1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/aer.h> 16 #include <linux/bitops.h> 17 #include <linux/blkdev.h> 18 #include <linux/blk-mq.h> 19 #include <linux/blk-mq-pci.h> 20 #include <linux/dmi.h> 21 #include <linux/init.h> 22 #include <linux/interrupt.h> 23 #include <linux/io.h> 24 #include <linux/mm.h> 25 #include <linux/module.h> 26 #include <linux/mutex.h> 27 #include <linux/pci.h> 28 #include <linux/poison.h> 29 #include <linux/t10-pi.h> 30 #include <linux/timer.h> 31 #include <linux/types.h> 32 #include <linux/io-64-nonatomic-lo-hi.h> 33 #include <asm/unaligned.h> 34 #include <linux/sed-opal.h> 35 36 #include "nvme.h" 37 38 #define NVME_Q_DEPTH 1024 39 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) 40 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) 41 42 /* 43 * We handle AEN commands ourselves and don't even let the 44 * block layer know about them. 45 */ 46 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0644); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 struct nvme_dev; 61 struct nvme_queue; 62 63 static void nvme_process_cq(struct nvme_queue *nvmeq); 64 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 65 66 /* 67 * Represents an NVM Express device. Each nvme_dev is a PCI function. 68 */ 69 struct nvme_dev { 70 struct nvme_queue **queues; 71 struct blk_mq_tag_set tagset; 72 struct blk_mq_tag_set admin_tagset; 73 u32 __iomem *dbs; 74 struct device *dev; 75 struct dma_pool *prp_page_pool; 76 struct dma_pool *prp_small_pool; 77 unsigned queue_count; 78 unsigned online_queues; 79 unsigned max_qid; 80 int q_depth; 81 u32 db_stride; 82 void __iomem *bar; 83 unsigned long bar_mapped_size; 84 struct work_struct remove_work; 85 struct mutex shutdown_lock; 86 bool subsystem; 87 void __iomem *cmb; 88 dma_addr_t cmb_dma_addr; 89 u64 cmb_size; 90 u32 cmbsz; 91 u32 cmbloc; 92 struct nvme_ctrl ctrl; 93 struct completion ioq_wait; 94 95 /* shadow doorbell buffer support: */ 96 u32 *dbbuf_dbs; 97 dma_addr_t dbbuf_dbs_dma_addr; 98 u32 *dbbuf_eis; 99 dma_addr_t dbbuf_eis_dma_addr; 100 101 /* host memory buffer support: */ 102 u64 host_mem_size; 103 u32 nr_host_mem_descs; 104 struct nvme_host_mem_buf_desc *host_mem_descs; 105 void **host_mem_desc_bufs; 106 }; 107 108 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 109 { 110 return qid * 2 * stride; 111 } 112 113 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 114 { 115 return (qid * 2 + 1) * stride; 116 } 117 118 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 119 { 120 return container_of(ctrl, struct nvme_dev, ctrl); 121 } 122 123 /* 124 * An NVM Express queue. Each device has at least two (one for admin 125 * commands and one for I/O commands). 126 */ 127 struct nvme_queue { 128 struct device *q_dmadev; 129 struct nvme_dev *dev; 130 spinlock_t q_lock; 131 struct nvme_command *sq_cmds; 132 struct nvme_command __iomem *sq_cmds_io; 133 volatile struct nvme_completion *cqes; 134 struct blk_mq_tags **tags; 135 dma_addr_t sq_dma_addr; 136 dma_addr_t cq_dma_addr; 137 u32 __iomem *q_db; 138 u16 q_depth; 139 s16 cq_vector; 140 u16 sq_tail; 141 u16 cq_head; 142 u16 qid; 143 u8 cq_phase; 144 u8 cqe_seen; 145 u32 *dbbuf_sq_db; 146 u32 *dbbuf_cq_db; 147 u32 *dbbuf_sq_ei; 148 u32 *dbbuf_cq_ei; 149 }; 150 151 /* 152 * The nvme_iod describes the data in an I/O, including the list of PRP 153 * entries. You can't see it in this data structure because C doesn't let 154 * me express that. Use nvme_init_iod to ensure there's enough space 155 * allocated to store the PRP list. 156 */ 157 struct nvme_iod { 158 struct nvme_request req; 159 struct nvme_queue *nvmeq; 160 int aborted; 161 int npages; /* In the PRP list. 0 means small pool in use */ 162 int nents; /* Used in scatterlist */ 163 int length; /* Of data, in bytes */ 164 dma_addr_t first_dma; 165 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ 166 struct scatterlist *sg; 167 struct scatterlist inline_sg[0]; 168 }; 169 170 /* 171 * Check we didin't inadvertently grow the command struct 172 */ 173 static inline void _nvme_check_size(void) 174 { 175 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 176 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 177 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 178 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 179 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 180 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 181 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 182 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 183 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 184 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 185 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 186 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 187 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 188 } 189 190 static inline unsigned int nvme_dbbuf_size(u32 stride) 191 { 192 return ((num_possible_cpus() + 1) * 8 * stride); 193 } 194 195 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 196 { 197 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 198 199 if (dev->dbbuf_dbs) 200 return 0; 201 202 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 203 &dev->dbbuf_dbs_dma_addr, 204 GFP_KERNEL); 205 if (!dev->dbbuf_dbs) 206 return -ENOMEM; 207 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 208 &dev->dbbuf_eis_dma_addr, 209 GFP_KERNEL); 210 if (!dev->dbbuf_eis) { 211 dma_free_coherent(dev->dev, mem_size, 212 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 213 dev->dbbuf_dbs = NULL; 214 return -ENOMEM; 215 } 216 217 return 0; 218 } 219 220 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 221 { 222 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); 223 224 if (dev->dbbuf_dbs) { 225 dma_free_coherent(dev->dev, mem_size, 226 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 227 dev->dbbuf_dbs = NULL; 228 } 229 if (dev->dbbuf_eis) { 230 dma_free_coherent(dev->dev, mem_size, 231 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 232 dev->dbbuf_eis = NULL; 233 } 234 } 235 236 static void nvme_dbbuf_init(struct nvme_dev *dev, 237 struct nvme_queue *nvmeq, int qid) 238 { 239 if (!dev->dbbuf_dbs || !qid) 240 return; 241 242 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 243 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 244 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 245 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 246 } 247 248 static void nvme_dbbuf_set(struct nvme_dev *dev) 249 { 250 struct nvme_command c; 251 252 if (!dev->dbbuf_dbs) 253 return; 254 255 memset(&c, 0, sizeof(c)); 256 c.dbbuf.opcode = nvme_admin_dbbuf; 257 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 258 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 259 260 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 261 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 262 /* Free memory and continue on */ 263 nvme_dbbuf_dma_free(dev); 264 } 265 } 266 267 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 268 { 269 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 270 } 271 272 /* Update dbbuf and return true if an MMIO is required */ 273 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, 274 volatile u32 *dbbuf_ei) 275 { 276 if (dbbuf_db) { 277 u16 old_value; 278 279 /* 280 * Ensure that the queue is written before updating 281 * the doorbell in memory 282 */ 283 wmb(); 284 285 old_value = *dbbuf_db; 286 *dbbuf_db = value; 287 288 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) 289 return false; 290 } 291 292 return true; 293 } 294 295 /* 296 * Max size of iod being embedded in the request payload 297 */ 298 #define NVME_INT_PAGES 2 299 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) 300 301 /* 302 * Will slightly overestimate the number of pages needed. This is OK 303 * as it only leads to a small amount of wasted memory for the lifetime of 304 * the I/O. 305 */ 306 static int nvme_npages(unsigned size, struct nvme_dev *dev) 307 { 308 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, 309 dev->ctrl.page_size); 310 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); 311 } 312 313 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, 314 unsigned int size, unsigned int nseg) 315 { 316 return sizeof(__le64 *) * nvme_npages(size, dev) + 317 sizeof(struct scatterlist) * nseg; 318 } 319 320 static unsigned int nvme_cmd_size(struct nvme_dev *dev) 321 { 322 return sizeof(struct nvme_iod) + 323 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); 324 } 325 326 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 327 unsigned int hctx_idx) 328 { 329 struct nvme_dev *dev = data; 330 struct nvme_queue *nvmeq = dev->queues[0]; 331 332 WARN_ON(hctx_idx != 0); 333 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 334 WARN_ON(nvmeq->tags); 