1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-integrity.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kstrtox.h> 17 #include <linux/memremap.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/once.h> 22 #include <linux/pci.h> 23 #include <linux/suspend.h> 24 #include <linux/t10-pi.h> 25 #include <linux/types.h> 26 #include <linux/io-64-nonatomic-lo-hi.h> 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 #include <linux/sed-opal.h> 29 #include <linux/pci-p2pdma.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 38 39 /* 40 * These can be higher, but we need to ensure that any command doesn't 41 * require an sg allocation that needs more than a page of data. 42 */ 43 #define NVME_MAX_KB_SZ 8192 44 #define NVME_MAX_SEGS 128 45 #define NVME_MAX_META_SEGS 15 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 struct sg_table *hmb_sgt; 145 146 mempool_t *iod_mempool; 147 mempool_t *iod_meta_mempool; 148 149 /* shadow doorbell buffer support: */ 150 __le32 *dbbuf_dbs; 151 dma_addr_t dbbuf_dbs_dma_addr; 152 __le32 *dbbuf_eis; 153 dma_addr_t dbbuf_eis_dma_addr; 154 155 /* host memory buffer support: */ 156 u64 host_mem_size; 157 u32 nr_host_mem_descs; 158 u32 host_mem_descs_size; 159 dma_addr_t host_mem_descs_dma; 160 struct nvme_host_mem_buf_desc *host_mem_descs; 161 void **host_mem_desc_bufs; 162 unsigned int nr_allocated_queues; 163 unsigned int nr_write_queues; 164 unsigned int nr_poll_queues; 165 }; 166 167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 168 { 169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 170 NVME_PCI_MAX_QUEUE_SIZE); 171 } 172 173 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 174 { 175 return qid * 2 * stride; 176 } 177 178 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 179 { 180 return (qid * 2 + 1) * stride; 181 } 182 183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_dev, ctrl); 186 } 187 188 /* 189 * An NVM Express queue. Each device has at least two (one for admin 190 * commands and one for I/O commands). 191 */ 192 struct nvme_queue { 193 struct nvme_dev *dev; 194 spinlock_t sq_lock; 195 void *sq_cmds; 196 /* only used for poll queues: */ 197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 198 struct nvme_completion *cqes; 199 dma_addr_t sq_dma_addr; 200 dma_addr_t cq_dma_addr; 201 u32 __iomem *q_db; 202 u32 q_depth; 203 u16 cq_vector; 204 u16 sq_tail; 205 u16 last_sq_tail; 206 u16 cq_head; 207 u16 qid; 208 u8 cq_phase; 209 u8 sqes; 210 unsigned long flags; 211 #define NVMEQ_ENABLED 0 212 #define NVMEQ_SQ_CMB 1 213 #define NVMEQ_DELETE_ERROR 2 214 #define NVMEQ_POLLED 3 215 __le32 *dbbuf_sq_db; 216 __le32 *dbbuf_cq_db; 217 __le32 *dbbuf_sq_ei; 218 __le32 *dbbuf_cq_ei; 219 struct completion delete_done; 220 }; 221 222 union nvme_descriptor { 223 struct nvme_sgl_desc *sg_list; 224 __le64 *prp_list; 225 }; 226 227 /* 228 * The nvme_iod describes the data in an I/O. 229 * 230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 231 * to the actual struct scatterlist. 232 */ 233 struct nvme_iod { 234 struct nvme_request req; 235 struct nvme_command cmd; 236 bool aborted; 237 s8 nr_allocations; /* PRP list pool allocations. 0 means small 238 pool in use */ 239 unsigned int dma_len; /* length of single DMA segment mapping */ 240 dma_addr_t first_dma; 241 dma_addr_t meta_dma; 242 struct sg_table sgt; 243 struct sg_table meta_sgt; 244 union nvme_descriptor meta_list; 245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 246 }; 247 248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 249 { 250 return dev->nr_allocated_queues * 8 * dev->db_stride; 251 } 252 253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev); 256 257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 258 return; 259 260 if (dev->dbbuf_dbs) { 261 /* 262 * Clear the dbbuf memory so the driver doesn't observe stale 263 * values from the previous instantiation. 264 */ 265 memset(dev->dbbuf_dbs, 0, mem_size); 266 memset(dev->dbbuf_eis, 0, mem_size); 267 return; 268 } 269 270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_dbs_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_dbs) 274 goto fail; 275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 276 &dev->dbbuf_eis_dma_addr, 277 GFP_KERNEL); 278 if (!dev->dbbuf_eis) 279 goto fail_free_dbbuf_dbs; 280 return; 281 282 fail_free_dbbuf_dbs: 283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 284 dev->dbbuf_dbs_dma_addr); 285 dev->dbbuf_dbs = NULL; 286 fail: 287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 288 } 289 290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 291 { 292 unsigned int mem_size = nvme_dbbuf_size(dev); 293 294 if (dev->dbbuf_dbs) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 297 dev->dbbuf_dbs = NULL; 298 } 299 if (dev->dbbuf_eis) { 300 dma_free_coherent(dev->dev, mem_size, 301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 302 dev->dbbuf_eis = NULL; 303 } 304 } 305 306 static void nvme_dbbuf_init(struct nvme_dev *dev, 307 struct nvme_queue *nvmeq, int qid) 308 { 309 if (!dev->dbbuf_dbs || !qid) 310 return; 311 312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 316 } 317 318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 319 { 320 if (!nvmeq->qid) 321 return; 322 323 nvmeq->dbbuf_sq_db = NULL; 324 nvmeq->dbbuf_cq_db = NULL; 325 nvmeq->dbbuf_sq_ei = NULL; 326 nvmeq->dbbuf_cq_ei = NULL; 327 } 328 329 static void nvme_dbbuf_set(struct nvme_dev *dev) 330 { 331 struct nvme_command c = { }; 332 unsigned int i; 333 334 if (!dev->dbbuf_dbs) 335 return; 336 337 c.dbbuf.opcode = nvme_admin_dbbuf; 338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 340 341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 343 /* Free memory and continue on */ 344 nvme_dbbuf_dma_free(dev); 345 346 for (i = 1; i <= dev->online_queues; i++) 347 nvme_dbbuf_free(&dev->queues[i]); 348 } 349 } 350 351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 352 { 353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 354 } 355 356 /* Update dbbuf and return true if an MMIO is required */ 357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 358 volatile __le32 *dbbuf_ei) 359 { 360 if (dbbuf_db) { 361 u16 old_value, event_idx; 362 363 /* 364 * Ensure that the queue is written before updating 365 * the doorbell in memory 366 */ 367 wmb(); 368 369 old_value = le32_to_cpu(*dbbuf_db); 370 *dbbuf_db = cpu_to_le32(value); 371 372 /* 373 * Ensure that the doorbell is updated before reading the event 374 * index from memory. The controller needs to provide similar 375 * ordering to ensure the event index is updated before reading 376 * the doorbell. 377 */ 378 mb(); 379 380 event_idx = le32_to_cpu(*dbbuf_ei); 381 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 382 return false; 383 } 384 385 return true; 386 } 387 388 /* 389 * Will slightly overestimate the number of pages needed. This is OK 390 * as it only leads to a small amount of wasted memory for the lifetime of 391 * the I/O. 392 */ 393 static int nvme_pci_npages_prp(void) 394 { 395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 398 } 399 400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 401 unsigned int hctx_idx) 402 { 403 struct nvme_dev *dev = to_nvme_dev(data); 404 struct nvme_queue *nvmeq = &dev->queues[0]; 405 406 WARN_ON(hctx_idx != 0); 407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 408 409 hctx->driver_data = nvmeq; 410 return 0; 411 } 412 413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 414 unsigned int hctx_idx) 415 { 416 struct nvme_dev *dev = to_nvme_dev(data); 417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 418 419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 420 hctx->driver_data = nvmeq; 421 return 0; 422 } 423 424 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 425 struct request *req, unsigned int hctx_idx, 426 unsigned int numa_node) 427 { 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 430 nvme_req(req)->ctrl = set->driver_data; 431 nvme_req(req)->cmd = &iod->cmd; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_map_hw_queues(map, dev->dev, offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 } 472 473 /* 474 * Write sq tail if we are asked to, or if the next command would wrap. 475 */ 476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 477 { 478 if (!write_sq) { 479 u16 next_tail = nvmeq->sq_tail + 1; 480 481 if (next_tail == nvmeq->q_depth) 482 next_tail = 0; 483 if (next_tail != nvmeq->last_sq_tail) 484 return; 485 } 486 487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 489 writel(nvmeq->sq_tail, nvmeq->q_db); 490 nvmeq->last_sq_tail = nvmeq->sq_tail; 491 } 492 493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 494 struct nvme_command *cmd) 495 { 496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 497 absolute_pointer(cmd), sizeof(*cmd)); 498 if (++nvmeq->sq_tail == nvmeq->q_depth) 499 nvmeq->sq_tail = 0; 500 } 501 502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 503 { 504 struct nvme_queue *nvmeq = hctx->driver_data; 505 506 spin_lock(&nvmeq->sq_lock); 507 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 508 nvme_write_sq_db(nvmeq, true); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev, 513 struct request *req) 514 { 515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 516 return false; 517 return req->nr_integrity_segments > 1 || 518 nvme_req(req)->flags & NVME_REQ_USERCMD; 519 } 520 521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 522 int nseg) 523 { 524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 525 unsigned int avg_seg_size; 526 527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 528 529 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 530 return false; 531 if (!nvmeq->qid) 532 return false; 533 if (nvme_pci_metadata_use_sgls(dev, req)) 534 return true; 535 if (!sgl_threshold || avg_seg_size < sgl_threshold) 536 return nvme_req(req)->flags & NVME_REQ_USERCMD; 537 return true; 538 } 539 540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 541 { 542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 544 dma_addr_t dma_addr = iod->first_dma; 545 int i; 546 547 for (i = 0; i < iod->nr_allocations; i++) { 548 __le64 *prp_list = iod->list[i].prp_list; 549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 550 551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 552 dma_addr = next_dma_addr; 553 } 554 } 555 556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 557 { 558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 559 560 if (iod->dma_len) { 561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 562 rq_dma_dir(req)); 563 return; 564 } 565 566 WARN_ON_ONCE(!iod->sgt.nents); 567 568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 569 570 if (iod->nr_allocations == 0) 571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 572 iod->first_dma); 573 else if (iod->nr_allocations == 1) 574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 575 iod->first_dma); 576 else 577 nvme_free_prps(dev, req); 578 mempool_free(iod->sgt.sgl, dev->iod_mempool); 579 } 580 581 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 582 { 583 int i; 584 struct scatterlist *sg; 585 586 for_each_sg(sgl, sg, nents, i) { 587 dma_addr_t phys = sg_phys(sg); 588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 589 "dma_address:%pad dma_length:%d\n", 590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 591 sg_dma_len(sg)); 592 } 593 } 594 595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 596 struct request *req, struct nvme_rw_command *cmnd) 597 { 598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 599 struct dma_pool *pool; 600 int length = blk_rq_payload_bytes(req); 601 struct scatterlist *sg = iod->sgt.sgl; 602 int dma_len = sg_dma_len(sg); 603 u64 dma_addr = sg_dma_address(sg); 604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 605 __le64 *prp_list; 606 dma_addr_t prp_dma; 607 int nprps, i; 608 609 length -= (NVME_CTRL_PAGE_SIZE - offset); 610 if (length <= 0) { 611 iod->first_dma = 0; 612 goto done; 613 } 614 615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 616 if (dma_len) { 617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 618 } else { 619 sg = sg_next(sg); 620 dma_addr = sg_dma_address(sg); 621 dma_len = sg_dma_len(sg); 622 } 623 624 if (length <= NVME_CTRL_PAGE_SIZE) { 625 iod->first_dma = dma_addr; 626 goto done; 627 } 628 629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 630 if (nprps <= (256 / 8)) { 631 pool = dev->prp_small_pool; 632 iod->nr_allocations = 0; 633 } else { 634 pool = dev->prp_page_pool; 635 iod->nr_allocations = 1; 636 } 637 638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 639 if (!prp_list) { 640 iod->nr_allocations = -1; 641 return BLK_STS_RESOURCE; 642 } 643 iod->list[0].prp_list = prp_list; 644 iod->first_dma = prp_dma; 645 i = 0; 646 for (;;) { 647 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 648 __le64 *old_prp_list = prp_list; 649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 650 if (!prp_list) 651 goto free_prps; 652 iod->list[iod->nr_allocations++].prp_list = prp_list; 653 prp_list[0] = old_prp_list[i - 1]; 654 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 655 i = 1; 656 } 657 prp_list[i++] = cpu_to_le64(dma_addr); 658 dma_len -= NVME_CTRL_PAGE_SIZE; 659 dma_addr += NVME_CTRL_PAGE_SIZE; 660 length -= NVME_CTRL_PAGE_SIZE; 661 if (length <= 0) 662 break; 663 if (dma_len > 0) 664 continue; 665 if (unlikely(dma_len < 0)) 666 goto bad_sgl; 667 sg = sg_next(sg); 668 dma_addr = sg_dma_address(sg); 669 dma_len = sg_dma_len(sg); 670 } 671 done: 672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 674 return BLK_STS_OK; 675 free_prps: 676 nvme_free_prps(dev, req); 677 return BLK_STS_RESOURCE; 678 bad_sgl: 679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 680 "Invalid SGL for payload:%d nents:%d\n", 681 blk_rq_payload_bytes(req), iod->sgt.nents); 682 