}
2351 
2352 	nvme_dbbuf_set(dev);
2353 }
2354 
2355 static int nvme_pci_enable(struct nvme_dev *dev)
2356 {
2357 	int result = -ENOMEM;
2358 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2359 	int dma_address_bits = 64;
2360 
2361 	if (pci_enable_device_mem(pdev))
2362 		return result;
2363 
2364 	pci_set_master(pdev);
2365 
2366 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2367 		dma_address_bits = 48;
2368 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2369 		goto disable;
2370 
2371 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2372 		result = -ENODEV;
2373 		goto disable;
2374 	}
2375 
2376 	/*
2377 	 * Some devices and/or platforms don't advertise or work with INTx
2378 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2379 	 * adjust this later.
2380 	 */
2381 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2382 	if (result < 0)
2383 		return result;
2384 
2385 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2386 
2387 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2388 				io_queue_depth);
2389 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2390 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2391 	dev->dbs = dev->bar + 4096;
2392 
2393 	/*
2394 	 * Some Apple controllers require a non-standard SQE size.
2395 	 * Interestingly they also seem to ignore the CC:IOSQES register
2396 	 * so we don't bother updating it here.
2397 	 */
2398 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2399 		dev->io_sqes = 7;
2400 	else
2401 		dev->io_sqes = NVME_NVM_IOSQES;
2402 
2403 	/*
2404 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2405 	 * some MacBook7,1 to avoid controller resets and data loss.
2406 	 */
2407 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2408 		dev->q_depth = 2;
2409 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2410 			"set queue depth=%u to work around controller resets\n",
2411 			dev->q_depth);
2412 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2413 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2414 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2415 		dev->q_depth = 64;
2416 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2417                         "set queue depth=%u\n", dev->q_depth);
2418 	}
2419 
2420 	/*
2421 	 * Controllers with the shared tags quirk need the IO queue to be
2422 	 * big enough so that we get 32 tags for the admin queue
2423 	 */
2424 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2425 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2426 		dev->q_depth = NVME_AQ_DEPTH + 2;
2427 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2428 			 dev->q_depth);
2429 	}
2430 
2431 
2432 	nvme_map_cmb(dev);
2433 
2434 	pci_enable_pcie_error_reporting(pdev);
2435 	pci_save_state(pdev);
2436 	return 0;
2437 
2438  disable:
2439 	pci_disable_device(pdev);
2440 	return result;
2441 }
2442 
2443 static void nvme_dev_unmap(struct nvme_dev *dev)
2444 {
2445 	if (dev->bar)
2446 		iounmap(dev->bar);
2447 	pci_release_mem_regions(to_pci_dev(dev->dev));
2448 }
2449 
2450 static void nvme_pci_disable(struct nvme_dev *dev)
2451 {
2452 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2453 
2454 	pci_free_irq_vectors(pdev);
2455 
2456 	if (pci_is_enabled(pdev)) {
2457 		pci_disable_pcie_error_reporting(pdev);
2458 		pci_disable_device(pdev);
2459 	}
2460 }
2461 
2462 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2463 {
2464 	bool dead = true, freeze = false;
2465 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2466 
2467 	mutex_lock(&dev->shutdown_lock);
2468 	if (pci_is_enabled(pdev)) {
2469 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2470 
2471 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2472 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2473 			freeze = true;
2474 			nvme_start_freeze(&dev->ctrl);
2475 		}
2476 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2477 			pdev->error_state  != pci_channel_io_normal);
2478 	}
2479 
2480 	/*
2481 	 * Give the controller a chance to complete all entered requests if
2482 	 * doing a safe shutdown.
2483 	 */
2484 	if (!dead && shutdown && freeze)
2485 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2486 
2487 	nvme_stop_queues(&dev->ctrl);
2488 
2489 	if (!dead && dev->ctrl.queue_count > 0) {
2490 		nvme_disable_io_queues(dev);
2491 		nvme_disable_admin_queue(dev, shutdown);
2492 	}
2493 	nvme_suspend_io_queues(dev);
2494 	nvme_suspend_queue(&dev->queues[0]);
2495 	nvme_pci_disable(dev);
2496 	nvme_reap_pending_cqes(dev);
2497 
2498 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2499 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2500 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2501 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2502 
2503 	/*
2504 	 * The driver will not be starting up queues again if shutting down so
2505 	 * must flush all entered requests to their failed completion to avoid
2506 	 * deadlocking blk-mq hot-cpu notifier.
