1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_META_SEGS 15 47 #define NVME_MAX_NR_ALLOCATIONS 5 48 49 static int use_threaded_interrupts; 50 module_param(use_threaded_interrupts, int, 0444); 51 52 static bool use_cmb_sqes = true; 53 module_param(use_cmb_sqes, bool, 0444); 54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 55 56 static unsigned int max_host_mem_size_mb = 128; 57 module_param(max_host_mem_size_mb, uint, 0444); 58 MODULE_PARM_DESC(max_host_mem_size_mb, 59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 60 61 static unsigned int sgl_threshold = SZ_32K; 62 module_param(sgl_threshold, uint, 0644); 63 MODULE_PARM_DESC(sgl_threshold, 64 "Use SGLs when average request segment size is larger or equal to " 65 "this size. Use 0 to disable SGLs."); 66 67 #define NVME_PCI_MIN_QUEUE_SIZE 2 68 #define NVME_PCI_MAX_QUEUE_SIZE 4095 69 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 70 static const struct kernel_param_ops io_queue_depth_ops = { 71 .set = io_queue_depth_set, 72 .get = param_get_uint, 73 }; 74 75 static unsigned int io_queue_depth = 1024; 76 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 77 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 78 79 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 80 { 81 unsigned int n; 82 int ret; 83 84 ret = kstrtouint(val, 10, &n); 85 if (ret != 0 || n > num_possible_cpus()) 86 return -EINVAL; 87 return param_set_uint(val, kp); 88 } 89 90 static const struct kernel_param_ops io_queue_count_ops = { 91 .set = io_queue_count_set, 92 .get = param_get_uint, 93 }; 94 95 static unsigned int write_queues; 96 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 97 MODULE_PARM_DESC(write_queues, 98 "Number of queues to use for writes. If not set, reads and writes " 99 "will share a queue set."); 100 101 static unsigned int poll_queues; 102 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 103 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 104 105 static bool noacpi; 106 module_param(noacpi, bool, 0444); 107 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 108 109 struct nvme_dev; 110 struct nvme_queue; 111 112 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 113 static void nvme_delete_io_queues(struct nvme_dev *dev); 114 static void nvme_update_attrs(struct nvme_dev *dev); 115 116 /* 117 * Represents an NVM Express device. Each nvme_dev is a PCI function. 118 */ 119 struct nvme_dev { 120 struct nvme_queue *queues; 121 struct blk_mq_tag_set tagset; 122 struct blk_mq_tag_set admin_tagset; 123 u32 __iomem *dbs; 124 struct device *dev; 125 struct dma_pool *prp_page_pool; 126 struct dma_pool *prp_small_pool; 127 unsigned online_queues; 128 unsigned max_qid; 129 unsigned io_queues[HCTX_MAX_TYPES]; 130 unsigned int num_vecs; 131 u32 q_depth; 132 int io_sqes; 133 u32 db_stride; 134 void __iomem *bar; 135 unsigned long bar_mapped_size; 136 struct mutex shutdown_lock; 137 bool subsystem; 138 u64 cmb_size; 139 bool cmb_use_sqes; 140 u32 cmbsz; 141 u32 cmbloc; 142 struct nvme_ctrl ctrl; 143 u32 last_ps; 144 bool hmb; 145 struct sg_table *hmb_sgt; 146 147 mempool_t *iod_mempool; 148 mempool_t *iod_meta_mempool; 149 150 /* shadow doorbell buffer support: */ 151 __le32 *dbbuf_dbs; 152 dma_addr_t dbbuf_dbs_dma_addr; 153 __le32 *dbbuf_eis; 154 dma_addr_t dbbuf_eis_dma_addr; 155 156 /* host memory buffer support: */ 157 u64 host_mem_size; 158 u32 nr_host_mem_descs; 159 u32 host_mem_descs_size; 160 dma_addr_t host_mem_descs_dma; 161 struct nvme_host_mem_buf_desc *host_mem_descs; 162 void **host_mem_desc_bufs; 163 unsigned int nr_allocated_queues; 164 unsigned int nr_write_queues; 165 unsigned int nr_poll_queues; 166 }; 167 168 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 169 { 170 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 171 NVME_PCI_MAX_QUEUE_SIZE); 172 } 173 174 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 175 { 176 return qid * 2 * stride; 177 } 178 179 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 180 { 181 return (qid * 2 + 1) * stride; 182 } 183 184 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 185 { 186 return container_of(ctrl, struct nvme_dev, ctrl); 187 } 188 189 /* 190 * An NVM Express queue. Each device has at least two (one for admin 191 * commands and one for I/O commands). 192 */ 193 struct nvme_queue { 194 struct nvme_dev *dev; 195 spinlock_t sq_lock; 196 void *sq_cmds; 197 /* only used for poll queues: */ 198 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 199 struct nvme_completion *cqes; 200 dma_addr_t sq_dma_addr; 201 dma_addr_t cq_dma_addr; 202 u32 __iomem *q_db; 203 u32 q_depth; 204 u16 cq_vector; 205 u16 sq_tail; 206 u16 last_sq_tail; 207 u16 cq_head; 208 u16 qid; 209 u8 cq_phase; 210 u8 sqes; 211 unsigned long flags; 212 #define NVMEQ_ENABLED 0 213 #define NVMEQ_SQ_CMB 1 214 #define NVMEQ_DELETE_ERROR 2 215 #define NVMEQ_POLLED 3 216 __le32 *dbbuf_sq_db; 217 __le32 *dbbuf_cq_db; 218 __le32 *dbbuf_sq_ei; 219 __le32 *dbbuf_cq_ei; 220 struct completion delete_done; 221 }; 222 223 union nvme_descriptor { 224 struct nvme_sgl_desc *sg_list; 225 __le64 *prp_list; 226 }; 227 228 /* 229 * The nvme_iod describes the data in an I/O. 230 * 231 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 232 * to the actual struct scatterlist. 233 */ 234 struct nvme_iod { 235 struct nvme_request req; 236 struct nvme_command cmd; 237 bool aborted; 238 s8 nr_allocations; /* PRP list pool allocations. 0 means small 239 pool in use */ 240 unsigned int dma_len; /* length of single DMA segment mapping */ 241 dma_addr_t first_dma; 242 dma_addr_t meta_dma; 243 struct sg_table sgt; 244 struct sg_table meta_sgt; 245 union nvme_descriptor meta_list; 246 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 247 }; 248 249 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 250 { 251 return dev->nr_allocated_queues * 8 * dev->db_stride; 252 } 253 254 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 255 { 256 unsigned int mem_size = nvme_dbbuf_size(dev); 257 258 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 259 return; 260 261 if (dev->dbbuf_dbs) { 262 /* 263 * Clear the dbbuf memory so the driver doesn't observe stale 264 * values from the previous instantiation. 265 */ 266 memset(dev->dbbuf_dbs, 0, mem_size); 267 memset(dev->dbbuf_eis, 0, mem_size); 268 return; 269 } 270 271 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 272 &dev->dbbuf_dbs_dma_addr, 273 GFP_KERNEL); 274 if (!dev->dbbuf_dbs) 275 goto fail; 276 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 277 &dev->dbbuf_eis_dma_addr, 278 GFP_KERNEL); 279 if (!dev->dbbuf_eis) 280 goto fail_free_dbbuf_dbs; 281 return; 282 283 fail_free_dbbuf_dbs: 284 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 285 dev->dbbuf_dbs_dma_addr); 286 dev->dbbuf_dbs = NULL; 287 fail: 288 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 289 } 290 291 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 292 { 293 unsigned int mem_size = nvme_dbbuf_size(dev); 294 295 if (dev->dbbuf_dbs) { 296 dma_free_coherent(dev->dev, mem_size, 297 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 298 dev->dbbuf_dbs = NULL; 299 } 300 if (dev->dbbuf_eis) { 301 dma_free_coherent(dev->dev, mem_size, 302 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 303 dev->dbbuf_eis = NULL; 304 } 305 } 306 307 static void nvme_dbbuf_init(struct nvme_dev *dev, 308 struct nvme_queue *nvmeq, int qid) 309 { 310 if (!dev->dbbuf_dbs || !qid) 311 return; 312 313 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 314 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 315 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 316 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 317 } 318 319 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 320 { 321 if (!nvmeq->qid) 322 return; 323 324 nvmeq->dbbuf_sq_db = NULL; 325 nvmeq->dbbuf_cq_db = NULL; 326 nvmeq->dbbuf_sq_ei = NULL; 327 nvmeq->dbbuf_cq_ei = NULL; 328 } 329 330 static void nvme_dbbuf_set(struct nvme_dev *dev) 331 { 332 struct nvme_command c = { }; 333 unsigned int i; 334 335 if (!dev->dbbuf_dbs) 336 return; 337 338 c.dbbuf.opcode = nvme_admin_dbbuf; 339 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 340 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 341 342 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 343 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 344 /* Free memory and continue on */ 345 nvme_dbbuf_dma_free(dev); 346 347 for (i = 1; i <= dev->online_queues; i++) 348 nvme_dbbuf_free(&dev->queues[i]); 349 } 350 } 351 352 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 353 { 354 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 355 } 356 357 /* Update dbbuf and return true if an MMIO is required */ 358 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 359 volatile __le32 *dbbuf_ei) 360 { 361 if (dbbuf_db) { 362 u16 old_value, event_idx; 363 364 /* 365 * Ensure that the queue is written before updating 366 * the doorbell in memory 367 */ 368 wmb(); 369 370 old_value = le32_to_cpu(*dbbuf_db); 371 *dbbuf_db = cpu_to_le32(value); 372 373 /* 374 * Ensure that the doorbell is updated before reading the event 375 * index from memory. The controller needs to provide similar 376 * ordering to ensure the envent index is updated before reading 377 * the doorbell. 378 */ 379 mb(); 380 381 event_idx = le32_to_cpu(*dbbuf_ei); 382 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 383 return false; 384 } 385 386 return true; 387 } 388 389 /* 390 * Will slightly overestimate the number of pages needed. This is OK 391 * as it only leads to a small amount of wasted memory for the lifetime of 392 * the I/O. 393 */ 394 static int nvme_pci_npages_prp(void) 395 { 396 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 397 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 398 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 399 } 400 401 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 402 unsigned int hctx_idx) 403 { 404 struct nvme_dev *dev = to_nvme_dev(data); 405 struct nvme_queue *nvmeq = &dev->queues[0]; 406 407 WARN_ON(hctx_idx != 0); 408 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 409 410 hctx->driver_data = nvmeq; 411 return 0; 412 } 413 414 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 415 unsigned int hctx_idx) 416 { 417 struct nvme_dev *dev = to_nvme_dev(data); 418 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 419 420 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 421 hctx->driver_data = nvmeq; 422 return 0; 423 } 424 425 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 426 struct request *req, unsigned int hctx_idx, 427 unsigned int numa_node) 428 { 429 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 430 431 nvme_req(req)->ctrl = set->driver_data; 432 nvme_req(req)->cmd = &iod->cmd; 433 return 0; 434 } 435 436 static int queue_irq_offset(struct nvme_dev *dev) 437 { 438 /* if we have more than 1 vec, admin queue offsets us by 1 */ 439 if (dev->num_vecs > 1) 440 return 1; 441 442 return 0; 443 } 444 445 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 446 { 447 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 448 int i, qoff, offset; 449 450 offset = queue_irq_offset(dev); 451 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 452 struct blk_mq_queue_map *map = &set->map[i]; 453 454 map->nr_queues = dev->io_queues[i]; 455 if (!map->nr_queues) { 456 BUG_ON(i == HCTX_TYPE_DEFAULT); 457 continue; 458 } 459 460 /* 461 * The poll queue(s) doesn't have an IRQ (and hence IRQ 462 * affinity), so use the regular blk-mq cpu mapping 463 */ 464 map->queue_offset = qoff; 465 if (i != HCTX_TYPE_POLL && offset) 466 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 467 else 468 blk_mq_map_queues(map); 469 qoff += map->nr_queues; 470 offset += map->nr_queues; 471 } 472 } 473 474 /* 475 * Write sq tail if we are asked to, or if the next command would wrap. 476 */ 477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 478 { 479 if (!write_sq) { 480 u16 next_tail = nvmeq->sq_tail + 1; 481 482 if (next_tail == nvmeq->q_depth) 483 next_tail = 0; 484 if (next_tail != nvmeq->last_sq_tail) 485 return; 486 } 487 488 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 489 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 490 writel(nvmeq->sq_tail, nvmeq->q_db); 491 nvmeq->last_sq_tail = nvmeq->sq_tail; 492 } 493 494 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 495 struct nvme_command *cmd) 496 { 497 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 498 absolute_pointer(cmd), sizeof(*cmd)); 499 if (++nvmeq->sq_tail == nvmeq->q_depth) 500 nvmeq->sq_tail = 0; 501 } 502 503 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 504 { 505 struct nvme_queue *nvmeq = hctx->driver_data; 506 507 spin_lock(&nvmeq->sq_lock); 508 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 509 nvme_write_sq_db(nvmeq, true); 510 spin_unlock(&nvmeq->sq_lock); 511 } 512 513 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev, 514 struct request *req) 515 { 516 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 517 return false; 518 return req->nr_integrity_segments > 1 || 519 nvme_req(req)->flags & NVME_REQ_USERCMD; 520 } 521 522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 523 int nseg) 524 { 525 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 526 unsigned int avg_seg_size; 527 528 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 529 530 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 531 return false; 532 if (!nvmeq->qid) 533 return false; 534 if (nvme_pci_metadata_use_sgls(dev, req)) 535 return true; 536 if (!sgl_threshold || avg_seg_size < sgl_threshold) 537 return nvme_req(req)->flags & NVME_REQ_USERCMD; 538 return true; 539 } 540 541 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 542 { 543 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 544 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 545 dma_addr_t dma_addr = iod->first_dma; 546 int i; 547 548 for (i = 0; i < iod->nr_allocations; i++) { 549 __le64 *prp_list = iod->list[i].prp_list; 550 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 551 552 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 553 dma_addr = next_dma_addr; 554 } 555 } 556 557 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 558 { 559 