xref: /linux/drivers/nvme/host/pci.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	4096
45 #define NVME_MAX_SEGS	127
46 
47 static int use_threaded_interrupts;
48 module_param(use_threaded_interrupts, int, 0444);
49 
50 static bool use_cmb_sqes = true;
51 module_param(use_cmb_sqes, bool, 0444);
52 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
53 
54 static unsigned int max_host_mem_size_mb = 128;
55 module_param(max_host_mem_size_mb, uint, 0444);
56 MODULE_PARM_DESC(max_host_mem_size_mb,
57 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
58 
59 static unsigned int sgl_threshold = SZ_32K;
60 module_param(sgl_threshold, uint, 0644);
61 MODULE_PARM_DESC(sgl_threshold,
62 		"Use SGLs when average request segment size is larger or equal to "
63 		"this size. Use 0 to disable SGLs.");
64 
65 #define NVME_PCI_MIN_QUEUE_SIZE 2
66 #define NVME_PCI_MAX_QUEUE_SIZE 4095
67 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
68 static const struct kernel_param_ops io_queue_depth_ops = {
69 	.set = io_queue_depth_set,
70 	.get = param_get_uint,
71 };
72 
73 static unsigned int io_queue_depth = 1024;
74 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
75 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
76 
77 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
78 {
79 	unsigned int n;
80 	int ret;
81 
82 	ret = kstrtouint(val, 10, &n);
83 	if (ret != 0 || n > num_possible_cpus())
84 		return -EINVAL;
85 	return param_set_uint(val, kp);
86 }
87 
88 static const struct kernel_param_ops io_queue_count_ops = {
89 	.set = io_queue_count_set,
90 	.get = param_get_uint,
91 };
92 
93 static unsigned int write_queues;
94 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
95 MODULE_PARM_DESC(write_queues,
96 	"Number of queues to use for writes. If not set, reads and writes "
97 	"will share a queue set.");
98 
99 static unsigned int poll_queues;
100 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
101 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
102 
103 static bool noacpi;
104 module_param(noacpi, bool, 0444);
105 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
106 
107 struct nvme_dev;
108 struct nvme_queue;
109 
110 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
111 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
112 
113 /*
114  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
115  */
116 struct nvme_dev {
117 	struct nvme_queue *queues;
118 	struct blk_mq_tag_set tagset;
119 	struct blk_mq_tag_set admin_tagset;
120 	u32 __iomem *dbs;
121 	struct device *dev;
122 	struct dma_pool *prp_page_pool;
123 	struct dma_pool *prp_small_pool;
124 	unsigned online_queues;
125 	unsigned max_qid;
126 	unsigned io_queues[HCTX_MAX_TYPES];
127 	unsigned int num_vecs;
128 	u32 q_depth;
129 	int io_sqes;
130 	u32 db_stride;
131 	void __iomem *bar;
132 	unsigned long bar_mapped_size;
133 	struct work_struct remove_work;
134 	struct mutex shutdown_lock;
135 	bool subsystem;
136 	u64 cmb_size;
137 	bool cmb_use_sqes;
138 	u32 cmbsz;
139 	u32 cmbloc;
140 	struct nvme_ctrl ctrl;
141 	u32 last_ps;
142 	bool hmb;
143 
144 	mempool_t *iod_mempool;
145 
146 	/* shadow doorbell buffer support: */
147 	u32 *dbbuf_dbs;
148 	dma_addr_t dbbuf_dbs_dma_addr;
149 	u32 *dbbuf_eis;
150 	dma_addr_t dbbuf_eis_dma_addr;
151 
152 	/* host memory buffer support: */
153 	u64 host_mem_size;
154 	u32 nr_host_mem_descs;
155 	dma_addr_t host_mem_descs_dma;
156 	struct nvme_host_mem_buf_desc *host_mem_descs;
157 	void **host_mem_desc_bufs;
158 	unsigned int nr_allocated_queues;
159 	unsigned int nr_write_queues;
160 	unsigned int nr_poll_queues;
161 
162 	bool attrs_added;
163 };
164 
165 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
166 {
167 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
168 			NVME_PCI_MAX_QUEUE_SIZE);
169 }
170 
171 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
172 {
173 	return qid * 2 * stride;
174 }
175 
176 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
177 {
178 	return (qid * 2 + 1) * stride;
179 }
180 
181 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
182 {
183 	return container_of(ctrl, struct nvme_dev, ctrl);
184 }
185 
186 /*
187  * An NVM Express queue.  Each device has at least two (one for admin
188  * commands and one for I/O commands).
