xref: /linux/drivers/nvme/host/pci.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/pci.h>
28 #include <linux/poison.h>
29 #include <linux/t10-pi.h>
30 #include <linux/timer.h>
31 #include <linux/types.h>
32 #include <linux/io-64-nonatomic-lo-hi.h>
33 #include <asm/unaligned.h>
34 #include <linux/sed-opal.h>
35 
36 #include "nvme.h"
37 
38 #define NVME_Q_DEPTH		1024
39 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
41 
42 /*
43  * We handle AEN commands ourselves and don't even let the
44  * block layer know about them.
45  */
46 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 struct nvme_dev;
61 struct nvme_queue;
62 
63 static void nvme_process_cq(struct nvme_queue *nvmeq);
64 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
65 
66 /*
67  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
68  */
69 struct nvme_dev {
70 	struct nvme_queue **queues;
71 	struct blk_mq_tag_set tagset;
72 	struct blk_mq_tag_set admin_tagset;
73 	u32 __iomem *dbs;
74 	struct device *dev;
75 	struct dma_pool *prp_page_pool;
76 	struct dma_pool *prp_small_pool;
77 	unsigned queue_count;
78 	unsigned online_queues;
79 	unsigned max_qid;
80 	int q_depth;
81 	u32 db_stride;
82 	void __iomem *bar;
83 	unsigned long bar_mapped_size;
84 	struct work_struct remove_work;
85 	struct mutex shutdown_lock;
86 	bool subsystem;
87 	void __iomem *cmb;
88 	dma_addr_t cmb_dma_addr;
89 	u64 cmb_size;
90 	u32 cmbsz;
91 	u32 cmbloc;
92 	struct nvme_ctrl ctrl;
93 	struct completion ioq_wait;
94 
95 	/* shadow doorbell buffer support: */
96 	u32 *dbbuf_dbs;
97 	dma_addr_t dbbuf_dbs_dma_addr;
98 	u32 *dbbuf_eis;
99 	dma_addr_t dbbuf_eis_dma_addr;
100 
101 	/* host memory buffer support: */
102 	u64 host_mem_size;
103 	u32 nr_host_mem_descs;
104 	struct nvme_host_mem_buf_desc *host_mem_descs;
105 	void **host_mem_desc_bufs;
106 };
107 
108 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
109 {
110 	return qid * 2 * stride;
111 }
112 
113 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
114 {
115 	return (qid * 2 + 1) * stride;
116 }
117 
118 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
119 {
120 	return container_of(ctrl, struct nvme_dev, ctrl);
121 }
122 
123 /*
124  * An NVM Express queue.  Each device has at least two (one for admin
125  * commands and one for I/O commands).
126  */
127 struct nvme_queue {
128 	struct device *q_dmadev;
129 	struct nvme_dev *dev;
130 	spinlock_t q_lock;
131 	struct nvme_command *sq_cmds;
132 	struct nvme_command __iomem *sq_cmds_io;
133 	volatile struct nvme_completion *cqes;
134 	struct blk_mq_tags **tags;
135 	dma_addr_t sq_dma_addr;
136 	dma_addr_t cq_dma_addr;
137 	u32 __iomem *q_db;
138 	u16 q_depth;
139 	s16 cq_vector;
140 	u16 sq_tail;
141 	u16 cq_head;
142 	u16 qid;
143 	u8 cq_phase;
144 	u8 cqe_seen;
145 	u32 *dbbuf_sq_db;
146 	u32 *dbbuf_cq_db;
147 	u32 *dbbuf_sq_ei;
148 	u32 *dbbuf_cq_ei;
149 };
150 
151 /*
152  * The nvme_iod describes the data in an I/O, including the list of PRP
153  * entries.  You can't see it in this data structure because C doesn't let
154  * me express that.  Use nvme_init_iod to ensure there's enough space
155  * allocated to store the PRP list.
156  */
157 struct nvme_iod {
158 	struct nvme_request req;
159 	struct nvme_queue *nvmeq;
160 	int aborted;
161 	int npages;		/* In the PRP list. 0 means small pool in use */
162 	int nents;		/* Used in scatterlist */
163 	int length;		/* Of data, in bytes */
164 	dma_addr_t first_dma;
165 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
166 	struct scatterlist *sg;
167 	struct scatterlist inline_sg[0];
168 };
169 
170 /*
171  * Check we didin't inadvertently grow the command struct
172  */
173 static inline void _nvme_check_size(void)
174 {
175 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
176 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
177 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
178 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
179 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
180 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
181 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
182 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
183 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
184 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
185 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
186 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
187 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
188 }
189 
190 static inline unsigned int nvme_dbbuf_size(u32 stride)
191 {
192 	return ((num_possible_cpus() + 1) * 8 * stride);
193 }
194 
195 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
196 {
197 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
198 
199 	if (dev->dbbuf_dbs)
200 		return 0;
201 
202 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
203 					    &dev->dbbuf_dbs_dma_addr,
204 					    GFP_KERNEL);
205 	if (!dev->dbbuf_dbs)
206 		return -ENOMEM;
207 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
208 					    &dev->dbbuf_eis_dma_addr,
209 					    GFP_KERNEL);
210 	if (!dev->dbbuf_eis) {
211 		dma_free_coherent(dev->dev, mem_size,
212 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
213 		dev->dbbuf_dbs = NULL;
214 		return -ENOMEM;
215 	}
216 
217 	return 0;
218 }
219 
220 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
221 {
222 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
223 
224 	if (dev->dbbuf_dbs) {
225 		dma_free_coherent(dev->dev, mem_size,
226 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
227 		dev->dbbuf_dbs = NULL;
228 	}
229 	if (dev->dbbuf_eis) {
230 		dma_free_coherent(dev->dev, mem_size,
231 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
232 		dev->dbbuf_eis = NULL;
233 	}
234 }
235 
236 static void nvme_dbbuf_init(struct nvme_dev *dev,
237 			    struct nvme_queue *nvmeq, int qid)
238 {
239 	if (!dev->dbbuf_dbs || !qid)
240 		return;
241 
242 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
243 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
244 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
245 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
246 }
247 
248 static void nvme_dbbuf_set(struct nvme_dev *dev)
249 {
250 	struct nvme_command c;
251 
252 	if (!dev->dbbuf_dbs)
253 		return;
254 
255 	memset(&c, 0, sizeof(c));
256 	c.dbbuf.opcode = nvme_admin_dbbuf;
257 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
258 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
259 
260 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
261 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
262 		/* Free memory and continue on */
263 		nvme_dbbuf_dma_free(dev);
264 	}
265 }
266 
267 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
268 {
269 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
270 }
271 
272 /* Update dbbuf and return true if an MMIO is required */
273 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
274 					      volatile u32 *dbbuf_ei)
275 {
276 	if (dbbuf_db) {
277 		u16 old_value;
278 
279 		/*
280 		 * Ensure that the queue is written before updating
281 		 * the doorbell in memory
282 		 */
283 		wmb();
284 
285 		old_value = *dbbuf_db;
286 		*dbbuf_db = value;
287 
288 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
289 			return false;
290 	}
291 
292 	return true;
293 }
294 
295 /*
296  * Max size of iod being embedded in the request payload
297  */
298 #define NVME_INT_PAGES		2
299 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
300 
301 /*
302  * Will slightly overestimate the number of pages needed.  This is OK
303  * as it only leads to a small amount of wasted memory for the lifetime of
304  * the I/O.
