1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/aer.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <linux/once.h> 20 #include <linux/pci.h> 21 #include <linux/t10-pi.h> 22 #include <linux/types.h> 23 #include <linux/io-64-nonatomic-lo-hi.h> 24 #include <linux/sed-opal.h> 25 #include <linux/pci-p2pdma.h> 26 27 #include "trace.h" 28 #include "nvme.h" 29 30 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 31 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 32 33 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 34 35 /* 36 * These can be higher, but we need to ensure that any command doesn't 37 * require an sg allocation that needs more than a page of data. 38 */ 39 #define NVME_MAX_KB_SZ 4096 40 #define NVME_MAX_SEGS 127 41 42 static int use_threaded_interrupts; 43 module_param(use_threaded_interrupts, int, 0); 44 45 static bool use_cmb_sqes = true; 46 module_param(use_cmb_sqes, bool, 0444); 47 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 48 49 static unsigned int max_host_mem_size_mb = 128; 50 module_param(max_host_mem_size_mb, uint, 0444); 51 MODULE_PARM_DESC(max_host_mem_size_mb, 52 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 53 54 static unsigned int sgl_threshold = SZ_32K; 55 module_param(sgl_threshold, uint, 0644); 56 MODULE_PARM_DESC(sgl_threshold, 57 "Use SGLs when average request segment size is larger or equal to " 58 "this size. Use 0 to disable SGLs."); 59 60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 61 static const struct kernel_param_ops io_queue_depth_ops = { 62 .set = io_queue_depth_set, 63 .get = param_get_int, 64 }; 65 66 static int io_queue_depth = 1024; 67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); 69 70 static int queue_count_set(const char *val, const struct kernel_param *kp); 71 static const struct kernel_param_ops queue_count_ops = { 72 .set = queue_count_set, 73 .get = param_get_int, 74 }; 75 76 static int write_queues; 77 module_param_cb(write_queues, &queue_count_ops, &write_queues, 0644); 78 MODULE_PARM_DESC(write_queues, 79 "Number of queues to use for writes. If not set, reads and writes " 80 "will share a queue set."); 81 82 static int poll_queues = 0; 83 module_param_cb(poll_queues, &queue_count_ops, &poll_queues, 0644); 84 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 85 86 struct nvme_dev; 87 struct nvme_queue; 88 89 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 90 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); 91 92 /* 93 * Represents an NVM Express device. Each nvme_dev is a PCI function. 94 */ 95 struct nvme_dev { 96 struct nvme_queue *queues; 97 struct blk_mq_tag_set tagset; 98 struct blk_mq_tag_set admin_tagset; 99 u32 __iomem *dbs; 100 struct device *dev; 101 struct dma_pool *prp_page_pool; 102 struct dma_pool *prp_small_pool; 103 unsigned online_queues; 104 unsigned max_qid; 105 unsigned io_queues[HCTX_MAX_TYPES]; 106 unsigned int num_vecs; 107 int q_depth; 108 u32 db_stride; 109 void __iomem *bar; 110 unsigned long bar_mapped_size; 111 struct work_struct remove_work; 112 struct mutex shutdown_lock; 113 bool subsystem; 114 u64 cmb_size; 115 bool cmb_use_sqes; 116 u32 cmbsz; 117 u32 cmbloc; 118 struct nvme_ctrl ctrl; 119 120 mempool_t *iod_mempool; 121 122 /* shadow doorbell buffer support: */ 123 u32 *dbbuf_dbs; 124 dma_addr_t dbbuf_dbs_dma_addr; 125 u32 *dbbuf_eis; 126 dma_addr_t dbbuf_eis_dma_addr; 127 128 /* host memory buffer support: */ 129 u64 host_mem_size; 130 u32 nr_host_mem_descs; 131 dma_addr_t host_mem_descs_dma; 132 struct nvme_host_mem_buf_desc *host_mem_descs; 133 void **host_mem_desc_bufs; 134 }; 135 136 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 137 { 138 int n = 0, ret; 139 140 ret = kstrtoint(val, 10, &n); 141 if (ret != 0 || n < 2) 142 return -EINVAL; 143 144 return param_set_int(val, kp); 145 } 146 147 static int queue_count_set(const char *val, const struct kernel_param *kp) 148 { 149 int n = 0, ret; 150 151 ret = kstrtoint(val, 10, &n); 152 if (ret) 153 return ret; 154 if (n > num_possible_cpus()) 155 n = num_possible_cpus(); 156 157 return param_set_int(val, kp); 158 } 159 160 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 161 { 162 return qid * 2 * stride; 163 } 164 165 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 166 { 167 return (qid * 2 + 1) * stride; 168 } 169 170 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 171 { 172 return container_of(ctrl, struct nvme_dev, ctrl); 173 } 174 175 /* 176 * An NVM Express queue. Each device has at least two (one for admin 177 * commands and one for I/O commands). 178 */ 179 struct nvme_queue { 180 struct device *q_dmadev; 181 struct nvme_dev *dev; 182 spinlock_t sq_lock; 183 struct nvme_command *sq_cmds; 184 /* only used for poll queues: */ 185 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 186 volatile struct nvme_completion *cqes; 187 struct blk_mq_tags **tags; 188 dma_addr_t sq_dma_addr; 189 dma_addr_t cq_dma_addr; 190 u32 __iomem *q_db; 191 u16 q_depth; 192 s16 cq_vector; 193 u16 sq_tail; 194 u16 last_sq_tail; 195 u16 cq_head; 196 u16 last_cq_head; 197 u16 qid; 198 u8 cq_phase; 199 unsigned long flags; 200 #define NVMEQ_ENABLED 0 201 #define NVMEQ_SQ_CMB 1 202 #define NVMEQ_DELETE_ERROR 2 203 u32 *dbbuf_sq_db; 204 u32 *dbbuf_cq_db; 205 u32 *dbbuf_sq_ei; 206 u32 *dbbuf_cq_ei; 207 struct completion delete_done; 208 }; 209 210 /* 211 * The nvme_iod describes the data in an I/O, including the list of PRP 212 * entries. You can't see it in this data structure because C doesn't let 213 * me express that. Use nvme_init_iod to ensure there's enough space 214 * allocated to store the PRP list. 215 */ 216 struct nvme_iod { 217 struct nvme_request req; 218 struct nvme_queue *nvmeq; 219 bool use_sgl; 220 int aborted; 221 int npages; /* In the PRP list. 0 means small pool in use */ 222 int nents; /* Used in scatterlist */ 223 int length; /* Of data, in bytes */ 224 dma_addr_t first_dma; 225 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 226 struct scatterlist *sg; 227 struct scatterlist inline_sg[0]; 228 }; 229 230 /* 231 * Check we didin't inadvertently grow the command struct 232 */ 233 static inline void _nvme_check_size(void) 234 { 235 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 236 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 237 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 238 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 239 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 240 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 241 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 242 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 243 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 244 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 245 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 246 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 247 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 248 } 249 250 static unsigned int max_io_queues(void) 251 { 252 return num_possible_cpus() + write_queues + poll_queues; 253 } 254 255 static unsigned int max_queue_count(void) 256 { 257 /* IO queues + admin queue */ 258 return 1 + max_io_queues(); 259 } 260 261 static inline unsigned int nvme_dbbuf_size(u32 stride) 262 { 263 return (max_queue_count() * 8 * stride); 264 } 265 266 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 267 { 268 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 269 270 if (dev->dbbuf_dbs) 271 return 0; 272 273 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 274 &dev->dbbuf_dbs_dma_addr, 275 GFP_KERNEL); 276 if (!dev->dbbuf_dbs) 277 return -ENOMEM; 278 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 279 &dev->dbbuf_eis_dma_addr, 280 GFP_KERNEL); 281 if (!dev->dbbuf_eis) { 282 dma_free_coherent(dev->dev, mem_size, 283 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 284 dev->dbbuf_dbs = NULL; 285 return -ENOMEM; 286 } 287 288 return 0; 289 } 290 291 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 292 { 293 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 294 295 if (dev->dbbuf_dbs) { 296 dma_free_coherent(dev->dev, mem_size, 297 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 298 dev->dbbuf_dbs = NULL; 299 } 300 if (dev->dbbuf_eis) { 301 dma_free_coherent(dev->dev, mem_size, 302 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 303 dev->dbbuf_eis = NULL; 304 } 305 } 306 307 static void nvme_dbbuf_init(struct nvme_dev *dev, 308 struct nvme_queue *nvmeq, int qid) 309 { 310 if (!dev->dbbuf_dbs || !qid) 311 return; 312 313 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 314 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 315 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 316 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 317 } 318 319 static void nvme_dbbuf_set(struct nvme_dev *dev) 320 { 321 struct nvme_command c; 322 323 if (!dev->dbbuf_dbs) 324 return; 325 326 memset(&c, 0, sizeof(c)); 327 c.dbbuf.opcode = nvme_admin_dbbuf; 328 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 329 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 330 331 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 332 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 333 /* Free memory and continue on */ 334 nvme_dbbuf_dma_free(dev); 335 } 336 } 337 338 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 339 { 340 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 341 } 342 343 /* Update dbbuf and return true if an MMIO is required */ 344 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 345 volatile u32 *dbbuf_ei) 346 { 347 if (dbbuf_db) { 348 u16 old_value; 349 350 /* 351 * Ensure that the queue is written before updating 352 * the doorbell in memory 353 */ 354 wmb(); 355 356 old_value = *dbbuf_db; 357 *dbbuf_db = value; 358 359 /* 360 * Ensure that the doorbell is updated before reading the event 361 * index from memory. The controller needs to provide similar 362 * ordering to ensure the envent index is updated before reading 363 * the doorbell. 364 */ 365 mb(); 366 367 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 368 return false; 369 } 370 371 return true; 372 } 373 374 /* 375 * Max size of iod being embedded in the request payload 376 */ 377 #define NVME_INT_PAGES 2 378 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 379 380 /* 381 * Will slightly overestimate the number of pages needed. This is OK 382 * as it only leads to a small amount of wasted memory for the lifetime of 383 * the I/O. 384 */ 385 static int nvme_npages(unsigned size, struct nvme_dev *dev) 386 { 387 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 388 dev->ctrl.page_size); 389 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 390 } 391 392 /* 393 * Calculates the number of pages needed for the SGL segments. For example a 4k 394 * page can accommodate 256 SGL descriptors. 