189  */
190 struct nvme_queue {
191 	struct nvme_dev *dev;
192 	spinlock_t sq_lock;
193 	void *sq_cmds;
194 	 /* only used for poll queues: */
195 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
196 	struct nvme_completion *cqes;
197 	dma_addr_t sq_dma_addr;
198 	dma_addr_t cq_dma_addr;
199 	u32 __iomem *q_db;
200 	u32 q_depth;
201 	u16 cq_vector;
202 	u16 sq_tail;
203 	u16 last_sq_tail;
204 	u16 cq_head;
205 	u16 qid;
206 	u8 cq_phase;
207 	u8 sqes;
208 	unsigned long flags;
209 #define NVMEQ_ENABLED		0
210 #define NVMEQ_SQ_CMB		1
211 #define NVMEQ_DELETE_ERROR	2
212 #define NVMEQ_POLLED		3
213 	u32 *dbbuf_sq_db;
214 	u32 *dbbuf_cq_db;
215 	u32 *dbbuf_sq_ei;
216 	u32 *dbbuf_cq_ei;
217 	struct completion delete_done;
218 };
219 
220 /*
221  * The nvme_iod describes the data in an I/O.
222  *
223  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
224  * to the actual struct scatterlist.
225  */
226 struct nvme_iod {
227 	struct nvme_request req;
228 	struct nvme_command cmd;
229 	struct nvme_queue *nvmeq;
230 	bool use_sgl;
231 	int aborted;
232 	int npages;		/* In the PRP list. 0 means small pool in use */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct sg_table sgt;
237 };
238 
239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs) {
249 		/*
250 		 * Clear the dbbuf memory so the driver doesn't observe stale
251 		 * values from the previous instantiation.
252 		 */
253 		memset(dev->dbbuf_dbs, 0, mem_size);
254 		memset(dev->dbbuf_eis, 0, mem_size);
255 		return 0;
256 	}
257 
258 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
259 					    &dev->dbbuf_dbs_dma_addr,
260 					    GFP_KERNEL);
261 	if (!dev->dbbuf_dbs)
262 		return -ENOMEM;
263 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
264 					    &dev->dbbuf_eis_dma_addr,
265 					    GFP_KERNEL);
266 	if (!dev->dbbuf_eis) {
267 		dma_free_coherent(dev->dev, mem_size,
268 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
269 		dev->dbbuf_dbs = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 
276 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
277 {
278 	unsigned int mem_size = nvme_dbbuf_size(dev);
279 
280 	if (dev->dbbuf_dbs) {
281 		dma_free_coherent(dev->dev, mem_size,
282 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
283 		dev->dbbuf_dbs = NULL;
284 	}
285 	if (dev->dbbuf_eis) {
286 		dma_free_coherent(dev->dev, mem_size,
287 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
288 		dev->dbbuf_eis = NULL;
289 	}
290 }
291 
292 static void nvme_dbbuf_init(struct nvme_dev *dev,
293 			    struct nvme_queue *nvmeq, int qid)
294 {
295 	if (!dev->dbbuf_dbs || !qid)
296 		return;
297 
298 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
299 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
300 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
301 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
302 }
303 
304 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
305 {
306 	if (!nvmeq->qid)
307 		return;
308 
309 	nvmeq->dbbuf_sq_db = NULL;
310 	nvmeq->dbbuf_cq_db = NULL;
311 	nvmeq->dbbuf_sq_ei = NULL;
312 	nvmeq->dbbuf_cq_ei = NULL;
313 }
314 
315 static void nvme_dbbuf_set(struct nvme_dev *dev)
316 {
317 	struct nvme_command c = { };
318 	unsigned int i;
319 
320 	if (!dev->dbbuf_dbs)
321 		return;
322 
323 	c.dbbuf.opcode = nvme_admin_dbbuf;
324 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
325 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
326 
327 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
328 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
329 		/* Free memory and continue on */
330 		nvme_dbbuf_dma_free(dev);
331 
332 		for (i = 1; i <= dev->online_queues; i++)
333 			nvme_dbbuf_free(&dev->queues[i]);
334 	}
335 }
336 
337 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
338 {
339 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
340 }
341 
342 /* Update dbbuf and return true if an MMIO is required */
343 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
344 					      volatile u32 *dbbuf_ei)
345 {
346 	if (dbbuf_db) {
347 		u16 old_value;
348 
349 		/*
350 		 * Ensure that the queue is written before updating
351 		 * the doorbell in memory
352 		 */
353 		wmb();
354 
355 		old_value = *dbbuf_db;
356 		*dbbuf_db = value;
357 
358 		/*
359 		 * Ensure that the doorbell is updated before reading the event
360 		 * index from memory.  The controller needs to provide similar
361 		 * ordering to ensure the envent index is updated before reading
362 		 * the doorbell.
