1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 782 return nvme_setup_prp_simple(dev, req, 783 &cmnd->rw, &bv); 784 785 if (nvmeq->qid && sgl_threshold && 786 nvme_ctrl_sgl_supported(&dev->ctrl)) 787 return nvme_setup_sgl_simple(dev, req, 788 &cmnd->rw, &bv); 789 } 790 } 791 792 iod->dma_len = 0; 793 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 794 if (!iod->sgt.sgl) 795 return BLK_STS_RESOURCE; 796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 797 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 798 if (!iod->sgt.orig_nents) 799 goto out_free_sg; 800 801 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 802 DMA_ATTR_NO_WARN); 803 if (rc) { 804 if (rc == -EREMOTEIO) 805 ret = BLK_STS_TARGET; 806 goto out_free_sg; 807 } 808 809 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 811 else 812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 813 if (ret != BLK_STS_OK) 814 goto out_unmap_sg; 815 return BLK_STS_OK; 816 817 out_unmap_sg: 818 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 819 out_free_sg: 820 mempool_free(iod->sgt.sgl, dev->iod_mempool); 821 return ret; 822 } 823 824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 825 struct nvme_command *cmnd) 826 { 827 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 828 829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 830 rq_dma_dir(req), 0); 831 if (dma_mapping_error(dev->dev, iod->meta_dma)) 832 return BLK_STS_IOERR; 833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 834 return BLK_STS_OK; 835 } 836 837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 838 { 839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 840 blk_status_t ret; 841 842 iod->aborted = false; 843 iod->nr_allocations = -1; 844 iod->sgt.nents = 0; 845 846 ret = nvme_setup_cmd(req->q->queuedata, req); 847 if (ret) 848 return ret; 849 850 if (blk_rq_nr_phys_segments(req)) { 851 ret = nvme_map_data(dev, req, &iod->cmd); 852 if (ret) 853 goto out_free_cmd; 854 } 855 856 if (blk_integrity_rq(req)) { 857 ret = nvme_map_metadata(dev, req, &iod->cmd); 858 if (ret) 859 goto out_unmap_data; 860 } 861 862 nvme_start_request(req); 863 return BLK_STS_OK; 864 out_unmap_data: 865 nvme_unmap_data(dev, req); 866 out_free_cmd: 867 nvme_cleanup_cmd(req); 868 return ret; 869 } 870 871 /* 872 * NOTE: ns is NULL when called on the admin queue. 873 */ 874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 875 const struct blk_mq_queue_data *bd) 876 { 877 struct nvme_queue *nvmeq = hctx->driver_data; 878 struct nvme_dev *dev = nvmeq->dev; 879 struct request *req = bd->rq; 880 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 881 blk_status_t ret; 882 883 /* 884 * We should not need to do this, but we're still using this to 885 * ensure we can drain requests on a dying queue. 886 */ 887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 888 return BLK_STS_IOERR; 889 890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 891 return nvme_fail_nonready_command(&dev->ctrl, req); 892 893 ret = nvme_prep_rq(dev, req); 894 if (unlikely(ret)) 895 return ret; 896 spin_lock(&nvmeq->sq_lock); 897 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 898 nvme_write_sq_db(nvmeq, bd->last); 899 spin_unlock(&nvmeq->sq_lock); 900 return BLK_STS_OK; 901 } 902 903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 904 { 905 spin_lock(&nvmeq->sq_lock); 906 while (!rq_list_empty(*rqlist)) { 907 struct request *req = rq_list_pop(rqlist); 908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 909 910 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 911 } 912 nvme_write_sq_db(nvmeq, true); 913 spin_unlock(&nvmeq->sq_lock); 914 } 915 916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 917 { 918 /* 919 * We should not need to do this, but we're still using this to 920 * ensure we can drain requests on a dying queue. 921 */ 922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 923 return false; 924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 925 return false; 926 927 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 928 } 929 930 static void nvme_queue_rqs(struct request **rqlist) 931 { 932 struct request *req, *next, *prev = NULL; 933 struct request *requeue_list = NULL; 934 935 rq_list_for_each_safe(rqlist, req, next) { 936 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 937 938 if (!nvme_prep_rq_batch(nvmeq, req)) { 939 /* detach 'req' and add to remainder list */ 940 rq_list_move(rqlist, &requeue_list, req, prev); 941 942 req = prev; 943 if (!req) 944 continue; 945 } 946 947 if (!next || req->mq_hctx != next->mq_hctx) { 948 /* detach rest of list, and submit */ 949 req->rq_next = NULL; 950 nvme_submit_cmds(nvmeq, rqlist); 951 *rqlist = next; 952 prev = NULL; 953 } else 954 prev = req; 955 } 956 957 *rqlist = requeue_list; 958 } 959 960 static __always_inline void nvme_pci_unmap_rq(struct request *req) 961 { 962 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 963 struct nvme_dev *dev = nvmeq->dev; 964 965 if (blk_integrity_rq(req)) { 966 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 967 968 dma_unmap_page(dev->dev, iod->meta_dma, 969 rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); 970 } 971 972 if (blk_rq_nr_phys_segments(req)) 973 nvme_unmap_data(dev, req); 974 } 975 976 static void nvme_pci_complete_rq(struct request *req) 977 { 978 nvme_pci_unmap_rq(req); 979 nvme_complete_rq(req); 980 } 981 982 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 983 { 984 nvme_complete_batch(iob, nvme_pci_unmap_rq); 985 } 986 987 /* We read the CQE phase first to check if the rest of the entry is valid */ 988 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 989 { 990 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 991 992 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 993 } 994 995 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 996 { 997 u16 head = nvmeq->cq_head; 998 999 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1000 nvmeq->dbbuf_cq_ei)) 1001 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1002 } 1003 1004 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1005 { 1006 if (!nvmeq->qid) 1007 return nvmeq->dev->admin_tagset.tags[0]; 1008 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1009 } 1010 1011 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1012 struct io_comp_batch *iob, u16 idx) 1013 { 1014 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1015 __u16 command_id = READ_ONCE(cqe->command_id); 1016 struct request *req; 1017 1018 /* 1019 * AEN requests are special as they don't time out and can 1020 * survive any kind of queue freeze and often don't respond to 1021 * aborts. We don't even bother to allocate a struct request 1022 * for them but rather special case them here. 1023 */ 1024 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1025 nvme_complete_async_event(&nvmeq->dev->ctrl, 1026 cqe->status, &cqe->result); 1027 return; 1028 } 1029 1030 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1031 if (unlikely(!req)) { 1032 dev_warn(nvmeq->dev->ctrl.device, 1033 "invalid id %d completed on queue %d\n", 1034 command_id, le16_to_cpu(cqe->sq_id)); 1035 return; 1036 } 1037 1038 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1039 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1040 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1041 nvme_pci_complete_batch)) 1042 nvme_pci_complete_rq(req); 1043 } 1044 1045 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1046 { 1047 u32 tmp = nvmeq->cq_head + 1; 1048 1049 if (tmp == nvmeq->q_depth) { 1050 nvmeq->cq_head = 0; 1051 nvmeq->cq_phase ^= 1; 1052 } else { 1053 nvmeq->cq_head = tmp; 1054 } 1055 } 1056 1057 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1058 struct io_comp_batch *iob) 1059 { 1060 int found = 0; 1061 1062 while (nvme_cqe_pending(nvmeq)) { 1063 found++; 1064 /* 1065 * load-load control dependency between phase and the rest of 1066 * the cqe requires a full read memory barrier 1067 */ 1068 dma_rmb(); 1069 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1070 nvme_update_cq_head(nvmeq); 1071 } 1072 1073 if (found) 1074 nvme_ring_cq_doorbell(nvmeq); 1075 return found; 1076 } 1077 1078 static irqreturn_t nvme_irq(int irq, void *data) 1079 { 1080 struct nvme_queue *nvmeq = data; 1081 DEFINE_IO_COMP_BATCH(iob); 1082 1083 if (nvme_poll_cq(nvmeq, &iob)) { 1084 if (!rq_list_empty(iob.req_list)) 1085 nvme_pci_complete_batch(&iob); 1086 return IRQ_HANDLED; 1087 } 1088 return IRQ_NONE; 1089 } 1090 1091 static irqreturn_t nvme_irq_check(int irq, void *data) 1092 { 1093 struct nvme_queue *nvmeq = data; 1094 1095 if (nvme_cqe_pending(nvmeq)) 1096 return IRQ_WAKE_THREAD; 1097 return IRQ_NONE; 1098 } 1099 1100 /* 1101 * Poll for completions for any interrupt driven queue 1102 * Can be called from any context. 1103 */ 1104 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1105 { 1106 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1107 1108 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1109 1110 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1111 nvme_poll_cq(nvmeq, NULL); 1112 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1113 } 1114 1115 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1116 { 1117 struct nvme_queue *nvmeq = hctx->driver_data; 1118 bool found; 1119 1120 if (!nvme_cqe_pending(nvmeq)) 1121 return 0; 1122 1123 spin_lock(&nvmeq->cq_poll_lock); 1124 found = nvme_poll_cq(nvmeq, iob); 1125 spin_unlock(&nvmeq->cq_poll_lock); 1126 1127 return found; 1128 } 1129 1130 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1131 { 1132 struct nvme_dev *dev = to_nvme_dev(ctrl); 1133 struct nvme_queue *nvmeq = &dev->queues[0]; 1134 struct nvme_command c = { }; 1135 1136 c.common.opcode = nvme_admin_async_event; 1137 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1138 1139 spin_lock(&nvmeq->sq_lock); 1140 nvme_sq_copy_cmd(nvmeq, &c); 1141 nvme_write_sq_db(nvmeq, true); 1142 spin_unlock(&nvmeq->sq_lock); 1143 } 1144 1145 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1146 { 1147 struct nvme_command c = { }; 1148 1149 c.delete_queue.opcode = opcode; 1150 c.delete_queue.qid = cpu_to_le16(id); 1151 1152 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1153 } 1154 1155 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1156 struct nvme_queue *nvmeq, s16 vector) 1157 { 1158 struct nvme_command c = { }; 1159 int flags = NVME_QUEUE_PHYS_CONTIG; 1160 1161 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1162 flags |= NVME_CQ_IRQ_ENABLED; 1163 1164 /* 1165 * Note: we (ab)use the fact that the prp fields survive if no data 1166 * is attached to the request. 