395 */ 396 static int nvme_pci_npages_sgl(unsigned int num_seg) 397 { 398 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); 399 } 400 401 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, 402 unsigned int size, unsigned int nseg, bool use_sgl) 403 { 404 size_t alloc_size; 405 406 if (use_sgl) 407 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); 408 else 409 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); 410 411 return alloc_size + sizeof(struct scatterlist) * nseg; 412 } 413 414 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl) 415 { 416 unsigned int alloc_size = nvme_pci_iod_alloc_size(dev, 417 NVME_INT_BYTES(dev), NVME_INT_PAGES, 418 use_sgl); 419 420 return sizeof(struct nvme_iod) + alloc_size; 421 } 422 423 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 424 unsigned int hctx_idx) 425 { 426 struct nvme_dev *dev = data; 427 struct nvme_queue *nvmeq = &dev->queues[0]; 428 429 WARN_ON(hctx_idx != 0); 430 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 431 WARN_ON(nvmeq->tags); 432 433 hctx->driver_data = nvmeq; 434 nvmeq->tags = &dev->admin_tagset.tags[0]; 435 return 0; 436 } 437 438 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 439 { 440 struct nvme_queue *nvmeq = hctx->driver_data; 441 442 nvmeq->tags = NULL; 443 } 444 445 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 446 unsigned int hctx_idx) 447 { 448 struct nvme_dev *dev = data; 449 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 450 451 if (!nvmeq->tags) 452 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 453 454 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 455 hctx->driver_data = nvmeq; 456 return 0; 457 } 458 459 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 460 unsigned int hctx_idx, unsigned int numa_node) 461 { 462 struct nvme_dev *dev = set->driver_data; 463 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 464 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 465 struct nvme_queue *nvmeq = &dev->queues[queue_idx]; 466 467 BUG_ON(!nvmeq); 468 iod->nvmeq = nvmeq; 469 470 nvme_req(req)->ctrl = &dev->ctrl; 471 return 0; 472 } 473 474 static int queue_irq_offset(struct nvme_dev *dev) 475 { 476 /* if we have more than 1 vec, admin queue offsets us by 1 */ 477 if (dev->num_vecs > 1) 478 return 1; 479 480 return 0; 481 } 482 483 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 484 { 485 struct nvme_dev *dev = set->driver_data; 486 int i, qoff, offset; 487 488 offset = queue_irq_offset(dev); 489 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 490 struct blk_mq_queue_map *map = &set->map[i]; 491 492 map->nr_queues = dev->io_queues[i]; 493 if (!map->nr_queues) { 494 BUG_ON(i == HCTX_TYPE_DEFAULT); 495 continue; 496 } 497 498 /* 499 * The poll queue(s) doesn't have an IRQ (and hence IRQ 500 * affinity), so use the regular blk-mq cpu mapping 501 */ 502 map->queue_offset = qoff; 503 if (i != HCTX_TYPE_POLL) 504 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 505 else 506 blk_mq_map_queues(map); 507 qoff += map->nr_queues; 508 offset += map->nr_queues; 509 } 510 511 return 0; 512 } 513 514 /* 515 * Write sq tail if we are asked to, or if the next command would wrap. 516 */ 517 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 518 { 519 if (!write_sq) { 520 u16 next_tail = nvmeq->sq_tail + 1; 521 522 if (next_tail == nvmeq->q_depth) 523 next_tail = 0; 524 if (next_tail != nvmeq->last_sq_tail) 525 return; 526 } 527 528 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 529 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 530 writel(nvmeq->sq_tail, nvmeq->q_db); 531 nvmeq->last_sq_tail = nvmeq->sq_tail; 532 } 533 534 /** 535 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 536 * @nvmeq: The queue to use 537 * @cmd: The command to send 538 * @write_sq: whether to write to the SQ doorbell 539 */ 540 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, 541 bool write_sq) 542 { 543 spin_lock(&nvmeq->sq_lock); 544 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); 545 if (++nvmeq->sq_tail == nvmeq->q_depth) 546 nvmeq->sq_tail = 0; 547 nvme_write_sq_db(nvmeq, write_sq); 548 spin_unlock(&nvmeq->sq_lock); 549 } 550 551 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 552 { 553 struct nvme_queue *nvmeq = hctx->driver_data; 554 555 spin_lock(&nvmeq->sq_lock); 556 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 557 nvme_write_sq_db(nvmeq, true); 558 spin_unlock(&nvmeq->sq_lock); 559 } 560 561 static void **nvme_pci_iod_list(struct request *req) 562 { 563 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 564 return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); 565 } 566 567 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) 568 { 569 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 570 int nseg = blk_rq_nr_phys_segments(req); 571 unsigned int avg_seg_size; 572 573 if (nseg == 0) 574 return false; 575 576 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 577 578 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) 579 return false; 580 if (!iod->nvmeq->qid) 581 return false; 582 if (!sgl_threshold || avg_seg_size < sgl_threshold) 583 return false; 584 return true; 585 } 586 587 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) 588 { 589 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 590 int nseg = blk_rq_nr_phys_segments(rq); 591 unsigned int size = blk_rq_payload_bytes(rq); 592 593 iod->use_sgl = nvme_pci_use_sgls(dev, rq); 594 595 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 596 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 597 if (!iod->sg) 598 return BLK_STS_RESOURCE; 599 } else { 600 iod->sg = iod->inline_sg; 601 } 602 603 iod->aborted = 0; 604 iod->npages = -1; 605 iod->nents = 0; 606 iod->length = size; 607 608 return BLK_STS_OK; 609 } 610 611 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 612 { 613 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 614 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; 615 dma_addr_t dma_addr = iod->first_dma, next_dma_addr; 616 617 int i; 618 619 if (iod->npages == 0) 620 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], 621 dma_addr); 622 623 for (i = 0; i < iod->npages; i++) { 624 void *addr = nvme_pci_iod_list(req)[i]; 625 626 if (iod->use_sgl) { 627 struct nvme_sgl_desc *sg_list = addr; 628 629 next_dma_addr = 630 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); 631 } else { 632 __le64 *prp_list = addr; 633 634 next_dma_addr = le64_to_cpu(prp_list[last_prp]); 635 } 636 637 dma_pool_free(dev->prp_page_pool, addr, dma_addr); 638 dma_addr = next_dma_addr; 639 } 640 641 if (iod->sg != iod->inline_sg) 642 mempool_free(iod->sg, dev->iod_mempool); 643 } 644 645 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 646 { 647 int i; 648 struct scatterlist *sg; 649 650 for_each_sg(sgl, sg, nents, i) { 651 dma_addr_t phys = sg_phys(sg); 652 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 653 "dma_address:%pad dma_length:%d\n", 654 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 655 sg_dma_len(sg)); 656 } 657 } 658 659 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 660 struct request *req, struct nvme_rw_command *cmnd) 661 { 662 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 663 struct dma_pool *pool; 664 int length = blk_rq_payload_bytes(req); 665 struct scatterlist *sg = iod->sg; 666 int dma_len = sg_dma_len(sg); 667 u64 dma_addr = sg_dma_address(sg); 668 u32 page_size = dev->ctrl.page_size; 669 int offset = dma_addr & (page_size - 1); 670 __le64 *prp_list; 671 void **list = nvme_pci_iod_list(req); 672 dma_addr_t prp_dma; 673 int nprps, i; 674 675 length -= (page_size - offset); 676 if (length <= 0) { 677 iod->first_dma = 0; 678 goto done; 679 } 680 681 dma_len -= (page_size - offset); 682 if (dma_len) { 683 dma_addr += (page_size - offset); 684 } else { 685 sg = sg_next(sg); 686 dma_addr = sg_dma_address(sg); 687 dma_len = sg_dma_len(sg); 688 } 689 690 if (length <= page_size) { 691 iod->first_dma = dma_addr; 692 goto done; 693 } 694 695 nprps = DIV_ROUND_UP(length, page_size); 696 if (nprps <= (256 / 8)) { 697 pool = dev->prp_small_pool; 698 iod->npages = 0; 699 } else { 700 pool = dev->prp_page_pool; 701 iod->npages = 1; 702 } 703 704 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 705 if (!prp_list) { 706 iod->first_dma = dma_addr; 707 iod->npages = -1; 708 return BLK_STS_RESOURCE; 709 } 710 list[0] = prp_list; 711 iod->first_dma = prp_dma; 712 i = 0; 713 for (;;) { 714 if (i == page_size >> 3) { 715 __le64 *old_prp_list = prp_list; 716 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 717 if (!prp_list) 718 return BLK_STS_RESOURCE; 719 list[iod->npages++] = prp_list; 720 prp_list[0] = old_prp_list[i - 1]; 721 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 722 i = 1; 723 } 724 prp_list[i++] = cpu_to_le64(dma_addr); 725 dma_len -= page_size; 726 dma_addr += page_size; 727 length -= page_size; 728 if (length <= 0) 729 break; 730 if (dma_len > 0) 731 continue; 732 if (unlikely(dma_len < 0)) 733 goto bad_sgl; 734 sg = sg_next(sg); 735 dma_addr = sg_dma_address(sg); 736 dma_len = sg_dma_len(sg); 737 } 738 739 done: 740 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 741 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 742 743 return BLK_STS_OK; 744 745 bad_sgl: 746 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), 747 "Invalid SGL for payload:%d nents:%d\n", 748 blk_rq_payload_bytes(req), iod->nents); 749 return BLK_STS_IOERR; 750 } 751 752 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 753 struct scatterlist *sg) 754 { 755 sge->addr = cpu_to_le64(sg_dma_address(sg)); 756 sge->length = cpu_to_le32(sg_dma_len(sg)); 757 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 758 } 759 760 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 761 dma_addr_t dma_addr, int entries) 762 { 763 sge->addr = cpu_to_le64(dma_addr); 764 if (entries < SGES_PER_PAGE) { 765 sge->length = cpu_to_le32(entries * sizeof(*sge)); 766 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 767 } else { 768 sge->length = cpu_to_le32(PAGE_SIZE); 769 sge->type = NVME_SGL_FMT_SEG_DESC << 4; 770 } 771 } 772 773 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 774 struct request *req, struct nvme_rw_command *cmd, int entries) 775 { 776 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 777 struct dma_pool *pool; 778 struct nvme_sgl_desc *sg_list; 779 struct scatterlist *sg = iod->sg; 780 dma_addr_t sgl_dma; 781 int i = 0; 782 783 /* setting the transfer type as SGL */ 784 cmd->flags = NVME_CMD_SGL_METABUF; 785 786 if (entries == 1) { 787 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 788 return BLK_STS_OK; 789 } 790 791 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 792 pool = dev->prp_small_pool; 793 iod->npages = 0; 794 } else { 795 pool = dev->prp_page_pool; 796 iod->npages = 1; 797 } 798 799 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 800 if (!sg_list) { 801 iod->npages = -1; 802 return BLK_STS_RESOURCE; 803 } 804 805 nvme_pci_iod_list(req)[0] = sg_list; 806 iod->first_dma = sgl_dma; 807 808 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 809 810 do { 811 if (i == SGES_PER_PAGE) { 812 struct nvme_sgl_desc *old_sg_desc = sg_list; 813 struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; 814 815 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 816 if (!sg_list) 817 return BLK_STS_RESOURCE; 818 819 i = 0; 820 nvme_pci_iod_list(req)[iod->npages++] = sg_list; 821 sg_list[i++] = *link; 822 nvme_pci_sgl_set_seg(link, sgl_dma, entries); 823 } 824 825 nvme_pci_sgl_set_data(&sg_list[i++], sg); 826 sg = sg_next(sg); 827 } while (--entries > 0); 828 829 return BLK_STS_OK; 830 } 831 832 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 833 struct nvme_command *cmnd) 834 { 835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 836 struct request_queue *q = req->q; 837 enum dma_data_direction dma_dir = rq_data_dir(req) ? 