305  */
306 static int nvme_npages(unsigned size, struct nvme_dev *dev)
307 {
308 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
309 				      dev->ctrl.page_size);
310 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
311 }
312 
313 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
314 		unsigned int size, unsigned int nseg)
315 {
316 	return sizeof(__le64 *) * nvme_npages(size, dev) +
317 			sizeof(struct scatterlist) * nseg;
318 }
319 
320 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
321 {
322 	return sizeof(struct nvme_iod) +
323 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
324 }
325 
326 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
327 				unsigned int hctx_idx)
328 {
329 	struct nvme_dev *dev = data;
330 	struct nvme_queue *nvmeq = dev->queues[0];
331 
332 	WARN_ON(hctx_idx != 0);
333 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
334 	WARN_ON(nvmeq->tags);
335 
336 	hctx->driver_data = nvmeq;
337 	nvmeq->tags = &dev->admin_tagset.tags[0];
338 	return 0;
339 }
340 
341 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
342 {
343 	struct nvme_queue *nvmeq = hctx->driver_data;
344 
345 	nvmeq->tags = NULL;
346 }
347 
348 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
349 			  unsigned int hctx_idx)
350 {
351 	struct nvme_dev *dev = data;
352 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
353 
354 	if (!nvmeq->tags)
355 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
356 
357 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
358 	hctx->driver_data = nvmeq;
359 	return 0;
360 }
361 
362 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
363 		unsigned int hctx_idx, unsigned int numa_node)
364 {
365 	struct nvme_dev *dev = set->driver_data;
366 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
367 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
368 	struct nvme_queue *nvmeq = dev->queues[queue_idx];
369 
370 	BUG_ON(!nvmeq);
371 	iod->nvmeq = nvmeq;
372 	return 0;
373 }
374 
375 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
376 {
377 	struct nvme_dev *dev = set->driver_data;
378 
379 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
380 }
381 
382 /**
383  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
384  * @nvmeq: The queue to use
385  * @cmd: The command to send
386  *
387  * Safe to use from interrupt context
388  */
389 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
390 						struct nvme_command *cmd)
391 {
392 	u16 tail = nvmeq->sq_tail;
393 
394 	if (nvmeq->sq_cmds_io)
395 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
396 	else
397 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
398 
399 	if (++tail == nvmeq->q_depth)
400 		tail = 0;
401 	if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
402 					      nvmeq->dbbuf_sq_ei))
403 		writel(tail, nvmeq->q_db);
404 	nvmeq->sq_tail = tail;
405 }
406 
407 static __le64 **iod_list(struct request *req)
408 {
409 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410 	return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
411 }
412 
413 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
414 {
415 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
416 	int nseg = blk_rq_nr_phys_segments(rq);
417 	unsigned int size = blk_rq_payload_bytes(rq);
418 
419 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
420 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
421 		if (!iod->sg)
422 			return BLK_STS_RESOURCE;
423 	} else {
424 		iod->sg = iod->inline_sg;
425 	}
426 
427 	iod->aborted = 0;
428 	iod->npages = -1;
429 	iod->nents = 0;
430 	iod->length = size;
431 
432 	return BLK_STS_OK;
433 }
434 
435 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
436 {
437 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
438 	const int last_prp = dev->ctrl.page_size / 8 - 1;
439 	int i;
440 	__le64 **list = iod_list(req);
441 	dma_addr_t prp_dma = iod->first_dma;
442 
443 	if (iod->npages == 0)
444 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
445 	for (i = 0; i < iod->npages; i++) {
446 		__le64 *prp_list = list[i];
447 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
448 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
449 		prp_dma = next_prp_dma;
450 	}
451 
452 	if (iod->sg != iod->inline_sg)
453 		kfree(iod->sg);
454 }
455 
456 #ifdef CONFIG_BLK_DEV_INTEGRITY
457 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
458 {
459 	if (be32_to_cpu(pi->ref_tag) == v)
460 		pi->ref_tag = cpu_to_be32(p);
461 }
462 
463 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
464 {
465 	if (be32_to_cpu(pi->ref_tag) == p)
466 		pi->ref_tag = cpu_to_be32(v);
467 }
468 
469 /**
470  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
471  *
472  * The virtual start sector is the one that was originally submitted by the
473  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
474  * start sector may be different. Remap protection information to match the
475  * physical LBA on writes, and back to the original seed on reads.
476  *
477  * Type 0 and 3 do not have a ref tag, so no remapping required.
478  */
479 static void nvme_dif_remap(struct request *req,
480 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
481 {
482 	struct nvme_ns *ns = req->rq_disk->private_data;
483 	struct bio_integrity_payload *bip;
484 	struct t10_pi_tuple *pi;
485 	void *p, *pmap;
486 	u32 i, nlb, ts, phys, virt;
487 
488 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
489 		return;
490 
491 	bip = bio_integrity(req->bio);
492 	if (!bip)
493 		return;
494 
495 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
496 
497 	p = pmap;
498 	virt = bip_get_seed(bip);
499 	phys = nvme_block_nr(ns, blk_rq_pos(req));
500 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
501 	ts = ns->disk->queue->integrity.tuple_size;
502 
503 	for (i = 0; i < nlb; i++, virt++, phys++) {
504 		pi = (struct t10_pi_tuple *)p;
505 		dif_swap(phys, virt, pi);
506 		p += ts;
507 	}
508 	kunmap_atomic(pmap);
509 }
510 #else /* CONFIG_BLK_DEV_INTEGRITY */
511 static void nvme_dif_remap(struct request *req,
512 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
513 {
514 }
515 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
516 {
517 }
518 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
519 {
520 }
521 #endif
522 
523 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	struct dma_pool *pool;
527 	int length = blk_rq_payload_bytes(req);
528 	struct scatterlist *sg = iod->sg;
529 	int dma_len = sg_dma_len(sg);
530 	u64 dma_addr = sg_dma_address(sg);
531 	u32 page_size = dev->ctrl.page_size;
532 	int offset = dma_addr & (page_size - 1);
533 	__le64 *prp_list;
534 	__le64 **list = iod_list(req);
535 	dma_addr_t prp_dma;
536 	int nprps, i;
537 
538 	length -= (page_size - offset);
539 	if (length <= 0)
540 		return true;
541 
542 	dma_len -= (page_size - offset);
543 	if (dma_len) {
544 		dma_addr += (page_size - offset);
545 	} else {
546 		sg = sg_next(sg);
547 		dma_addr = sg_dma_address(sg);
548 		dma_len = sg_dma_len(sg);
549 	}
550 
551 	if (length <= page_size) {
552 		iod->first_dma = dma_addr;
553 		return true;
554 	}
555 
556 	nprps = DIV_ROUND_UP(length, page_size);
557 	if (nprps <= (256 / 8)) {
558 		pool = dev->prp_small_pool;
559 		iod->npages = 0;
560 	} else {
561 		pool = dev->prp_page_pool;
562 		iod->npages = 1;
563 	}
564 
565 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
566 	if (!prp_list) {
567 		iod->first_dma = dma_addr;
568 		iod->npages = -1;
569 		return false;
570 	}
571 	list[0] = prp_list;
572 	iod->first_dma = prp_dma;
573 	i = 0;
574 	for (;;) {
575 		if (i == page_size >> 3) {
576 			__le64 *old_prp_list = prp_list;
577 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
578 			if (!prp_list)
579 				return false;
580 			list[iod->npages++] = prp_list;
581 			prp_list[0] = old_prp_list[i - 1];
582 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
583 			i = 1;
584 		}
585 		prp_list[i++] = cpu_to_le64(dma_addr);
586 		dma_len -= page_size;
587 		dma_addr += page_size;
588 		length -= page_size;
589 		if (length <= 0)
590 			break;
591 		if (dma_len > 0)
592 			continue;
593 		BUG_ON(dma_len < 0);
594 		sg = sg_next(sg);
595 		dma_addr = sg_dma_address(sg);
596 		dma_len = sg_dma_len(sg);
597 	}
598 
599 	return true;
600 }
601 
602 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
603 		struct nvme_command *cmnd)
604 {
605 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
606 	struct request_queue *q = req->q;
607 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
608 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
609 	blk_status_t ret = BLK_STS_IOERR;
610 
611 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
612 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
613 	if (!iod->nents)
614 		goto out;
615 
616 	ret = BLK_STS_RESOURCE;
617 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
618 				DMA_ATTR_NO_WARN))
619 		goto out;
620 
621 	if (!nvme_setup_prps(dev, req))
622 		goto out_unmap;
623 
624 	ret = BLK_STS_IOERR;
625 	if (blk_integrity_rq(req)) {
626 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
627 			goto out_unmap;
628 
629 		sg_init_table(&iod->meta_sg, 1);
630 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
631 			goto out_unmap;
632 
633 		if (rq_data_dir(req))
634 			nvme_dif_remap(req, nvme_dif_prep);
635 
636 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
637 			goto out_unmap;
638 	}
639 
640 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
641 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
642 	if (blk_integrity_rq(req))
643 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
644 	return BLK_STS_OK;
645 
646 out_unmap:
647 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
648 out:
649 	return ret;
650 }
651 
652 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
653 {
654 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
655 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
656 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
657 
658 	if (iod->nents) {
659 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
660 		if (blk_integrity_rq(req)) {
661 			if (!rq_data_dir(req))
662 				nvme_dif_remap(req, nvme_dif_complete);
663 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
664 		}
665 	}
666 
667 	nvme_cleanup_cmd(req);
668 	nvme_free_iod(dev, req);
669 }
670 
671 /*
672  * NOTE: ns is NULL when called on the admin queue.