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 560 561 if (iod->dma_len) { 562 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 563 rq_dma_dir(req)); 564 return; 565 } 566 567 WARN_ON_ONCE(!iod->sgt.nents); 568 569 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 570 571 if (iod->nr_allocations == 0) 572 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 573 iod->first_dma); 574 else if (iod->nr_allocations == 1) 575 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 576 iod->first_dma); 577 else 578 nvme_free_prps(dev, req); 579 mempool_free(iod->sgt.sgl, dev->iod_mempool); 580 } 581 582 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 583 { 584 int i; 585 struct scatterlist *sg; 586 587 for_each_sg(sgl, sg, nents, i) { 588 dma_addr_t phys = sg_phys(sg); 589 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 590 "dma_address:%pad dma_length:%d\n", 591 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 592 sg_dma_len(sg)); 593 } 594 } 595 596 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 597 struct request *req, struct nvme_rw_command *cmnd) 598 { 599 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 600 struct dma_pool *pool; 601 int length = blk_rq_payload_bytes(req); 602 struct scatterlist *sg = iod->sgt.sgl; 603 int dma_len = sg_dma_len(sg); 604 u64 dma_addr = sg_dma_address(sg); 605 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 606 __le64 *prp_list; 607 dma_addr_t prp_dma; 608 int nprps, i; 609 610 length -= (NVME_CTRL_PAGE_SIZE - offset); 611 if (length <= 0) { 612 iod->first_dma = 0; 613 goto done; 614 } 615 616 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 617 if (dma_len) { 618 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 619 } else { 620 sg = sg_next(sg); 621 dma_addr = sg_dma_address(sg); 622 dma_len = sg_dma_len(sg); 623 } 624 625 if (length <= NVME_CTRL_PAGE_SIZE) { 626 iod->first_dma = dma_addr; 627 goto done; 628 } 629 630 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 631 if (nprps <= (256 / 8)) { 632 pool = dev->prp_small_pool; 633 iod->nr_allocations = 0; 634 } else { 635 pool = dev->prp_page_pool; 636 iod->nr_allocations = 1; 637 } 638 639 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 640 if (!prp_list) { 641 iod->nr_allocations = -1; 642 return BLK_STS_RESOURCE; 643 } 644 iod->list[0].prp_list = prp_list; 645 iod->first_dma = prp_dma; 646 i = 0; 647 for (;;) { 648 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 649 __le64 *old_prp_list = prp_list; 650 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 651 if (!prp_list) 652 goto free_prps; 653 iod->list[iod->nr_allocations++].prp_list = prp_list; 654 prp_list[0] = old_prp_list[i - 1]; 655 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 656 i = 1; 657 } 658 prp_list[i++] = cpu_to_le64(dma_addr); 659 dma_len -= NVME_CTRL_PAGE_SIZE; 660 dma_addr += NVME_CTRL_PAGE_SIZE; 661 length -= NVME_CTRL_PAGE_SIZE; 662 if (length <= 0) 663 break; 664 if (dma_len > 0) 665 continue; 666 if (unlikely(dma_len < 0)) 667 goto bad_sgl; 668 sg = sg_next(sg); 669 dma_addr = sg_dma_address(sg); 670 dma_len = sg_dma_len(sg); 671 } 672 done: 673 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 674 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 675 return BLK_STS_OK; 676 free_prps: 677 nvme_free_prps(dev, req); 678 return BLK_STS_RESOURCE; 679 bad_sgl: 680 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 681 "Invalid SGL for payload:%d nents:%d\n", 682 blk_rq_payload_bytes(req), iod->sgt.nents); 683 return BLK_STS_IOERR; 684 } 685 686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 687 struct scatterlist *sg) 688 { 689 sge->addr = cpu_to_le64(sg_dma_address(sg)); 690 sge->length = cpu_to_le32(sg_dma_len(sg)); 691 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 692 } 693 694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 695 dma_addr_t dma_addr, int entries) 696 { 697 sge->addr = cpu_to_le64(dma_addr); 698 sge->length = cpu_to_le32(entries * sizeof(*sge)); 699 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 700 } 701 702 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 703 struct request *req, struct nvme_rw_command *cmd) 704 { 705 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 706 struct dma_pool *pool; 707 struct nvme_sgl_desc *sg_list; 708 struct scatterlist *sg = iod->sgt.sgl; 709 unsigned int entries = iod->sgt.nents; 710 dma_addr_t sgl_dma; 711 int i = 0; 712 713 /* setting the transfer type as SGL */ 714 cmd->flags = NVME_CMD_SGL_METABUF; 715 716 if (entries == 1) { 717 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 718 return BLK_STS_OK; 719 } 720 721 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 722 pool = dev->prp_small_pool; 723 iod->nr_allocations = 0; 724 } else { 725 pool = dev->prp_page_pool; 726 iod->nr_allocations = 1; 727 } 728 729 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 730 if (!sg_list) { 731 iod->nr_allocations = -1; 732 return BLK_STS_RESOURCE; 733 } 734 735 iod->list[0].sg_list = sg_list; 736 iod->first_dma = sgl_dma; 737 738 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 739 do { 740 nvme_pci_sgl_set_data(&sg_list[i++], sg); 741 sg = sg_next(sg); 742 } while (--entries > 0); 743 744 return BLK_STS_OK; 745 } 746 747 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 748 struct request *req, struct nvme_rw_command *cmnd, 749 struct bio_vec *bv) 750 { 751 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 752 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 753 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 754 755 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 756 if (dma_mapping_error(dev->dev, iod->first_dma)) 757 return BLK_STS_RESOURCE; 758 iod->dma_len = bv->bv_len; 759 760 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 761 if (bv->bv_len > first_prp_len) 762 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 763 else 764 cmnd->dptr.prp2 = 0; 765 return BLK_STS_OK; 766 } 767 768 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 769 struct request *req, struct nvme_rw_command *cmnd, 770 struct bio_vec *bv) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 775 if (dma_mapping_error(dev->dev, iod->first_dma)) 776 return BLK_STS_RESOURCE; 777 iod->dma_len = bv->bv_len; 778 779 cmnd->flags = NVME_CMD_SGL_METABUF; 780 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 781 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 782 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 783 return BLK_STS_OK; 784 } 785 786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 787 struct nvme_command *cmnd) 788 { 789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 790 blk_status_t ret = BLK_STS_RESOURCE; 791 int rc; 792 793 if (blk_rq_nr_phys_segments(req) == 1) { 794 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 795 struct bio_vec bv = req_bvec(req); 796 797 if (!is_pci_p2pdma_page(bv.bv_page)) { 798 if (!nvme_pci_metadata_use_sgls(dev, req) && 799 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 800 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 801 return nvme_setup_prp_simple(dev, req, 802 &cmnd->rw, &bv); 803 804 if (nvmeq->qid && sgl_threshold && 805 nvme_ctrl_sgl_supported(&dev->ctrl)) 806 return nvme_setup_sgl_simple(dev, req, 807 &cmnd->rw, &bv); 808 } 809 } 810 811 iod->dma_len = 0; 812 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 813 if (!iod->sgt.sgl) 814 return BLK_STS_RESOURCE; 815 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 816 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 817 if (!iod->sgt.orig_nents) 818 goto out_free_sg; 819 820 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 821 DMA_ATTR_NO_WARN); 822 if (rc) { 823 if (rc == -EREMOTEIO) 824 ret = BLK_STS_TARGET; 825 goto out_free_sg; 826 } 827 828 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 829 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 830 else 831 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 832 if (ret != BLK_STS_OK) 833 goto out_unmap_sg; 834 return BLK_STS_OK; 835 836 out_unmap_sg: 837 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 838 out_free_sg: 839 mempool_free(iod->sgt.sgl, dev->iod_mempool); 840 return ret; 841 } 842 843 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev, 844 struct request *req) 845 { 846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 847 struct nvme_rw_command *cmnd = &iod->cmd.rw; 848 struct nvme_sgl_desc *sg_list; 849 struct scatterlist *sgl, *sg; 850 unsigned int entries; 851 dma_addr_t sgl_dma; 852 int rc, i; 853 854 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC); 855 if (!iod->meta_sgt.sgl) 856 return BLK_STS_RESOURCE; 857 858 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments); 859 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req, 860 iod->meta_sgt.sgl); 861 if (!iod->meta_sgt.orig_nents) 862 goto out_free_sg; 863 864 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 865 DMA_ATTR_NO_WARN); 866 if (rc) 867 goto out_free_sg; 868 869 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma); 870 if (!sg_list) 871 goto out_unmap_sg; 872 873 entries = iod->meta_sgt.nents; 874 iod->meta_list.sg_list = sg_list; 875 iod->meta_dma = sgl_dma; 876 877 cmnd->flags = NVME_CMD_SGL_METASEG; 878 cmnd->metadata = cpu_to_le64(sgl_dma); 879 880 sgl = iod->meta_sgt.sgl; 881 if (entries == 1) { 882 nvme_pci_sgl_set_data(sg_list, sgl); 883 return BLK_STS_OK; 884 } 885 886 sgl_dma += sizeof(*sg_list); 887 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries); 888 for_each_sg(sgl, sg, entries, i) 889 nvme_pci_sgl_set_data(&sg_list[i + 1], sg); 890 891 return BLK_STS_OK; 892 893 out_unmap_sg: 894 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 895 out_free_sg: 896 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 897 return BLK_STS_RESOURCE; 898 } 899 900 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev, 901 struct request *req) 902 { 903 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 904 struct bio_vec bv = rq_integrity_vec(req); 905 struct nvme_command *cmnd = &iod->cmd; 906 907 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 908 if (dma_mapping_error(dev->dev, iod->meta_dma)) 909 return BLK_STS_IOERR; 910 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 911 return BLK_STS_OK; 912 } 913 914 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req) 915 { 916 if (nvme_pci_metadata_use_sgls(dev, req)) 917 return nvme_pci_setup_meta_sgls(dev, req); 918 return nvme_pci_setup_meta_mptr(dev, req); 919 } 920 921 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 922 { 923 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 924 blk_status_t ret; 925 926 iod->aborted = false; 927 iod->nr_allocations = -1; 928 iod->sgt.nents = 0; 929 iod->meta_sgt.nents = 0; 930 931 ret = nvme_setup_cmd(req->q->queuedata, req); 932 if (ret) 933 return ret; 934 935 if (blk_rq_nr_phys_segments(req)) { 936 ret = nvme_map_data(dev, req, &iod->cmd); 937 if (ret) 938 goto out_free_cmd; 939 } 940 941 if (blk_integrity_rq(req)) { 942 ret = nvme_map_metadata(dev, req); 943 if (ret) 944 goto out_unmap_data; 945 } 946 947 nvme_start_request(req); 948 return BLK_STS_OK; 949 out_unmap_data: 950 if (blk_rq_nr_phys_segments(req)) 951 nvme_unmap_data(dev, req); 952 out_free_cmd: 953 nvme_cleanup_cmd(req); 954 return ret; 955 } 956 957 /* 958 * NOTE: ns is NULL when called on the admin queue. 959 */ 960 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 961 const struct blk_mq_queue_data *bd) 962 { 963 struct nvme_queue *nvmeq = hctx->driver_data; 964 struct nvme_dev *dev = nvmeq->dev; 965 struct request *req = bd->rq; 966 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 967 blk_status_t ret; 968 969 /* 970 * We should not need to do this, but we're still using this to 971 * ensure we can drain requests on a dying queue. 972 */ 973 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 974 return BLK_STS_IOERR; 975 976 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 977 return nvme_fail_nonready_command(&dev->ctrl, req); 978 979 ret = nvme_prep_rq(dev, req); 980 if (unlikely(ret)) 981 return ret; 982 spin_lock(&nvmeq->sq_lock); 983 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 984 nvme_write_sq_db(nvmeq, bd->last); 985 spin_unlock(&nvmeq->sq_lock); 986 return BLK_STS_OK; 987 } 988 989 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 990 { 991 struct request *req; 992 993 spin_lock(&nvmeq->sq_lock); 994 while ((req = rq_list_pop(rqlist))) { 995 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 996 997 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 998 } 999 nvme_write_sq_db(nvmeq, true); 1000 spin_unlock(&nvmeq->sq_lock); 1001 } 1002 1003 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1004 { 1005 /* 1006 * We should not need to do this, but we're still using this to 1007 * ensure we can drain requests on a dying queue. 