2507 	 */
2508 	if (shutdown) {
2509 		nvme_start_queues(&dev->ctrl);
2510 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2511 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2512 	}
2513 	mutex_unlock(&dev->shutdown_lock);
2514 }
2515 
2516 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2517 {
2518 	if (!nvme_wait_reset(&dev->ctrl))
2519 		return -EBUSY;
2520 	nvme_dev_disable(dev, shutdown);
2521 	return 0;
2522 }
2523 
2524 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2525 {
2526 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2527 						NVME_CTRL_PAGE_SIZE,
2528 						NVME_CTRL_PAGE_SIZE, 0);
2529 	if (!dev->prp_page_pool)
2530 		return -ENOMEM;
2531 
2532 	/* Optimisation for I/Os between 4k and 128k */
2533 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2534 						256, 256, 0);
2535 	if (!dev->prp_small_pool) {
2536 		dma_pool_destroy(dev->prp_page_pool);
2537 		return -ENOMEM;
2538 	}
2539 	return 0;
2540 }
2541 
2542 static void nvme_release_prp_pools(struct nvme_dev *dev)
2543 {
2544 	dma_pool_destroy(dev->prp_page_pool);
2545 	dma_pool_destroy(dev->prp_small_pool);
2546 }
2547 
2548 static void nvme_free_tagset(struct nvme_dev *dev)
2549 {
2550 	if (dev->tagset.tags)
2551 		blk_mq_free_tag_set(&dev->tagset);
2552 	dev->ctrl.tagset = NULL;
2553 }
2554 
2555 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2556 {
2557 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2558 
2559 	nvme_dbbuf_dma_free(dev);
2560 	nvme_free_tagset(dev);
2561 	if (dev->ctrl.admin_q)
2562 		blk_put_queue(dev->ctrl.admin_q);
2563 	free_opal_dev(dev->ctrl.opal_dev);
2564 	mempool_destroy(dev->iod_mempool);
2565 	put_device(dev->dev);
2566 	kfree(dev->queues);
2567 	kfree(dev);
2568 }
2569 
2570 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2571 {
2572 	/*
2573 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2574 	 * may be holding this pci_dev's device lock.
2575 	 */
2576 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2577 	nvme_get_ctrl(&dev->ctrl);
2578 	nvme_dev_disable(dev, false);
2579 	nvme_kill_queues(&dev->ctrl);
2580 	if (!queue_work(nvme_wq, &dev->remove_work))
2581 		nvme_put_ctrl(&dev->ctrl);
2582 }
2583 
2584 static void nvme_reset_work(struct work_struct *work)
2585 {
2586 	struct nvme_dev *dev =
2587 		container_of(work, struct nvme_dev, ctrl.reset_work);
2588 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2589 	int result;
2590 
2591 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2592 		result = -ENODEV;
2593 		goto out;
2594 	}
2595 
2596 	/*
2597 	 * If we're called to reset a live controller first shut it down before
2598 	 * moving on.
2599 	 */
2600 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2601 		nvme_dev_disable(dev, false);
2602 	nvme_sync_queues(&dev->ctrl);
2603 
2604 	mutex_lock(&dev->shutdown_lock);
2605 	result = nvme_pci_enable(dev);
2606 	if (result)
2607 		goto out_unlock;
2608 
2609 	result = nvme_pci_configure_admin_queue(dev);
2610 	if (result)
2611 		goto out_unlock;
2612 
2613 	result = nvme_alloc_admin_tags(dev);
2614 	if (result)
2615 		goto out_unlock;
2616 
2617 	/*
2618 	 * Limit the max command size to prevent iod->sg allocations going
2619 	 * over a single page.