335 336 hctx->driver_data = nvmeq; 337 nvmeq->tags = &dev->admin_tagset.tags[0]; 338 return 0; 339 } 340 341 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 342 { 343 struct nvme_queue *nvmeq = hctx->driver_data; 344 345 nvmeq->tags = NULL; 346 } 347 348 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 349 unsigned int hctx_idx) 350 { 351 struct nvme_dev *dev = data; 352 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; 353 354 if (!nvmeq->tags) 355 nvmeq->tags = &dev->tagset.tags[hctx_idx]; 356 357 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 358 hctx->driver_data = nvmeq; 359 return 0; 360 } 361 362 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, 363 unsigned int hctx_idx, unsigned int numa_node) 364 { 365 struct nvme_dev *dev = set->driver_data; 366 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 367 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; 368 struct nvme_queue *nvmeq = dev->queues[queue_idx]; 369 370 BUG_ON(!nvmeq); 371 iod->nvmeq = nvmeq; 372 return 0; 373 } 374 375 static int nvme_pci_map_queues(struct blk_mq_tag_set *set) 376 { 377 struct nvme_dev *dev = set->driver_data; 378 379 return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); 380 } 381 382 /** 383 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell 384 * @nvmeq: The queue to use 385 * @cmd: The command to send 386 * 387 * Safe to use from interrupt context 388 */ 389 static void __nvme_submit_cmd(struct nvme_queue *nvmeq, 390 struct nvme_command *cmd) 391 { 392 u16 tail = nvmeq->sq_tail; 393 394 if (nvmeq->sq_cmds_io) 395 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); 396 else 397 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); 398 399 if (++tail == nvmeq->q_depth) 400 tail = 0; 401 if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db, 402 nvmeq->dbbuf_sq_ei)) 403 writel(tail, nvmeq->q_db); 404 nvmeq->sq_tail = tail; 405 } 406 407 static __le64 **iod_list(struct request *req) 408 { 409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 410 return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req)); 411 } 412 413 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) 414 { 415 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); 416 int nseg = blk_rq_nr_phys_segments(rq); 417 unsigned int size = blk_rq_payload_bytes(rq); 418 419 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { 420 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); 421 if (!iod->sg) 422 return BLK_STS_RESOURCE; 423 } else { 424 iod->sg = iod->inline_sg; 425 } 426 427 iod->aborted = 0; 428 iod->npages = -1; 429 iod->nents = 0; 430 iod->length = size; 431 432 return BLK_STS_OK; 433 } 434 435 static void nvme_free_iod(struct nvme_dev *dev, struct request *req) 436 { 437 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 438 const int last_prp = dev->ctrl.page_size / 8 - 1; 439 int i; 440 __le64 **list = iod_list(req); 441 dma_addr_t prp_dma = iod->first_dma; 442 443 if (iod->npages == 0) 444 dma_pool_free(dev->prp_small_pool, list[0], prp_dma); 445 for (i = 0; i < iod->npages; i++) { 446 __le64 *prp_list = list[i]; 447 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); 448 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); 449 prp_dma = next_prp_dma; 450 } 451 452 if (iod->sg != iod->inline_sg) 453 kfree(iod->sg); 454 } 455 456 #ifdef CONFIG_BLK_DEV_INTEGRITY 457 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 458 { 459 if (be32_to_cpu(pi->ref_tag) == v) 460 pi->ref_tag = cpu_to_be32(p); 461 } 462 463 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 464 { 465 if (be32_to_cpu(pi->ref_tag) == p) 466 pi->ref_tag = cpu_to_be32(v); 467 } 468 469 /** 470 * nvme_dif_remap - remaps ref tags to bip seed and physical lba 471 * 472 * The virtual start sector is the one that was originally submitted by the 473 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical 474 * start sector may be different. Remap protection information to match the 475 * physical LBA on writes, and back to the original seed on reads. 476 * 477 * Type 0 and 3 do not have a ref tag, so no remapping required. 478 */ 479 static void nvme_dif_remap(struct request *req, 480 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 481 { 482 struct nvme_ns *ns = req->rq_disk->private_data; 483 struct bio_integrity_payload *bip; 484 struct t10_pi_tuple *pi; 485 void *p, *pmap; 486 u32 i, nlb, ts, phys, virt; 487 488 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) 489 return; 490 491 bip = bio_integrity(req->bio); 492 if (!bip) 493 return; 494 495 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; 496 497 p = pmap; 498 virt = bip_get_seed(bip); 499 phys = nvme_block_nr(ns, blk_rq_pos(req)); 500 nlb = (blk_rq_bytes(req) >> ns->lba_shift); 501 ts = ns->disk->queue->integrity.tuple_size; 502 503 for (i = 0; i < nlb; i++, virt++, phys++) { 504 pi = (struct t10_pi_tuple *)p; 505 dif_swap(phys, virt, pi); 506 p += ts; 507 } 508 kunmap_atomic(pmap); 509 } 510 #else /* CONFIG_BLK_DEV_INTEGRITY */ 511 static void nvme_dif_remap(struct request *req, 512 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) 513 { 514 } 515 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) 516 { 517 } 518 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) 519 { 520 } 521 #endif 522 523 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req) 524 { 525 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 526 struct dma_pool *pool; 527 int length = blk_rq_payload_bytes(req); 528 struct scatterlist *sg = iod->sg; 529 int dma_len = sg_dma_len(sg); 530 u64 dma_addr = sg_dma_address(sg); 531 u32 page_size = dev->ctrl.page_size; 532 int offset = dma_addr & (page_size - 1); 533 __le64 *prp_list; 534 __le64 **list = iod_list(req); 535 dma_addr_t prp_dma; 536 int nprps, i; 537 538 length -= (page_size - offset); 539 if (length <= 0) 540 return true; 541 542 dma_len -= (page_size - offset); 543 if (dma_len) { 544 dma_addr += (page_size - offset); 545 } else { 546 sg = sg_next(sg); 547 dma_addr = sg_dma_address(sg); 548 dma_len = sg_dma_len(sg); 549 } 550 551 if (length <= page_size) { 552 iod->first_dma = dma_addr; 553 return true; 554 } 555 556 nprps = DIV_ROUND_UP(length, page_size); 557 if (nprps <= (256 / 8)) { 558 pool = dev->prp_small_pool; 559 iod->npages = 0; 560 } else { 561 pool = dev->prp_page_pool; 562 iod->npages = 1; 563 } 564 565 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 566 if (!prp_list) { 567 iod->first_dma = dma_addr; 568 iod->npages = -1; 569 return false; 570 } 571 list[0] = prp_list; 572 iod->first_dma = prp_dma; 573 i = 0; 574 for (;;) { 575 if (i == page_size >> 3) { 576 __le64 *old_prp_list = prp_list; 577 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 578 if (!prp_list) 579 return false; 580 list[iod->npages++] = prp_list; 581 prp_list[0] = old_prp_list[i - 1]; 582 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 583 i = 1; 584 } 585 prp_list[i++] = cpu_to_le64(dma_addr); 586 dma_len -= page_size; 587 dma_addr += page_size; 588 length -= page_size; 589 if (length <= 0) 590 break; 591 if (dma_len > 0) 592 continue; 593 BUG_ON(dma_len < 0); 594 sg = sg_next(sg); 595 dma_addr = sg_dma_address(sg); 596 dma_len = sg_dma_len(sg); 597 } 598 599 return true; 600 } 601 602 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 603 struct nvme_command *cmnd) 604 { 605 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 606 struct request_queue *q = req->q; 607 enum dma_data_direction dma_dir = rq_data_dir(req) ? 608 DMA_TO_DEVICE : DMA_FROM_DEVICE; 609 blk_status_t ret = BLK_STS_IOERR; 610 611 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); 612 iod->nents = blk_rq_map_sg(q, req, iod->sg); 613 if (!iod->nents) 614 goto out; 615 616 ret = BLK_STS_RESOURCE; 617 if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, 618 DMA_ATTR_NO_WARN)) 619 goto out; 620 621 if (!nvme_setup_prps(dev, req)) 622 goto out_unmap; 623 624 ret = BLK_STS_IOERR; 625 if (blk_integrity_rq(req)) { 626 if (blk_rq_count_integrity_sg(q, req->bio) != 1) 627 goto out_unmap; 628 629 sg_init_table(&iod->meta_sg, 1); 630 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) 631 goto out_unmap; 632 633 if (rq_data_dir(req)) 634 nvme_dif_remap(req, nvme_dif_prep); 635 636 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) 637 goto out_unmap; 638 } 639 640 cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); 641 cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); 642 if (blk_integrity_rq(req)) 643 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); 644 return BLK_STS_OK; 645 646 out_unmap: 647 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 648 out: 649 return ret; 650 } 651 652 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 653 { 654 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 655 enum dma_data_direction dma_dir = rq_data_dir(req) ? 