1008 */ 1009 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1010 return false; 1011 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1012 return false; 1013 1014 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 1015 } 1016 1017 static void nvme_queue_rqs(struct rq_list *rqlist) 1018 { 1019 struct rq_list submit_list = { }; 1020 struct rq_list requeue_list = { }; 1021 struct nvme_queue *nvmeq = NULL; 1022 struct request *req; 1023 1024 while ((req = rq_list_pop(rqlist))) { 1025 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1026 nvme_submit_cmds(nvmeq, &submit_list); 1027 nvmeq = req->mq_hctx->driver_data; 1028 1029 if (nvme_prep_rq_batch(nvmeq, req)) 1030 rq_list_add_tail(&submit_list, req); 1031 else 1032 rq_list_add_tail(&requeue_list, req); 1033 } 1034 1035 if (nvmeq) 1036 nvme_submit_cmds(nvmeq, &submit_list); 1037 *rqlist = requeue_list; 1038 } 1039 1040 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev, 1041 struct request *req) 1042 { 1043 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1044 1045 if (!iod->meta_sgt.nents) { 1046 dma_unmap_page(dev->dev, iod->meta_dma, 1047 rq_integrity_vec(req).bv_len, 1048 rq_dma_dir(req)); 1049 return; 1050 } 1051 1052 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list, 1053 iod->meta_dma); 1054 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1055 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1056 } 1057 1058 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1059 { 1060 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1061 struct nvme_dev *dev = nvmeq->dev; 1062 1063 if (blk_integrity_rq(req)) 1064 nvme_unmap_metadata(dev, req); 1065 1066 if (blk_rq_nr_phys_segments(req)) 1067 nvme_unmap_data(dev, req); 1068 } 1069 1070 static void nvme_pci_complete_rq(struct request *req) 1071 { 1072 nvme_pci_unmap_rq(req); 1073 nvme_complete_rq(req); 1074 } 1075 1076 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1077 { 1078 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1079 } 1080 1081 /* We read the CQE phase first to check if the rest of the entry is valid */ 1082 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1083 { 1084 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1085 1086 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1087 } 1088 1089 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1090 { 1091 u16 head = nvmeq->cq_head; 1092 1093 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1094 nvmeq->dbbuf_cq_ei)) 1095 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1096 } 1097 1098 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1099 { 1100 if (!nvmeq->qid) 1101 return nvmeq->dev->admin_tagset.tags[0]; 1102 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1103 } 1104 1105 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1106 struct io_comp_batch *iob, u16 idx) 1107 { 1108 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1109 __u16 command_id = READ_ONCE(cqe->command_id); 1110 struct request *req; 1111 1112 /* 1113 * AEN requests are special as they don't time out and can 1114 * survive any kind of queue freeze and often don't respond to 1115 * aborts. We don't even bother to allocate a struct request 1116 * for them but rather special case them here. 1117 */ 1118 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1119 nvme_complete_async_event(&nvmeq->dev->ctrl, 1120 cqe->status, &cqe->result); 1121 return; 1122 } 1123 1124 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1125 if (unlikely(!req)) { 1126 dev_warn(nvmeq->dev->ctrl.device, 1127 "invalid id %d completed on queue %d\n", 1128 command_id, le16_to_cpu(cqe->sq_id)); 1129 return; 1130 } 1131 1132 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1133 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1134 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1135 nvme_pci_complete_batch)) 1136 nvme_pci_complete_rq(req); 1137 } 1138 1139 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1140 { 1141 u32 tmp = nvmeq->cq_head + 1; 1142 1143 if (tmp == nvmeq->q_depth) { 1144 nvmeq->cq_head = 0; 1145 nvmeq->cq_phase ^= 1; 1146 } else { 1147 nvmeq->cq_head = tmp; 1148 } 1149 } 1150 1151 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1152 struct io_comp_batch *iob) 1153 { 1154 int found = 0; 1155 1156 while (nvme_cqe_pending(nvmeq)) { 1157 found++; 1158 /* 1159 * load-load control dependency between phase and the rest of 1160 * the cqe requires a full read memory barrier 1161 */ 1162 dma_rmb(); 1163 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1164 nvme_update_cq_head(nvmeq); 1165 } 1166 1167 if (found) 1168 nvme_ring_cq_doorbell(nvmeq); 1169 return found; 1170 } 1171 1172 static irqreturn_t nvme_irq(int irq, void *data) 1173 { 1174 struct nvme_queue *nvmeq = data; 1175 DEFINE_IO_COMP_BATCH(iob); 1176 1177 if (nvme_poll_cq(nvmeq, &iob)) { 1178 if (!rq_list_empty(&iob.req_list)) 1179 nvme_pci_complete_batch(&iob); 1180 return IRQ_HANDLED; 1181 } 1182 return IRQ_NONE; 1183 } 1184 1185 static irqreturn_t nvme_irq_check(int irq, void *data) 1186 { 1187 struct nvme_queue *nvmeq = data; 1188 1189 if (nvme_cqe_pending(nvmeq)) 1190 return IRQ_WAKE_THREAD; 1191 return IRQ_NONE; 1192 } 1193 1194 /* 1195 * Poll for completions for any interrupt driven queue 1196 * Can be called from any context. 1197 */ 1198 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1199 { 1200 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1201 1202 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1203 1204 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1205 nvme_poll_cq(nvmeq, NULL); 1206 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1207 } 1208 1209 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1210 { 1211 struct nvme_queue *nvmeq = hctx->driver_data; 1212 bool found; 1213 1214 if (!nvme_cqe_pending(nvmeq)) 1215 return 0; 1216 1217 spin_lock(&nvmeq->cq_poll_lock); 1218 found = nvme_poll_cq(nvmeq, iob); 1219 spin_unlock(&nvmeq->cq_poll_lock); 1220 1221 return found; 1222 } 1223 1224 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1225 { 1226 struct nvme_dev *dev = to_nvme_dev(ctrl); 1227 struct nvme_queue *nvmeq = &dev->queues[0]; 1228 struct nvme_command c = { }; 1229 1230 c.common.opcode = nvme_admin_async_event; 1231 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1232 1233 spin_lock(&nvmeq->sq_lock); 1234 nvme_sq_copy_cmd(nvmeq, &c); 1235 nvme_write_sq_db(nvmeq, true); 1236 spin_unlock(&nvmeq->sq_lock); 1237 } 1238 1239 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1240 { 1241 struct nvme_dev *dev = to_nvme_dev(ctrl); 1242 int ret = 0; 1243 1244 /* 1245 * Taking the shutdown_lock ensures the BAR mapping is not being 1246 * altered by reset_work. Holding this lock before the RESETTING state 1247 * change, if successful, also ensures nvme_remove won't be able to 1248 * proceed to iounmap until we're done. 1249 */ 1250 mutex_lock(&dev->shutdown_lock); 1251 if (!dev->bar_mapped_size) { 1252 ret = -ENODEV; 1253 goto unlock; 1254 } 1255 1256 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1257 ret = -EBUSY; 1258 goto unlock; 1259 } 1260 1261 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1262 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1263 1264 /* 1265 * Read controller status to flush the previous write and trigger a 1266 * pcie read error. 1267 */ 1268 readl(dev->bar + NVME_REG_CSTS); 1269 unlock: 1270 mutex_unlock(&dev->shutdown_lock); 1271 return ret; 1272 } 1273 1274 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1275 { 1276 struct nvme_command c = { }; 1277 1278 c.delete_queue.opcode = opcode; 1279 c.delete_queue.qid = cpu_to_le16(id); 1280 1281 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1282 } 1283 1284 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1285 struct nvme_queue *nvmeq, s16 vector) 1286 { 1287 struct nvme_command c = { }; 1288 int flags = NVME_QUEUE_PHYS_CONTIG; 1289 1290 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1291 flags |= NVME_CQ_IRQ_ENABLED; 1292 1293 /* 1294 * Note: we (ab)use the fact that the prp fields survive if no data 1295 * is attached to the request. 1296 */ 1297 c.create_cq.opcode = nvme_admin_create_cq; 1298 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1299 c.create_cq.cqid = cpu_to_le16(qid); 1300 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1301 c.create_cq.cq_flags = cpu_to_le16(flags); 1302 c.create_cq.irq_vector = cpu_to_le16(vector); 1303 1304 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1305 } 1306 1307 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1308 struct nvme_queue *nvmeq) 1309 { 1310 struct nvme_ctrl *ctrl = &dev->ctrl; 1311 struct nvme_command c = { }; 1312 int flags = NVME_QUEUE_PHYS_CONTIG; 1313 1314 /* 1315 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1316 * set. Since URGENT priority is zeroes, it makes all queues 1317 * URGENT. 1318 */ 1319 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1320 flags |= NVME_SQ_PRIO_MEDIUM; 1321 1322 /* 1323 * Note: we (ab)use the fact that the prp fields survive if no data 1324 * is attached to the request. 1325 */ 1326 c.create_sq.opcode = nvme_admin_create_sq; 1327 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1328 c.create_sq.sqid = cpu_to_le16(qid); 1329 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1330 c.create_sq.sq_flags = cpu_to_le16(flags); 1331 c.create_sq.cqid = cpu_to_le16(qid); 1332 1333 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1334 } 1335 1336 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1337 { 1338 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1339 } 1340 1341 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1342 { 1343 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1344 } 1345 1346 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1347 { 1348 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1349 1350 dev_warn(nvmeq->dev->ctrl.device, 1351 "Abort status: 0x%x", nvme_req(req)->status); 1352 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1353 blk_mq_free_request(req); 1354 return RQ_END_IO_NONE; 1355 } 1356 1357 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1358 { 1359 /* If true, indicates loss of adapter communication, possibly by a 1360 * NVMe Subsystem reset. 1361 */ 1362 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1363 1364 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1365 switch (nvme_ctrl_state(&dev->ctrl)) { 1366 case NVME_CTRL_RESETTING: 1367 case NVME_CTRL_CONNECTING: 1368 return false; 1369 default: 1370 break; 1371 } 1372 1373 /* We shouldn't reset unless the controller is on fatal error state 1374 * _or_ if we lost the communication with it. 1375 */ 1376 if (!(csts & NVME_CSTS_CFS) && !nssro) 1377 return false; 1378 1379 return true; 1380 } 1381 1382 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1383 { 1384 /* Read a config register to help see what died. */ 1385 u16 pci_status; 1386 int result; 1387 1388 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1389 &pci_status); 1390 if (result == PCIBIOS_SUCCESSFUL) 1391 dev_warn(dev->ctrl.device, 1392 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1393 csts, pci_status); 1394 else 1395 dev_warn(dev->ctrl.device, 1396 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1397 csts, result); 1398 1399 if (csts != ~0) 1400 return; 1401 1402 dev_warn(dev->ctrl.device, 1403 "Does your device have a faulty power saving mode enabled?\n"); 1404 dev_warn(dev->ctrl.device, 1405 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1406 } 1407 1408 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1409 { 1410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1411 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1412 struct nvme_dev *dev = nvmeq->dev; 1413 struct request *abort_req; 1414 struct nvme_command cmd = { }; 1415 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1416 u8 opcode; 1417 1418 if (nvme_state_terminal(&dev->ctrl)) 1419 goto disable; 1420 1421 /* If PCI error recovery process is happening, we cannot reset or 1422 * the recovery mechanism will surely fail. 1423 */ 1424 mb(); 1425 if (pci_channel_offline(to_pci_dev(dev->dev))) 1426 return BLK_EH_RESET_TIMER; 1427 1428 /* 1429 * Reset immediately if the controller is failed 1430 */ 1431 if (nvme_should_reset(dev, csts)) { 1432 nvme_warn_reset(dev, csts); 1433 goto disable; 1434 } 1435 1436 /* 1437 * Did we miss an interrupt? 1438 */ 1439 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1440 nvme_poll(req->mq_hctx, NULL); 1441 else 1442 nvme_poll_irqdisable(nvmeq); 1443 1444 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1445 dev_warn(dev->ctrl.device, 1446 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1447 req->tag, nvme_cid(req), nvmeq->qid); 1448 return BLK_EH_DONE; 1449 } 1450 1451 /* 1452 * Shutdown immediately if controller times out while starting. The 1453 * reset work will see the pci device disabled when it gets the forced 1454 * cancellation error. All outstanding requests are completed on 1455 * shutdown, so we return BLK_EH_DONE. 1456 */ 1457 switch (nvme_ctrl_state(&dev->ctrl)) { 1458 case NVME_CTRL_CONNECTING: 1459 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1460 fallthrough; 1461 case NVME_CTRL_DELETING: 1462 dev_warn_ratelimited(dev->ctrl.device, 1463 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1464 req->tag, nvme_cid(req), nvmeq->qid); 1465 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1466 nvme_dev_disable(dev, true); 1467 return BLK_EH_DONE; 1468 case NVME_CTRL_RESETTING: 1469 return BLK_EH_RESET_TIMER; 1470 default: 1471 break; 1472 } 1473 1474 /* 1475 * Shutdown the controller immediately and schedule a reset if the 1476 * command was already aborted once before and still hasn't been 1477 * returned to the driver, or if this is the admin queue. 1478 */ 1479 opcode = nvme_req(req)->cmd->common.opcode; 1480 if (!nvmeq->qid || iod->aborted) { 1481 dev_warn(dev->ctrl.device, 1482 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1483 req->tag, nvme_cid(req), opcode, 1484 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1485 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1486 goto disable; 1487 } 1488 1489 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1490 atomic_inc(&dev->ctrl.abort_limit); 1491 return BLK_EH_RESET_TIMER; 1492 } 1493 iod->aborted = true; 1494 1495 cmd.abort.opcode = nvme_admin_abort_cmd; 1496 cmd.abort.cid = nvme_cid(req); 1497 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1498 1499 dev_warn(nvmeq->dev->ctrl.device, 1500 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1501 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1502 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1503 blk_rq_bytes(req)); 1504 1505 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1506 BLK_MQ_REQ_NOWAIT); 1507 if (IS_ERR(abort_req)) { 1508 atomic_inc(&dev->ctrl.abort_limit); 1509 return BLK_EH_RESET_TIMER; 1510 } 1511 nvme_init_request(abort_req, &cmd); 1512 1513 abort_req->end_io = abort_endio; 1514 abort_req->end_io_data = NULL; 1515 blk_execute_rq_nowait(abort_req, false); 1516 1517 /* 1518 * The aborted req will be completed on receiving the abort req. 1519 * We enable the timer again. If hit twice, it'll cause a device reset, 1520 * as the device then is in a faulty state. 