838 DMA_TO_DEVICE : DMA_FROM_DEVICE; 839 blk_status_t ret = BLK_STS_IOERR; 840 int nr_mapped; 841 842 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 843 iod->nents = blk_rq_map_sg(q, req, iod->sg); 844 if (!iod->nents) 845 goto out; 846 847 ret = BLK_STS_RESOURCE; 848 849 if (is_pci_p2pdma_page(sg_page(iod->sg))) 850 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents, 851 dma_dir); 852 else 853 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, 854 dma_dir, DMA_ATTR_NO_WARN); 855 if (!nr_mapped) 856 goto out; 857 858 if (iod->use_sgl) 859 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); 860 else 861 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 862 863 if (ret != BLK_STS_OK) 864 goto out_unmap; 865 866 ret = BLK_STS_IOERR; 867 if (blk_integrity_rq(req)) { 868 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 869 goto out_unmap; 870 871 sg_init_table(&iod->meta_sg, 1); 872 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 873 goto out_unmap; 874 875 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 876 goto out_unmap; 877 878 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 879 } 880 881 return BLK_STS_OK; 882 883 out_unmap: 884 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 885 out: 886 return ret; 887 } 888 889 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 890 { 891 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 892 enum dma_data_direction dma_dir = rq_data_dir(req) ? 893 DMA_TO_DEVICE : DMA_FROM_DEVICE; 894 895 if (iod->nents) { 896 /* P2PDMA requests do not need to be unmapped */ 897 if (!is_pci_p2pdma_page(sg_page(iod->sg))) 898 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 899 900 if (blk_integrity_rq(req)) 901 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 902 } 903 904 nvme_cleanup_cmd(req); 905 nvme_free_iod(dev, req); 906 } 907 908 /* 909 * NOTE: ns is NULL when called on the admin queue. 910 */ 911 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 912 const struct blk_mq_queue_data *bd) 913 { 914 struct nvme_ns *ns = hctx->queue->queuedata; 915 struct nvme_queue *nvmeq = hctx->driver_data; 916 struct nvme_dev *dev = nvmeq->dev; 917 struct request *req = bd->rq; 918 struct nvme_command cmnd; 919 blk_status_t ret; 920 921 /* 922 * We should not need to do this, but we're still using this to 923 * ensure we can drain requests on a dying queue. 924 */ 925 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 926 return BLK_STS_IOERR; 927 928 ret = nvme_setup_cmd(ns, req, &cmnd); 929 if (ret) 930 return ret; 931 932 ret = nvme_init_iod(req, dev); 933 if (ret) 934 goto out_free_cmd; 935 936 if (blk_rq_nr_phys_segments(req)) { 937 ret = nvme_map_data(dev, req, &cmnd); 938 if (ret) 939 goto out_cleanup_iod; 940 } 941 942 blk_mq_start_request(req); 943 nvme_submit_cmd(nvmeq, &cmnd, bd->last); 944 return BLK_STS_OK; 945 out_cleanup_iod: 946 nvme_free_iod(dev, req); 947 out_free_cmd: 948 nvme_cleanup_cmd(req); 949 return ret; 950 } 951 952 static void nvme_pci_complete_rq(struct request *req) 953 { 954 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 955 956 nvme_unmap_data(iod->nvmeq->dev, req); 957 nvme_complete_rq(req); 958 } 959 960 /* We read the CQE phase first to check if the rest of the entry is valid */ 961 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 962 { 963 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == 964 nvmeq->cq_phase; 965 } 966 967 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 968 { 969 u16 head = nvmeq->cq_head; 970 971 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 972 nvmeq->dbbuf_cq_ei)) 973 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 974 } 975 976 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) 977 { 978 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; 979 struct request *req; 980 981 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 982 dev_warn(nvmeq->dev->ctrl.device, 983 "invalid id %d completed on queue %d\n", 984 cqe->command_id, le16_to_cpu(cqe->sq_id)); 985 return; 986 } 987 988 /* 989 * AEN requests are special as they don't time out and can 990 * survive any kind of queue freeze and often don't respond to 991 * aborts. We don't even bother to allocate a struct request 992 * for them but rather special case them here. 993 */ 994 if (unlikely(nvmeq->qid == 0 && 995 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { 996 nvme_complete_async_event(&nvmeq->dev->ctrl, 997 cqe->status, &cqe->result); 998 return; 999 } 1000 1001 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 1002 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1003 nvme_end_request(req, cqe->status, cqe->result); 1004 } 1005 1006 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) 1007 { 1008 while (start != end) { 1009 nvme_handle_cqe(nvmeq, start); 1010 if (++start == nvmeq->q_depth) 1011 start = 0; 1012 } 1013 } 1014 1015 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1016 { 1017 if (nvmeq->cq_head == nvmeq->q_depth - 1) { 1018 nvmeq->cq_head = 0; 1019 nvmeq->cq_phase = !nvmeq->cq_phase; 1020 } else { 1021 nvmeq->cq_head++; 1022 } 1023 } 1024 1025 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, 1026 u16 *end, unsigned int tag) 1027 { 1028 int found = 0; 1029 1030 *start = nvmeq->cq_head; 1031 while (nvme_cqe_pending(nvmeq)) { 1032 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag) 1033 found++; 1034 nvme_update_cq_head(nvmeq); 1035 } 1036 *end = nvmeq->cq_head; 1037 1038 if (*start != *end) 1039 nvme_ring_cq_doorbell(nvmeq); 1040 return found; 1041 } 1042 1043 static irqreturn_t nvme_irq(int irq, void *data) 1044 { 1045 struct nvme_queue *nvmeq = data; 1046 irqreturn_t ret = IRQ_NONE; 1047 u16 start, end; 1048 1049 /* 1050 * The rmb/wmb pair ensures we see all updates from a previous run of 1051 * the irq handler, even if that was on another CPU. 1052 */ 1053 rmb(); 1054 if (nvmeq->cq_head != nvmeq->last_cq_head) 1055 ret = IRQ_HANDLED; 1056 nvme_process_cq(nvmeq, &start, &end, -1); 1057 nvmeq->last_cq_head = nvmeq->cq_head; 1058 wmb(); 1059 1060 if (start != end) { 1061 nvme_complete_cqes(nvmeq, start, end); 1062 return IRQ_HANDLED; 1063 } 1064 1065 return ret; 1066 } 1067 1068 static irqreturn_t nvme_irq_check(int irq, void *data) 1069 { 1070 struct nvme_queue *nvmeq = data; 1071 if (nvme_cqe_pending(nvmeq)) 1072 return IRQ_WAKE_THREAD; 1073 return IRQ_NONE; 1074 } 1075 1076 /* 1077 * Poll for completions any queue, including those not dedicated to polling. 1078 * Can be called from any context. 1079 */ 1080 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag) 1081 { 1082 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1083 u16 start, end; 1084 int found; 1085 1086 /* 1087 * For a poll queue we need to protect against the polling thread 1088 * using the CQ lock. For normal interrupt driven threads we have 1089 * to disable the interrupt to avoid racing with it. 1090 */ 1091 if (nvmeq->cq_vector == -1) { 1092 spin_lock(&nvmeq->cq_poll_lock); 1093 found = nvme_process_cq(nvmeq, &start, &end, tag); 1094 spin_unlock(&nvmeq->cq_poll_lock); 1095 } else { 1096 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1097 found = nvme_process_cq(nvmeq, &start, &end, tag); 1098 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1099 } 1100 1101 nvme_complete_cqes(nvmeq, start, end); 1102 return found; 1103 } 1104 1105 static int nvme_poll(struct blk_mq_hw_ctx *hctx) 1106 { 1107 struct nvme_queue *nvmeq = hctx->driver_data; 1108 u16 start, end; 1109 bool found; 1110 1111 if (!nvme_cqe_pending(nvmeq)) 1112 return 0; 1113 1114 spin_lock(&nvmeq->cq_poll_lock); 1115 found = nvme_process_cq(nvmeq, &start, &end, -1); 1116 spin_unlock(&nvmeq->cq_poll_lock); 1117 1118 nvme_complete_cqes(nvmeq, start, end); 1119 return found; 1120 } 1121 1122 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1123 { 1124 struct nvme_dev *dev = to_nvme_dev(ctrl); 1125 struct nvme_queue *nvmeq = &dev->queues[0]; 1126 struct nvme_command c; 1127 1128 memset(&c, 0, sizeof(c)); 1129 c.common.opcode = nvme_admin_async_event; 1130 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1131 nvme_submit_cmd(nvmeq, &c, true); 1132 } 1133 1134 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1135 { 1136 struct nvme_command c; 1137 1138 memset(&c, 0, sizeof(c)); 1139 c.delete_queue.opcode = opcode; 1140 c.delete_queue.qid = cpu_to_le16(id); 1141 1142 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1143 } 1144 1145 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1146 struct nvme_queue *nvmeq, s16 vector) 1147 { 1148 struct nvme_command c; 1149 int flags = NVME_QUEUE_PHYS_CONTIG; 1150 1151 if (vector != -1) 1152 flags |= NVME_CQ_IRQ_ENABLED; 1153 1154 /* 1155 * Note: we (ab)use the fact that the prp fields survive if no data 1156 * is attached to the request. 1157 */ 1158 memset(&c, 0, sizeof(c)); 1159 c.create_cq.opcode = nvme_admin_create_cq; 1160 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1161 c.create_cq.cqid = cpu_to_le16(qid); 1162 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1163 c.create_cq.cq_flags = cpu_to_le16(flags); 1164 if (vector != -1) 1165 c.create_cq.irq_vector = cpu_to_le16(vector); 1166 else 1167 c.create_cq.irq_vector = 0; 1168 1169 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1170 } 1171 1172 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1173 struct nvme_queue *nvmeq) 1174 { 1175 struct nvme_ctrl *ctrl = &dev->ctrl; 1176 struct nvme_command c; 1177 int flags = NVME_QUEUE_PHYS_CONTIG; 1178 1179 /* 1180 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1181 * set. Since URGENT priority is zeroes, it makes all queues 1182 * URGENT. 