656 DMA_TO_DEVICE : DMA_FROM_DEVICE; 657 658 if (iod->nents) { 659 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); 660 if (blk_integrity_rq(req)) { 661 if (!rq_data_dir(req)) 662 nvme_dif_remap(req, nvme_dif_complete); 663 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); 664 } 665 } 666 667 nvme_cleanup_cmd(req); 668 nvme_free_iod(dev, req); 669 } 670 671 /* 672 * NOTE: ns is NULL when called on the admin queue. 673 */ 674 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 675 const struct blk_mq_queue_data *bd) 676 { 677 struct nvme_ns *ns = hctx->queue->queuedata; 678 struct nvme_queue *nvmeq = hctx->driver_data; 679 struct nvme_dev *dev = nvmeq->dev; 680 struct request *req = bd->rq; 681 struct nvme_command cmnd; 682 blk_status_t ret; 683 684 ret = nvme_setup_cmd(ns, req, &cmnd); 685 if (ret) 686 return ret; 687 688 ret = nvme_init_iod(req, dev); 689 if (ret) 690 goto out_free_cmd; 691 692 if (blk_rq_nr_phys_segments(req)) { 693 ret = nvme_map_data(dev, req, &cmnd); 694 if (ret) 695 goto out_cleanup_iod; 696 } 697 698 blk_mq_start_request(req); 699 700 spin_lock_irq(&nvmeq->q_lock); 701 if (unlikely(nvmeq->cq_vector < 0)) { 702 ret = BLK_STS_IOERR; 703 spin_unlock_irq(&nvmeq->q_lock); 704 goto out_cleanup_iod; 705 } 706 __nvme_submit_cmd(nvmeq, &cmnd); 707 nvme_process_cq(nvmeq); 708 spin_unlock_irq(&nvmeq->q_lock); 709 return BLK_STS_OK; 710 out_cleanup_iod: 711 nvme_free_iod(dev, req); 712 out_free_cmd: 713 nvme_cleanup_cmd(req); 714 return ret; 715 } 716 717 static void nvme_pci_complete_rq(struct request *req) 718 { 719 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 720 721 nvme_unmap_data(iod->nvmeq->dev, req); 722 nvme_complete_rq(req); 723 } 724 725 /* We read the CQE phase first to check if the rest of the entry is valid */ 726 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, 727 u16 phase) 728 { 729 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; 730 } 731 732 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 733 { 734 u16 head = nvmeq->cq_head; 735 736 if (likely(nvmeq->cq_vector >= 0)) { 737 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 738 nvmeq->dbbuf_cq_ei)) 739 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 740 } 741 } 742 743 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 744 struct nvme_completion *cqe) 745 { 746 struct request *req; 747 748 if (unlikely(cqe->command_id >= nvmeq->q_depth)) { 749 dev_warn(nvmeq->dev->ctrl.device, 750 "invalid id %d completed on queue %d\n", 751 cqe->command_id, le16_to_cpu(cqe->sq_id)); 752 return; 753 } 754 755 /* 756 * AEN requests are special as they don't time out and can 757 * survive any kind of queue freeze and often don't respond to 758 * aborts. We don't even bother to allocate a struct request 759 * for them but rather special case them here. 760 */ 761 if (unlikely(nvmeq->qid == 0 && 762 cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) { 763 nvme_complete_async_event(&nvmeq->dev->ctrl, 764 cqe->status, &cqe->result); 765 return; 766 } 767 768 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); 769 nvme_end_request(req, cqe->status, cqe->result); 770 } 771 772 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq, 773 struct nvme_completion *cqe) 774 { 775 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { 776 *cqe = nvmeq->cqes[nvmeq->cq_head]; 777 778 if (++nvmeq->cq_head == nvmeq->q_depth) { 779 nvmeq->cq_head = 0; 780 nvmeq->cq_phase = !nvmeq->cq_phase; 781 } 782 return true; 783 } 784 return false; 785 } 786 787 static void nvme_process_cq(struct nvme_queue *nvmeq) 788 { 789 struct nvme_completion cqe; 790 int consumed = 0; 791 792 while (nvme_read_cqe(nvmeq, &cqe)) { 793 nvme_handle_cqe(nvmeq, &cqe); 794 consumed++; 795 } 796 797 if (consumed) { 798 nvme_ring_cq_doorbell(nvmeq); 799 nvmeq->cqe_seen = 1; 800 } 801 } 802 803 static irqreturn_t nvme_irq(int irq, void *data) 804 { 805 irqreturn_t result; 806 struct nvme_queue *nvmeq = data; 807 spin_lock(&nvmeq->q_lock); 808 nvme_process_cq(nvmeq); 809 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; 810 nvmeq->cqe_seen = 0; 811 spin_unlock(&nvmeq->q_lock); 812 return result; 813 } 814 815 static irqreturn_t nvme_irq_check(int irq, void *data) 816 { 817 struct nvme_queue *nvmeq = data; 818 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 819 return IRQ_WAKE_THREAD; 820 return IRQ_NONE; 821 } 822 823 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) 824 { 825 struct nvme_completion cqe; 826 int found = 0, consumed = 0; 827 828 if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) 829 return 0; 830 831 spin_lock_irq(&nvmeq->q_lock); 832 while (nvme_read_cqe(nvmeq, &cqe)) { 833 nvme_handle_cqe(nvmeq, &cqe); 834 consumed++; 835 836 if (tag == cqe.command_id) { 837 found = 1; 838 break; 839 } 840 } 841 842 if (consumed) 843 nvme_ring_cq_doorbell(nvmeq); 844 spin_unlock_irq(&nvmeq->q_lock); 845 846 return found; 847 } 848 849 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 850 { 851 struct nvme_queue *nvmeq = hctx->driver_data; 852 853 return __nvme_poll(nvmeq, tag); 854 } 855 856 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) 857 { 858 struct nvme_dev *dev = to_nvme_dev(ctrl); 859 struct nvme_queue *nvmeq = dev->queues[0]; 860 struct nvme_command c; 861 862 memset(&c, 0, sizeof(c)); 863 c.common.opcode = nvme_admin_async_event; 864 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; 865 866 spin_lock_irq(&nvmeq->q_lock); 867 __nvme_submit_cmd(nvmeq, &c); 868 spin_unlock_irq(&nvmeq->q_lock); 869 } 870 871 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 872 { 873 struct nvme_command c; 874 875 memset(&c, 0, sizeof(c)); 876 c.delete_queue.opcode = opcode; 877 c.delete_queue.qid = cpu_to_le16(id); 878 879 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 880 } 881 882 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 883 struct nvme_queue *nvmeq) 884 { 885 struct nvme_command c; 886 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; 887 888 /* 889 * Note: we (ab)use the fact the the prp fields survive if no data 890 * is attached to the request. 891 */ 892 memset(&c, 0, sizeof(c)); 893 c.create_cq.opcode = nvme_admin_create_cq; 894 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 895 c.create_cq.cqid = cpu_to_le16(qid); 896 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 897 c.create_cq.cq_flags = cpu_to_le16(flags); 898 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); 899 900 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 901 } 902 903 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 904 struct nvme_queue *nvmeq) 905 { 906 struct nvme_command c; 907 int flags = NVME_QUEUE_PHYS_CONTIG; 908 909 /* 910 * Note: we (ab)use the fact the the prp fields survive if no data 911 * is attached to the request. 912 */ 913 memset(&c, 0, sizeof(c)); 914 c.create_sq.opcode = nvme_admin_create_sq; 915 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 916 c.create_sq.sqid = cpu_to_le16(qid); 917 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 918 c.create_sq.sq_flags = cpu_to_le16(flags); 919 c.create_sq.cqid = cpu_to_le16(qid); 920 921 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 922 } 923 924 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 925 { 926 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 927 } 928 929 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 930 { 931 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 932 } 933 934 static void abort_endio(struct request *req, blk_status_t error) 935 { 936 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 937 struct nvme_queue *nvmeq = iod->nvmeq; 938 939 dev_warn(nvmeq->dev->ctrl.device, 940 "Abort status: 0x%x", nvme_req(req)->status); 941 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 942 blk_mq_free_request(req); 943 } 944 945 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 946 { 947 948 /* If true, indicates loss of adapter communication, possibly by a 949 * NVMe Subsystem reset. 950 */ 951 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 952 953 /* If there is a reset ongoing, we shouldn't reset again. */ 954 if (dev->ctrl.state == NVME_CTRL_RESETTING) 955 return false; 956 957 /* We shouldn't reset unless the controller is on fatal error state 958 * _or_ if we lost the communication with it. 959 */ 960 if (!