363 		 */
364 		mb();
365 
366 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
367 			return false;
368 	}
369 
370 	return true;
371 }
372 
373 /*
374  * Will slightly overestimate the number of pages needed.  This is OK
375  * as it only leads to a small amount of wasted memory for the lifetime of
376  * the I/O.
377  */
378 static int nvme_pci_npages_prp(void)
379 {
380 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
381 				      NVME_CTRL_PAGE_SIZE);
382 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
383 }
384 
385 /*
386  * Calculates the number of pages needed for the SGL segments. For example a 4k
387  * page can accommodate 256 SGL descriptors.
388  */
389 static int nvme_pci_npages_sgl(void)
390 {
391 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
392 			PAGE_SIZE);
393 }
394 
395 static size_t nvme_pci_iod_alloc_size(void)
396 {
397 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
398 
399 	return sizeof(__le64 *) * npages +
400 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
401 }
402 
403 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
404 				unsigned int hctx_idx)
405 {
406 	struct nvme_dev *dev = data;
407 	struct nvme_queue *nvmeq = &dev->queues[0];
408 
409 	WARN_ON(hctx_idx != 0);
410 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
411 
412 	hctx->driver_data = nvmeq;
413 	return 0;
414 }
415 
416 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
417 			  unsigned int hctx_idx)
418 {
419 	struct nvme_dev *dev = data;
420 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
421 
422 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
423 	hctx->driver_data = nvmeq;
424 	return 0;
425 }
426 
427 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
428 		struct request *req, unsigned int hctx_idx,
429 		unsigned int numa_node)
430 {
431 	struct nvme_dev *dev = set->driver_data;
432 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
434 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
435 
436 	BUG_ON(!nvmeq);
437 	iod->nvmeq = nvmeq;
438 
439 	nvme_req(req)->ctrl = &dev->ctrl;
440 	nvme_req(req)->cmd = &iod->cmd;
441 	return 0;
442 }
443 
444 static int queue_irq_offset(struct nvme_dev *dev)
445 {
446 	/* if we have more than 1 vec, admin queue offsets us by 1 */
447 	if (dev->num_vecs > 1)
448 		return 1;
449 
450 	return 0;
451 }
452 
453 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
454 {
455 	struct nvme_dev *dev = set->driver_data;
456 	int i, qoff, offset;
457 
458 	offset = queue_irq_offset(dev);
459 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
460 		struct blk_mq_queue_map *map = &set->map[i];
461 
462 		map->nr_queues = dev->io_queues[i];
463 		if (!map->nr_queues) {
464 			BUG_ON(i == HCTX_TYPE_DEFAULT);
465 			continue;
466 		}
467 
468 		/*
469 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
470 		 * affinity), so use the regular blk-mq cpu mapping
471 		 */
472 		map->queue_offset = qoff;
473 		if (i != HCTX_TYPE_POLL && offset)
474 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
475 		else
476 			blk_mq_map_queues(map);
477 		qoff += map->nr_queues;
478 		offset += map->nr_queues;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * Write sq tail if we are asked to, or if the next command would wrap.
