xref: /linux/drivers/nvme/host/pci.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_META_SEGS 15
47 #define NVME_MAX_NR_ALLOCATIONS	5
48 
49 static int use_threaded_interrupts;
50 module_param(use_threaded_interrupts, int, 0444);
51 
52 static bool use_cmb_sqes = true;
53 module_param(use_cmb_sqes, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
55 
56 static unsigned int max_host_mem_size_mb = 128;
57 module_param(max_host_mem_size_mb, uint, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb,
59 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
60 
61 static unsigned int sgl_threshold = SZ_32K;
62 module_param(sgl_threshold, uint, 0644);
63 MODULE_PARM_DESC(sgl_threshold,
64 		"Use SGLs when average request segment size is larger or equal to "
65 		"this size. Use 0 to disable SGLs.");
66 
67 #define NVME_PCI_MIN_QUEUE_SIZE 2
68 #define NVME_PCI_MAX_QUEUE_SIZE 4095
69 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
70 static const struct kernel_param_ops io_queue_depth_ops = {
71 	.set = io_queue_depth_set,
72 	.get = param_get_uint,
73 };
74 
75 static unsigned int io_queue_depth = 1024;
76 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
77 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
78 
79 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
80 {
81 	unsigned int n;
82 	int ret;
83 
84 	ret = kstrtouint(val, 10, &n);
85 	if (ret != 0 || n > num_possible_cpus())
86 		return -EINVAL;
87 	return param_set_uint(val, kp);
88 }
89 
90 static const struct kernel_param_ops io_queue_count_ops = {
91 	.set = io_queue_count_set,
92 	.get = param_get_uint,
93 };
94 
95 static unsigned int write_queues;
96 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
97 MODULE_PARM_DESC(write_queues,
98 	"Number of queues to use for writes. If not set, reads and writes "
99 	"will share a queue set.");
100 
101 static unsigned int poll_queues;
102 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
103 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
104 
105 static bool noacpi;
106 module_param(noacpi, bool, 0444);
107 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
108 
109 struct nvme_dev;
110 struct nvme_queue;
111 
112 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
113 static void nvme_delete_io_queues(struct nvme_dev *dev);
114 static void nvme_update_attrs(struct nvme_dev *dev);
115 
116 /*
117  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
118  */
119 struct nvme_dev {
120 	struct nvme_queue *queues;
121 	struct blk_mq_tag_set tagset;
122 	struct blk_mq_tag_set admin_tagset;
123 	u32 __iomem *dbs;
124 	struct device *dev;
125 	struct dma_pool *prp_page_pool;
126 	struct dma_pool *prp_small_pool;
127 	unsigned online_queues;
128 	unsigned max_qid;
129 	unsigned io_queues[HCTX_MAX_TYPES];
130 	unsigned int num_vecs;
131 	u32 q_depth;
132 	int io_sqes;
133 	u32 db_stride;
134 	void __iomem *bar;
135 	unsigned long bar_mapped_size;
136 	struct mutex shutdown_lock;
137 	bool subsystem;
138 	u64 cmb_size;
139 	bool cmb_use_sqes;
140 	u32 cmbsz;
141 	u32 cmbloc;
142 	struct nvme_ctrl ctrl;
143 	u32 last_ps;
144 	bool hmb;
145 	struct sg_table *hmb_sgt;
146 
147 	mempool_t *iod_mempool;
148 	mempool_t *iod_meta_mempool;
149 
150 	/* shadow doorbell buffer support: */
151 	__le32 *dbbuf_dbs;
152 	dma_addr_t dbbuf_dbs_dma_addr;
153 	__le32 *dbbuf_eis;
154 	dma_addr_t dbbuf_eis_dma_addr;
155 
156 	/* host memory buffer support: */
157 	u64 host_mem_size;
158 	u32 nr_host_mem_descs;
159 	u32 host_mem_descs_size;
160 	dma_addr_t host_mem_descs_dma;
161 	struct nvme_host_mem_buf_desc *host_mem_descs;
162 	void **host_mem_desc_bufs;
163 	unsigned int nr_allocated_queues;
164 	unsigned int nr_write_queues;
165 	unsigned int nr_poll_queues;
166 };
167 
168 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
169 {
170 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
171 			NVME_PCI_MAX_QUEUE_SIZE);
172 }
173 
174 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
175 {
176 	return qid * 2 * stride;
177 }
178 
179 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
180 {
181 	return (qid * 2 + 1) * stride;
182 }
183 
184 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
185 {
186 	return container_of(ctrl, struct nvme_dev, ctrl);
187 }
188 
189 /*
190  * An NVM Express queue.  Each device has at least two (one for admin
191  * commands and one for I/O commands).
192  */
193 struct nvme_queue {
194 	struct nvme_dev *dev;
195 	spinlock_t sq_lock;
196 	void *sq_cmds;
197 	 /* only used for poll queues: */
198 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
199 	struct nvme_completion *cqes;
200 	dma_addr_t sq_dma_addr;
201 	dma_addr_t cq_dma_addr;
202 	u32 __iomem *q_db;
203 	u32 q_depth;
204 	u16 cq_vector;
205 	u16 sq_tail;
206 	u16 last_sq_tail;
207 	u16 cq_head;
208 	u16 qid;
209 	u8 cq_phase;
210 	u8 sqes;
211 	unsigned long flags;
212 #define NVMEQ_ENABLED		0
213 #define NVMEQ_SQ_CMB		1
214 #define NVMEQ_DELETE_ERROR	2
215 #define NVMEQ_POLLED		3
216 	__le32 *dbbuf_sq_db;
217 	__le32 *dbbuf_cq_db;
218 	__le32 *dbbuf_sq_ei;
219 	__le32 *dbbuf_cq_ei;
220 	struct completion delete_done;
221 };
222 
223 union nvme_descriptor {
224 	struct nvme_sgl_desc	*sg_list;
225 	__le64			*prp_list;
226 };
227 
228 /*
229  * The nvme_iod describes the data in an I/O.
230  *
231  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
232  * to the actual struct scatterlist.
233  */
234 struct nvme_iod {
235 	struct nvme_request req;
236 	struct nvme_command cmd;
237 	bool aborted;
238 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
239 				   pool in use */
240 	unsigned int dma_len;	/* length of single DMA segment mapping */
241 	dma_addr_t first_dma;
242 	dma_addr_t meta_dma;
243 	struct sg_table sgt;
244 	struct sg_table meta_sgt;
245 	union nvme_descriptor meta_list;
246 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
247 };
248 
249 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
250 {
251 	return dev->nr_allocated_queues * 8 * dev->db_stride;
252 }
253 
254 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
255 {
256 	unsigned int mem_size = nvme_dbbuf_size(dev);
257 
258 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
259 		return;
260 
261 	if (dev->dbbuf_dbs) {
262 		/*
263 		 * Clear the dbbuf memory so the driver doesn't observe stale
264 		 * values from the previous instantiation.
265 		 */
266 		memset(dev->dbbuf_dbs, 0, mem_size);
267 		memset(dev->dbbuf_eis, 0, mem_size);
268 		return;
269 	}
270 
271 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
272 					    &dev->dbbuf_dbs_dma_addr,
273 					    GFP_KERNEL);
274 	if (!dev->dbbuf_dbs)
275 		goto fail;
276 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
277 					    &dev->dbbuf_eis_dma_addr,
278 					    GFP_KERNEL);
279 	if (!dev->dbbuf_eis)
280 		goto fail_free_dbbuf_dbs;
281 	return;
282 
283 fail_free_dbbuf_dbs:
284 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
285 			  dev->dbbuf_dbs_dma_addr);
286 	dev->dbbuf_dbs = NULL;
287 fail:
288 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
289 }
290 
291 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
292 {
293 	unsigned int mem_size = nvme_dbbuf_size(dev);
294 
295 	if (dev->dbbuf_dbs) {
296 		dma_free_coherent(dev->dev, mem_size,
297 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
298 		dev->dbbuf_dbs = NULL;
299 	}
300 	if (dev->dbbuf_eis) {
301 		dma_free_coherent(dev->dev, mem_size,
302 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
303 		dev->dbbuf_eis = NULL;
304 	}
305 }
306 
307 static void nvme_dbbuf_init(struct nvme_dev *dev,
308 			    struct nvme_queue *nvmeq, int qid)
309 {
310 	if (!dev->dbbuf_dbs || !qid)
311 		return;
312 
313 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
314 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
315 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
316 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
317 }
318 
319 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
320 {
321 	if (!nvmeq->qid)
322 		return;
323 
324 	nvmeq->dbbuf_sq_db = NULL;
325 	nvmeq->dbbuf_cq_db = NULL;
326 	nvmeq->dbbuf_sq_ei = NULL;
327 	nvmeq->dbbuf_cq_ei = NULL;
328 }
329 
330 static void nvme_dbbuf_set(struct nvme_dev *dev)
331 {
332 	struct nvme_command c = { };
333 	unsigned int i;
334 
335 	if (!dev->dbbuf_dbs)
336 		return;
337 
338 	c.dbbuf.opcode = nvme_admin_dbbuf;
339 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
340 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
341 
342 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
343 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
344 		/* Free memory and continue on */
345 		nvme_dbbuf_dma_free(dev);
346 
347 		for (i = 1; i <= dev->online_queues; i++)
348 			nvme_dbbuf_free(&dev->queues[i]);
349 	}
350 }
351 
352 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
353 {
354 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
355 }
356 
357 /* Update dbbuf and return true if an MMIO is required */
358 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
359 					      volatile __le32 *dbbuf_ei)
360 {
361 	if (dbbuf_db) {
362 		u16 old_value, event_idx;
363 
364 		/*
365 		 * Ensure that the queue is written before updating
366 		 * the doorbell in memory
367 		 */
368 		wmb();
369 
370 		old_value = le32_to_cpu(*dbbuf_db);
371 		*dbbuf_db = cpu_to_le32(value);
372 
373 		/*
374 		 * Ensure that the doorbell is updated before reading the event
375 		 * index from memory.  The controller needs to provide similar
376 		 * ordering to ensure the envent index is updated before reading
377 		 * the doorbell.
378 		 */
379 		mb();
380 
381 		event_idx = le32_to_cpu(*dbbuf_ei);
382 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
383 			return false;
384 	}
385 
386 	return true;
387 }
388 
389 /*
390  * Will slightly overestimate the number of pages needed.  This is OK
391  * as it only leads to a small amount of wasted memory for the lifetime of
392  * the I/O.
393  */
394 static int nvme_pci_npages_prp(void)
395 {
396 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
397 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
398 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
399 }
400 
401 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
402 				unsigned int hctx_idx)
403 {
404 	struct nvme_dev *dev = to_nvme_dev(data);
405 	struct nvme_queue *nvmeq = &dev->queues[0];
406 
407 	WARN_ON(hctx_idx != 0);
408 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
409 
410 	hctx->driver_data = nvmeq;
411 	return 0;
412 }
413 
414 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
415 			  unsigned int hctx_idx)
416 {
417 	struct nvme_dev *dev = to_nvme_dev(data);
418 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
419 
420 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
421 	hctx->driver_data = nvmeq;
422 	return 0;
423 }
424 
425 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
426 		struct request *req, unsigned int hctx_idx,
427 		unsigned int numa_node)
428 {
429 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
430 
431 	nvme_req(req)->ctrl = set->driver_data;
432 	nvme_req(req)->cmd = &iod->cmd;
433 	return 0;
434 }
435 
436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438 	/* if we have more than 1 vec, admin queue offsets us by 1 */
439 	if (dev->num_vecs > 1)
440 		return 1;
441 
442 	return 0;
443 }
444 
445 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
448 	int i, qoff, offset;
449 
450 	offset = queue_irq_offset(dev);
451 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 		struct blk_mq_queue_map *map = &set->map[i];
453 
454 		map->nr_queues = dev->io_queues[i];
455 		if (!map->nr_queues) {
456 			BUG_ON(i == HCTX_TYPE_DEFAULT);
457 			continue;
458 		}
459 
460 		/*
461 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 		 * affinity), so use the regular blk-mq cpu mapping
463 		 */
464 		map->queue_offset = qoff;
465 		if (i != HCTX_TYPE_POLL && offset)
466 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467 		else
468 			blk_mq_map_queues(map);
469 		qoff += map->nr_queues;
470 		offset += map->nr_queues;
471 	}
472 }
473 
474 /*
475  * Write sq tail if we are asked to, or if the next command would wrap.