(csts & NVME_CSTS_CFS) && !nssro) 961 return false; 962 963 /* If PCI error recovery process is happening, we cannot reset or 964 * the recovery mechanism will surely fail. 965 */ 966 if (pci_channel_offline(to_pci_dev(dev->dev))) 967 return false; 968 969 return true; 970 } 971 972 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 973 { 974 /* Read a config register to help see what died. */ 975 u16 pci_status; 976 int result; 977 978 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 979 &pci_status); 980 if (result == PCIBIOS_SUCCESSFUL) 981 dev_warn(dev->ctrl.device, 982 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 983 csts, pci_status); 984 else 985 dev_warn(dev->ctrl.device, 986 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 987 csts, result); 988 } 989 990 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) 991 { 992 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 993 struct nvme_queue *nvmeq = iod->nvmeq; 994 struct nvme_dev *dev = nvmeq->dev; 995 struct request *abort_req; 996 struct nvme_command cmd; 997 u32 csts = readl(dev->bar + NVME_REG_CSTS); 998 999 /* 1000 * Reset immediately if the controller is failed 1001 */ 1002 if (nvme_should_reset(dev, csts)) { 1003 nvme_warn_reset(dev, csts); 1004 nvme_dev_disable(dev, false); 1005 nvme_reset_ctrl(&dev->ctrl); 1006 return BLK_EH_HANDLED; 1007 } 1008 1009 /* 1010 * Did we miss an interrupt? 1011 */ 1012 if (__nvme_poll(nvmeq, req->tag)) { 1013 dev_warn(dev->ctrl.device, 1014 "I/O %d QID %d timeout, completion polled\n", 1015 req->tag, nvmeq->qid); 1016 return BLK_EH_HANDLED; 1017 } 1018 1019 /* 1020 * Shutdown immediately if controller times out while starting. The 1021 * reset work will see the pci device disabled when it gets the forced 1022 * cancellation error. All outstanding requests are completed on 1023 * shutdown, so we return BLK_EH_HANDLED. 1024 */ 1025 if (dev->ctrl.state == NVME_CTRL_RESETTING) { 1026 dev_warn(dev->ctrl.device, 1027 "I/O %d QID %d timeout, disable controller\n", 1028 req->tag, nvmeq->qid); 1029 nvme_dev_disable(dev, false); 1030 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1031 return BLK_EH_HANDLED; 1032 } 1033 1034 /* 1035 * Shutdown the controller immediately and schedule a reset if the 1036 * command was already aborted once before and still hasn't been 1037 * returned to the driver, or if this is the admin queue. 1038 */ 1039 if (!nvmeq->qid || iod->aborted) { 1040 dev_warn(dev->ctrl.device, 1041 "I/O %d QID %d timeout, reset controller\n", 1042 req->tag, nvmeq->qid); 1043 nvme_dev_disable(dev, false); 1044 nvme_reset_ctrl(&dev->ctrl); 1045 1046 /* 1047 * Mark the request as handled, since the inline shutdown 1048 * forces all outstanding requests to complete. 1049 */ 1050 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1051 return BLK_EH_HANDLED; 1052 } 1053 1054 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1055 atomic_inc(&dev->ctrl.abort_limit); 1056 return BLK_EH_RESET_TIMER; 1057 } 1058 iod->aborted = 1; 1059 1060 memset(&cmd, 0, sizeof(cmd)); 1061 cmd.abort.opcode = nvme_admin_abort_cmd; 1062 cmd.abort.cid = req->tag; 1063 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1064 1065 dev_warn(nvmeq->dev->ctrl.device, 1066 "I/O %d QID %d timeout, aborting\n", 1067 req->tag, nvmeq->qid); 1068 1069 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, 1070 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1071 if (IS_ERR(abort_req)) { 1072 atomic_inc(&dev->ctrl.abort_limit); 1073 return BLK_EH_RESET_TIMER; 1074 } 1075 1076 abort_req->timeout = ADMIN_TIMEOUT; 1077 abort_req->end_io_data = NULL; 1078 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); 1079 1080 /* 1081 * The aborted req will be completed on receiving the abort req. 1082 * We enable the timer again. If hit twice, it'll cause a device reset, 1083 * as the device then is in a faulty state. 1084 */ 1085 return BLK_EH_RESET_TIMER; 1086 } 1087 1088 static void nvme_free_queue(struct nvme_queue *nvmeq) 1089 { 1090 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), 1091 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1092 if (nvmeq->sq_cmds) 1093 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), 1094 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1095 kfree(nvmeq); 1096 } 1097 1098 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1099 { 1100 int i; 1101 1102 for (i = dev->queue_count - 1; i >= lowest; i--) { 1103 struct nvme_queue *nvmeq = dev->queues[i]; 1104 dev->queue_count--; 1105 dev->queues[i] = NULL; 1106 nvme_free_queue(nvmeq); 1107 } 1108 } 1109 1110 /** 1111 * nvme_suspend_queue - put queue into suspended state 1112 * @nvmeq - queue to suspend 1113 */ 1114 static int nvme_suspend_queue(struct nvme_queue *nvmeq) 1115 { 1116 int vector; 1117 1118 spin_lock_irq(&nvmeq->q_lock); 1119 if (nvmeq->cq_vector == -1) { 1120 spin_unlock_irq(&nvmeq->q_lock); 1121 return 1; 1122 } 1123 vector = nvmeq->cq_vector; 1124 nvmeq->dev->online_queues--; 1125 nvmeq->cq_vector = -1; 1126 spin_unlock_irq(&nvmeq->q_lock); 1127 1128 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1129 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); 1130 1131 pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); 1132 1133 return 0; 1134 } 1135 1136 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) 1137 { 1138 struct nvme_queue *nvmeq = dev->queues[0]; 1139 1140 if (!nvmeq) 1141 return; 1142 if (nvme_suspend_queue(nvmeq)) 1143 return; 1144 1145 if (shutdown) 1146 nvme_shutdown_ctrl(&dev->ctrl); 1147 else 1148 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( 1149 dev->bar + NVME_REG_CAP)); 1150 1151 spin_lock_irq(&nvmeq->q_lock); 1152 nvme_process_cq(nvmeq); 1153 spin_unlock_irq(&nvmeq->q_lock); 1154 } 1155 1156 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1157 int entry_size) 1158 { 1159 int q_depth = dev->q_depth; 1160 unsigned q_size_aligned = roundup(q_depth * entry_size, 1161 dev->ctrl.page_size); 1162 1163 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1164 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1165 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); 1166 q_depth = div_u64(mem_per_q, entry_size); 1167 1168 /* 1169 * Ensure the reduced q_depth is above some threshold where it 1170 * would be better to map queues in system memory with the 1171 * original depth 1172 */ 1173 if (q_depth < 64) 1174 return -ENOMEM; 1175 } 1176 1177 return q_depth; 1178 } 1179 1180 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1181 int qid, int depth) 1182 { 1183 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { 1184 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), 1185 dev->ctrl.page_size); 1186 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; 1187 nvmeq->sq_cmds_io = dev->cmb + offset; 1188 } else { 1189 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), 1190 &nvmeq->sq_dma_addr, GFP_KERNEL); 1191 if (!nvmeq->sq_cmds) 1192 return -ENOMEM; 1193 } 1194 1195 return 0; 1196 } 1197 1198 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, 1199 int depth, int node) 1200 { 1201 struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL, 1202 node); 1203 if (!nvmeq) 1204 return NULL; 1205 1206 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), 1207 &nvmeq->cq_dma_addr, GFP_KERNEL); 1208 if (!nvmeq->cqes) 1209 goto free_nvmeq; 1210 1211 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) 1212 goto free_cqdma; 1213 1214 nvmeq->q_dmadev = dev->dev; 1215 nvmeq->dev = dev; 1216 spin_lock_init(&nvmeq->q_lock); 1217 nvmeq->cq_head = 0; 1218 nvmeq->cq_phase = 1; 1219 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1220 nvmeq->q_depth = depth; 1221 nvmeq->qid = qid; 1222 nvmeq->cq_vector = -1; 1223 dev->queues[qid] = nvmeq; 1224 dev->queue_count++; 1225 1226 return nvmeq; 1227 1228 free_cqdma: 1229 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, 1230 nvmeq->cq_dma_addr); 1231 free_nvmeq: 1232 kfree(nvmeq); 1233 return NULL; 1234 } 1235 1236 static int queue_request_irq(struct nvme_queue *nvmeq) 1237 { 1238 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1239 int nr = nvmeq->dev->ctrl.instance; 1240 1241 if (use_threaded_interrupts) { 1242 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1243 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1244 } else { 1245 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1246 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1247 } 1248 } 1249 1250 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1251 { 1252 struct nvme_dev *dev = nvmeq->dev; 1253 1254 spin_lock_irq(&nvmeq->q_lock); 1255 nvmeq->sq_tail = 0; 1256 nvmeq->cq_head = 0; 1257 nvmeq->cq_phase = 1; 1258 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1259 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); 1260 nvme_dbbuf_init(dev, nvmeq, qid); 1261 dev->online_queues++; 1262 spin_unlock_irq(&nvmeq->q_lock); 1263 } 1264 1265 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) 1266 { 1267 struct nvme_dev *dev = nvmeq->dev; 1268 int result; 1269 1270 nvmeq->cq_vector = qid - 1; 1271 result = adapter_alloc_cq(dev, qid, nvmeq); 1272 if (result < 0) 1273 return result; 1274 1275 result = adapter_alloc_sq(dev, qid, nvmeq); 1276 if (result < 0) 1277 goto release_cq; 1278 1279 result = queue_request_irq(nvmeq); 1280 if (result < 0) 1281 goto release_sq; 1282 1283 nvme_init_queue(nvmeq, qid); 1284 return result; 1285 1286 release_sq: 1287 adapter_delete_sq(dev, qid); 1288 release_cq: 1289 adapter_delete_cq(dev, qid); 1290 return result; 1291 } 1292 1293 static const struct blk_mq_ops nvme_mq_admin_ops = { 1294 .queue_rq = nvme_queue_rq, 1295 .complete = nvme_pci_complete_rq, 1296 .init_hctx = nvme_admin_init_hctx, 1297 .exit_hctx = nvme_admin_exit_hctx, 1298 .init_request = nvme_init_request, 1299 .timeout = nvme_timeout, 1300 }; 1301 1302 static const struct blk_mq_ops nvme_mq_ops = { 1303 .queue_rq = nvme_queue_rq, 1304 .complete = nvme_pci_complete_rq, 1305 .init_hctx = nvme_init_hctx, 1306 .init_request = nvme_init_request, 1307 .map_queues = nvme_pci_map_queues, 1308 .timeout = nvme_timeout, 1309 .poll = nvme_poll, 1310 }; 1311 1312 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1313 { 1314 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1315 /* 1316 * If the controller was reset during removal, it's possible 1317 * user requests may be waiting on a stopped queue. Start the 1318 * queue to flush these to completion. 