486  */
487 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
488 {
489 	if (!write_sq) {
490 		u16 next_tail = nvmeq->sq_tail + 1;
491 
492 		if (next_tail == nvmeq->q_depth)
493 			next_tail = 0;
494 		if (next_tail != nvmeq->last_sq_tail)
495 			return;
496 	}
497 
498 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
499 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
500 		writel(nvmeq->sq_tail, nvmeq->q_db);
501 	nvmeq->last_sq_tail = nvmeq->sq_tail;
502 }
503 
504 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
505 				    struct nvme_command *cmd)
506 {
507 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
508 		absolute_pointer(cmd), sizeof(*cmd));
509 	if (++nvmeq->sq_tail == nvmeq->q_depth)
510 		nvmeq->sq_tail = 0;
511 }
512 
513 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
514 {
515 	struct nvme_queue *nvmeq = hctx->driver_data;
516 
517 	spin_lock(&nvmeq->sq_lock);
518 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
519 		nvme_write_sq_db(nvmeq, true);
520 	spin_unlock(&nvmeq->sq_lock);
521 }
522 
523 static void **nvme_pci_iod_list(struct request *req)
524 {
525 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
526 	return (void **)(iod->sgt.sgl + blk_rq_nr_phys_segments(req));
527 }
528 
529 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
530 {
531 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
532 	int nseg = blk_rq_nr_phys_segments(req);
533 	unsigned int avg_seg_size;
534 
535 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
536 
537 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
538 		return false;
539 	if (!iod->nvmeq->qid)
540 		return false;
541 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
542 		return false;
543 	return true;
544 }
545 
546 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
547 {
548 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
549 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
550 	dma_addr_t dma_addr = iod->first_dma;
551 	int i;
552 
553 	for (i = 0; i < iod->npages; i++) {
554 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
555 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
556 
557 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
558 		dma_addr = next_dma_addr;
559 	}
560 }
561 
562 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
563 {
564 	const int last_sg = SGES_PER_PAGE - 1;
565 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
566 	dma_addr_t dma_addr = iod->first_dma;
567 	int i;
568 
569 	for (i = 0; i < iod->npages; i++) {
570 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
571 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
572 
573 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
574 		dma_addr = next_dma_addr;
575 	}
576 }
577 
578 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
579 {
580 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
581 
582 	if (iod->dma_len) {
583 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
584 			       rq_dma_dir(req));
585 		return;
586 	}
587 
588 	WARN_ON_ONCE(!iod->sgt.nents);
589 
590 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
591 
592 	if (iod->npages == 0)
593 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
594 			      iod->first_dma);
595 	else if (iod->use_sgl)
596 		nvme_free_sgls(dev, req);
597 	else
598 		nvme_free_prps(dev, req);
599 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
600 }
601 
602 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
603 {
604 	int i;
605 	struct scatterlist *sg;
606 
607 	for_each_sg(sgl, sg, nents, i) {
608 		dma_addr_t phys = sg_phys(sg);
609 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
610 			"dma_address:%pad dma_length:%d\n",
611 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
612 			sg_dma_len(sg));
613 	}
614 }
615 
616 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
617 		struct request *req, struct nvme_rw_command *cmnd)
618 {
619 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
620 	struct dma_pool *pool;
621 	int length = blk_rq_payload_bytes(req);
622 	struct scatterlist *sg = iod->sgt.sgl;
623 	int dma_len = sg_dma_len(sg);
624 	u64 dma_addr = sg_dma_address(sg);
625 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
626 	__le64 *prp_list;
627 	void **list = nvme_pci_iod_list(req);
628 	dma_addr_t prp_dma;
629 	int nprps, i;
630 
631 	length -= (NVME_CTRL_PAGE_SIZE - offset);
632 	if (length <= 0) {
633 		iod->first_dma = 0;
634 		goto done;
635 	}
636 
637 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