476  */
477 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
478 {
479 	if (!write_sq) {
480 		u16 next_tail = nvmeq->sq_tail + 1;
481 
482 		if (next_tail == nvmeq->q_depth)
483 			next_tail = 0;
484 		if (next_tail != nvmeq->last_sq_tail)
485 			return;
486 	}
487 
488 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
489 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
490 		writel(nvmeq->sq_tail, nvmeq->q_db);
491 	nvmeq->last_sq_tail = nvmeq->sq_tail;
492 }
493 
494 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
495 				    struct nvme_command *cmd)
496 {
497 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
498 		absolute_pointer(cmd), sizeof(*cmd));
499 	if (++nvmeq->sq_tail == nvmeq->q_depth)
500 		nvmeq->sq_tail = 0;
501 }
502 
503 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
504 {
505 	struct nvme_queue *nvmeq = hctx->driver_data;
506 
507 	spin_lock(&nvmeq->sq_lock);
508 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
509 		nvme_write_sq_db(nvmeq, true);
510 	spin_unlock(&nvmeq->sq_lock);
511 }
512 
513 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev,
514 					      struct request *req)
515 {
516 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
517 		return false;
518 	return req->nr_integrity_segments > 1 ||
519 		nvme_req(req)->flags & NVME_REQ_USERCMD;
520 }
521 
522 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
523 				     int nseg)
524 {
525 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
526 	unsigned int avg_seg_size;
527 
528 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
529 
530 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
531 		return false;
532 	if (!nvmeq->qid)
533 		return false;
534 	if (nvme_pci_metadata_use_sgls(dev, req))
535 		return true;
536 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
537 		return nvme_req(req)->flags & NVME_REQ_USERCMD;
538 	return true;
539 }
540 
541 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
542 {
543 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
544 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
545 	dma_addr_t dma_addr = iod->first_dma;
546 	int i;
547 
548 	for (i = 0; i < iod->nr_allocations; i++) {
549 		__le64 *prp_list = iod->list[i].prp_list;
550 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
551 
552 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
553 		dma_addr = next_dma_addr;
554 	}
555 }
556 
557 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
558 {
559 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
560 
561 	if (iod->dma_len) {
562 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
563 			       rq_dma_dir(req));
564 		return;
565 	}
566 
567 	WARN_ON_ONCE(!iod->sgt.nents);
568 
569 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
570 
571 	if (iod->nr_allocations == 0)
572 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
573 			      iod->first_dma);
574 	else if (iod->nr_allocations == 1)
575 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
576 			      iod->first_dma);
577 	else
578 		nvme_free_prps(dev, req);
579 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
580 }
581 
582 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
583 {
584 	int i;
585 	struct scatterlist *sg;
586 
587 	for_each_sg(sgl, sg, nents, i) {
588 		dma_addr_t phys = sg_phys(sg);
589 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
590 			"dma_address:%pad dma_length:%d\n",
591 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
592 			sg_dma_len(sg));
593 	}
594 }
595 
596 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
597 		struct request *req, struct nvme_rw_command *cmnd)
598 {
599 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
600 	struct dma_pool *pool;
601 	int length = blk_rq_payload_bytes(req);
602 	struct scatterlist *sg = iod->sgt.sgl;
603 	int dma_len = sg_dma_len(sg);
604 	u64 dma_addr = sg_dma_address(sg);
605 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
606 	__le64 *prp_list;
607 	dma_addr_t prp_dma;
608 	int nprps, i;
609 
610 	length -= (NVME_CTRL_PAGE_SIZE - offset);
611 	if (length <= 0) {
612 		iod->first_dma = 0;
613 		goto done;
614 	}
615 
616 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
617 	if (dma_len) {
618 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
619 	} else {
620 		sg = sg_next(sg);
621 		dma_addr = sg_dma_address(sg);
622 		dma_len = sg_dma_len(sg);
623 	}
624 
625 	if (length <= NVME_CTRL_PAGE_SIZE) {
626 		iod->first_dma = dma_addr;
627 		goto done;
628 	}
629 
630 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
631 	if (nprps <= (256 / 8)) {
632 		pool = dev->prp_small_pool;
633 		iod->nr_allocations = 0;
634 	} else {
635 		pool = dev->prp_page_pool;
636 		iod->nr_allocations = 1;
637 	}
638 
639 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
640 	if (!prp_list) {
641 		iod->nr_allocations = -1;
642 		return BLK_STS_RESOURCE;
643 	}
644 	iod->list[0].prp_list = prp_list;
645 	iod->first_dma = prp_dma;
646 	i = 0;
647 	for (;;) {
648 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
649 			__le64 *old_prp_list = prp_list;
650 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
651 			if (!prp_list)
652 				goto free_prps;
653 			iod->list[iod->nr_allocations++].prp_list = prp_list;
654 			prp_list[0] = old_prp_list[i - 1];
655 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
656 			i = 1;
657 		}
658 		prp_list[i++] = cpu_to_le64(dma_addr);
659 		dma_len -= NVME_CTRL_PAGE_SIZE;
660 		dma_addr += NVME_CTRL_PAGE_SIZE;
661 		length -= NVME_CTRL_PAGE_SIZE;
662 		if (length <= 0)
663 			break;
664 		if (dma_len > 0)
665 			continue;
666 		if (unlikely(dma_len < 0))
667 			goto bad_sgl;
668 		sg = sg_next(sg);
669 		dma_addr = sg_dma_address(sg);
670 		dma_len = sg_dma_len(sg);
671 	}
672 done:
673 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
674 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
675 	return BLK_STS_OK;
676 free_prps:
677 	nvme_free_prps(dev, req);
678 	return BLK_STS_RESOURCE;
679 bad_sgl:
680 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
681 			"Invalid SGL for payload:%d nents:%d\n",
682 			blk_rq_payload_bytes(req), iod->sgt.nents);
683 	return BLK_STS_IOERR;
684 }
685 
686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
687 		struct scatterlist *sg)
688 {
689 	sge->addr = cpu_to_le64(sg_dma_address(sg));
690 	sge->length = cpu_to_le32(sg_dma_len(sg));
691 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
692 }
693 
694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
695 		dma_addr_t dma_addr, int entries)
696 {
697 	sge->addr = cpu_to_le64(dma_addr);
698 	sge->length = cpu_to_le32(entries * sizeof(*sge));
699 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
700 }
701 
702 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
703 		struct request *req, struct nvme_rw_command *cmd)
704 {
705 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
706 	struct dma_pool *pool;
707 	struct nvme_sgl_desc *sg_list;
708 	struct scatterlist *sg = iod->sgt.sgl;
709 	unsigned int entries = iod->sgt.nents;
710 	dma_addr_t sgl_dma;
711 	int i = 0;
712 
713 	/* setting the transfer type as SGL */
714 	cmd->flags = NVME_CMD_SGL_METABUF;
715 
716 	if (entries == 1) {
717 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
718 		return BLK_STS_OK;
719 	}
720 
721 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
722 		pool = dev->prp_small_pool;
723 		iod->nr_allocations = 0;
724 	} else {
725 		pool = dev->prp_page_pool;
726 		iod->nr_allocations = 1;
727 	}
728 
729 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
730 	if (!sg_list) {
731 		iod->nr_allocations = -1;
732 		return BLK_STS_RESOURCE;
733 	}
734 
735 	iod->list[0].sg_list = sg_list;
736 	iod->first_dma = sgl_dma;
737 
738 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
739 	do {
740 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
741 		sg = sg_next(sg);
742 	} while (--entries > 0);
743 
744 	return BLK_STS_OK;
745 }
746 
747 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
748 		struct request *req, struct nvme_rw_command *cmnd,
749 		struct bio_vec *bv)
750 {
751 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
752 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
753 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
754 
755 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
756 	if (dma_mapping_error(dev->dev, iod->first_dma))
757 		return BLK_STS_RESOURCE;
758 	iod->dma_len = bv->bv_len;
759 
760 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
761 	if (bv->bv_len > first_prp_len)
762 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
763 	else
764 		cmnd->dptr.prp2 = 0;
765 	return BLK_STS_OK;
766 }
767 
768 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
769 		struct request *req, struct nvme_rw_command *cmnd,
770 		struct bio_vec *bv)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 
774 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775 	if (dma_mapping_error(dev->dev, iod->first_dma))
776 		return BLK_STS_RESOURCE;
777 	iod->dma_len = bv->bv_len;
778 
779 	cmnd->flags = NVME_CMD_SGL_METABUF;
780 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
781 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
782 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
783 	return BLK_STS_OK;
784 }
785 
786 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
787 		struct nvme_command *cmnd)
788 {
789 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790 	blk_status_t ret = BLK_STS_RESOURCE;
791 	int rc;
792 
793 	if (blk_rq_nr_phys_segments(req) == 1) {
794 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
795 		struct bio_vec bv = req_bvec(req);
796 
797 		if (!is_pci_p2pdma_page(bv.bv_page)) {
798 			if (!nvme_pci_metadata_use_sgls(dev, req) &&
799 			    (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) +
800 			     bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
801 				return nvme_setup_prp_simple(dev, req,
802 							     &cmnd->rw, &bv);
803 
804 			if (nvmeq->qid && sgl_threshold &&
805 			    nvme_ctrl_sgl_supported(&dev->ctrl))
806 				return nvme_setup_sgl_simple(dev, req,
807 							     &cmnd->rw, &bv);
808 		}
809 	}
810 
811 	iod->dma_len = 0;
812 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
813 	if (!iod->sgt.sgl)
814 		return BLK_STS_RESOURCE;
815 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
816 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
817 	if (!iod->sgt.orig_nents)
818 		goto out_free_sg;
819 
820 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
821 			     DMA_ATTR_NO_WARN);
822 	if (rc) {
823 		if (rc == -EREMOTEIO)
824 			ret = BLK_STS_TARGET;
825 		goto out_free_sg;
826 	}
827 
828 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
829 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
830 	else
831 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
832 	if (ret != BLK_STS_OK)
833 		goto out_unmap_sg;
834 	return BLK_STS_OK;
835 
836 out_unmap_sg:
837 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
838 out_free_sg:
839 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
840 	return ret;
841 }
842 
843 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev,
844 					     struct request *req)
845 {
846 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 	struct nvme_rw_command *cmnd = &iod->cmd.rw;
848 	struct nvme_sgl_desc *sg_list;
849 	struct scatterlist *sgl, *sg;
850 	unsigned int entries;
851 	dma_addr_t sgl_dma;
852 	int rc, i;
853 
854 	iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC);
855 	if (!iod->meta_sgt.sgl)
856 		return BLK_STS_RESOURCE;
857 
858 	sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments);
859 	iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req,
860 							   iod->meta_sgt.sgl);
861 	if (!iod->meta_sgt.orig_nents)
862 		goto out_free_sg;
863 
864 	rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req),
865 			     DMA_ATTR_NO_WARN);
866 	if (rc)
867 		goto out_free_sg;
868 
869 	sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma);
870 	if (!sg_list)
871 		goto out_unmap_sg;
872 
873 	entries = iod->meta_sgt.nents;
874 	iod->meta_list.sg_list = sg_list;
875 	iod->meta_dma = sgl_dma;
876 
877 	cmnd->flags = NVME_CMD_SGL_METASEG;
878 	cmnd->metadata = cpu_to_le64(sgl_dma);
879 
880 	sgl = iod->meta_sgt.sgl;
881 	if (entries == 1) {
882 		nvme_pci_sgl_set_data(sg_list, sgl);
883 		return BLK_STS_OK;
884 	}
885 
886 	sgl_dma += sizeof(*sg_list);
887 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries);
888 	for_each_sg(sgl, sg, entries, i)
889 		nvme_pci_sgl_set_data(&sg_list[i + 1], sg);
890 
891 	return BLK_STS_OK;
892 
893 out_unmap_sg:
894 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
895 out_free_sg:
896 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
897 	return BLK_STS_RESOURCE;
898 }
899 
900 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev,
901 					     struct request *req)
902 {
903 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
904 	struct bio_vec bv = rq_integrity_vec(req);
905 	struct nvme_command *cmnd = &iod->cmd;
906 
907 	iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0);
908 	if (dma_mapping_error(dev->dev, iod->meta_dma))
909 		return BLK_STS_IOERR;
910 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
911 	return BLK_STS_OK;
912 }
913 
914 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req)
915 {
916 	if (nvme_pci_metadata_use_sgls(dev, req))
917 		return nvme_pci_setup_meta_sgls(dev, req);
918 	return nvme_pci_setup_meta_mptr(dev, req);
919 }
920 
921 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
922 {
923 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
924 	blk_status_t ret;
925 
926 	iod->aborted = false;
927 	iod->nr_allocations = -1;
928 	iod->sgt.nents = 0;
929 	iod->meta_sgt.nents = 0;
930 
931 	ret = nvme_setup_cmd(req->q->queuedata, req);
932 	if (ret)
933 		return ret;
934 
935 	if (blk_rq_nr_phys_segments(req)) {
936 		ret = nvme_map_data(dev, req, &iod->cmd);
937 		if (ret)
938 			goto out_free_cmd;
939 	}
940 
941 	if (blk_integrity_rq(req)) {
942 		ret = nvme_map_metadata(dev, req);
943 		if (ret)
944 			goto out_unmap_data;
945 	}
946 
947 	nvme_start_request(req);
948 	return BLK_STS_OK;
949 out_unmap_data:
950 	if (blk_rq_nr_phys_segments(req))
951 		nvme_unmap_data(dev, req);
952 out_free_cmd:
953 	nvme_cleanup_cmd(req);
954 	return ret;
955 }
956 
957 /*
958  * NOTE: ns is NULL when called on the admin queue.
959  */
960 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
961 			 const struct blk_mq_queue_data *bd)
962 {
963 	struct nvme_queue *nvmeq = hctx->driver_data;
964 	struct nvme_dev *dev = nvmeq->dev;
965 	struct request *req = bd->rq;
966 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
967 	blk_status_t ret;
968 
969 	/*
970 	 * We should not need to do this, but we're still using this to
971 	 * ensure we can drain requests on a dying queue.