1167 */ 1168 c.create_cq.opcode = nvme_admin_create_cq; 1169 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1170 c.create_cq.cqid = cpu_to_le16(qid); 1171 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1172 c.create_cq.cq_flags = cpu_to_le16(flags); 1173 c.create_cq.irq_vector = cpu_to_le16(vector); 1174 1175 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1176 } 1177 1178 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1179 struct nvme_queue *nvmeq) 1180 { 1181 struct nvme_ctrl *ctrl = &dev->ctrl; 1182 struct nvme_command c = { }; 1183 int flags = NVME_QUEUE_PHYS_CONTIG; 1184 1185 /* 1186 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1187 * set. Since URGENT priority is zeroes, it makes all queues 1188 * URGENT. 1189 */ 1190 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1191 flags |= NVME_SQ_PRIO_MEDIUM; 1192 1193 /* 1194 * Note: we (ab)use the fact that the prp fields survive if no data 1195 * is attached to the request. 1196 */ 1197 c.create_sq.opcode = nvme_admin_create_sq; 1198 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1199 c.create_sq.sqid = cpu_to_le16(qid); 1200 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1201 c.create_sq.sq_flags = cpu_to_le16(flags); 1202 c.create_sq.cqid = cpu_to_le16(qid); 1203 1204 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1205 } 1206 1207 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1208 { 1209 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1210 } 1211 1212 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1213 { 1214 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1215 } 1216 1217 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1218 { 1219 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1220 1221 dev_warn(nvmeq->dev->ctrl.device, 1222 "Abort status: 0x%x", nvme_req(req)->status); 1223 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1224 blk_mq_free_request(req); 1225 return RQ_END_IO_NONE; 1226 } 1227 1228 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1229 { 1230 /* If true, indicates loss of adapter communication, possibly by a 1231 * NVMe Subsystem reset. 1232 */ 1233 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1234 1235 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1236 switch (dev->ctrl.state) { 1237 case NVME_CTRL_RESETTING: 1238 case NVME_CTRL_CONNECTING: 1239 return false; 1240 default: 1241 break; 1242 } 1243 1244 /* We shouldn't reset unless the controller is on fatal error state 1245 * _or_ if we lost the communication with it. 1246 */ 1247 if (!(csts & NVME_CSTS_CFS) && !nssro) 1248 return false; 1249 1250 return true; 1251 } 1252 1253 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1254 { 1255 /* Read a config register to help see what died. */ 1256 u16 pci_status; 1257 int result; 1258 1259 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1260 &pci_status); 1261 if (result == PCIBIOS_SUCCESSFUL) 1262 dev_warn(dev->ctrl.device, 1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1264 csts, pci_status); 1265 else 1266 dev_warn(dev->ctrl.device, 1267 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1268 csts, result); 1269 1270 if (csts != ~0) 1271 return; 1272 1273 dev_warn(dev->ctrl.device, 1274 "Does your device have a faulty power saving mode enabled?\n"); 1275 dev_warn(dev->ctrl.device, 1276 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1277 } 1278 1279 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1280 { 1281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1282 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1283 struct nvme_dev *dev = nvmeq->dev; 1284 struct request *abort_req; 1285 struct nvme_command cmd = { }; 1286 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1287 1288 /* If PCI error recovery process is happening, we cannot reset or 1289 * the recovery mechanism will surely fail. 1290 */ 1291 mb(); 1292 if (pci_channel_offline(to_pci_dev(dev->dev))) 1293 return BLK_EH_RESET_TIMER; 1294 1295 /* 1296 * Reset immediately if the controller is failed 1297 */ 1298 if (nvme_should_reset(dev, csts)) { 1299 nvme_warn_reset(dev, csts); 1300 goto disable; 1301 } 1302 1303 /* 1304 * Did we miss an interrupt? 1305 */ 1306 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1307 nvme_poll(req->mq_hctx, NULL); 1308 else 1309 nvme_poll_irqdisable(nvmeq); 1310 1311 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1312 dev_warn(dev->ctrl.device, 1313 "I/O %d QID %d timeout, completion polled\n", 1314 req->tag, nvmeq->qid); 1315 return BLK_EH_DONE; 1316 } 1317 1318 /* 1319 * Shutdown immediately if controller times out while starting. The 1320 * reset work will see the pci device disabled when it gets the forced 1321 * cancellation error. All outstanding requests are completed on 1322 * shutdown, so we return BLK_EH_DONE. 1323 */ 1324 switch (dev->ctrl.state) { 1325 case NVME_CTRL_CONNECTING: 1326 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1327 fallthrough; 1328 case NVME_CTRL_DELETING: 1329 dev_warn_ratelimited(dev->ctrl.device, 1330 "I/O %d QID %d timeout, disable controller\n", 1331 req->tag, nvmeq->qid); 1332 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1333 nvme_dev_disable(dev, true); 1334 return BLK_EH_DONE; 1335 case NVME_CTRL_RESETTING: 1336 return BLK_EH_RESET_TIMER; 1337 default: 1338 break; 1339 } 1340 1341 /* 1342 * Shutdown the controller immediately and schedule a reset if the 1343 * command was already aborted once before and still hasn't been 1344 * returned to the driver, or if this is the admin queue. 1345 */ 1346 if (!nvmeq->qid || iod->aborted) { 1347 dev_warn(dev->ctrl.device, 1348 "I/O %d QID %d timeout, reset controller\n", 1349 req->tag, nvmeq->qid); 1350 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1351 goto disable; 1352 } 1353 1354 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1355 atomic_inc(&dev->ctrl.abort_limit); 1356 return BLK_EH_RESET_TIMER; 1357 } 1358 iod->aborted = true; 1359 1360 cmd.abort.opcode = nvme_admin_abort_cmd; 1361 cmd.abort.cid = nvme_cid(req); 1362 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1363 1364 dev_warn(nvmeq->dev->ctrl.device, 1365 "I/O %d (%s) QID %d timeout, aborting\n", 1366 req->tag, 1367 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1368 nvmeq->qid); 1369 1370 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1371 BLK_MQ_REQ_NOWAIT); 1372 if (IS_ERR(abort_req)) { 1373 atomic_inc(&dev->ctrl.abort_limit); 1374 return BLK_EH_RESET_TIMER; 1375 } 1376 nvme_init_request(abort_req, &cmd); 1377 1378 abort_req->end_io = abort_endio; 1379 abort_req->end_io_data = NULL; 1380 blk_execute_rq_nowait(abort_req, false); 1381 1382 /* 1383 * The aborted req will be completed on receiving the abort req. 1384 * We enable the timer again. If hit twice, it'll cause a device reset, 1385 * as the device then is in a faulty state. 1386 */ 1387 return BLK_EH_RESET_TIMER; 1388 1389 disable: 1390 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1391 return BLK_EH_DONE; 1392 1393 nvme_dev_disable(dev, false); 1394 if (nvme_try_sched_reset(&dev->ctrl)) 1395 nvme_unquiesce_io_queues(&dev->ctrl); 1396 return BLK_EH_DONE; 1397 } 1398 1399 static void nvme_free_queue(struct nvme_queue *nvmeq) 1400 { 1401 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1402 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1403 if (!nvmeq->sq_cmds) 1404 return; 1405 1406 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1407 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1408 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1409 } else { 1410 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1411 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1412 } 1413 } 1414 1415 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1416 { 1417 int i; 1418 1419 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1420 dev->ctrl.queue_count--; 1421 nvme_free_queue(&dev->queues[i]); 1422 } 1423 } 1424 1425 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1426 { 1427 struct nvme_queue *nvmeq = &dev->queues[qid]; 1428 1429 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1430 return; 1431 1432 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1433 mb(); 1434 1435 nvmeq->dev->online_queues--; 1436 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1437 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1438 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1439 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1440 } 1441 1442 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1443 { 1444 int i; 1445 1446 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1447 nvme_suspend_queue(dev, i); 1448 } 1449 1450 /* 1451 * Called only on a device that has been disabled and after all other threads 1452 * that can check this device's completion queues have synced, except 1453 * nvme_poll(). This is the last chance for the driver to see a natural 1454 * completion before nvme_cancel_request() terminates all incomplete requests. 