673  */
674 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
675 			 const struct blk_mq_queue_data *bd)
676 {
677 	struct nvme_ns *ns = hctx->queue->queuedata;
678 	struct nvme_queue *nvmeq = hctx->driver_data;
679 	struct nvme_dev *dev = nvmeq->dev;
680 	struct request *req = bd->rq;
681 	struct nvme_command cmnd;
682 	blk_status_t ret;
683 
684 	ret = nvme_setup_cmd(ns, req, &cmnd);
685 	if (ret)
686 		return ret;
687 
688 	ret = nvme_init_iod(req, dev);
689 	if (ret)
690 		goto out_free_cmd;
691 
692 	if (blk_rq_nr_phys_segments(req)) {
693 		ret = nvme_map_data(dev, req, &cmnd);
694 		if (ret)
695 			goto out_cleanup_iod;
696 	}
697 
698 	blk_mq_start_request(req);
699 
700 	spin_lock_irq(&nvmeq->q_lock);
701 	if (unlikely(nvmeq->cq_vector < 0)) {
702 		ret = BLK_STS_IOERR;
703 		spin_unlock_irq(&nvmeq->q_lock);
704 		goto out_cleanup_iod;
705 	}
706 	__nvme_submit_cmd(nvmeq, &cmnd);
707 	nvme_process_cq(nvmeq);
708 	spin_unlock_irq(&nvmeq->q_lock);
709 	return BLK_STS_OK;
710 out_cleanup_iod:
711 	nvme_free_iod(dev, req);
712 out_free_cmd:
713 	nvme_cleanup_cmd(req);
714 	return ret;
715 }
716 
717 static void nvme_pci_complete_rq(struct request *req)
718 {
719 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
720 
721 	nvme_unmap_data(iod->nvmeq->dev, req);
722 	nvme_complete_rq(req);
723 }
724 
725 /* We read the CQE phase first to check if the rest of the entry is valid */
726 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
727 		u16 phase)
728 {
729 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
730 }
731 
732 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
733 {
734 	u16 head = nvmeq->cq_head;
735 
736 	if (likely(nvmeq->cq_vector >= 0)) {
737 		if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
738 						      nvmeq->dbbuf_cq_ei))
739 			writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
740 	}
741 }
742 
743 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
744 		struct nvme_completion *cqe)
745 {
746 	struct request *req;
747 
748 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
749 		dev_warn(nvmeq->dev->ctrl.device,
750 			"invalid id %d completed on queue %d\n",
751 			cqe->command_id, le16_to_cpu(cqe->sq_id));
752 		return;
753 	}
754 
755 	/*
756 	 * AEN requests are special as they don't time out and can
757 	 * survive any kind of queue freeze and often don't respond to
758 	 * aborts.  We don't even bother to allocate a struct request
759 	 * for them but rather special case them here.
760 	 */
761 	if (unlikely(nvmeq->qid == 0 &&
762 			cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 		nvme_complete_async_event(&nvmeq->dev->ctrl,
764 				cqe->status, &cqe->result);
765 		return;
766 	}
767 
768 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
769 	nvme_end_request(req, cqe->status, cqe->result);
770 }
771 
772 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
773 		struct nvme_completion *cqe)
774 {
775 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
776 		*cqe = nvmeq->cqes[nvmeq->cq_head];
777 
778 		if (++nvmeq->cq_head == nvmeq->q_depth) {
779 			nvmeq->cq_head = 0;
780 			nvmeq->cq_phase = !nvmeq->cq_phase;
781 		}
782 		return true;
783 	}
784 	return false;
785 }
786 
787 static void nvme_process_cq(struct nvme_queue *nvmeq)
788 {
789 	struct nvme_completion cqe;
790 	int consumed = 0;
791 
792 	while (nvme_read_cqe(nvmeq, &cqe)) {
793 		nvme_handle_cqe(nvmeq, &cqe);
794 		consumed++;
795 	}
796 
797 	if (consumed) {
798 		nvme_ring_cq_doorbell(nvmeq);
799 		nvmeq->cqe_seen = 1;
800 	}
801 }
802 
803 static irqreturn_t nvme_irq(int irq, void *data)
804 {
805 	irqreturn_t result;
806 	struct nvme_queue *nvmeq = data;
807 	spin_lock(&nvmeq->q_lock);
808 	nvme_process_cq(nvmeq);
809 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
810 	nvmeq->cqe_seen = 0;
811 	spin_unlock(&nvmeq->q_lock);
812 	return result;
813 }
814 
815 static irqreturn_t nvme_irq_check(int irq, void *data)
816 {
817 	struct nvme_queue *nvmeq = data;
818 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
819 		return IRQ_WAKE_THREAD;
820 	return IRQ_NONE;
821 }
822 
823 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
824 {
825 	struct nvme_completion cqe;
826 	int found = 0, consumed = 0;
827 
828 	if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
829 		return 0;
830 
831 	spin_lock_irq(&nvmeq->q_lock);
832 	while (nvme_read_cqe(nvmeq, &cqe)) {
833 		nvme_handle_cqe(nvmeq, &cqe);
834 		consumed++;
835 
836 		if (tag == cqe.command_id) {
837 			found = 1;
838 			break;
839 		}
840        }
841 
842 	if (consumed)
843 		nvme_ring_cq_doorbell(nvmeq);
844 	spin_unlock_irq(&nvmeq->q_lock);
845 
846 	return found;
847 }
848 
849 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
850 {
851 	struct nvme_queue *nvmeq = hctx->driver_data;
852 
853 	return __nvme_poll(nvmeq, tag);
854 }
855 
856 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
857 {
858 	struct nvme_dev *dev = to_nvme_dev(ctrl);
859 	struct nvme_queue *nvmeq = dev->queues[0];
860 	struct nvme_command c;
861 
862 	memset(&c, 0, sizeof(c));
863 	c.common.opcode = nvme_admin_async_event;
864 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
865 
866 	spin_lock_irq(&nvmeq->q_lock);
867 	__nvme_submit_cmd(nvmeq, &c);
868 	spin_unlock_irq(&nvmeq->q_lock);
869 }
870 
871 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
872 {
873 	struct nvme_command c;
874 
875 	memset(&c, 0, sizeof(c));
876 	c.delete_queue.opcode = opcode;
877 	c.delete_queue.qid = cpu_to_le16(id);
878 
879 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
880 }
881 
882 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
883 						struct nvme_queue *nvmeq)
884 {
885 	struct nvme_command c;
886 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
887 
888 	/*
889 	 * Note: we (ab)use the fact the the prp fields survive if no data
890 	 * is attached to the request.
891 	 */
892 	memset(&c, 0, sizeof(c));
893 	c.create_cq.opcode = nvme_admin_create_cq;
894 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
895 	c.create_cq.cqid = cpu_to_le16(qid);
896 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
897 	c.create_cq.cq_flags = cpu_to_le16(flags);
898 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
899 
900 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
901 }
902 
903 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
904 						struct nvme_queue *nvmeq)
905 {
906 	struct nvme_command c;
907 	int flags = NVME_QUEUE_PHYS_CONTIG;
908 
909 	/*
910 	 * Note: we (ab)use the fact the the prp fields survive if no data
911 	 * is attached to the request.
912 	 */
913 	memset(&c, 0, sizeof(c));
914 	c.create_sq.opcode = nvme_admin_create_sq;
915 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
916 	c.create_sq.sqid = cpu_to_le16(qid);
917 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
918 	c.create_sq.sq_flags = cpu_to_le16(flags);
919 	c.create_sq.cqid = cpu_to_le16(qid);
920 
921 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
922 }
923 
924 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
925 {
926 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
927 }
928 
929 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
930 {
931 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
932 }
933 
934 static void abort_endio(struct request *req, blk_status_t error)
935 {
936 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937 	struct nvme_queue *nvmeq = iod->nvmeq;
938 
939 	dev_warn(nvmeq->dev->ctrl.device,
940 		 "Abort status: 0x%x", nvme_req(req)->status);
941 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
942 	blk_mq_free_request(req);
943 }
944 
945 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
946 {
947 
948 	/* If true, indicates loss of adapter communication, possibly by a
949 	 * NVMe Subsystem reset.
950 	 */
951 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
952 
953 	/* If there is a reset ongoing, we shouldn't reset again. */
954 	if (dev->ctrl.state == NVME_CTRL_RESETTING)
955 		return false;
956 
957 	/* We shouldn't reset unless the controller is on fatal error state
958 	 * _or_ if we lost the communication with it.
959 	 */
960 	if (!(csts & NVME_CSTS_CFS) && !nssro)
961 		return false;
962 
963 	/* If PCI error recovery process is happening, we cannot reset or
964 	 * the recovery mechanism will surely fail.
965 	 */
966 	if (pci_channel_offline(to_pci_dev(dev->dev)))
967 		return false;
968 
969 	return true;
970 }
971 
972 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
973 {
974 	/* Read a config register to help see what died. */
975 	u16 pci_status;
976 	int result;
977 
978 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
979 				      &pci_status);
980 	if (result == PCIBIOS_SUCCESSFUL)
981 		dev_warn(dev->ctrl.device,
982 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
983 			 csts, pci_status);
984 	else
985 		dev_warn(dev->ctrl.device,
986 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
987 			 csts, result);
988 }
989 
990 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
991 {
992 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
993 	struct nvme_queue *nvmeq = iod->nvmeq;
994 	struct nvme_dev *dev = nvmeq->dev;
995 	struct request *abort_req;
996 	struct nvme_command cmd;
997 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
998 
999 	/*
1000 	 * Reset immediately if the controller is failed
1001 	 */
1002 	if (nvme_should_reset(dev, csts)) {
1003 		nvme_warn_reset(dev, csts);
1004 		nvme_dev_disable(dev, false);
1005 		nvme_reset_ctrl(&dev->ctrl);
1006 		return BLK_EH_HANDLED;
1007 	}
1008 
1009 	/*
1010 	 * Did we miss an interrupt?