638 	if (dma_len) {
639 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
640 	} else {
641 		sg = sg_next(sg);
642 		dma_addr = sg_dma_address(sg);
643 		dma_len = sg_dma_len(sg);
644 	}
645 
646 	if (length <= NVME_CTRL_PAGE_SIZE) {
647 		iod->first_dma = dma_addr;
648 		goto done;
649 	}
650 
651 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
652 	if (nprps <= (256 / 8)) {
653 		pool = dev->prp_small_pool;
654 		iod->npages = 0;
655 	} else {
656 		pool = dev->prp_page_pool;
657 		iod->npages = 1;
658 	}
659 
660 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
661 	if (!prp_list) {
662 		iod->npages = -1;
663 		return BLK_STS_RESOURCE;
664 	}
665 	list[0] = prp_list;
666 	iod->first_dma = prp_dma;
667 	i = 0;
668 	for (;;) {
669 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
670 			__le64 *old_prp_list = prp_list;
671 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
672 			if (!prp_list)
673 				goto free_prps;
674 			list[iod->npages++] = prp_list;
675 			prp_list[0] = old_prp_list[i - 1];
676 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
677 			i = 1;
678 		}
679 		prp_list[i++] = cpu_to_le64(dma_addr);
680 		dma_len -= NVME_CTRL_PAGE_SIZE;
681 		dma_addr += NVME_CTRL_PAGE_SIZE;
682 		length -= NVME_CTRL_PAGE_SIZE;
683 		if (length <= 0)
684 			break;
685 		if (dma_len > 0)
686 			continue;
687 		if (unlikely(dma_len < 0))
688 			goto bad_sgl;
689 		sg = sg_next(sg);
690 		dma_addr = sg_dma_address(sg);
691 		dma_len = sg_dma_len(sg);
692 	}
693 done:
694 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
695 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
696 	return BLK_STS_OK;
697 free_prps:
698 	nvme_free_prps(dev, req);
699 	return BLK_STS_RESOURCE;
700 bad_sgl:
701 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
702 			"Invalid SGL for payload:%d nents:%d\n",
703 			blk_rq_payload_bytes(req), iod->sgt.nents);
704 	return BLK_STS_IOERR;
705 }
706 
707 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
708 		struct scatterlist *sg)
709 {
710 	sge->addr = cpu_to_le64(sg_dma_address(sg));
711 	sge->length = cpu_to_le32(sg_dma_len(sg));
712 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
713 }
714 
715 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
716 		dma_addr_t dma_addr, int entries)
717 {
718 	sge->addr = cpu_to_le64(dma_addr);
719 	if (entries < SGES_PER_PAGE) {
720 		sge->length = cpu_to_le32(entries * sizeof(*sge));
721 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
722 	} else {
723 		sge->length = cpu_to_le32(PAGE_SIZE);
724 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
725 	}
726 }
727 
728 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
729 		struct request *req, struct nvme_rw_command *cmd)
730 {
731 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
732 	struct dma_pool *pool;
733 	struct nvme_sgl_desc *sg_list;
734 	struct scatterlist *sg = iod->sgt.sgl;
735 	unsigned int entries = iod->sgt.nents;
736 	dma_addr_t sgl_dma;
737 	int i = 0;
738 
739 	/* setting the transfer type as SGL */
740 	cmd->flags = NVME_CMD_SGL_METABUF;
741 
742 	if (entries == 1) {
743 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
744 		return BLK_STS_OK;
745 	}
746 
747 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
748 		pool = dev->prp_small_pool;
749 		iod->npages = 0;
750 	} else {
751 		pool = dev->prp_page_pool;
752 		iod->npages = 1;
753 	}
754 
755 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
756 	if (!sg_list) {
757 		iod->npages = -1;
758 		return BLK_STS_RESOURCE;
759 	}
760 
761 	nvme_pci_iod_list(req)[0] = sg_list;
762 	iod->first_dma = sgl_dma;
763 
764 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
765 
766 	do {
767 		if (i == SGES_PER_PAGE) {
768 			struct nvme_sgl_desc *old_sg_desc = sg_list;
769 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
770 
771 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
772 			if (!sg_list)
773 				goto free_sgls;
774 
775 			i = 0;
776 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
777 			sg_list[i++] = *link;
778 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
779 		}
780 
781 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
782 		sg = sg_next(sg);
783 	} while (--entries > 0);
784 
785 	return BLK_STS_OK;
786 free_sgls:
787 	nvme_free_sgls(dev, req);
788 	return BLK_STS_RESOURCE;
789 }
790 
791 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
792 		struct request *req, struct nvme_rw_command *cmnd,
793 		struct bio_vec *bv)
794 {
795 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