2620 	 */
2621 	dev->ctrl.max_hw_sectors = min_t(u32,
2622 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2623 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2624 
2625 	/*
2626 	 * Don't limit the IOMMU merged segment size.
2627 	 */
2628 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2629 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2630 
2631 	mutex_unlock(&dev->shutdown_lock);
2632 
2633 	/*
2634 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2635 	 * initializing procedure here.
2636 	 */
2637 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2638 		dev_warn(dev->ctrl.device,
2639 			"failed to mark controller CONNECTING\n");
2640 		result = -EBUSY;
2641 		goto out;
2642 	}
2643 
2644 	/*
2645 	 * We do not support an SGL for metadata (yet), so we are limited to a
2646 	 * single integrity segment for the separate metadata pointer.
2647 	 */
2648 	dev->ctrl.max_integrity_segments = 1;
2649 
2650 	result = nvme_init_ctrl_finish(&dev->ctrl);
2651 	if (result)
2652 		goto out;
2653 
2654 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2655 		if (!dev->ctrl.opal_dev)
2656 			dev->ctrl.opal_dev =
2657 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2658 		else if (was_suspend)
2659 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2660 	} else {
2661 		free_opal_dev(dev->ctrl.opal_dev);
2662 		dev->ctrl.opal_dev = NULL;
2663 	}
2664 
2665 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2666 		result = nvme_dbbuf_dma_alloc(dev);
2667 		if (result)
2668 			dev_warn(dev->dev,
2669 				 "unable to allocate dma for dbbuf\n");
2670 	}
2671 
2672 	if (dev->ctrl.hmpre) {
2673 		result = nvme_setup_host_mem(dev);
2674 		if (result < 0)
2675 			goto out;
2676 	}
2677 
2678 	result = nvme_setup_io_queues(dev);
2679 	if (result)
2680 		goto out;
2681 
2682 	/*
2683 	 * Keep the controller around but remove all namespaces if we don't have
2684 	 * any working I/O queue.
2685 	 */
2686 	if (dev->online_queues < 2) {
2687 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2688 		nvme_kill_queues(&dev->ctrl);
2689 		nvme_remove_namespaces(&dev->ctrl);
2690 		nvme_free_tagset(dev);
2691 	} else {
2692 		nvme_start_queues(&dev->ctrl);
2693 		nvme_wait_freeze(&dev->ctrl);
2694 		nvme_dev_add(dev);
2695 		nvme_unfreeze(&dev->ctrl);
2696 	}
2697 
2698 	/*
2699 	 * If only admin queue live, keep it to do further investigation or
2700 	 * recovery.
2701 	 */
2702 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2703 		dev_warn(dev->ctrl.device,
2704 			"failed to mark controller live state\n");
2705 		result = -ENODEV;
2706 		goto out;
2707 	}
2708 
2709 	nvme_start_ctrl(&dev->ctrl);
2710 	return;
2711 
2712  out_unlock:
2713 	mutex_unlock(&dev->shutdown_lock);
2714  out:
2715 	if (result)
2716 		dev_warn(dev->ctrl.device,
2717 			 "Removing after probe failure status: %d\n", result);
2718 	nvme_remove_dead_ctrl(dev);
2719 }
2720 
2721 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2722 {
2723 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2724 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2725 
2726 	if (pci_get_drvdata(pdev))
2727 		device_release_driver(&pdev->dev);
2728 	nvme_put_ctrl(&dev->ctrl);
2729 }
2730 
2731 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2732 {
2733 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2734 	return 0;
2735 }
2736 
2737 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2738 {
2739 	writel(val, to_nvme_dev(ctrl)->bar + off);
2740 	return 0;
2741 }
2742 
2743 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2744 {
2745 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2746 	return 0;
2747 }
2748 
2749 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2750 {
2751 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2752 
2753 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2754 }
2755 
2756 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2757 	.name			= "pcie",
2758 	.module			= THIS_MODULE,
2759 	.flags			= NVME_F_METADATA_SUPPORTED |
2760 				  NVME_F_PCI_P2PDMA,
2761 	.reg_read32		= nvme_pci_reg_read32,
2762 	.reg_write32		= nvme_pci_reg_write32,
2763 	.reg_read64		= nvme_pci_reg_read64,
2764 	.free_ctrl		= nvme_pci_free_ctrl,
2765 	.submit_async_event	= nvme_pci_submit_async_event,
2766 	.get_address		= nvme_pci_get_address,
2767 };
2768 
2769 static int nvme_dev_map(struct nvme_dev *dev)
2770 {
2771 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2772 
2773 	if (pci_request_mem_regions(pdev, "nvme"))
2774 		return -ENODEV;
2775 
2776 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2777 		goto release;
2778 
2779 	return 0;
2780   release:
2781 	pci_release_mem_regions(pdev);
2782 	return -ENODEV;
2783 }
2784 
2785 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2786 {
2787 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2788 		/*
2789 		 * Several Samsung devices seem to drop off the PCIe bus
2790 		 * randomly when APST is on and uses the deepest sleep state.