1011 	 */
1012 	if (__nvme_poll(nvmeq, req->tag)) {
1013 		dev_warn(dev->ctrl.device,
1014 			 "I/O %d QID %d timeout, completion polled\n",
1015 			 req->tag, nvmeq->qid);
1016 		return BLK_EH_HANDLED;
1017 	}
1018 
1019 	/*
1020 	 * Shutdown immediately if controller times out while starting. The
1021 	 * reset work will see the pci device disabled when it gets the forced
1022 	 * cancellation error. All outstanding requests are completed on
1023 	 * shutdown, so we return BLK_EH_HANDLED.
1024 	 */
1025 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1026 		dev_warn(dev->ctrl.device,
1027 			 "I/O %d QID %d timeout, disable controller\n",
1028 			 req->tag, nvmeq->qid);
1029 		nvme_dev_disable(dev, false);
1030 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1031 		return BLK_EH_HANDLED;
1032 	}
1033 
1034 	/*
1035  	 * Shutdown the controller immediately and schedule a reset if the
1036  	 * command was already aborted once before and still hasn't been
1037  	 * returned to the driver, or if this is the admin queue.
1038 	 */
1039 	if (!nvmeq->qid || iod->aborted) {
1040 		dev_warn(dev->ctrl.device,
1041 			 "I/O %d QID %d timeout, reset controller\n",
1042 			 req->tag, nvmeq->qid);
1043 		nvme_dev_disable(dev, false);
1044 		nvme_reset_ctrl(&dev->ctrl);
1045 
1046 		/*
1047 		 * Mark the request as handled, since the inline shutdown
1048 		 * forces all outstanding requests to complete.
1049 		 */
1050 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1051 		return BLK_EH_HANDLED;
1052 	}
1053 
1054 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1055 		atomic_inc(&dev->ctrl.abort_limit);
1056 		return BLK_EH_RESET_TIMER;
1057 	}
1058 	iod->aborted = 1;
1059 
1060 	memset(&cmd, 0, sizeof(cmd));
1061 	cmd.abort.opcode = nvme_admin_abort_cmd;
1062 	cmd.abort.cid = req->tag;
1063 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1064 
1065 	dev_warn(nvmeq->dev->ctrl.device,
1066 		"I/O %d QID %d timeout, aborting\n",
1067 		 req->tag, nvmeq->qid);
1068 
1069 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1070 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1071 	if (IS_ERR(abort_req)) {
1072 		atomic_inc(&dev->ctrl.abort_limit);
1073 		return BLK_EH_RESET_TIMER;
1074 	}
1075 
1076 	abort_req->timeout = ADMIN_TIMEOUT;
1077 	abort_req->end_io_data = NULL;
1078 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1079 
1080 	/*
1081 	 * The aborted req will be completed on receiving the abort req.
1082 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1083 	 * as the device then is in a faulty state.
1084 	 */
1085 	return BLK_EH_RESET_TIMER;
1086 }
1087 
1088 static void nvme_free_queue(struct nvme_queue *nvmeq)
1089 {
1090 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1091 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1092 	if (nvmeq->sq_cmds)
1093 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1094 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1095 	kfree(nvmeq);
1096 }
1097 
1098 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1099 {
1100 	int i;
1101 
1102 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1103 		struct nvme_queue *nvmeq = dev->queues[i];
1104 		dev->queue_count--;
1105 		dev->queues[i] = NULL;
1106 		nvme_free_queue(nvmeq);
1107 	}
1108 }
1109 
1110 /**
1111  * nvme_suspend_queue - put queue into suspended state
1112  * @nvmeq - queue to suspend
1113  */
1114 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1115 {
1116 	int vector;
1117 
1118 	spin_lock_irq(&nvmeq->q_lock);
1119 	if (nvmeq->cq_vector == -1) {
1120 		spin_unlock_irq(&nvmeq->q_lock);
1121 		return 1;
1122 	}
1123 	vector = nvmeq->cq_vector;
1124 	nvmeq->dev->online_queues--;
1125 	nvmeq->cq_vector = -1;
1126 	spin_unlock_irq(&nvmeq->q_lock);
1127 
1128 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1129 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1130 
1131 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1132 
1133 	return 0;
1134 }
1135 
1136 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1137 {
1138 	struct nvme_queue *nvmeq = dev->queues[0];
1139 
1140 	if (!nvmeq)
1141 		return;
1142 	if (nvme_suspend_queue(nvmeq))
1143 		return;
1144 
1145 	if (shutdown)
1146 		nvme_shutdown_ctrl(&dev->ctrl);
1147 	else
1148 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1149 						dev->bar + NVME_REG_CAP));
1150 
1151 	spin_lock_irq(&nvmeq->q_lock);
1152 	nvme_process_cq(nvmeq);
1153 	spin_unlock_irq(&nvmeq->q_lock);
1154 }
1155 
1156 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1157 				int entry_size)
1158 {
1159 	int q_depth = dev->q_depth;
1160 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1161 					  dev->ctrl.page_size);
1162 
1163 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1164 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1165 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1166 		q_depth = div_u64(mem_per_q, entry_size);
1167 
1168 		/*
1169 		 * Ensure the reduced q_depth is above some threshold where it
1170 		 * would be better to map queues in system memory with the
1171 		 * original depth
1172 		 */
1173 		if (q_depth < 64)
1174 			return -ENOMEM;
1175 	}
1176 
1177 	return q_depth;
1178 }
1179 
1180 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1181 				int qid, int depth)
1182 {
1183 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1184 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1185 						      dev->ctrl.page_size);
1186 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1187 		nvmeq->sq_cmds_io = dev->cmb + offset;
1188 	} else {
1189 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1190 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1191 		if (!nvmeq->sq_cmds)
1192 			return -ENOMEM;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1199 							int depth, int node)
1200 {
1201 	struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1202 							node);
1203 	if (!nvmeq)
1204 		return NULL;
1205 
1206 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1207 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1208 	if (!nvmeq->cqes)
1209 		goto free_nvmeq;
1210 
1211 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1212 		goto free_cqdma;
1213 
1214 	nvmeq->q_dmadev = dev->dev;
1215 	nvmeq->dev = dev;
1216 	spin_lock_init(&nvmeq->q_lock);
1217 	nvmeq->cq_head = 0;
1218 	nvmeq->cq_phase = 1;
1219 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1220 	nvmeq->q_depth = depth;
1221 	nvmeq->qid = qid;
1222 	nvmeq->cq_vector = -1;
1223 	dev->queues[qid] = nvmeq;
1224 	dev->queue_count++;
1225 
1226 	return nvmeq;
1227 
1228  free_cqdma:
1229 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1230 							nvmeq->cq_dma_addr);
1231  free_nvmeq:
1232 	kfree(nvmeq);
1233 	return NULL;
1234 }
1235 
1236 static int queue_request_irq(struct nvme_queue *nvmeq)
1237 {
1238 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1239 	int nr = nvmeq->dev->ctrl.instance;
1240 
1241 	if (use_threaded_interrupts) {
1242 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1243 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1244 	} else {
1245 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1246 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1247 	}
1248 }
1249 
1250 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1251 {
1252 	struct nvme_dev *dev = nvmeq->dev;
1253 
1254 	spin_lock_irq(&nvmeq->q_lock);
1255 	nvmeq->sq_tail = 0;
1256 	nvmeq->cq_head = 0;
1257 	nvmeq->cq_phase = 1;
1258 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1259 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1260 	nvme_dbbuf_init(dev, nvmeq, qid);
1261 	dev->online_queues++;
1262 	spin_unlock_irq(&nvmeq->q_lock);
1263 }
1264 
1265 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1266 {
1267 	struct nvme_dev *dev = nvmeq->dev;
1268 	int result;
1269 
1270 	nvmeq->cq_vector = qid - 1;
1271 	result = adapter_alloc_cq(dev, qid, nvmeq);
1272 	if (result < 0)
1273 		return result;
1274 
1275 	result = adapter_alloc_sq(dev, qid, nvmeq);
1276 	if (result < 0)
1277 		goto release_cq;
1278 
1279 	result = queue_request_irq(nvmeq);
1280 	if (result < 0)
1281 		goto release_sq;
1282 
1283 	nvme_init_queue(nvmeq, qid);
1284 	return result;
1285 
1286  release_sq:
1287 	adapter_delete_sq(dev, qid);
1288  release_cq:
1289 	adapter_delete_cq(dev, qid);
1290 	return result;
1291 }
1292 
1293 static const struct blk_mq_ops nvme_mq_admin_ops = {
1294 	.queue_rq	= nvme_queue_rq,
1295 	.complete	= nvme_pci_complete_rq,
1296 	.init_hctx	= nvme_admin_init_hctx,
1297 	.exit_hctx      = nvme_admin_exit_hctx,
1298 	.init_request	= nvme_init_request,
1299 	.timeout	= nvme_timeout,
1300 };
1301 
1302 static const struct blk_mq_ops nvme_mq_ops = {
1303 	.queue_rq	= nvme_queue_rq,
1304 	.complete	= nvme_pci_complete_rq,
1305 	.init_hctx	= nvme_init_hctx,
1306 	.init_request	= nvme_init_request,
1307 	.map_queues	= nvme_pci_map_queues,
1308 	.timeout	= nvme_timeout,
1309 	.poll		= nvme_poll,
1310 };
1311 
1312 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1313 {
1314 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1315 		/*
1316 		 * If the controller was reset during removal, it's possible
1317 		 * user requests may be waiting on a stopped queue. Start the
1318 		 * queue to flush these to completion.