1521 */ 1522 return BLK_EH_RESET_TIMER; 1523 1524 disable: 1525 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1526 if (nvme_state_terminal(&dev->ctrl)) 1527 nvme_dev_disable(dev, true); 1528 return BLK_EH_DONE; 1529 } 1530 1531 nvme_dev_disable(dev, false); 1532 if (nvme_try_sched_reset(&dev->ctrl)) 1533 nvme_unquiesce_io_queues(&dev->ctrl); 1534 return BLK_EH_DONE; 1535 } 1536 1537 static void nvme_free_queue(struct nvme_queue *nvmeq) 1538 { 1539 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1540 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1541 if (!nvmeq->sq_cmds) 1542 return; 1543 1544 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1545 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1546 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1547 } else { 1548 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1549 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1550 } 1551 } 1552 1553 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1554 { 1555 int i; 1556 1557 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1558 dev->ctrl.queue_count--; 1559 nvme_free_queue(&dev->queues[i]); 1560 } 1561 } 1562 1563 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1564 { 1565 struct nvme_queue *nvmeq = &dev->queues[qid]; 1566 1567 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1568 return; 1569 1570 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1571 mb(); 1572 1573 nvmeq->dev->online_queues--; 1574 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1575 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1576 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1577 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1578 } 1579 1580 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1581 { 1582 int i; 1583 1584 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1585 nvme_suspend_queue(dev, i); 1586 } 1587 1588 /* 1589 * Called only on a device that has been disabled and after all other threads 1590 * that can check this device's completion queues have synced, except 1591 * nvme_poll(). This is the last chance for the driver to see a natural 1592 * completion before nvme_cancel_request() terminates all incomplete requests. 1593 */ 1594 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1595 { 1596 int i; 1597 1598 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1599 spin_lock(&dev->queues[i].cq_poll_lock); 1600 nvme_poll_cq(&dev->queues[i], NULL); 1601 spin_unlock(&dev->queues[i].cq_poll_lock); 1602 } 1603 } 1604 1605 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1606 int entry_size) 1607 { 1608 int q_depth = dev->q_depth; 1609 unsigned q_size_aligned = roundup(q_depth * entry_size, 1610 NVME_CTRL_PAGE_SIZE); 1611 1612 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1613 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1614 1615 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1616 q_depth = div_u64(mem_per_q, entry_size); 1617 1618 /* 1619 * Ensure the reduced q_depth is above some threshold where it 1620 * would be better to map queues in system memory with the 1621 * original depth 1622 */ 1623 if (q_depth < 64) 1624 return -ENOMEM; 1625 } 1626 1627 return q_depth; 1628 } 1629 1630 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1631 int qid) 1632 { 1633 struct pci_dev *pdev = to_pci_dev(dev->dev); 1634 1635 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1636 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1637 if (nvmeq->sq_cmds) { 1638 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1639 nvmeq->sq_cmds); 1640 if (nvmeq->sq_dma_addr) { 1641 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1642 return 0; 1643 } 1644 1645 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1646 } 1647 } 1648 1649 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1650 &nvmeq->sq_dma_addr, GFP_KERNEL); 1651 if (!nvmeq->sq_cmds) 1652 return -ENOMEM; 1653 return 0; 1654 } 1655 1656 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1657 { 1658 struct nvme_queue *nvmeq = &dev->queues[qid]; 1659 1660 if (dev->ctrl.queue_count > qid) 1661 return 0; 1662 1663 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1664 nvmeq->q_depth = depth; 1665 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1666 &nvmeq->cq_dma_addr, GFP_KERNEL); 1667 if (!nvmeq->cqes) 1668 goto free_nvmeq; 1669 1670 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1671 goto free_cqdma; 1672 1673 nvmeq->dev = dev; 1674 spin_lock_init(&nvmeq->sq_lock); 1675 spin_lock_init(&nvmeq->cq_poll_lock); 1676 nvmeq->cq_head = 0; 1677 nvmeq->cq_phase = 1; 1678 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1679 nvmeq->qid = qid; 1680 dev->ctrl.queue_count++; 1681 1682 return 0; 1683 1684 free_cqdma: 1685 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1686 nvmeq->cq_dma_addr); 1687 free_nvmeq: 1688 return -ENOMEM; 1689 } 1690 1691 static int queue_request_irq(struct nvme_queue *nvmeq) 1692 { 1693 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1694 int nr = nvmeq->dev->ctrl.instance; 1695 1696 if (use_threaded_interrupts) { 1697 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1698 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1699 } else { 1700 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1701 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1702 } 1703 } 1704 1705 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1706 { 1707 struct nvme_dev *dev = nvmeq->dev; 1708 1709 nvmeq->sq_tail = 0; 1710 nvmeq->last_sq_tail = 0; 1711 nvmeq->cq_head = 0; 1712 nvmeq->cq_phase = 1; 1713 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1714 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1715 nvme_dbbuf_init(dev, nvmeq, qid); 1716 dev->online_queues++; 1717 wmb(); /* ensure the first interrupt sees the initialization */ 1718 } 1719 1720 /* 1721 * Try getting shutdown_lock while setting up IO queues. 1722 */ 1723 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1724 { 1725 /* 1726 * Give up if the lock is being held by nvme_dev_disable. 1727 */ 1728 if (!mutex_trylock(&dev->shutdown_lock)) 1729 return -ENODEV; 1730 1731 /* 1732 * Controller is in wrong state, fail early. 1733 */ 1734 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1735 mutex_unlock(&dev->shutdown_lock); 1736 return -ENODEV; 1737 } 1738 1739 return 0; 1740 } 1741 1742 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1743 { 1744 struct nvme_dev *dev = nvmeq->dev; 1745 int result; 1746 u16 vector = 0; 1747 1748 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1749 1750 /* 1751 * A queue's vector matches the queue identifier unless the controller 1752 * has only one vector available. 1753 */ 1754 if (!polled) 1755 vector = dev->num_vecs == 1 ? 0 : qid; 1756 else 1757 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1758 1759 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1760 if (result) 1761 return result; 1762 1763 result = adapter_alloc_sq(dev, qid, nvmeq); 1764 if (result < 0) 1765 return result; 1766 if (result) 1767 goto release_cq; 1768 1769 nvmeq->cq_vector = vector; 1770 1771 result = nvme_setup_io_queues_trylock(dev); 1772 if (result) 1773 return result; 1774 nvme_init_queue(nvmeq, qid); 1775 if (!polled) { 1776 result = queue_request_irq(nvmeq); 1777 if (result < 0) 1778 goto release_sq; 1779 } 1780 1781 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1782 mutex_unlock(&dev->shutdown_lock); 1783 return result; 1784 1785 release_sq: 1786 dev->online_queues--; 1787 mutex_unlock(&dev->shutdown_lock); 1788 adapter_delete_sq(dev, qid); 1789 release_cq: 1790 adapter_delete_cq(dev, qid); 1791 return result; 1792 } 1793 1794 static const struct blk_mq_ops nvme_mq_admin_ops = { 1795 .queue_rq = nvme_queue_rq, 1796 .complete = nvme_pci_complete_rq, 1797 .init_hctx = nvme_admin_init_hctx, 1798 .init_request = nvme_pci_init_request, 1799 .timeout = nvme_timeout, 1800 }; 1801 1802 static const struct blk_mq_ops nvme_mq_ops = { 1803 .queue_rq = nvme_queue_rq, 1804 .queue_rqs = nvme_queue_rqs, 1805 .complete = nvme_pci_complete_rq, 1806 .commit_rqs = nvme_commit_rqs, 1807 .init_hctx = nvme_init_hctx, 1808 .init_request = nvme_pci_init_request, 1809 .map_queues = nvme_pci_map_queues, 1810 .timeout = nvme_timeout, 1811 .poll = nvme_poll, 1812 }; 1813 1814 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1815 { 1816 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1817 /* 1818 * If the controller was reset during removal, it's possible 1819 * user requests may be waiting on a stopped queue. Start the 1820 * queue to flush these to completion. 1821 */ 1822 nvme_unquiesce_admin_queue(&dev->ctrl); 1823 nvme_remove_admin_tag_set(&dev->ctrl); 1824 } 1825 } 1826 1827 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1828 { 1829 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1830 } 1831 1832 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1833 { 1834 struct pci_dev *pdev = to_pci_dev(dev->dev); 1835 1836 if (size <= dev->bar_mapped_size) 1837 return 0; 1838 if (size > pci_resource_len(pdev, 0)) 1839 return -ENOMEM; 1840 if (dev->bar) 1841 iounmap(dev->bar); 1842 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1843 if (!dev->bar) { 1844 dev->bar_mapped_size = 0; 1845 return -ENOMEM; 1846 } 1847 dev->bar_mapped_size = size; 1848 dev->dbs = dev->bar + NVME_REG_DBS; 1849 1850 return 0; 1851 } 1852 1853 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1854 { 1855 int result; 1856 u32 aqa; 1857 struct nvme_queue *nvmeq; 1858 1859 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1860 if (result < 0) 1861 return result; 1862 1863 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1864 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1865 1866 if (dev->subsystem && 1867 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1868 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1869 1870 /* 1871 * If the device has been passed off to us in an enabled state, just 1872 * clear the enabled bit. The spec says we should set the 'shutdown 1873 * notification bits', but doing so may cause the device to complete 1874 * commands to the admin queue ... and we don't know what memory that 1875 * might be pointing at! 1876 */ 1877 result = nvme_disable_ctrl(&dev->ctrl, false); 1878 if (result < 0) 1879 return result; 1880 1881 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1882 if (result) 1883 return result; 1884 1885 dev->ctrl.numa_node = dev_to_node(dev->dev); 1886 1887 nvmeq = &dev->queues[0]; 1888 aqa = nvmeq->q_depth - 1; 1889 aqa |= aqa << 16; 1890 1891 writel(aqa, dev->bar + NVME_REG_AQA); 1892 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1893 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1894 1895 result = nvme_enable_ctrl(&dev->ctrl); 1896 if (result) 1897 return result; 1898 1899 nvmeq->cq_vector = 0; 1900 nvme_init_queue(nvmeq, 0); 1901 result = queue_request_irq(nvmeq); 1902 if (result) { 1903 dev->online_queues--; 1904 return result; 1905 } 1906 1907 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1908 return result; 1909 } 1910 1911 static int nvme_create_io_queues(struct nvme_dev *dev) 1912 { 1913 unsigned i, max, rw_queues; 1914 int ret = 0; 1915 1916 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1917 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1918 ret = -ENOMEM; 1919 break; 1920 } 1921 } 1922 1923 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1924 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1925 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1926 dev->io_queues[HCTX_TYPE_READ]; 1927 } else { 1928 rw_queues = max; 1929 } 1930 1931 for (i = dev->online_queues; i <= max; i++) { 1932 bool polled = i > rw_queues; 1933 1934 ret = nvme_create_queue(&dev->queues[i], i, polled); 1935 if (ret) 1936 break; 1937 } 1938 1939 /* 1940 * Ignore failing Create SQ/CQ commands, we can continue with less 1941 * than the desired amount of queues, and even a controller without 1942 * I/O queues can still be used to issue admin commands. This might 1943 * be useful to upgrade a buggy firmware for example. 1944 */ 1945 return ret >= 0 ? 0 : ret; 1946 } 1947 1948 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1949 { 1950 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1951 1952 return 1ULL << (12 + 4 * szu); 1953 } 1954 1955 static u32 nvme_cmb_size(struct nvme_dev *dev) 1956 { 1957 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1958 } 1959 1960 static void nvme_map_cmb(struct nvme_dev *dev) 1961 { 1962 u64 size, offset; 1963 resource_size_t bar_size; 1964 struct pci_dev *pdev = to_pci_dev(dev->dev); 1965 int bar; 1966 1967 if (dev->cmb_size) 1968 return; 1969 1970 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1971 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1972 1973 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1974 if (!dev->cmbsz) 1975 return; 1976 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1977 1978 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1979 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1980 bar = NVME_CMB_BIR(dev->cmbloc); 1981 bar_size = pci_resource_len(pdev, bar); 1982 1983 if (offset > bar_size) 1984 return; 1985 1986 /* 1987 * Tell the controller about the host side address mapping the CMB, 1988 * and enable CMB decoding for the NVMe 1.4+ scheme: 1989 */ 1990 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1991 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1992 (pci_bus_address(pdev, bar) + offset), 1993 dev->bar + NVME_REG_CMBMSC); 1994 } 1995 1996 /* 1997 * Controllers may support a CMB size larger than their BAR, 1998 * for example, due to being behind a bridge. Reduce the CMB to 1999 * the reported size of the BAR 2000 */ 2001 if (size > bar_size - offset) 2002 size = bar_size - offset; 2003 2004 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2005 dev_warn(dev->ctrl.device, 2006 "failed to register the CMB\n"); 2007 return; 2008 } 2009 2010 dev->cmb_size = size; 2011 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2012 2013 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2014 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2015 pci_p2pmem_publish(pdev, true); 2016 2017 nvme_update_attrs(dev); 2018 } 2019 2020 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2021 { 2022 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2023 u64 dma_addr = dev->host_mem_descs_dma; 2024 struct nvme_command c = { }; 2025 int ret; 2026 2027 c.features.opcode = nvme_admin_set_features; 2028 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2029 c.features.dword11 = cpu_to_le32(bits); 2030 c.features.dword12 = cpu_to_le32(host_mem_size); 2031 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2032 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2033 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2034 2035 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2036 if (ret) { 2037 dev_warn(dev->ctrl.device, 2038 "failed to set host mem (err %d, flags %#x).