1455 */ 1456 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1457 { 1458 int i; 1459 1460 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1461 spin_lock(&dev->queues[i].cq_poll_lock); 1462 nvme_poll_cq(&dev->queues[i], NULL); 1463 spin_unlock(&dev->queues[i].cq_poll_lock); 1464 } 1465 } 1466 1467 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1468 int entry_size) 1469 { 1470 int q_depth = dev->q_depth; 1471 unsigned q_size_aligned = roundup(q_depth * entry_size, 1472 NVME_CTRL_PAGE_SIZE); 1473 1474 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1475 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1476 1477 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1478 q_depth = div_u64(mem_per_q, entry_size); 1479 1480 /* 1481 * Ensure the reduced q_depth is above some threshold where it 1482 * would be better to map queues in system memory with the 1483 * original depth 1484 */ 1485 if (q_depth < 64) 1486 return -ENOMEM; 1487 } 1488 1489 return q_depth; 1490 } 1491 1492 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1493 int qid) 1494 { 1495 struct pci_dev *pdev = to_pci_dev(dev->dev); 1496 1497 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1498 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1499 if (nvmeq->sq_cmds) { 1500 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1501 nvmeq->sq_cmds); 1502 if (nvmeq->sq_dma_addr) { 1503 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1504 return 0; 1505 } 1506 1507 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1508 } 1509 } 1510 1511 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1512 &nvmeq->sq_dma_addr, GFP_KERNEL); 1513 if (!nvmeq->sq_cmds) 1514 return -ENOMEM; 1515 return 0; 1516 } 1517 1518 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1519 { 1520 struct nvme_queue *nvmeq = &dev->queues[qid]; 1521 1522 if (dev->ctrl.queue_count > qid) 1523 return 0; 1524 1525 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1526 nvmeq->q_depth = depth; 1527 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1528 &nvmeq->cq_dma_addr, GFP_KERNEL); 1529 if (!nvmeq->cqes) 1530 goto free_nvmeq; 1531 1532 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1533 goto free_cqdma; 1534 1535 nvmeq->dev = dev; 1536 spin_lock_init(&nvmeq->sq_lock); 1537 spin_lock_init(&nvmeq->cq_poll_lock); 1538 nvmeq->cq_head = 0; 1539 nvmeq->cq_phase = 1; 1540 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1541 nvmeq->qid = qid; 1542 dev->ctrl.queue_count++; 1543 1544 return 0; 1545 1546 free_cqdma: 1547 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1548 nvmeq->cq_dma_addr); 1549 free_nvmeq: 1550 return -ENOMEM; 1551 } 1552 1553 static int queue_request_irq(struct nvme_queue *nvmeq) 1554 { 1555 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1556 int nr = nvmeq->dev->ctrl.instance; 1557 1558 if (use_threaded_interrupts) { 1559 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1560 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1561 } else { 1562 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1563 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1564 } 1565 } 1566 1567 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1568 { 1569 struct nvme_dev *dev = nvmeq->dev; 1570 1571 nvmeq->sq_tail = 0; 1572 nvmeq->last_sq_tail = 0; 1573 nvmeq->cq_head = 0; 1574 nvmeq->cq_phase = 1; 1575 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1576 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1577 nvme_dbbuf_init(dev, nvmeq, qid); 1578 dev->online_queues++; 1579 wmb(); /* ensure the first interrupt sees the initialization */ 1580 } 1581 1582 /* 1583 * Try getting shutdown_lock while setting up IO queues. 1584 */ 1585 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1586 { 1587 /* 1588 * Give up if the lock is being held by nvme_dev_disable. 1589 */ 1590 if (!mutex_trylock(&dev->shutdown_lock)) 1591 return -ENODEV; 1592 1593 /* 1594 * Controller is in wrong state, fail early. 1595 */ 1596 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1597 mutex_unlock(&dev->shutdown_lock); 1598 return -ENODEV; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1605 { 1606 struct nvme_dev *dev = nvmeq->dev; 1607 int result; 1608 u16 vector = 0; 1609 1610 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1611 1612 /* 1613 * A queue's vector matches the queue identifier unless the controller 1614 * has only one vector available. 1615 */ 1616 if (!polled) 1617 vector = dev->num_vecs == 1 ? 0 : qid; 1618 else 1619 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1620 1621 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1622 if (result) 1623 return result; 1624 1625 result = adapter_alloc_sq(dev, qid, nvmeq); 1626 if (result < 0) 1627 return result; 1628 if (result) 1629 goto release_cq; 1630 1631 nvmeq->cq_vector = vector; 1632 1633 result = nvme_setup_io_queues_trylock(dev); 1634 if (result) 1635 return result; 1636 nvme_init_queue(nvmeq, qid); 1637 if (!polled) { 1638 result = queue_request_irq(nvmeq); 1639 if (result < 0) 1640 goto release_sq; 1641 } 1642 1643 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1644 mutex_unlock(&dev->shutdown_lock); 1645 return result; 1646 1647 release_sq: 1648 dev->online_queues--; 1649 mutex_unlock(&dev->shutdown_lock); 1650 adapter_delete_sq(dev, qid); 1651 release_cq: 1652 adapter_delete_cq(dev, qid); 1653 return result; 1654 } 1655 1656 static const struct blk_mq_ops nvme_mq_admin_ops = { 1657 .queue_rq = nvme_queue_rq, 1658 .complete = nvme_pci_complete_rq, 1659 .init_hctx = nvme_admin_init_hctx, 1660 .init_request = nvme_pci_init_request, 1661 .timeout = nvme_timeout, 1662 }; 1663 1664 static const struct blk_mq_ops nvme_mq_ops = { 1665 .queue_rq = nvme_queue_rq, 1666 .queue_rqs = nvme_queue_rqs, 1667 .complete = nvme_pci_complete_rq, 1668 .commit_rqs = nvme_commit_rqs, 1669 .init_hctx = nvme_init_hctx, 1670 .init_request = nvme_pci_init_request, 1671 .map_queues = nvme_pci_map_queues, 1672 .timeout = nvme_timeout, 1673 .poll = nvme_poll, 1674 }; 1675 1676 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1677 { 1678 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1679 /* 1680 * If the controller was reset during removal, it's possible 1681 * user requests may be waiting on a stopped queue. Start the 1682 * queue to flush these to completion. 1683 */ 1684 nvme_unquiesce_admin_queue(&dev->ctrl); 1685 nvme_remove_admin_tag_set(&dev->ctrl); 1686 } 1687 } 1688 1689 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1690 { 1691 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1692 } 1693 1694 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1695 { 1696 struct pci_dev *pdev = to_pci_dev(dev->dev); 1697 1698 if (size <= dev->bar_mapped_size) 1699 return 0; 1700 if (size > pci_resource_len(pdev, 0)) 1701 return -ENOMEM; 1702 if (dev->bar) 1703 iounmap(dev->bar); 1704 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1705 if (!dev->bar) { 1706 dev->bar_mapped_size = 0; 1707 return -ENOMEM; 1708 } 1709 dev->bar_mapped_size = size; 1710 dev->dbs = dev->bar + NVME_REG_DBS; 1711 1712 return 0; 1713 } 1714 1715 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1716 { 1717 int result; 1718 u32 aqa; 1719 struct nvme_queue *nvmeq; 1720 1721 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1722 if (result < 0) 1723 return result; 1724 1725 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1726 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1727 1728 if (dev->subsystem && 1729 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1730 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1731 1732 /* 1733 * If the device has been passed off to us in an enabled state, just 1734 * clear the enabled bit. The spec says we should set the 'shutdown 1735 * notification bits', but doing so may cause the device to complete 1736 * commands to the admin queue ... and we don't know what memory that 1737 * might be pointing at! 1738 */ 1739 result = nvme_disable_ctrl(&dev->ctrl, false); 1740 if (result < 0) 1741 return result; 1742 1743 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1744 if (result) 1745 return result; 1746 1747 dev->ctrl.numa_node = dev_to_node(dev->dev); 1748 1749 nvmeq = &dev->queues[0]; 1750 aqa = nvmeq->q_depth - 1; 1751 aqa |= aqa << 16; 1752 1753 writel(aqa, dev->bar + NVME_REG_AQA); 1754 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1755 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1756 1757 result = nvme_enable_ctrl(&dev->ctrl); 1758 if (result) 1759 return result; 1760 1761 nvmeq->cq_vector = 0; 1762 nvme_init_queue(nvmeq, 0); 1763 result = queue_request_irq(nvmeq); 1764 if (result) { 1765 dev->online_queues--; 1766 return result; 1767 } 1768 1769 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1770 return result; 1771 } 1772 1773 static int nvme_create_io_queues(struct nvme_dev *dev) 1774 { 1775 unsigned i, max, rw_queues; 1776 int ret = 0; 1777 1778 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1779 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1780 ret = -ENOMEM; 1781 break; 1782 } 1783 } 1784 1785 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1786 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1787 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1788 dev->io_queues[HCTX_TYPE_READ]; 1789 } else { 1790 rw_queues = max; 1791 } 1792 1793 for (i = dev->online_queues; i <= max; i++) { 1794 bool polled = i > rw_queues; 1795 1796 ret = nvme_create_queue(&dev->queues[i], i, polled); 1797 if (ret) 1798 break; 1799 } 1800 1801 /* 1802 * Ignore failing Create SQ/CQ commands, we can continue with less 1803 * than the desired amount of queues, and even a controller without 1804 * I/O queues can still be used to issue admin commands. This might 1805 * be useful to upgrade a buggy firmware for example. 1806 */ 1807 return ret >= 0 ? 0 : ret; 1808 } 1809 1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1811 { 1812 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1813 1814 return 1ULL << (12 + 4 * szu); 1815 } 1816 1817 static u32 nvme_cmb_size(struct nvme_dev *dev) 1818 { 1819 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1820 } 1821 1822 static void nvme_map_cmb(struct nvme_dev *dev) 1823 { 1824 u64 size, offset; 1825 resource_size_t bar_size; 1826 struct pci_dev *pdev = to_pci_dev(dev->dev); 1827 int bar; 1828 1829 if (dev->cmb_size) 1830 return; 1831 1832 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1833 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1834 1835 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1836 if (!dev->cmbsz) 1837 return; 1838 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1839 1840 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1841 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1842 bar = NVME_CMB_BIR(dev->cmbloc); 1843 bar_size = pci_resource_len(pdev, bar); 1844 1845 if (offset > bar_size) 1846 return; 1847 1848 /* 1849 * Tell the controller about the host side address mapping the CMB, 1850 * and enable CMB decoding for the NVMe 1.4+ scheme: 1851 */ 1852 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1853 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1854 (pci_bus_address(pdev, bar) + offset), 1855 dev->bar + NVME_REG_CMBMSC); 1856 } 1857 1858 /* 1859 * Controllers may support a CMB size larger than their BAR, 1860 * for example, due to being behind a bridge. Reduce the CMB to 1861 * the reported size of the BAR 1862 */ 1863 if (size > bar_size - offset) 1864 size = bar_size - offset; 1865 1866 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1867 dev_warn(dev->ctrl.device, 1868 "failed to register the CMB\n"); 1869 return; 1870 } 1871 1872 dev->cmb_size = size; 1873 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1874 1875 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1876 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1877 pci_p2pmem_publish(pdev, true); 1878 1879 nvme_update_attrs(dev); 1880 } 1881 1882 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1883 { 1884 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1885 u64 dma_addr = dev->host_mem_descs_dma; 1886 struct nvme_command c = { }; 1887 int ret; 1888 1889 c.features.opcode = nvme_admin_set_features; 1890 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1891 c.features.dword11 = cpu_to_le32(bits); 1892 c.features.dword12 = cpu_to_le32(host_mem_size); 1893 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1894 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1895 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1896 1897 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1898 if (ret) { 1899 dev_warn(dev->ctrl.device, 1900 "failed to set host mem (err %d, flags %#x).