1319 */ 1320 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1321 blk_cleanup_queue(dev->ctrl.admin_q); 1322 blk_mq_free_tag_set(&dev->admin_tagset); 1323 } 1324 } 1325 1326 static int nvme_alloc_admin_tags(struct nvme_dev *dev) 1327 { 1328 if (!dev->ctrl.admin_q) { 1329 dev->admin_tagset.ops = &nvme_mq_admin_ops; 1330 dev->admin_tagset.nr_hw_queues = 1; 1331 1332 /* 1333 * Subtract one to leave an empty queue entry for 'Full Queue' 1334 * condition. See NVM-Express 1.2 specification, section 4.1.2. 1335 */ 1336 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; 1337 dev->admin_tagset.timeout = ADMIN_TIMEOUT; 1338 dev->admin_tagset.numa_node = dev_to_node(dev->dev); 1339 dev->admin_tagset.cmd_size = nvme_cmd_size(dev); 1340 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; 1341 dev->admin_tagset.driver_data = dev; 1342 1343 if (blk_mq_alloc_tag_set(&dev->admin_tagset)) 1344 return -ENOMEM; 1345 1346 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); 1347 if (IS_ERR(dev->ctrl.admin_q)) { 1348 blk_mq_free_tag_set(&dev->admin_tagset); 1349 return -ENOMEM; 1350 } 1351 if (!blk_get_queue(dev->ctrl.admin_q)) { 1352 nvme_dev_remove_admin(dev); 1353 dev->ctrl.admin_q = NULL; 1354 return -ENODEV; 1355 } 1356 } else 1357 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); 1358 1359 return 0; 1360 } 1361 1362 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1363 { 1364 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1365 } 1366 1367 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1368 { 1369 struct pci_dev *pdev = to_pci_dev(dev->dev); 1370 1371 if (size <= dev->bar_mapped_size) 1372 return 0; 1373 if (size > pci_resource_len(pdev, 0)) 1374 return -ENOMEM; 1375 if (dev->bar) 1376 iounmap(dev->bar); 1377 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1378 if (!dev->bar) { 1379 dev->bar_mapped_size = 0; 1380 return -ENOMEM; 1381 } 1382 dev->bar_mapped_size = size; 1383 dev->dbs = dev->bar + NVME_REG_DBS; 1384 1385 return 0; 1386 } 1387 1388 static int nvme_configure_admin_queue(struct nvme_dev *dev) 1389 { 1390 int result; 1391 u32 aqa; 1392 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1393 struct nvme_queue *nvmeq; 1394 1395 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1396 if (result < 0) 1397 return result; 1398 1399 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1400 NVME_CAP_NSSRC(cap) : 0; 1401 1402 if (dev->subsystem && 1403 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1404 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1405 1406 result = nvme_disable_ctrl(&dev->ctrl, cap); 1407 if (result < 0) 1408 return result; 1409 1410 nvmeq = dev->queues[0]; 1411 if (!nvmeq) { 1412 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH, 1413 dev_to_node(dev->dev)); 1414 if (!nvmeq) 1415 return -ENOMEM; 1416 } 1417 1418 aqa = nvmeq->q_depth - 1; 1419 aqa |= aqa << 16; 1420 1421 writel(aqa, dev->bar + NVME_REG_AQA); 1422 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1423 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1424 1425 result = nvme_enable_ctrl(&dev->ctrl, cap); 1426 if (result) 1427 return result; 1428 1429 nvmeq->cq_vector = 0; 1430 result = queue_request_irq(nvmeq); 1431 if (result) { 1432 nvmeq->cq_vector = -1; 1433 return result; 1434 } 1435 1436 return result; 1437 } 1438 1439 static int nvme_create_io_queues(struct nvme_dev *dev) 1440 { 1441 unsigned i, max; 1442 int ret = 0; 1443 1444 for (i = dev->queue_count; i <= dev->max_qid; i++) { 1445 /* vector == qid - 1, match nvme_create_queue */ 1446 if (!nvme_alloc_queue(dev, i, dev->q_depth, 1447 pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) { 1448 ret = -ENOMEM; 1449 break; 1450 } 1451 } 1452 1453 max = min(dev->max_qid, dev->queue_count - 1); 1454 for (i = dev->online_queues; i <= max; i++) { 1455 ret = nvme_create_queue(dev->queues[i], i); 1456 if (ret) 1457 break; 1458 } 1459 1460 /* 1461 * Ignore failing Create SQ/CQ commands, we can continue with less 1462 * than the desired aount of queues, and even a controller without 1463 * I/O queues an still be used to issue admin commands. This might 1464 * be useful to upgrade a buggy firmware for example. 1465 */ 1466 return ret >= 0 ? 0 : ret; 1467 } 1468 1469 static ssize_t nvme_cmb_show(struct device *dev, 1470 struct device_attribute *attr, 1471 char *buf) 1472 { 1473 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 1474 1475 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", 1476 ndev->cmbloc, ndev->cmbsz); 1477 } 1478 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); 1479 1480 static void __iomem *nvme_map_cmb(struct nvme_dev *dev) 1481 { 1482 u64 szu, size, offset; 1483 resource_size_t bar_size; 1484 struct pci_dev *pdev = to_pci_dev(dev->dev); 1485 void __iomem *cmb; 1486 dma_addr_t dma_addr; 1487 1488 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1489 if (!(NVME_CMB_SZ(dev->cmbsz))) 1490 return NULL; 1491 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1492 1493 if (!use_cmb_sqes) 1494 return NULL; 1495 1496 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); 1497 size = szu * NVME_CMB_SZ(dev->cmbsz); 1498 offset = szu * NVME_CMB_OFST(dev->cmbloc); 1499 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); 1500 1501 if (offset > bar_size) 1502 return NULL; 1503 1504 /* 1505 * Controllers may support a CMB size larger than their BAR, 1506 * for example, due to being behind a bridge. Reduce the CMB to 1507 * the reported size of the BAR 1508 */ 1509 if (size > bar_size - offset) 1510 size = bar_size - offset; 1511 1512 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; 1513 cmb = ioremap_wc(dma_addr, size); 1514 if (!cmb) 1515 return NULL; 1516 1517 dev->cmb_dma_addr = dma_addr; 1518 dev->cmb_size = size; 1519 return cmb; 1520 } 1521 1522 static inline void nvme_release_cmb(struct nvme_dev *dev) 1523 { 1524 if (dev->cmb) { 1525 iounmap(dev->cmb); 1526 dev->cmb = NULL; 1527 if (dev->cmbsz) { 1528 sysfs_remove_file_from_group(&dev->ctrl.device->kobj, 1529 &dev_attr_cmb.attr, NULL); 1530 dev->cmbsz = 0; 1531 } 1532 } 1533 } 1534 1535 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1536 { 1537 size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs); 1538 struct nvme_command c; 1539 u64 dma_addr; 1540 int ret; 1541 1542 dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len, 1543 DMA_TO_DEVICE); 1544 if (dma_mapping_error(dev->dev, dma_addr)) 1545 return -ENOMEM; 1546 1547 memset(&c, 0, sizeof(c)); 1548 c.features.opcode = nvme_admin_set_features; 1549 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1550 c.features.dword11 = cpu_to_le32(bits); 1551 c.features.dword12 = cpu_to_le32(dev->host_mem_size >> 1552 ilog2(dev->ctrl.page_size)); 1553 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1554 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1555 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1556 1557 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1558 if (ret) { 1559 dev_warn(dev->ctrl.device, 1560 "failed to set host mem (err %d, flags %#x).