1183 */ 1184 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1185 flags |= NVME_SQ_PRIO_MEDIUM; 1186 1187 /* 1188 * Note: we (ab)use the fact that the prp fields survive if no data 1189 * is attached to the request. 1190 */ 1191 memset(&c, 0, sizeof(c)); 1192 c.create_sq.opcode = nvme_admin_create_sq; 1193 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1194 c.create_sq.sqid = cpu_to_le16(qid); 1195 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1196 c.create_sq.sq_flags = cpu_to_le16(flags); 1197 c.create_sq.cqid = cpu_to_le16(qid); 1198 1199 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1200 } 1201 1202 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1203 { 1204 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1205 } 1206 1207 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1208 { 1209 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1210 } 1211 1212 static void abort_endio(struct request *req, blk_status_t error) 1213 { 1214 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1215 struct nvme_queue *nvmeq = iod->nvmeq; 1216 1217 dev_warn(nvmeq->dev->ctrl.device, 1218 "Abort status: 0x%x", nvme_req(req)->status); 1219 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1220 blk_mq_free_request(req); 1221 } 1222 1223 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1224 { 1225 1226 /* If true, indicates loss of adapter communication, possibly by a 1227 * NVMe Subsystem reset. 1228 */ 1229 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1230 1231 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1232 switch (dev->ctrl.state) { 1233 case NVME_CTRL_RESETTING: 1234 case NVME_CTRL_CONNECTING: 1235 return false; 1236 default: 1237 break; 1238 } 1239 1240 /* We shouldn't reset unless the controller is on fatal error state 1241 * _or_ if we lost the communication with it. 1242 */ 1243 if (!(csts & NVME_CSTS_CFS) && !nssro) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1250 { 1251 /* Read a config register to help see what died. */ 1252 u16 pci_status; 1253 int result; 1254 1255 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1256 &pci_status); 1257 if (result == PCIBIOS_SUCCESSFUL) 1258 dev_warn(dev->ctrl.device, 1259 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1260 csts, pci_status); 1261 else 1262 dev_warn(dev->ctrl.device, 1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1264 csts, result); 1265 } 1266 1267 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 1268 { 1269 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1270 struct nvme_queue *nvmeq = iod->nvmeq; 1271 struct nvme_dev *dev = nvmeq->dev; 1272 struct request *abort_req; 1273 struct nvme_command cmd; 1274 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1275 1276 /* If PCI error recovery process is happening, we cannot reset or 1277 * the recovery mechanism will surely fail. 1278 */ 1279 mb(); 1280 if (pci_channel_offline(to_pci_dev(dev->dev))) 1281 return BLK_EH_RESET_TIMER; 1282 1283 /* 1284 * Reset immediately if the controller is failed 1285 */ 1286 if (nvme_should_reset(dev, csts)) { 1287 nvme_warn_reset(dev, csts); 1288 nvme_dev_disable(dev, false); 1289 nvme_reset_ctrl(&dev->ctrl); 1290 return BLK_EH_DONE; 1291 } 1292 1293 /* 1294 * Did we miss an interrupt? 1295 */ 1296 if (nvme_poll_irqdisable(nvmeq, req->tag)) { 1297 dev_warn(dev->ctrl.device, 1298 "I/O %d QID %d timeout, completion polled\n", 1299 req->tag, nvmeq->qid); 1300 return BLK_EH_DONE; 1301 } 1302 1303 /* 1304 * Shutdown immediately if controller times out while starting. The 1305 * reset work will see the pci device disabled when it gets the forced 1306 * cancellation error. All outstanding requests are completed on 1307 * shutdown, so we return BLK_EH_DONE. 1308 */ 1309 switch (dev->ctrl.state) { 1310 case NVME_CTRL_CONNECTING: 1311 case NVME_CTRL_RESETTING: 1312 dev_warn_ratelimited(dev->ctrl.device, 1313 "I/O %d QID %d timeout, disable controller\n", 1314 req->tag, nvmeq->qid); 1315 nvme_dev_disable(dev, false); 1316 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1317 return BLK_EH_DONE; 1318 default: 1319 break; 1320 } 1321 1322 /* 1323 * Shutdown the controller immediately and schedule a reset if the 1324 * command was already aborted once before and still hasn't been 1325 * returned to the driver, or if this is the admin queue. 1326 */ 1327 if (!nvmeq->qid || iod->aborted) { 1328 dev_warn(dev->ctrl.device, 1329 "I/O %d QID %d timeout, reset controller\n", 1330 req->tag, nvmeq->qid); 1331 nvme_dev_disable(dev, false); 1332 nvme_reset_ctrl(&dev->ctrl); 1333 1334 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1335 return BLK_EH_DONE; 1336 } 1337 1338 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1339 atomic_inc(&dev->ctrl.abort_limit); 1340 return BLK_EH_RESET_TIMER; 1341 } 1342 iod->aborted = 1; 1343 1344 memset(&cmd, 0, sizeof(cmd)); 1345 cmd.abort.opcode = nvme_admin_abort_cmd; 1346 cmd.abort.cid = req->tag; 1347 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1348 1349 dev_warn(nvmeq->dev->ctrl.device, 1350 "I/O %d QID %d timeout, aborting\n", 1351 req->tag, nvmeq->qid); 1352 1353 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1354 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1355 if (IS_ERR(abort_req)) { 1356 atomic_inc(&dev->ctrl.abort_limit); 1357 return BLK_EH_RESET_TIMER; 1358 } 1359 1360 abort_req->timeout = ADMIN_TIMEOUT; 1361 abort_req->end_io_data = NULL; 1362 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1363 1364 /* 1365 * The aborted req will be completed on receiving the abort req. 1366 * We enable the timer again. If hit twice, it'll cause a device reset, 1367 * as the device then is in a faulty state. 1368 */ 1369 return BLK_EH_RESET_TIMER; 1370 } 1371 1372 static void nvme_free_queue(struct nvme_queue *nvmeq) 1373 { 1374 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1375 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1376 if (!nvmeq->sq_cmds) 1377 return; 1378 1379 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1380 pci_free_p2pmem(to_pci_dev(nvmeq->q_dmadev), 1381 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth)); 1382 } else { 1383 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1384 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1385 } 1386 } 1387 1388 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1389 { 1390 int i; 1391 1392 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1393 dev->ctrl.queue_count--; 1394 nvme_free_queue(&dev->queues[i]); 1395 } 1396 } 1397 1398 /** 1399 * nvme_suspend_queue - put queue into suspended state 1400 * @nvmeq: queue to suspend 1401 */ 1402 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1403 { 1404 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1405 return 1; 1406 1407 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1408 mb(); 1409 1410 nvmeq->dev->online_queues--; 1411 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1412 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); 1413 if (nvmeq->cq_vector == -1) 1414 return 0; 1415 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); 1416 nvmeq->cq_vector = -1; 1417 return 0; 1418 } 1419 1420 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1421 { 1422 int i; 1423 1424 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1425 nvme_suspend_queue(&dev->queues[i]); 1426 } 1427 1428 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1429 { 1430 struct nvme_queue *nvmeq = &dev->queues[0]; 1431 1432 if (shutdown) 1433 nvme_shutdown_ctrl(&dev->ctrl); 1434 else 1435 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1436 1437 nvme_poll_irqdisable(nvmeq, -1); 1438 } 1439 1440 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1441 int entry_size) 1442 { 1443 int q_depth = dev->q_depth; 1444 unsigned q_size_aligned = roundup(q_depth * entry_size, 1445 dev->ctrl.page_size); 1446 1447 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1448 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1449 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1450 q_depth = div_u64(mem_per_q, entry_size); 1451 1452 /* 1453 * Ensure the reduced q_depth is above some threshold where it 1454 * would be better to map queues in system memory with the 1455 * original depth 1456 */ 1457 if (q_depth < 64) 1458 return -ENOMEM; 1459 } 1460 1461 return q_depth; 1462 } 1463 1464 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1465 int qid, int depth) 1466 { 1467 struct pci_dev *pdev = to_pci_dev(dev->dev); 1468 1469 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1470 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth)); 1471 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1472 nvmeq->sq_cmds); 1473 if (nvmeq->sq_dma_addr) { 1474 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1475 return 0; 1476 } 1477 } 1478 1479 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1480 &nvmeq->sq_dma_addr, GFP_KERNEL); 1481 if (!nvmeq->sq_cmds) 1482 return -ENOMEM; 1483 return 0; 1484 } 1485 1486 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1487 { 1488 struct nvme_queue *nvmeq = &dev->queues[qid]; 1489 1490 if (dev->ctrl.queue_count > qid) 1491 return 0; 1492 1493 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth), 1494 &nvmeq->cq_dma_addr, GFP_KERNEL); 1495 if (!nvmeq->cqes) 1496 goto free_nvmeq; 1497 1498 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1499 goto free_cqdma; 1500 1501 nvmeq->q_dmadev = dev->dev; 1502 nvmeq->dev = dev; 1503 spin_lock_init(&nvmeq->sq_lock); 1504 spin_lock_init(&nvmeq->cq_poll_lock); 1505 nvmeq->cq_head = 0; 1506 nvmeq->cq_phase = 1; 1507 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1508 nvmeq->q_depth = depth; 1509 nvmeq->qid = qid; 1510 nvmeq->cq_vector = -1; 1511 dev->ctrl.queue_count++; 1512 1513 return 0; 1514 1515 free_cqdma: 1516 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1517 nvmeq->cq_dma_addr); 1518 free_nvmeq: 1519 return -ENOMEM; 1520 } 1521 1522 static int queue_request_irq(struct nvme_queue *nvmeq) 1523 { 1524 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1525 int nr = nvmeq->dev->ctrl.instance; 1526 1527 if (use_threaded_interrupts) { 1528 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1529 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1530 } else { 1531 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1532 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1533 } 1534 } 1535 1536 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1537 { 1538 struct nvme_dev *dev = nvmeq->dev; 1539 1540 nvmeq->sq_tail = 0; 1541 nvmeq->last_sq_tail = 0; 1542 nvmeq->cq_head = 0; 1543 nvmeq->cq_phase = 1; 1544 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1545 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1546 nvme_dbbuf_init(dev, nvmeq, qid); 1547 dev->online_queues++; 1548 wmb(); /* ensure the first interrupt sees the initialization */ 1549 } 1550 1551 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1552 { 1553 struct nvme_dev *dev = nvmeq->dev; 1554 int result; 1555 s16 vector; 1556 1557 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1558 1559 /* 1560 * A queue's vector matches the queue identifier unless the controller 1561 * has only one vector available. 