1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 782 return nvme_setup_prp_simple(dev, req, 783 &cmnd->rw, &bv); 784 785 if (nvmeq->qid && sgl_threshold && 786 nvme_ctrl_sgl_supported(&dev->ctrl)) 787 return nvme_setup_sgl_simple(dev, req, 788 &cmnd->rw, &bv); 789 } 790 } 791 792 iod->dma_len = 0; 793 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 794 if (!iod->sgt.sgl) 795 return BLK_STS_RESOURCE; 796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 797 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 798 if (!iod->sgt.orig_nents) 799 goto out_free_sg; 800 801 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 802 DMA_ATTR_NO_WARN); 803 if (rc) { 804 if (rc == -EREMOTEIO) 805 ret = BLK_STS_TARGET; 806 goto out_free_sg; 807 } 808 809 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 811 else 812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 813 if (ret != BLK_STS_OK) 814 goto out_unmap_sg; 815 return BLK_STS_OK; 816 817 out_unmap_sg: 818 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 819 out_free_sg: 820 mempool_free(iod->sgt.sgl, dev->iod_mempool); 821 return ret; 822 } 823 824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 825 struct nvme_command *cmnd) 826 { 827 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 828 829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 830 rq_dma_dir(req), 0); 831 if (dma_mapping_error(dev->dev, iod->meta_dma)) 832 return BLK_STS_IOERR; 833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 834 return BLK_STS_OK; 835 } 836 837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 838 { 839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 840 blk_status_t ret; 841 842 iod->aborted = false; 843 iod->nr_allocations = -1; 844 iod->sgt.nents = 0; 845 846 ret = nvme_setup_cmd(req->q->queuedata, req); 847 if (ret) 848 return ret; 849 850 if (blk_rq_nr_phys_segments(req)) { 851 ret = nvme_map_data(dev, req, &iod->cmd); 852 if (ret) 853 goto out_free_cmd; 854 } 855 856 if (blk_integrity_rq(req)) { 857 ret = nvme_map_metadata(dev, req, &iod->cmd); 858 if (ret) 859 goto out_unmap_data; 860 } 861 862 nvme_start_request(req); 863 return BLK_STS_OK; 864 out_unmap_data: 865 nvme_unmap_data(dev, req); 866 out_free_cmd: 867 nvme_cleanup_cmd(req); 868 return ret; 869 } 870 871 /* 872 * NOTE: ns is NULL when called on the admin queue. 873 */ 874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 875 const struct blk_mq_queue_data *bd) 876 { 877 struct nvme_queue *nvmeq = hctx->driver_data; 878 struct nvme_dev *dev = nvmeq->dev; 879 struct request *req = bd->rq; 880 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 881 blk_status_t ret; 882 883 /* 884 * We should not need to do this, but we're still using this to 885 * ensure we can drain requests on a dying queue. 886 */ 887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 888 return BLK_STS_IOERR; 889 890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 891 return nvme_fail_nonready_command(&dev->ctrl, req); 892 893 ret = nvme_prep_rq(dev, req); 894 if (unlikely(ret)) 895 return ret; 896 spin_lock(&nvmeq->sq_lock); 897 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 898 nvme_write_sq_db(nvmeq, bd->last); 899 spin_unlock(&nvmeq->sq_lock); 900 return BLK_STS_OK; 901 } 902 903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 904 { 905 spin_lock(&nvmeq->sq_lock); 906 while (!rq_list_empty(*rqlist)) { 907 struct request *req = rq_list_pop(rqlist); 908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 909 910 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 911 } 912 nvme_write_sq_db(nvmeq, true); 913 spin_unlock(&nvmeq->sq_lock); 914 } 915 916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 917 { 918 /* 919 * We should not need to do this, but we're still using this to 920 * ensure we can drain requests on a dying queue. 921 */ 922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 923 return false; 924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 925 return false; 926 927 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 928 } 929 930 static void nvme_queue_rqs(struct request **rqlist) 931 { 932 struct request *req, *next, *prev = NULL; 933 struct request *requeue_list = NULL; 934 935 rq_list_for_each_safe(rqlist, req, next) { 936 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 937 938 if (!nvme_prep_rq_batch(nvmeq, req)) { 939 /* detach 'req' and add to remainder list */ 940 rq_list_move(rqlist, &requeue_list, req, prev); 941 942 req = prev; 943 if (!req) 944 continue; 945 } 946 947 if (!next || req->mq_hctx != next->mq_hctx) { 948 /* detach rest of list, and submit */ 949 req->rq_next = NULL; 950 nvme_submit_cmds(nvmeq, rqlist); 951 *rqlist = next; 952 prev = NULL; 953 } else 954 prev = req; 955 } 956 957 *rqlist = requeue_list; 958 } 959 960 static __always_inline void nvme_pci_unmap_rq(struct request *req) 961 { 962 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 963 struct nvme_dev *dev = nvmeq->dev; 964 965 if (blk_integrity_rq(req)) { 966 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 967 968 dma_unmap_page(dev->dev, iod->meta_dma, 969 rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); 970 } 971 972 if (blk_rq_nr_phys_segments(req)) 973 nvme_unmap_data(dev, req); 974 } 975 976 static void nvme_pci_complete_rq(struct request *req) 977 { 978 nvme_pci_unmap_rq(req); 979 nvme_complete_rq(req); 980 } 981 982 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 983 { 984 nvme_complete_batch(iob, nvme_pci_unmap_rq); 985 } 986 987 /* We read the CQE phase first to check if the rest of the entry is valid */ 988 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 989 { 990 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 991 992 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 993 } 994 995 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 996 { 997 u16 head = nvmeq->cq_head; 998 999 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1000 nvmeq->dbbuf_cq_ei)) 1001 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1002 } 1003 1004 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1005 { 1006 if (!nvmeq->qid) 1007 return nvmeq->dev->admin_tagset.tags[0]; 1008 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1009 } 1010 1011 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1012 struct io_comp_batch *iob, u16 idx) 1013 { 1014 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1015 __u16 command_id = READ_ONCE(cqe->command_id); 1016 struct request *req; 1017 1018 /* 1019 * AEN requests are special as they don't time out and can 1020 * survive any kind of queue freeze and often don't respond to 1021 * aborts. We don't even bother to allocate a struct request 1022 * for them but rather special case them here. 1023 */ 1024 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1025 nvme_complete_async_event(&nvmeq->dev->ctrl, 1026 cqe->status, &cqe->result); 1027 return; 1028 } 1029 1030 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1031 if (unlikely(!req)) { 1032 dev_warn(nvmeq->dev->ctrl.device, 1033 "invalid id %d completed on queue %d\n", 1034 command_id, le16_to_cpu(cqe->sq_id)); 1035 return; 1036 } 1037 1038 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1039 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1040 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1041 nvme_pci_complete_batch)) 1042 nvme_pci_complete_rq(req); 1043 } 1044 1045 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1046 { 1047 u32 tmp = nvmeq->cq_head + 1; 1048 1049 if (tmp == nvmeq->q_depth) { 1050 nvmeq->cq_head = 0; 1051 nvmeq->cq_phase ^= 1; 1052 } else { 1053 nvmeq->cq_head = tmp; 1054 } 1055 } 1056 1057 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1058 struct io_comp_batch *iob) 1059 { 1060 int found = 0; 1061 1062 while (nvme_cqe_pending(nvmeq)) { 1063 found++; 1064 /* 1065 * load-load control dependency between phase and the rest of 1066 * the cqe requires a full read memory barrier 1067 */ 1068 dma_rmb(); 1069 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1070 nvme_update_cq_head(nvmeq); 1071 } 1072 1073 if (found) 1074 nvme_ring_cq_doorbell(nvmeq); 1075 return found; 1076 } 1077 1078 static irqreturn_t nvme_irq(int irq, void *data) 1079 { 1080 struct nvme_queue *nvmeq = data; 1081 DEFINE_IO_COMP_BATCH(iob); 1082 1083 if (nvme_poll_cq(nvmeq, &iob)) { 1084 if (!rq_list_empty(iob.req_list)) 1085 nvme_pci_complete_batch(&iob); 1086 return IRQ_HANDLED; 1087 } 1088 return IRQ_NONE; 1089 } 1090 1091 static irqreturn_t nvme_irq_check(int irq, void *data) 1092 { 1093 struct nvme_queue *nvmeq = data; 1094 1095 if (nvme_cqe_pending(nvmeq)) 1096 return IRQ_WAKE_THREAD; 1097 return IRQ_NONE; 1098 } 1099 1100 /* 1101 * Poll for completions for any interrupt driven queue 1102 * Can be called from any context. 1103 */ 1104 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1105 { 1106 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1107 1108 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1109 1110 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1111 nvme_poll_cq(nvmeq, NULL); 1112 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1113 } 1114 1115 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1116 { 1117 struct nvme_queue *nvmeq = hctx->driver_data; 1118 bool found; 1119 1120 if (!nvme_cqe_pending(nvmeq)) 1121 return 0; 1122 1123 spin_lock(&nvmeq->cq_poll_lock); 1124 found = nvme_poll_cq(nvmeq, iob); 1125 spin_unlock(&nvmeq->cq_poll_lock); 1126 1127 return found; 1128 } 1129 1130 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1131 { 1132 struct nvme_dev *dev = to_nvme_dev(ctrl); 1133 struct nvme_queue *nvmeq = &dev->queues[0]; 1134 struct nvme_command c = { }; 1135 1136 c.common.opcode = nvme_admin_async_event; 1137 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1138 1139 spin_lock(&nvmeq->sq_lock); 1140 nvme_sq_copy_cmd(nvmeq, &c); 1141 nvme_write_sq_db(nvmeq, true); 1142 spin_unlock(&nvmeq->sq_lock); 1143 } 1144 1145 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1146 { 1147 struct nvme_command c = { }; 1148 1149 c.delete_queue.opcode = opcode; 1150 c.delete_queue.qid = cpu_to_le16(id); 1151 1152 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1153 } 1154 1155 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1156 struct nvme_queue *nvmeq, s16 vector) 1157 { 1158 struct nvme_command c = { }; 1159 int flags = NVME_QUEUE_PHYS_CONTIG; 1160 1161 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1162 flags |= NVME_CQ_IRQ_ENABLED; 1163 1164 /* 1165 * Note: we (ab)use the fact that the prp fields survive if no data 1166 * is attached to the request. 