\n", 1561 ret, bits); 1562 } 1563 dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE); 1564 return ret; 1565 } 1566 1567 static void nvme_free_host_mem(struct nvme_dev *dev) 1568 { 1569 int i; 1570 1571 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1572 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1573 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; 1574 1575 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i], 1576 le64_to_cpu(desc->addr)); 1577 } 1578 1579 kfree(dev->host_mem_desc_bufs); 1580 dev->host_mem_desc_bufs = NULL; 1581 kfree(dev->host_mem_descs); 1582 dev->host_mem_descs = NULL; 1583 } 1584 1585 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1586 { 1587 struct nvme_host_mem_buf_desc *descs; 1588 u32 chunk_size, max_entries, i = 0; 1589 void **bufs; 1590 u64 size, tmp; 1591 1592 /* start big and work our way down */ 1593 chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER); 1594 retry: 1595 tmp = (preferred + chunk_size - 1); 1596 do_div(tmp, chunk_size); 1597 max_entries = tmp; 1598 descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL); 1599 if (!descs) 1600 goto out; 1601 1602 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1603 if (!bufs) 1604 goto out_free_descs; 1605 1606 for (size = 0; size < preferred; size += chunk_size) { 1607 u32 len = min_t(u64, chunk_size, preferred - size); 1608 dma_addr_t dma_addr; 1609 1610 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1611 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1612 if (!bufs[i]) 1613 break; 1614 1615 descs[i].addr = cpu_to_le64(dma_addr); 1616 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); 1617 i++; 1618 } 1619 1620 if (!size || (min && size < min)) { 1621 dev_warn(dev->ctrl.device, 1622 "failed to allocate host memory buffer.\n"); 1623 goto out_free_bufs; 1624 } 1625 1626 dev_info(dev->ctrl.device, 1627 "allocated %lld MiB host memory buffer.\n", 1628 size >> ilog2(SZ_1M)); 1629 dev->nr_host_mem_descs = i; 1630 dev->host_mem_size = size; 1631 dev->host_mem_descs = descs; 1632 dev->host_mem_desc_bufs = bufs; 1633 return 0; 1634 1635 out_free_bufs: 1636 while (--i >= 0) { 1637 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; 1638 1639 dma_free_coherent(dev->dev, size, bufs[i], 1640 le64_to_cpu(descs[i].addr)); 1641 } 1642 1643 kfree(bufs); 1644 out_free_descs: 1645 kfree(descs); 1646 out: 1647 /* try a smaller chunk size if we failed early */ 1648 if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) { 1649 chunk_size /= 2; 1650 goto retry; 1651 } 1652 dev->host_mem_descs = NULL; 1653 return -ENOMEM; 1654 } 1655 1656 static void nvme_setup_host_mem(struct nvme_dev *dev) 1657 { 1658 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 1659 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 1660 u64 min = (u64)dev->ctrl.hmmin * 4096; 1661 u32 enable_bits = NVME_HOST_MEM_ENABLE; 1662 1663 preferred = min(preferred, max); 1664 if (min > max) { 1665 dev_warn(dev->ctrl.device, 1666 "min host memory (%lld MiB) above limit (%d MiB).\n", 1667 min >> ilog2(SZ_1M), max_host_mem_size_mb); 1668 nvme_free_host_mem(dev); 1669 return; 1670 } 1671 1672 /* 1673 * If we already have a buffer allocated check if we can reuse it. 1674 */ 1675 if (dev->host_mem_descs) { 1676 if (dev->host_mem_size >= min) 1677 enable_bits |= NVME_HOST_MEM_RETURN; 1678 else 1679 nvme_free_host_mem(dev); 1680 } 1681 1682 if (!dev->host_mem_descs) { 1683 if (nvme_alloc_host_mem(dev, min, preferred)) 1684 return; 1685 } 1686 1687 if (nvme_set_host_mem(dev, enable_bits)) 1688 nvme_free_host_mem(dev); 1689 } 1690 1691 static int nvme_setup_io_queues(struct nvme_dev *dev) 1692 { 1693 struct nvme_queue *adminq = dev->queues[0]; 1694 struct pci_dev *pdev = to_pci_dev(dev->dev); 1695 int result, nr_io_queues; 1696 unsigned long size; 1697 1698 nr_io_queues = num_present_cpus(); 1699 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 1700 if (result < 0) 1701 return result; 1702 1703 if (nr_io_queues == 0) 1704 return 0; 1705 1706 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { 1707 result = nvme_cmb_qdepth(dev, nr_io_queues, 1708 sizeof(struct nvme_command)); 1709 if (result > 0) 1710 dev->q_depth = result; 1711 else 1712 nvme_release_cmb(dev); 1713 } 1714 1715 do { 1716 size = db_bar_size(dev, nr_io_queues); 1717 result = nvme_remap_bar(dev, size); 1718 if (!result) 1719 break; 1720 if (!--nr_io_queues) 1721 return -ENOMEM; 1722 } while (1); 1723 adminq->q_db = dev->dbs; 1724 1725 /* Deregister the admin queue's interrupt */ 1726 pci_free_irq(pdev, 0, adminq); 1727 1728 /* 1729 * If we enable msix early due to not intx, disable it again before 1730 * setting up the full range we need. 1731 */ 1732 pci_free_irq_vectors(pdev); 1733 nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, 1734 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); 1735 if (nr_io_queues <= 0) 1736 return -EIO; 1737 dev->max_qid = nr_io_queues; 1738 1739 /* 1740 * Should investigate if there's a performance win from allocating 1741 * more queues than interrupt vectors; it might allow the submission 1742 * path to scale better, even if the receive path is limited by the 1743 * number of interrupts. 1744 */ 1745 1746 result = queue_request_irq(adminq); 1747 if (result) { 1748 adminq->cq_vector = -1; 1749 return result; 1750 } 1751 return nvme_create_io_queues(dev); 1752 } 1753 1754 static void nvme_del_queue_end(struct request *req, blk_status_t error) 1755 { 1756 struct nvme_queue *nvmeq = req->end_io_data; 1757 1758 blk_mq_free_request(req); 1759 complete(&nvmeq->dev->ioq_wait); 1760 } 1761 1762 static void nvme_del_cq_end(struct request *req, blk_status_t error) 1763 { 1764 struct nvme_queue *nvmeq = req->end_io_data; 1765 1766 if (!error) { 1767 unsigned long flags; 1768 1769 /* 1770 * We might be called with the AQ q_lock held 1771 * and the I/O queue q_lock should always 1772 * nest inside the AQ one. 1773 */ 1774 spin_lock_irqsave_nested(&nvmeq->q_lock, flags, 1775 SINGLE_DEPTH_NESTING); 1776 nvme_process_cq(nvmeq); 1777 spin_unlock_irqrestore(&nvmeq->q_lock, flags); 1778 } 1779 1780 nvme_del_queue_end(req, error); 1781 } 1782 1783 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 1784 { 1785 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 1786 struct request *req; 1787 struct nvme_command cmd; 1788 1789 memset(&cmd, 0, sizeof(cmd)); 1790 cmd.delete_queue.opcode = opcode; 1791 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 1792 1793 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); 1794 if (IS_ERR(req)) 1795 return PTR_ERR(req); 1796 1797 req->timeout = ADMIN_TIMEOUT; 1798 req->end_io_data = nvmeq; 1799 1800 blk_execute_rq_nowait(q, NULL, req, false, 1801 opcode == nvme_admin_delete_cq ? 1802 nvme_del_cq_end : nvme_del_queue_end); 1803 return 0; 1804 } 1805 1806 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) 1807 { 1808 int pass; 1809 unsigned long timeout; 1810 u8 opcode = nvme_admin_delete_sq; 1811 1812 for (pass = 0; pass < 2; pass++) { 1813 int sent = 0, i = queues; 1814 1815 reinit_completion(&dev->ioq_wait); 1816 retry: 1817 timeout = ADMIN_TIMEOUT; 1818 for (; i > 0; i--, sent++) 1819 if (nvme_delete_queue(dev->queues[i], opcode)) 1820 break; 1821 1822 while (sent--) { 1823 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); 1824 if (timeout == 0) 1825 return; 1826 if (i) 1827 goto retry; 1828 } 1829 opcode = nvme_admin_delete_cq; 1830 } 1831 } 1832 1833 /* 1834 * Return: error value if an error occurred setting up the queues or calling 1835 * Identify Device. 0 if these succeeded, even if adding some of the 1836 * namespaces failed. At the moment, these failures are silent. TBD which 1837 * failures should be reported. 1838 */ 1839 static int nvme_dev_add(struct nvme_dev *dev) 1840 { 1841 if (!dev->ctrl.tagset) { 1842 dev->tagset.ops = &nvme_mq_ops; 1843 dev->tagset.nr_hw_queues = dev->online_queues - 1; 1844 dev->tagset.timeout = NVME_IO_TIMEOUT; 1845 dev->tagset.numa_node = dev_to_node(dev->dev); 1846 dev->tagset.queue_depth = 1847 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; 1848 dev->tagset.cmd_size = nvme_cmd_size(dev); 1849 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; 1850 dev->tagset.driver_data = dev; 1851 1852 if (blk_mq_alloc_tag_set(&dev->tagset)) 1853 return 0; 1854 dev->ctrl.tagset = &dev->tagset; 1855 1856 nvme_dbbuf_set(dev); 1857 } else { 1858 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 1859 1860 /* Free previously allocated queues that are no longer usable */ 1861 nvme_free_queues(dev, dev->online_queues); 1862 } 1863 1864 return 0; 1865 } 1866 1867 static int nvme_pci_enable(struct nvme_dev *dev) 1868 { 1869 u64 cap; 1870 int result = -ENOMEM; 1871 struct pci_dev *pdev = to_pci_dev(dev->dev); 1872 1873 if (pci_enable_device_mem(pdev)) 1874 return result; 1875 1876 pci_set_master(pdev); 1877 1878 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && 1879 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) 1880 goto disable; 1881 1882 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 1883 result = -ENODEV; 1884 goto disable; 1885 } 1886 1887 /* 1888 * Some devices and/or platforms don't advertise or work with INTx 1889 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 1890 * adjust this later. 