\n", 1901 ret, bits); 1902 } else 1903 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1904 1905 return ret; 1906 } 1907 1908 static void nvme_free_host_mem(struct nvme_dev *dev) 1909 { 1910 int i; 1911 1912 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1913 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1914 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1915 1916 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1917 le64_to_cpu(desc->addr), 1918 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1919 } 1920 1921 kfree(dev->host_mem_desc_bufs); 1922 dev->host_mem_desc_bufs = NULL; 1923 dma_free_coherent(dev->dev, 1924 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1925 dev->host_mem_descs, dev->host_mem_descs_dma); 1926 dev->host_mem_descs = NULL; 1927 dev->nr_host_mem_descs = 0; 1928 } 1929 1930 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1931 u32 chunk_size) 1932 { 1933 struct nvme_host_mem_buf_desc *descs; 1934 u32 max_entries, len; 1935 dma_addr_t descs_dma; 1936 int i = 0; 1937 void **bufs; 1938 u64 size, tmp; 1939 1940 tmp = (preferred + chunk_size - 1); 1941 do_div(tmp, chunk_size); 1942 max_entries = tmp; 1943 1944 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1945 max_entries = dev->ctrl.hmmaxd; 1946 1947 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1948 &descs_dma, GFP_KERNEL); 1949 if (!descs) 1950 goto out; 1951 1952 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1953 if (!bufs) 1954 goto out_free_descs; 1955 1956 for (size = 0; size < preferred && i < max_entries; size += len) { 1957 dma_addr_t dma_addr; 1958 1959 len = min_t(u64, chunk_size, preferred - size); 1960 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1961 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1962 if (!bufs[i]) 1963 break; 1964 1965 descs[i].addr = cpu_to_le64(dma_addr); 1966 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1967 i++; 1968 } 1969 1970 if (!size) 1971 goto out_free_bufs; 1972 1973 dev->nr_host_mem_descs = i; 1974 dev->host_mem_size = size; 1975 dev->host_mem_descs = descs; 1976 dev->host_mem_descs_dma = descs_dma; 1977 dev->host_mem_desc_bufs = bufs; 1978 return 0; 1979 1980 out_free_bufs: 1981 while (--i >= 0) { 1982 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1983 1984 dma_free_attrs(dev->dev, size, bufs[i], 1985 le64_to_cpu(descs[i].addr), 1986 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1987 } 1988 1989 kfree(bufs); 1990 out_free_descs: 1991 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1992 descs_dma); 1993 out: 1994 dev->host_mem_descs = NULL; 1995 return -ENOMEM; 1996 } 1997 1998 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 1999 { 2000 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2001 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2002 u64 chunk_size; 2003 2004 /* start big and work our way down */ 2005 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2006 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2007 if (!min || dev->host_mem_size >= min) 2008 return 0; 2009 nvme_free_host_mem(dev); 2010 } 2011 } 2012 2013 return -ENOMEM; 2014 } 2015 2016 static int nvme_setup_host_mem(struct nvme_dev *dev) 2017 { 2018 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2019 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2020 u64 min = (u64)dev->ctrl.hmmin * 4096; 2021 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2022 int ret; 2023 2024 if (!dev->ctrl.hmpre) 2025 return 0; 2026 2027 preferred = min(preferred, max); 2028 if (min > max) { 2029 dev_warn(dev->ctrl.device, 2030 "min host memory (%lld MiB) above limit (%d MiB).\n", 2031 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2032 nvme_free_host_mem(dev); 2033 return 0; 2034 } 2035 2036 /* 2037 * If we already have a buffer allocated check if we can reuse it. 2038 */ 2039 if (dev->host_mem_descs) { 2040 if (dev->host_mem_size >= min) 2041 enable_bits |= NVME_HOST_MEM_RETURN; 2042 else 2043 nvme_free_host_mem(dev); 2044 } 2045 2046 if (!dev->host_mem_descs) { 2047 if (nvme_alloc_host_mem(dev, min, preferred)) { 2048 dev_warn(dev->ctrl.device, 2049 "failed to allocate host memory buffer.\n"); 2050 return 0; /* controller must work without HMB */ 2051 } 2052 2053 dev_info(dev->ctrl.device, 2054 "allocated %lld MiB host memory buffer.\n", 2055 dev->host_mem_size >> ilog2(SZ_1M)); 2056 } 2057 2058 ret = nvme_set_host_mem(dev, enable_bits); 2059 if (ret) 2060 nvme_free_host_mem(dev); 2061 return ret; 2062 } 2063 2064 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2065 char *buf) 2066 { 2067 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2068 2069 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2070 ndev->cmbloc, ndev->cmbsz); 2071 } 2072 static DEVICE_ATTR_RO(cmb); 2073 2074 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2075 char *buf) 2076 { 2077 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2078 2079 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2080 } 2081 static DEVICE_ATTR_RO(cmbloc); 2082 2083 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2084 char *buf) 2085 { 2086 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2087 2088 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2089 } 2090 static DEVICE_ATTR_RO(cmbsz); 2091 2092 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2093 char *buf) 2094 { 2095 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2096 2097 return sysfs_emit(buf, "%d\n", ndev->hmb); 2098 } 2099 2100 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2101 const char *buf, size_t count) 2102 { 2103 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2104 bool new; 2105 int ret; 2106 2107 if (kstrtobool(buf, &new) < 0) 2108 return -EINVAL; 2109 2110 if (new == ndev->hmb) 2111 return count; 2112 2113 if (new) { 2114 ret = nvme_setup_host_mem(ndev); 2115 } else { 2116 ret = nvme_set_host_mem(ndev, 0); 2117 if (!ret) 2118 nvme_free_host_mem(ndev); 2119 } 2120 2121 if (ret < 0) 2122 return ret; 2123 2124 return count; 2125 } 2126 static DEVICE_ATTR_RW(hmb); 2127 2128 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2129 struct attribute *a, int n) 2130 { 2131 struct nvme_ctrl *ctrl = 2132 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2133 struct nvme_dev *dev = to_nvme_dev(ctrl); 2134 2135 if (a == &dev_attr_cmb.attr || 2136 a == &dev_attr_cmbloc.attr || 2137 a == &dev_attr_cmbsz.attr) { 2138 if (!dev->cmbsz) 2139 return 0; 2140 } 2141 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2142 return 0; 2143 2144 return a->mode; 2145 } 2146 2147 static struct attribute *nvme_pci_attrs[] = { 2148 &dev_attr_cmb.attr, 2149 &dev_attr_cmbloc.attr, 2150 &dev_attr_cmbsz.attr, 2151 &dev_attr_hmb.attr, 2152 NULL, 2153 }; 2154 2155 static const struct attribute_group nvme_pci_dev_attrs_group = { 2156 .attrs = nvme_pci_attrs, 2157 .is_visible = nvme_pci_attrs_are_visible, 2158 }; 2159 2160 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2161 &nvme_dev_attrs_group, 2162 &nvme_pci_dev_attrs_group, 2163 NULL, 2164 }; 2165 2166 static void nvme_update_attrs(struct nvme_dev *dev) 2167 { 2168 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2169 } 2170 2171 /* 2172 * nirqs is the number of interrupts available for write and read 2173 * queues. The core already reserved an interrupt for the admin queue. 2174 */ 2175 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2176 { 2177 struct nvme_dev *dev = affd->priv; 2178 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2179 2180 /* 2181 * If there is no interrupt available for queues, ensure that 2182 * the default queue is set to 1. The affinity set size is 2183 * also set to one, but the irq core ignores it for this case. 2184 * 2185 * If only one interrupt is available or 'write_queue' == 0, combine 2186 * write and read queues. 2187 * 2188 * If 'write_queues' > 0, ensure it leaves room for at least one read 2189 * queue. 2190 */ 2191 if (!nrirqs) { 2192 nrirqs = 1; 2193 nr_read_queues = 0; 2194 } else if (nrirqs == 1 || !nr_write_queues) { 2195 nr_read_queues = 0; 2196 } else if (nr_write_queues >= nrirqs) { 2197 nr_read_queues = 1; 2198 } else { 2199 nr_read_queues = nrirqs - nr_write_queues; 2200 } 2201 2202 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2203 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2204 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2205 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2206 affd->nr_sets = nr_read_queues ? 2 : 1; 2207 } 2208 2209 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2210 { 2211 struct pci_dev *pdev = to_pci_dev(dev->dev); 2212 struct irq_affinity affd = { 2213 .pre_vectors = 1, 2214 .calc_sets = nvme_calc_irq_sets, 2215 .priv = dev, 2216 }; 2217 unsigned int irq_queues, poll_queues; 2218 2219 /* 2220 * Poll queues don't need interrupts, but we need at least one I/O queue 2221 * left over for non-polled I/O. 2222 */ 2223 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2224 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2225 2226 /* 2227 * Initialize for the single interrupt case, will be updated in 2228 * nvme_calc_irq_sets(). 2229 */ 2230 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2231 dev->io_queues[HCTX_TYPE_READ] = 0; 2232 2233 /* 2234 * We need interrupts for the admin queue and each non-polled I/O queue, 2235 * but some Apple controllers require all queues to use the first 2236 * vector. 2237 */ 2238 irq_queues = 1; 2239 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2240 irq_queues += (nr_io_queues - poll_queues); 2241 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2242 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2243 } 2244 2245 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2246 { 2247 /* 2248 * If tags are shared with admin queue (Apple bug), then 2249 * make sure we only use one IO queue. 