972 	 */
973 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
974 		return BLK_STS_IOERR;
975 
976 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
977 		return nvme_fail_nonready_command(&dev->ctrl, req);
978 
979 	ret = nvme_prep_rq(dev, req);
980 	if (unlikely(ret))
981 		return ret;
982 	spin_lock(&nvmeq->sq_lock);
983 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
984 	nvme_write_sq_db(nvmeq, bd->last);
985 	spin_unlock(&nvmeq->sq_lock);
986 	return BLK_STS_OK;
987 }
988 
989 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
990 {
991 	struct request *req;
992 
993 	spin_lock(&nvmeq->sq_lock);
994 	while ((req = rq_list_pop(rqlist))) {
995 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
996 
997 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
998 	}
999 	nvme_write_sq_db(nvmeq, true);
1000 	spin_unlock(&nvmeq->sq_lock);
1001 }
1002 
1003 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1004 {
1005 	/*
1006 	 * We should not need to do this, but we're still using this to
1007 	 * ensure we can drain requests on a dying queue.
1008 	 */
1009 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1010 		return false;
1011 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1012 		return false;
1013 
1014 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
1015 }
1016 
1017 static void nvme_queue_rqs(struct rq_list *rqlist)
1018 {
1019 	struct rq_list submit_list = { };
1020 	struct rq_list requeue_list = { };
1021 	struct nvme_queue *nvmeq = NULL;
1022 	struct request *req;
1023 
1024 	while ((req = rq_list_pop(rqlist))) {
1025 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1026 			nvme_submit_cmds(nvmeq, &submit_list);
1027 		nvmeq = req->mq_hctx->driver_data;
1028 
1029 		if (nvme_prep_rq_batch(nvmeq, req))
1030 			rq_list_add_tail(&submit_list, req);
1031 		else
1032 			rq_list_add_tail(&requeue_list, req);
1033 	}
1034 
1035 	if (nvmeq)
1036 		nvme_submit_cmds(nvmeq, &submit_list);
1037 	*rqlist = requeue_list;
1038 }
1039 
1040 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev,
1041 						struct request *req)
1042 {
1043 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1044 
1045 	if (!iod->meta_sgt.nents) {
1046 		dma_unmap_page(dev->dev, iod->meta_dma,
1047 			       rq_integrity_vec(req).bv_len,
1048 			       rq_dma_dir(req));
1049 		return;
1050 	}
1051 
1052 	dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list,
1053 		      iod->meta_dma);
1054 	dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0);
1055 	mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool);
1056 }
1057 
1058 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1059 {
1060 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1061 	struct nvme_dev *dev = nvmeq->dev;
1062 
1063 	if (blk_integrity_rq(req))
1064 		nvme_unmap_metadata(dev, req);
1065 
1066 	if (blk_rq_nr_phys_segments(req))
1067 		nvme_unmap_data(dev, req);
1068 }
1069 
1070 static void nvme_pci_complete_rq(struct request *req)
1071 {
1072 	nvme_pci_unmap_rq(req);
1073 	nvme_complete_rq(req);
1074 }
1075 
1076 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1077 {
1078 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1079 }
1080 
1081 /* We read the CQE phase first to check if the rest of the entry is valid */
1082 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1083 {
1084 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1085 
1086 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1087 }
1088 
1089 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1090 {
1091 	u16 head = nvmeq->cq_head;
1092 
1093 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1094 					      nvmeq->dbbuf_cq_ei))
1095 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1096 }
1097 
1098 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1099 {
1100 	if (!nvmeq->qid)
1101 		return nvmeq->dev->admin_tagset.tags[0];
1102 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1103 }
1104 
1105 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1106 				   struct io_comp_batch *iob, u16 idx)
1107 {
1108 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1109 	__u16 command_id = READ_ONCE(cqe->command_id);
1110 	struct request *req;
1111 
1112 	/*
1113 	 * AEN requests are special as they don't time out and can
1114 	 * survive any kind of queue freeze and often don't respond to
1115 	 * aborts.  We don't even bother to allocate a struct request
1116 	 * for them but rather special case them here.
1117 	 */
1118 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1119 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1120 				cqe->status, &cqe->result);
1121 		return;
1122 	}
1123 
1124 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1125 	if (unlikely(!req)) {
1126 		dev_warn(nvmeq->dev->ctrl.device,
1127 			"invalid id %d completed on queue %d\n",
1128 			command_id, le16_to_cpu(cqe->sq_id));
1129 		return;
1130 	}
1131 
1132 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1133 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1134 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1135 					nvme_pci_complete_batch))
1136 		nvme_pci_complete_rq(req);
1137 }
1138 
1139 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1140 {
1141 	u32 tmp = nvmeq->cq_head + 1;
1142 
1143 	if (tmp == nvmeq->q_depth) {
1144 		nvmeq->cq_head = 0;
1145 		nvmeq->cq_phase ^= 1;
1146 	} else {
1147 		nvmeq->cq_head = tmp;
1148 	}
1149 }
1150 
1151 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1152 			       struct io_comp_batch *iob)
1153 {
1154 	int found = 0;
1155 
1156 	while (nvme_cqe_pending(nvmeq)) {
1157 		found++;
1158 		/*
1159 		 * load-load control dependency between phase and the rest of
1160 		 * the cqe requires a full read memory barrier
1161 		 */
1162 		dma_rmb();
1163 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1164 		nvme_update_cq_head(nvmeq);
1165 	}
1166 
1167 	if (found)
1168 		nvme_ring_cq_doorbell(nvmeq);
1169 	return found;
1170 }
1171 
1172 static irqreturn_t nvme_irq(int irq, void *data)
1173 {
1174 	struct nvme_queue *nvmeq = data;
1175 	DEFINE_IO_COMP_BATCH(iob);
1176 
1177 	if (nvme_poll_cq(nvmeq, &iob)) {
1178 		if (!rq_list_empty(&iob.req_list))
1179 			nvme_pci_complete_batch(&iob);
1180 		return IRQ_HANDLED;
1181 	}
1182 	return IRQ_NONE;
1183 }
1184 
1185 static irqreturn_t nvme_irq_check(int irq, void *data)
1186 {
1187 	struct nvme_queue *nvmeq = data;
1188 
1189 	if (nvme_cqe_pending(nvmeq))
1190 		return IRQ_WAKE_THREAD;
1191 	return IRQ_NONE;
1192 }
1193 
1194 /*
1195  * Poll for completions for any interrupt driven queue
1196  * Can be called from any context.
1197  */
1198 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1199 {
1200 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1201 
1202 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1203 
1204 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1205 	nvme_poll_cq(nvmeq, NULL);
1206 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1207 }
1208 
1209 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1210 {
1211 	struct nvme_queue *nvmeq = hctx->driver_data;
1212 	bool found;
1213 
1214 	if (!nvme_cqe_pending(nvmeq))
1215 		return 0;
1216 
1217 	spin_lock(&nvmeq->cq_poll_lock);
1218 	found = nvme_poll_cq(nvmeq, iob);
1219 	spin_unlock(&nvmeq->cq_poll_lock);
1220 
1221 	return found;
1222 }
1223 
1224 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1225 {
1226 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1227 	struct nvme_queue *nvmeq = &dev->queues[0];
1228 	struct nvme_command c = { };
1229 
1230 	c.common.opcode = nvme_admin_async_event;
1231 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1232 
1233 	spin_lock(&nvmeq->sq_lock);
1234 	nvme_sq_copy_cmd(nvmeq, &c);
1235 	nvme_write_sq_db(nvmeq, true);
1236 	spin_unlock(&nvmeq->sq_lock);
1237 }
1238 
1239 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1240 {
1241 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1242 	int ret = 0;
1243 
1244 	/*
1245 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1246 	 * altered by reset_work. Holding this lock before the RESETTING state
1247 	 * change, if successful, also ensures nvme_remove won't be able to
1248 	 * proceed to iounmap until we're done.
1249 	 */
1250 	mutex_lock(&dev->shutdown_lock);
1251 	if (!dev->bar_mapped_size) {
1252 		ret = -ENODEV;
1253 		goto unlock;
1254 	}
1255 
1256 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1257 		ret = -EBUSY;
1258 		goto unlock;
1259 	}
1260 
1261 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1262 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1263 
1264 	/*
1265 	 * Read controller status to flush the previous write and trigger a
1266 	 * pcie read error.
1267 	 */
1268 	readl(dev->bar + NVME_REG_CSTS);
1269 unlock:
1270 	mutex_unlock(&dev->shutdown_lock);
1271 	return ret;
1272 }
1273 
1274 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1275 {
1276 	struct nvme_command c = { };
1277 
1278 	c.delete_queue.opcode = opcode;
1279 	c.delete_queue.qid = cpu_to_le16(id);
1280 
1281 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1282 }
1283 
1284 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1285 		struct nvme_queue *nvmeq, s16 vector)
1286 {
1287 	struct nvme_command c = { };
1288 	int flags = NVME_QUEUE_PHYS_CONTIG;
1289 
1290 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1291 		flags |= NVME_CQ_IRQ_ENABLED;
1292 
1293 	/*
1294 	 * Note: we (ab)use the fact that the prp fields survive if no data
1295 	 * is attached to the request.
1296 	 */
1297 	c.create_cq.opcode = nvme_admin_create_cq;
1298 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1299 	c.create_cq.cqid = cpu_to_le16(qid);
1300 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1301 	c.create_cq.cq_flags = cpu_to_le16(flags);
1302 	c.create_cq.irq_vector = cpu_to_le16(vector);
1303 
1304 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1305 }
1306 
1307 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1308 						struct nvme_queue *nvmeq)
1309 {
1310 	struct nvme_ctrl *ctrl = &dev->ctrl;
1311 	struct nvme_command c = { };
1312 	int flags = NVME_QUEUE_PHYS_CONTIG;
1313 
1314 	/*
1315 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1316 	 * set. Since URGENT priority is zeroes, it makes all queues
1317 	 * URGENT.
1318 	 */
1319 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1320 		flags |= NVME_SQ_PRIO_MEDIUM;
1321 
1322 	/*
1323 	 * Note: we (ab)use the fact that the prp fields survive if no data
1324 	 * is attached to the request.
1325 	 */
1326 	c.create_sq.opcode = nvme_admin_create_sq;
1327 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1328 	c.create_sq.sqid = cpu_to_le16(qid);
1329 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1330 	c.create_sq.sq_flags = cpu_to_le16(flags);
1331 	c.create_sq.cqid = cpu_to_le16(qid);
1332 
1333 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1334 }
1335 
1336 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1337 {
1338 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1339 }
1340 
1341 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1342 {
1343 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1344 }
1345 
1346 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1347 {
1348 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1349 
1350 	dev_warn(nvmeq->dev->ctrl.device,
1351 		 "Abort status: 0x%x", nvme_req(req)->status);
1352 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1353 	blk_mq_free_request(req);
1354 	return RQ_END_IO_NONE;
1355 }
1356 
1357 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1358 {
1359 	/* If true, indicates loss of adapter communication, possibly by a
1360 	 * NVMe Subsystem reset.
1361 	 */
1362 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1363 
1364 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1365 	switch (nvme_ctrl_state(&dev->ctrl)) {
1366 	case NVME_CTRL_RESETTING:
1367 	case NVME_CTRL_CONNECTING:
1368 		return false;
1369 	default:
1370 		break;
1371 	}
1372 
1373 	/* We shouldn't reset unless the controller is on fatal error state
1374 	 * _or_ if we lost the communication with it.
1375 	 */
1376 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1377 		return false;
1378 
1379 	return true;
1380 }
1381 
1382 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1383 {
1384 	/* Read a config register to help see what died. */
1385 	u16 pci_status;
1386 	int result;
1387 
1388 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1389 				      &pci_status);
1390 	if (result == PCIBIOS_SUCCESSFUL)
1391 		dev_warn(dev->ctrl.device,
1392 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1393 			 csts, pci_status);
1394 	else
1395 		dev_warn(dev->ctrl.device,
1396 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1397 			 csts, result);
1398 
1399 	if (csts != ~0)
1400 		return;
1401 
1402 	dev_warn(dev->ctrl.device,
1403 		 "Does your device have a faulty power saving mode enabled?\n");
1404 	dev_warn(dev->ctrl.device,
1405 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1406 }
1407 
1408 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1409 {
1410 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1411 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1412 	struct nvme_dev *dev = nvmeq->dev;
1413 	struct request *abort_req;
1414 	struct nvme_command cmd = { };
1415 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1416 	u8 opcode;
1417 
1418 	if (nvme_state_terminal(&dev->ctrl))
1419 		goto disable;
1420 
1421 	/* If PCI error recovery process is happening, we cannot reset or
1422 	 * the recovery mechanism will surely fail.
1423 	 */
1424 	mb();
1425 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1426 		return BLK_EH_RESET_TIMER;
1427 
1428 	/*
1429 	 * Reset immediately if the controller is failed
1430 	 */
1431 	if (nvme_should_reset(dev, csts)) {
1432 		nvme_warn_reset(dev, csts);
1433 		goto disable;
1434 	}
1435 
1436 	/*
1437 	 * Did we miss an interrupt?