796 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
797 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
798 
799 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
800 	if (dma_mapping_error(dev->dev, iod->first_dma))
801 		return BLK_STS_RESOURCE;
802 	iod->dma_len = bv->bv_len;
803 
804 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
805 	if (bv->bv_len > first_prp_len)
806 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
807 	return BLK_STS_OK;
808 }
809 
810 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
811 		struct request *req, struct nvme_rw_command *cmnd,
812 		struct bio_vec *bv)
813 {
814 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
815 
816 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
817 	if (dma_mapping_error(dev->dev, iod->first_dma))
818 		return BLK_STS_RESOURCE;
819 	iod->dma_len = bv->bv_len;
820 
821 	cmnd->flags = NVME_CMD_SGL_METABUF;
822 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
823 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
824 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
825 	return BLK_STS_OK;
826 }
827 
828 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
829 		struct nvme_command *cmnd)
830 {
831 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
832 	blk_status_t ret = BLK_STS_RESOURCE;
833 	int rc;
834 
835 	if (blk_rq_nr_phys_segments(req) == 1) {
836 		struct bio_vec bv = req_bvec(req);
837 
838 		if (!is_pci_p2pdma_page(bv.bv_page)) {
839 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
840 				return nvme_setup_prp_simple(dev, req,
841 							     &cmnd->rw, &bv);
842 
843 			if (iod->nvmeq->qid && sgl_threshold &&
844 			    nvme_ctrl_sgl_supported(&dev->ctrl))
845 				return nvme_setup_sgl_simple(dev, req,
846 							     &cmnd->rw, &bv);
847 		}
848 	}
849 
850 	iod->dma_len = 0;
851 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
852 	if (!iod->sgt.sgl)
853 		return BLK_STS_RESOURCE;
854 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
855 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
856 	if (!iod->sgt.orig_nents)
857 		goto out_free_sg;
858 
859 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
860 			     DMA_ATTR_NO_WARN);
861 	if (rc) {
862 		if (rc == -EREMOTEIO)
863 			ret = BLK_STS_TARGET;
864 		goto out_free_sg;
865 	}
866 
867 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
868 	if (iod->use_sgl)
869 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
870 	else
871 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
872 	if (ret != BLK_STS_OK)
873 		goto out_unmap_sg;
874 	return BLK_STS_OK;
875 
876 out_unmap_sg:
877 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
878 out_free_sg:
879 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
880 	return ret;
881 }
882 
883 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
884 		struct nvme_command *cmnd)
885 {
886 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
887 
888 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
889 			rq_dma_dir(req), 0);
890 	if (dma_mapping_error(dev->dev, iod->meta_dma))
891 		return BLK_STS_IOERR;
892 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
893 	return BLK_STS_OK;
894 }
895 
896 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
897 {
898 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
899 	blk_status_t ret;
900 
901 	iod->aborted = 0;
902 	iod->npages = -1;
903 	iod->sgt.nents = 0;
904 
905 	ret = nvme_setup_cmd(req->q->queuedata, req);
906 	if (ret)
907 		return ret;
908 
909 	if (blk_rq_nr_phys_segments(req)) {
910 		ret = nvme_map_data(dev, req, &iod->cmd);
911 		if (ret)
912 			goto out_free_cmd;
913 	}
914 
915 	if (blk_integrity_rq(req)) {
916 		ret = nvme_map_metadata(dev, req, &iod->cmd);
917 		if (ret)
918 			goto out_unmap_data;
919 	}
920 
921 	blk_mq_start_request(req);
922 	return BLK_STS_OK;
923 out_unmap_data:
924 	nvme_unmap_data(dev, req);
925 out_free_cmd:
926 	nvme_cleanup_cmd(req);
927 	return ret;
928 }
929 
930 /*
931  * NOTE: ns is NULL when called on the admin queue.
932  */
933 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
934 			 const struct blk_mq_queue_data *bd)
935 {
936 	struct nvme_queue *nvmeq = hctx->driver_data;
937 	struct nvme_dev *dev = nvmeq->dev;
938 	struct request *req = bd->rq;
939 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
940 	blk_status_t ret;
941 
942 	/*
943 	 * We should not need to do this, but we're still using this to
944 	 * ensure we can drain requests on a dying queue.