2250 */ 2251 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2252 return 1; 2253 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2254 } 2255 2256 static int nvme_setup_io_queues(struct nvme_dev *dev) 2257 { 2258 struct nvme_queue *adminq = &dev->queues[0]; 2259 struct pci_dev *pdev = to_pci_dev(dev->dev); 2260 unsigned int nr_io_queues; 2261 unsigned long size; 2262 int result; 2263 2264 /* 2265 * Sample the module parameters once at reset time so that we have 2266 * stable values to work with. 2267 */ 2268 dev->nr_write_queues = write_queues; 2269 dev->nr_poll_queues = poll_queues; 2270 2271 nr_io_queues = dev->nr_allocated_queues - 1; 2272 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2273 if (result < 0) 2274 return result; 2275 2276 if (nr_io_queues == 0) 2277 return 0; 2278 2279 /* 2280 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2281 * from set to unset. If there is a window to it is truely freed, 2282 * pci_free_irq_vectors() jumping into this window will crash. 2283 * And take lock to avoid racing with pci_free_irq_vectors() in 2284 * nvme_dev_disable() path. 2285 */ 2286 result = nvme_setup_io_queues_trylock(dev); 2287 if (result) 2288 return result; 2289 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2290 pci_free_irq(pdev, 0, adminq); 2291 2292 if (dev->cmb_use_sqes) { 2293 result = nvme_cmb_qdepth(dev, nr_io_queues, 2294 sizeof(struct nvme_command)); 2295 if (result > 0) { 2296 dev->q_depth = result; 2297 dev->ctrl.sqsize = result - 1; 2298 } else { 2299 dev->cmb_use_sqes = false; 2300 } 2301 } 2302 2303 do { 2304 size = db_bar_size(dev, nr_io_queues); 2305 result = nvme_remap_bar(dev, size); 2306 if (!result) 2307 break; 2308 if (!--nr_io_queues) { 2309 result = -ENOMEM; 2310 goto out_unlock; 2311 } 2312 } while (1); 2313 adminq->q_db = dev->dbs; 2314 2315 retry: 2316 /* Deregister the admin queue's interrupt */ 2317 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2318 pci_free_irq(pdev, 0, adminq); 2319 2320 /* 2321 * If we enable msix early due to not intx, disable it again before 2322 * setting up the full range we need. 2323 */ 2324 pci_free_irq_vectors(pdev); 2325 2326 result = nvme_setup_irqs(dev, nr_io_queues); 2327 if (result <= 0) { 2328 result = -EIO; 2329 goto out_unlock; 2330 } 2331 2332 dev->num_vecs = result; 2333 result = max(result - 1, 1); 2334 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2335 2336 /* 2337 * Should investigate if there's a performance win from allocating 2338 * more queues than interrupt vectors; it might allow the submission 2339 * path to scale better, even if the receive path is limited by the 2340 * number of interrupts. 2341 */ 2342 result = queue_request_irq(adminq); 2343 if (result) 2344 goto out_unlock; 2345 set_bit(NVMEQ_ENABLED, &adminq->flags); 2346 mutex_unlock(&dev->shutdown_lock); 2347 2348 result = nvme_create_io_queues(dev); 2349 if (result || dev->online_queues < 2) 2350 return result; 2351 2352 if (dev->online_queues - 1 < dev->max_qid) { 2353 nr_io_queues = dev->online_queues - 1; 2354 nvme_delete_io_queues(dev); 2355 result = nvme_setup_io_queues_trylock(dev); 2356 if (result) 2357 return result; 2358 nvme_suspend_io_queues(dev); 2359 goto retry; 2360 } 2361 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2362 dev->io_queues[HCTX_TYPE_DEFAULT], 2363 dev->io_queues[HCTX_TYPE_READ], 2364 dev->io_queues[HCTX_TYPE_POLL]); 2365 return 0; 2366 out_unlock: 2367 mutex_unlock(&dev->shutdown_lock); 2368 return result; 2369 } 2370 2371 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2372 blk_status_t error) 2373 { 2374 struct nvme_queue *nvmeq = req->end_io_data; 2375 2376 blk_mq_free_request(req); 2377 complete(&nvmeq->delete_done); 2378 return RQ_END_IO_NONE; 2379 } 2380 2381 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2382 blk_status_t error) 2383 { 2384 struct nvme_queue *nvmeq = req->end_io_data; 2385 2386 if (error) 2387 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2388 2389 return nvme_del_queue_end(req, error); 2390 } 2391 2392 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2393 { 2394 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2395 struct request *req; 2396 struct nvme_command cmd = { }; 2397 2398 cmd.delete_queue.opcode = opcode; 2399 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2400 2401 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2402 if (IS_ERR(req)) 2403 return PTR_ERR(req); 2404 nvme_init_request(req, &cmd); 2405 2406 if (opcode == nvme_admin_delete_cq) 2407 req->end_io = nvme_del_cq_end; 2408 else 2409 req->end_io = nvme_del_queue_end; 2410 req->end_io_data = nvmeq; 2411 2412 init_completion(&nvmeq->delete_done); 2413 blk_execute_rq_nowait(req, false); 2414 return 0; 2415 } 2416 2417 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2418 { 2419 int nr_queues = dev->online_queues - 1, sent = 0; 2420 unsigned long timeout; 2421 2422 retry: 2423 timeout = NVME_ADMIN_TIMEOUT; 2424 while (nr_queues > 0) { 2425 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2426 break; 2427 nr_queues--; 2428 sent++; 2429 } 2430 while (sent) { 2431 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2432 2433 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2434 timeout); 2435 if (timeout == 0) 2436 return false; 2437 2438 sent--; 2439 if (nr_queues) 2440 goto retry; 2441 } 2442 return true; 2443 } 2444 2445 static void nvme_delete_io_queues(struct nvme_dev *dev) 2446 { 2447 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2448 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2449 } 2450 2451 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2452 { 2453 if (dev->io_queues[HCTX_TYPE_POLL]) 2454 return 3; 2455 if (dev->io_queues[HCTX_TYPE_READ]) 2456 return 2; 2457 return 1; 2458 } 2459 2460 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2461 { 2462 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2463 /* free previously allocated queues that are no longer usable */ 2464 nvme_free_queues(dev, dev->online_queues); 2465 } 2466 2467 static int nvme_pci_enable(struct nvme_dev *dev) 2468 { 2469 int result = -ENOMEM; 2470 struct pci_dev *pdev = to_pci_dev(dev->dev); 2471 2472 if (pci_enable_device_mem(pdev)) 2473 return result; 2474 2475 pci_set_master(pdev); 2476 2477 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2478 result = -ENODEV; 2479 goto disable; 2480 } 2481 2482 /* 2483 * Some devices and/or platforms don't advertise or work with INTx 2484 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2485 * adjust this later. 2486 */ 2487 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2488 if (result < 0) 2489 goto disable; 2490 2491 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2492 2493 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2494 io_queue_depth); 2495 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2496 dev->dbs = dev->bar + 4096; 2497 2498 /* 2499 * Some Apple controllers require a non-standard SQE size. 2500 * Interestingly they also seem to ignore the CC:IOSQES register 2501 * so we don't bother updating it here. 2502 */ 2503 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2504 dev->io_sqes = 7; 2505 else 2506 dev->io_sqes = NVME_NVM_IOSQES; 2507 2508 /* 2509 * Temporary fix for the Apple controller found in the MacBook8,1 and 2510 * some MacBook7,1 to avoid controller resets and data loss. 2511 */ 2512 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2513 dev->q_depth = 2; 2514 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2515 "set queue depth=%u to work around controller resets\n", 2516 dev->q_depth); 2517 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2518 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2519 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2520 dev->q_depth = 64; 2521 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2522 "set queue depth=%u\n", dev->q_depth); 2523 } 2524 2525 /* 2526 * Controllers with the shared tags quirk need the IO queue to be 2527 * big enough so that we get 32 tags for the admin queue 2528 */ 2529 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2530 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2531 dev->q_depth = NVME_AQ_DEPTH + 2; 2532 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2533 dev->q_depth); 2534 } 2535 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2536 2537 nvme_map_cmb(dev); 2538 2539 pci_save_state(pdev); 2540 2541 result = nvme_pci_configure_admin_queue(dev); 2542 if (result) 2543 goto free_irq; 2544 return result; 2545 2546 free_irq: 2547 pci_free_irq_vectors(pdev); 2548 disable: 2549 pci_disable_device(pdev); 2550 return result; 2551 } 2552 2553 static void nvme_dev_unmap(struct nvme_dev *dev) 2554 { 2555 if (dev->bar) 2556 iounmap(dev->bar); 2557 pci_release_mem_regions(to_pci_dev(dev->dev)); 2558 } 2559 2560 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2561 { 2562 struct pci_dev *pdev = to_pci_dev(dev->dev); 2563 u32 csts; 2564 2565 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2566 return true; 2567 if (pdev->error_state != pci_channel_io_normal) 2568 return true; 2569 2570 csts = readl(dev->bar + NVME_REG_CSTS); 2571 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2572 } 2573 2574 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2575 { 2576 struct pci_dev *pdev = to_pci_dev(dev->dev); 2577 bool dead; 2578 2579 mutex_lock(&dev->shutdown_lock); 2580 dead = nvme_pci_ctrl_is_dead(dev); 2581 if (dev->ctrl.state == NVME_CTRL_LIVE || 2582 dev->ctrl.state == NVME_CTRL_RESETTING) { 2583 if (pci_is_enabled(pdev)) 2584 nvme_start_freeze(&dev->ctrl); 2585 /* 2586 * Give the controller a chance to complete all entered requests 2587 * if doing a safe shutdown. 2588 */ 2589 if (!dead && shutdown) 2590 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2591 } 2592 2593 nvme_quiesce_io_queues(&dev->ctrl); 2594 2595 if (!dead && dev->ctrl.queue_count > 0) { 2596 nvme_delete_io_queues(dev); 2597 nvme_disable_ctrl(&dev->ctrl, shutdown); 2598 nvme_poll_irqdisable(&dev->queues[0]); 2599 } 2600 nvme_suspend_io_queues(dev); 2601 nvme_suspend_queue(dev, 0); 2602 pci_free_irq_vectors(pdev); 2603 if (pci_is_enabled(pdev)) 2604 pci_disable_device(pdev); 2605 nvme_reap_pending_cqes(dev); 2606 2607 nvme_cancel_tagset(&dev->ctrl); 2608 nvme_cancel_admin_tagset(&dev->ctrl); 2609 2610 /* 2611 * The driver will not be starting up queues again if shutting down so 2612 * must flush all entered requests to their failed completion to avoid 2613 * deadlocking blk-mq hot-cpu notifier. 