return BLK_STS_IOERR; 683 } 684 685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 686 struct scatterlist *sg) 687 { 688 sge->addr = cpu_to_le64(sg_dma_address(sg)); 689 sge->length = cpu_to_le32(sg_dma_len(sg)); 690 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 691 } 692 693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 694 dma_addr_t dma_addr, int entries) 695 { 696 sge->addr = cpu_to_le64(dma_addr); 697 sge->length = cpu_to_le32(entries * sizeof(*sge)); 698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 699 } 700 701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 702 struct request *req, struct nvme_rw_command *cmd) 703 { 704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 705 struct dma_pool *pool; 706 struct nvme_sgl_desc *sg_list; 707 struct scatterlist *sg = iod->sgt.sgl; 708 unsigned int entries = iod->sgt.nents; 709 dma_addr_t sgl_dma; 710 int i = 0; 711 712 /* setting the transfer type as SGL */ 713 cmd->flags = NVME_CMD_SGL_METABUF; 714 715 if (entries == 1) { 716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 717 return BLK_STS_OK; 718 } 719 720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 721 pool = dev->prp_small_pool; 722 iod->nr_allocations = 0; 723 } else { 724 pool = dev->prp_page_pool; 725 iod->nr_allocations = 1; 726 } 727 728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 729 if (!sg_list) { 730 iod->nr_allocations = -1; 731 return BLK_STS_RESOURCE; 732 } 733 734 iod->list[0].sg_list = sg_list; 735 iod->first_dma = sgl_dma; 736 737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 738 do { 739 nvme_pci_sgl_set_data(&sg_list[i++], sg); 740 sg = sg_next(sg); 741 } while (--entries > 0); 742 743 return BLK_STS_OK; 744 } 745 746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 747 struct request *req, struct nvme_rw_command *cmnd, 748 struct bio_vec *bv) 749 { 750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 753 754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 755 if (dma_mapping_error(dev->dev, iod->first_dma)) 756 return BLK_STS_RESOURCE; 757 iod->dma_len = bv->bv_len; 758 759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 760 if (bv->bv_len > first_prp_len) 761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 762 else 763 cmnd->dptr.prp2 = 0; 764 return BLK_STS_OK; 765 } 766 767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 768 struct request *req, struct nvme_rw_command *cmnd, 769 struct bio_vec *bv) 770 { 771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 772 773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 774 if (dma_mapping_error(dev->dev, iod->first_dma)) 775 return BLK_STS_RESOURCE; 776 iod->dma_len = bv->bv_len; 777 778 cmnd->flags = NVME_CMD_SGL_METABUF; 779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 782 return BLK_STS_OK; 783 } 784 785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 786 struct nvme_command *cmnd) 787 { 788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 789 blk_status_t ret = BLK_STS_RESOURCE; 790 int rc; 791 792 if (blk_rq_nr_phys_segments(req) == 1) { 793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 794 struct bio_vec bv = req_bvec(req); 795 796 if (!is_pci_p2pdma_page(bv.bv_page)) { 797 if (!nvme_pci_metadata_use_sgls(dev, req) && 798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 800 return nvme_setup_prp_simple(dev, req, 801 &cmnd->rw, &bv); 802 803 if (nvmeq->qid && sgl_threshold && 804 nvme_ctrl_sgl_supported(&dev->ctrl)) 805 return nvme_setup_sgl_simple(dev, req, 806 &cmnd->rw, &bv); 807 } 808 } 809 810 iod->dma_len = 0; 811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 812 if (!iod->sgt.sgl) 813 return BLK_STS_RESOURCE; 814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 815 iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl); 816 if (!iod->sgt.orig_nents) 817 goto out_free_sg; 818 819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 820 DMA_ATTR_NO_WARN); 821 if (rc) { 822 if (rc == -EREMOTEIO) 823 ret = BLK_STS_TARGET; 824 goto out_free_sg; 825 } 826 827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 829 else 830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 831 if (ret != BLK_STS_OK) 832 goto out_unmap_sg; 833 return BLK_STS_OK; 834 835 out_unmap_sg: 836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 837 out_free_sg: 838 mempool_free(iod->sgt.sgl, dev->iod_mempool); 839 return ret; 840 } 841 842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev, 843 struct request *req) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 struct nvme_rw_command *cmnd = &iod->cmd.rw; 847 struct nvme_sgl_desc *sg_list; 848 struct scatterlist *sgl, *sg; 849 unsigned int entries; 850 dma_addr_t sgl_dma; 851 int rc, i; 852 853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC); 854 if (!iod->meta_sgt.sgl) 855 return BLK_STS_RESOURCE; 856 857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments); 858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req, 859 iod->meta_sgt.sgl); 860 if (!iod->meta_sgt.orig_nents) 861 goto out_free_sg; 862 863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 864 DMA_ATTR_NO_WARN); 865 if (rc) 866 goto out_free_sg; 867 868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma); 869 if (!sg_list) 870 goto out_unmap_sg; 871 872 entries = iod->meta_sgt.nents; 873 iod->meta_list.sg_list = sg_list; 874 iod->meta_dma = sgl_dma; 875 876 cmnd->flags = NVME_CMD_SGL_METASEG; 877 cmnd->metadata = cpu_to_le64(sgl_dma); 878 879 sgl = iod->meta_sgt.sgl; 880 if (entries == 1) { 881 nvme_pci_sgl_set_data(sg_list, sgl); 882 return BLK_STS_OK; 883 } 884 885 sgl_dma += sizeof(*sg_list); 886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries); 887 for_each_sg(sgl, sg, entries, i) 888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg); 889 890 return BLK_STS_OK; 891 892 out_unmap_sg: 893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 894 out_free_sg: 895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 896 return BLK_STS_RESOURCE; 897 } 898 899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev, 900 struct request *req) 901 { 902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 903 struct bio_vec bv = rq_integrity_vec(req); 904 struct nvme_command *cmnd = &iod->cmd; 905 906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 907 if (dma_mapping_error(dev->dev, iod->meta_dma)) 908 return BLK_STS_IOERR; 909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 910 return BLK_STS_OK; 911 } 912 913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req) 914 { 915 if (nvme_pci_metadata_use_sgls(dev, req)) 916 return nvme_pci_setup_meta_sgls(dev, req); 917 return nvme_pci_setup_meta_mptr(dev, req); 918 } 919 920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 921 { 922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 923 blk_status_t ret; 924 925 iod->aborted = false; 926 iod->nr_allocations = -1; 927 iod->sgt.nents = 0; 928 iod->meta_sgt.nents = 0; 929 930 ret = nvme_setup_cmd(req->q->queuedata, req); 931 if (ret) 932 return ret; 933 934 if (blk_rq_nr_phys_segments(req)) { 935 ret = nvme_map_data(dev, req, &iod->cmd); 936 if (ret) 937 goto out_free_cmd; 938 } 939 940 if (blk_integrity_rq(req)) { 941 ret = nvme_map_metadata(dev, req); 942 if (ret) 943 goto out_unmap_data; 944 } 945 946 nvme_start_request(req); 947 return BLK_STS_OK; 948 out_unmap_data: 949 if (blk_rq_nr_phys_segments(req)) 950 nvme_unmap_data(dev, req); 951 out_free_cmd: 952 nvme_cleanup_cmd(req); 953 return ret; 954 } 955 956 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 957 const struct blk_mq_queue_data *bd) 958 { 959 struct nvme_queue *nvmeq = hctx->driver_data; 960 struct nvme_dev *dev = nvmeq->dev; 961 struct request *req = bd->rq; 962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 963 blk_status_t ret; 964 965 /* 966 * We should not need to do this, but we're still using this to 967 * ensure we can drain requests on a dying queue. 968 */ 969 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 970 return BLK_STS_IOERR; 971 972 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 973 return nvme_fail_nonready_command(&dev->ctrl, req); 974 975 ret = nvme_prep_rq(dev, req); 976 if (unlikely(ret)) 977 return ret; 978 spin_lock(&nvmeq->sq_lock); 979 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 980 nvme_write_sq_db(nvmeq, bd->last); 981 spin_unlock(&nvmeq->sq_lock); 982 return BLK_STS_OK; 983 } 984 985 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 986 { 987 struct request *req; 988 989 spin_lock(&nvmeq->sq_lock); 990 while ((req = rq_list_pop(rqlist))) { 991 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 992 993 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 994 } 995 nvme_write_sq_db(nvmeq, true); 996 spin_unlock(&nvmeq->sq_lock); 997 } 998 999 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1000 { 1001 /* 1002 * We should not need to do this, but we're still using this to 1003 * ensure we can drain requests on a dying queue. 1004 */ 1005 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1006 return false; 1007 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1008 return false; 1009 1010 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 1011 } 1012 1013 static void nvme_queue_rqs(struct rq_list *rqlist) 1014 { 1015 struct rq_list submit_list = { }; 1016 struct rq_list requeue_list = { }; 1017 struct nvme_queue *nvmeq = NULL; 1018 struct request *req; 1019 1020 while ((req = rq_list_pop(rqlist))) { 1021 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1022 nvme_submit_cmds(nvmeq, &submit_list); 1023 nvmeq = req->mq_hctx->driver_data; 1024 1025 if (nvme_prep_rq_batch(nvmeq, req)) 1026 rq_list_add_tail(&submit_list, req); 1027 else 1028 rq_list_add_tail(&requeue_list, req); 1029 } 1030 1031 if (nvmeq) 1032 nvme_submit_cmds(nvmeq, &submit_list); 1033 *rqlist = requeue_list; 1034 } 1035 1036 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev, 1037 struct request *req) 1038 { 1039 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1040 1041 if (!iod->meta_sgt.nents) { 1042 dma_unmap_page(dev->dev, iod->meta_dma, 1043 rq_integrity_vec(req).bv_len, 1044 rq_dma_dir(req)); 1045 return; 1046 } 1047 1048 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list, 1049 iod->meta_dma); 1050 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1051 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1052 } 1053 1054 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1055 { 1056 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1057 struct nvme_dev *dev = nvmeq->dev; 1058 1059 if (blk_integrity_rq(req)) 1060 nvme_unmap_metadata(dev, req); 1061 1062 if (blk_rq_nr_phys_segments(req)) 1063 nvme_unmap_data(dev, req); 1064 } 1065 1066 static void nvme_pci_complete_rq(struct request *req) 1067 { 1068 nvme_pci_unmap_rq(req); 1069 nvme_complete_rq(req); 1070 } 1071 1072 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1073 { 1074 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1075 } 1076 1077 /* We read the CQE phase first to check if the rest of the entry is valid */ 1078 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1079 { 1080 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1081 1082 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1083 } 1084 1085 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1086 { 1087 u16 head = nvmeq->cq_head; 1088 1089 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1090 nvmeq->dbbuf_cq_ei)) 1091 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1092 } 1093 1094 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1095 { 1096 if (!nvmeq->qid) 1097 return nvmeq->dev->admin_tagset.tags[0]; 1098 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1099 } 1100 1101 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1102 struct io_comp_batch *iob, u16 idx) 1103 { 1104 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1105 __u16 command_id = READ_ONCE(cqe->command_id); 1106 struct request *req; 1107 1108 /* 1109 * AEN requests are special as they don't time out and can 1110 * survive any kind of queue freeze and often don't respond to 1111 * aborts. We don't even bother to allocate a struct request 1112 * for them but rather special case them here. 1113 */ 1114 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1115 nvme_complete_async_event(&nvmeq->dev->ctrl, 1116 cqe->status, &cqe->result); 1117 return; 1118 } 1119 1120 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1121 if (unlikely(!req)) { 1122 dev_warn(nvmeq->dev->ctrl.device, 1123 "invalid id %d completed on queue %d\n", 1124 command_id, le16_to_cpu(cqe->sq_id)); 1125 return; 1126 } 1127 1128 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1129 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1130 !blk_mq_add_to_batch(req, iob, 1131 nvme_req(req)->status != NVME_SC_SUCCESS, 1132 nvme_pci_complete_batch)) 1133 nvme_pci_complete_rq(req); 1134 } 1135 1136 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1137 { 1138 u32 tmp = nvmeq->cq_head + 1; 1139 1140 if (tmp == nvmeq->q_depth) { 1141 nvmeq->cq_head = 0; 1142 nvmeq->cq_phase ^= 1; 1143 } else { 1144 nvmeq->cq_head = tmp; 1145 } 1146 } 1147 1148 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, 1149 struct io_comp_batch *iob) 1150 { 1151 bool found = false; 1152 1153 while (nvme_cqe_pending(nvmeq)) { 1154 found = true; 1155 /* 1156 * load-load control dependency between phase and the rest of 1157 * the cqe requires a full read memory barrier 1158 */ 1159 dma_rmb(); 1160 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1161 nvme_update_cq_head(nvmeq); 1162 } 1163 1164 if (found) 1165 nvme_ring_cq_doorbell(nvmeq); 1166 return found; 1167 } 1168 1169 static irqreturn_t nvme_irq(int irq, void *data) 1170 { 1171 struct nvme_queue *nvmeq = data; 1172 DEFINE_IO_COMP_BATCH(iob); 1173 1174 if (nvme_poll_cq(nvmeq, &iob)) { 1175 if (!rq_list_empty(&iob.req_list)) 1176 nvme_pci_complete_batch(&iob); 1177 return IRQ_HANDLED; 1178 } 1179 return IRQ_NONE; 1180 } 1181 1182 static irqreturn_t nvme_irq_check(int irq, void *data) 1183 { 1184 struct nvme_queue *nvmeq = data; 1185 1186 if (nvme_cqe_pending(nvmeq)) 1187 return IRQ_WAKE_THREAD; 1188 return IRQ_NONE; 1189 } 1190 1191 /* 1192 * Poll for completions for any interrupt driven queue 1193 * Can be called from any context. 