\n", 2039 ret, bits); 2040 } else 2041 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2042 2043 return ret; 2044 } 2045 2046 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2047 { 2048 int i; 2049 2050 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2051 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2052 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2053 2054 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2055 le64_to_cpu(desc->addr), 2056 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2057 } 2058 2059 kfree(dev->host_mem_desc_bufs); 2060 dev->host_mem_desc_bufs = NULL; 2061 } 2062 2063 static void nvme_free_host_mem(struct nvme_dev *dev) 2064 { 2065 if (dev->hmb_sgt) 2066 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2067 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2068 else 2069 nvme_free_host_mem_multi(dev); 2070 2071 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2072 dev->host_mem_descs, dev->host_mem_descs_dma); 2073 dev->host_mem_descs = NULL; 2074 dev->host_mem_descs_size = 0; 2075 dev->nr_host_mem_descs = 0; 2076 } 2077 2078 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2079 { 2080 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2081 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2082 if (!dev->hmb_sgt) 2083 return -ENOMEM; 2084 2085 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2086 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2087 GFP_KERNEL); 2088 if (!dev->host_mem_descs) { 2089 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2090 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2091 dev->hmb_sgt = NULL; 2092 return -ENOMEM; 2093 } 2094 dev->host_mem_size = size; 2095 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2096 dev->nr_host_mem_descs = 1; 2097 2098 dev->host_mem_descs[0].addr = 2099 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2100 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2101 return 0; 2102 } 2103 2104 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2105 u32 chunk_size) 2106 { 2107 struct nvme_host_mem_buf_desc *descs; 2108 u32 max_entries, len, descs_size; 2109 dma_addr_t descs_dma; 2110 int i = 0; 2111 void **bufs; 2112 u64 size, tmp; 2113 2114 tmp = (preferred + chunk_size - 1); 2115 do_div(tmp, chunk_size); 2116 max_entries = tmp; 2117 2118 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2119 max_entries = dev->ctrl.hmmaxd; 2120 2121 descs_size = max_entries * sizeof(*descs); 2122 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2123 GFP_KERNEL); 2124 if (!descs) 2125 goto out; 2126 2127 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2128 if (!bufs) 2129 goto out_free_descs; 2130 2131 for (size = 0; size < preferred && i < max_entries; size += len) { 2132 dma_addr_t dma_addr; 2133 2134 len = min_t(u64, chunk_size, preferred - size); 2135 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2136 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2137 if (!bufs[i]) 2138 break; 2139 2140 descs[i].addr = cpu_to_le64(dma_addr); 2141 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2142 i++; 2143 } 2144 2145 if (!size) 2146 goto out_free_bufs; 2147 2148 dev->nr_host_mem_descs = i; 2149 dev->host_mem_size = size; 2150 dev->host_mem_descs = descs; 2151 dev->host_mem_descs_dma = descs_dma; 2152 dev->host_mem_descs_size = descs_size; 2153 dev->host_mem_desc_bufs = bufs; 2154 return 0; 2155 2156 out_free_bufs: 2157 while (--i >= 0) { 2158 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 2159 2160 dma_free_attrs(dev->dev, size, bufs[i], 2161 le64_to_cpu(descs[i].addr), 2162 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2163 } 2164 2165 kfree(bufs); 2166 out_free_descs: 2167 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2168 out: 2169 dev->host_mem_descs = NULL; 2170 return -ENOMEM; 2171 } 2172 2173 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2174 { 2175 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2176 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2177 u64 chunk_size; 2178 2179 /* 2180 * If there is an IOMMU that can merge pages, try a virtually 2181 * non-contiguous allocation for a single segment first. 2182 */ 2183 if (!(PAGE_SIZE & dma_get_merge_boundary(dev->dev))) { 2184 if (!nvme_alloc_host_mem_single(dev, preferred)) 2185 return 0; 2186 } 2187 2188 /* start big and work our way down */ 2189 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2190 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2191 if (!min || dev->host_mem_size >= min) 2192 return 0; 2193 nvme_free_host_mem(dev); 2194 } 2195 } 2196 2197 return -ENOMEM; 2198 } 2199 2200 static int nvme_setup_host_mem(struct nvme_dev *dev) 2201 { 2202 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2203 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2204 u64 min = (u64)dev->ctrl.hmmin * 4096; 2205 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2206 int ret; 2207 2208 if (!dev->ctrl.hmpre) 2209 return 0; 2210 2211 preferred = min(preferred, max); 2212 if (min > max) { 2213 dev_warn(dev->ctrl.device, 2214 "min host memory (%lld MiB) above limit (%d MiB).\n", 2215 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2216 nvme_free_host_mem(dev); 2217 return 0; 2218 } 2219 2220 /* 2221 * If we already have a buffer allocated check if we can reuse it. 2222 */ 2223 if (dev->host_mem_descs) { 2224 if (dev->host_mem_size >= min) 2225 enable_bits |= NVME_HOST_MEM_RETURN; 2226 else 2227 nvme_free_host_mem(dev); 2228 } 2229 2230 if (!dev->host_mem_descs) { 2231 if (nvme_alloc_host_mem(dev, min, preferred)) { 2232 dev_warn(dev->ctrl.device, 2233 "failed to allocate host memory buffer.\n"); 2234 return 0; /* controller must work without HMB */ 2235 } 2236 2237 dev_info(dev->ctrl.device, 2238 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2239 dev->host_mem_size >> ilog2(SZ_1M), 2240 dev->nr_host_mem_descs, 2241 str_plural(dev->nr_host_mem_descs)); 2242 } 2243 2244 ret = nvme_set_host_mem(dev, enable_bits); 2245 if (ret) 2246 nvme_free_host_mem(dev); 2247 return ret; 2248 } 2249 2250 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2251 char *buf) 2252 { 2253 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2254 2255 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2256 ndev->cmbloc, ndev->cmbsz); 2257 } 2258 static DEVICE_ATTR_RO(cmb); 2259 2260 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2261 char *buf) 2262 { 2263 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2264 2265 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2266 } 2267 static DEVICE_ATTR_RO(cmbloc); 2268 2269 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2270 char *buf) 2271 { 2272 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2273 2274 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2275 } 2276 static DEVICE_ATTR_RO(cmbsz); 2277 2278 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2279 char *buf) 2280 { 2281 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2282 2283 return sysfs_emit(buf, "%d\n", ndev->hmb); 2284 } 2285 2286 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2287 const char *buf, size_t count) 2288 { 2289 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2290 bool new; 2291 int ret; 2292 2293 if (kstrtobool(buf, &new) < 0) 2294 return -EINVAL; 2295 2296 if (new == ndev->hmb) 2297 return count; 2298 2299 if (new) { 2300 ret = nvme_setup_host_mem(ndev); 2301 } else { 2302 ret = nvme_set_host_mem(ndev, 0); 2303 if (!ret) 2304 nvme_free_host_mem(ndev); 2305 } 2306 2307 if (ret < 0) 2308 return ret; 2309 2310 return count; 2311 } 2312 static DEVICE_ATTR_RW(hmb); 2313 2314 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2315 struct attribute *a, int n) 2316 { 2317 struct nvme_ctrl *ctrl = 2318 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2319 struct nvme_dev *dev = to_nvme_dev(ctrl); 2320 2321 if (a == &dev_attr_cmb.attr || 2322 a == &dev_attr_cmbloc.attr || 2323 a == &dev_attr_cmbsz.attr) { 2324 if (!dev->cmbsz) 2325 return 0; 2326 } 2327 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2328 return 0; 2329 2330 return a->mode; 2331 } 2332 2333 static struct attribute *nvme_pci_attrs[] = { 2334 &dev_attr_cmb.attr, 2335 &dev_attr_cmbloc.attr, 2336 &dev_attr_cmbsz.attr, 2337 &dev_attr_hmb.attr, 2338 NULL, 2339 }; 2340 2341 static const struct attribute_group nvme_pci_dev_attrs_group = { 2342 .attrs = nvme_pci_attrs, 2343 .is_visible = nvme_pci_attrs_are_visible, 2344 }; 2345 2346 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2347 &nvme_dev_attrs_group, 2348 &nvme_pci_dev_attrs_group, 2349 NULL, 2350 }; 2351 2352 static void nvme_update_attrs(struct nvme_dev *dev) 2353 { 2354 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2355 } 2356 2357 /* 2358 * nirqs is the number of interrupts available for write and read 2359 * queues. The core already reserved an interrupt for the admin queue. 2360 */ 2361 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2362 { 2363 struct nvme_dev *dev = affd->priv; 2364 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2365 2366 /* 2367 * If there is no interrupt available for queues, ensure that 2368 * the default queue is set to 1. The affinity set size is 2369 * also set to one, but the irq core ignores it for this case. 2370 * 2371 * If only one interrupt is available or 'write_queue' == 0, combine 2372 * write and read queues. 2373 * 2374 * If 'write_queues' > 0, ensure it leaves room for at least one read 2375 * queue. 2376 */ 2377 if (!nrirqs) { 2378 nrirqs = 1; 2379 nr_read_queues = 0; 2380 } else if (nrirqs == 1 || !nr_write_queues) { 2381 nr_read_queues = 0; 2382 } else if (nr_write_queues >= nrirqs) { 2383 nr_read_queues = 1; 2384 } else { 2385 nr_read_queues = nrirqs - nr_write_queues; 2386 } 2387 2388 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2389 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2390 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2391 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2392 affd->nr_sets = nr_read_queues ? 2 : 1; 2393 } 2394 2395 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2396 { 2397 struct pci_dev *pdev = to_pci_dev(dev->dev); 2398 struct irq_affinity affd = { 2399 .pre_vectors = 1, 2400 .calc_sets = nvme_calc_irq_sets, 2401 .priv = dev, 2402 }; 2403 unsigned int irq_queues, poll_queues; 2404 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2405 2406 /* 2407 * Poll queues don't need interrupts, but we need at least one I/O queue 2408 * left over for non-polled I/O. 2409 */ 2410 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2411 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2412 2413 /* 2414 * Initialize for the single interrupt case, will be updated in 2415 * nvme_calc_irq_sets(). 2416 */ 2417 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2418 dev->io_queues[HCTX_TYPE_READ] = 0; 2419 2420 /* 2421 * We need interrupts for the admin queue and each non-polled I/O queue, 2422 * but some Apple controllers require all queues to use the first 2423 * vector. 2424 */ 2425 irq_queues = 1; 2426 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2427 irq_queues += (nr_io_queues - poll_queues); 2428 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2429 flags &= ~PCI_IRQ_MSI; 2430 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2431 &affd); 2432 } 2433 2434 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2435 { 2436 /* 2437 * If tags are shared with admin queue (Apple bug), then 2438 * make sure we only use one IO queue. 2439 */ 2440 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2441 return 1; 2442 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2443 } 2444 2445 static int nvme_setup_io_queues(struct nvme_dev *dev) 2446 { 2447 struct nvme_queue *adminq = &dev->queues[0]; 2448 struct pci_dev *pdev = to_pci_dev(dev->dev); 2449 unsigned int nr_io_queues; 2450 unsigned long size; 2451 int result; 2452 2453 /* 2454 * Sample the module parameters once at reset time so that we have 2455 * stable values to work with. 2456 */ 2457 dev->nr_write_queues = write_queues; 2458 dev->nr_poll_queues = poll_queues; 2459 2460 nr_io_queues = dev->nr_allocated_queues - 1; 2461 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2462 if (result < 0) 2463 return result; 2464 2465 if (nr_io_queues == 0) 2466 return 0; 2467 2468 /* 2469 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2470 * from set to unset. If there is a window to it is truely freed, 2471 * pci_free_irq_vectors() jumping into this window will crash. 2472 * And take lock to avoid racing with pci_free_irq_vectors() in 2473 * nvme_dev_disable() path. 2474 */ 2475 result = nvme_setup_io_queues_trylock(dev); 2476 if (result) 2477 return result; 2478 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2479 pci_free_irq(pdev, 0, adminq); 2480 2481 if (dev->cmb_use_sqes) { 2482 result = nvme_cmb_qdepth(dev, nr_io_queues, 2483 sizeof(struct nvme_command)); 2484 if (result > 0) { 2485 dev->q_depth = result; 2486 dev->ctrl.sqsize = result - 1; 2487 } else { 2488 dev->cmb_use_sqes = false; 2489 } 2490 } 2491 2492 do { 2493 size = db_bar_size(dev, nr_io_queues); 2494 result = nvme_remap_bar(dev, size); 2495 if (!result) 2496 break; 2497 if (!--nr_io_queues) { 2498 result = -ENOMEM; 2499 goto out_unlock; 2500 } 2501 } while (1); 2502 adminq->q_db = dev->dbs; 2503 2504 retry: 2505 /* Deregister the admin queue's interrupt */ 2506 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2507 pci_free_irq(pdev, 0, adminq); 2508 2509 /* 2510 * If we enable msix early due to not intx, disable it again before 2511 * setting up the full range we need. 2512 */ 2513 pci_free_irq_vectors(pdev); 2514 2515 result = nvme_setup_irqs(dev, nr_io_queues); 2516 if (result <= 0) { 2517 result = -EIO; 2518 goto out_unlock; 2519 } 2520 2521 dev->num_vecs = result; 2522 result = max(result - 1, 1); 2523 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2524 2525 /* 2526 * Should investigate if there's a performance win from allocating 2527 * more queues than interrupt vectors; it might allow the submission 2528 * path to scale better, even if the receive path is limited by the 2529 * number of interrupts. 