2614 */ 2615 if (shutdown) { 2616 nvme_unquiesce_io_queues(&dev->ctrl); 2617 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2618 nvme_unquiesce_admin_queue(&dev->ctrl); 2619 } 2620 mutex_unlock(&dev->shutdown_lock); 2621 } 2622 2623 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2624 { 2625 if (!nvme_wait_reset(&dev->ctrl)) 2626 return -EBUSY; 2627 nvme_dev_disable(dev, shutdown); 2628 return 0; 2629 } 2630 2631 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2632 { 2633 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2634 NVME_CTRL_PAGE_SIZE, 2635 NVME_CTRL_PAGE_SIZE, 0); 2636 if (!dev->prp_page_pool) 2637 return -ENOMEM; 2638 2639 /* Optimisation for I/Os between 4k and 128k */ 2640 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2641 256, 256, 0); 2642 if (!dev->prp_small_pool) { 2643 dma_pool_destroy(dev->prp_page_pool); 2644 return -ENOMEM; 2645 } 2646 return 0; 2647 } 2648 2649 static void nvme_release_prp_pools(struct nvme_dev *dev) 2650 { 2651 dma_pool_destroy(dev->prp_page_pool); 2652 dma_pool_destroy(dev->prp_small_pool); 2653 } 2654 2655 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2656 { 2657 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2658 2659 dev->iod_mempool = mempool_create_node(1, 2660 mempool_kmalloc, mempool_kfree, 2661 (void *)alloc_size, GFP_KERNEL, 2662 dev_to_node(dev->dev)); 2663 if (!dev->iod_mempool) 2664 return -ENOMEM; 2665 return 0; 2666 } 2667 2668 static void nvme_free_tagset(struct nvme_dev *dev) 2669 { 2670 if (dev->tagset.tags) 2671 nvme_remove_io_tag_set(&dev->ctrl); 2672 dev->ctrl.tagset = NULL; 2673 } 2674 2675 /* pairs with nvme_pci_alloc_dev */ 2676 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2677 { 2678 struct nvme_dev *dev = to_nvme_dev(ctrl); 2679 2680 nvme_free_tagset(dev); 2681 put_device(dev->dev); 2682 kfree(dev->queues); 2683 kfree(dev); 2684 } 2685 2686 static void nvme_reset_work(struct work_struct *work) 2687 { 2688 struct nvme_dev *dev = 2689 container_of(work, struct nvme_dev, ctrl.reset_work); 2690 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2691 int result; 2692 2693 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2694 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2695 dev->ctrl.state); 2696 result = -ENODEV; 2697 goto out; 2698 } 2699 2700 /* 2701 * If we're called to reset a live controller first shut it down before 2702 * moving on. 2703 */ 2704 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2705 nvme_dev_disable(dev, false); 2706 nvme_sync_queues(&dev->ctrl); 2707 2708 mutex_lock(&dev->shutdown_lock); 2709 result = nvme_pci_enable(dev); 2710 if (result) 2711 goto out_unlock; 2712 nvme_unquiesce_admin_queue(&dev->ctrl); 2713 mutex_unlock(&dev->shutdown_lock); 2714 2715 /* 2716 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2717 * initializing procedure here. 2718 */ 2719 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2720 dev_warn(dev->ctrl.device, 2721 "failed to mark controller CONNECTING\n"); 2722 result = -EBUSY; 2723 goto out; 2724 } 2725 2726 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2727 if (result) 2728 goto out; 2729 2730 nvme_dbbuf_dma_alloc(dev); 2731 2732 result = nvme_setup_host_mem(dev); 2733 if (result < 0) 2734 goto out; 2735 2736 result = nvme_setup_io_queues(dev); 2737 if (result) 2738 goto out; 2739 2740 /* 2741 * Freeze and update the number of I/O queues as thos might have 2742 * changed. If there are no I/O queues left after this reset, keep the 2743 * controller around but remove all namespaces. 2744 */ 2745 if (dev->online_queues > 1) { 2746 nvme_unquiesce_io_queues(&dev->ctrl); 2747 nvme_wait_freeze(&dev->ctrl); 2748 nvme_pci_update_nr_queues(dev); 2749 nvme_dbbuf_set(dev); 2750 nvme_unfreeze(&dev->ctrl); 2751 } else { 2752 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2753 nvme_mark_namespaces_dead(&dev->ctrl); 2754 nvme_unquiesce_io_queues(&dev->ctrl); 2755 nvme_remove_namespaces(&dev->ctrl); 2756 nvme_free_tagset(dev); 2757 } 2758 2759 /* 2760 * If only admin queue live, keep it to do further investigation or 2761 * recovery. 2762 */ 2763 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2764 dev_warn(dev->ctrl.device, 2765 "failed to mark controller live state\n"); 2766 result = -ENODEV; 2767 goto out; 2768 } 2769 2770 nvme_start_ctrl(&dev->ctrl); 2771 return; 2772 2773 out_unlock: 2774 mutex_unlock(&dev->shutdown_lock); 2775 out: 2776 /* 2777 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2778 * may be holding this pci_dev's device lock. 2779 */ 2780 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2781 result); 2782 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2783 nvme_dev_disable(dev, true); 2784 nvme_sync_queues(&dev->ctrl); 2785 nvme_mark_namespaces_dead(&dev->ctrl); 2786 nvme_unquiesce_io_queues(&dev->ctrl); 2787 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2788 } 2789 2790 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2791 { 2792 *val = readl(to_nvme_dev(ctrl)->bar + off); 2793 return 0; 2794 } 2795 2796 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2797 { 2798 writel(val, to_nvme_dev(ctrl)->bar + off); 2799 return 0; 2800 } 2801 2802 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2803 { 2804 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2805 return 0; 2806 } 2807 2808 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2809 { 2810 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2811 2812 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2813 } 2814 2815 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2816 { 2817 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2818 struct nvme_subsystem *subsys = ctrl->subsys; 2819 2820 dev_err(ctrl->device, 2821 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2822 pdev->vendor, pdev->device, 2823 nvme_strlen(subsys->model, sizeof(subsys->model)), 2824 subsys->model, nvme_strlen(subsys->firmware_rev, 2825 sizeof(subsys->firmware_rev)), 2826 subsys->firmware_rev); 2827 } 2828 2829 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2830 { 2831 struct nvme_dev *dev = to_nvme_dev(ctrl); 2832 2833 return dma_pci_p2pdma_supported(dev->dev); 2834 } 2835 2836 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2837 .name = "pcie", 2838 .module = THIS_MODULE, 2839 .flags = NVME_F_METADATA_SUPPORTED, 2840 .dev_attr_groups = nvme_pci_dev_attr_groups, 2841 .reg_read32 = nvme_pci_reg_read32, 2842 .reg_write32 = nvme_pci_reg_write32, 2843 .reg_read64 = nvme_pci_reg_read64, 2844 .free_ctrl = nvme_pci_free_ctrl, 2845 .submit_async_event = nvme_pci_submit_async_event, 2846 .get_address = nvme_pci_get_address, 2847 .print_device_info = nvme_pci_print_device_info, 2848 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2849 }; 2850 2851 static int nvme_dev_map(struct nvme_dev *dev) 2852 { 2853 struct pci_dev *pdev = to_pci_dev(dev->dev); 2854 2855 if (pci_request_mem_regions(pdev, "nvme")) 2856 return -ENODEV; 2857 2858 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2859 goto release; 2860 2861 return 0; 2862 release: 2863 pci_release_mem_regions(pdev); 2864 return -ENODEV; 2865 } 2866 2867 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2868 { 2869 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2870 /* 2871 * Several Samsung devices seem to drop off the PCIe bus 2872 * randomly when APST is on and uses the deepest sleep state. 2873 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2874 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2875 * 950 PRO 256GB", but it seems to be restricted to two Dell 2876 * laptops. 2877 */ 2878 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2879 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2880 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2881 return NVME_QUIRK_NO_DEEPEST_PS; 2882 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2883 /* 2884 * Samsung SSD 960 EVO drops off the PCIe bus after system 2885 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2886 * within few minutes after bootup on a Coffee Lake board - 2887 * ASUS PRIME Z370-A 2888 */ 2889 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2890 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2891 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2892 return NVME_QUIRK_NO_APST; 2893 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2894 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2895 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2896 /* 2897 * Forcing to use host managed nvme power settings for 2898 * lowest idle power with quick resume latency on 2899 * Samsung and Toshiba SSDs based on suspend behavior 2900 * on Coffee Lake board for LENOVO C640 2901 */ 2902 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2903 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2904 return NVME_QUIRK_SIMPLE_SUSPEND; 2905 } 2906 2907 return 0; 2908 } 2909 2910 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2911 const struct pci_device_id *id) 2912 { 2913 unsigned long quirks = id->driver_data; 2914 int node = dev_to_node(&pdev->dev); 2915 struct nvme_dev *dev; 2916 int ret = -ENOMEM; 2917 2918 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2919 if (!dev) 2920 return ERR_PTR(-ENOMEM); 2921 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2922 mutex_init(&dev->shutdown_lock); 2923 2924 dev->nr_write_queues = write_queues; 2925 dev->nr_poll_queues = poll_queues; 2926 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2927 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2928 sizeof(struct nvme_queue), GFP_KERNEL, node); 2929 if (!dev->queues) 2930 goto out_free_dev; 2931 2932 dev->dev = get_device(&pdev->dev); 2933 2934 quirks |= check_vendor_combination_bug(pdev); 2935 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2936 /* 2937 * Some systems use a bios work around to ask for D3 on 2938 * platforms that support kernel managed suspend. 2939 */ 2940 dev_info(&pdev->dev, 2941 "platform quirk: setting simple suspend\n"); 2942 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2943 } 2944 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2945 quirks); 2946 if (ret) 2947 goto out_put_device; 2948 2949 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2950 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2951 else 2952 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2953 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2954 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2955 2956 /* 2957 * Limit the max command size to prevent iod->sg allocations going 2958 * over a single page. 2959 */ 2960 dev->ctrl.max_hw_sectors = min_t(u32, 2961 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 2962 dev->ctrl.max_segments = NVME_MAX_SEGS; 2963 2964 /* 2965 * There is no support for SGLs for metadata (yet), so we are limited to 2966 * a single integrity segment for the separate metadata pointer. 