1319 		 */
1320 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1321 		blk_cleanup_queue(dev->ctrl.admin_q);
1322 		blk_mq_free_tag_set(&dev->admin_tagset);
1323 	}
1324 }
1325 
1326 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1327 {
1328 	if (!dev->ctrl.admin_q) {
1329 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1330 		dev->admin_tagset.nr_hw_queues = 1;
1331 
1332 		/*
1333 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1334 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1335 		 */
1336 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1337 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1338 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1339 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1340 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1341 		dev->admin_tagset.driver_data = dev;
1342 
1343 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1344 			return -ENOMEM;
1345 
1346 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1347 		if (IS_ERR(dev->ctrl.admin_q)) {
1348 			blk_mq_free_tag_set(&dev->admin_tagset);
1349 			return -ENOMEM;
1350 		}
1351 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1352 			nvme_dev_remove_admin(dev);
1353 			dev->ctrl.admin_q = NULL;
1354 			return -ENODEV;
1355 		}
1356 	} else
1357 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1358 
1359 	return 0;
1360 }
1361 
1362 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1363 {
1364 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1365 }
1366 
1367 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1368 {
1369 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1370 
1371 	if (size <= dev->bar_mapped_size)
1372 		return 0;
1373 	if (size > pci_resource_len(pdev, 0))
1374 		return -ENOMEM;
1375 	if (dev->bar)
1376 		iounmap(dev->bar);
1377 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1378 	if (!dev->bar) {
1379 		dev->bar_mapped_size = 0;
1380 		return -ENOMEM;
1381 	}
1382 	dev->bar_mapped_size = size;
1383 	dev->dbs = dev->bar + NVME_REG_DBS;
1384 
1385 	return 0;
1386 }
1387 
1388 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1389 {
1390 	int result;
1391 	u32 aqa;
1392 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1393 	struct nvme_queue *nvmeq;
1394 
1395 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1396 	if (result < 0)
1397 		return result;
1398 
1399 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1400 						NVME_CAP_NSSRC(cap) : 0;
1401 
1402 	if (dev->subsystem &&
1403 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1404 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1405 
1406 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1407 	if (result < 0)
1408 		return result;
1409 
1410 	nvmeq = dev->queues[0];
1411 	if (!nvmeq) {
1412 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1413 					dev_to_node(dev->dev));
1414 		if (!nvmeq)
1415 			return -ENOMEM;
1416 	}
1417 
1418 	aqa = nvmeq->q_depth - 1;
1419 	aqa |= aqa << 16;
1420 
1421 	writel(aqa, dev->bar + NVME_REG_AQA);
1422 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1423 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1424 
1425 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1426 	if (result)
1427 		return result;
1428 
1429 	nvmeq->cq_vector = 0;
1430 	result = queue_request_irq(nvmeq);
1431 	if (result) {
1432 		nvmeq->cq_vector = -1;
1433 		return result;
1434 	}
1435 
1436 	return result;
1437 }
1438 
1439 static int nvme_create_io_queues(struct nvme_dev *dev)
1440 {
1441 	unsigned i, max;
1442 	int ret = 0;
1443 
1444 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1445 		/* vector == qid - 1, match nvme_create_queue */
1446 		if (!nvme_alloc_queue(dev, i, dev->q_depth,
1447 		     pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1448 			ret = -ENOMEM;
1449 			break;
1450 		}
1451 	}
1452 
1453 	max = min(dev->max_qid, dev->queue_count - 1);
1454 	for (i = dev->online_queues; i <= max; i++) {
1455 		ret = nvme_create_queue(dev->queues[i], i);
1456 		if (ret)
1457 			break;
1458 	}
1459 
1460 	/*
1461 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1462 	 * than the desired aount of queues, and even a controller without
1463 	 * I/O queues an still be used to issue admin commands.  This might
1464 	 * be useful to upgrade a buggy firmware for example.
1465 	 */
1466 	return ret >= 0 ? 0 : ret;
1467 }
1468 
1469 static ssize_t nvme_cmb_show(struct device *dev,
1470 			     struct device_attribute *attr,
1471 			     char *buf)
1472 {
1473 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1474 
1475 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1476 		       ndev->cmbloc, ndev->cmbsz);
1477 }
1478 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1479 
1480 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1481 {
1482 	u64 szu, size, offset;
1483 	resource_size_t bar_size;
1484 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1485 	void __iomem *cmb;
1486 	dma_addr_t dma_addr;
1487 
1488 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1489 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1490 		return NULL;
1491 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1492 
1493 	if (!use_cmb_sqes)
1494 		return NULL;
1495 
1496 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1497 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1498 	offset = szu * NVME_CMB_OFST(dev->cmbloc);
1499 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1500 
1501 	if (offset > bar_size)
1502 		return NULL;
1503 
1504 	/*
1505 	 * Controllers may support a CMB size larger than their BAR,
1506 	 * for example, due to being behind a bridge. Reduce the CMB to
1507 	 * the reported size of the BAR
1508 	 */
1509 	if (size > bar_size - offset)
1510 		size = bar_size - offset;
1511 
1512 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1513 	cmb = ioremap_wc(dma_addr, size);
1514 	if (!cmb)
1515 		return NULL;
1516 
1517 	dev->cmb_dma_addr = dma_addr;
1518 	dev->cmb_size = size;
1519 	return cmb;
1520 }
1521 
1522 static inline void nvme_release_cmb(struct nvme_dev *dev)
1523 {
1524 	if (dev->cmb) {
1525 		iounmap(dev->cmb);
1526 		dev->cmb = NULL;
1527 		if (dev->cmbsz) {
1528 			sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1529 						     &dev_attr_cmb.attr, NULL);
1530 			dev->cmbsz = 0;
1531 		}
1532 	}
1533 }
1534 
1535 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1536 {
1537 	size_t len = dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs);
1538 	struct nvme_command c;
1539 	u64 dma_addr;
1540 	int ret;
1541 
1542 	dma_addr = dma_map_single(dev->dev, dev->host_mem_descs, len,
1543 			DMA_TO_DEVICE);
1544 	if (dma_mapping_error(dev->dev, dma_addr))
1545 		return -ENOMEM;
1546 
1547 	memset(&c, 0, sizeof(c));
1548 	c.features.opcode	= nvme_admin_set_features;
1549 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1550 	c.features.dword11	= cpu_to_le32(bits);
1551 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >>
1552 					      ilog2(dev->ctrl.page_size));
1553 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1554 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1555 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1556 
1557 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1558 	if (ret) {
1559 		dev_warn(dev->ctrl.device,
1560 			 "failed to set host mem (err %d, flags %#x).\n",
1561 			 ret, bits);
1562 	}
1563 	dma_unmap_single(dev->dev, dma_addr, len, DMA_TO_DEVICE);
1564 	return ret;
1565 }
1566 
1567 static void nvme_free_host_mem(struct nvme_dev *dev)
1568 {
1569 	int i;
1570 
1571 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1572 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1573 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1574 
1575 		dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1576 				le64_to_cpu(desc->addr));
1577 	}
1578 
1579 	kfree(dev->host_mem_desc_bufs);
1580 	dev->host_mem_desc_bufs = NULL;
1581 	kfree(dev->host_mem_descs);
1582 	dev->host_mem_descs = NULL;
1583 }
1584 
1585 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1586 {
1587 	struct nvme_host_mem_buf_desc *descs;
1588 	u32 chunk_size, max_entries, i = 0;
1589 	void **bufs;
1590 	u64 size, tmp;
1591 
1592 	/* start big and work our way down */
1593 	chunk_size = min(preferred, (u64)PAGE_SIZE << MAX_ORDER);
1594 retry:
1595 	tmp = (preferred + chunk_size - 1);
1596 	do_div(tmp, chunk_size);
1597 	max_entries = tmp;
1598 	descs = kcalloc(max_entries, sizeof(*descs), GFP_KERNEL);
1599 	if (!descs)
1600 		goto out;
1601 
1602 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1603 	if (!bufs)
1604 		goto out_free_descs;
1605 
1606 	for (size = 0; size < preferred; size += chunk_size) {
1607 		u32 len = min_t(u64, chunk_size, preferred - size);
1608 		dma_addr_t dma_addr;
1609 
1610 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1611 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1612 		if (!bufs[i])
1613 			break;
1614 
1615 		descs[i].addr = cpu_to_le64(dma_addr);
1616 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1617 		i++;
1618 	}
1619 
1620 	if (!size || (min && size < min)) {
1621 		dev_warn(dev->ctrl.device,
1622 			"failed to allocate host memory buffer.\n");
1623 		goto out_free_bufs;
1624 	}
1625 
1626 	dev_info(dev->ctrl.device,
1627 		"allocated %lld MiB host memory buffer.\n",
1628 		size >> ilog2(SZ_1M));
1629 	dev->nr_host_mem_descs = i;
1630 	dev->host_mem_size = size;
1631 	dev->host_mem_descs = descs;
1632 	dev->host_mem_desc_bufs = bufs;
1633 	return 0;
1634 
1635 out_free_bufs:
1636 	while (--i >= 0) {
1637 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1638 
1639 		dma_free_coherent(dev->dev, size, bufs[i],
1640 				le64_to_cpu(descs[i].addr));
1641 	}
1642 
1643 	kfree(bufs);
1644 out_free_descs:
1645 	kfree(descs);
1646 out:
1647 	/* try a smaller chunk size if we failed early */
1648 	if (chunk_size >= PAGE_SIZE * 2 && (i == 0 || size < min)) {
1649 		chunk_size /= 2;
1650 		goto retry;
1651 	}
1652 	dev->host_mem_descs = NULL;
1653 	return -ENOMEM;
1654 }
1655 
1656 static void nvme_setup_host_mem(struct nvme_dev *dev)
1657 {
1658 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1659 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1660 	u64 min = (u64)dev->ctrl.hmmin * 4096;
1661 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
1662 
1663 	preferred = min(preferred, max);
1664 	if (min > max) {
1665 		dev_warn(dev->ctrl.device,
1666 			"min host memory (%lld MiB) above limit (%d MiB).\n",
1667 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
1668 		nvme_free_host_mem(dev);
1669 		return;
1670 	}
1671 
1672 	/*
1673 	 * If we already have a buffer allocated check if we can reuse it.