1562 */ 1563 if (!polled) 1564 vector = dev->num_vecs == 1 ? 0 : qid; 1565 else 1566 vector = -1; 1567 1568 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1569 if (result) 1570 return result; 1571 1572 result = adapter_alloc_sq(dev, qid, nvmeq); 1573 if (result < 0) 1574 return result; 1575 else if (result) 1576 goto release_cq; 1577 1578 nvmeq->cq_vector = vector; 1579 nvme_init_queue(nvmeq, qid); 1580 1581 if (vector != -1) { 1582 result = queue_request_irq(nvmeq); 1583 if (result < 0) 1584 goto release_sq; 1585 } 1586 1587 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1588 return result; 1589 1590 release_sq: 1591 nvmeq->cq_vector = -1; 1592 dev->online_queues--; 1593 adapter_delete_sq(dev, qid); 1594 release_cq: 1595 adapter_delete_cq(dev, qid); 1596 return result; 1597 } 1598 1599 static const struct blk_mq_ops nvme_mq_admin_ops = { 1600 .queue_rq = nvme_queue_rq, 1601 .complete = nvme_pci_complete_rq, 1602 .init_hctx = nvme_admin_init_hctx, 1603 .exit_hctx = nvme_admin_exit_hctx, 1604 .init_request = nvme_init_request, 1605 .timeout = nvme_timeout, 1606 }; 1607 1608 static const struct blk_mq_ops nvme_mq_ops = { 1609 .queue_rq = nvme_queue_rq, 1610 .complete = nvme_pci_complete_rq, 1611 .commit_rqs = nvme_commit_rqs, 1612 .init_hctx = nvme_init_hctx, 1613 .init_request = nvme_init_request, 1614 .map_queues = nvme_pci_map_queues, 1615 .timeout = nvme_timeout, 1616 .poll = nvme_poll, 1617 }; 1618 1619 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1620 { 1621 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1622 /* 1623 * If the controller was reset during removal, it's possible 1624 * user requests may be waiting on a stopped queue. Start the 1625 * queue to flush these to completion. 1626 */ 1627 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1628 blk_cleanup_queue(dev->ctrl.admin_q); 1629 blk_mq_free_tag_set(&dev->admin_tagset); 1630 } 1631 } 1632 1633 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1634 { 1635 if (!dev->ctrl.admin_q) { 1636 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1637 dev->admin_tagset.nr_hw_queues = 1; 1638 1639 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 1640 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1641 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1642 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false); 1643 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1644 dev->admin_tagset.driver_data = dev; 1645 1646 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1647 return -ENOMEM; 1648 dev->ctrl.admin_tagset = &dev->admin_tagset; 1649 1650 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1651 if (IS_ERR(dev->ctrl.admin_q)) { 1652 blk_mq_free_tag_set(&dev->admin_tagset); 1653 return -ENOMEM; 1654 } 1655 if (!blk_get_queue(dev->ctrl.admin_q)) { 1656 nvme_dev_remove_admin(dev); 1657 dev->ctrl.admin_q = NULL; 1658 return -ENODEV; 1659 } 1660 } else 1661 blk_mq_unquiesce_queue(dev->ctrl.admin_q); 1662 1663 return 0; 1664 } 1665 1666 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1667 { 1668 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1669 } 1670 1671 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1672 { 1673 struct pci_dev *pdev = to_pci_dev(dev->dev); 1674 1675 if (size <= dev->bar_mapped_size) 1676 return 0; 1677 if (size > pci_resource_len(pdev, 0)) 1678 return -ENOMEM; 1679 if (dev->bar) 1680 iounmap(dev->bar); 1681 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1682 if (!dev->bar) { 1683 dev->bar_mapped_size = 0; 1684 return -ENOMEM; 1685 } 1686 dev->bar_mapped_size = size; 1687 dev->dbs = dev->bar + NVME_REG_DBS; 1688 1689 return 0; 1690 } 1691 1692 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1693 { 1694 int result; 1695 u32 aqa; 1696 struct nvme_queue *nvmeq; 1697 1698 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1699 if (result < 0) 1700 return result; 1701 1702 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1703 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1704 1705 if (dev->subsystem && 1706 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1707 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1708 1709 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); 1710 if (result < 0) 1711 return result; 1712 1713 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1714 if (result) 1715 return result; 1716 1717 nvmeq = &dev->queues[0]; 1718 aqa = nvmeq->q_depth - 1; 1719 aqa |= aqa << 16; 1720 1721 writel(aqa, dev->bar + NVME_REG_AQA); 1722 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1723 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1724 1725 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); 1726 if (result) 1727 return result; 1728 1729 nvmeq->cq_vector = 0; 1730 nvme_init_queue(nvmeq, 0); 1731 result = queue_request_irq(nvmeq); 1732 if (result) { 1733 nvmeq->cq_vector = -1; 1734 return result; 1735 } 1736 1737 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1738 return result; 1739 } 1740 1741 static int nvme_create_io_queues(struct nvme_dev *dev) 1742 { 1743 unsigned i, max, rw_queues; 1744 int ret = 0; 1745 1746 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1747 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1748 ret = -ENOMEM; 1749 break; 1750 } 1751 } 1752 1753 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1754 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1755 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1756 dev->io_queues[HCTX_TYPE_READ]; 1757 } else { 1758 rw_queues = max; 1759 } 1760 1761 for (i = dev->online_queues; i <= max; i++) { 1762 bool polled = i > rw_queues; 1763 1764 ret = nvme_create_queue(&dev->queues[i], i, polled); 1765 if (ret) 1766 break; 1767 } 1768 1769 /* 1770 * Ignore failing Create SQ/CQ commands, we can continue with less 1771 * than the desired amount of queues, and even a controller without 1772 * I/O queues can still be used to issue admin commands. This might 1773 * be useful to upgrade a buggy firmware for example. 1774 */ 1775 return ret >= 0 ? 0 : ret; 1776 } 1777 1778 static ssize_t nvme_cmb_show(struct device *dev, 1779 struct device_attribute *attr, 1780 char *buf) 1781 { 1782 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1783 1784 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1785 ndev->cmbloc, ndev->cmbsz); 1786 } 1787 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1788 1789 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1790 { 1791 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1792 1793 return 1ULL << (12 + 4 * szu); 1794 } 1795 1796 static u32 nvme_cmb_size(struct nvme_dev *dev) 1797 { 1798 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1799 } 1800 1801 static void nvme_map_cmb(struct nvme_dev *dev) 1802 { 1803 u64 size, offset; 1804 resource_size_t bar_size; 1805 struct pci_dev *pdev = to_pci_dev(dev->dev); 1806 int bar; 1807 1808 if (dev->cmb_size) 1809 return; 1810 1811 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1812 if (!dev->cmbsz) 1813 return; 1814 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1815 1816 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1817 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1818 bar = NVME_CMB_BIR(dev->cmbloc); 1819 bar_size = pci_resource_len(pdev, bar); 1820 1821 if (offset > bar_size) 1822 return; 1823 1824 /* 1825 * Controllers may support a CMB size larger than their BAR, 1826 * for example, due to being behind a bridge. Reduce the CMB to 1827 * the reported size of the BAR 1828 */ 1829 if (size > bar_size - offset) 1830 size = bar_size - offset; 1831 1832 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1833 dev_warn(dev->ctrl.device, 1834 "failed to register the CMB\n"); 1835 return; 1836 } 1837 1838 dev->cmb_size = size; 1839 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1840 1841 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1842 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1843 pci_p2pmem_publish(pdev, true); 1844 1845 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1846 &dev_attr_cmb.attr, NULL)) 1847 dev_warn(dev->ctrl.device, 1848 "failed to add sysfs attribute for CMB\n"); 1849 } 1850 1851 static inline void nvme_release_cmb(struct nvme_dev *dev) 1852 { 1853 if (dev->cmb_size) { 1854 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1855 &dev_attr_cmb.attr, NULL); 1856 dev->cmb_size = 0; 1857 } 1858 } 1859 1860 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1861 { 1862 u64 dma_addr = dev->host_mem_descs_dma; 1863 struct nvme_command c; 1864 int ret; 1865 1866 memset(&c, 0, sizeof(c)); 1867 c.features.opcode = nvme_admin_set_features; 1868 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1869 c.features.dword11 = cpu_to_le32(bits); 1870 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1871 ilog2(dev->ctrl.page_size)); 1872 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1873 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1874 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1875 1876 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1877 if (ret) { 1878 dev_warn(dev->ctrl.device, 1879 "failed to set host mem (err %d, flags %#x).