2530 */ 2531 result = queue_request_irq(adminq); 2532 if (result) 2533 goto out_unlock; 2534 set_bit(NVMEQ_ENABLED, &adminq->flags); 2535 mutex_unlock(&dev->shutdown_lock); 2536 2537 result = nvme_create_io_queues(dev); 2538 if (result || dev->online_queues < 2) 2539 return result; 2540 2541 if (dev->online_queues - 1 < dev->max_qid) { 2542 nr_io_queues = dev->online_queues - 1; 2543 nvme_delete_io_queues(dev); 2544 result = nvme_setup_io_queues_trylock(dev); 2545 if (result) 2546 return result; 2547 nvme_suspend_io_queues(dev); 2548 goto retry; 2549 } 2550 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2551 dev->io_queues[HCTX_TYPE_DEFAULT], 2552 dev->io_queues[HCTX_TYPE_READ], 2553 dev->io_queues[HCTX_TYPE_POLL]); 2554 return 0; 2555 out_unlock: 2556 mutex_unlock(&dev->shutdown_lock); 2557 return result; 2558 } 2559 2560 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2561 blk_status_t error) 2562 { 2563 struct nvme_queue *nvmeq = req->end_io_data; 2564 2565 blk_mq_free_request(req); 2566 complete(&nvmeq->delete_done); 2567 return RQ_END_IO_NONE; 2568 } 2569 2570 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2571 blk_status_t error) 2572 { 2573 struct nvme_queue *nvmeq = req->end_io_data; 2574 2575 if (error) 2576 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2577 2578 return nvme_del_queue_end(req, error); 2579 } 2580 2581 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2582 { 2583 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2584 struct request *req; 2585 struct nvme_command cmd = { }; 2586 2587 cmd.delete_queue.opcode = opcode; 2588 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2589 2590 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2591 if (IS_ERR(req)) 2592 return PTR_ERR(req); 2593 nvme_init_request(req, &cmd); 2594 2595 if (opcode == nvme_admin_delete_cq) 2596 req->end_io = nvme_del_cq_end; 2597 else 2598 req->end_io = nvme_del_queue_end; 2599 req->end_io_data = nvmeq; 2600 2601 init_completion(&nvmeq->delete_done); 2602 blk_execute_rq_nowait(req, false); 2603 return 0; 2604 } 2605 2606 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2607 { 2608 int nr_queues = dev->online_queues - 1, sent = 0; 2609 unsigned long timeout; 2610 2611 retry: 2612 timeout = NVME_ADMIN_TIMEOUT; 2613 while (nr_queues > 0) { 2614 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2615 break; 2616 nr_queues--; 2617 sent++; 2618 } 2619 while (sent) { 2620 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2621 2622 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2623 timeout); 2624 if (timeout == 0) 2625 return false; 2626 2627 sent--; 2628 if (nr_queues) 2629 goto retry; 2630 } 2631 return true; 2632 } 2633 2634 static void nvme_delete_io_queues(struct nvme_dev *dev) 2635 { 2636 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2637 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2638 } 2639 2640 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2641 { 2642 if (dev->io_queues[HCTX_TYPE_POLL]) 2643 return 3; 2644 if (dev->io_queues[HCTX_TYPE_READ]) 2645 return 2; 2646 return 1; 2647 } 2648 2649 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2650 { 2651 if (!dev->ctrl.tagset) { 2652 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2653 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2654 return true; 2655 } 2656 2657 /* Give up if we are racing with nvme_dev_disable() */ 2658 if (!mutex_trylock(&dev->shutdown_lock)) 2659 return false; 2660 2661 /* Check if nvme_dev_disable() has been executed already */ 2662 if (!dev->online_queues) { 2663 mutex_unlock(&dev->shutdown_lock); 2664 return false; 2665 } 2666 2667 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2668 /* free previously allocated queues that are no longer usable */ 2669 nvme_free_queues(dev, dev->online_queues); 2670 mutex_unlock(&dev->shutdown_lock); 2671 return true; 2672 } 2673 2674 static int nvme_pci_enable(struct nvme_dev *dev) 2675 { 2676 int result = -ENOMEM; 2677 struct pci_dev *pdev = to_pci_dev(dev->dev); 2678 unsigned int flags = PCI_IRQ_ALL_TYPES; 2679 2680 if (pci_enable_device_mem(pdev)) 2681 return result; 2682 2683 pci_set_master(pdev); 2684 2685 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2686 result = -ENODEV; 2687 goto disable; 2688 } 2689 2690 /* 2691 * Some devices and/or platforms don't advertise or work with INTx 2692 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2693 * adjust this later. 2694 */ 2695 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2696 flags &= ~PCI_IRQ_MSI; 2697 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2698 if (result < 0) 2699 goto disable; 2700 2701 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2702 2703 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2704 io_queue_depth); 2705 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2706 dev->dbs = dev->bar + 4096; 2707 2708 /* 2709 * Some Apple controllers require a non-standard SQE size. 2710 * Interestingly they also seem to ignore the CC:IOSQES register 2711 * so we don't bother updating it here. 2712 */ 2713 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2714 dev->io_sqes = 7; 2715 else 2716 dev->io_sqes = NVME_NVM_IOSQES; 2717 2718 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2719 dev->q_depth = 2; 2720 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2721 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2722 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2723 dev->q_depth = 64; 2724 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2725 "set queue depth=%u\n", dev->q_depth); 2726 } 2727 2728 /* 2729 * Controllers with the shared tags quirk need the IO queue to be 2730 * big enough so that we get 32 tags for the admin queue 2731 */ 2732 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2733 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2734 dev->q_depth = NVME_AQ_DEPTH + 2; 2735 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2736 dev->q_depth); 2737 } 2738 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2739 2740 nvme_map_cmb(dev); 2741 2742 pci_save_state(pdev); 2743 2744 result = nvme_pci_configure_admin_queue(dev); 2745 if (result) 2746 goto free_irq; 2747 return result; 2748 2749 free_irq: 2750 pci_free_irq_vectors(pdev); 2751 disable: 2752 pci_disable_device(pdev); 2753 return result; 2754 } 2755 2756 static void nvme_dev_unmap(struct nvme_dev *dev) 2757 { 2758 if (dev->bar) 2759 iounmap(dev->bar); 2760 pci_release_mem_regions(to_pci_dev(dev->dev)); 2761 } 2762 2763 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2764 { 2765 struct pci_dev *pdev = to_pci_dev(dev->dev); 2766 u32 csts; 2767 2768 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2769 return true; 2770 if (pdev->error_state != pci_channel_io_normal) 2771 return true; 2772 2773 csts = readl(dev->bar + NVME_REG_CSTS); 2774 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2775 } 2776 2777 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2778 { 2779 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2780 struct pci_dev *pdev = to_pci_dev(dev->dev); 2781 bool dead; 2782 2783 mutex_lock(&dev->shutdown_lock); 2784 dead = nvme_pci_ctrl_is_dead(dev); 2785 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2786 if (pci_is_enabled(pdev)) 2787 nvme_start_freeze(&dev->ctrl); 2788 /* 2789 * Give the controller a chance to complete all entered requests 2790 * if doing a safe shutdown. 2791 */ 2792 if (!dead && shutdown) 2793 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2794 } 2795 2796 nvme_quiesce_io_queues(&dev->ctrl); 2797 2798 if (!dead && dev->ctrl.queue_count > 0) { 2799 nvme_delete_io_queues(dev); 2800 nvme_disable_ctrl(&dev->ctrl, shutdown); 2801 nvme_poll_irqdisable(&dev->queues[0]); 2802 } 2803 nvme_suspend_io_queues(dev); 2804 nvme_suspend_queue(dev, 0); 2805 pci_free_irq_vectors(pdev); 2806 if (pci_is_enabled(pdev)) 2807 pci_disable_device(pdev); 2808 nvme_reap_pending_cqes(dev); 2809 2810 nvme_cancel_tagset(&dev->ctrl); 2811 nvme_cancel_admin_tagset(&dev->ctrl); 2812 2813 /* 2814 * The driver will not be starting up queues again if shutting down so 2815 * must flush all entered requests to their failed completion to avoid 2816 * deadlocking blk-mq hot-cpu notifier. 2817 */ 2818 if (shutdown) { 2819 nvme_unquiesce_io_queues(&dev->ctrl); 2820 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2821 nvme_unquiesce_admin_queue(&dev->ctrl); 2822 } 2823 mutex_unlock(&dev->shutdown_lock); 2824 } 2825 2826 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2827 { 2828 if (!nvme_wait_reset(&dev->ctrl)) 2829 return -EBUSY; 2830 nvme_dev_disable(dev, shutdown); 2831 return 0; 2832 } 2833 2834 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2835 { 2836 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2837 NVME_CTRL_PAGE_SIZE, 2838 NVME_CTRL_PAGE_SIZE, 0); 2839 if (!dev->prp_page_pool) 2840 return -ENOMEM; 2841 2842 /* Optimisation for I/Os between 4k and 128k */ 2843 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2844 256, 256, 0); 2845 if (!dev->prp_small_pool) { 2846 dma_pool_destroy(dev->prp_page_pool); 2847 return -ENOMEM; 2848 } 2849 return 0; 2850 } 2851 2852 static void nvme_release_prp_pools(struct nvme_dev *dev) 2853 { 2854 dma_pool_destroy(dev->prp_page_pool); 2855 dma_pool_destroy(dev->prp_small_pool); 2856 } 2857 2858 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2859 { 2860 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1); 2861 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2862 2863 dev->iod_mempool = mempool_create_node(1, 2864 mempool_kmalloc, mempool_kfree, 2865 (void *)alloc_size, GFP_KERNEL, 2866 dev_to_node(dev->dev)); 2867 if (!dev->iod_mempool) 2868 return -ENOMEM; 2869 2870 dev->iod_meta_mempool = mempool_create_node(1, 2871 mempool_kmalloc, mempool_kfree, 2872 (void *)meta_size, GFP_KERNEL, 2873 dev_to_node(dev->dev)); 2874 if (!dev->iod_meta_mempool) 2875 goto free; 2876 2877 return 0; 2878 free: 2879 mempool_destroy(dev->iod_mempool); 2880 return -ENOMEM; 2881 } 2882 2883 static void nvme_free_tagset(struct nvme_dev *dev) 2884 { 2885 if (dev->tagset.tags) 2886 nvme_remove_io_tag_set(&dev->ctrl); 2887 dev->ctrl.tagset = NULL; 2888 } 2889 2890 /* pairs with nvme_pci_alloc_dev */ 2891 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2892 { 2893 struct nvme_dev *dev = to_nvme_dev(ctrl); 2894 2895 nvme_free_tagset(dev); 2896 put_device(dev->dev); 2897 kfree(dev->queues); 2898 kfree(dev); 2899 } 2900 2901 static void nvme_reset_work(struct work_struct *work) 2902 { 2903 struct nvme_dev *dev = 2904 container_of(work, struct nvme_dev, ctrl.reset_work); 2905 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2906 int result; 2907 2908 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2909 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2910 dev->ctrl.state); 2911 result = -ENODEV; 2912 goto out; 2913 } 2914 2915 /* 2916 * If we're called to reset a live controller first shut it down before 2917 * moving on. 2918 */ 2919 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2920 nvme_dev_disable(dev, false); 2921 nvme_sync_queues(&dev->ctrl); 2922 2923 mutex_lock(&dev->shutdown_lock); 2924 result = nvme_pci_enable(dev); 2925 if (result) 2926 goto out_unlock; 2927 nvme_unquiesce_admin_queue(&dev->ctrl); 2928 mutex_unlock(&dev->shutdown_lock); 2929 2930 /* 2931 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2932 * initializing procedure here. 2933 */ 2934 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2935 dev_warn(dev->ctrl.device, 2936 "failed to mark controller CONNECTING\n"); 2937 result = -EBUSY; 2938 goto out; 2939 } 2940 2941 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2942 if (result) 2943 goto out; 2944 2945 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 2946 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 2947 else 2948 dev->ctrl.max_integrity_segments = 1; 2949 2950 nvme_dbbuf_dma_alloc(dev); 2951 2952 result = nvme_setup_host_mem(dev); 2953 if (result < 0) 2954 goto out; 2955 2956 result = nvme_setup_io_queues(dev); 2957 if (result) 2958 goto out; 2959 2960 /* 2961 * Freeze and update the number of I/O queues as thos might have 2962 * changed. If there are no I/O queues left after this reset, keep the 2963 * controller around but remove all namespaces. 2964 */ 2965 if (dev->online_queues > 1) { 2966 nvme_dbbuf_set(dev); 2967 nvme_unquiesce_io_queues(&dev->ctrl); 2968 nvme_wait_freeze(&dev->ctrl); 2969 if (!nvme_pci_update_nr_queues(dev)) 2970 goto out; 2971 nvme_unfreeze(&dev->ctrl); 2972 } else { 2973 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2974 nvme_mark_namespaces_dead(&dev->ctrl); 2975 nvme_unquiesce_io_queues(&dev->ctrl); 2976 nvme_remove_namespaces(&dev->ctrl); 2977 nvme_free_tagset(dev); 2978 } 2979 2980 /* 2981 * If only admin queue live, keep it to do further investigation or 2982 * recovery. 