1167 */ 1168 c.create_cq.opcode = nvme_admin_create_cq; 1169 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1170 c.create_cq.cqid = cpu_to_le16(qid); 1171 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1172 c.create_cq.cq_flags = cpu_to_le16(flags); 1173 c.create_cq.irq_vector = cpu_to_le16(vector); 1174 1175 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1176 } 1177 1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1179 struct nvme_queue *nvmeq) 1180 { 1181 struct nvme_ctrl *ctrl = &dev->ctrl; 1182 struct nvme_command c = { }; 1183 int flags = NVME_QUEUE_PHYS_CONTIG; 1184 1185 /* 1186 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1187 * set. Since URGENT priority is zeroes, it makes all queues 1188 * URGENT. 1189 */ 1190 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1191 flags |= NVME_SQ_PRIO_MEDIUM; 1192 1193 /* 1194 * Note: we (ab)use the fact that the prp fields survive if no data 1195 * is attached to the request. 1196 */ 1197 c.create_sq.opcode = nvme_admin_create_sq; 1198 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1199 c.create_sq.sqid = cpu_to_le16(qid); 1200 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1201 c.create_sq.sq_flags = cpu_to_le16(flags); 1202 c.create_sq.cqid = cpu_to_le16(qid); 1203 1204 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1205 } 1206 1207 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1208 { 1209 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1210 } 1211 1212 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1213 { 1214 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1215 } 1216 1217 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1218 { 1219 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1220 1221 dev_warn(nvmeq->dev->ctrl.device, 1222 "Abort status: 0x%x", nvme_req(req)->status); 1223 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1224 blk_mq_free_request(req); 1225 return RQ_END_IO_NONE; 1226 } 1227 1228 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1229 { 1230 /* If true, indicates loss of adapter communication, possibly by a 1231 * NVMe Subsystem reset. 1232 */ 1233 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1234 1235 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1236 switch (nvme_ctrl_state(&dev->ctrl)) { 1237 case NVME_CTRL_RESETTING: 1238 case NVME_CTRL_CONNECTING: 1239 return false; 1240 default: 1241 break; 1242 } 1243 1244 /* We shouldn't reset unless the controller is on fatal error state 1245 * _or_ if we lost the communication with it. 1246 */ 1247 if (!(csts & NVME_CSTS_CFS) && !nssro) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1254 { 1255 /* Read a config register to help see what died. */ 1256 u16 pci_status; 1257 int result; 1258 1259 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1260 &pci_status); 1261 if (result == PCIBIOS_SUCCESSFUL) 1262 dev_warn(dev->ctrl.device, 1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1264 csts, pci_status); 1265 else 1266 dev_warn(dev->ctrl.device, 1267 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1268 csts, result); 1269 1270 if (csts != ~0) 1271 return; 1272 1273 dev_warn(dev->ctrl.device, 1274 "Does your device have a faulty power saving mode enabled?\n"); 1275 dev_warn(dev->ctrl.device, 1276 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1277 } 1278 1279 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1280 { 1281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1282 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1283 struct nvme_dev *dev = nvmeq->dev; 1284 struct request *abort_req; 1285 struct nvme_command cmd = { }; 1286 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1287 u8 opcode; 1288 1289 /* If PCI error recovery process is happening, we cannot reset or 1290 * the recovery mechanism will surely fail. 1291 */ 1292 mb(); 1293 if (pci_channel_offline(to_pci_dev(dev->dev))) 1294 return BLK_EH_RESET_TIMER; 1295 1296 /* 1297 * Reset immediately if the controller is failed 1298 */ 1299 if (nvme_should_reset(dev, csts)) { 1300 nvme_warn_reset(dev, csts); 1301 goto disable; 1302 } 1303 1304 /* 1305 * Did we miss an interrupt? 1306 */ 1307 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1308 nvme_poll(req->mq_hctx, NULL); 1309 else 1310 nvme_poll_irqdisable(nvmeq); 1311 1312 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1313 dev_warn(dev->ctrl.device, 1314 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1315 req->tag, nvme_cid(req), nvmeq->qid); 1316 return BLK_EH_DONE; 1317 } 1318 1319 /* 1320 * Shutdown immediately if controller times out while starting. The 1321 * reset work will see the pci device disabled when it gets the forced 1322 * cancellation error. All outstanding requests are completed on 1323 * shutdown, so we return BLK_EH_DONE. 1324 */ 1325 switch (nvme_ctrl_state(&dev->ctrl)) { 1326 case NVME_CTRL_CONNECTING: 1327 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1328 fallthrough; 1329 case NVME_CTRL_DELETING: 1330 dev_warn_ratelimited(dev->ctrl.device, 1331 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1332 req->tag, nvme_cid(req), nvmeq->qid); 1333 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1334 nvme_dev_disable(dev, true); 1335 return BLK_EH_DONE; 1336 case NVME_CTRL_RESETTING: 1337 return BLK_EH_RESET_TIMER; 1338 default: 1339 break; 1340 } 1341 1342 /* 1343 * Shutdown the controller immediately and schedule a reset if the 1344 * command was already aborted once before and still hasn't been 1345 * returned to the driver, or if this is the admin queue. 1346 */ 1347 opcode = nvme_req(req)->cmd->common.opcode; 1348 if (!nvmeq->qid || iod->aborted) { 1349 dev_warn(dev->ctrl.device, 1350 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1351 req->tag, nvme_cid(req), opcode, 1352 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1353 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1354 goto disable; 1355 } 1356 1357 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1358 atomic_inc(&dev->ctrl.abort_limit); 1359 return BLK_EH_RESET_TIMER; 1360 } 1361 iod->aborted = true; 1362 1363 cmd.abort.opcode = nvme_admin_abort_cmd; 1364 cmd.abort.cid = nvme_cid(req); 1365 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1366 1367 dev_warn(nvmeq->dev->ctrl.device, 1368 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1369 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1370 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1371 blk_rq_bytes(req)); 1372 1373 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1374 BLK_MQ_REQ_NOWAIT); 1375 if (IS_ERR(abort_req)) { 1376 atomic_inc(&dev->ctrl.abort_limit); 1377 return BLK_EH_RESET_TIMER; 1378 } 1379 nvme_init_request(abort_req, &cmd); 1380 1381 abort_req->end_io = abort_endio; 1382 abort_req->end_io_data = NULL; 1383 blk_execute_rq_nowait(abort_req, false); 1384 1385 /* 1386 * The aborted req will be completed on receiving the abort req. 1387 * We enable the timer again. If hit twice, it'll cause a device reset, 1388 * as the device then is in a faulty state. 1389 */ 1390 return BLK_EH_RESET_TIMER; 1391 1392 disable: 1393 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1394 return BLK_EH_DONE; 1395 1396 nvme_dev_disable(dev, false); 1397 if (nvme_try_sched_reset(&dev->ctrl)) 1398 nvme_unquiesce_io_queues(&dev->ctrl); 1399 return BLK_EH_DONE; 1400 } 1401 1402 static void nvme_free_queue(struct nvme_queue *nvmeq) 1403 { 1404 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1405 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1406 if (!nvmeq->sq_cmds) 1407 return; 1408 1409 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1410 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1411 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1412 } else { 1413 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1414 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1415 } 1416 } 1417 1418 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1419 { 1420 int i; 1421 1422 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1423 dev->ctrl.queue_count--; 1424 nvme_free_queue(&dev->queues[i]); 1425 } 1426 } 1427 1428 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1429 { 1430 struct nvme_queue *nvmeq = &dev->queues[qid]; 1431 1432 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1433 return; 1434 1435 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1436 mb(); 1437 1438 nvmeq->dev->online_queues--; 1439 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1440 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1441 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1442 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1443 } 1444 1445 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1446 { 1447 int i; 1448 1449 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1450 nvme_suspend_queue(dev, i); 1451 } 1452 1453 /* 1454 * Called only on a device that has been disabled and after all other threads 1455 * that can check this device's completion queues have synced, except 1456 * nvme_poll(). This is the last chance for the driver to see a natural 1457 * completion before nvme_cancel_request() terminates all incomplete requests. 