1438 	 */
1439 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1440 		nvme_poll(req->mq_hctx, NULL);
1441 	else
1442 		nvme_poll_irqdisable(nvmeq);
1443 
1444 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1445 		dev_warn(dev->ctrl.device,
1446 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1447 			 req->tag, nvme_cid(req), nvmeq->qid);
1448 		return BLK_EH_DONE;
1449 	}
1450 
1451 	/*
1452 	 * Shutdown immediately if controller times out while starting. The
1453 	 * reset work will see the pci device disabled when it gets the forced
1454 	 * cancellation error. All outstanding requests are completed on
1455 	 * shutdown, so we return BLK_EH_DONE.
1456 	 */
1457 	switch (nvme_ctrl_state(&dev->ctrl)) {
1458 	case NVME_CTRL_CONNECTING:
1459 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1460 		fallthrough;
1461 	case NVME_CTRL_DELETING:
1462 		dev_warn_ratelimited(dev->ctrl.device,
1463 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1464 			 req->tag, nvme_cid(req), nvmeq->qid);
1465 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1466 		nvme_dev_disable(dev, true);
1467 		return BLK_EH_DONE;
1468 	case NVME_CTRL_RESETTING:
1469 		return BLK_EH_RESET_TIMER;
1470 	default:
1471 		break;
1472 	}
1473 
1474 	/*
1475 	 * Shutdown the controller immediately and schedule a reset if the
1476 	 * command was already aborted once before and still hasn't been
1477 	 * returned to the driver, or if this is the admin queue.
1478 	 */
1479 	opcode = nvme_req(req)->cmd->common.opcode;
1480 	if (!nvmeq->qid || iod->aborted) {
1481 		dev_warn(dev->ctrl.device,
1482 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1483 			 req->tag, nvme_cid(req), opcode,
1484 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1485 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1486 		goto disable;
1487 	}
1488 
1489 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1490 		atomic_inc(&dev->ctrl.abort_limit);
1491 		return BLK_EH_RESET_TIMER;
1492 	}
1493 	iod->aborted = true;
1494 
1495 	cmd.abort.opcode = nvme_admin_abort_cmd;
1496 	cmd.abort.cid = nvme_cid(req);
1497 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1498 
1499 	dev_warn(nvmeq->dev->ctrl.device,
1500 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1501 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1502 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1503 		 blk_rq_bytes(req));
1504 
1505 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1506 					 BLK_MQ_REQ_NOWAIT);
1507 	if (IS_ERR(abort_req)) {
1508 		atomic_inc(&dev->ctrl.abort_limit);
1509 		return BLK_EH_RESET_TIMER;
1510 	}
1511 	nvme_init_request(abort_req, &cmd);
1512 
1513 	abort_req->end_io = abort_endio;
1514 	abort_req->end_io_data = NULL;
1515 	blk_execute_rq_nowait(abort_req, false);
1516 
1517 	/*
1518 	 * The aborted req will be completed on receiving the abort req.
1519 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1520 	 * as the device then is in a faulty state.
1521 	 */
1522 	return BLK_EH_RESET_TIMER;
1523 
1524 disable:
1525 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1526 		if (nvme_state_terminal(&dev->ctrl))
1527 			nvme_dev_disable(dev, true);
1528 		return BLK_EH_DONE;
1529 	}
1530 
1531 	nvme_dev_disable(dev, false);
1532 	if (nvme_try_sched_reset(&dev->ctrl))
1533 		nvme_unquiesce_io_queues(&dev->ctrl);
1534 	return BLK_EH_DONE;
1535 }
1536 
1537 static void nvme_free_queue(struct nvme_queue *nvmeq)
1538 {
1539 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1540 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1541 	if (!nvmeq->sq_cmds)
1542 		return;
1543 
1544 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1545 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1546 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1547 	} else {
1548 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1549 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1550 	}
1551 }
1552 
1553 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1554 {
1555 	int i;
1556 
1557 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1558 		dev->ctrl.queue_count--;
1559 		nvme_free_queue(&dev->queues[i]);
1560 	}
1561 }
1562 
1563 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1564 {
1565 	struct nvme_queue *nvmeq = &dev->queues[qid];
1566 
1567 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1568 		return;
1569 
1570 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1571 	mb();
1572 
1573 	nvmeq->dev->online_queues--;
1574 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1575 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1576 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1577 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1578 }
1579 
1580 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1581 {
1582 	int i;
1583 
1584 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1585 		nvme_suspend_queue(dev, i);
1586 }
1587 
1588 /*
1589  * Called only on a device that has been disabled and after all other threads
1590  * that can check this device's completion queues have synced, except
1591  * nvme_poll(). This is the last chance for the driver to see a natural
1592  * completion before nvme_cancel_request() terminates all incomplete requests.
1593  */
1594 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1595 {
1596 	int i;
1597 
1598 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1599 		spin_lock(&dev->queues[i].cq_poll_lock);
1600 		nvme_poll_cq(&dev->queues[i], NULL);
1601 		spin_unlock(&dev->queues[i].cq_poll_lock);
1602 	}
1603 }
1604 
1605 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1606 				int entry_size)
1607 {
1608 	int q_depth = dev->q_depth;
1609 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1610 					  NVME_CTRL_PAGE_SIZE);
1611 
1612 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1613 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1614 
1615 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1616 		q_depth = div_u64(mem_per_q, entry_size);
1617 
1618 		/*
1619 		 * Ensure the reduced q_depth is above some threshold where it
1620 		 * would be better to map queues in system memory with the
1621 		 * original depth
1622 		 */
1623 		if (q_depth < 64)
1624 			return -ENOMEM;
1625 	}
1626 
1627 	return q_depth;
1628 }
1629 
1630 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1631 				int qid)
1632 {
1633 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1634 
1635 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1636 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1637 		if (nvmeq->sq_cmds) {
1638 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1639 							nvmeq->sq_cmds);
1640 			if (nvmeq->sq_dma_addr) {
1641 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1642 				return 0;
1643 			}
1644 
1645 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1646 		}
1647 	}
1648 
1649 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1650 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1651 	if (!nvmeq->sq_cmds)
1652 		return -ENOMEM;
1653 	return 0;
1654 }
1655 
1656 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1657 {
1658 	struct nvme_queue *nvmeq = &dev->queues[qid];
1659 
1660 	if (dev->ctrl.queue_count > qid)
1661 		return 0;
1662 
1663 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1664 	nvmeq->q_depth = depth;
1665 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1666 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1667 	if (!nvmeq->cqes)
1668 		goto free_nvmeq;
1669 
1670 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1671 		goto free_cqdma;
1672 
1673 	nvmeq->dev = dev;
1674 	spin_lock_init(&nvmeq->sq_lock);
1675 	spin_lock_init(&nvmeq->cq_poll_lock);
1676 	nvmeq->cq_head = 0;
1677 	nvmeq->cq_phase = 1;
1678 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1679 	nvmeq->qid = qid;
1680 	dev->ctrl.queue_count++;
1681 
1682 	return 0;
1683 
1684  free_cqdma:
1685 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1686 			  nvmeq->cq_dma_addr);
1687  free_nvmeq:
1688 	return -ENOMEM;
1689 }
1690 
1691 static int queue_request_irq(struct nvme_queue *nvmeq)
1692 {
1693 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1694 	int nr = nvmeq->dev->ctrl.instance;
1695 
1696 	if (use_threaded_interrupts) {
1697 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1698 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1699 	} else {
1700 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1701 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1702 	}
1703 }
1704 
1705 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1706 {
1707 	struct nvme_dev *dev = nvmeq->dev;
1708 
1709 	nvmeq->sq_tail = 0;
1710 	nvmeq->last_sq_tail = 0;
1711 	nvmeq->cq_head = 0;
1712 	nvmeq->cq_phase = 1;
1713 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1714 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1715 	nvme_dbbuf_init(dev, nvmeq, qid);
1716 	dev->online_queues++;
1717 	wmb(); /* ensure the first interrupt sees the initialization */
1718 }
1719 
1720 /*
1721  * Try getting shutdown_lock while setting up IO queues.
1722  */
1723 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1724 {
1725 	/*
1726 	 * Give up if the lock is being held by nvme_dev_disable.
1727 	 */
1728 	if (!mutex_trylock(&dev->shutdown_lock))
1729 		return -ENODEV;
1730 
1731 	/*
1732 	 * Controller is in wrong state, fail early.
1733 	 */
1734 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1735 		mutex_unlock(&dev->shutdown_lock);
1736 		return -ENODEV;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1743 {
1744 	struct nvme_dev *dev = nvmeq->dev;
1745 	int result;
1746 	u16 vector = 0;
1747 
1748 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1749 
1750 	/*
1751 	 * A queue's vector matches the queue identifier unless the controller
1752 	 * has only one vector available.
1753 	 */
1754 	if (!polled)
1755 		vector = dev->num_vecs == 1 ? 0 : qid;
1756 	else
1757 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1758 
1759 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1760 	if (result)
1761 		return result;
1762 
1763 	result = adapter_alloc_sq(dev, qid, nvmeq);
1764 	if (result < 0)
1765 		return result;
1766 	if (result)
1767 		goto release_cq;
1768 
1769 	nvmeq->cq_vector = vector;
1770 
1771 	result = nvme_setup_io_queues_trylock(dev);
1772 	if (result)
1773 		return result;
1774 	nvme_init_queue(nvmeq, qid);
1775 	if (!polled) {
1776 		result = queue_request_irq(nvmeq);
1777 		if (result < 0)
1778 			goto release_sq;
1779 	}
1780 
1781 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1782 	mutex_unlock(&dev->shutdown_lock);
1783 	return result;
1784 
1785 release_sq:
1786 	dev->online_queues--;
1787 	mutex_unlock(&dev->shutdown_lock);
1788 	adapter_delete_sq(dev, qid);
1789 release_cq:
1790 	adapter_delete_cq(dev, qid);
1791 	return result;
1792 }
1793 
1794 static const struct blk_mq_ops nvme_mq_admin_ops = {
1795 	.queue_rq	= nvme_queue_rq,
1796 	.complete	= nvme_pci_complete_rq,
1797 	.init_hctx	= nvme_admin_init_hctx,
1798 	.init_request	= nvme_pci_init_request,
1799 	.timeout	= nvme_timeout,
1800 };
1801 
1802 static const struct blk_mq_ops nvme_mq_ops = {
1803 	.queue_rq	= nvme_queue_rq,
1804 	.queue_rqs	= nvme_queue_rqs,
1805 	.complete	= nvme_pci_complete_rq,
1806 	.commit_rqs	= nvme_commit_rqs,
1807 	.init_hctx	= nvme_init_hctx,
1808 	.init_request	= nvme_pci_init_request,
1809 	.map_queues	= nvme_pci_map_queues,
1810 	.timeout	= nvme_timeout,
1811 	.poll		= nvme_poll,
1812 };
1813 
1814 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1815 {
1816 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1817 		/*
1818 		 * If the controller was reset during removal, it's possible
1819 		 * user requests may be waiting on a stopped queue. Start the
1820 		 * queue to flush these to completion.
1821 		 */
1822 		nvme_unquiesce_admin_queue(&dev->ctrl);
1823 		nvme_remove_admin_tag_set(&dev->ctrl);
1824 	}
1825 }
1826 
1827 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1828 {
1829 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1830 }
1831 
1832 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1833 {
1834 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1835 
1836 	if (size <= dev->bar_mapped_size)
1837 		return 0;
1838 	if (size > pci_resource_len(pdev, 0))
1839 		return -ENOMEM;
1840 	if (dev->bar)
1841 		iounmap(dev->bar);
1842 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1843 	if (!dev->bar) {
1844 		dev->bar_mapped_size = 0;
1845 		return -ENOMEM;
1846 	}
1847 	dev->bar_mapped_size = size;
1848 	dev->dbs = dev->bar + NVME_REG_DBS;
1849 
1850 	return 0;
1851 }
1852 
1853 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1854 {
1855 	int result;
1856 	u32 aqa;
1857 	struct nvme_queue *nvmeq;
1858 
1859 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1860 	if (result < 0)
1861 		return result;
1862 
1863 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1864 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1865 
1866 	if (dev->subsystem &&
1867 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1868 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1869 
1870 	/*
1871 	 * If the device has been passed off to us in an enabled state, just
1872 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1873 	 * notification bits', but doing so may cause the device to complete
1874 	 * commands to the admin queue ... and we don't know what memory that
1875 	 * might be pointing at!