1194 */ 1195 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1196 { 1197 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1198 1199 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1200 1201 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1202 nvme_poll_cq(nvmeq, NULL); 1203 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1204 } 1205 1206 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1207 { 1208 struct nvme_queue *nvmeq = hctx->driver_data; 1209 bool found; 1210 1211 if (!nvme_cqe_pending(nvmeq)) 1212 return 0; 1213 1214 spin_lock(&nvmeq->cq_poll_lock); 1215 found = nvme_poll_cq(nvmeq, iob); 1216 spin_unlock(&nvmeq->cq_poll_lock); 1217 1218 return found; 1219 } 1220 1221 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1222 { 1223 struct nvme_dev *dev = to_nvme_dev(ctrl); 1224 struct nvme_queue *nvmeq = &dev->queues[0]; 1225 struct nvme_command c = { }; 1226 1227 c.common.opcode = nvme_admin_async_event; 1228 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1229 1230 spin_lock(&nvmeq->sq_lock); 1231 nvme_sq_copy_cmd(nvmeq, &c); 1232 nvme_write_sq_db(nvmeq, true); 1233 spin_unlock(&nvmeq->sq_lock); 1234 } 1235 1236 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1237 { 1238 struct nvme_dev *dev = to_nvme_dev(ctrl); 1239 int ret = 0; 1240 1241 /* 1242 * Taking the shutdown_lock ensures the BAR mapping is not being 1243 * altered by reset_work. Holding this lock before the RESETTING state 1244 * change, if successful, also ensures nvme_remove won't be able to 1245 * proceed to iounmap until we're done. 1246 */ 1247 mutex_lock(&dev->shutdown_lock); 1248 if (!dev->bar_mapped_size) { 1249 ret = -ENODEV; 1250 goto unlock; 1251 } 1252 1253 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1254 ret = -EBUSY; 1255 goto unlock; 1256 } 1257 1258 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1259 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1260 1261 /* 1262 * Read controller status to flush the previous write and trigger a 1263 * pcie read error. 1264 */ 1265 readl(dev->bar + NVME_REG_CSTS); 1266 unlock: 1267 mutex_unlock(&dev->shutdown_lock); 1268 return ret; 1269 } 1270 1271 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1272 { 1273 struct nvme_command c = { }; 1274 1275 c.delete_queue.opcode = opcode; 1276 c.delete_queue.qid = cpu_to_le16(id); 1277 1278 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1279 } 1280 1281 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1282 struct nvme_queue *nvmeq, s16 vector) 1283 { 1284 struct nvme_command c = { }; 1285 int flags = NVME_QUEUE_PHYS_CONTIG; 1286 1287 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1288 flags |= NVME_CQ_IRQ_ENABLED; 1289 1290 /* 1291 * Note: we (ab)use the fact that the prp fields survive if no data 1292 * is attached to the request. 1293 */ 1294 c.create_cq.opcode = nvme_admin_create_cq; 1295 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1296 c.create_cq.cqid = cpu_to_le16(qid); 1297 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1298 c.create_cq.cq_flags = cpu_to_le16(flags); 1299 c.create_cq.irq_vector = cpu_to_le16(vector); 1300 1301 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1302 } 1303 1304 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1305 struct nvme_queue *nvmeq) 1306 { 1307 struct nvme_ctrl *ctrl = &dev->ctrl; 1308 struct nvme_command c = { }; 1309 int flags = NVME_QUEUE_PHYS_CONTIG; 1310 1311 /* 1312 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1313 * set. Since URGENT priority is zeroes, it makes all queues 1314 * URGENT. 1315 */ 1316 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1317 flags |= NVME_SQ_PRIO_MEDIUM; 1318 1319 /* 1320 * Note: we (ab)use the fact that the prp fields survive if no data 1321 * is attached to the request. 1322 */ 1323 c.create_sq.opcode = nvme_admin_create_sq; 1324 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1325 c.create_sq.sqid = cpu_to_le16(qid); 1326 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1327 c.create_sq.sq_flags = cpu_to_le16(flags); 1328 c.create_sq.cqid = cpu_to_le16(qid); 1329 1330 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1331 } 1332 1333 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1334 { 1335 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1336 } 1337 1338 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1339 { 1340 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1341 } 1342 1343 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1344 { 1345 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1346 1347 dev_warn(nvmeq->dev->ctrl.device, 1348 "Abort status: 0x%x", nvme_req(req)->status); 1349 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1350 blk_mq_free_request(req); 1351 return RQ_END_IO_NONE; 1352 } 1353 1354 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1355 { 1356 /* If true, indicates loss of adapter communication, possibly by a 1357 * NVMe Subsystem reset. 1358 */ 1359 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1360 1361 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1362 switch (nvme_ctrl_state(&dev->ctrl)) { 1363 case NVME_CTRL_RESETTING: 1364 case NVME_CTRL_CONNECTING: 1365 return false; 1366 default: 1367 break; 1368 } 1369 1370 /* We shouldn't reset unless the controller is on fatal error state 1371 * _or_ if we lost the communication with it. 1372 */ 1373 if (!(csts & NVME_CSTS_CFS) && !nssro) 1374 return false; 1375 1376 return true; 1377 } 1378 1379 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1380 { 1381 /* Read a config register to help see what died. */ 1382 u16 pci_status; 1383 int result; 1384 1385 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1386 &pci_status); 1387 if (result == PCIBIOS_SUCCESSFUL) 1388 dev_warn(dev->ctrl.device, 1389 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1390 csts, pci_status); 1391 else 1392 dev_warn(dev->ctrl.device, 1393 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1394 csts, result); 1395 1396 if (csts != ~0) 1397 return; 1398 1399 dev_warn(dev->ctrl.device, 1400 "Does your device have a faulty power saving mode enabled?\n"); 1401 dev_warn(dev->ctrl.device, 1402 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1403 } 1404 1405 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1406 { 1407 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1408 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1409 struct nvme_dev *dev = nvmeq->dev; 1410 struct request *abort_req; 1411 struct nvme_command cmd = { }; 1412 struct pci_dev *pdev = to_pci_dev(dev->dev); 1413 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1414 u8 opcode; 1415 1416 /* 1417 * Shutdown the device immediately if we see it is disconnected. This 1418 * unblocks PCIe error handling if the nvme driver is waiting in 1419 * error_resume for a device that has been removed. We can't unbind the 1420 * driver while the driver's error callback is waiting to complete, so 1421 * we're relying on a timeout to break that deadlock if a removal 1422 * occurs while reset work is running. 1423 */ 1424 if (pci_dev_is_disconnected(pdev)) 1425 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1426 if (nvme_state_terminal(&dev->ctrl)) 1427 goto disable; 1428 1429 /* If PCI error recovery process is happening, we cannot reset or 1430 * the recovery mechanism will surely fail. 1431 */ 1432 mb(); 1433 if (pci_channel_offline(pdev)) 1434 return BLK_EH_RESET_TIMER; 1435 1436 /* 1437 * Reset immediately if the controller is failed 1438 */ 1439 if (nvme_should_reset(dev, csts)) { 1440 nvme_warn_reset(dev, csts); 1441 goto disable; 1442 } 1443 1444 /* 1445 * Did we miss an interrupt? 1446 */ 1447 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1448 nvme_poll(req->mq_hctx, NULL); 1449 else 1450 nvme_poll_irqdisable(nvmeq); 1451 1452 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1453 dev_warn(dev->ctrl.device, 1454 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1455 req->tag, nvme_cid(req), nvmeq->qid); 1456 return BLK_EH_DONE; 1457 } 1458 1459 /* 1460 * Shutdown immediately if controller times out while starting. The 1461 * reset work will see the pci device disabled when it gets the forced 1462 * cancellation error. All outstanding requests are completed on 1463 * shutdown, so we return BLK_EH_DONE. 1464 */ 1465 switch (nvme_ctrl_state(&dev->ctrl)) { 1466 case NVME_CTRL_CONNECTING: 1467 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1468 fallthrough; 1469 case NVME_CTRL_DELETING: 1470 dev_warn_ratelimited(dev->ctrl.device, 1471 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1472 req->tag, nvme_cid(req), nvmeq->qid); 1473 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1474 nvme_dev_disable(dev, true); 1475 return BLK_EH_DONE; 1476 case NVME_CTRL_RESETTING: 1477 return BLK_EH_RESET_TIMER; 1478 default: 1479 break; 1480 } 1481 1482 /* 1483 * Shutdown the controller immediately and schedule a reset if the 1484 * command was already aborted once before and still hasn't been 1485 * returned to the driver, or if this is the admin queue. 1486 */ 1487 opcode = nvme_req(req)->cmd->common.opcode; 1488 if (!nvmeq->qid || iod->aborted) { 1489 dev_warn(dev->ctrl.device, 1490 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1491 req->tag, nvme_cid(req), opcode, 1492 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1493 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1494 goto disable; 1495 } 1496 1497 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1498 atomic_inc(&dev->ctrl.abort_limit); 1499 return BLK_EH_RESET_TIMER; 1500 } 1501 iod->aborted = true; 1502 1503 cmd.abort.opcode = nvme_admin_abort_cmd; 1504 cmd.abort.cid = nvme_cid(req); 1505 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1506 1507 dev_warn(nvmeq->dev->ctrl.device, 1508 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1509 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1510 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1511 blk_rq_bytes(req)); 1512 1513 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1514 BLK_MQ_REQ_NOWAIT); 1515 if (IS_ERR(abort_req)) { 1516 atomic_inc(&dev->ctrl.abort_limit); 1517 return BLK_EH_RESET_TIMER; 1518 } 1519 nvme_init_request(abort_req, &cmd); 1520 1521 abort_req->end_io = abort_endio; 1522 abort_req->end_io_data = NULL; 1523 blk_execute_rq_nowait(abort_req, false); 1524 1525 /* 1526 * The aborted req will be completed on receiving the abort req. 1527 * We enable the timer again. If hit twice, it'll cause a device reset, 1528 * as the device then is in a faulty state. 1529 */ 1530 return BLK_EH_RESET_TIMER; 1531 1532 disable: 1533 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1534 if (nvme_state_terminal(&dev->ctrl)) 1535 nvme_dev_disable(dev, true); 1536 return BLK_EH_DONE; 1537 } 1538 1539 nvme_dev_disable(dev, false); 1540 if (nvme_try_sched_reset(&dev->ctrl)) 1541 nvme_unquiesce_io_queues(&dev->ctrl); 1542 return BLK_EH_DONE; 1543 } 1544 1545 static void nvme_free_queue(struct nvme_queue *nvmeq) 1546 { 1547 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1548 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1549 if (!nvmeq->sq_cmds) 1550 return; 1551 1552 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1553 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1554 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1555 } else { 1556 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1557 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1558 } 1559 } 1560 1561 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1562 { 1563 int i; 1564 1565 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1566 dev->ctrl.queue_count--; 1567 nvme_free_queue(&dev->queues[i]); 1568 } 1569 } 1570 1571 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1572 { 1573 struct nvme_queue *nvmeq = &dev->queues[qid]; 1574 1575 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1576 return; 1577 1578 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1579 mb(); 1580 1581 nvmeq->dev->online_queues--; 1582 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1583 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1584 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1585 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1586 } 1587 1588 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1589 { 1590 int i; 1591 1592 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1593 nvme_suspend_queue(dev, i); 1594 } 1595 1596 /* 1597 * Called only on a device that has been disabled and after all other threads 1598 * that can check this device's completion queues have synced, except 1599 * nvme_poll(). This is the last chance for the driver to see a natural 1600 * completion before nvme_cancel_request() terminates all incomplete requests. 