1458 */ 1459 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1460 { 1461 int i; 1462 1463 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1464 spin_lock(&dev->queues[i].cq_poll_lock); 1465 nvme_poll_cq(&dev->queues[i], NULL); 1466 spin_unlock(&dev->queues[i].cq_poll_lock); 1467 } 1468 } 1469 1470 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1471 int entry_size) 1472 { 1473 int q_depth = dev->q_depth; 1474 unsigned q_size_aligned = roundup(q_depth * entry_size, 1475 NVME_CTRL_PAGE_SIZE); 1476 1477 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1478 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1479 1480 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1481 q_depth = div_u64(mem_per_q, entry_size); 1482 1483 /* 1484 * Ensure the reduced q_depth is above some threshold where it 1485 * would be better to map queues in system memory with the 1486 * original depth 1487 */ 1488 if (q_depth < 64) 1489 return -ENOMEM; 1490 } 1491 1492 return q_depth; 1493 } 1494 1495 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1496 int qid) 1497 { 1498 struct pci_dev *pdev = to_pci_dev(dev->dev); 1499 1500 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1501 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1502 if (nvmeq->sq_cmds) { 1503 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1504 nvmeq->sq_cmds); 1505 if (nvmeq->sq_dma_addr) { 1506 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1507 return 0; 1508 } 1509 1510 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1511 } 1512 } 1513 1514 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1515 &nvmeq->sq_dma_addr, GFP_KERNEL); 1516 if (!nvmeq->sq_cmds) 1517 return -ENOMEM; 1518 return 0; 1519 } 1520 1521 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1522 { 1523 struct nvme_queue *nvmeq = &dev->queues[qid]; 1524 1525 if (dev->ctrl.queue_count > qid) 1526 return 0; 1527 1528 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1529 nvmeq->q_depth = depth; 1530 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1531 &nvmeq->cq_dma_addr, GFP_KERNEL); 1532 if (!nvmeq->cqes) 1533 goto free_nvmeq; 1534 1535 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1536 goto free_cqdma; 1537 1538 nvmeq->dev = dev; 1539 spin_lock_init(&nvmeq->sq_lock); 1540 spin_lock_init(&nvmeq->cq_poll_lock); 1541 nvmeq->cq_head = 0; 1542 nvmeq->cq_phase = 1; 1543 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1544 nvmeq->qid = qid; 1545 dev->ctrl.queue_count++; 1546 1547 return 0; 1548 1549 free_cqdma: 1550 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1551 nvmeq->cq_dma_addr); 1552 free_nvmeq: 1553 return -ENOMEM; 1554 } 1555 1556 static int queue_request_irq(struct nvme_queue *nvmeq) 1557 { 1558 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1559 int nr = nvmeq->dev->ctrl.instance; 1560 1561 if (use_threaded_interrupts) { 1562 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1563 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1564 } else { 1565 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1566 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1567 } 1568 } 1569 1570 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1571 { 1572 struct nvme_dev *dev = nvmeq->dev; 1573 1574 nvmeq->sq_tail = 0; 1575 nvmeq->last_sq_tail = 0; 1576 nvmeq->cq_head = 0; 1577 nvmeq->cq_phase = 1; 1578 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1579 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1580 nvme_dbbuf_init(dev, nvmeq, qid); 1581 dev->online_queues++; 1582 wmb(); /* ensure the first interrupt sees the initialization */ 1583 } 1584 1585 /* 1586 * Try getting shutdown_lock while setting up IO queues. 1587 */ 1588 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1589 { 1590 /* 1591 * Give up if the lock is being held by nvme_dev_disable. 1592 */ 1593 if (!mutex_trylock(&dev->shutdown_lock)) 1594 return -ENODEV; 1595 1596 /* 1597 * Controller is in wrong state, fail early. 1598 */ 1599 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1600 mutex_unlock(&dev->shutdown_lock); 1601 return -ENODEV; 1602 } 1603 1604 return 0; 1605 } 1606 1607 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1608 { 1609 struct nvme_dev *dev = nvmeq->dev; 1610 int result; 1611 u16 vector = 0; 1612 1613 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1614 1615 /* 1616 * A queue's vector matches the queue identifier unless the controller 1617 * has only one vector available. 1618 */ 1619 if (!polled) 1620 vector = dev->num_vecs == 1 ? 0 : qid; 1621 else 1622 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1623 1624 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1625 if (result) 1626 return result; 1627 1628 result = adapter_alloc_sq(dev, qid, nvmeq); 1629 if (result < 0) 1630 return result; 1631 if (result) 1632 goto release_cq; 1633 1634 nvmeq->cq_vector = vector; 1635 1636 result = nvme_setup_io_queues_trylock(dev); 1637 if (result) 1638 return result; 1639 nvme_init_queue(nvmeq, qid); 1640 if (!polled) { 1641 result = queue_request_irq(nvmeq); 1642 if (result < 0) 1643 goto release_sq; 1644 } 1645 1646 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1647 mutex_unlock(&dev->shutdown_lock); 1648 return result; 1649 1650 release_sq: 1651 dev->online_queues--; 1652 mutex_unlock(&dev->shutdown_lock); 1653 adapter_delete_sq(dev, qid); 1654 release_cq: 1655 adapter_delete_cq(dev, qid); 1656 return result; 1657 } 1658 1659 static const struct blk_mq_ops nvme_mq_admin_ops = { 1660 .queue_rq = nvme_queue_rq, 1661 .complete = nvme_pci_complete_rq, 1662 .init_hctx = nvme_admin_init_hctx, 1663 .init_request = nvme_pci_init_request, 1664 .timeout = nvme_timeout, 1665 }; 1666 1667 static const struct blk_mq_ops nvme_mq_ops = { 1668 .queue_rq = nvme_queue_rq, 1669 .queue_rqs = nvme_queue_rqs, 1670 .complete = nvme_pci_complete_rq, 1671 .commit_rqs = nvme_commit_rqs, 1672 .init_hctx = nvme_init_hctx, 1673 .init_request = nvme_pci_init_request, 1674 .map_queues = nvme_pci_map_queues, 1675 .timeout = nvme_timeout, 1676 .poll = nvme_poll, 1677 }; 1678 1679 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1680 { 1681 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1682 /* 1683 * If the controller was reset during removal, it's possible 1684 * user requests may be waiting on a stopped queue. Start the 1685 * queue to flush these to completion. 1686 */ 1687 nvme_unquiesce_admin_queue(&dev->ctrl); 1688 nvme_remove_admin_tag_set(&dev->ctrl); 1689 } 1690 } 1691 1692 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1693 { 1694 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1695 } 1696 1697 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1698 { 1699 struct pci_dev *pdev = to_pci_dev(dev->dev); 1700 1701 if (size <= dev->bar_mapped_size) 1702 return 0; 1703 if (size > pci_resource_len(pdev, 0)) 1704 return -ENOMEM; 1705 if (dev->bar) 1706 iounmap(dev->bar); 1707 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1708 if (!dev->bar) { 1709 dev->bar_mapped_size = 0; 1710 return -ENOMEM; 1711 } 1712 dev->bar_mapped_size = size; 1713 dev->dbs = dev->bar + NVME_REG_DBS; 1714 1715 return 0; 1716 } 1717 1718 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1719 { 1720 int result; 1721 u32 aqa; 1722 struct nvme_queue *nvmeq; 1723 1724 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1725 if (result < 0) 1726 return result; 1727 1728 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1729 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1730 1731 if (dev->subsystem && 1732 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1733 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1734 1735 /* 1736 * If the device has been passed off to us in an enabled state, just 1737 * clear the enabled bit. The spec says we should set the 'shutdown 1738 * notification bits', but doing so may cause the device to complete 1739 * commands to the admin queue ... and we don't know what memory that 1740 * might be pointing at! 1741 */ 1742 result = nvme_disable_ctrl(&dev->ctrl, false); 1743 if (result < 0) 1744 return result; 1745 1746 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1747 if (result) 1748 return result; 1749 1750 dev->ctrl.numa_node = dev_to_node(dev->dev); 1751 1752 nvmeq = &dev->queues[0]; 1753 aqa = nvmeq->q_depth - 1; 1754 aqa |= aqa << 16; 1755 1756 writel(aqa, dev->bar + NVME_REG_AQA); 1757 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1758 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1759 1760 result = nvme_enable_ctrl(&dev->ctrl); 1761 if (result) 1762 return result; 1763 1764 nvmeq->cq_vector = 0; 1765 nvme_init_queue(nvmeq, 0); 1766 result = queue_request_irq(nvmeq); 1767 if (result) { 1768 dev->online_queues--; 1769 return result; 1770 } 1771 1772 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1773 return result; 1774 } 1775 1776 static int nvme_create_io_queues(struct nvme_dev *dev) 1777 { 1778 unsigned i, max, rw_queues; 1779 int ret = 0; 1780 1781 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1782 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1783 ret = -ENOMEM; 1784 break; 1785 } 1786 } 1787 1788 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1789 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1790 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1791 dev->io_queues[HCTX_TYPE_READ]; 1792 } else { 1793 rw_queues = max; 1794 } 1795 1796 for (i = dev->online_queues; i <= max; i++) { 1797 bool polled = i > rw_queues; 1798 1799 ret = nvme_create_queue(&dev->queues[i], i, polled); 1800 if (ret) 1801 break; 1802 } 1803 1804 /* 1805 * Ignore failing Create SQ/CQ commands, we can continue with less 1806 * than the desired amount of queues, and even a controller without 1807 * I/O queues can still be used to issue admin commands. This might 1808 * be useful to upgrade a buggy firmware for example. 1809 */ 1810 return ret >= 0 ? 0 : ret; 1811 } 1812 1813 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1814 { 1815 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1816 1817 return 1ULL << (12 + 4 * szu); 1818 } 1819 1820 static u32 nvme_cmb_size(struct nvme_dev *dev) 1821 { 1822 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1823 } 1824 1825 static void nvme_map_cmb(struct nvme_dev *dev) 1826 { 1827 u64 size, offset; 1828 resource_size_t bar_size; 1829 struct pci_dev *pdev = to_pci_dev(dev->dev); 1830 int bar; 1831 1832 if (dev->cmb_size) 1833 return; 1834 1835 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1836 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1837 1838 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1839 if (!dev->cmbsz) 1840 return; 1841 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1842 1843 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1844 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1845 bar = NVME_CMB_BIR(dev->cmbloc); 1846 bar_size = pci_resource_len(pdev, bar); 1847 1848 if (offset > bar_size) 1849 return; 1850 1851 /* 1852 * Tell the controller about the host side address mapping the CMB, 1853 * and enable CMB decoding for the NVMe 1.4+ scheme: 1854 */ 1855 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1856 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1857 (pci_bus_address(pdev, bar) + offset), 1858 dev->bar + NVME_REG_CMBMSC); 1859 } 1860 1861 /* 1862 * Controllers may support a CMB size larger than their BAR, 1863 * for example, due to being behind a bridge. Reduce the CMB to 1864 * the reported size of the BAR 1865 */ 1866 if (size > bar_size - offset) 1867 size = bar_size - offset; 1868 1869 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1870 dev_warn(dev->ctrl.device, 1871 "failed to register the CMB\n"); 1872 return; 1873 } 1874 1875 dev->cmb_size = size; 1876 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1877 1878 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1879 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1880 pci_p2pmem_publish(pdev, true); 1881 1882 nvme_update_attrs(dev); 1883 } 1884 1885 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1886 { 1887 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1888 u64 dma_addr = dev->host_mem_descs_dma; 1889 struct nvme_command c = { }; 1890 int ret; 1891 1892 c.features.opcode = nvme_admin_set_features; 1893 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1894 c.features.dword11 = cpu_to_le32(bits); 1895 c.features.dword12 = cpu_to_le32(host_mem_size); 1896 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1897 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1898 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1899 1900 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1901 if (ret) { 1902 dev_warn(dev->ctrl.device, 1903 "failed to set host mem (err %d, flags %#x).