1876 	 */
1877 	result = nvme_disable_ctrl(&dev->ctrl, false);
1878 	if (result < 0)
1879 		return result;
1880 
1881 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1882 	if (result)
1883 		return result;
1884 
1885 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1886 
1887 	nvmeq = &dev->queues[0];
1888 	aqa = nvmeq->q_depth - 1;
1889 	aqa |= aqa << 16;
1890 
1891 	writel(aqa, dev->bar + NVME_REG_AQA);
1892 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1893 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1894 
1895 	result = nvme_enable_ctrl(&dev->ctrl);
1896 	if (result)
1897 		return result;
1898 
1899 	nvmeq->cq_vector = 0;
1900 	nvme_init_queue(nvmeq, 0);
1901 	result = queue_request_irq(nvmeq);
1902 	if (result) {
1903 		dev->online_queues--;
1904 		return result;
1905 	}
1906 
1907 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1908 	return result;
1909 }
1910 
1911 static int nvme_create_io_queues(struct nvme_dev *dev)
1912 {
1913 	unsigned i, max, rw_queues;
1914 	int ret = 0;
1915 
1916 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1917 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1918 			ret = -ENOMEM;
1919 			break;
1920 		}
1921 	}
1922 
1923 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1924 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1925 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1926 				dev->io_queues[HCTX_TYPE_READ];
1927 	} else {
1928 		rw_queues = max;
1929 	}
1930 
1931 	for (i = dev->online_queues; i <= max; i++) {
1932 		bool polled = i > rw_queues;
1933 
1934 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1935 		if (ret)
1936 			break;
1937 	}
1938 
1939 	/*
1940 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1941 	 * than the desired amount of queues, and even a controller without
1942 	 * I/O queues can still be used to issue admin commands.  This might
1943 	 * be useful to upgrade a buggy firmware for example.
1944 	 */
1945 	return ret >= 0 ? 0 : ret;
1946 }
1947 
1948 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1949 {
1950 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1951 
1952 	return 1ULL << (12 + 4 * szu);
1953 }
1954 
1955 static u32 nvme_cmb_size(struct nvme_dev *dev)
1956 {
1957 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1958 }
1959 
1960 static void nvme_map_cmb(struct nvme_dev *dev)
1961 {
1962 	u64 size, offset;
1963 	resource_size_t bar_size;
1964 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1965 	int bar;
1966 
1967 	if (dev->cmb_size)
1968 		return;
1969 
1970 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1971 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1972 
1973 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1974 	if (!dev->cmbsz)
1975 		return;
1976 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1977 
1978 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1979 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1980 	bar = NVME_CMB_BIR(dev->cmbloc);
1981 	bar_size = pci_resource_len(pdev, bar);
1982 
1983 	if (offset > bar_size)
1984 		return;
1985 
1986 	/*
1987 	 * Tell the controller about the host side address mapping the CMB,
1988 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1989 	 */
1990 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1991 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1992 			     (pci_bus_address(pdev, bar) + offset),
1993 			     dev->bar + NVME_REG_CMBMSC);
1994 	}
1995 
1996 	/*
1997 	 * Controllers may support a CMB size larger than their BAR,
1998 	 * for example, due to being behind a bridge. Reduce the CMB to
1999 	 * the reported size of the BAR
2000 	 */
2001 	if (size > bar_size - offset)
2002 		size = bar_size - offset;
2003 
2004 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2005 		dev_warn(dev->ctrl.device,
2006 			 "failed to register the CMB\n");
2007 		return;
2008 	}
2009 
2010 	dev->cmb_size = size;
2011 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2012 
2013 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2014 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2015 		pci_p2pmem_publish(pdev, true);
2016 
2017 	nvme_update_attrs(dev);
2018 }
2019 
2020 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2021 {
2022 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2023 	u64 dma_addr = dev->host_mem_descs_dma;
2024 	struct nvme_command c = { };
2025 	int ret;
2026 
2027 	c.features.opcode	= nvme_admin_set_features;
2028 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2029 	c.features.dword11	= cpu_to_le32(bits);
2030 	c.features.dword12	= cpu_to_le32(host_mem_size);
2031 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2032 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2033 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2034 
2035 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2036 	if (ret) {
2037 		dev_warn(dev->ctrl.device,
2038 			 "failed to set host mem (err %d, flags %#x).\n",
2039 			 ret, bits);
2040 	} else
2041 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2042 
2043 	return ret;
2044 }
2045 
2046 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2047 {
2048 	int i;
2049 
2050 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2051 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2052 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2053 
2054 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2055 			       le64_to_cpu(desc->addr),
2056 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2057 	}
2058 
2059 	kfree(dev->host_mem_desc_bufs);
2060 	dev->host_mem_desc_bufs = NULL;
2061 }
2062 
2063 static void nvme_free_host_mem(struct nvme_dev *dev)
2064 {
2065 	if (dev->hmb_sgt)
2066 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2067 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2068 	else
2069 		nvme_free_host_mem_multi(dev);
2070 
2071 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2072 			dev->host_mem_descs, dev->host_mem_descs_dma);
2073 	dev->host_mem_descs = NULL;
2074 	dev->host_mem_descs_size = 0;
2075 	dev->nr_host_mem_descs = 0;
2076 }
2077 
2078 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2079 {
2080 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2081 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2082 	if (!dev->hmb_sgt)
2083 		return -ENOMEM;
2084 
2085 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2086 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2087 			GFP_KERNEL);
2088 	if (!dev->host_mem_descs) {
2089 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2090 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2091 		dev->hmb_sgt = NULL;
2092 		return -ENOMEM;
2093 	}
2094 	dev->host_mem_size = size;
2095 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2096 	dev->nr_host_mem_descs = 1;
2097 
2098 	dev->host_mem_descs[0].addr =
2099 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2100 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2101 	return 0;
2102 }
2103 
2104 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2105 		u32 chunk_size)
2106 {
2107 	struct nvme_host_mem_buf_desc *descs;
2108 	u32 max_entries, len, descs_size;
2109 	dma_addr_t descs_dma;
2110 	int i = 0;
2111 	void **bufs;
2112 	u64 size, tmp;
2113 
2114 	tmp = (preferred + chunk_size - 1);
2115 	do_div(tmp, chunk_size);
2116 	max_entries = tmp;
2117 
2118 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2119 		max_entries = dev->ctrl.hmmaxd;
2120 
2121 	descs_size = max_entries * sizeof(*descs);
2122 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2123 			GFP_KERNEL);
2124 	if (!descs)
2125 		goto out;
2126 
2127 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2128 	if (!bufs)
2129 		goto out_free_descs;
2130 
2131 	for (size = 0; size < preferred && i < max_entries; size += len) {
2132 		dma_addr_t dma_addr;
2133 
2134 		len = min_t(u64, chunk_size, preferred - size);
2135 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2136 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2137 		if (!bufs[i])
2138 			break;
2139 
2140 		descs[i].addr = cpu_to_le64(dma_addr);
2141 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2142 		i++;
2143 	}
2144 
2145 	if (!size)
2146 		goto out_free_bufs;
2147 
2148 	dev->nr_host_mem_descs = i;
2149 	dev->host_mem_size = size;
2150 	dev->host_mem_descs = descs;
2151 	dev->host_mem_descs_dma = descs_dma;
2152 	dev->host_mem_descs_size = descs_size;
2153 	dev->host_mem_desc_bufs = bufs;
2154 	return 0;
2155 
2156 out_free_bufs:
2157 	while (--i >= 0) {
2158 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2159 
2160 		dma_free_attrs(dev->dev, size, bufs[i],
2161 			       le64_to_cpu(descs[i].addr),
2162 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2163 	}
2164 
2165 	kfree(bufs);
2166 out_free_descs:
2167 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2168 out:
2169 	dev->host_mem_descs = NULL;
2170 	return -ENOMEM;
2171 }
2172 
2173 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2174 {
2175 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2176 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2177 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2178 	u64 chunk_size;
2179 
2180 	/*
2181 	 * If there is an IOMMU that can merge pages, try a virtually
2182 	 * non-contiguous allocation for a single segment first.
2183 	 */
2184 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2185 		if (!nvme_alloc_host_mem_single(dev, preferred))
2186 			return 0;
2187 	}
2188 
2189 	/* start big and work our way down */
2190 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2191 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2192 			if (!min || dev->host_mem_size >= min)
2193 				return 0;
2194 			nvme_free_host_mem(dev);
2195 		}
2196 	}
2197 
2198 	return -ENOMEM;
2199 }
2200 
2201 static int nvme_setup_host_mem(struct nvme_dev *dev)
2202 {
2203 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2204 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2205 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2206 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2207 	int ret;
2208 
2209 	if (!dev->ctrl.hmpre)
2210 		return 0;
2211 
2212 	preferred = min(preferred, max);
2213 	if (min > max) {
2214 		dev_warn(dev->ctrl.device,
2215 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2216 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2217 		nvme_free_host_mem(dev);
2218 		return 0;
2219 	}
2220 
2221 	/*
2222 	 * If we already have a buffer allocated check if we can reuse it.
2223 	 */
2224 	if (dev->host_mem_descs) {
2225 		if (dev->host_mem_size >= min)
2226 			enable_bits |= NVME_HOST_MEM_RETURN;
2227 		else
2228 			nvme_free_host_mem(dev);
2229 	}
2230 
2231 	if (!dev->host_mem_descs) {
2232 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2233 			dev_warn(dev->ctrl.device,
2234 				"failed to allocate host memory buffer.\n");
2235 			return 0; /* controller must work without HMB */
2236 		}
2237 
2238 		dev_info(dev->ctrl.device,
2239 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2240 			dev->host_mem_size >> ilog2(SZ_1M),
2241 			dev->nr_host_mem_descs,
2242 			str_plural(dev->nr_host_mem_descs));
2243 	}
2244 
2245 	ret = nvme_set_host_mem(dev, enable_bits);
2246 	if (ret)
2247 		nvme_free_host_mem(dev);
2248 	return ret;
2249 }
2250 
2251 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2252 		char *buf)
2253 {
2254 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2255 
2256 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2257 		       ndev->cmbloc, ndev->cmbsz);
2258 }
2259 static DEVICE_ATTR_RO(cmb);
2260 
2261 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2262 		char *buf)
2263 {
2264 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2265 
2266 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2267 }
2268 static DEVICE_ATTR_RO(cmbloc);
2269 
2270 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2271 		char *buf)
2272 {
2273 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2274 
2275 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2276 }
2277 static DEVICE_ATTR_RO(cmbsz);
2278 
2279 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2280 			char *buf)
2281 {
2282 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2283 
2284 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2285 }
2286 
2287 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2288 			 const char *buf, size_t count)
2289 {
2290 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2291 	bool new;
2292 	int ret;
2293 
2294 	if (kstrtobool(buf, &new) < 0)
2295 		return -EINVAL;
2296 
2297 	if (new == ndev->hmb)
2298 		return count;
2299 
2300 	if (new) {
2301 		ret = nvme_setup_host_mem(ndev);
2302 	} else {
2303 		ret = nvme_set_host_mem(ndev, 0);
2304 		if (!ret)
2305 			nvme_free_host_mem(ndev);
2306 	}
2307 
2308 	if (ret < 0)
2309 		return ret;
2310 
2311 	return count;
2312 }
2313 static DEVICE_ATTR_RW(hmb);
2314 
2315 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2316 		struct attribute *a, int n)
2317 {
2318 	struct nvme_ctrl *ctrl =
2319 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2320 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2321 
2322 	if (a == &dev_attr_cmb.attr ||
2323 	    a == &dev_attr_cmbloc.attr ||
2324 	    a == &dev_attr_cmbsz.attr) {
2325 	    	if (!dev->cmbsz)
2326 			return 0;
2327 	}
2328 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2329 		return 0;
2330 
2331 	return a->mode;
2332 }
2333 
2334 static struct attribute *nvme_pci_attrs[] = {
2335 	&dev_attr_cmb.attr,
2336 	&dev_attr_cmbloc.attr,
2337 	&dev_attr_cmbsz.attr,
2338 	&dev_attr_hmb.attr,
2339 	NULL,
2340 };
2341 
2342 static const struct attribute_group nvme_pci_dev_attrs_group = {
2343 	.attrs		= nvme_pci_attrs,
2344 	.is_visible	= nvme_pci_attrs_are_visible,
2345 };
2346 
2347 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2348 	&nvme_dev_attrs_group,
2349 	&nvme_pci_dev_attrs_group,
2350 	NULL,
2351 };
2352 
2353 static void nvme_update_attrs(struct nvme_dev *dev)
2354 {
2355 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2356 }
2357 
2358 /*
2359  * nirqs is the number of interrupts available for write and read
2360  * queues. The core already reserved an interrupt for the admin queue.
2361  */
2362 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2363 {
2364 	struct nvme_dev *dev = affd->priv;
2365 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2366 
2367 	/*
2368 	 * If there is no interrupt available for queues, ensure that
2369 	 * the default queue is set to 1. The affinity set size is
2370 	 * also set to one, but the irq core ignores it for this case.
2371 	 *
2372 	 * If only one interrupt is available or 'write_queue' == 0, combine
2373 	 * write and read queues.
2374 	 *
2375 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2376 	 * queue.
2377 	 */
2378 	if (!nrirqs) {
2379 		nrirqs = 1;
2380 		nr_read_queues = 0;
2381 	} else if (nrirqs == 1 || !nr_write_queues) {
2382 		nr_read_queues = 0;
2383 	} else if (nr_write_queues >= nrirqs) {
2384 		nr_read_queues = 1;
2385 	} else {
2386 		nr_read_queues = nrirqs - nr_write_queues;
2387 	}
2388 
2389 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2390 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2391 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2392 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2393 	affd->nr_sets = nr_read_queues ? 2 : 1;
2394 }
2395 
2396 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2397 {
2398 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2399 	struct irq_affinity affd = {
2400 		.pre_vectors	= 1,
2401 		.calc_sets	= nvme_calc_irq_sets,
2402 		.priv		= dev,
2403 	};
2404 	unsigned int irq_queues, poll_queues;
2405 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2406 
2407 	/*
2408 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2409 	 * left over for non-polled I/O.