\n", 1880 ret, bits); 1881 } 1882 return ret; 1883 } 1884 1885 static void nvme_free_host_mem(struct nvme_dev *dev) 1886 { 1887 int i; 1888 1889 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1890 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1891 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1892 1893 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1894 le64_to_cpu(desc->addr), 1895 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1896 } 1897 1898 kfree(dev->host_mem_desc_bufs); 1899 dev->host_mem_desc_bufs = NULL; 1900 dma_free_coherent(dev->dev, 1901 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1902 dev->host_mem_descs, dev->host_mem_descs_dma); 1903 dev->host_mem_descs = NULL; 1904 dev->nr_host_mem_descs = 0; 1905 } 1906 1907 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1908 u32 chunk_size) 1909 { 1910 struct nvme_host_mem_buf_desc *descs; 1911 u32 max_entries, len; 1912 dma_addr_t descs_dma; 1913 int i = 0; 1914 void **bufs; 1915 u64 size, tmp; 1916 1917 tmp = (preferred + chunk_size - 1); 1918 do_div(tmp, chunk_size); 1919 max_entries = tmp; 1920 1921 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1922 max_entries = dev->ctrl.hmmaxd; 1923 1924 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1925 &descs_dma, GFP_KERNEL); 1926 if (!descs) 1927 goto out; 1928 1929 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1930 if (!bufs) 1931 goto out_free_descs; 1932 1933 for (size = 0; size < preferred && i < max_entries; size += len) { 1934 dma_addr_t dma_addr; 1935 1936 len = min_t(u64, chunk_size, preferred - size); 1937 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1938 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1939 if (!bufs[i]) 1940 break; 1941 1942 descs[i].addr = cpu_to_le64(dma_addr); 1943 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1944 i++; 1945 } 1946 1947 if (!size) 1948 goto out_free_bufs; 1949 1950 dev->nr_host_mem_descs = i; 1951 dev->host_mem_size = size; 1952 dev->host_mem_descs = descs; 1953 dev->host_mem_descs_dma = descs_dma; 1954 dev->host_mem_desc_bufs = bufs; 1955 return 0; 1956 1957 out_free_bufs: 1958 while (--i >= 0) { 1959 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1960 1961 dma_free_attrs(dev->dev, size, bufs[i], 1962 le64_to_cpu(descs[i].addr), 1963 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1964 } 1965 1966 kfree(bufs); 1967 out_free_descs: 1968 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1969 descs_dma); 1970 out: 1971 dev->host_mem_descs = NULL; 1972 return -ENOMEM; 1973 } 1974 1975 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1976 { 1977 u32 chunk_size; 1978 1979 /* start big and work our way down */ 1980 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 1981 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 1982 chunk_size /= 2) { 1983 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 1984 if (!min || dev->host_mem_size >= min) 1985 return 0; 1986 nvme_free_host_mem(dev); 1987 } 1988 } 1989 1990 return -ENOMEM; 1991 } 1992 1993 static int nvme_setup_host_mem(struct nvme_dev *dev) 1994 { 1995 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1996 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1997 u64 min = (u64)dev->ctrl.hmmin * 4096; 1998 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1999 int ret; 2000 2001 preferred = min(preferred, max); 2002 if (min > max) { 2003 dev_warn(dev->ctrl.device, 2004 "min host memory (%lld MiB) above limit (%d MiB).\n", 2005 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2006 nvme_free_host_mem(dev); 2007 return 0; 2008 } 2009 2010 /* 2011 * If we already have a buffer allocated check if we can reuse it. 2012 */ 2013 if (dev->host_mem_descs) { 2014 if (dev->host_mem_size >= min) 2015 enable_bits |= NVME_HOST_MEM_RETURN; 2016 else 2017 nvme_free_host_mem(dev); 2018 } 2019 2020 if (!dev->host_mem_descs) { 2021 if (nvme_alloc_host_mem(dev, min, preferred)) { 2022 dev_warn(dev->ctrl.device, 2023 "failed to allocate host memory buffer.\n"); 2024 return 0; /* controller must work without HMB */ 2025 } 2026 2027 dev_info(dev->ctrl.device, 2028 "allocated %lld MiB host memory buffer.\n", 2029 dev->host_mem_size >> ilog2(SZ_1M)); 2030 } 2031 2032 ret = nvme_set_host_mem(dev, enable_bits); 2033 if (ret) 2034 nvme_free_host_mem(dev); 2035 return ret; 2036 } 2037 2038 /* 2039 * nirqs is the number of interrupts available for write and read 2040 * queues. The core already reserved an interrupt for the admin queue. 2041 */ 2042 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2043 { 2044 struct nvme_dev *dev = affd->priv; 2045 unsigned int nr_read_queues; 2046 2047 /* 2048 * If there is no interupt available for queues, ensure that 2049 * the default queue is set to 1. The affinity set size is 2050 * also set to one, but the irq core ignores it for this case. 2051 * 2052 * If only one interrupt is available or 'write_queue' == 0, combine 2053 * write and read queues. 2054 * 2055 * If 'write_queues' > 0, ensure it leaves room for at least one read 2056 * queue. 2057 */ 2058 if (!nrirqs) { 2059 nrirqs = 1; 2060 nr_read_queues = 0; 2061 } else if (nrirqs == 1 || !write_queues) { 2062 nr_read_queues = 0; 2063 } else if (write_queues >= nrirqs) { 2064 nr_read_queues = 1; 2065 } else { 2066 nr_read_queues = nrirqs - write_queues; 2067 } 2068 2069 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2070 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2071 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2072 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2073 affd->nr_sets = nr_read_queues ? 2 : 1; 2074 } 2075 2076 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2077 { 2078 struct pci_dev *pdev = to_pci_dev(dev->dev); 2079 struct irq_affinity affd = { 2080 .pre_vectors = 1, 2081 .calc_sets = nvme_calc_irq_sets, 2082 .priv = dev, 2083 }; 2084 unsigned int irq_queues, this_p_queues; 2085 2086 /* 2087 * Poll queues don't need interrupts, but we need at least one IO 2088 * queue left over for non-polled IO. 2089 */ 2090 this_p_queues = poll_queues; 2091 if (this_p_queues >= nr_io_queues) { 2092 this_p_queues = nr_io_queues - 1; 2093 irq_queues = 1; 2094 } else { 2095 irq_queues = nr_io_queues - this_p_queues + 1; 2096 } 2097 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues; 2098 2099 /* Initialize for the single interrupt case */ 2100 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2101 dev->io_queues[HCTX_TYPE_READ] = 0; 2102 2103 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2104 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2105 } 2106 2107 static void nvme_disable_io_queues(struct nvme_dev *dev) 2108 { 2109 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) 2110 __nvme_disable_io_queues(dev, nvme_admin_delete_cq); 2111 } 2112 2113 static int nvme_setup_io_queues(struct nvme_dev *dev) 2114 { 2115 struct nvme_queue *adminq = &dev->queues[0]; 2116 struct pci_dev *pdev = to_pci_dev(dev->dev); 2117 int result, nr_io_queues; 2118 unsigned long size; 2119 2120 nr_io_queues = max_io_queues(); 2121 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2122 if (result < 0) 2123 return result; 2124 2125 if (nr_io_queues == 0) 2126 return 0; 2127 2128 clear_bit(NVMEQ_ENABLED, &adminq->flags); 2129 2130 if (dev->cmb_use_sqes) { 2131 result = nvme_cmb_qdepth(dev, nr_io_queues, 2132 sizeof(struct nvme_command)); 2133 if (result > 0) 2134 dev->q_depth = result; 2135 else 2136 dev->cmb_use_sqes = false; 2137 } 2138 2139 do { 2140 size = db_bar_size(dev, nr_io_queues); 2141 result = nvme_remap_bar(dev, size); 2142 if (!result) 2143 break; 2144 if (!--nr_io_queues) 2145 return -ENOMEM; 2146 } while (1); 2147 adminq->q_db = dev->dbs; 2148 2149 retry: 2150 /* Deregister the admin queue's interrupt */ 2151 pci_free_irq(pdev, 0, adminq); 2152 2153 /* 2154 * If we enable msix early due to not intx, disable it again before 2155 * setting up the full range we need. 2156 */ 2157 pci_free_irq_vectors(pdev); 2158 2159 result = nvme_setup_irqs(dev, nr_io_queues); 2160 if (result <= 0) 2161 return -EIO; 2162 2163 dev->num_vecs = result; 2164 result = max(result - 1, 1); 2165 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2166 2167 /* 2168 * Should investigate if there's a performance win from allocating 2169 * more queues than interrupt vectors; it might allow the submission 2170 * path to scale better, even if the receive path is limited by the 2171 * number of interrupts. 2172 */ 2173 result = queue_request_irq(adminq); 2174 if (result) { 2175 adminq->cq_vector = -1; 2176 return result; 2177 } 2178 set_bit(NVMEQ_ENABLED, &adminq->flags); 2179 2180 result = nvme_create_io_queues(dev); 2181 if (result || dev->online_queues < 2) 2182 return result; 2183 2184 if (dev->online_queues - 1 < dev->max_qid) { 2185 nr_io_queues = dev->online_queues - 1; 2186 nvme_disable_io_queues(dev); 2187 nvme_suspend_io_queues(dev); 2188 goto retry; 2189 } 2190 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2191 dev->io_queues[HCTX_TYPE_DEFAULT], 2192 dev->io_queues[HCTX_TYPE_READ], 2193 dev->io_queues[HCTX_TYPE_POLL]); 2194 return 0; 2195 } 2196 2197 static void nvme_del_queue_end(struct request *req, blk_status_t error) 2198 { 2199 struct nvme_queue *nvmeq = req->end_io_data; 2200 2201 blk_mq_free_request(req); 2202 complete(&nvmeq->delete_done); 2203 } 2204 2205 static void nvme_del_cq_end(struct request *req, blk_status_t error) 2206 { 2207 struct nvme_queue *nvmeq = req->end_io_data; 2208 2209 if (error) 2210 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2211 2212 nvme_del_queue_end(req, error); 2213 } 2214 2215 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2216 { 2217 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2218 struct request *req; 2219 struct nvme_command cmd; 2220 2221 memset(&cmd, 0, sizeof(cmd)); 2222 cmd.delete_queue.opcode = opcode; 2223 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2224 2225 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 2226 if (IS_ERR(req)) 2227 return PTR_ERR(req); 2228 2229 req->timeout = ADMIN_TIMEOUT; 2230 req->end_io_data = nvmeq; 2231 2232 init_completion(&nvmeq->delete_done); 2233 blk_execute_rq_nowait(q, NULL, req, false, 2234 opcode == nvme_admin_delete_cq ? 