1601 */ 1602 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1603 { 1604 int i; 1605 1606 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1607 spin_lock(&dev->queues[i].cq_poll_lock); 1608 nvme_poll_cq(&dev->queues[i], NULL); 1609 spin_unlock(&dev->queues[i].cq_poll_lock); 1610 } 1611 } 1612 1613 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1614 int entry_size) 1615 { 1616 int q_depth = dev->q_depth; 1617 unsigned q_size_aligned = roundup(q_depth * entry_size, 1618 NVME_CTRL_PAGE_SIZE); 1619 1620 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1621 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1622 1623 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1624 q_depth = div_u64(mem_per_q, entry_size); 1625 1626 /* 1627 * Ensure the reduced q_depth is above some threshold where it 1628 * would be better to map queues in system memory with the 1629 * original depth 1630 */ 1631 if (q_depth < 64) 1632 return -ENOMEM; 1633 } 1634 1635 return q_depth; 1636 } 1637 1638 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1639 int qid) 1640 { 1641 struct pci_dev *pdev = to_pci_dev(dev->dev); 1642 1643 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1644 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1645 if (nvmeq->sq_cmds) { 1646 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1647 nvmeq->sq_cmds); 1648 if (nvmeq->sq_dma_addr) { 1649 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1650 return 0; 1651 } 1652 1653 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1654 } 1655 } 1656 1657 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1658 &nvmeq->sq_dma_addr, GFP_KERNEL); 1659 if (!nvmeq->sq_cmds) 1660 return -ENOMEM; 1661 return 0; 1662 } 1663 1664 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1665 { 1666 struct nvme_queue *nvmeq = &dev->queues[qid]; 1667 1668 if (dev->ctrl.queue_count > qid) 1669 return 0; 1670 1671 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1672 nvmeq->q_depth = depth; 1673 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1674 &nvmeq->cq_dma_addr, GFP_KERNEL); 1675 if (!nvmeq->cqes) 1676 goto free_nvmeq; 1677 1678 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1679 goto free_cqdma; 1680 1681 nvmeq->dev = dev; 1682 spin_lock_init(&nvmeq->sq_lock); 1683 spin_lock_init(&nvmeq->cq_poll_lock); 1684 nvmeq->cq_head = 0; 1685 nvmeq->cq_phase = 1; 1686 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1687 nvmeq->qid = qid; 1688 dev->ctrl.queue_count++; 1689 1690 return 0; 1691 1692 free_cqdma: 1693 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1694 nvmeq->cq_dma_addr); 1695 free_nvmeq: 1696 return -ENOMEM; 1697 } 1698 1699 static int queue_request_irq(struct nvme_queue *nvmeq) 1700 { 1701 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1702 int nr = nvmeq->dev->ctrl.instance; 1703 1704 if (use_threaded_interrupts) { 1705 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1706 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1707 } else { 1708 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1709 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1710 } 1711 } 1712 1713 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1714 { 1715 struct nvme_dev *dev = nvmeq->dev; 1716 1717 nvmeq->sq_tail = 0; 1718 nvmeq->last_sq_tail = 0; 1719 nvmeq->cq_head = 0; 1720 nvmeq->cq_phase = 1; 1721 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1722 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1723 nvme_dbbuf_init(dev, nvmeq, qid); 1724 dev->online_queues++; 1725 wmb(); /* ensure the first interrupt sees the initialization */ 1726 } 1727 1728 /* 1729 * Try getting shutdown_lock while setting up IO queues. 1730 */ 1731 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1732 { 1733 /* 1734 * Give up if the lock is being held by nvme_dev_disable. 1735 */ 1736 if (!mutex_trylock(&dev->shutdown_lock)) 1737 return -ENODEV; 1738 1739 /* 1740 * Controller is in wrong state, fail early. 1741 */ 1742 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1743 mutex_unlock(&dev->shutdown_lock); 1744 return -ENODEV; 1745 } 1746 1747 return 0; 1748 } 1749 1750 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1751 { 1752 struct nvme_dev *dev = nvmeq->dev; 1753 int result; 1754 u16 vector = 0; 1755 1756 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1757 1758 /* 1759 * A queue's vector matches the queue identifier unless the controller 1760 * has only one vector available. 1761 */ 1762 if (!polled) 1763 vector = dev->num_vecs == 1 ? 0 : qid; 1764 else 1765 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1766 1767 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1768 if (result) 1769 return result; 1770 1771 result = adapter_alloc_sq(dev, qid, nvmeq); 1772 if (result < 0) 1773 return result; 1774 if (result) 1775 goto release_cq; 1776 1777 nvmeq->cq_vector = vector; 1778 1779 result = nvme_setup_io_queues_trylock(dev); 1780 if (result) 1781 return result; 1782 nvme_init_queue(nvmeq, qid); 1783 if (!polled) { 1784 result = queue_request_irq(nvmeq); 1785 if (result < 0) 1786 goto release_sq; 1787 } 1788 1789 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1790 mutex_unlock(&dev->shutdown_lock); 1791 return result; 1792 1793 release_sq: 1794 dev->online_queues--; 1795 mutex_unlock(&dev->shutdown_lock); 1796 adapter_delete_sq(dev, qid); 1797 release_cq: 1798 adapter_delete_cq(dev, qid); 1799 return result; 1800 } 1801 1802 static const struct blk_mq_ops nvme_mq_admin_ops = { 1803 .queue_rq = nvme_queue_rq, 1804 .complete = nvme_pci_complete_rq, 1805 .init_hctx = nvme_admin_init_hctx, 1806 .init_request = nvme_pci_init_request, 1807 .timeout = nvme_timeout, 1808 }; 1809 1810 static const struct blk_mq_ops nvme_mq_ops = { 1811 .queue_rq = nvme_queue_rq, 1812 .queue_rqs = nvme_queue_rqs, 1813 .complete = nvme_pci_complete_rq, 1814 .commit_rqs = nvme_commit_rqs, 1815 .init_hctx = nvme_init_hctx, 1816 .init_request = nvme_pci_init_request, 1817 .map_queues = nvme_pci_map_queues, 1818 .timeout = nvme_timeout, 1819 .poll = nvme_poll, 1820 }; 1821 1822 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1823 { 1824 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1825 /* 1826 * If the controller was reset during removal, it's possible 1827 * user requests may be waiting on a stopped queue. Start the 1828 * queue to flush these to completion. 1829 */ 1830 nvme_unquiesce_admin_queue(&dev->ctrl); 1831 nvme_remove_admin_tag_set(&dev->ctrl); 1832 } 1833 } 1834 1835 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1836 { 1837 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1838 } 1839 1840 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1841 { 1842 struct pci_dev *pdev = to_pci_dev(dev->dev); 1843 1844 if (size <= dev->bar_mapped_size) 1845 return 0; 1846 if (size > pci_resource_len(pdev, 0)) 1847 return -ENOMEM; 1848 if (dev->bar) 1849 iounmap(dev->bar); 1850 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1851 if (!dev->bar) { 1852 dev->bar_mapped_size = 0; 1853 return -ENOMEM; 1854 } 1855 dev->bar_mapped_size = size; 1856 dev->dbs = dev->bar + NVME_REG_DBS; 1857 1858 return 0; 1859 } 1860 1861 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1862 { 1863 int result; 1864 u32 aqa; 1865 struct nvme_queue *nvmeq; 1866 1867 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1868 if (result < 0) 1869 return result; 1870 1871 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1872 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1873 1874 if (dev->subsystem && 1875 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1876 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1877 1878 /* 1879 * If the device has been passed off to us in an enabled state, just 1880 * clear the enabled bit. The spec says we should set the 'shutdown 1881 * notification bits', but doing so may cause the device to complete 1882 * commands to the admin queue ... and we don't know what memory that 1883 * might be pointing at! 1884 */ 1885 result = nvme_disable_ctrl(&dev->ctrl, false); 1886 if (result < 0) 1887 return result; 1888 1889 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1890 if (result) 1891 return result; 1892 1893 dev->ctrl.numa_node = dev_to_node(dev->dev); 1894 1895 nvmeq = &dev->queues[0]; 1896 aqa = nvmeq->q_depth - 1; 1897 aqa |= aqa << 16; 1898 1899 writel(aqa, dev->bar + NVME_REG_AQA); 1900 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1901 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1902 1903 result = nvme_enable_ctrl(&dev->ctrl); 1904 if (result) 1905 return result; 1906 1907 nvmeq->cq_vector = 0; 1908 nvme_init_queue(nvmeq, 0); 1909 result = queue_request_irq(nvmeq); 1910 if (result) { 1911 dev->online_queues--; 1912 return result; 1913 } 1914 1915 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1916 return result; 1917 } 1918 1919 static int nvme_create_io_queues(struct nvme_dev *dev) 1920 { 1921 unsigned i, max, rw_queues; 1922 int ret = 0; 1923 1924 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1925 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1926 ret = -ENOMEM; 1927 break; 1928 } 1929 } 1930 1931 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1932 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1933 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1934 dev->io_queues[HCTX_TYPE_READ]; 1935 } else { 1936 rw_queues = max; 1937 } 1938 1939 for (i = dev->online_queues; i <= max; i++) { 1940 bool polled = i > rw_queues; 1941 1942 ret = nvme_create_queue(&dev->queues[i], i, polled); 1943 if (ret) 1944 break; 1945 } 1946 1947 /* 1948 * Ignore failing Create SQ/CQ commands, we can continue with less 1949 * than the desired amount of queues, and even a controller without 1950 * I/O queues can still be used to issue admin commands. This might 1951 * be useful to upgrade a buggy firmware for example. 1952 */ 1953 return ret >= 0 ? 0 : ret; 1954 } 1955 1956 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1957 { 1958 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1959 1960 return 1ULL << (12 + 4 * szu); 1961 } 1962 1963 static u32 nvme_cmb_size(struct nvme_dev *dev) 1964 { 1965 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1966 } 1967 1968 static void nvme_map_cmb(struct nvme_dev *dev) 1969 { 1970 u64 size, offset; 1971 resource_size_t bar_size; 1972 struct pci_dev *pdev = to_pci_dev(dev->dev); 1973 int bar; 1974 1975 if (dev->cmb_size) 1976 return; 1977 1978 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1979 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1980 1981 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1982 if (!dev->cmbsz) 1983 return; 1984 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1985 1986 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1987 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1988 bar = NVME_CMB_BIR(dev->cmbloc); 1989 bar_size = pci_resource_len(pdev, bar); 1990 1991 if (offset > bar_size) 1992 return; 1993 1994 /* 1995 * Controllers may support a CMB size larger than their BAR, for 1996 * example, due to being behind a bridge. Reduce the CMB to the 1997 * reported size of the BAR 1998 */ 1999 size = min(size, bar_size - offset); 2000 2001 if (!IS_ALIGNED(size, memremap_compat_align()) || 2002 !IS_ALIGNED(pci_resource_start(pdev, bar), 2003 memremap_compat_align())) 2004 return; 2005 2006 /* 2007 * Tell the controller about the host side address mapping the CMB, 2008 * and enable CMB decoding for the NVMe 1.4+ scheme: 2009 */ 2010 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 2011 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 2012 (pci_bus_address(pdev, bar) + offset), 2013 dev->bar + NVME_REG_CMBMSC); 2014 } 2015 2016 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2017 dev_warn(dev->ctrl.device, 2018 "failed to register the CMB\n"); 2019 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); 2020 return; 2021 } 2022 2023 dev->cmb_size = size; 2024 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2025 2026 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2027 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2028 pci_p2pmem_publish(pdev, true); 2029 2030 nvme_update_attrs(dev); 2031 } 2032 2033 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2034 { 2035 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2036 u64 dma_addr = dev->host_mem_descs_dma; 2037 struct nvme_command c = { }; 2038 int ret; 2039 2040 c.features.opcode = nvme_admin_set_features; 2041 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2042 c.features.dword11 = cpu_to_le32(bits); 2043 c.features.dword12 = cpu_to_le32(host_mem_size); 2044 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2045 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2046 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2047 2048 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2049 if (ret) { 2050 dev_warn(dev->ctrl.device, 2051 "failed to set host mem (err %d, flags %#x).