2410 	 */
2411 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2412 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2413 
2414 	/*
2415 	 * Initialize for the single interrupt case, will be updated in
2416 	 * nvme_calc_irq_sets().
2417 	 */
2418 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2419 	dev->io_queues[HCTX_TYPE_READ] = 0;
2420 
2421 	/*
2422 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2423 	 * but some Apple controllers require all queues to use the first
2424 	 * vector.
2425 	 */
2426 	irq_queues = 1;
2427 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2428 		irq_queues += (nr_io_queues - poll_queues);
2429 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2430 		flags &= ~PCI_IRQ_MSI;
2431 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2432 					      &affd);
2433 }
2434 
2435 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2436 {
2437 	/*
2438 	 * If tags are shared with admin queue (Apple bug), then
2439 	 * make sure we only use one IO queue.
2440 	 */
2441 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2442 		return 1;
2443 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2444 }
2445 
2446 static int nvme_setup_io_queues(struct nvme_dev *dev)
2447 {
2448 	struct nvme_queue *adminq = &dev->queues[0];
2449 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2450 	unsigned int nr_io_queues;
2451 	unsigned long size;
2452 	int result;
2453 
2454 	/*
2455 	 * Sample the module parameters once at reset time so that we have
2456 	 * stable values to work with.
2457 	 */
2458 	dev->nr_write_queues = write_queues;
2459 	dev->nr_poll_queues = poll_queues;
2460 
2461 	nr_io_queues = dev->nr_allocated_queues - 1;
2462 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2463 	if (result < 0)
2464 		return result;
2465 
2466 	if (nr_io_queues == 0)
2467 		return 0;
2468 
2469 	/*
2470 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2471 	 * from set to unset. If there is a window to it is truely freed,
2472 	 * pci_free_irq_vectors() jumping into this window will crash.
2473 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2474 	 * nvme_dev_disable() path.
2475 	 */
2476 	result = nvme_setup_io_queues_trylock(dev);
2477 	if (result)
2478 		return result;
2479 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2480 		pci_free_irq(pdev, 0, adminq);
2481 
2482 	if (dev->cmb_use_sqes) {
2483 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2484 				sizeof(struct nvme_command));
2485 		if (result > 0) {
2486 			dev->q_depth = result;
2487 			dev->ctrl.sqsize = result - 1;
2488 		} else {
2489 			dev->cmb_use_sqes = false;
2490 		}
2491 	}
2492 
2493 	do {
2494 		size = db_bar_size(dev, nr_io_queues);
2495 		result = nvme_remap_bar(dev, size);
2496 		if (!result)
2497 			break;
2498 		if (!--nr_io_queues) {
2499 			result = -ENOMEM;
2500 			goto out_unlock;
2501 		}
2502 	} while (1);
2503 	adminq->q_db = dev->dbs;
2504 
2505  retry:
2506 	/* Deregister the admin queue's interrupt */
2507 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2508 		pci_free_irq(pdev, 0, adminq);
2509 
2510 	/*
2511 	 * If we enable msix early due to not intx, disable it again before
2512 	 * setting up the full range we need.
2513 	 */
2514 	pci_free_irq_vectors(pdev);
2515 
2516 	result = nvme_setup_irqs(dev, nr_io_queues);
2517 	if (result <= 0) {
2518 		result = -EIO;
2519 		goto out_unlock;
2520 	}
2521 
2522 	dev->num_vecs = result;
2523 	result = max(result - 1, 1);
2524 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2525 
2526 	/*
2527 	 * Should investigate if there's a performance win from allocating
2528 	 * more queues than interrupt vectors; it might allow the submission
2529 	 * path to scale better, even if the receive path is limited by the
2530 	 * number of interrupts.
2531 	 */
2532 	result = queue_request_irq(adminq);
2533 	if (result)
2534 		goto out_unlock;
2535 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2536 	mutex_unlock(&dev->shutdown_lock);
2537 
2538 	result = nvme_create_io_queues(dev);
2539 	if (result || dev->online_queues < 2)
2540 		return result;
2541 
2542 	if (dev->online_queues - 1 < dev->max_qid) {
2543 		nr_io_queues = dev->online_queues - 1;
2544 		nvme_delete_io_queues(dev);
2545 		result = nvme_setup_io_queues_trylock(dev);
2546 		if (result)
2547 			return result;
2548 		nvme_suspend_io_queues(dev);
2549 		goto retry;
2550 	}
2551 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2552 					dev->io_queues[HCTX_TYPE_DEFAULT],
2553 					dev->io_queues[HCTX_TYPE_READ],
2554 					dev->io_queues[HCTX_TYPE_POLL]);
2555 	return 0;
2556 out_unlock:
2557 	mutex_unlock(&dev->shutdown_lock);
2558 	return result;
2559 }
2560 
2561 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2562 					     blk_status_t error)
2563 {
2564 	struct nvme_queue *nvmeq = req->end_io_data;
2565 
2566 	blk_mq_free_request(req);
2567 	complete(&nvmeq->delete_done);
2568 	return RQ_END_IO_NONE;
2569 }
2570 
2571 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2572 					  blk_status_t error)
2573 {
2574 	struct nvme_queue *nvmeq = req->end_io_data;
2575 
2576 	if (error)
2577 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2578 
2579 	return nvme_del_queue_end(req, error);
2580 }
2581 
2582 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2583 {
2584 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2585 	struct request *req;
2586 	struct nvme_command cmd = { };
2587 
2588 	cmd.delete_queue.opcode = opcode;
2589 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2590 
2591 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2592 	if (IS_ERR(req))
2593 		return PTR_ERR(req);
2594 	nvme_init_request(req, &cmd);
2595 
2596 	if (opcode == nvme_admin_delete_cq)
2597 		req->end_io = nvme_del_cq_end;
2598 	else
2599 		req->end_io = nvme_del_queue_end;
2600 	req->end_io_data = nvmeq;
2601 
2602 	init_completion(&nvmeq->delete_done);
2603 	blk_execute_rq_nowait(req, false);
2604 	return 0;
2605 }
2606 
2607 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2608 {
2609 	int nr_queues = dev->online_queues - 1, sent = 0;
2610 	unsigned long timeout;
2611 
2612  retry:
2613 	timeout = NVME_ADMIN_TIMEOUT;
2614 	while (nr_queues > 0) {
2615 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2616 			break;
2617 		nr_queues--;
2618 		sent++;
2619 	}
2620 	while (sent) {
2621 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2622 
2623 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2624 				timeout);
2625 		if (timeout == 0)
2626 			return false;
2627 
2628 		sent--;
2629 		if (nr_queues)
2630 			goto retry;
2631 	}
2632 	return true;
2633 }
2634 
2635 static void nvme_delete_io_queues(struct nvme_dev *dev)
2636 {
2637 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2638 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2639 }
2640 
2641 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2642 {
2643 	if (dev->io_queues[HCTX_TYPE_POLL])
2644 		return 3;
2645 	if (dev->io_queues[HCTX_TYPE_READ])
2646 		return 2;
2647 	return 1;
2648 }
2649 
2650 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2651 {
2652 	if (!dev->ctrl.tagset) {
2653 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2654 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2655 		return true;
2656 	}
2657 
2658 	/* Give up if we are racing with nvme_dev_disable() */
2659 	if (!mutex_trylock(&dev->shutdown_lock))
2660 		return false;
2661 
2662 	/* Check if nvme_dev_disable() has been executed already */
2663 	if (!dev->online_queues) {
2664 		mutex_unlock(&dev->shutdown_lock);
2665 		return false;
2666 	}
2667 
2668 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2669 	/* free previously allocated queues that are no longer usable */
2670 	nvme_free_queues(dev, dev->online_queues);
2671 	mutex_unlock(&dev->shutdown_lock);
2672 	return true;
2673 }
2674 
2675 static int nvme_pci_enable(struct nvme_dev *dev)
2676 {
2677 	int result = -ENOMEM;
2678 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2679 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2680 
2681 	if (pci_enable_device_mem(pdev))
2682 		return result;
2683 
2684 	pci_set_master(pdev);
2685 
2686 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2687 		result = -ENODEV;
2688 		goto disable;
2689 	}
2690 
2691 	/*
2692 	 * Some devices and/or platforms don't advertise or work with INTx
2693 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2694 	 * adjust this later.
2695 	 */
2696 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2697 		flags &= ~PCI_IRQ_MSI;
2698 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2699 	if (result < 0)
2700 		goto disable;
2701 
2702 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2703 
2704 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2705 				io_queue_depth);
2706 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2707 	dev->dbs = dev->bar + 4096;
2708 
2709 	/*
2710 	 * Some Apple controllers require a non-standard SQE size.
2711 	 * Interestingly they also seem to ignore the CC:IOSQES register
2712 	 * so we don't bother updating it here.
2713 	 */
2714 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2715 		dev->io_sqes = 7;
2716 	else
2717 		dev->io_sqes = NVME_NVM_IOSQES;
2718 
2719 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2720 		dev->q_depth = 2;
2721 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2722 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2723 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2724 		dev->q_depth = 64;
2725 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2726                         "set queue depth=%u\n", dev->q_depth);
2727 	}
2728 
2729 	/*
2730 	 * Controllers with the shared tags quirk need the IO queue to be
2731 	 * big enough so that we get 32 tags for the admin queue
2732 	 */
2733 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2734 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2735 		dev->q_depth = NVME_AQ_DEPTH + 2;
2736 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2737 			 dev->q_depth);
2738 	}
2739 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2740 
2741 	nvme_map_cmb(dev);
2742 
2743 	pci_save_state(pdev);
2744 
2745 	result = nvme_pci_configure_admin_queue(dev);
2746 	if (result)
2747 		goto free_irq;
2748 	return result;
2749 
2750  free_irq:
2751 	pci_free_irq_vectors(pdev);
2752  disable:
2753 	pci_disable_device(pdev);
2754 	return result;
2755 }
2756 
2757 static void nvme_dev_unmap(struct nvme_dev *dev)
2758 {
2759 	if (dev->bar)
2760 		iounmap(dev->bar);
2761 	pci_release_mem_regions(to_pci_dev(dev->dev));
2762 }
2763 
2764 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2765 {
2766 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2767 	u32 csts;
2768 
2769 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2770 		return true;
2771 	if (pdev->error_state != pci_channel_io_normal)
2772 		return true;
2773 
2774 	csts = readl(dev->bar + NVME_REG_CSTS);
2775 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2776 }
2777 
2778 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2779 {
2780 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
2781 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2782 	bool dead;
2783 
2784 	mutex_lock(&dev->shutdown_lock);
2785 	dead = nvme_pci_ctrl_is_dead(dev);
2786 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2787 		if (pci_is_enabled(pdev))
2788 			nvme_start_freeze(&dev->ctrl);
2789 		/*
2790 		 * Give the controller a chance to complete all entered requests
2791 		 * if doing a safe shutdown.
2792 		 */
2793 		if (!dead && shutdown)
2794 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2795 	}
2796 
2797 	nvme_quiesce_io_queues(&dev->ctrl);
2798 
2799 	if (!dead && dev->ctrl.queue_count > 0) {
2800 		nvme_delete_io_queues(dev);
2801 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2802 		nvme_poll_irqdisable(&dev->queues[0]);
2803 	}
2804 	nvme_suspend_io_queues(dev);
2805 	nvme_suspend_queue(dev, 0);
2806 	pci_free_irq_vectors(pdev);
2807 	if (pci_is_enabled(pdev))
2808 		pci_disable_device(pdev);
2809 	nvme_reap_pending_cqes(dev);
2810 
2811 	nvme_cancel_tagset(&dev->ctrl);
2812 	nvme_cancel_admin_tagset(&dev->ctrl);
2813 
2814 	/*
2815 	 * The driver will not be starting up queues again if shutting down so
2816 	 * must flush all entered requests to their failed completion to avoid
2817 	 * deadlocking blk-mq hot-cpu notifier.