\n", 1904 ret, bits); 1905 } else 1906 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1907 1908 return ret; 1909 } 1910 1911 static void nvme_free_host_mem(struct nvme_dev *dev) 1912 { 1913 int i; 1914 1915 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1916 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1917 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1918 1919 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1920 le64_to_cpu(desc->addr), 1921 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1922 } 1923 1924 kfree(dev->host_mem_desc_bufs); 1925 dev->host_mem_desc_bufs = NULL; 1926 dma_free_coherent(dev->dev, 1927 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1928 dev->host_mem_descs, dev->host_mem_descs_dma); 1929 dev->host_mem_descs = NULL; 1930 dev->nr_host_mem_descs = 0; 1931 } 1932 1933 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1934 u32 chunk_size) 1935 { 1936 struct nvme_host_mem_buf_desc *descs; 1937 u32 max_entries, len; 1938 dma_addr_t descs_dma; 1939 int i = 0; 1940 void **bufs; 1941 u64 size, tmp; 1942 1943 tmp = (preferred + chunk_size - 1); 1944 do_div(tmp, chunk_size); 1945 max_entries = tmp; 1946 1947 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1948 max_entries = dev->ctrl.hmmaxd; 1949 1950 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1951 &descs_dma, GFP_KERNEL); 1952 if (!descs) 1953 goto out; 1954 1955 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1956 if (!bufs) 1957 goto out_free_descs; 1958 1959 for (size = 0; size < preferred && i < max_entries; size += len) { 1960 dma_addr_t dma_addr; 1961 1962 len = min_t(u64, chunk_size, preferred - size); 1963 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1964 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1965 if (!bufs[i]) 1966 break; 1967 1968 descs[i].addr = cpu_to_le64(dma_addr); 1969 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1970 i++; 1971 } 1972 1973 if (!size) 1974 goto out_free_bufs; 1975 1976 dev->nr_host_mem_descs = i; 1977 dev->host_mem_size = size; 1978 dev->host_mem_descs = descs; 1979 dev->host_mem_descs_dma = descs_dma; 1980 dev->host_mem_desc_bufs = bufs; 1981 return 0; 1982 1983 out_free_bufs: 1984 while (--i >= 0) { 1985 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1986 1987 dma_free_attrs(dev->dev, size, bufs[i], 1988 le64_to_cpu(descs[i].addr), 1989 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1990 } 1991 1992 kfree(bufs); 1993 out_free_descs: 1994 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1995 descs_dma); 1996 out: 1997 dev->host_mem_descs = NULL; 1998 return -ENOMEM; 1999 } 2000 2001 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2002 { 2003 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2004 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2005 u64 chunk_size; 2006 2007 /* start big and work our way down */ 2008 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2009 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2010 if (!min || dev->host_mem_size >= min) 2011 return 0; 2012 nvme_free_host_mem(dev); 2013 } 2014 } 2015 2016 return -ENOMEM; 2017 } 2018 2019 static int nvme_setup_host_mem(struct nvme_dev *dev) 2020 { 2021 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2022 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2023 u64 min = (u64)dev->ctrl.hmmin * 4096; 2024 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2025 int ret; 2026 2027 if (!dev->ctrl.hmpre) 2028 return 0; 2029 2030 preferred = min(preferred, max); 2031 if (min > max) { 2032 dev_warn(dev->ctrl.device, 2033 "min host memory (%lld MiB) above limit (%d MiB).\n", 2034 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2035 nvme_free_host_mem(dev); 2036 return 0; 2037 } 2038 2039 /* 2040 * If we already have a buffer allocated check if we can reuse it. 2041 */ 2042 if (dev->host_mem_descs) { 2043 if (dev->host_mem_size >= min) 2044 enable_bits |= NVME_HOST_MEM_RETURN; 2045 else 2046 nvme_free_host_mem(dev); 2047 } 2048 2049 if (!dev->host_mem_descs) { 2050 if (nvme_alloc_host_mem(dev, min, preferred)) { 2051 dev_warn(dev->ctrl.device, 2052 "failed to allocate host memory buffer.\n"); 2053 return 0; /* controller must work without HMB */ 2054 } 2055 2056 dev_info(dev->ctrl.device, 2057 "allocated %lld MiB host memory buffer.\n", 2058 dev->host_mem_size >> ilog2(SZ_1M)); 2059 } 2060 2061 ret = nvme_set_host_mem(dev, enable_bits); 2062 if (ret) 2063 nvme_free_host_mem(dev); 2064 return ret; 2065 } 2066 2067 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2068 char *buf) 2069 { 2070 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2071 2072 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2073 ndev->cmbloc, ndev->cmbsz); 2074 } 2075 static DEVICE_ATTR_RO(cmb); 2076 2077 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2078 char *buf) 2079 { 2080 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2081 2082 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2083 } 2084 static DEVICE_ATTR_RO(cmbloc); 2085 2086 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2087 char *buf) 2088 { 2089 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2090 2091 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2092 } 2093 static DEVICE_ATTR_RO(cmbsz); 2094 2095 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2096 char *buf) 2097 { 2098 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2099 2100 return sysfs_emit(buf, "%d\n", ndev->hmb); 2101 } 2102 2103 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2104 const char *buf, size_t count) 2105 { 2106 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2107 bool new; 2108 int ret; 2109 2110 if (kstrtobool(buf, &new) < 0) 2111 return -EINVAL; 2112 2113 if (new == ndev->hmb) 2114 return count; 2115 2116 if (new) { 2117 ret = nvme_setup_host_mem(ndev); 2118 } else { 2119 ret = nvme_set_host_mem(ndev, 0); 2120 if (!ret) 2121 nvme_free_host_mem(ndev); 2122 } 2123 2124 if (ret < 0) 2125 return ret; 2126 2127 return count; 2128 } 2129 static DEVICE_ATTR_RW(hmb); 2130 2131 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2132 struct attribute *a, int n) 2133 { 2134 struct nvme_ctrl *ctrl = 2135 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2136 struct nvme_dev *dev = to_nvme_dev(ctrl); 2137 2138 if (a == &dev_attr_cmb.attr || 2139 a == &dev_attr_cmbloc.attr || 2140 a == &dev_attr_cmbsz.attr) { 2141 if (!dev->cmbsz) 2142 return 0; 2143 } 2144 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2145 return 0; 2146 2147 return a->mode; 2148 } 2149 2150 static struct attribute *nvme_pci_attrs[] = { 2151 &dev_attr_cmb.attr, 2152 &dev_attr_cmbloc.attr, 2153 &dev_attr_cmbsz.attr, 2154 &dev_attr_hmb.attr, 2155 NULL, 2156 }; 2157 2158 static const struct attribute_group nvme_pci_dev_attrs_group = { 2159 .attrs = nvme_pci_attrs, 2160 .is_visible = nvme_pci_attrs_are_visible, 2161 }; 2162 2163 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2164 &nvme_dev_attrs_group, 2165 &nvme_pci_dev_attrs_group, 2166 NULL, 2167 }; 2168 2169 static void nvme_update_attrs(struct nvme_dev *dev) 2170 { 2171 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2172 } 2173 2174 /* 2175 * nirqs is the number of interrupts available for write and read 2176 * queues. The core already reserved an interrupt for the admin queue. 2177 */ 2178 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2179 { 2180 struct nvme_dev *dev = affd->priv; 2181 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2182 2183 /* 2184 * If there is no interrupt available for queues, ensure that 2185 * the default queue is set to 1. The affinity set size is 2186 * also set to one, but the irq core ignores it for this case. 2187 * 2188 * If only one interrupt is available or 'write_queue' == 0, combine 2189 * write and read queues. 2190 * 2191 * If 'write_queues' > 0, ensure it leaves room for at least one read 2192 * queue. 2193 */ 2194 if (!nrirqs) { 2195 nrirqs = 1; 2196 nr_read_queues = 0; 2197 } else if (nrirqs == 1 || !nr_write_queues) { 2198 nr_read_queues = 0; 2199 } else if (nr_write_queues >= nrirqs) { 2200 nr_read_queues = 1; 2201 } else { 2202 nr_read_queues = nrirqs - nr_write_queues; 2203 } 2204 2205 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2206 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2207 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2208 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2209 affd->nr_sets = nr_read_queues ? 2 : 1; 2210 } 2211 2212 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2213 { 2214 struct pci_dev *pdev = to_pci_dev(dev->dev); 2215 struct irq_affinity affd = { 2216 .pre_vectors = 1, 2217 .calc_sets = nvme_calc_irq_sets, 2218 .priv = dev, 2219 }; 2220 unsigned int irq_queues, poll_queues; 2221 2222 /* 2223 * Poll queues don't need interrupts, but we need at least one I/O queue 2224 * left over for non-polled I/O. 2225 */ 2226 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2227 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2228 2229 /* 2230 * Initialize for the single interrupt case, will be updated in 2231 * nvme_calc_irq_sets(). 2232 */ 2233 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2234 dev->io_queues[HCTX_TYPE_READ] = 0; 2235 2236 /* 2237 * We need interrupts for the admin queue and each non-polled I/O queue, 2238 * but some Apple controllers require all queues to use the first 2239 * vector. 2240 */ 2241 irq_queues = 1; 2242 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2243 irq_queues += (nr_io_queues - poll_queues); 2244 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2245 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2246 } 2247 2248 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2249 { 2250 /* 2251 * If tags are shared with admin queue (Apple bug), then 2252 * make sure we only use one IO queue. 