\n", 2052 ret, bits); 2053 } else 2054 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2055 2056 return ret; 2057 } 2058 2059 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2060 { 2061 int i; 2062 2063 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2064 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2065 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2066 2067 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2068 le64_to_cpu(desc->addr), 2069 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2070 } 2071 2072 kfree(dev->host_mem_desc_bufs); 2073 dev->host_mem_desc_bufs = NULL; 2074 } 2075 2076 static void nvme_free_host_mem(struct nvme_dev *dev) 2077 { 2078 if (dev->hmb_sgt) 2079 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2080 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2081 else 2082 nvme_free_host_mem_multi(dev); 2083 2084 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2085 dev->host_mem_descs, dev->host_mem_descs_dma); 2086 dev->host_mem_descs = NULL; 2087 dev->host_mem_descs_size = 0; 2088 dev->nr_host_mem_descs = 0; 2089 } 2090 2091 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2092 { 2093 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2094 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2095 if (!dev->hmb_sgt) 2096 return -ENOMEM; 2097 2098 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2099 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2100 GFP_KERNEL); 2101 if (!dev->host_mem_descs) { 2102 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, 2103 DMA_BIDIRECTIONAL); 2104 dev->hmb_sgt = NULL; 2105 return -ENOMEM; 2106 } 2107 dev->host_mem_size = size; 2108 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2109 dev->nr_host_mem_descs = 1; 2110 2111 dev->host_mem_descs[0].addr = 2112 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2113 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2114 return 0; 2115 } 2116 2117 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2118 u32 chunk_size) 2119 { 2120 struct nvme_host_mem_buf_desc *descs; 2121 u32 max_entries, len, descs_size; 2122 dma_addr_t descs_dma; 2123 int i = 0; 2124 void **bufs; 2125 u64 size, tmp; 2126 2127 tmp = (preferred + chunk_size - 1); 2128 do_div(tmp, chunk_size); 2129 max_entries = tmp; 2130 2131 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2132 max_entries = dev->ctrl.hmmaxd; 2133 2134 descs_size = max_entries * sizeof(*descs); 2135 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2136 GFP_KERNEL); 2137 if (!descs) 2138 goto out; 2139 2140 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2141 if (!bufs) 2142 goto out_free_descs; 2143 2144 for (size = 0; size < preferred && i < max_entries; size += len) { 2145 dma_addr_t dma_addr; 2146 2147 len = min_t(u64, chunk_size, preferred - size); 2148 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2149 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2150 if (!bufs[i]) 2151 break; 2152 2153 descs[i].addr = cpu_to_le64(dma_addr); 2154 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2155 i++; 2156 } 2157 2158 if (!size) 2159 goto out_free_bufs; 2160 2161 dev->nr_host_mem_descs = i; 2162 dev->host_mem_size = size; 2163 dev->host_mem_descs = descs; 2164 dev->host_mem_descs_dma = descs_dma; 2165 dev->host_mem_descs_size = descs_size; 2166 dev->host_mem_desc_bufs = bufs; 2167 return 0; 2168 2169 out_free_bufs: 2170 kfree(bufs); 2171 out_free_descs: 2172 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2173 out: 2174 dev->host_mem_descs = NULL; 2175 return -ENOMEM; 2176 } 2177 2178 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2179 { 2180 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); 2181 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2182 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2183 u64 chunk_size; 2184 2185 /* 2186 * If there is an IOMMU that can merge pages, try a virtually 2187 * non-contiguous allocation for a single segment first. 2188 */ 2189 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { 2190 if (!nvme_alloc_host_mem_single(dev, preferred)) 2191 return 0; 2192 } 2193 2194 /* start big and work our way down */ 2195 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2196 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2197 if (!min || dev->host_mem_size >= min) 2198 return 0; 2199 nvme_free_host_mem(dev); 2200 } 2201 } 2202 2203 return -ENOMEM; 2204 } 2205 2206 static int nvme_setup_host_mem(struct nvme_dev *dev) 2207 { 2208 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2209 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2210 u64 min = (u64)dev->ctrl.hmmin * 4096; 2211 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2212 int ret; 2213 2214 if (!dev->ctrl.hmpre) 2215 return 0; 2216 2217 preferred = min(preferred, max); 2218 if (min > max) { 2219 dev_warn(dev->ctrl.device, 2220 "min host memory (%lld MiB) above limit (%d MiB).\n", 2221 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2222 nvme_free_host_mem(dev); 2223 return 0; 2224 } 2225 2226 /* 2227 * If we already have a buffer allocated check if we can reuse it. 2228 */ 2229 if (dev->host_mem_descs) { 2230 if (dev->host_mem_size >= min) 2231 enable_bits |= NVME_HOST_MEM_RETURN; 2232 else 2233 nvme_free_host_mem(dev); 2234 } 2235 2236 if (!dev->host_mem_descs) { 2237 if (nvme_alloc_host_mem(dev, min, preferred)) { 2238 dev_warn(dev->ctrl.device, 2239 "failed to allocate host memory buffer.\n"); 2240 return 0; /* controller must work without HMB */ 2241 } 2242 2243 dev_info(dev->ctrl.device, 2244 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2245 dev->host_mem_size >> ilog2(SZ_1M), 2246 dev->nr_host_mem_descs, 2247 str_plural(dev->nr_host_mem_descs)); 2248 } 2249 2250 ret = nvme_set_host_mem(dev, enable_bits); 2251 if (ret) 2252 nvme_free_host_mem(dev); 2253 return ret; 2254 } 2255 2256 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2257 char *buf) 2258 { 2259 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2260 2261 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2262 ndev->cmbloc, ndev->cmbsz); 2263 } 2264 static DEVICE_ATTR_RO(cmb); 2265 2266 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2267 char *buf) 2268 { 2269 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2270 2271 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2272 } 2273 static DEVICE_ATTR_RO(cmbloc); 2274 2275 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2276 char *buf) 2277 { 2278 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2279 2280 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2281 } 2282 static DEVICE_ATTR_RO(cmbsz); 2283 2284 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2285 char *buf) 2286 { 2287 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2288 2289 return sysfs_emit(buf, "%d\n", ndev->hmb); 2290 } 2291 2292 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2293 const char *buf, size_t count) 2294 { 2295 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2296 bool new; 2297 int ret; 2298 2299 if (kstrtobool(buf, &new) < 0) 2300 return -EINVAL; 2301 2302 if (new == ndev->hmb) 2303 return count; 2304 2305 if (new) { 2306 ret = nvme_setup_host_mem(ndev); 2307 } else { 2308 ret = nvme_set_host_mem(ndev, 0); 2309 if (!ret) 2310 nvme_free_host_mem(ndev); 2311 } 2312 2313 if (ret < 0) 2314 return ret; 2315 2316 return count; 2317 } 2318 static DEVICE_ATTR_RW(hmb); 2319 2320 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2321 struct attribute *a, int n) 2322 { 2323 struct nvme_ctrl *ctrl = 2324 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2325 struct nvme_dev *dev = to_nvme_dev(ctrl); 2326 2327 if (a == &dev_attr_cmb.attr || 2328 a == &dev_attr_cmbloc.attr || 2329 a == &dev_attr_cmbsz.attr) { 2330 if (!dev->cmbsz) 2331 return 0; 2332 } 2333 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2334 return 0; 2335 2336 return a->mode; 2337 } 2338 2339 static struct attribute *nvme_pci_attrs[] = { 2340 &dev_attr_cmb.attr, 2341 &dev_attr_cmbloc.attr, 2342 &dev_attr_cmbsz.attr, 2343 &dev_attr_hmb.attr, 2344 NULL, 2345 }; 2346 2347 static const struct attribute_group nvme_pci_dev_attrs_group = { 2348 .attrs = nvme_pci_attrs, 2349 .is_visible = nvme_pci_attrs_are_visible, 2350 }; 2351 2352 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2353 &nvme_dev_attrs_group, 2354 &nvme_pci_dev_attrs_group, 2355 NULL, 2356 }; 2357 2358 static void nvme_update_attrs(struct nvme_dev *dev) 2359 { 2360 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2361 } 2362 2363 /* 2364 * nirqs is the number of interrupts available for write and read 2365 * queues. The core already reserved an interrupt for the admin queue. 2366 */ 2367 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2368 { 2369 struct nvme_dev *dev = affd->priv; 2370 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2371 2372 /* 2373 * If there is no interrupt available for queues, ensure that 2374 * the default queue is set to 1. The affinity set size is 2375 * also set to one, but the irq core ignores it for this case. 2376 * 2377 * If only one interrupt is available or 'write_queue' == 0, combine 2378 * write and read queues. 2379 * 2380 * If 'write_queues' > 0, ensure it leaves room for at least one read 2381 * queue. 2382 */ 2383 if (!nrirqs) { 2384 nrirqs = 1; 2385 nr_read_queues = 0; 2386 } else if (nrirqs == 1 || !nr_write_queues) { 2387 nr_read_queues = 0; 2388 } else if (nr_write_queues >= nrirqs) { 2389 nr_read_queues = 1; 2390 } else { 2391 nr_read_queues = nrirqs - nr_write_queues; 2392 } 2393 2394 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2395 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2396 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2397 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2398 affd->nr_sets = nr_read_queues ? 2 : 1; 2399 } 2400 2401 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2402 { 2403 struct pci_dev *pdev = to_pci_dev(dev->dev); 2404 struct irq_affinity affd = { 2405 .pre_vectors = 1, 2406 .calc_sets = nvme_calc_irq_sets, 2407 .priv = dev, 2408 }; 2409 unsigned int irq_queues, poll_queues; 2410 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2411 2412 /* 2413 * Poll queues don't need interrupts, but we need at least one I/O queue 2414 * left over for non-polled I/O. 2415 */ 2416 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2417 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2418 2419 /* 2420 * Initialize for the single interrupt case, will be updated in 2421 * nvme_calc_irq_sets(). 2422 */ 2423 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2424 dev->io_queues[HCTX_TYPE_READ] = 0; 2425 2426 /* 2427 * We need interrupts for the admin queue and each non-polled I/O queue, 2428 * but some Apple controllers require all queues to use the first 2429 * vector. 2430 */ 2431 irq_queues = 1; 2432 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2433 irq_queues += (nr_io_queues - poll_queues); 2434 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2435 flags &= ~PCI_IRQ_MSI; 2436 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2437 &affd); 2438 } 2439 2440 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2441 { 2442 /* 2443 * If tags are shared with admin queue (Apple bug), then 2444 * make sure we only use one IO queue. 2445 */ 2446 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2447 return 1; 2448 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2449 } 2450 2451 static int nvme_setup_io_queues(struct nvme_dev *dev) 2452 { 2453 struct nvme_queue *adminq = &dev->queues[0]; 2454 struct pci_dev *pdev = to_pci_dev(dev->dev); 2455 unsigned int nr_io_queues; 2456 unsigned long size; 2457 int result; 2458 2459 /* 2460 * Sample the module parameters once at reset time so that we have 2461 * stable values to work with. 2462 */ 2463 dev->nr_write_queues = write_queues; 2464 dev->nr_poll_queues = poll_queues; 2465 2466 nr_io_queues = dev->nr_allocated_queues - 1; 2467 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2468 if (result < 0) 2469 return result; 2470 2471 if (nr_io_queues == 0) 2472 return 0; 2473 2474 /* 2475 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2476 * from set to unset. If there is a window to it is truely freed, 2477 * pci_free_irq_vectors() jumping into this window will crash. 2478 * And take lock to avoid racing with pci_free_irq_vectors() in 2479 * nvme_dev_disable() path. 2480 */ 2481 result = nvme_setup_io_queues_trylock(dev); 2482 if (result) 2483 return result; 2484 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2485 pci_free_irq(pdev, 0, adminq); 2486 2487 if (dev->cmb_use_sqes) { 2488 result = nvme_cmb_qdepth(dev, nr_io_queues, 2489 sizeof(struct nvme_command)); 2490 if (result > 0) { 2491 dev->q_depth = result; 2492 dev->ctrl.sqsize = result - 1; 2493 } else { 2494 dev->cmb_use_sqes = false; 2495 } 2496 } 2497 2498 do { 2499 size = db_bar_size(dev, nr_io_queues); 2500 result = nvme_remap_bar(dev, size); 2501 if (!result) 2502 break; 2503 if (!--nr_io_queues) { 2504 result = -ENOMEM; 2505 goto out_unlock; 2506 } 2507 } while (1); 2508 adminq->q_db = dev->dbs; 2509 2510 retry: 2511 /* Deregister the admin queue's interrupt */ 2512 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2513 pci_free_irq(pdev, 0, adminq); 2514 2515 /* 2516 * If we enable msix early due to not intx, disable it again before 2517 * setting up the full range we need. 2518 */ 2519 pci_free_irq_vectors(pdev); 2520 2521 result = nvme_setup_irqs(dev, nr_io_queues); 2522 if (result <= 0) { 2523 result = -EIO; 2524 goto out_unlock; 2525 } 2526 2527 dev->num_vecs = result; 2528 result = max(result - 1, 1); 2529 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2530 2531 /* 2532 * Should investigate if there's a performance win from allocating 2533 * more queues than interrupt vectors; it might allow the submission 2534 * path to scale better, even if the receive path is limited by the 2535 * number of interrupts. 