1674 	 */
1675 	if (dev->host_mem_descs) {
1676 		if (dev->host_mem_size >= min)
1677 			enable_bits |= NVME_HOST_MEM_RETURN;
1678 		else
1679 			nvme_free_host_mem(dev);
1680 	}
1681 
1682 	if (!dev->host_mem_descs) {
1683 		if (nvme_alloc_host_mem(dev, min, preferred))
1684 			return;
1685 	}
1686 
1687 	if (nvme_set_host_mem(dev, enable_bits))
1688 		nvme_free_host_mem(dev);
1689 }
1690 
1691 static int nvme_setup_io_queues(struct nvme_dev *dev)
1692 {
1693 	struct nvme_queue *adminq = dev->queues[0];
1694 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1695 	int result, nr_io_queues;
1696 	unsigned long size;
1697 
1698 	nr_io_queues = num_present_cpus();
1699 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1700 	if (result < 0)
1701 		return result;
1702 
1703 	if (nr_io_queues == 0)
1704 		return 0;
1705 
1706 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1707 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1708 				sizeof(struct nvme_command));
1709 		if (result > 0)
1710 			dev->q_depth = result;
1711 		else
1712 			nvme_release_cmb(dev);
1713 	}
1714 
1715 	do {
1716 		size = db_bar_size(dev, nr_io_queues);
1717 		result = nvme_remap_bar(dev, size);
1718 		if (!result)
1719 			break;
1720 		if (!--nr_io_queues)
1721 			return -ENOMEM;
1722 	} while (1);
1723 	adminq->q_db = dev->dbs;
1724 
1725 	/* Deregister the admin queue's interrupt */
1726 	pci_free_irq(pdev, 0, adminq);
1727 
1728 	/*
1729 	 * If we enable msix early due to not intx, disable it again before
1730 	 * setting up the full range we need.
1731 	 */
1732 	pci_free_irq_vectors(pdev);
1733 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1734 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1735 	if (nr_io_queues <= 0)
1736 		return -EIO;
1737 	dev->max_qid = nr_io_queues;
1738 
1739 	/*
1740 	 * Should investigate if there's a performance win from allocating
1741 	 * more queues than interrupt vectors; it might allow the submission
1742 	 * path to scale better, even if the receive path is limited by the
1743 	 * number of interrupts.
1744 	 */
1745 
1746 	result = queue_request_irq(adminq);
1747 	if (result) {
1748 		adminq->cq_vector = -1;
1749 		return result;
1750 	}
1751 	return nvme_create_io_queues(dev);
1752 }
1753 
1754 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1755 {
1756 	struct nvme_queue *nvmeq = req->end_io_data;
1757 
1758 	blk_mq_free_request(req);
1759 	complete(&nvmeq->dev->ioq_wait);
1760 }
1761 
1762 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1763 {
1764 	struct nvme_queue *nvmeq = req->end_io_data;
1765 
1766 	if (!error) {
1767 		unsigned long flags;
1768 
1769 		/*
1770 		 * We might be called with the AQ q_lock held
1771 		 * and the I/O queue q_lock should always
1772 		 * nest inside the AQ one.
1773 		 */
1774 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1775 					SINGLE_DEPTH_NESTING);
1776 		nvme_process_cq(nvmeq);
1777 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1778 	}
1779 
1780 	nvme_del_queue_end(req, error);
1781 }
1782 
1783 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1784 {
1785 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1786 	struct request *req;
1787 	struct nvme_command cmd;
1788 
1789 	memset(&cmd, 0, sizeof(cmd));
1790 	cmd.delete_queue.opcode = opcode;
1791 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1792 
1793 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1794 	if (IS_ERR(req))
1795 		return PTR_ERR(req);
1796 
1797 	req->timeout = ADMIN_TIMEOUT;
1798 	req->end_io_data = nvmeq;
1799 
1800 	blk_execute_rq_nowait(q, NULL, req, false,
1801 			opcode == nvme_admin_delete_cq ?
1802 				nvme_del_cq_end : nvme_del_queue_end);
1803 	return 0;
1804 }
1805 
1806 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1807 {
1808 	int pass;
1809 	unsigned long timeout;
1810 	u8 opcode = nvme_admin_delete_sq;
1811 
1812 	for (pass = 0; pass < 2; pass++) {
1813 		int sent = 0, i = queues;
1814 
1815 		reinit_completion(&dev->ioq_wait);
1816  retry:
1817 		timeout = ADMIN_TIMEOUT;
1818 		for (; i > 0; i--, sent++)
1819 			if (nvme_delete_queue(dev->queues[i], opcode))
1820 				break;
1821 
1822 		while (sent--) {
1823 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1824 			if (timeout == 0)
1825 				return;
1826 			if (i)
1827 				goto retry;
1828 		}
1829 		opcode = nvme_admin_delete_cq;
1830 	}
1831 }
1832 
1833 /*
1834  * Return: error value if an error occurred setting up the queues or calling
1835  * Identify Device.  0 if these succeeded, even if adding some of the
1836  * namespaces failed.  At the moment, these failures are silent.  TBD which
1837  * failures should be reported.
1838  */
1839 static int nvme_dev_add(struct nvme_dev *dev)
1840 {
1841 	if (!dev->ctrl.tagset) {
1842 		dev->tagset.ops = &nvme_mq_ops;
1843 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1844 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1845 		dev->tagset.numa_node = dev_to_node(dev->dev);
1846 		dev->tagset.queue_depth =
1847 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1848 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1849 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1850 		dev->tagset.driver_data = dev;
1851 
1852 		if (blk_mq_alloc_tag_set(&dev->tagset))
1853 			return 0;
1854 		dev->ctrl.tagset = &dev->tagset;
1855 
1856 		nvme_dbbuf_set(dev);
1857 	} else {
1858 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1859 
1860 		/* Free previously allocated queues that are no longer usable */
1861 		nvme_free_queues(dev, dev->online_queues);
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static int nvme_pci_enable(struct nvme_dev *dev)
1868 {
1869 	u64 cap;
1870 	int result = -ENOMEM;
1871 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1872 
1873 	if (pci_enable_device_mem(pdev))
1874 		return result;
1875 
1876 	pci_set_master(pdev);
1877 
1878 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1879 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1880 		goto disable;
1881 
1882 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1883 		result = -ENODEV;
1884 		goto disable;
1885 	}
1886 
1887 	/*
1888 	 * Some devices and/or platforms don't advertise or work with INTx
1889 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1890 	 * adjust this later.
1891 	 */
1892 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1893 	if (result < 0)
1894 		return result;
1895 
1896 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1897 
1898 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1899 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1900 	dev->dbs = dev->bar + 4096;
1901 
1902 	/*
1903 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1904 	 * some MacBook7,1 to avoid controller resets and data loss.