2253 */ 2254 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2255 return 1; 2256 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2257 } 2258 2259 static int nvme_setup_io_queues(struct nvme_dev *dev) 2260 { 2261 struct nvme_queue *adminq = &dev->queues[0]; 2262 struct pci_dev *pdev = to_pci_dev(dev->dev); 2263 unsigned int nr_io_queues; 2264 unsigned long size; 2265 int result; 2266 2267 /* 2268 * Sample the module parameters once at reset time so that we have 2269 * stable values to work with. 2270 */ 2271 dev->nr_write_queues = write_queues; 2272 dev->nr_poll_queues = poll_queues; 2273 2274 nr_io_queues = dev->nr_allocated_queues - 1; 2275 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2276 if (result < 0) 2277 return result; 2278 2279 if (nr_io_queues == 0) 2280 return 0; 2281 2282 /* 2283 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2284 * from set to unset. If there is a window to it is truely freed, 2285 * pci_free_irq_vectors() jumping into this window will crash. 2286 * And take lock to avoid racing with pci_free_irq_vectors() in 2287 * nvme_dev_disable() path. 2288 */ 2289 result = nvme_setup_io_queues_trylock(dev); 2290 if (result) 2291 return result; 2292 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2293 pci_free_irq(pdev, 0, adminq); 2294 2295 if (dev->cmb_use_sqes) { 2296 result = nvme_cmb_qdepth(dev, nr_io_queues, 2297 sizeof(struct nvme_command)); 2298 if (result > 0) { 2299 dev->q_depth = result; 2300 dev->ctrl.sqsize = result - 1; 2301 } else { 2302 dev->cmb_use_sqes = false; 2303 } 2304 } 2305 2306 do { 2307 size = db_bar_size(dev, nr_io_queues); 2308 result = nvme_remap_bar(dev, size); 2309 if (!result) 2310 break; 2311 if (!--nr_io_queues) { 2312 result = -ENOMEM; 2313 goto out_unlock; 2314 } 2315 } while (1); 2316 adminq->q_db = dev->dbs; 2317 2318 retry: 2319 /* Deregister the admin queue's interrupt */ 2320 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2321 pci_free_irq(pdev, 0, adminq); 2322 2323 /* 2324 * If we enable msix early due to not intx, disable it again before 2325 * setting up the full range we need. 2326 */ 2327 pci_free_irq_vectors(pdev); 2328 2329 result = nvme_setup_irqs(dev, nr_io_queues); 2330 if (result <= 0) { 2331 result = -EIO; 2332 goto out_unlock; 2333 } 2334 2335 dev->num_vecs = result; 2336 result = max(result - 1, 1); 2337 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2338 2339 /* 2340 * Should investigate if there's a performance win from allocating 2341 * more queues than interrupt vectors; it might allow the submission 2342 * path to scale better, even if the receive path is limited by the 2343 * number of interrupts. 2344 */ 2345 result = queue_request_irq(adminq); 2346 if (result) 2347 goto out_unlock; 2348 set_bit(NVMEQ_ENABLED, &adminq->flags); 2349 mutex_unlock(&dev->shutdown_lock); 2350 2351 result = nvme_create_io_queues(dev); 2352 if (result || dev->online_queues < 2) 2353 return result; 2354 2355 if (dev->online_queues - 1 < dev->max_qid) { 2356 nr_io_queues = dev->online_queues - 1; 2357 nvme_delete_io_queues(dev); 2358 result = nvme_setup_io_queues_trylock(dev); 2359 if (result) 2360 return result; 2361 nvme_suspend_io_queues(dev); 2362 goto retry; 2363 } 2364 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2365 dev->io_queues[HCTX_TYPE_DEFAULT], 2366 dev->io_queues[HCTX_TYPE_READ], 2367 dev->io_queues[HCTX_TYPE_POLL]); 2368 return 0; 2369 out_unlock: 2370 mutex_unlock(&dev->shutdown_lock); 2371 return result; 2372 } 2373 2374 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2375 blk_status_t error) 2376 { 2377 struct nvme_queue *nvmeq = req->end_io_data; 2378 2379 blk_mq_free_request(req); 2380 complete(&nvmeq->delete_done); 2381 return RQ_END_IO_NONE; 2382 } 2383 2384 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2385 blk_status_t error) 2386 { 2387 struct nvme_queue *nvmeq = req->end_io_data; 2388 2389 if (error) 2390 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2391 2392 return nvme_del_queue_end(req, error); 2393 } 2394 2395 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2396 { 2397 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2398 struct request *req; 2399 struct nvme_command cmd = { }; 2400 2401 cmd.delete_queue.opcode = opcode; 2402 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2403 2404 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2405 if (IS_ERR(req)) 2406 return PTR_ERR(req); 2407 nvme_init_request(req, &cmd); 2408 2409 if (opcode == nvme_admin_delete_cq) 2410 req->end_io = nvme_del_cq_end; 2411 else 2412 req->end_io = nvme_del_queue_end; 2413 req->end_io_data = nvmeq; 2414 2415 init_completion(&nvmeq->delete_done); 2416 blk_execute_rq_nowait(req, false); 2417 return 0; 2418 } 2419 2420 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2421 { 2422 int nr_queues = dev->online_queues - 1, sent = 0; 2423 unsigned long timeout; 2424 2425 retry: 2426 timeout = NVME_ADMIN_TIMEOUT; 2427 while (nr_queues > 0) { 2428 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2429 break; 2430 nr_queues--; 2431 sent++; 2432 } 2433 while (sent) { 2434 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2435 2436 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2437 timeout); 2438 if (timeout == 0) 2439 return false; 2440 2441 sent--; 2442 if (nr_queues) 2443 goto retry; 2444 } 2445 return true; 2446 } 2447 2448 static void nvme_delete_io_queues(struct nvme_dev *dev) 2449 { 2450 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2451 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2452 } 2453 2454 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2455 { 2456 if (dev->io_queues[HCTX_TYPE_POLL]) 2457 return 3; 2458 if (dev->io_queues[HCTX_TYPE_READ]) 2459 return 2; 2460 return 1; 2461 } 2462 2463 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2464 { 2465 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2466 /* free previously allocated queues that are no longer usable */ 2467 nvme_free_queues(dev, dev->online_queues); 2468 } 2469 2470 static int nvme_pci_enable(struct nvme_dev *dev) 2471 { 2472 int result = -ENOMEM; 2473 struct pci_dev *pdev = to_pci_dev(dev->dev); 2474 2475 if (pci_enable_device_mem(pdev)) 2476 return result; 2477 2478 pci_set_master(pdev); 2479 2480 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2481 result = -ENODEV; 2482 goto disable; 2483 } 2484 2485 /* 2486 * Some devices and/or platforms don't advertise or work with INTx 2487 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2488 * adjust this later. 2489 */ 2490 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2491 if (result < 0) 2492 goto disable; 2493 2494 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2495 2496 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2497 io_queue_depth); 2498 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2499 dev->dbs = dev->bar + 4096; 2500 2501 /* 2502 * Some Apple controllers require a non-standard SQE size. 2503 * Interestingly they also seem to ignore the CC:IOSQES register 2504 * so we don't bother updating it here. 2505 */ 2506 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2507 dev->io_sqes = 7; 2508 else 2509 dev->io_sqes = NVME_NVM_IOSQES; 2510 2511 /* 2512 * Temporary fix for the Apple controller found in the MacBook8,1 and 2513 * some MacBook7,1 to avoid controller resets and data loss. 2514 */ 2515 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2516 dev->q_depth = 2; 2517 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2518 "set queue depth=%u to work around controller resets\n", 2519 dev->q_depth); 2520 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2521 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2522 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2523 dev->q_depth = 64; 2524 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2525 "set queue depth=%u\n", dev->q_depth); 2526 } 2527 2528 /* 2529 * Controllers with the shared tags quirk need the IO queue to be 2530 * big enough so that we get 32 tags for the admin queue 2531 */ 2532 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2533 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2534 dev->q_depth = NVME_AQ_DEPTH + 2; 2535 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2536 dev->q_depth); 2537 } 2538 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2539 2540 nvme_map_cmb(dev); 2541 2542 pci_save_state(pdev); 2543 2544 result = nvme_pci_configure_admin_queue(dev); 2545 if (result) 2546 goto free_irq; 2547 return result; 2548 2549 free_irq: 2550 pci_free_irq_vectors(pdev); 2551 disable: 2552 pci_disable_device(pdev); 2553 return result; 2554 } 2555 2556 static void nvme_dev_unmap(struct nvme_dev *dev) 2557 { 2558 if (dev->bar) 2559 iounmap(dev->bar); 2560 pci_release_mem_regions(to_pci_dev(dev->dev)); 2561 } 2562 2563 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2564 { 2565 struct pci_dev *pdev = to_pci_dev(dev->dev); 2566 u32 csts; 2567 2568 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2569 return true; 2570 if (pdev->error_state != pci_channel_io_normal) 2571 return true; 2572 2573 csts = readl(dev->bar + NVME_REG_CSTS); 2574 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2575 } 2576 2577 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2578 { 2579 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2580 struct pci_dev *pdev = to_pci_dev(dev->dev); 2581 bool dead; 2582 2583 mutex_lock(&dev->shutdown_lock); 2584 dead = nvme_pci_ctrl_is_dead(dev); 2585 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2586 if (pci_is_enabled(pdev)) 2587 nvme_start_freeze(&dev->ctrl); 2588 /* 2589 * Give the controller a chance to complete all entered requests 2590 * if doing a safe shutdown. 2591 */ 2592 if (!dead && shutdown) 2593 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2594 } 2595 2596 nvme_quiesce_io_queues(&dev->ctrl); 2597 2598 if (!dead && dev->ctrl.queue_count > 0) { 2599 nvme_delete_io_queues(dev); 2600 nvme_disable_ctrl(&dev->ctrl, shutdown); 2601 nvme_poll_irqdisable(&dev->queues[0]); 2602 } 2603 nvme_suspend_io_queues(dev); 2604 nvme_suspend_queue(dev, 0); 2605 pci_free_irq_vectors(pdev); 2606 if (pci_is_enabled(pdev)) 2607 pci_disable_device(pdev); 2608 nvme_reap_pending_cqes(dev); 2609 2610 nvme_cancel_tagset(&dev->ctrl); 2611 nvme_cancel_admin_tagset(&dev->ctrl); 2612 2613 /* 2614 * The driver will not be starting up queues again if shutting down so 2615 * must flush all entered requests to their failed completion to avoid 2616 * deadlocking blk-mq hot-cpu notifier. 