2791 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2792 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2793 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2794 		 * laptops.
2795 		 */
2796 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2797 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2798 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2799 			return NVME_QUIRK_NO_DEEPEST_PS;
2800 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2801 		/*
2802 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2803 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2804 		 * within few minutes after bootup on a Coffee Lake board -
2805 		 * ASUS PRIME Z370-A
2806 		 */
2807 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2808 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2809 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2810 			return NVME_QUIRK_NO_APST;
2811 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2812 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2813 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2814 		/*
2815 		 * Forcing to use host managed nvme power settings for
2816 		 * lowest idle power with quick resume latency on
2817 		 * Samsung and Toshiba SSDs based on suspend behavior
2818 		 * on Coffee Lake board for LENOVO C640
2819 		 */
2820 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2821 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2822 			return NVME_QUIRK_SIMPLE_SUSPEND;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 #ifdef CONFIG_ACPI
2829 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2830 {
2831 	struct acpi_device *adev;
2832 	struct pci_dev *root;
2833 	acpi_handle handle;
2834 	acpi_status status;
2835 	u8 val;
2836 
2837 	/*
2838 	 * Look for _DSD property specifying that the storage device on the port
2839 	 * must use D3 to support deep platform power savings during
2840 	 * suspend-to-idle.
2841 	 */
2842 	root = pcie_find_root_port(dev);
2843 	if (!root)
2844 		return false;
2845 
2846 	adev = ACPI_COMPANION(&root->dev);
2847 	if (!adev)
2848 		return false;
2849 
2850 	/*
2851 	 * The property is defined in the PXSX device for South complex ports
2852 	 * and in the PEGP device for North complex ports.
2853 	 */
2854 	status = acpi_get_handle(adev->handle, "PXSX", &handle);
2855 	if (ACPI_FAILURE(status)) {
2856 		status = acpi_get_handle(adev->handle, "PEGP", &handle);
2857 		if (ACPI_FAILURE(status))
2858 			return false;
2859 	}
2860 
2861 	if (acpi_bus_get_device(handle, &adev))
2862 		return false;
2863 
2864 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2865 			&val))
2866 		return false;
2867 	return val == 1;
2868 }
2869 #else
2870 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2871 {
2872 	return false;
2873 }
2874 #endif /* CONFIG_ACPI */
2875 
2876 static void nvme_async_probe(void *data, async_cookie_t cookie)
2877 {
2878 	struct nvme_dev *dev = data;
2879 
2880 	flush_work(&dev->ctrl.reset_work);
2881 	flush_work(&dev->ctrl.scan_work);
2882 	nvme_put_ctrl(&dev->ctrl);
2883 }
2884 
2885 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2886 {
2887 	int node, result = -ENOMEM;
2888 	struct nvme_dev *dev;
2889 	unsigned long quirks = id->driver_data;
2890 	size_t alloc_size;
2891 
2892 	node = dev_to_node(&pdev->dev);
2893 	if (node == NUMA_NO_NODE)
2894 		set_dev_node(&pdev->dev, first_memory_node);
2895 
2896 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2897 	if (!dev)
2898 		return -ENOMEM;
2899 
2900 	dev->nr_write_queues = write_queues;
2901 	dev->nr_poll_queues = poll_queues;
2902 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2903 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2904 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2905 	if (!dev->queues)
2906 		goto free;
2907 
2908 	dev->dev = get_device(&pdev->dev);
2909 	pci_set_drvdata(pdev, dev);
2910 
2911 	result = nvme_dev_map(dev);
2912 	if (result)
2913 		goto put_pci;
2914 
2915 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2916 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2917 	mutex_init(&dev->shutdown_lock);
2918 
2919 	result = nvme_setup_prp_pools(dev);
2920 	if (result)
2921 		goto unmap;
2922 
2923 	quirks |= check_vendor_combination_bug(pdev);
2924 
2925 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2926 		/*
2927 		 * Some systems use a bios work around to ask for D3 on
2928 		 * platforms that support kernel managed suspend.