1905 	 */
1906 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1907 		dev->q_depth = 2;
1908 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
1909 			"set queue depth=%u to work around controller resets\n",
1910 			dev->q_depth);
1911 	}
1912 
1913 	/*
1914 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only
1915 	 * populate sysfs if a CMB is implemented. Note that we add the
1916 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1917 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass
1918 	 * NULL as final argument to sysfs_add_file_to_group.
1919 	 */
1920 
1921 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1922 		dev->cmb = nvme_map_cmb(dev);
1923 
1924 		if (dev->cmbsz) {
1925 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1926 						    &dev_attr_cmb.attr, NULL))
1927 				dev_warn(dev->ctrl.device,
1928 					 "failed to add sysfs attribute for CMB\n");
1929 		}
1930 	}
1931 
1932 	pci_enable_pcie_error_reporting(pdev);
1933 	pci_save_state(pdev);
1934 	return 0;
1935 
1936  disable:
1937 	pci_disable_device(pdev);
1938 	return result;
1939 }
1940 
1941 static void nvme_dev_unmap(struct nvme_dev *dev)
1942 {
1943 	if (dev->bar)
1944 		iounmap(dev->bar);
1945 	pci_release_mem_regions(to_pci_dev(dev->dev));
1946 }
1947 
1948 static void nvme_pci_disable(struct nvme_dev *dev)
1949 {
1950 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1951 
1952 	nvme_release_cmb(dev);
1953 	pci_free_irq_vectors(pdev);
1954 
1955 	if (pci_is_enabled(pdev)) {
1956 		pci_disable_pcie_error_reporting(pdev);
1957 		pci_disable_device(pdev);
1958 	}
1959 }
1960 
1961 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1962 {
1963 	int i, queues;
1964 	bool dead = true;
1965 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1966 
1967 	mutex_lock(&dev->shutdown_lock);
1968 	if (pci_is_enabled(pdev)) {
1969 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
1970 
1971 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
1972 		    dev->ctrl.state == NVME_CTRL_RESETTING)
1973 			nvme_start_freeze(&dev->ctrl);
1974 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1975 			pdev->error_state  != pci_channel_io_normal);
1976 	}
1977 
1978 	/*
1979 	 * Give the controller a chance to complete all entered requests if
1980 	 * doing a safe shutdown.
1981 	 */
1982 	if (!dead) {
1983 		if (shutdown)
1984 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1985 
1986 		/*
1987 		 * If the controller is still alive tell it to stop using the
1988 		 * host memory buffer.  In theory the shutdown / reset should
1989 		 * make sure that it doesn't access the host memoery anymore,
1990 		 * but I'd rather be safe than sorry..
1991 		 */
1992 		if (dev->host_mem_descs)
1993 			nvme_set_host_mem(dev, 0);
1994 
1995 	}
1996 	nvme_stop_queues(&dev->ctrl);
1997 
1998 	queues = dev->online_queues - 1;
1999 	for (i = dev->queue_count - 1; i > 0; i--)
2000 		nvme_suspend_queue(dev->queues[i]);
2001 
2002 	if (dead) {
2003 		/* A device might become IO incapable very soon during
2004 		 * probe, before the admin queue is configured. Thus,
2005 		 * queue_count can be 0 here.
2006 		 */
2007 		if (dev->queue_count)
2008 			nvme_suspend_queue(dev->queues[0]);
2009 	} else {
2010 		nvme_disable_io_queues(dev, queues);
2011 		nvme_disable_admin_queue(dev, shutdown);
2012 	}
2013 	nvme_pci_disable(dev);
2014 
2015 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2016 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2017 
2018 	/*
2019 	 * The driver will not be starting up queues again if shutting down so
2020 	 * must flush all entered requests to their failed completion to avoid
2021 	 * deadlocking blk-mq hot-cpu notifier.
2022 	 */
2023 	if (shutdown)
2024 		nvme_start_queues(&dev->ctrl);
2025 	mutex_unlock(&dev->shutdown_lock);
2026 }
2027 
2028 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2029 {
2030 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2031 						PAGE_SIZE, PAGE_SIZE, 0);
2032 	if (!dev->prp_page_pool)
2033 		return -ENOMEM;
2034 
2035 	/* Optimisation for I/Os between 4k and 128k */
2036 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2037 						256, 256, 0);
2038 	if (!dev->prp_small_pool) {
2039 		dma_pool_destroy(dev->prp_page_pool);
2040 		return -ENOMEM;
2041 	}
2042 	return 0;
2043 }
2044 
2045 static void nvme_release_prp_pools(struct nvme_dev *dev)
2046 {
2047 	dma_pool_destroy(dev->prp_page_pool);
2048 	dma_pool_destroy(dev->prp_small_pool);
2049 }
2050 
2051 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2052 {
2053 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2054 
2055 	nvme_dbbuf_dma_free(dev);
2056 	put_device(dev->dev);
2057 	if (dev->tagset.tags)
2058 		blk_mq_free_tag_set(&dev->tagset);
2059 	if (dev->ctrl.admin_q)
2060 		blk_put_queue(dev->ctrl.admin_q);
2061 	kfree(dev->queues);
2062 	free_opal_dev(dev->ctrl.opal_dev);
2063 	kfree(dev);
2064 }
2065 
2066 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2067 {
2068 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2069 
2070 	kref_get(&dev->ctrl.kref);
2071 	nvme_dev_disable(dev, false);
2072 	if (!schedule_work(&dev->remove_work))
2073 		nvme_put_ctrl(&dev->ctrl);
2074 }
2075 
2076 static void nvme_reset_work(struct work_struct *work)
2077 {
2078 	struct nvme_dev *dev =
2079 		container_of(work, struct nvme_dev, ctrl.reset_work);
2080 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2081 	int result = -ENODEV;
2082 
2083 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2084 		goto out;
2085 
2086 	/*
2087 	 * If we're called to reset a live controller first shut it down before
2088 	 * moving on.
2089 	 */
2090 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2091 		nvme_dev_disable(dev, false);
2092 
2093 	result = nvme_pci_enable(dev);
2094 	if (result)
2095 		goto out;
2096 
2097 	result = nvme_configure_admin_queue(dev);
2098 	if (result)
2099 		goto out;
2100 
2101 	nvme_init_queue(dev->queues[0], 0);
2102 	result = nvme_alloc_admin_tags(dev);
2103 	if (result)
2104 		goto out;
2105 
2106 	result = nvme_init_identify(&dev->ctrl);
2107 	if (result)
2108 		goto out;
2109 
2110 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2111 		if (!dev->ctrl.opal_dev)
2112 			dev->ctrl.opal_dev =
2113 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2114 		else if (was_suspend)
2115 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2116 	} else {
2117 		free_opal_dev(dev->ctrl.opal_dev);
2118 		dev->ctrl.opal_dev = NULL;
2119 	}
2120 
2121 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2122 		result = nvme_dbbuf_dma_alloc(dev);
2123 		if (result)
2124 			dev_warn(dev->dev,
2125 				 "unable to allocate dma for dbbuf\n");
2126 	}
2127 
2128 	if (dev->ctrl.hmpre)
2129 		nvme_setup_host_mem(dev);
2130 
2131 	result = nvme_setup_io_queues(dev);
2132 	if (result)
2133 		goto out;
2134 
2135 	/*
2136 	 * A controller that can not execute IO typically requires user
2137 	 * intervention to correct. For such degraded controllers, the driver
2138 	 * should not submit commands the user did not request, so skip
2139 	 * registering for asynchronous event notification on this condition.
2140 	 */
2141 	if (dev->online_queues > 1)
2142 		nvme_queue_async_events(&dev->ctrl);
2143 
2144 	/*
2145 	 * Keep the controller around but remove all namespaces if we don't have
2146 	 * any working I/O queue.
2147 	 */
2148 	if (dev->online_queues < 2) {
2149 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2150 		nvme_kill_queues(&dev->ctrl);
2151 		nvme_remove_namespaces(&dev->ctrl);
2152 	} else {
2153 		nvme_start_queues(&dev->ctrl);
2154 		nvme_wait_freeze(&dev->ctrl);
2155 		nvme_dev_add(dev);
2156 		nvme_unfreeze(&dev->ctrl);
2157 	}
2158 
2159 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2160 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2161 		goto out;
2162 	}
2163 
2164 	if (dev->online_queues > 1)
2165 		nvme_queue_scan(&dev->ctrl);
2166 	return;
2167 
2168  out:
2169 	nvme_remove_dead_ctrl(dev, result);
2170 }
2171 
2172 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2173 {
2174 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2175 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2176 
2177 	nvme_kill_queues(&dev->ctrl);
2178 	if (pci_get_drvdata(pdev))
2179 		device_release_driver(&pdev->dev);
2180 	nvme_put_ctrl(&dev->ctrl);
2181 }
2182 
2183 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2184 {
2185 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2186 	return 0;
2187 }
2188 
2189 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2190 {
2191 	writel(val, to_nvme_dev(ctrl)->bar + off);
2192 	return 0;
2193 }
2194 
2195 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2196 {
2197 	*val = readq(to_nvme_dev(ctrl)->bar + off);
2198 	return 0;
2199 }
2200 
2201 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2202 	.name			= "pcie",
2203 	.module			= THIS_MODULE,
2204 	.flags			= NVME_F_METADATA_SUPPORTED,
2205 	.reg_read32		= nvme_pci_reg_read32,
2206 	.reg_write32		= nvme_pci_reg_write32,
2207 	.reg_read64		= nvme_pci_reg_read64,
2208 	.free_ctrl		= nvme_pci_free_ctrl,
2209 	.submit_async_event	= nvme_pci_submit_async_event,
2210 };
2211 
2212 static int nvme_dev_map(struct nvme_dev *dev)
2213 {
2214 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2215 
2216 	if (pci_request_mem_regions(pdev, "nvme"))
2217 		return -ENODEV;
2218 
2219 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2220 		goto release;
2221 
2222 	return 0;
2223   release:
2224 	pci_release_mem_regions(pdev);
2225 	return -ENODEV;
2226 }
2227 
2228 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2229 {
2230 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2231 		/*
2232 		 * Several Samsung devices seem to drop off the PCIe bus
2233 		 * randomly when APST is on and uses the deepest sleep state.