2536 */ 2537 result = queue_request_irq(adminq); 2538 if (result) 2539 goto out_unlock; 2540 set_bit(NVMEQ_ENABLED, &adminq->flags); 2541 mutex_unlock(&dev->shutdown_lock); 2542 2543 result = nvme_create_io_queues(dev); 2544 if (result || dev->online_queues < 2) 2545 return result; 2546 2547 if (dev->online_queues - 1 < dev->max_qid) { 2548 nr_io_queues = dev->online_queues - 1; 2549 nvme_delete_io_queues(dev); 2550 result = nvme_setup_io_queues_trylock(dev); 2551 if (result) 2552 return result; 2553 nvme_suspend_io_queues(dev); 2554 goto retry; 2555 } 2556 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2557 dev->io_queues[HCTX_TYPE_DEFAULT], 2558 dev->io_queues[HCTX_TYPE_READ], 2559 dev->io_queues[HCTX_TYPE_POLL]); 2560 return 0; 2561 out_unlock: 2562 mutex_unlock(&dev->shutdown_lock); 2563 return result; 2564 } 2565 2566 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2567 blk_status_t error) 2568 { 2569 struct nvme_queue *nvmeq = req->end_io_data; 2570 2571 blk_mq_free_request(req); 2572 complete(&nvmeq->delete_done); 2573 return RQ_END_IO_NONE; 2574 } 2575 2576 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2577 blk_status_t error) 2578 { 2579 struct nvme_queue *nvmeq = req->end_io_data; 2580 2581 if (error) 2582 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2583 2584 return nvme_del_queue_end(req, error); 2585 } 2586 2587 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2588 { 2589 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2590 struct request *req; 2591 struct nvme_command cmd = { }; 2592 2593 cmd.delete_queue.opcode = opcode; 2594 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2595 2596 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2597 if (IS_ERR(req)) 2598 return PTR_ERR(req); 2599 nvme_init_request(req, &cmd); 2600 2601 if (opcode == nvme_admin_delete_cq) 2602 req->end_io = nvme_del_cq_end; 2603 else 2604 req->end_io = nvme_del_queue_end; 2605 req->end_io_data = nvmeq; 2606 2607 init_completion(&nvmeq->delete_done); 2608 blk_execute_rq_nowait(req, false); 2609 return 0; 2610 } 2611 2612 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2613 { 2614 int nr_queues = dev->online_queues - 1, sent = 0; 2615 unsigned long timeout; 2616 2617 retry: 2618 timeout = NVME_ADMIN_TIMEOUT; 2619 while (nr_queues > 0) { 2620 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2621 break; 2622 nr_queues--; 2623 sent++; 2624 } 2625 while (sent) { 2626 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2627 2628 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2629 timeout); 2630 if (timeout == 0) 2631 return false; 2632 2633 sent--; 2634 if (nr_queues) 2635 goto retry; 2636 } 2637 return true; 2638 } 2639 2640 static void nvme_delete_io_queues(struct nvme_dev *dev) 2641 { 2642 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2643 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2644 } 2645 2646 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2647 { 2648 if (dev->io_queues[HCTX_TYPE_POLL]) 2649 return 3; 2650 if (dev->io_queues[HCTX_TYPE_READ]) 2651 return 2; 2652 return 1; 2653 } 2654 2655 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2656 { 2657 if (!dev->ctrl.tagset) { 2658 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2659 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2660 return true; 2661 } 2662 2663 /* Give up if we are racing with nvme_dev_disable() */ 2664 if (!mutex_trylock(&dev->shutdown_lock)) 2665 return false; 2666 2667 /* Check if nvme_dev_disable() has been executed already */ 2668 if (!dev->online_queues) { 2669 mutex_unlock(&dev->shutdown_lock); 2670 return false; 2671 } 2672 2673 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2674 /* free previously allocated queues that are no longer usable */ 2675 nvme_free_queues(dev, dev->online_queues); 2676 mutex_unlock(&dev->shutdown_lock); 2677 return true; 2678 } 2679 2680 static int nvme_pci_enable(struct nvme_dev *dev) 2681 { 2682 int result = -ENOMEM; 2683 struct pci_dev *pdev = to_pci_dev(dev->dev); 2684 unsigned int flags = PCI_IRQ_ALL_TYPES; 2685 2686 if (pci_enable_device_mem(pdev)) 2687 return result; 2688 2689 pci_set_master(pdev); 2690 2691 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2692 result = -ENODEV; 2693 goto disable; 2694 } 2695 2696 /* 2697 * Some devices and/or platforms don't advertise or work with INTx 2698 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2699 * adjust this later. 2700 */ 2701 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2702 flags &= ~PCI_IRQ_MSI; 2703 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2704 if (result < 0) 2705 goto disable; 2706 2707 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2708 2709 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2710 io_queue_depth); 2711 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2712 dev->dbs = dev->bar + 4096; 2713 2714 /* 2715 * Some Apple controllers require a non-standard SQE size. 2716 * Interestingly they also seem to ignore the CC:IOSQES register 2717 * so we don't bother updating it here. 2718 */ 2719 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2720 dev->io_sqes = 7; 2721 else 2722 dev->io_sqes = NVME_NVM_IOSQES; 2723 2724 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2725 dev->q_depth = 2; 2726 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2727 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2728 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2729 dev->q_depth = 64; 2730 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2731 "set queue depth=%u\n", dev->q_depth); 2732 } 2733 2734 /* 2735 * Controllers with the shared tags quirk need the IO queue to be 2736 * big enough so that we get 32 tags for the admin queue 2737 */ 2738 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2739 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2740 dev->q_depth = NVME_AQ_DEPTH + 2; 2741 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2742 dev->q_depth); 2743 } 2744 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2745 2746 nvme_map_cmb(dev); 2747 2748 pci_save_state(pdev); 2749 2750 result = nvme_pci_configure_admin_queue(dev); 2751 if (result) 2752 goto free_irq; 2753 return result; 2754 2755 free_irq: 2756 pci_free_irq_vectors(pdev); 2757 disable: 2758 pci_disable_device(pdev); 2759 return result; 2760 } 2761 2762 static void nvme_dev_unmap(struct nvme_dev *dev) 2763 { 2764 if (dev->bar) 2765 iounmap(dev->bar); 2766 pci_release_mem_regions(to_pci_dev(dev->dev)); 2767 } 2768 2769 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2770 { 2771 struct pci_dev *pdev = to_pci_dev(dev->dev); 2772 u32 csts; 2773 2774 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2775 return true; 2776 if (pdev->error_state != pci_channel_io_normal) 2777 return true; 2778 2779 csts = readl(dev->bar + NVME_REG_CSTS); 2780 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2781 } 2782 2783 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2784 { 2785 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2786 struct pci_dev *pdev = to_pci_dev(dev->dev); 2787 bool dead; 2788 2789 mutex_lock(&dev->shutdown_lock); 2790 dead = nvme_pci_ctrl_is_dead(dev); 2791 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2792 if (pci_is_enabled(pdev)) 2793 nvme_start_freeze(&dev->ctrl); 2794 /* 2795 * Give the controller a chance to complete all entered requests 2796 * if doing a safe shutdown. 2797 */ 2798 if (!dead && shutdown) 2799 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2800 } 2801 2802 nvme_quiesce_io_queues(&dev->ctrl); 2803 2804 if (!dead && dev->ctrl.queue_count > 0) { 2805 nvme_delete_io_queues(dev); 2806 nvme_disable_ctrl(&dev->ctrl, shutdown); 2807 nvme_poll_irqdisable(&dev->queues[0]); 2808 } 2809 nvme_suspend_io_queues(dev); 2810 nvme_suspend_queue(dev, 0); 2811 pci_free_irq_vectors(pdev); 2812 if (pci_is_enabled(pdev)) 2813 pci_disable_device(pdev); 2814 nvme_reap_pending_cqes(dev); 2815 2816 nvme_cancel_tagset(&dev->ctrl); 2817 nvme_cancel_admin_tagset(&dev->ctrl); 2818 2819 /* 2820 * The driver will not be starting up queues again if shutting down so 2821 * must flush all entered requests to their failed completion to avoid 2822 * deadlocking blk-mq hot-cpu notifier. 2823 */ 2824 if (shutdown) { 2825 nvme_unquiesce_io_queues(&dev->ctrl); 2826 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2827 nvme_unquiesce_admin_queue(&dev->ctrl); 2828 } 2829 mutex_unlock(&dev->shutdown_lock); 2830 } 2831 2832 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2833 { 2834 if (!nvme_wait_reset(&dev->ctrl)) 2835 return -EBUSY; 2836 nvme_dev_disable(dev, shutdown); 2837 return 0; 2838 } 2839 2840 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2841 { 2842 size_t small_align = 256; 2843 2844 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2845 NVME_CTRL_PAGE_SIZE, 2846 NVME_CTRL_PAGE_SIZE, 0); 2847 if (!dev->prp_page_pool) 2848 return -ENOMEM; 2849 2850 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) 2851 small_align = 512; 2852 2853 /* Optimisation for I/Os between 4k and 128k */ 2854 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2855 256, small_align, 0); 2856 if (!dev->prp_small_pool) { 2857 dma_pool_destroy(dev->prp_page_pool); 2858 return -ENOMEM; 2859 } 2860 return 0; 2861 } 2862 2863 static void nvme_release_prp_pools(struct nvme_dev *dev) 2864 { 2865 dma_pool_destroy(dev->prp_page_pool); 2866 dma_pool_destroy(dev->prp_small_pool); 2867 } 2868 2869 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2870 { 2871 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1); 2872 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2873 2874 dev->iod_mempool = mempool_create_node(1, 2875 mempool_kmalloc, mempool_kfree, 2876 (void *)alloc_size, GFP_KERNEL, 2877 dev_to_node(dev->dev)); 2878 if (!dev->iod_mempool) 2879 return -ENOMEM; 2880 2881 dev->iod_meta_mempool = mempool_create_node(1, 2882 mempool_kmalloc, mempool_kfree, 2883 (void *)meta_size, GFP_KERNEL, 2884 dev_to_node(dev->dev)); 2885 if (!dev->iod_meta_mempool) 2886 goto free; 2887 2888 return 0; 2889 free: 2890 mempool_destroy(dev->iod_mempool); 2891 return -ENOMEM; 2892 } 2893 2894 static void nvme_free_tagset(struct nvme_dev *dev) 2895 { 2896 if (dev->tagset.tags) 2897 nvme_remove_io_tag_set(&dev->ctrl); 2898 dev->ctrl.tagset = NULL; 2899 } 2900 2901 /* pairs with nvme_pci_alloc_dev */ 2902 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2903 { 2904 struct nvme_dev *dev = to_nvme_dev(ctrl); 2905 2906 nvme_free_tagset(dev); 2907 put_device(dev->dev); 2908 kfree(dev->queues); 2909 kfree(dev); 2910 } 2911 2912 static void nvme_reset_work(struct work_struct *work) 2913 { 2914 struct nvme_dev *dev = 2915 container_of(work, struct nvme_dev, ctrl.reset_work); 2916 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2917 int result; 2918 2919 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2920 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2921 dev->ctrl.state); 2922 result = -ENODEV; 2923 goto out; 2924 } 2925 2926 /* 2927 * If we're called to reset a live controller first shut it down before 2928 * moving on. 2929 */ 2930 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2931 nvme_dev_disable(dev, false); 2932 nvme_sync_queues(&dev->ctrl); 2933 2934 mutex_lock(&dev->shutdown_lock); 2935 result = nvme_pci_enable(dev); 2936 if (result) 2937 goto out_unlock; 2938 nvme_unquiesce_admin_queue(&dev->ctrl); 2939 mutex_unlock(&dev->shutdown_lock); 2940 2941 /* 2942 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2943 * initializing procedure here. 2944 */ 2945 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2946 dev_warn(dev->ctrl.device, 2947 "failed to mark controller CONNECTING\n"); 2948 result = -EBUSY; 2949 goto out; 2950 } 2951 2952 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2953 if (result) 2954 goto out; 2955 2956 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 2957 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 2958 else 2959 dev->ctrl.max_integrity_segments = 1; 2960 2961 nvme_dbbuf_dma_alloc(dev); 2962 2963 result = nvme_setup_host_mem(dev); 2964 if (result < 0) 2965 goto out; 2966 2967 result = nvme_setup_io_queues(dev); 2968 if (result) 2969 goto out; 2970 2971 /* 2972 * Freeze and update the number of I/O queues as thos might have 2973 * changed. If there are no I/O queues left after this reset, keep the 2974 * controller around but remove all namespaces. 2975 */ 2976 if (dev->online_queues > 1) { 2977 nvme_dbbuf_set(dev); 2978 nvme_unquiesce_io_queues(&dev->ctrl); 2979 nvme_wait_freeze(&dev->ctrl); 2980 if (!nvme_pci_update_nr_queues(dev)) 2981 goto out; 2982 nvme_unfreeze(&dev->ctrl); 2983 } else { 2984 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2985 nvme_mark_namespaces_dead(&dev->ctrl); 2986 nvme_unquiesce_io_queues(&dev->ctrl); 2987 nvme_remove_namespaces(&dev->ctrl); 2988 nvme_free_tagset(dev); 2989 } 2990 2991 /* 2992 * If only admin queue live, keep it to do further investigation or 2993 * recovery. 2994 */ 2995 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2996 dev_warn(dev->ctrl.device, 2997 "failed to mark controller live state\n"); 2998 result = -ENODEV; 2999 goto out; 3000 } 3001 3002 nvme_start_ctrl(&dev->ctrl); 3003 return; 3004 3005 out_unlock: 3006 mutex_unlock(&dev->shutdown_lock); 3007 out: 3008 /* 3009 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 3010 * may be holding this pci_dev's device lock. 3011 */ 3012 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3013 result); 3014 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3015 nvme_dev_disable(dev, true); 3016 nvme_sync_queues(&dev->ctrl); 3017 nvme_mark_namespaces_dead(&dev->ctrl); 3018 nvme_unquiesce_io_queues(&dev->ctrl); 3019 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3020 } 3021 3022 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3023 { 3024 *val = readl(to_nvme_dev(ctrl)->bar + off); 3025 return 0; 3026 } 3027 3028 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3029 { 3030 writel(val, to_nvme_dev(ctrl)->bar + off); 3031 return 0; 3032 } 3033 3034 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3035 { 3036 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3037 return 0; 3038 } 3039 3040 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3041 { 3042 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3043 3044 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3045 } 3046 3047 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3048 { 3049 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3050 struct nvme_subsystem *subsys = ctrl->subsys; 3051 3052 dev_err(ctrl->device, 3053 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3054 pdev->vendor, pdev->device, 3055 nvme_strlen(subsys->model, sizeof(subsys->model)), 3056 subsys->model, nvme_strlen(subsys->firmware_rev, 3057 sizeof(subsys->firmware_rev)), 3058 subsys->firmware_rev); 3059 } 3060 3061 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3062 { 3063 struct nvme_dev *dev = to_nvme_dev(ctrl); 3064 3065 return dma_pci_p2pdma_supported(dev->dev); 3066 } 3067 3068 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3069 .name = "pcie", 3070 .module = THIS_MODULE, 3071 .flags = NVME_F_METADATA_SUPPORTED, 3072 .dev_attr_groups = nvme_pci_dev_attr_groups, 3073 .reg_read32 = nvme_pci_reg_read32, 3074 .reg_write32 = nvme_pci_reg_write32, 3075 .reg_read64 = nvme_pci_reg_read64, 3076 .free_ctrl = nvme_pci_free_ctrl, 3077 .submit_async_event = nvme_pci_submit_async_event, 3078 .subsystem_reset = nvme_pci_subsystem_reset, 3079 .get_address = nvme_pci_get_address, 3080 .print_device_info = nvme_pci_print_device_info, 3081 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3082 }; 3083 3084 static int nvme_dev_map(struct nvme_dev *dev) 3085 { 3086 struct pci_dev *pdev = to_pci_dev(dev->dev); 3087 3088 if (pci_request_mem_regions(pdev, "nvme")) 3089 return -ENODEV; 3090 3091 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3092 goto release; 3093 3094 return 0; 3095 release: 3096 pci_release_mem_regions(pdev); 3097 return -ENODEV; 3098 } 3099 3100 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3101 { 3102 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3103 /* 3104 * Several Samsung devices seem to drop off the PCIe bus 3105 * randomly when APST is on and uses the deepest sleep state. 