2929 		 */
2930 		dev_info(&pdev->dev,
2931 			 "platform quirk: setting simple suspend\n");
2932 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2933 	}
2934 
2935 	/*
2936 	 * Double check that our mempool alloc size will cover the biggest
2937 	 * command we support.
2938 	 */
2939 	alloc_size = nvme_pci_iod_alloc_size();
2940 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2941 
2942 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2943 						mempool_kfree,
2944 						(void *) alloc_size,
2945 						GFP_KERNEL, node);
2946 	if (!dev->iod_mempool) {
2947 		result = -ENOMEM;
2948 		goto release_pools;
2949 	}
2950 
2951 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2952 			quirks);
2953 	if (result)
2954 		goto release_mempool;
2955 
2956 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2957 
2958 	nvme_reset_ctrl(&dev->ctrl);
2959 	async_schedule(nvme_async_probe, dev);
2960 
2961 	return 0;
2962 
2963  release_mempool:
2964 	mempool_destroy(dev->iod_mempool);
2965  release_pools:
2966 	nvme_release_prp_pools(dev);
2967  unmap:
2968 	nvme_dev_unmap(dev);
2969  put_pci:
2970 	put_device(dev->dev);
2971  free:
2972 	kfree(dev->queues);
2973 	kfree(dev);
2974 	return result;
2975 }
2976 
2977 static void nvme_reset_prepare(struct pci_dev *pdev)
2978 {
2979 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2980 
2981 	/*
2982 	 * We don't need to check the return value from waiting for the reset
2983 	 * state as pci_dev device lock is held, making it impossible to race
2984 	 * with ->remove().
2985 	 */
2986 	nvme_disable_prepare_reset(dev, false);
2987 	nvme_sync_queues(&dev->ctrl);
2988 }
2989 
2990 static void nvme_reset_done(struct pci_dev *pdev)
2991 {
2992 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2993 
2994 	if (!nvme_try_sched_reset(&dev->ctrl))
2995 		flush_work(&dev->ctrl.reset_work);
2996 }
2997 
2998 static void nvme_shutdown(struct pci_dev *pdev)
2999 {
3000 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3001 
3002 	nvme_disable_prepare_reset(dev, true);
3003 }
3004 
3005 /*
3006  * The driver's remove may be called on a device in a partially initialized
3007  * state. This function must not have any dependencies on the device state in
3008  * order to proceed.