2983 */ 2984 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2985 dev_warn(dev->ctrl.device, 2986 "failed to mark controller live state\n"); 2987 result = -ENODEV; 2988 goto out; 2989 } 2990 2991 nvme_start_ctrl(&dev->ctrl); 2992 return; 2993 2994 out_unlock: 2995 mutex_unlock(&dev->shutdown_lock); 2996 out: 2997 /* 2998 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2999 * may be holding this pci_dev's device lock. 3000 */ 3001 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3002 result); 3003 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3004 nvme_dev_disable(dev, true); 3005 nvme_sync_queues(&dev->ctrl); 3006 nvme_mark_namespaces_dead(&dev->ctrl); 3007 nvme_unquiesce_io_queues(&dev->ctrl); 3008 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3009 } 3010 3011 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3012 { 3013 *val = readl(to_nvme_dev(ctrl)->bar + off); 3014 return 0; 3015 } 3016 3017 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3018 { 3019 writel(val, to_nvme_dev(ctrl)->bar + off); 3020 return 0; 3021 } 3022 3023 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3024 { 3025 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3026 return 0; 3027 } 3028 3029 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3030 { 3031 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3032 3033 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3034 } 3035 3036 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3037 { 3038 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3039 struct nvme_subsystem *subsys = ctrl->subsys; 3040 3041 dev_err(ctrl->device, 3042 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3043 pdev->vendor, pdev->device, 3044 nvme_strlen(subsys->model, sizeof(subsys->model)), 3045 subsys->model, nvme_strlen(subsys->firmware_rev, 3046 sizeof(subsys->firmware_rev)), 3047 subsys->firmware_rev); 3048 } 3049 3050 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3051 { 3052 struct nvme_dev *dev = to_nvme_dev(ctrl); 3053 3054 return dma_pci_p2pdma_supported(dev->dev); 3055 } 3056 3057 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3058 .name = "pcie", 3059 .module = THIS_MODULE, 3060 .flags = NVME_F_METADATA_SUPPORTED, 3061 .dev_attr_groups = nvme_pci_dev_attr_groups, 3062 .reg_read32 = nvme_pci_reg_read32, 3063 .reg_write32 = nvme_pci_reg_write32, 3064 .reg_read64 = nvme_pci_reg_read64, 3065 .free_ctrl = nvme_pci_free_ctrl, 3066 .submit_async_event = nvme_pci_submit_async_event, 3067 .subsystem_reset = nvme_pci_subsystem_reset, 3068 .get_address = nvme_pci_get_address, 3069 .print_device_info = nvme_pci_print_device_info, 3070 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3071 }; 3072 3073 static int nvme_dev_map(struct nvme_dev *dev) 3074 { 3075 struct pci_dev *pdev = to_pci_dev(dev->dev); 3076 3077 if (pci_request_mem_regions(pdev, "nvme")) 3078 return -ENODEV; 3079 3080 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3081 goto release; 3082 3083 return 0; 3084 release: 3085 pci_release_mem_regions(pdev); 3086 return -ENODEV; 3087 } 3088 3089 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3090 { 3091 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3092 /* 3093 * Several Samsung devices seem to drop off the PCIe bus 3094 * randomly when APST is on and uses the deepest sleep state. 3095 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3096 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3097 * 950 PRO 256GB", but it seems to be restricted to two Dell 3098 * laptops. 3099 */ 3100 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3101 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3102 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3103 return NVME_QUIRK_NO_DEEPEST_PS; 3104 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3105 /* 3106 * Samsung SSD 960 EVO drops off the PCIe bus after system 3107 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3108 * within few minutes after bootup on a Coffee Lake board - 3109 * ASUS PRIME Z370-A 3110 */ 3111 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3112 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3113 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3114 return NVME_QUIRK_NO_APST; 3115 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3116 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3117 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3118 /* 3119 * Forcing to use host managed nvme power settings for 3120 * lowest idle power with quick resume latency on 3121 * Samsung and Toshiba SSDs based on suspend behavior 3122 * on Coffee Lake board for LENOVO C640 3123 */ 3124 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3125 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3126 return NVME_QUIRK_SIMPLE_SUSPEND; 3127 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3128 pdev->device == 0x500f)) { 3129 /* 3130 * Exclude some Kingston NV1 and A2000 devices from 3131 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3132 * lot fo energy with s2idle sleep on some TUXEDO platforms. 3133 */ 3134 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3135 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3136 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3137 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3138 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3139 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3140 /* 3141 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3142 * because of high power consumption (> 2 Watt) in s2idle 3143 * sleep. Only some boards with Intel CPU are affected. 3144 */ 3145 if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3146 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3147 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3148 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3149 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3150 } 3151 3152 /* 3153 * NVMe SSD drops off the PCIe bus after system idle 3154 * for 10 hours on a Lenovo N60z board. 3155 */ 3156 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3157 return NVME_QUIRK_NO_APST; 3158 3159 return 0; 3160 } 3161 3162 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3163 const struct pci_device_id *id) 3164 { 3165 unsigned long quirks = id->driver_data; 3166 int node = dev_to_node(&pdev->dev); 3167 struct nvme_dev *dev; 3168 int ret = -ENOMEM; 3169 3170 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3171 if (!dev) 3172 return ERR_PTR(-ENOMEM); 3173 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3174 mutex_init(&dev->shutdown_lock); 3175 3176 dev->nr_write_queues = write_queues; 3177 dev->nr_poll_queues = poll_queues; 3178 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3179 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3180 sizeof(struct nvme_queue), GFP_KERNEL, node); 3181 if (!dev->queues) 3182 goto out_free_dev; 3183 3184 dev->dev = get_device(&pdev->dev); 3185 3186 quirks |= check_vendor_combination_bug(pdev); 3187 if (!noacpi && 3188 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3189 acpi_storage_d3(&pdev->dev)) { 3190 /* 3191 * Some systems use a bios work around to ask for D3 on 3192 * platforms that support kernel managed suspend. 3193 */ 3194 dev_info(&pdev->dev, 3195 "platform quirk: setting simple suspend\n"); 3196 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3197 } 3198 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3199 quirks); 3200 if (ret) 3201 goto out_put_device; 3202 3203 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3204 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3205 else 3206 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3207 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3208 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3209 3210 /* 3211 * Limit the max command size to prevent iod->sg allocations going 3212 * over a single page. 3213 */ 3214 dev->ctrl.max_hw_sectors = min_t(u32, 3215 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3216 dev->ctrl.max_segments = NVME_MAX_SEGS; 3217 dev->ctrl.max_integrity_segments = 1; 3218 return dev; 3219 3220 out_put_device: 3221 put_device(dev->dev); 3222 kfree(dev->queues); 3223 out_free_dev: 3224 kfree(dev); 3225 return ERR_PTR(ret); 3226 } 3227 3228 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3229 { 3230 struct nvme_dev *dev; 3231 int result = -ENOMEM; 3232 3233 dev = nvme_pci_alloc_dev(pdev, id); 3234 if (IS_ERR(dev)) 3235 return PTR_ERR(dev); 3236 3237 result = nvme_add_ctrl(&dev->ctrl); 3238 if (result) 3239 goto out_put_ctrl; 3240 3241 result = nvme_dev_map(dev); 3242 if (result) 3243 goto out_uninit_ctrl; 3244 3245 result = nvme_setup_prp_pools(dev); 3246 if (result) 3247 goto out_dev_unmap; 3248 3249 result = nvme_pci_alloc_iod_mempool(dev); 3250 if (result) 3251 goto out_release_prp_pools; 3252 3253 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3254 3255 result = nvme_pci_enable(dev); 3256 if (result) 3257 goto out_release_iod_mempool; 3258 3259 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3260 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3261 if (result) 3262 goto out_disable; 3263 3264 /* 3265 * Mark the controller as connecting before sending admin commands to 3266 * allow the timeout handler to do the right thing. 3267 */ 3268 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3269 dev_warn(dev->ctrl.device, 3270 "failed to mark controller CONNECTING\n"); 3271 result = -EBUSY; 3272 goto out_disable; 3273 } 3274 3275 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3276 if (result) 3277 goto out_disable; 3278 3279 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3280 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3281 else 3282 dev->ctrl.max_integrity_segments = 1; 3283 3284 nvme_dbbuf_dma_alloc(dev); 3285 3286 result = nvme_setup_host_mem(dev); 3287 if (result < 0) 3288 goto out_disable; 3289 3290 result = nvme_setup_io_queues(dev); 3291 if (result) 3292 goto out_disable; 3293 3294 if (dev->online_queues > 1) { 3295 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3296 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3297 nvme_dbbuf_set(dev); 3298 } 3299 3300 if (!dev->ctrl.tagset) 3301 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3302 3303 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3304 dev_warn(dev->ctrl.device, 3305 "failed to mark controller live state\n"); 3306 result = -ENODEV; 3307 goto out_disable; 3308 } 3309 3310 pci_set_drvdata(pdev, dev); 3311 3312 nvme_start_ctrl(&dev->ctrl); 3313 nvme_put_ctrl(&dev->ctrl); 3314 flush_work(&dev->ctrl.scan_work); 3315 return 0; 3316 3317 out_disable: 3318 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3319 nvme_dev_disable(dev, true); 3320 nvme_free_host_mem(dev); 3321 nvme_dev_remove_admin(dev); 3322 nvme_dbbuf_dma_free(dev); 3323 nvme_free_queues(dev, 0); 3324 out_release_iod_mempool: 3325 mempool_destroy(dev->iod_mempool); 3326 mempool_destroy(dev->iod_meta_mempool); 3327 out_release_prp_pools: 3328 nvme_release_prp_pools(dev); 3329 out_dev_unmap: 3330 nvme_dev_unmap(dev); 3331 out_uninit_ctrl: 3332 nvme_uninit_ctrl(&dev->ctrl); 3333 out_put_ctrl: 3334 nvme_put_ctrl(&dev->ctrl); 3335 return result; 3336 } 3337 3338 static void nvme_reset_prepare(struct pci_dev *pdev) 3339 { 3340 struct nvme_dev *dev = pci_get_drvdata(pdev); 3341 3342 /* 3343 * We don't need to check the return value from waiting for the reset 3344 * state as pci_dev device lock is held, making it impossible to race 3345 * with ->remove(). 3346 */ 3347 nvme_disable_prepare_reset(dev, false); 3348 nvme_sync_queues(&dev->ctrl); 3349 } 3350 3351 static void nvme_reset_done(struct pci_dev *pdev) 3352 { 3353 struct nvme_dev *dev = pci_get_drvdata(pdev); 3354 3355 if (!nvme_try_sched_reset(&dev->ctrl)) 3356 flush_work(&dev->ctrl.reset_work); 3357 } 3358 3359 static void nvme_shutdown(struct pci_dev *pdev) 3360 { 3361 struct nvme_dev *dev = pci_get_drvdata(pdev); 3362 3363 nvme_disable_prepare_reset(dev, true); 3364 } 3365 3366 /* 3367 * The driver's remove may be called on a device in a partially initialized 3368 * state. This function must not have any dependencies on the device state in 3369 * order to proceed. 3370 */ 3371 static void nvme_remove(struct pci_dev *pdev) 3372 { 3373 struct nvme_dev *dev = pci_get_drvdata(pdev); 3374 3375 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3376 pci_set_drvdata(pdev, NULL); 3377 3378 if (!pci_device_is_present(pdev)) { 3379 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3380 nvme_dev_disable(dev, true); 3381 } 3382 3383 flush_work(&dev->ctrl.reset_work); 3384 nvme_stop_ctrl(&dev->ctrl); 3385 nvme_remove_namespaces(&dev->ctrl); 3386 nvme_dev_disable(dev, true); 3387 nvme_free_host_mem(dev); 3388 nvme_dev_remove_admin(dev); 3389 nvme_dbbuf_dma_free(dev); 3390 nvme_free_queues(dev, 0); 3391 mempool_destroy(dev->iod_mempool); 3392 mempool_destroy(dev->iod_meta_mempool); 3393 nvme_release_prp_pools(dev); 3394 nvme_dev_unmap(dev); 3395 nvme_uninit_ctrl(&dev->ctrl); 3396 } 3397 3398 #ifdef CONFIG_PM_SLEEP 3399 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3400 { 3401 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3402 } 3403 3404 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3405 { 3406 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3407 } 3408 3409 static int nvme_resume(struct device *dev) 3410 { 3411 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3412 struct nvme_ctrl *ctrl = &ndev->ctrl; 3413 3414 if (ndev->last_ps == U32_MAX || 3415 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3416 goto reset; 3417 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3418 goto reset; 3419 3420 return 0; 3421 reset: 3422 return nvme_try_sched_reset(ctrl); 3423 } 3424 3425 static int nvme_suspend(struct device *dev) 3426 { 3427 struct pci_dev *pdev = to_pci_dev(dev); 3428 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3429 struct nvme_ctrl *ctrl = &ndev->ctrl; 3430 int ret = -EBUSY; 3431 3432 ndev->last_ps = U32_MAX; 3433 3434 /* 3435 * The platform does not remove power for a kernel managed suspend so 3436 * use host managed nvme power settings for lowest idle power if 3437 * possible. This should have quicker resume latency than a full device 3438 * shutdown. But if the firmware is involved after the suspend or the 3439 * device does not support any non-default power states, shut down the 3440 * device fully. 3441 * 3442 * If ASPM is not enabled for the device, shut down the device and allow 3443 * the PCI bus layer to put it into D3 in order to take the PCIe link 3444 * down, so as to allow the platform to achieve its minimum low-power 3445 * state (which may not be possible if the link is up). 3446 */ 3447 if (pm_suspend_via_firmware() || !ctrl->npss || 3448 !pcie_aspm_enabled(pdev) || 3449 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3450 return nvme_disable_prepare_reset(ndev, true); 3451 3452 nvme_start_freeze(ctrl); 3453 nvme_wait_freeze(ctrl); 3454 nvme_sync_queues(ctrl); 3455 3456 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3457 goto unfreeze; 3458 3459 /* 3460 * Host memory access may not be successful in a system suspend state, 3461 * but the specification allows the controller to access memory in a 3462 * non-operational power state. 3463 */ 3464 if (ndev->hmb) { 3465 ret = nvme_set_host_mem(ndev, 0); 3466 if (ret < 0) 3467 goto unfreeze; 3468 } 3469 3470 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3471 if (ret < 0) 3472 goto unfreeze; 3473 3474 /* 3475 * A saved state prevents pci pm from generically controlling the 3476 * device's power. If we're using protocol specific settings, we don't 3477 * want pci interfering. 