3106 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3107 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3108 * 950 PRO 256GB", but it seems to be restricted to two Dell 3109 * laptops. 3110 */ 3111 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3112 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3113 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3114 return NVME_QUIRK_NO_DEEPEST_PS; 3115 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3116 /* 3117 * Samsung SSD 960 EVO drops off the PCIe bus after system 3118 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3119 * within few minutes after bootup on a Coffee Lake board - 3120 * ASUS PRIME Z370-A 3121 */ 3122 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3123 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3124 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3125 return NVME_QUIRK_NO_APST; 3126 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3127 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3128 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3129 /* 3130 * Forcing to use host managed nvme power settings for 3131 * lowest idle power with quick resume latency on 3132 * Samsung and Toshiba SSDs based on suspend behavior 3133 * on Coffee Lake board for LENOVO C640 3134 */ 3135 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3136 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3137 return NVME_QUIRK_SIMPLE_SUSPEND; 3138 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3139 pdev->device == 0x500f)) { 3140 /* 3141 * Exclude some Kingston NV1 and A2000 devices from 3142 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3143 * lot fo energy with s2idle sleep on some TUXEDO platforms. 3144 */ 3145 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3146 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3147 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3148 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3149 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3150 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3151 /* 3152 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3153 * because of high power consumption (> 2 Watt) in s2idle 3154 * sleep. Only some boards with Intel CPU are affected. 3155 */ 3156 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || 3157 dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3158 dmi_match(DMI_BOARD_NAME, "GXxMRXx") || 3159 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3160 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3161 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3162 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3163 } 3164 3165 /* 3166 * NVMe SSD drops off the PCIe bus after system idle 3167 * for 10 hours on a Lenovo N60z board. 3168 */ 3169 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3170 return NVME_QUIRK_NO_APST; 3171 3172 return 0; 3173 } 3174 3175 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3176 const struct pci_device_id *id) 3177 { 3178 unsigned long quirks = id->driver_data; 3179 int node = dev_to_node(&pdev->dev); 3180 struct nvme_dev *dev; 3181 int ret = -ENOMEM; 3182 3183 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3184 if (!dev) 3185 return ERR_PTR(-ENOMEM); 3186 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3187 mutex_init(&dev->shutdown_lock); 3188 3189 dev->nr_write_queues = write_queues; 3190 dev->nr_poll_queues = poll_queues; 3191 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3192 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3193 sizeof(struct nvme_queue), GFP_KERNEL, node); 3194 if (!dev->queues) 3195 goto out_free_dev; 3196 3197 dev->dev = get_device(&pdev->dev); 3198 3199 quirks |= check_vendor_combination_bug(pdev); 3200 if (!noacpi && 3201 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3202 acpi_storage_d3(&pdev->dev)) { 3203 /* 3204 * Some systems use a bios work around to ask for D3 on 3205 * platforms that support kernel managed suspend. 3206 */ 3207 dev_info(&pdev->dev, 3208 "platform quirk: setting simple suspend\n"); 3209 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3210 } 3211 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3212 quirks); 3213 if (ret) 3214 goto out_put_device; 3215 3216 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3217 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3218 else 3219 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3220 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3221 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3222 3223 /* 3224 * Limit the max command size to prevent iod->sg allocations going 3225 * over a single page. 3226 */ 3227 dev->ctrl.max_hw_sectors = min_t(u32, 3228 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3229 dev->ctrl.max_segments = NVME_MAX_SEGS; 3230 dev->ctrl.max_integrity_segments = 1; 3231 return dev; 3232 3233 out_put_device: 3234 put_device(dev->dev); 3235 kfree(dev->queues); 3236 out_free_dev: 3237 kfree(dev); 3238 return ERR_PTR(ret); 3239 } 3240 3241 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3242 { 3243 struct nvme_dev *dev; 3244 int result = -ENOMEM; 3245 3246 dev = nvme_pci_alloc_dev(pdev, id); 3247 if (IS_ERR(dev)) 3248 return PTR_ERR(dev); 3249 3250 result = nvme_add_ctrl(&dev->ctrl); 3251 if (result) 3252 goto out_put_ctrl; 3253 3254 result = nvme_dev_map(dev); 3255 if (result) 3256 goto out_uninit_ctrl; 3257 3258 result = nvme_setup_prp_pools(dev); 3259 if (result) 3260 goto out_dev_unmap; 3261 3262 result = nvme_pci_alloc_iod_mempool(dev); 3263 if (result) 3264 goto out_release_prp_pools; 3265 3266 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3267 3268 result = nvme_pci_enable(dev); 3269 if (result) 3270 goto out_release_iod_mempool; 3271 3272 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3273 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3274 if (result) 3275 goto out_disable; 3276 3277 /* 3278 * Mark the controller as connecting before sending admin commands to 3279 * allow the timeout handler to do the right thing. 3280 */ 3281 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3282 dev_warn(dev->ctrl.device, 3283 "failed to mark controller CONNECTING\n"); 3284 result = -EBUSY; 3285 goto out_disable; 3286 } 3287 3288 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3289 if (result) 3290 goto out_disable; 3291 3292 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3293 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3294 else 3295 dev->ctrl.max_integrity_segments = 1; 3296 3297 nvme_dbbuf_dma_alloc(dev); 3298 3299 result = nvme_setup_host_mem(dev); 3300 if (result < 0) 3301 goto out_disable; 3302 3303 result = nvme_setup_io_queues(dev); 3304 if (result) 3305 goto out_disable; 3306 3307 if (dev->online_queues > 1) { 3308 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3309 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3310 nvme_dbbuf_set(dev); 3311 } 3312 3313 if (!dev->ctrl.tagset) 3314 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3315 3316 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3317 dev_warn(dev->ctrl.device, 3318 "failed to mark controller live state\n"); 3319 result = -ENODEV; 3320 goto out_disable; 3321 } 3322 3323 pci_set_drvdata(pdev, dev); 3324 3325 nvme_start_ctrl(&dev->ctrl); 3326 nvme_put_ctrl(&dev->ctrl); 3327 flush_work(&dev->ctrl.scan_work); 3328 return 0; 3329 3330 out_disable: 3331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3332 nvme_dev_disable(dev, true); 3333 nvme_free_host_mem(dev); 3334 nvme_dev_remove_admin(dev); 3335 nvme_dbbuf_dma_free(dev); 3336 nvme_free_queues(dev, 0); 3337 out_release_iod_mempool: 3338 mempool_destroy(dev->iod_mempool); 3339 mempool_destroy(dev->iod_meta_mempool); 3340 out_release_prp_pools: 3341 nvme_release_prp_pools(dev); 3342 out_dev_unmap: 3343 nvme_dev_unmap(dev); 3344 out_uninit_ctrl: 3345 nvme_uninit_ctrl(&dev->ctrl); 3346 out_put_ctrl: 3347 nvme_put_ctrl(&dev->ctrl); 3348 return result; 3349 } 3350 3351 static void nvme_reset_prepare(struct pci_dev *pdev) 3352 { 3353 struct nvme_dev *dev = pci_get_drvdata(pdev); 3354 3355 /* 3356 * We don't need to check the return value from waiting for the reset 3357 * state as pci_dev device lock is held, making it impossible to race 3358 * with ->remove(). 3359 */ 3360 nvme_disable_prepare_reset(dev, false); 3361 nvme_sync_queues(&dev->ctrl); 3362 } 3363 3364 static void nvme_reset_done(struct pci_dev *pdev) 3365 { 3366 struct nvme_dev *dev = pci_get_drvdata(pdev); 3367 3368 if (!nvme_try_sched_reset(&dev->ctrl)) 3369 flush_work(&dev->ctrl.reset_work); 3370 } 3371 3372 static void nvme_shutdown(struct pci_dev *pdev) 3373 { 3374 struct nvme_dev *dev = pci_get_drvdata(pdev); 3375 3376 nvme_disable_prepare_reset(dev, true); 3377 } 3378 3379 /* 3380 * The driver's remove may be called on a device in a partially initialized 3381 * state. This function must not have any dependencies on the device state in 3382 * order to proceed. 3383 */ 3384 static void nvme_remove(struct pci_dev *pdev) 3385 { 3386 struct nvme_dev *dev = pci_get_drvdata(pdev); 3387 3388 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3389 pci_set_drvdata(pdev, NULL); 3390 3391 if (!pci_device_is_present(pdev)) { 3392 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3393 nvme_dev_disable(dev, true); 3394 } 3395 3396 flush_work(&dev->ctrl.reset_work); 3397 nvme_stop_ctrl(&dev->ctrl); 3398 nvme_remove_namespaces(&dev->ctrl); 3399 nvme_dev_disable(dev, true); 3400 nvme_free_host_mem(dev); 3401 nvme_dev_remove_admin(dev); 3402 nvme_dbbuf_dma_free(dev); 3403 nvme_free_queues(dev, 0); 3404 mempool_destroy(dev->iod_mempool); 3405 mempool_destroy(dev->iod_meta_mempool); 3406 nvme_release_prp_pools(dev); 3407 nvme_dev_unmap(dev); 3408 nvme_uninit_ctrl(&dev->ctrl); 3409 } 3410 3411 #ifdef CONFIG_PM_SLEEP 3412 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3413 { 3414 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3415 } 3416 3417 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3418 { 3419 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3420 } 3421 3422 static int nvme_resume(struct device *dev) 3423 { 3424 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3425 struct nvme_ctrl *ctrl = &ndev->ctrl; 3426 3427 if (ndev->last_ps == U32_MAX || 3428 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3429 goto reset; 3430 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3431 goto reset; 3432 3433 return 0; 3434 reset: 3435 return nvme_try_sched_reset(ctrl); 3436 } 3437 3438 static int nvme_suspend(struct device *dev) 3439 { 3440 struct pci_dev *pdev = to_pci_dev(dev); 3441 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3442 struct nvme_ctrl *ctrl = &ndev->ctrl; 3443 int ret = -EBUSY; 3444 3445 ndev->last_ps = U32_MAX; 3446 3447 /* 3448 * The platform does not remove power for a kernel managed suspend so 3449 * use host managed nvme power settings for lowest idle power if 3450 * possible. This should have quicker resume latency than a full device 3451 * shutdown. But if the firmware is involved after the suspend or the 3452 * device does not support any non-default power states, shut down the 3453 * device fully. 3454 * 3455 * If ASPM is not enabled for the device, shut down the device and allow 3456 * the PCI bus layer to put it into D3 in order to take the PCIe link 3457 * down, so as to allow the platform to achieve its minimum low-power 3458 * state (which may not be possible if the link is up). 3459 */ 3460 if (pm_suspend_via_firmware() || !ctrl->npss || 3461 !pcie_aspm_enabled(pdev) || 3462 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3463 return nvme_disable_prepare_reset(ndev, true); 3464 3465 nvme_start_freeze(ctrl); 3466 nvme_wait_freeze(ctrl); 3467 nvme_sync_queues(ctrl); 3468 3469 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3470 goto unfreeze; 3471 3472 /* 3473 * Host memory access may not be successful in a system suspend state, 3474 * but the specification allows the controller to access memory in a 3475 * non-operational power state. 3476 */ 3477 if (ndev->hmb) { 3478 ret = nvme_set_host_mem(ndev, 0); 3479 if (ret < 0) 3480 goto unfreeze; 3481 } 3482 3483 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3484 if (ret < 0) 3485 goto unfreeze; 3486 3487 /* 3488 * A saved state prevents pci pm from generically controlling the 3489 * device's power. If we're using protocol specific settings, we don't 3490 * want pci interfering. 