2967 */ 2968 dev->ctrl.max_integrity_segments = 1; 2969 return dev; 2970 2971 out_put_device: 2972 put_device(dev->dev); 2973 kfree(dev->queues); 2974 out_free_dev: 2975 kfree(dev); 2976 return ERR_PTR(ret); 2977 } 2978 2979 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2980 { 2981 struct nvme_dev *dev; 2982 int result = -ENOMEM; 2983 2984 dev = nvme_pci_alloc_dev(pdev, id); 2985 if (IS_ERR(dev)) 2986 return PTR_ERR(dev); 2987 2988 result = nvme_dev_map(dev); 2989 if (result) 2990 goto out_uninit_ctrl; 2991 2992 result = nvme_setup_prp_pools(dev); 2993 if (result) 2994 goto out_dev_unmap; 2995 2996 result = nvme_pci_alloc_iod_mempool(dev); 2997 if (result) 2998 goto out_release_prp_pools; 2999 3000 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3001 3002 result = nvme_pci_enable(dev); 3003 if (result) 3004 goto out_release_iod_mempool; 3005 3006 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3007 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3008 if (result) 3009 goto out_disable; 3010 3011 /* 3012 * Mark the controller as connecting before sending admin commands to 3013 * allow the timeout handler to do the right thing. 3014 */ 3015 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3016 dev_warn(dev->ctrl.device, 3017 "failed to mark controller CONNECTING\n"); 3018 result = -EBUSY; 3019 goto out_disable; 3020 } 3021 3022 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3023 if (result) 3024 goto out_disable; 3025 3026 nvme_dbbuf_dma_alloc(dev); 3027 3028 result = nvme_setup_host_mem(dev); 3029 if (result < 0) 3030 goto out_disable; 3031 3032 result = nvme_setup_io_queues(dev); 3033 if (result) 3034 goto out_disable; 3035 3036 if (dev->online_queues > 1) { 3037 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3038 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3039 nvme_dbbuf_set(dev); 3040 } 3041 3042 if (!dev->ctrl.tagset) 3043 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3044 3045 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3046 dev_warn(dev->ctrl.device, 3047 "failed to mark controller live state\n"); 3048 result = -ENODEV; 3049 goto out_disable; 3050 } 3051 3052 pci_set_drvdata(pdev, dev); 3053 3054 nvme_start_ctrl(&dev->ctrl); 3055 nvme_put_ctrl(&dev->ctrl); 3056 flush_work(&dev->ctrl.scan_work); 3057 return 0; 3058 3059 out_disable: 3060 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3061 nvme_dev_disable(dev, true); 3062 nvme_free_host_mem(dev); 3063 nvme_dev_remove_admin(dev); 3064 nvme_dbbuf_dma_free(dev); 3065 nvme_free_queues(dev, 0); 3066 out_release_iod_mempool: 3067 mempool_destroy(dev->iod_mempool); 3068 out_release_prp_pools: 3069 nvme_release_prp_pools(dev); 3070 out_dev_unmap: 3071 nvme_dev_unmap(dev); 3072 out_uninit_ctrl: 3073 nvme_uninit_ctrl(&dev->ctrl); 3074 nvme_put_ctrl(&dev->ctrl); 3075 return result; 3076 } 3077 3078 static void nvme_reset_prepare(struct pci_dev *pdev) 3079 { 3080 struct nvme_dev *dev = pci_get_drvdata(pdev); 3081 3082 /* 3083 * We don't need to check the return value from waiting for the reset 3084 * state as pci_dev device lock is held, making it impossible to race 3085 * with ->remove(). 3086 */ 3087 nvme_disable_prepare_reset(dev, false); 3088 nvme_sync_queues(&dev->ctrl); 3089 } 3090 3091 static void nvme_reset_done(struct pci_dev *pdev) 3092 { 3093 struct nvme_dev *dev = pci_get_drvdata(pdev); 3094 3095 if (!nvme_try_sched_reset(&dev->ctrl)) 3096 flush_work(&dev->ctrl.reset_work); 3097 } 3098 3099 static void nvme_shutdown(struct pci_dev *pdev) 3100 { 3101 struct nvme_dev *dev = pci_get_drvdata(pdev); 3102 3103 nvme_disable_prepare_reset(dev, true); 3104 } 3105 3106 /* 3107 * The driver's remove may be called on a device in a partially initialized 3108 * state. This function must not have any dependencies on the device state in 3109 * order to proceed. 3110 */ 3111 static void nvme_remove(struct pci_dev *pdev) 3112 { 3113 struct nvme_dev *dev = pci_get_drvdata(pdev); 3114 3115 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3116 pci_set_drvdata(pdev, NULL); 3117 3118 if (!pci_device_is_present(pdev)) { 3119 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3120 nvme_dev_disable(dev, true); 3121 } 3122 3123 flush_work(&dev->ctrl.reset_work); 3124 nvme_stop_ctrl(&dev->ctrl); 3125 nvme_remove_namespaces(&dev->ctrl); 3126 nvme_dev_disable(dev, true); 3127 nvme_free_host_mem(dev); 3128 nvme_dev_remove_admin(dev); 3129 nvme_dbbuf_dma_free(dev); 3130 nvme_free_queues(dev, 0); 3131 mempool_destroy(dev->iod_mempool); 3132 nvme_release_prp_pools(dev); 3133 nvme_dev_unmap(dev); 3134 nvme_uninit_ctrl(&dev->ctrl); 3135 } 3136 3137 #ifdef CONFIG_PM_SLEEP 3138 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3139 { 3140 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3141 } 3142 3143 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3144 { 3145 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3146 } 3147 3148 static int nvme_resume(struct device *dev) 3149 { 3150 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3151 struct nvme_ctrl *ctrl = &ndev->ctrl; 3152 3153 if (ndev->last_ps == U32_MAX || 3154 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3155 goto reset; 3156 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3157 goto reset; 3158 3159 return 0; 3160 reset: 3161 return nvme_try_sched_reset(ctrl); 3162 } 3163 3164 static int nvme_suspend(struct device *dev) 3165 { 3166 struct pci_dev *pdev = to_pci_dev(dev); 3167 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3168 struct nvme_ctrl *ctrl = &ndev->ctrl; 3169 int ret = -EBUSY; 3170 3171 ndev->last_ps = U32_MAX; 3172 3173 /* 3174 * The platform does not remove power for a kernel managed suspend so 3175 * use host managed nvme power settings for lowest idle power if 3176 * possible. This should have quicker resume latency than a full device 3177 * shutdown. But if the firmware is involved after the suspend or the 3178 * device does not support any non-default power states, shut down the 3179 * device fully. 3180 * 3181 * If ASPM is not enabled for the device, shut down the device and allow 3182 * the PCI bus layer to put it into D3 in order to take the PCIe link 3183 * down, so as to allow the platform to achieve its minimum low-power 3184 * state (which may not be possible if the link is up). 3185 */ 3186 if (pm_suspend_via_firmware() || !ctrl->npss || 3187 !pcie_aspm_enabled(pdev) || 3188 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3189 return nvme_disable_prepare_reset(ndev, true); 3190 3191 nvme_start_freeze(ctrl); 3192 nvme_wait_freeze(ctrl); 3193 nvme_sync_queues(ctrl); 3194 3195 if (ctrl->state != NVME_CTRL_LIVE) 3196 goto unfreeze; 3197 3198 /* 3199 * Host memory access may not be successful in a system suspend state, 3200 * but the specification allows the controller to access memory in a 3201 * non-operational power state. 3202 */ 3203 if (ndev->hmb) { 3204 ret = nvme_set_host_mem(ndev, 0); 3205 if (ret < 0) 3206 goto unfreeze; 3207 } 3208 3209 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3210 if (ret < 0) 3211 goto unfreeze; 3212 3213 /* 3214 * A saved state prevents pci pm from generically controlling the 3215 * device's power. If we're using protocol specific settings, we don't 3216 * want pci interfering. 3217 */ 3218 pci_save_state(pdev); 3219 3220 ret = nvme_set_power_state(ctrl, ctrl->npss); 3221 if (ret < 0) 3222 goto unfreeze; 3223 3224 if (ret) { 3225 /* discard the saved state */ 3226 pci_load_saved_state(pdev, NULL); 3227 3228 /* 3229 * Clearing npss forces a controller reset on resume. The 3230 * correct value will be rediscovered then. 3231 */ 3232 ret = nvme_disable_prepare_reset(ndev, true); 3233 ctrl->npss = 0; 3234 } 3235 unfreeze: 3236 nvme_unfreeze(ctrl); 3237 return ret; 3238 } 3239 3240 static int nvme_simple_suspend(struct device *dev) 3241 { 3242 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3243 3244 return nvme_disable_prepare_reset(ndev, true); 3245 } 3246 3247 static int nvme_simple_resume(struct device *dev) 3248 { 3249 struct pci_dev *pdev = to_pci_dev(dev); 3250 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3251 3252 return nvme_try_sched_reset(&ndev->ctrl); 3253 } 3254 3255 static const struct dev_pm_ops nvme_dev_pm_ops = { 3256 .suspend = nvme_suspend, 3257 .resume = nvme_resume, 3258 .freeze = nvme_simple_suspend, 3259 .thaw = nvme_simple_resume, 3260 .poweroff = nvme_simple_suspend, 3261 .restore = nvme_simple_resume, 3262 }; 3263 #endif /* CONFIG_PM_SLEEP */ 3264 3265 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3266 pci_channel_state_t state) 3267 { 3268 struct nvme_dev *dev = pci_get_drvdata(pdev); 3269 3270 /* 3271 * A frozen channel requires a reset. When detected, this method will 3272 * shutdown the controller to quiesce. The controller will be restarted 3273 * after the slot reset through driver's slot_reset callback. 