3478 */ 3479 pci_save_state(pdev); 3480 3481 ret = nvme_set_power_state(ctrl, ctrl->npss); 3482 if (ret < 0) 3483 goto unfreeze; 3484 3485 if (ret) { 3486 /* discard the saved state */ 3487 pci_load_saved_state(pdev, NULL); 3488 3489 /* 3490 * Clearing npss forces a controller reset on resume. The 3491 * correct value will be rediscovered then. 3492 */ 3493 ret = nvme_disable_prepare_reset(ndev, true); 3494 ctrl->npss = 0; 3495 } 3496 unfreeze: 3497 nvme_unfreeze(ctrl); 3498 return ret; 3499 } 3500 3501 static int nvme_simple_suspend(struct device *dev) 3502 { 3503 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3504 3505 return nvme_disable_prepare_reset(ndev, true); 3506 } 3507 3508 static int nvme_simple_resume(struct device *dev) 3509 { 3510 struct pci_dev *pdev = to_pci_dev(dev); 3511 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3512 3513 return nvme_try_sched_reset(&ndev->ctrl); 3514 } 3515 3516 static const struct dev_pm_ops nvme_dev_pm_ops = { 3517 .suspend = nvme_suspend, 3518 .resume = nvme_resume, 3519 .freeze = nvme_simple_suspend, 3520 .thaw = nvme_simple_resume, 3521 .poweroff = nvme_simple_suspend, 3522 .restore = nvme_simple_resume, 3523 }; 3524 #endif /* CONFIG_PM_SLEEP */ 3525 3526 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3527 pci_channel_state_t state) 3528 { 3529 struct nvme_dev *dev = pci_get_drvdata(pdev); 3530 3531 /* 3532 * A frozen channel requires a reset. When detected, this method will 3533 * shutdown the controller to quiesce. The controller will be restarted 3534 * after the slot reset through driver's slot_reset callback. 3535 */ 3536 switch (state) { 3537 case pci_channel_io_normal: 3538 return PCI_ERS_RESULT_CAN_RECOVER; 3539 case pci_channel_io_frozen: 3540 dev_warn(dev->ctrl.device, 3541 "frozen state error detected, reset controller\n"); 3542 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3543 nvme_dev_disable(dev, true); 3544 return PCI_ERS_RESULT_DISCONNECT; 3545 } 3546 nvme_dev_disable(dev, false); 3547 return PCI_ERS_RESULT_NEED_RESET; 3548 case pci_channel_io_perm_failure: 3549 dev_warn(dev->ctrl.device, 3550 "failure state error detected, request disconnect\n"); 3551 return PCI_ERS_RESULT_DISCONNECT; 3552 } 3553 return PCI_ERS_RESULT_NEED_RESET; 3554 } 3555 3556 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3557 { 3558 struct nvme_dev *dev = pci_get_drvdata(pdev); 3559 3560 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3561 pci_restore_state(pdev); 3562 if (!nvme_try_sched_reset(&dev->ctrl)) 3563 nvme_unquiesce_io_queues(&dev->ctrl); 3564 return PCI_ERS_RESULT_RECOVERED; 3565 } 3566 3567 static void nvme_error_resume(struct pci_dev *pdev) 3568 { 3569 struct nvme_dev *dev = pci_get_drvdata(pdev); 3570 3571 flush_work(&dev->ctrl.reset_work); 3572 } 3573 3574 static const struct pci_error_handlers nvme_err_handler = { 3575 .error_detected = nvme_error_detected, 3576 .slot_reset = nvme_slot_reset, 3577 .resume = nvme_error_resume, 3578 .reset_prepare = nvme_reset_prepare, 3579 .reset_done = nvme_reset_done, 3580 }; 3581 3582 static const struct pci_device_id nvme_id_table[] = { 3583 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3584 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3585 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3586 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3587 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3588 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3589 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3590 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3591 NVME_QUIRK_DEALLOCATE_ZEROES | 3592 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3593 NVME_QUIRK_BOGUS_NID, }, 3594 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3595 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3596 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3597 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3598 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3599 NVME_QUIRK_MEDIUM_PRIO_SQ | 3600 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3601 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3602 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3603 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3604 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3605 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3606 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3607 NVME_QUIRK_BOGUS_NID, }, 3608 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3609 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3610 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3611 .driver_data = NVME_QUIRK_QDEPTH_ONE }, 3612 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3613 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3614 NVME_QUIRK_BOGUS_NID, }, 3615 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3616 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3617 NVME_QUIRK_BOGUS_NID, }, 3618 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3619 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3620 NVME_QUIRK_NO_NS_DESC_LIST, }, 3621 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3622 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3623 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3624 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3625 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3626 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3627 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3628 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3629 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3630 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3631 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3632 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3633 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3634 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3635 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3636 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3637 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3638 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3639 NVME_QUIRK_BOGUS_NID, }, 3640 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3641 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3642 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3643 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3644 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3645 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3646 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3647 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3648 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3649 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3650 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3651 NVME_QUIRK_BOGUS_NID, }, 3652 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3653 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3654 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3655 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3656 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3657 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3658 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3659 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3660 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3661 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3662 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3663 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3664 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3665 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3666 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3667 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3668 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3669 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3670 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3671 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3672 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3673 NVME_QUIRK_BOGUS_NID, }, 3674 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3675 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3676 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3677 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3678 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3679 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3680 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3681 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3682 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3683 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3684 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3685 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3686 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3687 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3688 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3689 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3690 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3691 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3692 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3693 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3694 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3695 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3696 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3697 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3698 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3699 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3700 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3701 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3702 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3703 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3704 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3705 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3706 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3707 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3708 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3709 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3710 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3711 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3712 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3713 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3714 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3715 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3716 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3717 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3718 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3719 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3720 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3721 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3722 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3723 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3724 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3725 .driver_data = NVME_QUIRK_BOGUS_NID | 3726 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3727 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3728 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3729 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3730 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3731 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3732 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3733 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3734 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3735 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3736 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3737 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3738 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3739 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3740 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3741 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3742 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3743 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3744 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3745 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3746 /* 3747 * Fix for the Apple controller found in the MacBook8,1 and 3748 * some MacBook7,1 to avoid controller resets and data loss. 3749 */ 3750 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3751 NVME_QUIRK_QDEPTH_ONE }, 3752 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3753 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3754 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3755 NVME_QUIRK_128_BYTES_SQES | 3756 NVME_QUIRK_SHARED_TAGS | 3757 NVME_QUIRK_SKIP_CID_GEN | 3758 NVME_QUIRK_IDENTIFY_CNS }, 3759 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3760 { 0, } 3761 }; 3762 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3763 3764 static struct pci_driver nvme_driver = { 3765 .name = "nvme", 3766 .id_table = nvme_id_table, 3767 .probe = nvme_probe, 3768 .remove = nvme_remove, 3769 .shutdown = nvme_shutdown, 3770 .driver = { 3771 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3772 #ifdef CONFIG_PM_SLEEP 3773 .pm = &nvme_dev_pm_ops, 3774 #endif 3775 }, 3776 .sriov_configure = pci_sriov_configure_simple, 3777 .err_handler = &nvme_err_handler, 3778 }; 3779 3780 static int __init nvme_init(void) 3781 { 3782 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3783 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3784 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3785 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3786 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3787 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3788 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3789 3790 return pci_register_driver(&nvme_driver); 3791 } 3792 3793 static void __exit nvme_exit(void) 3794 { 3795 pci_unregister_driver(&nvme_driver); 3796 flush_workqueue(nvme_wq); 3797 } 3798 3799 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3800 MODULE_LICENSE("GPL"); 3801 MODULE_VERSION("1.0"); 3802 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3803 module_init(nvme_init); 3804 module_exit(nvme_exit); 3805