3009  */
3010 static void nvme_remove(struct pci_dev *pdev)
3011 {
3012 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3013 
3014 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3015 	pci_set_drvdata(pdev, NULL);
3016 
3017 	if (!pci_device_is_present(pdev)) {
3018 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3019 		nvme_dev_disable(dev, true);
3020 		nvme_dev_remove_admin(dev);
3021 	}
3022 
3023 	flush_work(&dev->ctrl.reset_work);
3024 	nvme_stop_ctrl(&dev->ctrl);
3025 	nvme_remove_namespaces(&dev->ctrl);
3026 	nvme_dev_disable(dev, true);
3027 	nvme_release_cmb(dev);
3028 	nvme_free_host_mem(dev);
3029 	nvme_dev_remove_admin(dev);
3030 	nvme_free_queues(dev, 0);
3031 	nvme_release_prp_pools(dev);
3032 	nvme_dev_unmap(dev);
3033 	nvme_uninit_ctrl(&dev->ctrl);
3034 }
3035 
3036 #ifdef CONFIG_PM_SLEEP
3037 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3038 {
3039 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3040 }
3041 
3042 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3043 {
3044 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3045 }
3046 
3047 static int nvme_resume(struct device *dev)
3048 {
3049 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3050 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3051 
3052 	if (ndev->last_ps == U32_MAX ||
3053 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3054 		return nvme_try_sched_reset(&ndev->ctrl);
3055 	return 0;
3056 }
3057 
3058 static int nvme_suspend(struct device *dev)
3059 {
3060 	struct pci_dev *pdev = to_pci_dev(dev);
3061 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3062 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3063 	int ret = -EBUSY;
3064 
3065 	ndev->last_ps = U32_MAX;
3066 
3067 	/*
3068 	 * The platform does not remove power for a kernel managed suspend so
3069 	 * use host managed nvme power settings for lowest idle power if
3070 	 * possible. This should have quicker resume latency than a full device
3071 	 * shutdown.  But if the firmware is involved after the suspend or the
3072 	 * device does not support any non-default power states, shut down the
3073 	 * device fully.
3074 	 *
3075 	 * If ASPM is not enabled for the device, shut down the device and allow
3076 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3077 	 * down, so as to allow the platform to achieve its minimum low-power
3078 	 * state (which may not be possible if the link is up).
3079 	 *
3080 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3081 	 * specification allows the device to access the host memory buffer in
3082 	 * host DRAM from all power states, but hosts will fail access to DRAM
3083 	 * during S3.
3084 	 */
3085 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3086 	    !pcie_aspm_enabled(pdev) ||
3087 	    ndev->nr_host_mem_descs ||
3088 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3089 		return nvme_disable_prepare_reset(ndev, true);
3090 
3091 	nvme_start_freeze(ctrl);
3092 	nvme_wait_freeze(ctrl);
3093 	nvme_sync_queues(ctrl);
3094 
3095 	if (ctrl->state != NVME_CTRL_LIVE)
3096 		goto unfreeze;
3097 
3098 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3099 	if (ret < 0)
3100 		goto unfreeze;
3101 
3102 	/*
3103 	 * A saved state prevents pci pm from generically controlling the
3104 	 * device's power. If we're using protocol specific settings, we don't
3105 	 * want pci interfering.
3106 	 */
3107 	pci_save_state(pdev);
3108 
3109 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3110 	if (ret < 0)
3111 		goto unfreeze;
3112 
3113 	if (ret) {
3114 		/* discard the saved state */
3115 		pci_load_saved_state(pdev, NULL);
3116 
3117 		/*
3118 		 * Clearing npss forces a controller reset on resume. The
3119 		 * correct value will be rediscovered then.
3120 		 */
3121 		ret = nvme_disable_prepare_reset(ndev, true);
3122 		ctrl->npss = 0;
3123 	}
3124 unfreeze:
3125 	nvme_unfreeze(ctrl);
3126 	return ret;
3127 }
3128 
3129 static int nvme_simple_suspend(struct device *dev)
3130 {
3131 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3132 
3133 	return nvme_disable_prepare_reset(ndev, true);
3134 }
3135 
3136 static int nvme_simple_resume(struct device *dev)
3137 {
3138 	struct pci_dev *pdev = to_pci_dev(dev);
3139 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3140 
3141 	return nvme_try_sched_reset(&ndev->ctrl);
3142 }
3143 
3144 static const struct dev_pm_ops nvme_dev_pm_ops = {
3145 	.suspend	= nvme_suspend,
3146 	.resume		= nvme_resume,
3147 	.freeze		= nvme_simple_suspend,
3148 	.thaw		= nvme_simple_resume,
3149 	.poweroff	= nvme_simple_suspend,
3150 	.restore	= nvme_simple_resume,
3151 };
3152 #endif /* CONFIG_PM_SLEEP */
3153 
3154 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3155 						pci_channel_state_t state)
3156 {
3157 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3158 
3159 	/*
3160 	 * A frozen channel requires a reset. When detected, this method will
3161 	 * shutdown the controller to quiesce. The controller will be restarted
3162 	 * after the slot reset through driver's slot_reset callback.