2617 */ 2618 if (shutdown) { 2619 nvme_unquiesce_io_queues(&dev->ctrl); 2620 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2621 nvme_unquiesce_admin_queue(&dev->ctrl); 2622 } 2623 mutex_unlock(&dev->shutdown_lock); 2624 } 2625 2626 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2627 { 2628 if (!nvme_wait_reset(&dev->ctrl)) 2629 return -EBUSY; 2630 nvme_dev_disable(dev, shutdown); 2631 return 0; 2632 } 2633 2634 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2635 { 2636 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2637 NVME_CTRL_PAGE_SIZE, 2638 NVME_CTRL_PAGE_SIZE, 0); 2639 if (!dev->prp_page_pool) 2640 return -ENOMEM; 2641 2642 /* Optimisation for I/Os between 4k and 128k */ 2643 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2644 256, 256, 0); 2645 if (!dev->prp_small_pool) { 2646 dma_pool_destroy(dev->prp_page_pool); 2647 return -ENOMEM; 2648 } 2649 return 0; 2650 } 2651 2652 static void nvme_release_prp_pools(struct nvme_dev *dev) 2653 { 2654 dma_pool_destroy(dev->prp_page_pool); 2655 dma_pool_destroy(dev->prp_small_pool); 2656 } 2657 2658 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2659 { 2660 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2661 2662 dev->iod_mempool = mempool_create_node(1, 2663 mempool_kmalloc, mempool_kfree, 2664 (void *)alloc_size, GFP_KERNEL, 2665 dev_to_node(dev->dev)); 2666 if (!dev->iod_mempool) 2667 return -ENOMEM; 2668 return 0; 2669 } 2670 2671 static void nvme_free_tagset(struct nvme_dev *dev) 2672 { 2673 if (dev->tagset.tags) 2674 nvme_remove_io_tag_set(&dev->ctrl); 2675 dev->ctrl.tagset = NULL; 2676 } 2677 2678 /* pairs with nvme_pci_alloc_dev */ 2679 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2680 { 2681 struct nvme_dev *dev = to_nvme_dev(ctrl); 2682 2683 nvme_free_tagset(dev); 2684 put_device(dev->dev); 2685 kfree(dev->queues); 2686 kfree(dev); 2687 } 2688 2689 static void nvme_reset_work(struct work_struct *work) 2690 { 2691 struct nvme_dev *dev = 2692 container_of(work, struct nvme_dev, ctrl.reset_work); 2693 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2694 int result; 2695 2696 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2697 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2698 dev->ctrl.state); 2699 result = -ENODEV; 2700 goto out; 2701 } 2702 2703 /* 2704 * If we're called to reset a live controller first shut it down before 2705 * moving on. 2706 */ 2707 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2708 nvme_dev_disable(dev, false); 2709 nvme_sync_queues(&dev->ctrl); 2710 2711 mutex_lock(&dev->shutdown_lock); 2712 result = nvme_pci_enable(dev); 2713 if (result) 2714 goto out_unlock; 2715 nvme_unquiesce_admin_queue(&dev->ctrl); 2716 mutex_unlock(&dev->shutdown_lock); 2717 2718 /* 2719 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2720 * initializing procedure here. 2721 */ 2722 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2723 dev_warn(dev->ctrl.device, 2724 "failed to mark controller CONNECTING\n"); 2725 result = -EBUSY; 2726 goto out; 2727 } 2728 2729 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2730 if (result) 2731 goto out; 2732 2733 nvme_dbbuf_dma_alloc(dev); 2734 2735 result = nvme_setup_host_mem(dev); 2736 if (result < 0) 2737 goto out; 2738 2739 result = nvme_setup_io_queues(dev); 2740 if (result) 2741 goto out; 2742 2743 /* 2744 * Freeze and update the number of I/O queues as thos might have 2745 * changed. If there are no I/O queues left after this reset, keep the 2746 * controller around but remove all namespaces. 2747 */ 2748 if (dev->online_queues > 1) { 2749 nvme_dbbuf_set(dev); 2750 nvme_unquiesce_io_queues(&dev->ctrl); 2751 nvme_wait_freeze(&dev->ctrl); 2752 nvme_pci_update_nr_queues(dev); 2753 nvme_unfreeze(&dev->ctrl); 2754 } else { 2755 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2756 nvme_mark_namespaces_dead(&dev->ctrl); 2757 nvme_unquiesce_io_queues(&dev->ctrl); 2758 nvme_remove_namespaces(&dev->ctrl); 2759 nvme_free_tagset(dev); 2760 } 2761 2762 /* 2763 * If only admin queue live, keep it to do further investigation or 2764 * recovery. 2765 */ 2766 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2767 dev_warn(dev->ctrl.device, 2768 "failed to mark controller live state\n"); 2769 result = -ENODEV; 2770 goto out; 2771 } 2772 2773 nvme_start_ctrl(&dev->ctrl); 2774 return; 2775 2776 out_unlock: 2777 mutex_unlock(&dev->shutdown_lock); 2778 out: 2779 /* 2780 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2781 * may be holding this pci_dev's device lock. 2782 */ 2783 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2784 result); 2785 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2786 nvme_dev_disable(dev, true); 2787 nvme_sync_queues(&dev->ctrl); 2788 nvme_mark_namespaces_dead(&dev->ctrl); 2789 nvme_unquiesce_io_queues(&dev->ctrl); 2790 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2791 } 2792 2793 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2794 { 2795 *val = readl(to_nvme_dev(ctrl)->bar + off); 2796 return 0; 2797 } 2798 2799 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2800 { 2801 writel(val, to_nvme_dev(ctrl)->bar + off); 2802 return 0; 2803 } 2804 2805 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2806 { 2807 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2808 return 0; 2809 } 2810 2811 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2812 { 2813 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2814 2815 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2816 } 2817 2818 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2819 { 2820 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2821 struct nvme_subsystem *subsys = ctrl->subsys; 2822 2823 dev_err(ctrl->device, 2824 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2825 pdev->vendor, pdev->device, 2826 nvme_strlen(subsys->model, sizeof(subsys->model)), 2827 subsys->model, nvme_strlen(subsys->firmware_rev, 2828 sizeof(subsys->firmware_rev)), 2829 subsys->firmware_rev); 2830 } 2831 2832 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2833 { 2834 struct nvme_dev *dev = to_nvme_dev(ctrl); 2835 2836 return dma_pci_p2pdma_supported(dev->dev); 2837 } 2838 2839 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2840 .name = "pcie", 2841 .module = THIS_MODULE, 2842 .flags = NVME_F_METADATA_SUPPORTED, 2843 .dev_attr_groups = nvme_pci_dev_attr_groups, 2844 .reg_read32 = nvme_pci_reg_read32, 2845 .reg_write32 = nvme_pci_reg_write32, 2846 .reg_read64 = nvme_pci_reg_read64, 2847 .free_ctrl = nvme_pci_free_ctrl, 2848 .submit_async_event = nvme_pci_submit_async_event, 2849 .get_address = nvme_pci_get_address, 2850 .print_device_info = nvme_pci_print_device_info, 2851 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2852 }; 2853 2854 static int nvme_dev_map(struct nvme_dev *dev) 2855 { 2856 struct pci_dev *pdev = to_pci_dev(dev->dev); 2857 2858 if (pci_request_mem_regions(pdev, "nvme")) 2859 return -ENODEV; 2860 2861 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2862 goto release; 2863 2864 return 0; 2865 release: 2866 pci_release_mem_regions(pdev); 2867 return -ENODEV; 2868 } 2869 2870 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2871 { 2872 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2873 /* 2874 * Several Samsung devices seem to drop off the PCIe bus 2875 * randomly when APST is on and uses the deepest sleep state. 2876 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2877 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2878 * 950 PRO 256GB", but it seems to be restricted to two Dell 2879 * laptops. 2880 */ 2881 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2882 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2883 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2884 return NVME_QUIRK_NO_DEEPEST_PS; 2885 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2886 /* 2887 * Samsung SSD 960 EVO drops off the PCIe bus after system 2888 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2889 * within few minutes after bootup on a Coffee Lake board - 2890 * ASUS PRIME Z370-A 2891 */ 2892 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2893 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2894 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2895 return NVME_QUIRK_NO_APST; 2896 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2897 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2898 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2899 /* 2900 * Forcing to use host managed nvme power settings for 2901 * lowest idle power with quick resume latency on 2902 * Samsung and Toshiba SSDs based on suspend behavior 2903 * on Coffee Lake board for LENOVO C640 2904 */ 2905 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2906 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2907 return NVME_QUIRK_SIMPLE_SUSPEND; 2908 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 2909 pdev->device == 0x500f)) { 2910 /* 2911 * Exclude some Kingston NV1 and A2000 devices from 2912 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 2913 * lot fo energy with s2idle sleep on some TUXEDO platforms. 2914 */ 2915 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 2916 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 2917 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 2918 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 2919 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 2920 } 2921 2922 return 0; 2923 } 2924 2925 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2926 const struct pci_device_id *id) 2927 { 2928 unsigned long quirks = id->driver_data; 2929 int node = dev_to_node(&pdev->dev); 2930 struct nvme_dev *dev; 2931 int ret = -ENOMEM; 2932 2933 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2934 if (!dev) 2935 return ERR_PTR(-ENOMEM); 2936 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2937 mutex_init(&dev->shutdown_lock); 2938 2939 dev->nr_write_queues = write_queues; 2940 dev->nr_poll_queues = poll_queues; 2941 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2942 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2943 sizeof(struct nvme_queue), GFP_KERNEL, node); 2944 if (!dev->queues) 2945 goto out_free_dev; 2946 2947 dev->dev = get_device(&pdev->dev); 2948 2949 quirks |= check_vendor_combination_bug(pdev); 2950 if (!noacpi && 2951 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 2952 acpi_storage_d3(&pdev->dev)) { 2953 /* 2954 * Some systems use a bios work around to ask for D3 on 2955 * platforms that support kernel managed suspend. 2956 */ 2957 dev_info(&pdev->dev, 2958 "platform quirk: setting simple suspend\n"); 2959 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2960 } 2961 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2962 quirks); 2963 if (ret) 2964 goto out_put_device; 2965 2966 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2967 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2968 else 2969 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2970 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2971 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2972 2973 /* 2974 * Limit the max command size to prevent iod->sg allocations going 2975 * over a single page. 2976 */ 2977 dev->ctrl.max_hw_sectors = min_t(u32, 2978 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 2979 dev->ctrl.max_segments = NVME_MAX_SEGS; 2980 2981 /* 2982 * There is no support for SGLs for metadata (yet), so we are limited to 2983 * a single integrity segment for the separate metadata pointer. 