1891 */ 1892 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 1893 if (result < 0) 1894 return result; 1895 1896 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 1897 1898 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); 1899 dev->db_stride = 1 << NVME_CAP_STRIDE(cap); 1900 dev->dbs = dev->bar + 4096; 1901 1902 /* 1903 * Temporary fix for the Apple controller found in the MacBook8,1 and 1904 * some MacBook7,1 to avoid controller resets and data loss. 1905 */ 1906 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 1907 dev->q_depth = 2; 1908 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 1909 "set queue depth=%u to work around controller resets\n", 1910 dev->q_depth); 1911 } 1912 1913 /* 1914 * CMBs can currently only exist on >=1.2 PCIe devices. We only 1915 * populate sysfs if a CMB is implemented. Note that we add the 1916 * CMB attribute to the nvme_ctrl kobj which removes the need to remove 1917 * it on exit. Since nvme_dev_attrs_group has no name we can pass 1918 * NULL as final argument to sysfs_add_file_to_group. 1919 */ 1920 1921 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { 1922 dev->cmb = nvme_map_cmb(dev); 1923 1924 if (dev->cmbsz) { 1925 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, 1926 &dev_attr_cmb.attr, NULL)) 1927 dev_warn(dev->ctrl.device, 1928 "failed to add sysfs attribute for CMB\n"); 1929 } 1930 } 1931 1932 pci_enable_pcie_error_reporting(pdev); 1933 pci_save_state(pdev); 1934 return 0; 1935 1936 disable: 1937 pci_disable_device(pdev); 1938 return result; 1939 } 1940 1941 static void nvme_dev_unmap(struct nvme_dev *dev) 1942 { 1943 if (dev->bar) 1944 iounmap(dev->bar); 1945 pci_release_mem_regions(to_pci_dev(dev->dev)); 1946 } 1947 1948 static void nvme_pci_disable(struct nvme_dev *dev) 1949 { 1950 struct pci_dev *pdev = to_pci_dev(dev->dev); 1951 1952 nvme_release_cmb(dev); 1953 pci_free_irq_vectors(pdev); 1954 1955 if (pci_is_enabled(pdev)) { 1956 pci_disable_pcie_error_reporting(pdev); 1957 pci_disable_device(pdev); 1958 } 1959 } 1960 1961 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 1962 { 1963 int i, queues; 1964 bool dead = true; 1965 struct pci_dev *pdev = to_pci_dev(dev->dev); 1966 1967 mutex_lock(&dev->shutdown_lock); 1968 if (pci_is_enabled(pdev)) { 1969 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1970 1971 if (dev->ctrl.state == NVME_CTRL_LIVE || 1972 dev->ctrl.state == NVME_CTRL_RESETTING) 1973 nvme_start_freeze(&dev->ctrl); 1974 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || 1975 pdev->error_state != pci_channel_io_normal); 1976 } 1977 1978 /* 1979 * Give the controller a chance to complete all entered requests if 1980 * doing a safe shutdown. 1981 */ 1982 if (!dead) { 1983 if (shutdown) 1984 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 1985 1986 /* 1987 * If the controller is still alive tell it to stop using the 1988 * host memory buffer. In theory the shutdown / reset should 1989 * make sure that it doesn't access the host memoery anymore, 1990 * but I'd rather be safe than sorry.. 1991 */ 1992 if (dev->host_mem_descs) 1993 nvme_set_host_mem(dev, 0); 1994 1995 } 1996 nvme_stop_queues(&dev->ctrl); 1997 1998 queues = dev->online_queues - 1; 1999 for (i = dev->queue_count - 1; i > 0; i--) 2000 nvme_suspend_queue(dev->queues[i]); 2001 2002 if (dead) { 2003 /* A device might become IO incapable very soon during 2004 * probe, before the admin queue is configured. Thus, 2005 * queue_count can be 0 here. 2006 */ 2007 if (dev->queue_count) 2008 nvme_suspend_queue(dev->queues[0]); 2009 } else { 2010 nvme_disable_io_queues(dev, queues); 2011 nvme_disable_admin_queue(dev, shutdown); 2012 } 2013 nvme_pci_disable(dev); 2014 2015 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); 2016 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); 2017 2018 /* 2019 * The driver will not be starting up queues again if shutting down so 2020 * must flush all entered requests to their failed completion to avoid 2021 * deadlocking blk-mq hot-cpu notifier. 2022 */ 2023 if (shutdown) 2024 nvme_start_queues(&dev->ctrl); 2025 mutex_unlock(&dev->shutdown_lock); 2026 } 2027 2028 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2029 { 2030 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2031 PAGE_SIZE, PAGE_SIZE, 0); 2032 if (!dev->prp_page_pool) 2033 return -ENOMEM; 2034 2035 /* Optimisation for I/Os between 4k and 128k */ 2036 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2037 256, 256, 0); 2038 if (!dev->prp_small_pool) { 2039 dma_pool_destroy(dev->prp_page_pool); 2040 return -ENOMEM; 2041 } 2042 return 0; 2043 } 2044 2045 static void nvme_release_prp_pools(struct nvme_dev *dev) 2046 { 2047 dma_pool_destroy(dev->prp_page_pool); 2048 dma_pool_destroy(dev->prp_small_pool); 2049 } 2050 2051 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2052 { 2053 struct nvme_dev *dev = to_nvme_dev(ctrl); 2054 2055 nvme_dbbuf_dma_free(dev); 2056 put_device(dev->dev); 2057 if (dev->tagset.tags) 2058 blk_mq_free_tag_set(&dev->tagset); 2059 if (dev->ctrl.admin_q) 2060 blk_put_queue(dev->ctrl.admin_q); 2061 kfree(dev->queues); 2062 free_opal_dev(dev->ctrl.opal_dev); 2063 kfree(dev); 2064 } 2065 2066 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) 2067 { 2068 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); 2069 2070 kref_get(&dev->ctrl.kref); 2071 nvme_dev_disable(dev, false); 2072 if (!schedule_work(&dev->remove_work)) 2073 nvme_put_ctrl(&dev->ctrl); 2074 } 2075 2076 static void nvme_reset_work(struct work_struct *work) 2077 { 2078 struct nvme_dev *dev = 2079 container_of(work, struct nvme_dev, ctrl.reset_work); 2080 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2081 int result = -ENODEV; 2082 2083 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) 2084 goto out; 2085 2086 /* 2087 * If we're called to reset a live controller first shut it down before 2088 * moving on. 2089 */ 2090 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2091 nvme_dev_disable(dev, false); 2092 2093 result = nvme_pci_enable(dev); 2094 if (result) 2095 goto out; 2096 2097 result = nvme_configure_admin_queue(dev); 2098 if (result) 2099 goto out; 2100 2101 nvme_init_queue(dev->queues[0], 0); 2102 result = nvme_alloc_admin_tags(dev); 2103 if (result) 2104 goto out; 2105 2106 result = nvme_init_identify(&dev->ctrl); 2107 if (result) 2108 goto out; 2109 2110 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { 2111 if (!dev->ctrl.opal_dev) 2112 dev->ctrl.opal_dev = 2113 init_opal_dev(&dev->ctrl, &nvme_sec_submit); 2114 else if (was_suspend) 2115 opal_unlock_from_suspend(dev->ctrl.opal_dev); 2116 } else { 2117 free_opal_dev(dev->ctrl.opal_dev); 2118 dev->ctrl.opal_dev = NULL; 2119 } 2120 2121 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { 2122 result = nvme_dbbuf_dma_alloc(dev); 2123 if (result) 2124 dev_warn(dev->dev, 2125 "unable to allocate dma for dbbuf\n"); 2126 } 2127 2128 if (dev->ctrl.hmpre) 2129 nvme_setup_host_mem(dev); 2130 2131 result = nvme_setup_io_queues(dev); 2132 if (result) 2133 goto out; 2134 2135 /* 2136 * A controller that can not execute IO typically requires user 2137 * intervention to correct. For such degraded controllers, the driver 2138 * should not submit commands the user did not request, so skip 2139 * registering for asynchronous event notification on this condition. 2140 */ 2141 if (dev->online_queues > 1) 2142 nvme_queue_async_events(&dev->ctrl); 2143 2144 /* 2145 * Keep the controller around but remove all namespaces if we don't have 2146 * any working I/O queue. 2147 */ 2148 if (dev->online_queues < 2) { 2149 dev_warn(dev->ctrl.device, "IO queues not created\n"); 2150 nvme_kill_queues(&dev->ctrl); 2151 nvme_remove_namespaces(&dev->ctrl); 2152 } else { 2153 nvme_start_queues(&dev->ctrl); 2154 nvme_wait_freeze(&dev->ctrl); 2155 nvme_dev_add(dev); 2156 nvme_unfreeze(&dev->ctrl); 2157 } 2158 2159 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2160 dev_warn(dev->ctrl.device, "failed to mark controller live\n"); 2161 goto out; 2162 } 2163 2164 if (dev->online_queues > 1) 2165 nvme_queue_scan(&dev->ctrl); 2166 return; 2167 2168 out: 2169 nvme_remove_dead_ctrl(dev, result); 2170 } 2171 2172 static void nvme_remove_dead_ctrl_work(struct work_struct *work) 2173 { 2174 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); 2175 struct pci_dev *pdev = to_pci_dev(dev->dev); 2176 2177 nvme_kill_queues(&dev->ctrl); 2178 if (pci_get_drvdata(pdev)) 2179 device_release_driver(&pdev->dev); 2180 nvme_put_ctrl(&dev->ctrl); 2181 } 2182 2183 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2184 { 2185 *val = readl(to_nvme_dev(ctrl)->bar + off); 2186 return 0; 2187 } 2188 2189 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2190 { 2191 writel(val, to_nvme_dev(ctrl)->bar + off); 2192 return 0; 2193 } 2194 2195 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2196 { 2197 *val = readq(to_nvme_dev(ctrl)->bar + off); 2198 return 0; 2199 } 2200 2201 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2202 .name = "pcie", 2203 .module = THIS_MODULE, 2204 .flags = NVME_F_METADATA_SUPPORTED, 2205 .reg_read32 = nvme_pci_reg_read32, 2206 .reg_write32 = nvme_pci_reg_write32, 2207 .reg_read64 = nvme_pci_reg_read64, 2208 .free_ctrl = nvme_pci_free_ctrl, 2209 .submit_async_event = nvme_pci_submit_async_event, 2210 }; 2211 2212 static int nvme_dev_map(struct nvme_dev *dev) 2213 { 2214 struct pci_dev *pdev = to_pci_dev(dev->dev); 2215 2216 if (pci_request_mem_regions(pdev, "nvme")) 2217 return -ENODEV; 2218 2219 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2220 goto release; 2221 2222 return 0; 2223 release: 2224 pci_release_mem_regions(pdev); 2225 return -ENODEV; 2226 } 2227 2228 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev) 2229 { 2230 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2231 /* 2232 * Several Samsung devices seem to drop off the PCIe bus 2233 * randomly when APST is on and uses the deepest sleep state. 