2818 	 */
2819 	if (shutdown) {
2820 		nvme_unquiesce_io_queues(&dev->ctrl);
2821 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2822 			nvme_unquiesce_admin_queue(&dev->ctrl);
2823 	}
2824 	mutex_unlock(&dev->shutdown_lock);
2825 }
2826 
2827 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2828 {
2829 	if (!nvme_wait_reset(&dev->ctrl))
2830 		return -EBUSY;
2831 	nvme_dev_disable(dev, shutdown);
2832 	return 0;
2833 }
2834 
2835 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2836 {
2837 	size_t small_align = 256;
2838 
2839 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2840 						NVME_CTRL_PAGE_SIZE,
2841 						NVME_CTRL_PAGE_SIZE, 0);
2842 	if (!dev->prp_page_pool)
2843 		return -ENOMEM;
2844 
2845 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
2846 		small_align = 512;
2847 
2848 	/* Optimisation for I/Os between 4k and 128k */
2849 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2850 						256, small_align, 0);
2851 	if (!dev->prp_small_pool) {
2852 		dma_pool_destroy(dev->prp_page_pool);
2853 		return -ENOMEM;
2854 	}
2855 	return 0;
2856 }
2857 
2858 static void nvme_release_prp_pools(struct nvme_dev *dev)
2859 {
2860 	dma_pool_destroy(dev->prp_page_pool);
2861 	dma_pool_destroy(dev->prp_small_pool);
2862 }
2863 
2864 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2865 {
2866 	size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1);
2867 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2868 
2869 	dev->iod_mempool = mempool_create_node(1,
2870 			mempool_kmalloc, mempool_kfree,
2871 			(void *)alloc_size, GFP_KERNEL,
2872 			dev_to_node(dev->dev));
2873 	if (!dev->iod_mempool)
2874 		return -ENOMEM;
2875 
2876 	dev->iod_meta_mempool = mempool_create_node(1,
2877 			mempool_kmalloc, mempool_kfree,
2878 			(void *)meta_size, GFP_KERNEL,
2879 			dev_to_node(dev->dev));
2880 	if (!dev->iod_meta_mempool)
2881 		goto free;
2882 
2883 	return 0;
2884 free:
2885 	mempool_destroy(dev->iod_mempool);
2886 	return -ENOMEM;
2887 }
2888 
2889 static void nvme_free_tagset(struct nvme_dev *dev)
2890 {
2891 	if (dev->tagset.tags)
2892 		nvme_remove_io_tag_set(&dev->ctrl);
2893 	dev->ctrl.tagset = NULL;
2894 }
2895 
2896 /* pairs with nvme_pci_alloc_dev */
2897 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2898 {
2899 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2900 
2901 	nvme_free_tagset(dev);
2902 	put_device(dev->dev);
2903 	kfree(dev->queues);
2904 	kfree(dev);
2905 }
2906 
2907 static void nvme_reset_work(struct work_struct *work)
2908 {
2909 	struct nvme_dev *dev =
2910 		container_of(work, struct nvme_dev, ctrl.reset_work);
2911 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2912 	int result;
2913 
2914 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
2915 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2916 			 dev->ctrl.state);
2917 		result = -ENODEV;
2918 		goto out;
2919 	}
2920 
2921 	/*
2922 	 * If we're called to reset a live controller first shut it down before
2923 	 * moving on.
2924 	 */
2925 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2926 		nvme_dev_disable(dev, false);
2927 	nvme_sync_queues(&dev->ctrl);
2928 
2929 	mutex_lock(&dev->shutdown_lock);
2930 	result = nvme_pci_enable(dev);
2931 	if (result)
2932 		goto out_unlock;
2933 	nvme_unquiesce_admin_queue(&dev->ctrl);
2934 	mutex_unlock(&dev->shutdown_lock);
2935 
2936 	/*
2937 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2938 	 * initializing procedure here.
2939 	 */
2940 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2941 		dev_warn(dev->ctrl.device,
2942 			"failed to mark controller CONNECTING\n");
2943 		result = -EBUSY;
2944 		goto out;
2945 	}
2946 
2947 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2948 	if (result)
2949 		goto out;
2950 
2951 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
2952 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
2953 	else
2954 		dev->ctrl.max_integrity_segments = 1;
2955 
2956 	nvme_dbbuf_dma_alloc(dev);
2957 
2958 	result = nvme_setup_host_mem(dev);
2959 	if (result < 0)
2960 		goto out;
2961 
2962 	result = nvme_setup_io_queues(dev);
2963 	if (result)
2964 		goto out;
2965 
2966 	/*
2967 	 * Freeze and update the number of I/O queues as thos might have
2968 	 * changed.  If there are no I/O queues left after this reset, keep the
2969 	 * controller around but remove all namespaces.
2970 	 */
2971 	if (dev->online_queues > 1) {
2972 		nvme_dbbuf_set(dev);
2973 		nvme_unquiesce_io_queues(&dev->ctrl);
2974 		nvme_wait_freeze(&dev->ctrl);
2975 		if (!nvme_pci_update_nr_queues(dev))
2976 			goto out;
2977 		nvme_unfreeze(&dev->ctrl);
2978 	} else {
2979 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2980 		nvme_mark_namespaces_dead(&dev->ctrl);
2981 		nvme_unquiesce_io_queues(&dev->ctrl);
2982 		nvme_remove_namespaces(&dev->ctrl);
2983 		nvme_free_tagset(dev);
2984 	}
2985 
2986 	/*
2987 	 * If only admin queue live, keep it to do further investigation or
2988 	 * recovery.
2989 	 */
2990 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2991 		dev_warn(dev->ctrl.device,
2992 			"failed to mark controller live state\n");
2993 		result = -ENODEV;
2994 		goto out;
2995 	}
2996 
2997 	nvme_start_ctrl(&dev->ctrl);
2998 	return;
2999 
3000  out_unlock:
3001 	mutex_unlock(&dev->shutdown_lock);
3002  out:
3003 	/*
3004 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3005 	 * may be holding this pci_dev's device lock.
3006 	 */
3007 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3008 		 result);
3009 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3010 	nvme_dev_disable(dev, true);
3011 	nvme_sync_queues(&dev->ctrl);
3012 	nvme_mark_namespaces_dead(&dev->ctrl);
3013 	nvme_unquiesce_io_queues(&dev->ctrl);
3014 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3015 }
3016 
3017 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3018 {
3019 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3020 	return 0;
3021 }
3022 
3023 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3024 {
3025 	writel(val, to_nvme_dev(ctrl)->bar + off);
3026 	return 0;
3027 }
3028 
3029 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3030 {
3031 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3032 	return 0;
3033 }
3034 
3035 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3036 {
3037 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3038 
3039 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3040 }
3041 
3042 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3043 {
3044 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3045 	struct nvme_subsystem *subsys = ctrl->subsys;
3046 
3047 	dev_err(ctrl->device,
3048 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3049 		pdev->vendor, pdev->device,
3050 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3051 		subsys->model, nvme_strlen(subsys->firmware_rev,
3052 					   sizeof(subsys->firmware_rev)),
3053 		subsys->firmware_rev);
3054 }
3055 
3056 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3057 {
3058 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3059 
3060 	return dma_pci_p2pdma_supported(dev->dev);
3061 }
3062 
3063 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3064 	.name			= "pcie",
3065 	.module			= THIS_MODULE,
3066 	.flags			= NVME_F_METADATA_SUPPORTED,
3067 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3068 	.reg_read32		= nvme_pci_reg_read32,
3069 	.reg_write32		= nvme_pci_reg_write32,
3070 	.reg_read64		= nvme_pci_reg_read64,
3071 	.free_ctrl		= nvme_pci_free_ctrl,
3072 	.submit_async_event	= nvme_pci_submit_async_event,
3073 	.subsystem_reset	= nvme_pci_subsystem_reset,
3074 	.get_address		= nvme_pci_get_address,
3075 	.print_device_info	= nvme_pci_print_device_info,
3076 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3077 };
3078 
3079 static int nvme_dev_map(struct nvme_dev *dev)
3080 {
3081 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3082 
3083 	if (pci_request_mem_regions(pdev, "nvme"))
3084 		return -ENODEV;
3085 
3086 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3087 		goto release;
3088 
3089 	return 0;
3090   release:
3091 	pci_release_mem_regions(pdev);
3092 	return -ENODEV;
3093 }
3094 
3095 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3096 {
3097 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3098 		/*
3099 		 * Several Samsung devices seem to drop off the PCIe bus
3100 		 * randomly when APST is on and uses the deepest sleep state.
3101 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3102 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3103 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3104 		 * laptops.
3105 		 */
3106 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3107 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3108 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3109 			return NVME_QUIRK_NO_DEEPEST_PS;
3110 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3111 		/*
3112 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3113 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3114 		 * within few minutes after bootup on a Coffee Lake board -
3115 		 * ASUS PRIME Z370-A
3116 		 */
3117 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3118 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3119 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3120 			return NVME_QUIRK_NO_APST;
3121 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3122 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3123 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3124 		/*
3125 		 * Forcing to use host managed nvme power settings for
3126 		 * lowest idle power with quick resume latency on
3127 		 * Samsung and Toshiba SSDs based on suspend behavior
3128 		 * on Coffee Lake board for LENOVO C640
3129 		 */
3130 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3131 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3132 			return NVME_QUIRK_SIMPLE_SUSPEND;
3133 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3134 		   pdev->device == 0x500f)) {
3135 		/*
3136 		 * Exclude some Kingston NV1 and A2000 devices from
3137 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3138 		 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3139 		 */
3140 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3141 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3142 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3143 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3144 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3145 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3146 		/*
3147 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3148 		 * because of high power consumption (> 2 Watt) in s2idle
3149 		 * sleep. Only some boards with Intel CPU are affected.
3150 		 */
3151 		if (dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3152 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3153 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3154 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3155 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3156 	}
3157 
3158 	/*
3159 	 * NVMe SSD drops off the PCIe bus after system idle
3160 	 * for 10 hours on a Lenovo N60z board.
3161 	 */
3162 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3163 		return NVME_QUIRK_NO_APST;
3164 
3165 	return 0;
3166 }
3167 
3168 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3169 		const struct pci_device_id *id)
3170 {
3171 	unsigned long quirks = id->driver_data;
3172 	int node = dev_to_node(&pdev->dev);
3173 	struct nvme_dev *dev;
3174 	int ret = -ENOMEM;
3175 
3176 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3177 	if (!dev)
3178 		return ERR_PTR(-ENOMEM);
3179 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3180 	mutex_init(&dev->shutdown_lock);
3181 
3182 	dev->nr_write_queues = write_queues;
3183 	dev->nr_poll_queues = poll_queues;
3184 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3185 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3186 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3187 	if (!dev->queues)
3188 		goto out_free_dev;
3189 
3190 	dev->dev = get_device(&pdev->dev);
3191 
3192 	quirks |= check_vendor_combination_bug(pdev);
3193 	if (!noacpi &&
3194 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3195 	    acpi_storage_d3(&pdev->dev)) {
3196 		/*
3197 		 * Some systems use a bios work around to ask for D3 on
3198 		 * platforms that support kernel managed suspend.
3199 		 */
3200 		dev_info(&pdev->dev,
3201 			 "platform quirk: setting simple suspend\n");
3202 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3203 	}
3204 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3205 			     quirks);
3206 	if (ret)
3207 		goto out_put_device;
3208 
3209 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3210 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3211 	else
3212 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3213 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3214 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3215 
3216 	/*
3217 	 * Limit the max command size to prevent iod->sg allocations going
3218 	 * over a single page.
3219 	 */
3220 	dev->ctrl.max_hw_sectors = min_t(u32,
3221 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
3222 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3223 	dev->ctrl.max_integrity_segments = 1;
3224 	return dev;
3225 
3226 out_put_device:
3227 	put_device(dev->dev);
3228 	kfree(dev->queues);
3229 out_free_dev:
3230 	kfree(dev);
3231 	return ERR_PTR(ret);
3232 }
3233 
3234 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3235 {
3236 	struct nvme_dev *dev;
3237 	int result = -ENOMEM;
3238 
3239 	dev = nvme_pci_alloc_dev(pdev, id);
3240 	if (IS_ERR(dev))
3241 		return PTR_ERR(dev);
3242 
3243 	result = nvme_add_ctrl(&dev->ctrl);
3244 	if (result)
3245 		goto out_put_ctrl;
3246 
3247 	result = nvme_dev_map(dev);
3248 	if (result)
3249 		goto out_uninit_ctrl;
3250 
3251 	result = nvme_setup_prp_pools(dev);
3252 	if (result)
3253 		goto out_dev_unmap;
3254 
3255 	result = nvme_pci_alloc_iod_mempool(dev);
3256 	if (result)
3257 		goto out_release_prp_pools;
3258 
3259 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3260 
3261 	result = nvme_pci_enable(dev);
3262 	if (result)
3263 		goto out_release_iod_mempool;
3264 
3265 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3266 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3267 	if (result)
3268 		goto out_disable;
3269 
3270 	/*
3271 	 * Mark the controller as connecting before sending admin commands to
3272 	 * allow the timeout handler to do the right thing.