2235 nvme_del_cq_end : nvme_del_queue_end); 2236 return 0; 2237 } 2238 2239 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) 2240 { 2241 int nr_queues = dev->online_queues - 1, sent = 0; 2242 unsigned long timeout; 2243 2244 retry: 2245 timeout = ADMIN_TIMEOUT; 2246 while (nr_queues > 0) { 2247 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2248 break; 2249 nr_queues--; 2250 sent++; 2251 } 2252 while (sent) { 2253 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2254 2255 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2256 timeout); 2257 if (timeout == 0) 2258 return false; 2259 2260 /* handle any remaining CQEs */ 2261 if (opcode == nvme_admin_delete_cq && 2262 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags)) 2263 nvme_poll_irqdisable(nvmeq, -1); 2264 2265 sent--; 2266 if (nr_queues) 2267 goto retry; 2268 } 2269 return true; 2270 } 2271 2272 /* 2273 * return error value only when tagset allocation failed 2274 */ 2275 static int nvme_dev_add(struct nvme_dev *dev) 2276 { 2277 int ret; 2278 2279 if (!dev->ctrl.tagset) { 2280 dev->tagset.ops = &nvme_mq_ops; 2281 dev->tagset.nr_hw_queues = dev->online_queues - 1; 2282 dev->tagset.nr_maps = 2; /* default + read */ 2283 if (dev->io_queues[HCTX_TYPE_POLL]) 2284 dev->tagset.nr_maps++; 2285 dev->tagset.timeout = NVME_IO_TIMEOUT; 2286 dev->tagset.numa_node = dev_to_node(dev->dev); 2287 dev->tagset.queue_depth = 2288 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 2289 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false); 2290 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) { 2291 dev->tagset.cmd_size = max(dev->tagset.cmd_size, 2292 nvme_pci_cmd_size(dev, true)); 2293 } 2294 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 2295 dev->tagset.driver_data = dev; 2296 2297 ret = blk_mq_alloc_tag_set(&dev->tagset); 2298 if (ret) { 2299 dev_warn(dev->ctrl.device, 2300 "IO queues tagset allocation failed %d\n", ret); 2301 return ret; 2302 } 2303 dev->ctrl.tagset = &dev->tagset; 2304 2305 nvme_dbbuf_set(dev); 2306 } else { 2307 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2308 2309 /* Free previously allocated queues that are no longer usable */ 2310 nvme_free_queues(dev, dev->online_queues); 2311 } 2312 2313 return 0; 2314 } 2315 2316 static int nvme_pci_enable(struct nvme_dev *dev) 2317 { 2318 int result = -ENOMEM; 2319 struct pci_dev *pdev = to_pci_dev(dev->dev); 2320 2321 if (pci_enable_device_mem(pdev)) 2322 return result; 2323 2324 pci_set_master(pdev); 2325 2326 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 2327 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 2328 goto disable; 2329 2330 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2331 result = -ENODEV; 2332 goto disable; 2333 } 2334 2335 /* 2336 * Some devices and/or platforms don't advertise or work with INTx 2337 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2338 * adjust this later. 2339 */ 2340 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2341 if (result < 0) 2342 return result; 2343 2344 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2345 2346 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2347 io_queue_depth); 2348 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2349 dev->dbs = dev->bar + 4096; 2350 2351 /* 2352 * Temporary fix for the Apple controller found in the MacBook8,1 and 2353 * some MacBook7,1 to avoid controller resets and data loss. 2354 */ 2355 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2356 dev->q_depth = 2; 2357 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2358 "set queue depth=%u to work around controller resets\n", 2359 dev->q_depth); 2360 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2361 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2362 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2363 dev->q_depth = 64; 2364 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2365 "set queue depth=%u\n", dev->q_depth); 2366 } 2367 2368 nvme_map_cmb(dev); 2369 2370 pci_enable_pcie_error_reporting(pdev); 2371 pci_save_state(pdev); 2372 return 0; 2373 2374 disable: 2375 pci_disable_device(pdev); 2376 return result; 2377 } 2378 2379 static void nvme_dev_unmap(struct nvme_dev *dev) 2380 { 2381 if (dev->bar) 2382 iounmap(dev->bar); 2383 pci_release_mem_regions(to_pci_dev(dev->dev)); 2384 } 2385 2386 static void nvme_pci_disable(struct nvme_dev *dev) 2387 { 2388 struct pci_dev *pdev = to_pci_dev(dev->dev); 2389 2390 pci_free_irq_vectors(pdev); 2391 2392 if (pci_is_enabled(pdev)) { 2393 pci_disable_pcie_error_reporting(pdev); 2394 pci_disable_device(pdev); 2395 } 2396 } 2397 2398 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2399 { 2400 bool dead = true; 2401 struct pci_dev *pdev = to_pci_dev(dev->dev); 2402 2403 mutex_lock(&dev->shutdown_lock); 2404 if (pci_is_enabled(pdev)) { 2405 u32 csts = readl(dev->bar + NVME_REG_CSTS); 2406 2407 if (dev->ctrl.state == NVME_CTRL_LIVE || 2408 dev->ctrl.state == NVME_CTRL_RESETTING) 2409 nvme_start_freeze(&dev->ctrl); 2410 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 2411 pdev->error_state != pci_channel_io_normal); 2412 } 2413 2414 /* 2415 * Give the controller a chance to complete all entered requests if 2416 * doing a safe shutdown. 2417 */ 2418 if (!dead) { 2419 if (shutdown) 2420 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2421 } 2422 2423 nvme_stop_queues(&dev->ctrl); 2424 2425 if (!dead && dev->ctrl.queue_count > 0) { 2426 nvme_disable_io_queues(dev); 2427 nvme_disable_admin_queue(dev, shutdown); 2428 } 2429 nvme_suspend_io_queues(dev); 2430 nvme_suspend_queue(&dev->queues[0]); 2431 nvme_pci_disable(dev); 2432 2433 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2434 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2435 2436 /* 2437 * The driver will not be starting up queues again if shutting down so 2438 * must flush all entered requests to their failed completion to avoid 2439 * deadlocking blk-mq hot-cpu notifier. 2440 */ 2441 if (shutdown) 2442 nvme_start_queues(&dev->ctrl); 2443 mutex_unlock(&dev->shutdown_lock); 2444 } 2445 2446 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2447 { 2448 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2449 PAGE_SIZE, PAGE_SIZE, 0); 2450 if (!dev->prp_page_pool) 2451 return -ENOMEM; 2452 2453 /* Optimisation for I/Os between 4k and 128k */ 2454 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2455 256, 256, 0); 2456 if (!dev->prp_small_pool) { 2457 dma_pool_destroy(dev->prp_page_pool); 2458 return -ENOMEM; 2459 } 2460 return 0; 2461 } 2462 2463 static void nvme_release_prp_pools(struct nvme_dev *dev) 2464 { 2465 dma_pool_destroy(dev->prp_page_pool); 2466 dma_pool_destroy(dev->prp_small_pool); 2467 } 2468 2469 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2470 { 2471 struct nvme_dev *dev = to_nvme_dev(ctrl); 2472 2473 nvme_dbbuf_dma_free(dev); 2474 put_device(dev->dev); 2475 if (dev->tagset.tags) 2476 blk_mq_free_tag_set(&dev->tagset); 2477 if (dev->ctrl.admin_q) 2478 blk_put_queue(dev->ctrl.admin_q); 2479 kfree(dev->queues); 2480 free_opal_dev(dev->ctrl.opal_dev); 2481 mempool_destroy(dev->iod_mempool); 2482 kfree(dev); 2483 } 2484 2485 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 2486 { 2487 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 2488 2489 nvme_get_ctrl(&dev->ctrl); 2490 nvme_dev_disable(dev, false); 2491 nvme_kill_queues(&dev->ctrl); 2492 if (!queue_work(nvme_wq, &dev->remove_work)) 2493 nvme_put_ctrl(&dev->ctrl); 2494 } 2495 2496 static void nvme_reset_work(struct work_struct *work) 2497 { 2498 struct nvme_dev *dev = 2499 container_of(work, struct nvme_dev, ctrl.reset_work); 2500 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2501 int result = -ENODEV; 2502 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; 2503 2504 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) 2505 goto out; 2506 2507 /* 2508 * If we're called to reset a live controller first shut it down before 2509 * moving on. 2510 */ 2511 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2512 nvme_dev_disable(dev, false); 2513 2514 mutex_lock(&dev->shutdown_lock); 2515 result = nvme_pci_enable(dev); 2516 if (result) 2517 goto out_unlock; 2518 2519 result = nvme_pci_configure_admin_queue(dev); 2520 if (result) 2521 goto out_unlock; 2522 2523 result = nvme_alloc_admin_tags(dev); 2524 if (result) 2525 goto out_unlock; 2526 2527 /* 2528 * Limit the max command size to prevent iod->sg allocations going 2529 * over a single page. 2530 */ 2531 dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1; 2532 dev->ctrl.max_segments = NVME_MAX_SEGS; 2533 mutex_unlock(&dev->shutdown_lock); 2534 2535 /* 2536 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2537 * initializing procedure here. 2538 */ 2539 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2540 dev_warn(dev->ctrl.device, 2541 "failed to mark controller CONNECTING\n"); 2542 goto out; 2543 } 2544 2545 result = nvme_init_identify(&dev->ctrl); 2546 if (result) 2547 goto out; 2548 2549 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2550 if (!dev->ctrl.opal_dev) 2551 dev->ctrl.opal_dev = 2552 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2553 else if (was_suspend) 2554 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2555 } else { 2556 free_opal_dev(dev->ctrl.opal_dev); 2557 dev->ctrl.opal_dev = NULL; 2558 } 2559 2560 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2561 result = nvme_dbbuf_dma_alloc(dev); 2562 if (result) 2563 dev_warn(dev->dev, 2564 "unable to allocate dma for dbbuf\n"); 2565 } 2566 2567 if (dev->ctrl.hmpre) { 2568 result = nvme_setup_host_mem(dev); 2569 if (result < 0) 2570 goto out; 2571 } 2572 2573 result = nvme_setup_io_queues(dev); 2574 if (result) 2575 goto out; 2576 2577 /* 2578 * Keep the controller around but remove all namespaces if we don't have 2579 * any working I/O queue. 2580 */ 2581 if (dev->online_queues < 2) { 2582 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2583 nvme_kill_queues(&dev->ctrl); 2584 nvme_remove_namespaces(&dev->ctrl); 2585 new_state = NVME_CTRL_ADMIN_ONLY; 2586 } else { 2587 nvme_start_queues(&dev->ctrl); 2588 nvme_wait_freeze(&dev->ctrl); 2589 /* hit this only when allocate tagset fails */ 2590 if (nvme_dev_add(dev)) 2591 new_state = NVME_CTRL_ADMIN_ONLY; 2592 nvme_unfreeze(&dev->ctrl); 2593 } 2594 2595 /* 2596 * If only admin queue live, keep it to do further investigation or 2597 * recovery. 2598 */ 2599 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { 2600 dev_warn(dev->ctrl.device, 2601 "failed to mark controller state %d\n", new_state); 2602 goto out; 2603 } 2604 2605 nvme_start_ctrl(&dev->ctrl); 2606 return; 2607 2608 out_unlock: 2609 mutex_unlock(&dev->shutdown_lock); 2610 out: 2611 nvme_remove_dead_ctrl(dev, result); 2612 } 2613 2614 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2615 { 2616 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2617 struct pci_dev *pdev = to_pci_dev(dev->dev); 2618 2619 if (pci_get_drvdata(pdev)) 2620 device_release_driver(&pdev->dev); 2621 nvme_put_ctrl(&dev->ctrl); 2622 } 2623 2624 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2625 { 2626 *val = readl(to_nvme_dev(ctrl)->bar + off); 2627 return 0; 2628 } 2629 2630 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2631 { 2632 writel(val, to_nvme_dev(ctrl)->bar + off); 2633 return 0; 2634 } 2635 2636 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2637 { 2638 *val = readq(to_nvme_dev(ctrl)->bar + off); 2639 return 0; 2640 } 2641 2642 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2643 { 2644 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2645 2646 return snprintf(buf, size, "%s", dev_name(&pdev->dev)); 2647 } 2648 2649 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2650 .name = "pcie", 2651 .module = THIS_MODULE, 2652 .flags = NVME_F_METADATA_SUPPORTED | 2653 NVME_F_PCI_P2PDMA, 2654 .reg_read32 = nvme_pci_reg_read32, 2655 .reg_write32 = nvme_pci_reg_write32, 2656 .reg_read64 = nvme_pci_reg_read64, 2657 .free_ctrl = nvme_pci_free_ctrl, 2658 .submit_async_event = nvme_pci_submit_async_event, 2659 .get_address = nvme_pci_get_address, 2660 }; 2661 2662 static int nvme_dev_map(struct nvme_dev *dev) 2663 { 2664 struct pci_dev *pdev = to_pci_dev(dev->dev); 2665 2666 if (pci_request_mem_regions(pdev, "nvme")) 2667 return -ENODEV; 2668 2669 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2670 goto release; 2671 2672 return 0; 2673 release: 2674 pci_release_mem_regions(pdev); 2675 return -ENODEV; 2676 } 2677 2678 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2679 { 2680 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2681 /* 2682 * Several Samsung devices seem to drop off the PCIe bus 2683 * randomly when APST is on and uses the deepest sleep state. 