3163 	 */
3164 	switch (state) {
3165 	case pci_channel_io_normal:
3166 		return PCI_ERS_RESULT_CAN_RECOVER;
3167 	case pci_channel_io_frozen:
3168 		dev_warn(dev->ctrl.device,
3169 			"frozen state error detected, reset controller\n");
3170 		nvme_dev_disable(dev, false);
3171 		return PCI_ERS_RESULT_NEED_RESET;
3172 	case pci_channel_io_perm_failure:
3173 		dev_warn(dev->ctrl.device,
3174 			"failure state error detected, request disconnect\n");
3175 		return PCI_ERS_RESULT_DISCONNECT;
3176 	}
3177 	return PCI_ERS_RESULT_NEED_RESET;
3178 }
3179 
3180 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3181 {
3182 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3183 
3184 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3185 	pci_restore_state(pdev);
3186 	nvme_reset_ctrl(&dev->ctrl);
3187 	return PCI_ERS_RESULT_RECOVERED;
3188 }
3189 
3190 static void nvme_error_resume(struct pci_dev *pdev)
3191 {
3192 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3193 
3194 	flush_work(&dev->ctrl.reset_work);
3195 }
3196 
3197 static const struct pci_error_handlers nvme_err_handler = {
3198 	.error_detected	= nvme_error_detected,
3199 	.slot_reset	= nvme_slot_reset,
3200 	.resume		= nvme_error_resume,
3201 	.reset_prepare	= nvme_reset_prepare,
3202 	.reset_done	= nvme_reset_done,
3203 };
3204 
3205 static const struct pci_device_id nvme_id_table[] = {
3206 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3207 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3208 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3209 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3210 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3211 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3212 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3213 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3214 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3215 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3216 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3217 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3218 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3219 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3220 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3221 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3222 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3223 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3224 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3225 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3226 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3227 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3228 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3229 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3230 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3231 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3232 				NVME_QUIRK_NO_NS_DESC_LIST, },
3233 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3234 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3235 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3236 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3237 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3238 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3239 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3240 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3241 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3242 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3243 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3244 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3245 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3246 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3247 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3248 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3249 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3250 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3251 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3252 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3253 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3254 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3255 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3256 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3257 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3258 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3259 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3260 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3261 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3262 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3263 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3264 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3265 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3266 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3267 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3268 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3269 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3270 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3271 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3272 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3273 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3274 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3275 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3276 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3277 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3278 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3279 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3280 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3281 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3282 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3283 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3284 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3285 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3286 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3287 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3288 				NVME_QUIRK_128_BYTES_SQES |
3289 				NVME_QUIRK_SHARED_TAGS },
3290 
3291 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3292 	{ 0, }
3293 };
3294 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3295 
3296 static struct pci_driver nvme_driver = {
3297 	.name		= "nvme",
3298 	.id_table	= nvme_id_table,
3299 	.probe		= nvme_probe,
3300 	.remove		= nvme_remove,
3301 	.shutdown	= nvme_shutdown,
3302 #ifdef CONFIG_PM_SLEEP
3303 	.driver		= {
3304 		.pm	= &nvme_dev_pm_ops,
3305 	},
3306 #endif
3307 	.sriov_configure = pci_sriov_configure_simple,
3308 	.err_handler	= &nvme_err_handler,
3309 };
3310 
3311 static int __init nvme_init(void)
3312 {
3313 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3314 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3315 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3316 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3317 
3318 	return pci_register_driver(&nvme_driver);
3319 }
3320 
3321 static void __exit nvme_exit(void)
3322 {
3323 	pci_unregister_driver(&nvme_driver);
3324 	flush_workqueue(nvme_wq);
3325 }
3326 
3327 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3328 MODULE_LICENSE("GPL");
3329 MODULE_VERSION("1.0");
3330 module_init(nvme_init);
3331 module_exit(nvme_exit);
3332