3491 */ 3492 pci_save_state(pdev); 3493 3494 ret = nvme_set_power_state(ctrl, ctrl->npss); 3495 if (ret < 0) 3496 goto unfreeze; 3497 3498 if (ret) { 3499 /* discard the saved state */ 3500 pci_load_saved_state(pdev, NULL); 3501 3502 /* 3503 * Clearing npss forces a controller reset on resume. The 3504 * correct value will be rediscovered then. 3505 */ 3506 ret = nvme_disable_prepare_reset(ndev, true); 3507 ctrl->npss = 0; 3508 } 3509 unfreeze: 3510 nvme_unfreeze(ctrl); 3511 return ret; 3512 } 3513 3514 static int nvme_simple_suspend(struct device *dev) 3515 { 3516 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3517 3518 return nvme_disable_prepare_reset(ndev, true); 3519 } 3520 3521 static int nvme_simple_resume(struct device *dev) 3522 { 3523 struct pci_dev *pdev = to_pci_dev(dev); 3524 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3525 3526 return nvme_try_sched_reset(&ndev->ctrl); 3527 } 3528 3529 static const struct dev_pm_ops nvme_dev_pm_ops = { 3530 .suspend = nvme_suspend, 3531 .resume = nvme_resume, 3532 .freeze = nvme_simple_suspend, 3533 .thaw = nvme_simple_resume, 3534 .poweroff = nvme_simple_suspend, 3535 .restore = nvme_simple_resume, 3536 }; 3537 #endif /* CONFIG_PM_SLEEP */ 3538 3539 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3540 pci_channel_state_t state) 3541 { 3542 struct nvme_dev *dev = pci_get_drvdata(pdev); 3543 3544 /* 3545 * A frozen channel requires a reset. When detected, this method will 3546 * shutdown the controller to quiesce. The controller will be restarted 3547 * after the slot reset through driver's slot_reset callback. 3548 */ 3549 switch (state) { 3550 case pci_channel_io_normal: 3551 return PCI_ERS_RESULT_CAN_RECOVER; 3552 case pci_channel_io_frozen: 3553 dev_warn(dev->ctrl.device, 3554 "frozen state error detected, reset controller\n"); 3555 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3556 nvme_dev_disable(dev, true); 3557 return PCI_ERS_RESULT_DISCONNECT; 3558 } 3559 nvme_dev_disable(dev, false); 3560 return PCI_ERS_RESULT_NEED_RESET; 3561 case pci_channel_io_perm_failure: 3562 dev_warn(dev->ctrl.device, 3563 "failure state error detected, request disconnect\n"); 3564 return PCI_ERS_RESULT_DISCONNECT; 3565 } 3566 return PCI_ERS_RESULT_NEED_RESET; 3567 } 3568 3569 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3570 { 3571 struct nvme_dev *dev = pci_get_drvdata(pdev); 3572 3573 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3574 pci_restore_state(pdev); 3575 if (!nvme_try_sched_reset(&dev->ctrl)) 3576 nvme_unquiesce_io_queues(&dev->ctrl); 3577 return PCI_ERS_RESULT_RECOVERED; 3578 } 3579 3580 static void nvme_error_resume(struct pci_dev *pdev) 3581 { 3582 struct nvme_dev *dev = pci_get_drvdata(pdev); 3583 3584 flush_work(&dev->ctrl.reset_work); 3585 } 3586 3587 static const struct pci_error_handlers nvme_err_handler = { 3588 .error_detected = nvme_error_detected, 3589 .slot_reset = nvme_slot_reset, 3590 .resume = nvme_error_resume, 3591 .reset_prepare = nvme_reset_prepare, 3592 .reset_done = nvme_reset_done, 3593 }; 3594 3595 static const struct pci_device_id nvme_id_table[] = { 3596 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3597 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3598 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3599 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3600 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3601 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3602 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3603 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3604 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3605 NVME_QUIRK_BOGUS_NID, }, 3606 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3607 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 3608 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3609 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3610 NVME_QUIRK_MEDIUM_PRIO_SQ | 3611 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3612 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3613 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3614 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3615 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3616 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3617 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3618 NVME_QUIRK_BOGUS_NID, }, 3619 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3620 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3621 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3622 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, 3623 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3624 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3625 NVME_QUIRK_BOGUS_NID, }, 3626 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3627 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3628 NVME_QUIRK_BOGUS_NID, }, 3629 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3630 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3631 NVME_QUIRK_NO_NS_DESC_LIST, }, 3632 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3633 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3634 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3635 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3636 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3637 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3638 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3639 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3640 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3641 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3642 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3643 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3644 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3645 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3646 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3647 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3648 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3649 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3650 NVME_QUIRK_BOGUS_NID, }, 3651 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3652 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3653 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3654 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3655 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3656 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3657 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3658 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3659 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3660 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3661 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3662 NVME_QUIRK_BOGUS_NID, }, 3663 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3664 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3665 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3666 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3667 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3668 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3669 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3670 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3671 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3672 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3673 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3674 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3675 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3676 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3677 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3678 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3679 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3680 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3681 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3682 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3683 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3684 NVME_QUIRK_BOGUS_NID, }, 3685 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3686 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3687 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3688 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3689 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3690 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3691 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3692 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3693 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3694 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3695 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3696 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3697 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3698 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3699 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3700 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3701 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3702 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3703 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3704 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3705 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3706 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3707 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3708 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3709 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3710 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3711 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3712 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3713 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3714 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3715 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3716 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3717 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3718 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3719 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3720 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3721 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3722 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3723 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ 3724 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3725 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3726 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3727 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3728 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3729 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3730 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3731 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3732 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3733 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3734 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3735 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3736 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3737 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3738 .driver_data = NVME_QUIRK_BOGUS_NID | 3739 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3740 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3741 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3742 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3743 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3744 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3745 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3746 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3747 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3748 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3749 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3750 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3751 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3752 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3753 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3754 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3755 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3756 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3757 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3758 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3759 /* 3760 * Fix for the Apple controller found in the MacBook8,1 and 3761 * some MacBook7,1 to avoid controller resets and data loss. 3762 */ 3763 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3764 NVME_QUIRK_QDEPTH_ONE }, 3765 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3766 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3767 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3768 NVME_QUIRK_128_BYTES_SQES | 3769 NVME_QUIRK_SHARED_TAGS | 3770 NVME_QUIRK_SKIP_CID_GEN | 3771 NVME_QUIRK_IDENTIFY_CNS }, 3772 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3773 { 0, } 3774 }; 3775 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3776 3777 static struct pci_driver nvme_driver = { 3778 .name = "nvme", 3779 .id_table = nvme_id_table, 3780 .probe = nvme_probe, 3781 .remove = nvme_remove, 3782 .shutdown = nvme_shutdown, 3783 .driver = { 3784 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3785 #ifdef CONFIG_PM_SLEEP 3786 .pm = &nvme_dev_pm_ops, 3787 #endif 3788 }, 3789 .sriov_configure = pci_sriov_configure_simple, 3790 .err_handler = &nvme_err_handler, 3791 }; 3792 3793 static int __init nvme_init(void) 3794 { 3795 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3796 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3797 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3798 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3799 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3800 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3801 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3802 3803 return pci_register_driver(&nvme_driver); 3804 } 3805 3806 static void __exit nvme_exit(void) 3807 { 3808 pci_unregister_driver(&nvme_driver); 3809 flush_workqueue(nvme_wq); 3810 } 3811 3812 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3813 MODULE_LICENSE("GPL"); 3814 MODULE_VERSION("1.0"); 3815 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3816 module_init(nvme_init); 3817 module_exit(nvme_exit); 3818