2234 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2235 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2236 * 950 PRO 256GB", but it seems to be restricted to two Dell 2237 * laptops. 2238 */ 2239 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2240 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2241 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2242 return NVME_QUIRK_NO_DEEPEST_PS; 2243 } 2244 2245 return 0; 2246 } 2247 2248 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2249 { 2250 int node, result = -ENOMEM; 2251 struct nvme_dev *dev; 2252 unsigned long quirks = id->driver_data; 2253 2254 node = dev_to_node(&pdev->dev); 2255 if (node == NUMA_NO_NODE) 2256 set_dev_node(&pdev->dev, first_memory_node); 2257 2258 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2259 if (!dev) 2260 return -ENOMEM; 2261 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), 2262 GFP_KERNEL, node); 2263 if (!dev->queues) 2264 goto free; 2265 2266 dev->dev = get_device(&pdev->dev); 2267 pci_set_drvdata(pdev, dev); 2268 2269 result = nvme_dev_map(dev); 2270 if (result) 2271 goto free; 2272 2273 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2274 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); 2275 mutex_init(&dev->shutdown_lock); 2276 init_completion(&dev->ioq_wait); 2277 2278 result = nvme_setup_prp_pools(dev); 2279 if (result) 2280 goto put_pci; 2281 2282 quirks |= check_dell_samsung_bug(pdev); 2283 2284 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2285 quirks); 2286 if (result) 2287 goto release_pools; 2288 2289 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING); 2290 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 2291 2292 queue_work(nvme_wq, &dev->ctrl.reset_work); 2293 return 0; 2294 2295 release_pools: 2296 nvme_release_prp_pools(dev); 2297 put_pci: 2298 put_device(dev->dev); 2299 nvme_dev_unmap(dev); 2300 free: 2301 kfree(dev->queues); 2302 kfree(dev); 2303 return result; 2304 } 2305 2306 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) 2307 { 2308 struct nvme_dev *dev = pci_get_drvdata(pdev); 2309 2310 if (prepare) 2311 nvme_dev_disable(dev, false); 2312 else 2313 nvme_reset_ctrl(&dev->ctrl); 2314 } 2315 2316 static void nvme_shutdown(struct pci_dev *pdev) 2317 { 2318 struct nvme_dev *dev = pci_get_drvdata(pdev); 2319 nvme_dev_disable(dev, true); 2320 } 2321 2322 /* 2323 * The driver's remove may be called on a device in a partially initialized 2324 * state. This function must not have any dependencies on the device state in 2325 * order to proceed. 2326 */ 2327 static void nvme_remove(struct pci_dev *pdev) 2328 { 2329 struct nvme_dev *dev = pci_get_drvdata(pdev); 2330 2331 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2332 2333 cancel_work_sync(&dev->ctrl.reset_work); 2334 pci_set_drvdata(pdev, NULL); 2335 2336 if (!pci_device_is_present(pdev)) { 2337 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2338 nvme_dev_disable(dev, false); 2339 } 2340 2341 flush_work(&dev->ctrl.reset_work); 2342 nvme_uninit_ctrl(&dev->ctrl); 2343 nvme_dev_disable(dev, true); 2344 nvme_free_host_mem(dev); 2345 nvme_dev_remove_admin(dev); 2346 nvme_free_queues(dev, 0); 2347 nvme_release_prp_pools(dev); 2348 nvme_dev_unmap(dev); 2349 nvme_put_ctrl(&dev->ctrl); 2350 } 2351 2352 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) 2353 { 2354 int ret = 0; 2355 2356 if (numvfs == 0) { 2357 if (pci_vfs_assigned(pdev)) { 2358 dev_warn(&pdev->dev, 2359 "Cannot disable SR-IOV VFs while assigned\n"); 2360 return -EPERM; 2361 } 2362 pci_disable_sriov(pdev); 2363 return 0; 2364 } 2365 2366 ret = pci_enable_sriov(pdev, numvfs); 2367 return ret ? ret : numvfs; 2368 } 2369 2370 #ifdef CONFIG_PM_SLEEP 2371 static int nvme_suspend(struct device *dev) 2372 { 2373 struct pci_dev *pdev = to_pci_dev(dev); 2374 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2375 2376 nvme_dev_disable(ndev, true); 2377 return 0; 2378 } 2379 2380 static int nvme_resume(struct device *dev) 2381 { 2382 struct pci_dev *pdev = to_pci_dev(dev); 2383 struct nvme_dev *ndev = pci_get_drvdata(pdev); 2384 2385 nvme_reset_ctrl(&ndev->ctrl); 2386 return 0; 2387 } 2388 #endif 2389 2390 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); 2391 2392 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 2393 pci_channel_state_t state) 2394 { 2395 struct nvme_dev *dev = pci_get_drvdata(pdev); 2396 2397 /* 2398 * A frozen channel requires a reset. When detected, this method will 2399 * shutdown the controller to quiesce. The controller will be restarted 2400 * after the slot reset through driver's slot_reset callback. 2401 */ 2402 switch (state) { 2403 case pci_channel_io_normal: 2404 return PCI_ERS_RESULT_CAN_RECOVER; 2405 case pci_channel_io_frozen: 2406 dev_warn(dev->ctrl.device, 2407 "frozen state error detected, reset controller\n"); 2408 nvme_dev_disable(dev, false); 2409 return PCI_ERS_RESULT_NEED_RESET; 2410 case pci_channel_io_perm_failure: 2411 dev_warn(dev->ctrl.device, 2412 "failure state error detected, request disconnect\n"); 2413 return PCI_ERS_RESULT_DISCONNECT; 2414 } 2415 return PCI_ERS_RESULT_NEED_RESET; 2416 } 2417 2418 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 2419 { 2420 struct nvme_dev *dev = pci_get_drvdata(pdev); 2421 2422 dev_info(dev->ctrl.device, "restart after slot reset\n"); 2423 pci_restore_state(pdev); 2424 nvme_reset_ctrl(&dev->ctrl); 2425 return PCI_ERS_RESULT_RECOVERED; 2426 } 2427 2428 static void nvme_error_resume(struct pci_dev *pdev) 2429 { 2430 pci_cleanup_aer_uncorrect_error_status(pdev); 2431 } 2432 2433 static const struct pci_error_handlers nvme_err_handler = { 2434 .error_detected = nvme_error_detected, 2435 .slot_reset = nvme_slot_reset, 2436 .resume = nvme_error_resume, 2437 .reset_notify = nvme_reset_notify, 2438 }; 2439 2440 static const struct pci_device_id nvme_id_table[] = { 2441 { PCI_VDEVICE(INTEL, 0x0953), 2442 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2443 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2444 { PCI_VDEVICE(INTEL, 0x0a53), 2445 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2446 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2447 { PCI_VDEVICE(INTEL, 0x0a54), 2448 .driver_data = NVME_QUIRK_STRIPE_SIZE | 2449 NVME_QUIRK_DEALLOCATE_ZEROES, }, 2450 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 2451 .driver_data = NVME_QUIRK_NO_DEEPEST_PS }, 2452 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 2453 .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, 2454 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 2455 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2456 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 2457 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 2458 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 2459 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, 2460 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 2461 { 0, } 2462 }; 2463 MODULE_DEVICE_TABLE(pci, nvme_id_table); 2464 2465 static struct pci_driver nvme_driver = { 2466 .name = "nvme", 2467 .id_table = nvme_id_table, 2468 .probe = nvme_probe, 2469 .remove = nvme_remove, 2470 .shutdown = nvme_shutdown, 2471 .driver = { 2472 .pm = &nvme_dev_pm_ops, 2473 }, 2474 .sriov_configure = nvme_pci_sriov_configure, 2475 .err_handler = &nvme_err_handler, 2476 }; 2477 2478 static int __init nvme_init(void) 2479 { 2480 return pci_register_driver(&nvme_driver); 2481 } 2482 2483 static void __exit nvme_exit(void) 2484 { 2485 pci_unregister_driver(&nvme_driver); 2486 _nvme_check_size(); 2487 } 2488 2489 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 2490 MODULE_LICENSE("GPL"); 2491 MODULE_VERSION("1.0"); 2492 module_init(nvme_init); 2493 module_exit(nvme_exit); 2494