2684 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2685 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2686 * 950 PRO 256GB", but it seems to be restricted to two Dell 2687 * laptops. 2688 */ 2689 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2690 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2691 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2692 return NVME_QUIRK_NO_DEEPEST_PS; 2693 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2694 /* 2695 * Samsung SSD 960 EVO drops off the PCIe bus after system 2696 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2697 * within few minutes after bootup on a Coffee Lake board - 2698 * ASUS PRIME Z370-A 2699 */ 2700 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2701 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2702 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2703 return NVME_QUIRK_NO_APST; 2704 } 2705 2706 return 0; 2707 } 2708 2709 static void nvme_async_probe(void *data, async_cookie_t cookie) 2710 { 2711 struct nvme_dev *dev = data; 2712 2713 nvme_reset_ctrl_sync(&dev->ctrl); 2714 flush_work(&dev->ctrl.scan_work); 2715 nvme_put_ctrl(&dev->ctrl); 2716 } 2717 2718 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2719 { 2720 int node, result = -ENOMEM; 2721 struct nvme_dev *dev; 2722 unsigned long quirks = id->driver_data; 2723 size_t alloc_size; 2724 2725 node = dev_to_node(&pdev->dev); 2726 if (node == NUMA_NO_NODE) 2727 set_dev_node(&pdev->dev, first_memory_node); 2728 2729 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2730 if (!dev) 2731 return -ENOMEM; 2732 2733 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue), 2734 GFP_KERNEL, node); 2735 if (!dev->queues) 2736 goto free; 2737 2738 dev->dev = get_device(&pdev->dev); 2739 pci_set_drvdata(pdev, dev); 2740 2741 result = nvme_dev_map(dev); 2742 if (result) 2743 goto put_pci; 2744 2745 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2746 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2747 mutex_init(&dev->shutdown_lock); 2748 2749 result = nvme_setup_prp_pools(dev); 2750 if (result) 2751 goto unmap; 2752 2753 quirks |= check_vendor_combination_bug(pdev); 2754 2755 /* 2756 * Double check that our mempool alloc size will cover the biggest 2757 * command we support. 2758 */ 2759 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, 2760 NVME_MAX_SEGS, true); 2761 WARN_ON_ONCE(alloc_size > PAGE_SIZE); 2762 2763 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, 2764 mempool_kfree, 2765 (void *) alloc_size, 2766 GFP_KERNEL, node); 2767 if (!dev->iod_mempool) { 2768 result = -ENOMEM; 2769 goto release_pools; 2770 } 2771 2772 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2773 quirks); 2774 if (result) 2775 goto release_mempool; 2776 2777 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2778 2779 nvme_get_ctrl(&dev->ctrl); 2780 async_schedule(nvme_async_probe, dev); 2781 2782 return 0; 2783 2784 release_mempool: 2785 mempool_destroy(dev->iod_mempool); 2786 release_pools: 2787 nvme_release_prp_pools(dev); 2788 unmap: 2789 nvme_dev_unmap(dev); 2790 put_pci: 2791 put_device(dev->dev); 2792 free: 2793 kfree(dev->queues); 2794 kfree(dev); 2795 return result; 2796 } 2797 2798 static void nvme_reset_prepare(struct pci_dev *pdev) 2799 { 2800 struct nvme_dev *dev = pci_get_drvdata(pdev); 2801 nvme_dev_disable(dev, false); 2802 } 2803 2804 static void nvme_reset_done(struct pci_dev *pdev) 2805 { 2806 struct nvme_dev *dev = pci_get_drvdata(pdev); 2807 nvme_reset_ctrl_sync(&dev->ctrl); 2808 } 2809 2810 static void nvme_shutdown(struct pci_dev *pdev) 2811 { 2812 struct nvme_dev *dev = pci_get_drvdata(pdev); 2813 nvme_dev_disable(dev, true); 2814 } 2815 2816 /* 2817 * The driver's remove may be called on a device in a partially initialized 2818 * state. This function must not have any dependencies on the device state in 2819 * order to proceed. 2820 */ 2821 static void nvme_remove(struct pci_dev *pdev) 2822 { 2823 struct nvme_dev *dev = pci_get_drvdata(pdev); 2824 2825 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2826 pci_set_drvdata(pdev, NULL); 2827 2828 if (!pci_device_is_present(pdev)) { 2829 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2830 nvme_dev_disable(dev, true); 2831 nvme_dev_remove_admin(dev); 2832 } 2833 2834 flush_work(&dev->ctrl.reset_work); 2835 nvme_stop_ctrl(&dev->ctrl); 2836 nvme_remove_namespaces(&dev->ctrl); 2837 nvme_dev_disable(dev, true); 2838 nvme_release_cmb(dev); 2839 nvme_free_host_mem(dev); 2840 nvme_dev_remove_admin(dev); 2841 nvme_free_queues(dev, 0); 2842 nvme_uninit_ctrl(&dev->ctrl); 2843 nvme_release_prp_pools(dev); 2844 nvme_dev_unmap(dev); 2845 nvme_put_ctrl(&dev->ctrl); 2846 } 2847 2848 #ifdef CONFIG_PM_SLEEP 2849 static int nvme_suspend(struct device *dev) 2850 { 2851 struct pci_dev *pdev = to_pci_dev(dev); 2852 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2853 2854 nvme_dev_disable(ndev, true); 2855 return 0; 2856 } 2857 2858 static int nvme_resume(struct device *dev) 2859 { 2860 struct pci_dev *pdev = to_pci_dev(dev); 2861 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2862 2863 nvme_reset_ctrl(&ndev->ctrl); 2864 return 0; 2865 } 2866 #endif 2867 2868 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2869 2870 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2871 pci_channel_state_t state) 2872 { 2873 struct nvme_dev *dev = pci_get_drvdata(pdev); 2874 2875 /* 2876 * A frozen channel requires a reset. When detected, this method will 2877 * shutdown the controller to quiesce. The controller will be restarted 2878 * after the slot reset through driver's slot_reset callback. 2879 */ 2880 switch (state) { 2881 case pci_channel_io_normal: 2882 return PCI_ERS_RESULT_CAN_RECOVER; 2883 case pci_channel_io_frozen: 2884 dev_warn(dev->ctrl.device, 2885 "frozen state error detected, reset controller\n"); 2886 nvme_dev_disable(dev, false); 2887 return PCI_ERS_RESULT_NEED_RESET; 2888 case pci_channel_io_perm_failure: 2889 dev_warn(dev->ctrl.device, 2890 "failure state error detected, request disconnect\n"); 2891 return PCI_ERS_RESULT_DISCONNECT; 2892 } 2893 return PCI_ERS_RESULT_NEED_RESET; 2894 } 2895 2896 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2897 { 2898 struct nvme_dev *dev = pci_get_drvdata(pdev); 2899 2900 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2901 pci_restore_state(pdev); 2902 nvme_reset_ctrl(&dev->ctrl); 2903 return PCI_ERS_RESULT_RECOVERED; 2904 } 2905 2906 static void nvme_error_resume(struct pci_dev *pdev) 2907 { 2908 struct nvme_dev *dev = pci_get_drvdata(pdev); 2909 2910 flush_work(&dev->ctrl.reset_work); 2911 } 2912 2913 static const struct pci_error_handlers nvme_err_handler = { 2914 .error_detected = nvme_error_detected, 2915 .slot_reset = nvme_slot_reset, 2916 .resume = nvme_error_resume, 2917 .reset_prepare = nvme_reset_prepare, 2918 .reset_done = nvme_reset_done, 2919 }; 2920 2921 static const struct pci_device_id nvme_id_table[] = { 2922 { PCI_VDEVICE(INTEL, 0x0953), 2923 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2924 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2925 { PCI_VDEVICE(INTEL, 0x0a53), 2926 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2927 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2928 { PCI_VDEVICE(INTEL, 0x0a54), 2929 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2930 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2931 { PCI_VDEVICE(INTEL, 0x0a55), 2932 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2933 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2934 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 2935 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 2936 NVME_QUIRK_MEDIUM_PRIO_SQ }, 2937 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 2938 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 2939 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2940 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 2941 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 2942 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 2943 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2944 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2945 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2946 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 2947 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2948 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2949 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2950 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 2951 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2952 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 2953 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2954 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ 2955 .driver_data = NVME_QUIRK_LIGHTNVM, }, 2956 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ 2957 .driver_data = NVME_QUIRK_LIGHTNVM, }, 2958 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ 2959 .driver_data = NVME_QUIRK_LIGHTNVM, }, 2960 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2961 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2962 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2963 { 0, } 2964 }; 2965 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2966 2967 static struct pci_driver nvme_driver = { 2968 .name = "nvme", 2969 .id_table = nvme_id_table, 2970 .probe = nvme_probe, 2971 .remove = nvme_remove, 2972 .shutdown = nvme_shutdown, 2973 .driver = { 2974 .pm = &nvme_dev_pm_ops, 2975 }, 2976 .sriov_configure = pci_sriov_configure_simple, 2977 .err_handler = &nvme_err_handler, 2978 }; 2979 2980 static int __init nvme_init(void) 2981 { 2982 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 2983 return pci_register_driver(&nvme_driver); 2984 } 2985 2986 static void __exit nvme_exit(void) 2987 { 2988 pci_unregister_driver(&nvme_driver); 2989 flush_workqueue(nvme_wq); 2990 _nvme_check_size(); 2991 } 2992 2993 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2994 MODULE_LICENSE("GPL"); 2995 MODULE_VERSION("1.0"); 2996 module_init(nvme_init); 2997 module_exit(nvme_exit); 2998