3274 */ 3275 switch (state) { 3276 case pci_channel_io_normal: 3277 return PCI_ERS_RESULT_CAN_RECOVER; 3278 case pci_channel_io_frozen: 3279 dev_warn(dev->ctrl.device, 3280 "frozen state error detected, reset controller\n"); 3281 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3282 nvme_dev_disable(dev, true); 3283 return PCI_ERS_RESULT_DISCONNECT; 3284 } 3285 nvme_dev_disable(dev, false); 3286 return PCI_ERS_RESULT_NEED_RESET; 3287 case pci_channel_io_perm_failure: 3288 dev_warn(dev->ctrl.device, 3289 "failure state error detected, request disconnect\n"); 3290 return PCI_ERS_RESULT_DISCONNECT; 3291 } 3292 return PCI_ERS_RESULT_NEED_RESET; 3293 } 3294 3295 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3296 { 3297 struct nvme_dev *dev = pci_get_drvdata(pdev); 3298 3299 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3300 pci_restore_state(pdev); 3301 if (!nvme_try_sched_reset(&dev->ctrl)) 3302 nvme_unquiesce_io_queues(&dev->ctrl); 3303 return PCI_ERS_RESULT_RECOVERED; 3304 } 3305 3306 static void nvme_error_resume(struct pci_dev *pdev) 3307 { 3308 struct nvme_dev *dev = pci_get_drvdata(pdev); 3309 3310 flush_work(&dev->ctrl.reset_work); 3311 } 3312 3313 static const struct pci_error_handlers nvme_err_handler = { 3314 .error_detected = nvme_error_detected, 3315 .slot_reset = nvme_slot_reset, 3316 .resume = nvme_error_resume, 3317 .reset_prepare = nvme_reset_prepare, 3318 .reset_done = nvme_reset_done, 3319 }; 3320 3321 static const struct pci_device_id nvme_id_table[] = { 3322 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3323 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3324 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3325 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3326 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3327 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3328 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3329 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3330 NVME_QUIRK_DEALLOCATE_ZEROES | 3331 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3332 NVME_QUIRK_BOGUS_NID, }, 3333 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3334 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3335 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3336 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3337 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3338 NVME_QUIRK_MEDIUM_PRIO_SQ | 3339 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3340 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3341 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3342 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3343 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3344 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3345 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3346 NVME_QUIRK_BOGUS_NID, }, 3347 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3348 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3349 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3350 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3351 NVME_QUIRK_BOGUS_NID, }, 3352 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3353 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3354 NVME_QUIRK_NO_NS_DESC_LIST, }, 3355 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3357 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3358 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3359 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3360 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3361 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3362 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3363 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3364 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3365 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3366 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3367 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3368 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3369 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3370 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3371 NVME_QUIRK_BOGUS_NID, }, 3372 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3373 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3374 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3375 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3376 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3377 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3378 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3379 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3380 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3381 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3382 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3383 NVME_QUIRK_BOGUS_NID, }, 3384 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3385 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3386 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3387 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3388 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3389 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3390 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3391 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3392 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3393 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3394 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3395 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3396 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3397 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3398 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3399 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3400 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3401 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3402 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3403 NVME_QUIRK_BOGUS_NID, }, 3404 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3405 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3406 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3407 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3408 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3409 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3410 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3411 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3412 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3413 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3414 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3415 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3416 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3417 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3418 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3419 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3420 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3421 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3422 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3423 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3424 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3425 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3426 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3427 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3428 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3429 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3430 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3431 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3432 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3433 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3434 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3435 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3436 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3437 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3438 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3439 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3440 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3441 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3442 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3443 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3444 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3445 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3446 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3447 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3448 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3449 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3450 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3451 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3452 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3453 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3454 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3455 .driver_data = NVME_QUIRK_BOGUS_NID | 3456 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3457 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3458 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3459 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3460 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3461 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3462 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3463 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3464 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3465 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3466 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3467 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3468 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3469 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3470 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3471 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3472 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3473 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3474 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3475 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3476 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3477 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3478 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3479 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3480 NVME_QUIRK_128_BYTES_SQES | 3481 NVME_QUIRK_SHARED_TAGS | 3482 NVME_QUIRK_SKIP_CID_GEN | 3483 NVME_QUIRK_IDENTIFY_CNS }, 3484 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3485 { 0, } 3486 }; 3487 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3488 3489 static struct pci_driver nvme_driver = { 3490 .name = "nvme", 3491 .id_table = nvme_id_table, 3492 .probe = nvme_probe, 3493 .remove = nvme_remove, 3494 .shutdown = nvme_shutdown, 3495 .driver = { 3496 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3497 #ifdef CONFIG_PM_SLEEP 3498 .pm = &nvme_dev_pm_ops, 3499 #endif 3500 }, 3501 .sriov_configure = pci_sriov_configure_simple, 3502 .err_handler = &nvme_err_handler, 3503 }; 3504 3505 static int __init nvme_init(void) 3506 { 3507 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3508 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3509 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3510 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3511 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3512 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3513 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3514 3515 return pci_register_driver(&nvme_driver); 3516 } 3517 3518 static void __exit nvme_exit(void) 3519 { 3520 pci_unregister_driver(&nvme_driver); 3521 flush_workqueue(nvme_wq); 3522 } 3523 3524 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3525 MODULE_LICENSE("GPL"); 3526 MODULE_VERSION("1.0"); 3527 module_init(nvme_init); 3528 module_exit(nvme_exit); 3529