2984 */ 2985 dev->ctrl.max_integrity_segments = 1; 2986 return dev; 2987 2988 out_put_device: 2989 put_device(dev->dev); 2990 kfree(dev->queues); 2991 out_free_dev: 2992 kfree(dev); 2993 return ERR_PTR(ret); 2994 } 2995 2996 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2997 { 2998 struct nvme_dev *dev; 2999 int result = -ENOMEM; 3000 3001 dev = nvme_pci_alloc_dev(pdev, id); 3002 if (IS_ERR(dev)) 3003 return PTR_ERR(dev); 3004 3005 result = nvme_dev_map(dev); 3006 if (result) 3007 goto out_uninit_ctrl; 3008 3009 result = nvme_setup_prp_pools(dev); 3010 if (result) 3011 goto out_dev_unmap; 3012 3013 result = nvme_pci_alloc_iod_mempool(dev); 3014 if (result) 3015 goto out_release_prp_pools; 3016 3017 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3018 3019 result = nvme_pci_enable(dev); 3020 if (result) 3021 goto out_release_iod_mempool; 3022 3023 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3024 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3025 if (result) 3026 goto out_disable; 3027 3028 /* 3029 * Mark the controller as connecting before sending admin commands to 3030 * allow the timeout handler to do the right thing. 3031 */ 3032 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3033 dev_warn(dev->ctrl.device, 3034 "failed to mark controller CONNECTING\n"); 3035 result = -EBUSY; 3036 goto out_disable; 3037 } 3038 3039 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3040 if (result) 3041 goto out_disable; 3042 3043 nvme_dbbuf_dma_alloc(dev); 3044 3045 result = nvme_setup_host_mem(dev); 3046 if (result < 0) 3047 goto out_disable; 3048 3049 result = nvme_setup_io_queues(dev); 3050 if (result) 3051 goto out_disable; 3052 3053 if (dev->online_queues > 1) { 3054 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3055 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3056 nvme_dbbuf_set(dev); 3057 } 3058 3059 if (!dev->ctrl.tagset) 3060 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3061 3062 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3063 dev_warn(dev->ctrl.device, 3064 "failed to mark controller live state\n"); 3065 result = -ENODEV; 3066 goto out_disable; 3067 } 3068 3069 pci_set_drvdata(pdev, dev); 3070 3071 nvme_start_ctrl(&dev->ctrl); 3072 nvme_put_ctrl(&dev->ctrl); 3073 flush_work(&dev->ctrl.scan_work); 3074 return 0; 3075 3076 out_disable: 3077 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3078 nvme_dev_disable(dev, true); 3079 nvme_free_host_mem(dev); 3080 nvme_dev_remove_admin(dev); 3081 nvme_dbbuf_dma_free(dev); 3082 nvme_free_queues(dev, 0); 3083 out_release_iod_mempool: 3084 mempool_destroy(dev->iod_mempool); 3085 out_release_prp_pools: 3086 nvme_release_prp_pools(dev); 3087 out_dev_unmap: 3088 nvme_dev_unmap(dev); 3089 out_uninit_ctrl: 3090 nvme_uninit_ctrl(&dev->ctrl); 3091 nvme_put_ctrl(&dev->ctrl); 3092 return result; 3093 } 3094 3095 static void nvme_reset_prepare(struct pci_dev *pdev) 3096 { 3097 struct nvme_dev *dev = pci_get_drvdata(pdev); 3098 3099 /* 3100 * We don't need to check the return value from waiting for the reset 3101 * state as pci_dev device lock is held, making it impossible to race 3102 * with ->remove(). 3103 */ 3104 nvme_disable_prepare_reset(dev, false); 3105 nvme_sync_queues(&dev->ctrl); 3106 } 3107 3108 static void nvme_reset_done(struct pci_dev *pdev) 3109 { 3110 struct nvme_dev *dev = pci_get_drvdata(pdev); 3111 3112 if (!nvme_try_sched_reset(&dev->ctrl)) 3113 flush_work(&dev->ctrl.reset_work); 3114 } 3115 3116 static void nvme_shutdown(struct pci_dev *pdev) 3117 { 3118 struct nvme_dev *dev = pci_get_drvdata(pdev); 3119 3120 nvme_disable_prepare_reset(dev, true); 3121 } 3122 3123 /* 3124 * The driver's remove may be called on a device in a partially initialized 3125 * state. This function must not have any dependencies on the device state in 3126 * order to proceed. 3127 */ 3128 static void nvme_remove(struct pci_dev *pdev) 3129 { 3130 struct nvme_dev *dev = pci_get_drvdata(pdev); 3131 3132 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3133 pci_set_drvdata(pdev, NULL); 3134 3135 if (!pci_device_is_present(pdev)) { 3136 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3137 nvme_dev_disable(dev, true); 3138 } 3139 3140 flush_work(&dev->ctrl.reset_work); 3141 nvme_stop_ctrl(&dev->ctrl); 3142 nvme_remove_namespaces(&dev->ctrl); 3143 nvme_dev_disable(dev, true); 3144 nvme_free_host_mem(dev); 3145 nvme_dev_remove_admin(dev); 3146 nvme_dbbuf_dma_free(dev); 3147 nvme_free_queues(dev, 0); 3148 mempool_destroy(dev->iod_mempool); 3149 nvme_release_prp_pools(dev); 3150 nvme_dev_unmap(dev); 3151 nvme_uninit_ctrl(&dev->ctrl); 3152 } 3153 3154 #ifdef CONFIG_PM_SLEEP 3155 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3156 { 3157 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3158 } 3159 3160 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3161 { 3162 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3163 } 3164 3165 static int nvme_resume(struct device *dev) 3166 { 3167 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3168 struct nvme_ctrl *ctrl = &ndev->ctrl; 3169 3170 if (ndev->last_ps == U32_MAX || 3171 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3172 goto reset; 3173 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3174 goto reset; 3175 3176 return 0; 3177 reset: 3178 return nvme_try_sched_reset(ctrl); 3179 } 3180 3181 static int nvme_suspend(struct device *dev) 3182 { 3183 struct pci_dev *pdev = to_pci_dev(dev); 3184 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3185 struct nvme_ctrl *ctrl = &ndev->ctrl; 3186 int ret = -EBUSY; 3187 3188 ndev->last_ps = U32_MAX; 3189 3190 /* 3191 * The platform does not remove power for a kernel managed suspend so 3192 * use host managed nvme power settings for lowest idle power if 3193 * possible. This should have quicker resume latency than a full device 3194 * shutdown. But if the firmware is involved after the suspend or the 3195 * device does not support any non-default power states, shut down the 3196 * device fully. 3197 * 3198 * If ASPM is not enabled for the device, shut down the device and allow 3199 * the PCI bus layer to put it into D3 in order to take the PCIe link 3200 * down, so as to allow the platform to achieve its minimum low-power 3201 * state (which may not be possible if the link is up). 3202 */ 3203 if (pm_suspend_via_firmware() || !ctrl->npss || 3204 !pcie_aspm_enabled(pdev) || 3205 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3206 return nvme_disable_prepare_reset(ndev, true); 3207 3208 nvme_start_freeze(ctrl); 3209 nvme_wait_freeze(ctrl); 3210 nvme_sync_queues(ctrl); 3211 3212 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3213 goto unfreeze; 3214 3215 /* 3216 * Host memory access may not be successful in a system suspend state, 3217 * but the specification allows the controller to access memory in a 3218 * non-operational power state. 3219 */ 3220 if (ndev->hmb) { 3221 ret = nvme_set_host_mem(ndev, 0); 3222 if (ret < 0) 3223 goto unfreeze; 3224 } 3225 3226 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3227 if (ret < 0) 3228 goto unfreeze; 3229 3230 /* 3231 * A saved state prevents pci pm from generically controlling the 3232 * device's power. If we're using protocol specific settings, we don't 3233 * want pci interfering. 3234 */ 3235 pci_save_state(pdev); 3236 3237 ret = nvme_set_power_state(ctrl, ctrl->npss); 3238 if (ret < 0) 3239 goto unfreeze; 3240 3241 if (ret) { 3242 /* discard the saved state */ 3243 pci_load_saved_state(pdev, NULL); 3244 3245 /* 3246 * Clearing npss forces a controller reset on resume. The 3247 * correct value will be rediscovered then. 3248 */ 3249 ret = nvme_disable_prepare_reset(ndev, true); 3250 ctrl->npss = 0; 3251 } 3252 unfreeze: 3253 nvme_unfreeze(ctrl); 3254 return ret; 3255 } 3256 3257 static int nvme_simple_suspend(struct device *dev) 3258 { 3259 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3260 3261 return nvme_disable_prepare_reset(ndev, true); 3262 } 3263 3264 static int nvme_simple_resume(struct device *dev) 3265 { 3266 struct pci_dev *pdev = to_pci_dev(dev); 3267 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3268 3269 return nvme_try_sched_reset(&ndev->ctrl); 3270 } 3271 3272 static const struct dev_pm_ops nvme_dev_pm_ops = { 3273 .suspend = nvme_suspend, 3274 .resume = nvme_resume, 3275 .freeze = nvme_simple_suspend, 3276 .thaw = nvme_simple_resume, 3277 .poweroff = nvme_simple_suspend, 3278 .restore = nvme_simple_resume, 3279 }; 3280 #endif /* CONFIG_PM_SLEEP */ 3281 3282 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3283 pci_channel_state_t state) 3284 { 3285 struct nvme_dev *dev = pci_get_drvdata(pdev); 3286 3287 /* 3288 * A frozen channel requires a reset. When detected, this method will 3289 * shutdown the controller to quiesce. The controller will be restarted 3290 * after the slot reset through driver's slot_reset callback. 