3273 	 */
3274 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3275 		dev_warn(dev->ctrl.device,
3276 			"failed to mark controller CONNECTING\n");
3277 		result = -EBUSY;
3278 		goto out_disable;
3279 	}
3280 
3281 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3282 	if (result)
3283 		goto out_disable;
3284 
3285 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3286 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3287 	else
3288 		dev->ctrl.max_integrity_segments = 1;
3289 
3290 	nvme_dbbuf_dma_alloc(dev);
3291 
3292 	result = nvme_setup_host_mem(dev);
3293 	if (result < 0)
3294 		goto out_disable;
3295 
3296 	result = nvme_setup_io_queues(dev);
3297 	if (result)
3298 		goto out_disable;
3299 
3300 	if (dev->online_queues > 1) {
3301 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3302 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3303 		nvme_dbbuf_set(dev);
3304 	}
3305 
3306 	if (!dev->ctrl.tagset)
3307 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3308 
3309 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3310 		dev_warn(dev->ctrl.device,
3311 			"failed to mark controller live state\n");
3312 		result = -ENODEV;
3313 		goto out_disable;
3314 	}
3315 
3316 	pci_set_drvdata(pdev, dev);
3317 
3318 	nvme_start_ctrl(&dev->ctrl);
3319 	nvme_put_ctrl(&dev->ctrl);
3320 	flush_work(&dev->ctrl.scan_work);
3321 	return 0;
3322 
3323 out_disable:
3324 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3325 	nvme_dev_disable(dev, true);
3326 	nvme_free_host_mem(dev);
3327 	nvme_dev_remove_admin(dev);
3328 	nvme_dbbuf_dma_free(dev);
3329 	nvme_free_queues(dev, 0);
3330 out_release_iod_mempool:
3331 	mempool_destroy(dev->iod_mempool);
3332 	mempool_destroy(dev->iod_meta_mempool);
3333 out_release_prp_pools:
3334 	nvme_release_prp_pools(dev);
3335 out_dev_unmap:
3336 	nvme_dev_unmap(dev);
3337 out_uninit_ctrl:
3338 	nvme_uninit_ctrl(&dev->ctrl);
3339 out_put_ctrl:
3340 	nvme_put_ctrl(&dev->ctrl);
3341 	return result;
3342 }
3343 
3344 static void nvme_reset_prepare(struct pci_dev *pdev)
3345 {
3346 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3347 
3348 	/*
3349 	 * We don't need to check the return value from waiting for the reset
3350 	 * state as pci_dev device lock is held, making it impossible to race
3351 	 * with ->remove().
3352 	 */
3353 	nvme_disable_prepare_reset(dev, false);
3354 	nvme_sync_queues(&dev->ctrl);
3355 }
3356 
3357 static void nvme_reset_done(struct pci_dev *pdev)
3358 {
3359 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3360 
3361 	if (!nvme_try_sched_reset(&dev->ctrl))
3362 		flush_work(&dev->ctrl.reset_work);
3363 }
3364 
3365 static void nvme_shutdown(struct pci_dev *pdev)
3366 {
3367 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3368 
3369 	nvme_disable_prepare_reset(dev, true);
3370 }
3371 
3372 /*
3373  * The driver's remove may be called on a device in a partially initialized
3374  * state. This function must not have any dependencies on the device state in
3375  * order to proceed.
3376  */
3377 static void nvme_remove(struct pci_dev *pdev)
3378 {
3379 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3380 
3381 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3382 	pci_set_drvdata(pdev, NULL);
3383 
3384 	if (!pci_device_is_present(pdev)) {
3385 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3386 		nvme_dev_disable(dev, true);
3387 	}
3388 
3389 	flush_work(&dev->ctrl.reset_work);
3390 	nvme_stop_ctrl(&dev->ctrl);
3391 	nvme_remove_namespaces(&dev->ctrl);
3392 	nvme_dev_disable(dev, true);
3393 	nvme_free_host_mem(dev);
3394 	nvme_dev_remove_admin(dev);
3395 	nvme_dbbuf_dma_free(dev);
3396 	nvme_free_queues(dev, 0);
3397 	mempool_destroy(dev->iod_mempool);
3398 	mempool_destroy(dev->iod_meta_mempool);
3399 	nvme_release_prp_pools(dev);
3400 	nvme_dev_unmap(dev);
3401 	nvme_uninit_ctrl(&dev->ctrl);
3402 }
3403 
3404 #ifdef CONFIG_PM_SLEEP
3405 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3406 {
3407 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3408 }
3409 
3410 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3411 {
3412 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3413 }
3414 
3415 static int nvme_resume(struct device *dev)
3416 {
3417 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3418 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3419 
3420 	if (ndev->last_ps == U32_MAX ||
3421 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3422 		goto reset;
3423 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3424 		goto reset;
3425 
3426 	return 0;
3427 reset:
3428 	return nvme_try_sched_reset(ctrl);
3429 }
3430 
3431 static int nvme_suspend(struct device *dev)
3432 {
3433 	struct pci_dev *pdev = to_pci_dev(dev);
3434 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3435 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3436 	int ret = -EBUSY;
3437 
3438 	ndev->last_ps = U32_MAX;
3439 
3440 	/*
3441 	 * The platform does not remove power for a kernel managed suspend so
3442 	 * use host managed nvme power settings for lowest idle power if
3443 	 * possible. This should have quicker resume latency than a full device
3444 	 * shutdown.  But if the firmware is involved after the suspend or the
3445 	 * device does not support any non-default power states, shut down the
3446 	 * device fully.
3447 	 *
3448 	 * If ASPM is not enabled for the device, shut down the device and allow
3449 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3450 	 * down, so as to allow the platform to achieve its minimum low-power
3451 	 * state (which may not be possible if the link is up).
3452 	 */
3453 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3454 	    !pcie_aspm_enabled(pdev) ||
3455 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3456 		return nvme_disable_prepare_reset(ndev, true);
3457 
3458 	nvme_start_freeze(ctrl);
3459 	nvme_wait_freeze(ctrl);
3460 	nvme_sync_queues(ctrl);
3461 
3462 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3463 		goto unfreeze;
3464 
3465 	/*
3466 	 * Host memory access may not be successful in a system suspend state,
3467 	 * but the specification allows the controller to access memory in a
3468 	 * non-operational power state.
3469 	 */
3470 	if (ndev->hmb) {
3471 		ret = nvme_set_host_mem(ndev, 0);
3472 		if (ret < 0)
3473 			goto unfreeze;
3474 	}
3475 
3476 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3477 	if (ret < 0)
3478 		goto unfreeze;
3479 
3480 	/*
3481 	 * A saved state prevents pci pm from generically controlling the
3482 	 * device's power. If we're using protocol specific settings, we don't
3483 	 * want pci interfering.
3484 	 */
3485 	pci_save_state(pdev);
3486 
3487 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3488 	if (ret < 0)
3489 		goto unfreeze;
3490 
3491 	if (ret) {
3492 		/* discard the saved state */
3493 		pci_load_saved_state(pdev, NULL);
3494 
3495 		/*
3496 		 * Clearing npss forces a controller reset on resume. The
3497 		 * correct value will be rediscovered then.
3498 		 */
3499 		ret = nvme_disable_prepare_reset(ndev, true);
3500 		ctrl->npss = 0;
3501 	}
3502 unfreeze:
3503 	nvme_unfreeze(ctrl);
3504 	return ret;
3505 }
3506 
3507 static int nvme_simple_suspend(struct device *dev)
3508 {
3509 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3510 
3511 	return nvme_disable_prepare_reset(ndev, true);
3512 }
3513 
3514 static int nvme_simple_resume(struct device *dev)
3515 {
3516 	struct pci_dev *pdev = to_pci_dev(dev);
3517 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3518 
3519 	return nvme_try_sched_reset(&ndev->ctrl);
3520 }
3521 
3522 static const struct dev_pm_ops nvme_dev_pm_ops = {
3523 	.suspend	= nvme_suspend,
3524 	.resume		= nvme_resume,
3525 	.freeze		= nvme_simple_suspend,
3526 	.thaw		= nvme_simple_resume,
3527 	.poweroff	= nvme_simple_suspend,
3528 	.restore	= nvme_simple_resume,
3529 };
3530 #endif /* CONFIG_PM_SLEEP */
3531 
3532 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3533 						pci_channel_state_t state)
3534 {
3535 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3536 
3537 	/*
3538 	 * A frozen channel requires a reset. When detected, this method will
3539 	 * shutdown the controller to quiesce. The controller will be restarted
3540 	 * after the slot reset through driver's slot_reset callback.
3541 	 */
3542 	switch (state) {
3543 	case pci_channel_io_normal:
3544 		return PCI_ERS_RESULT_CAN_RECOVER;
3545 	case pci_channel_io_frozen:
3546 		dev_warn(dev->ctrl.device,
3547 			"frozen state error detected, reset controller\n");
3548 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3549 			nvme_dev_disable(dev, true);
3550 			return PCI_ERS_RESULT_DISCONNECT;
3551 		}
3552 		nvme_dev_disable(dev, false);
3553 		return PCI_ERS_RESULT_NEED_RESET;
3554 	case pci_channel_io_perm_failure:
3555 		dev_warn(dev->ctrl.device,
3556 			"failure state error detected, request disconnect\n");
3557 		return PCI_ERS_RESULT_DISCONNECT;
3558 	}
3559 	return PCI_ERS_RESULT_NEED_RESET;
3560 }
3561 
3562 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3563 {
3564 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3565 
3566 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3567 	pci_restore_state(pdev);
3568 	if (!nvme_try_sched_reset(&dev->ctrl))
3569 		nvme_unquiesce_io_queues(&dev->ctrl);
3570 	return PCI_ERS_RESULT_RECOVERED;
3571 }
3572 
3573 static void nvme_error_resume(struct pci_dev *pdev)
3574 {
3575 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3576 
3577 	flush_work(&dev->ctrl.reset_work);
3578 }
3579 
3580 static const struct pci_error_handlers nvme_err_handler = {
3581 	.error_detected	= nvme_error_detected,
3582 	.slot_reset	= nvme_slot_reset,
3583 	.resume		= nvme_error_resume,
3584 	.reset_prepare	= nvme_reset_prepare,
3585 	.reset_done	= nvme_reset_done,
3586 };
3587 
3588 static const struct pci_device_id nvme_id_table[] = {
3589 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3590 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3591 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3592 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3593 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3594 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3595 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3596 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3597 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3598 				NVME_QUIRK_BOGUS_NID, },
3599 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3600 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3601 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3602 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3603 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3604 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3605 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3606 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3607 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3608 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3609 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3610 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3611 				NVME_QUIRK_BOGUS_NID, },
3612 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3613 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3614 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3615 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3616 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3617 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3618 				NVME_QUIRK_BOGUS_NID, },
3619 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3620 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3621 				NVME_QUIRK_BOGUS_NID, },
3622 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3623 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3624 				NVME_QUIRK_NO_NS_DESC_LIST, },
3625 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3626 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3627 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3628 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3629 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3630 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3631 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3632 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3633 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3634 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3635 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3636 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3637 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3638 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3639 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3640 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3641 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3642 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3643 				NVME_QUIRK_BOGUS_NID, },
3644 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3645 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3646 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3647 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3648 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3649 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3650 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3651 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3652 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3653 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3654 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3655 				NVME_QUIRK_BOGUS_NID, },
3656 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3657 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3658 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3659 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3660 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3661 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3662 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3663 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3664 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3665 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3666 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3667 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3668 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3669 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3670 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3671 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3672 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3673 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3674 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3675 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3676 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3677 				NVME_QUIRK_BOGUS_NID, },
3678 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3679 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3680 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3681 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3682 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3683 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3684 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3685 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3686 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3687 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3688 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3689 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3690 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3691 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3692 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3693 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3694 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3695 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3696 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3697 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3698 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3699 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3700 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3701 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3702 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3703 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3704 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3705 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3706 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3707 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3708 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3709 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3710 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3711 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3712 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3713 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3714 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3715 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3716 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3717 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3718 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3719 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3720 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3721 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3722 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3723 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3724 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3725 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3726 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3727 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3728 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3729 		.driver_data = NVME_QUIRK_BOGUS_NID |
3730 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3731 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3732 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3733 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3734 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3735 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3736 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3737 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3738 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3739 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3740 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3741 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3742 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3743 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3744 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3745 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3746 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3747 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3748 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3749 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3750 		/*
3751 		 * Fix for the Apple controller found in the MacBook8,1 and
3752 		 * some MacBook7,1 to avoid controller resets and data loss.
3753 		 */
3754 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3755 				NVME_QUIRK_QDEPTH_ONE },
3756 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3757 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3758 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3759 				NVME_QUIRK_128_BYTES_SQES |
3760 				NVME_QUIRK_SHARED_TAGS |
3761 				NVME_QUIRK_SKIP_CID_GEN |
3762 				NVME_QUIRK_IDENTIFY_CNS },
3763 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3764 	{ 0, }
3765 };
3766 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3767 
3768 static struct pci_driver nvme_driver = {
3769 	.name		= "nvme",
3770 	.id_table	= nvme_id_table,
3771 	.probe		= nvme_probe,
3772 	.remove		= nvme_remove,
3773 	.shutdown	= nvme_shutdown,
3774 	.driver		= {
3775 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3776 #ifdef CONFIG_PM_SLEEP
3777 		.pm		= &nvme_dev_pm_ops,
3778 #endif
3779 	},
3780 	.sriov_configure = pci_sriov_configure_simple,
3781 	.err_handler	= &nvme_err_handler,
3782 };
3783 
3784 static int __init nvme_init(void)
3785 {
3786 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3787 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3788 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3789 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3790 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3791 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3792 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3793 
3794 	return pci_register_driver(&nvme_driver);
3795 }
3796 
3797 static void __exit nvme_exit(void)
3798 {
3799 	pci_unregister_driver(&nvme_driver);
3800 	flush_workqueue(nvme_wq);
3801 }
3802 
3803 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3804 MODULE_LICENSE("GPL");
3805 MODULE_VERSION("1.0");
3806 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3807 module_init(nvme_init);
3808 module_exit(nvme_exit);
3809