2234 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2235 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2236 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2237 		 * laptops.
2238 		 */
2239 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2240 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2241 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2242 			return NVME_QUIRK_NO_DEEPEST_PS;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2249 {
2250 	int node, result = -ENOMEM;
2251 	struct nvme_dev *dev;
2252 	unsigned long quirks = id->driver_data;
2253 
2254 	node = dev_to_node(&pdev->dev);
2255 	if (node == NUMA_NO_NODE)
2256 		set_dev_node(&pdev->dev, first_memory_node);
2257 
2258 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2259 	if (!dev)
2260 		return -ENOMEM;
2261 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2262 							GFP_KERNEL, node);
2263 	if (!dev->queues)
2264 		goto free;
2265 
2266 	dev->dev = get_device(&pdev->dev);
2267 	pci_set_drvdata(pdev, dev);
2268 
2269 	result = nvme_dev_map(dev);
2270 	if (result)
2271 		goto free;
2272 
2273 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2274 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2275 	mutex_init(&dev->shutdown_lock);
2276 	init_completion(&dev->ioq_wait);
2277 
2278 	result = nvme_setup_prp_pools(dev);
2279 	if (result)
2280 		goto put_pci;
2281 
2282 	quirks |= check_dell_samsung_bug(pdev);
2283 
2284 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2285 			quirks);
2286 	if (result)
2287 		goto release_pools;
2288 
2289 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2290 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2291 
2292 	queue_work(nvme_wq, &dev->ctrl.reset_work);
2293 	return 0;
2294 
2295  release_pools:
2296 	nvme_release_prp_pools(dev);
2297  put_pci:
2298 	put_device(dev->dev);
2299 	nvme_dev_unmap(dev);
2300  free:
2301 	kfree(dev->queues);
2302 	kfree(dev);
2303 	return result;
2304 }
2305 
2306 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2307 {
2308 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2309 
2310 	if (prepare)
2311 		nvme_dev_disable(dev, false);
2312 	else
2313 		nvme_reset_ctrl(&dev->ctrl);
2314 }
2315 
2316 static void nvme_shutdown(struct pci_dev *pdev)
2317 {
2318 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2319 	nvme_dev_disable(dev, true);
2320 }
2321 
2322 /*
2323  * The driver's remove may be called on a device in a partially initialized
2324  * state. This function must not have any dependencies on the device state in
2325  * order to proceed.
2326  */
2327 static void nvme_remove(struct pci_dev *pdev)
2328 {
2329 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2330 
2331 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2332 
2333 	cancel_work_sync(&dev->ctrl.reset_work);
2334 	pci_set_drvdata(pdev, NULL);
2335 
2336 	if (!pci_device_is_present(pdev)) {
2337 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2338 		nvme_dev_disable(dev, false);
2339 	}
2340 
2341 	flush_work(&dev->ctrl.reset_work);
2342 	nvme_uninit_ctrl(&dev->ctrl);
2343 	nvme_dev_disable(dev, true);
2344 	nvme_free_host_mem(dev);
2345 	nvme_dev_remove_admin(dev);
2346 	nvme_free_queues(dev, 0);
2347 	nvme_release_prp_pools(dev);
2348 	nvme_dev_unmap(dev);
2349 	nvme_put_ctrl(&dev->ctrl);
2350 }
2351 
2352 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2353 {
2354 	int ret = 0;
2355 
2356 	if (numvfs == 0) {
2357 		if (pci_vfs_assigned(pdev)) {
2358 			dev_warn(&pdev->dev,
2359 				"Cannot disable SR-IOV VFs while assigned\n");
2360 			return -EPERM;
2361 		}
2362 		pci_disable_sriov(pdev);
2363 		return 0;
2364 	}
2365 
2366 	ret = pci_enable_sriov(pdev, numvfs);
2367 	return ret ? ret : numvfs;
2368 }
2369 
2370 #ifdef CONFIG_PM_SLEEP
2371 static int nvme_suspend(struct device *dev)
2372 {
2373 	struct pci_dev *pdev = to_pci_dev(dev);
2374 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2375 
2376 	nvme_dev_disable(ndev, true);
2377 	return 0;
2378 }
2379 
2380 static int nvme_resume(struct device *dev)
2381 {
2382 	struct pci_dev *pdev = to_pci_dev(dev);
2383 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2384 
2385 	nvme_reset_ctrl(&ndev->ctrl);
2386 	return 0;
2387 }
2388 #endif
2389 
2390 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2391 
2392 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2393 						pci_channel_state_t state)
2394 {
2395 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2396 
2397 	/*
2398 	 * A frozen channel requires a reset. When detected, this method will
2399 	 * shutdown the controller to quiesce. The controller will be restarted
2400 	 * after the slot reset through driver's slot_reset callback.
2401 	 */
2402 	switch (state) {
2403 	case pci_channel_io_normal:
2404 		return PCI_ERS_RESULT_CAN_RECOVER;
2405 	case pci_channel_io_frozen:
2406 		dev_warn(dev->ctrl.device,
2407 			"frozen state error detected, reset controller\n");
2408 		nvme_dev_disable(dev, false);
2409 		return PCI_ERS_RESULT_NEED_RESET;
2410 	case pci_channel_io_perm_failure:
2411 		dev_warn(dev->ctrl.device,
2412 			"failure state error detected, request disconnect\n");
2413 		return PCI_ERS_RESULT_DISCONNECT;
2414 	}
2415 	return PCI_ERS_RESULT_NEED_RESET;
2416 }
2417 
2418 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2419 {
2420 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2421 
2422 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2423 	pci_restore_state(pdev);
2424 	nvme_reset_ctrl(&dev->ctrl);
2425 	return PCI_ERS_RESULT_RECOVERED;
2426 }
2427 
2428 static void nvme_error_resume(struct pci_dev *pdev)
2429 {
2430 	pci_cleanup_aer_uncorrect_error_status(pdev);
2431 }
2432 
2433 static const struct pci_error_handlers nvme_err_handler = {
2434 	.error_detected	= nvme_error_detected,
2435 	.slot_reset	= nvme_slot_reset,
2436 	.resume		= nvme_error_resume,
2437 	.reset_notify	= nvme_reset_notify,
2438 };
2439 
2440 static const struct pci_device_id nvme_id_table[] = {
2441 	{ PCI_VDEVICE(INTEL, 0x0953),
2442 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2443 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2444 	{ PCI_VDEVICE(INTEL, 0x0a53),
2445 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2446 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2447 	{ PCI_VDEVICE(INTEL, 0x0a54),
2448 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2449 				NVME_QUIRK_DEALLOCATE_ZEROES, },
2450 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
2451 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS },
2452 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2453 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2454 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
2455 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2456 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
2457 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2458 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2459 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2460 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2461 	{ 0, }
2462 };
2463 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2464 
2465 static struct pci_driver nvme_driver = {
2466 	.name		= "nvme",
2467 	.id_table	= nvme_id_table,
2468 	.probe		= nvme_probe,
2469 	.remove		= nvme_remove,
2470 	.shutdown	= nvme_shutdown,
2471 	.driver		= {
2472 		.pm	= &nvme_dev_pm_ops,
2473 	},
2474 	.sriov_configure = nvme_pci_sriov_configure,
2475 	.err_handler	= &nvme_err_handler,
2476 };
2477 
2478 static int __init nvme_init(void)
2479 {
2480 	return pci_register_driver(&nvme_driver);
2481 }
2482 
2483 static void __exit nvme_exit(void)
2484 {
2485 	pci_unregister_driver(&nvme_driver);
2486 	_nvme_check_size();
2487 }
2488 
2489 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2490 MODULE_LICENSE("GPL");
2491 MODULE_VERSION("1.0");
2492 module_init(nvme_init);
2493 module_exit(nvme_exit);
2494