3291 */ 3292 switch (state) { 3293 case pci_channel_io_normal: 3294 return PCI_ERS_RESULT_CAN_RECOVER; 3295 case pci_channel_io_frozen: 3296 dev_warn(dev->ctrl.device, 3297 "frozen state error detected, reset controller\n"); 3298 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3299 nvme_dev_disable(dev, true); 3300 return PCI_ERS_RESULT_DISCONNECT; 3301 } 3302 nvme_dev_disable(dev, false); 3303 return PCI_ERS_RESULT_NEED_RESET; 3304 case pci_channel_io_perm_failure: 3305 dev_warn(dev->ctrl.device, 3306 "failure state error detected, request disconnect\n"); 3307 return PCI_ERS_RESULT_DISCONNECT; 3308 } 3309 return PCI_ERS_RESULT_NEED_RESET; 3310 } 3311 3312 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3313 { 3314 struct nvme_dev *dev = pci_get_drvdata(pdev); 3315 3316 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3317 pci_restore_state(pdev); 3318 if (!nvme_try_sched_reset(&dev->ctrl)) 3319 nvme_unquiesce_io_queues(&dev->ctrl); 3320 return PCI_ERS_RESULT_RECOVERED; 3321 } 3322 3323 static void nvme_error_resume(struct pci_dev *pdev) 3324 { 3325 struct nvme_dev *dev = pci_get_drvdata(pdev); 3326 3327 flush_work(&dev->ctrl.reset_work); 3328 } 3329 3330 static const struct pci_error_handlers nvme_err_handler = { 3331 .error_detected = nvme_error_detected, 3332 .slot_reset = nvme_slot_reset, 3333 .resume = nvme_error_resume, 3334 .reset_prepare = nvme_reset_prepare, 3335 .reset_done = nvme_reset_done, 3336 }; 3337 3338 static const struct pci_device_id nvme_id_table[] = { 3339 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3340 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3341 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3342 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3343 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3344 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3345 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3346 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3347 NVME_QUIRK_DEALLOCATE_ZEROES | 3348 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3349 NVME_QUIRK_BOGUS_NID, }, 3350 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3351 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3352 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3353 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3354 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3355 NVME_QUIRK_MEDIUM_PRIO_SQ | 3356 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3357 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3358 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3359 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3360 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3361 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3362 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3363 NVME_QUIRK_BOGUS_NID, }, 3364 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3365 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3366 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3367 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3368 NVME_QUIRK_BOGUS_NID, }, 3369 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3370 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3371 NVME_QUIRK_NO_NS_DESC_LIST, }, 3372 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3373 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3374 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3375 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3376 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3377 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3378 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3379 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3380 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3381 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3382 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3383 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3384 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3385 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3386 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3387 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3388 NVME_QUIRK_BOGUS_NID, }, 3389 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3390 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3391 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3392 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3393 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3394 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3395 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3396 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3397 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3398 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3399 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3400 NVME_QUIRK_BOGUS_NID, }, 3401 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3402 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3403 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3404 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3405 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3406 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3407 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3408 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3409 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3410 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3411 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3412 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3413 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3414 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3415 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3416 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3417 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3418 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3419 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3420 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3421 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3422 NVME_QUIRK_BOGUS_NID, }, 3423 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3424 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3425 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3426 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3427 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3428 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3429 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3430 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3431 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3432 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3433 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3434 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3435 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3436 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3437 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3438 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3439 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3440 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3441 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3442 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3443 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3444 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3445 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3446 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3447 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3448 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3449 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3450 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3451 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3452 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3453 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3454 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3455 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3456 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3457 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3458 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3459 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3460 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3461 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3462 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3463 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3464 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3465 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3466 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3467 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3468 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3469 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3470 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3471 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3472 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3473 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3474 .driver_data = NVME_QUIRK_BOGUS_NID | 3475 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3476 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3477 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3478 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3479 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3480 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3481 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3482 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3483 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3484 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3485 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3486 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3487 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3488 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3489 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3490 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3491 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3492 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3493 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3494 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3495 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3496 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3497 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3498 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3499 NVME_QUIRK_128_BYTES_SQES | 3500 NVME_QUIRK_SHARED_TAGS | 3501 NVME_QUIRK_SKIP_CID_GEN | 3502 NVME_QUIRK_IDENTIFY_CNS }, 3503 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3504 { 0, } 3505 }; 3506 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3507 3508 static struct pci_driver nvme_driver = { 3509 .name = "nvme", 3510 .id_table = nvme_id_table, 3511 .probe = nvme_probe, 3512 .remove = nvme_remove, 3513 .shutdown = nvme_shutdown, 3514 .driver = { 3515 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3516 #ifdef CONFIG_PM_SLEEP 3517 .pm = &nvme_dev_pm_ops, 3518 #endif 3519 }, 3520 .sriov_configure = pci_sriov_configure_simple, 3521 .err_handler = &nvme_err_handler, 3522 }; 3523 3524 static int __init nvme_init(void) 3525 { 3526 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3527 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3528 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3529 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3530 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3531 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3532 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3533 3534 return pci_register_driver(&nvme_driver); 3535 } 3536 3537 static void __exit nvme_exit(void) 3538 { 3539 pci_unregister_driver(&nvme_driver); 3540 flush_workqueue(nvme_wq); 3541 } 3542 3543 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3544 MODULE_LICENSE("GPL"); 3545 MODULE_VERSION("1.0"); 3546 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3547 module_init(nvme_init); 3548 module_exit(nvme_exit); 3549