945 	 */
946 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
947 		return BLK_STS_IOERR;
948 
949 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
950 		return nvme_fail_nonready_command(&dev->ctrl, req);
951 
952 	ret = nvme_prep_rq(dev, req);
953 	if (unlikely(ret))
954 		return ret;
955 	spin_lock(&nvmeq->sq_lock);
956 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
957 	nvme_write_sq_db(nvmeq, bd->last);
958 	spin_unlock(&nvmeq->sq_lock);
959 	return BLK_STS_OK;
960 }
961 
962 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
963 {
964 	spin_lock(&nvmeq->sq_lock);
965 	while (!rq_list_empty(*rqlist)) {
966 		struct request *req = rq_list_pop(rqlist);
967 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
968 
969 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
970 	}
971 	nvme_write_sq_db(nvmeq, true);
972 	spin_unlock(&nvmeq->sq_lock);
973 }
974 
975 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
976 {
977 	/*
978 	 * We should not need to do this, but we're still using this to
979 	 * ensure we can drain requests on a dying queue.
980 	 */
981 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
982 		return false;
983 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
984 		return false;
985 
986 	req->mq_hctx->tags->rqs[req->tag] = req;
987 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
988 }
989 
990 static void nvme_queue_rqs(struct request **rqlist)
991 {
992 	struct request *req, *next, *prev = NULL;
993 	struct request *requeue_list = NULL;
994 
995 	rq_list_for_each_safe(rqlist, req, next) {
996 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
997 
998 		if (!nvme_prep_rq_batch(nvmeq, req)) {
999 			/* detach 'req' and add to remainder list */
1000 			rq_list_move(rqlist, &requeue_list, req, prev);
1001 
1002 			req = prev;
1003 			if (!req)
1004 				continue;
1005 		}
1006 
1007 		if (!next || req->mq_hctx != next->mq_hctx) {
1008 			/* detach rest of list, and submit */
1009 			req->rq_next = NULL;
1010 			nvme_submit_cmds(nvmeq, rqlist);
1011 			*rqlist = next;
1012 			prev = NULL;
1013 		} else
1014 			prev = req;
1015 	}
1016 
1017 	*rqlist = requeue_list;
1018 }
1019 
1020 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1021 {
1022 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1023 	struct nvme_dev *dev = iod->nvmeq->dev;
1024 
1025 	if (blk_integrity_rq(req))
1026 		dma_unmap_page(dev->dev, iod->meta_dma,
1027 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
1028 	if (blk_rq_nr_phys_segments(req))
1029 		nvme_unmap_data(dev, req);
1030 }
1031 
1032 static void nvme_pci_complete_rq(struct request *req)
1033 {
1034 	nvme_pci_unmap_rq(req);
1035 	nvme_complete_rq(req);
1036 }
1037 
1038 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1039 {
1040 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1041 }
1042 
1043 /* We read the CQE phase first to check if the rest of the entry is valid */
1044 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1045 {
1046 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1047 
1048 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1049 }
1050 
1051 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1052 {
1053 	u16 head = nvmeq->cq_head;
1054 
1055 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1056 					      nvmeq->dbbuf_cq_ei))
1057 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1058 }
1059 
1060 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1061 {
1062 	if (!nvmeq->qid)
1063 		return nvmeq->dev->admin_tagset.tags[0];
1064 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1065 }
1066 
1067 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1068 				   struct io_comp_batch *iob, u16 idx)
1069 {
1070 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1071 	__u16 command_id = READ_ONCE(cqe->command_id);
1072 	struct request *req;
1073 
1074 	/*
1075 	 * AEN requests are special as they don't time out and can
1076 	 * survive any kind of queue freeze and often don't respond to
1077 	 * aborts.  We don't even bother to allocate a struct request
1078 	 * for them but rather special case them here.
1079 	 */
1080 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1081 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1082 				cqe->status, &cqe->result);
1083 		return;
1084 	}
1085 
1086 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1087 	if (unlikely(!req)) {
1088 		dev_warn(nvmeq->dev->ctrl.device,
1089 			"invalid id %d completed on queue %d\n",
1090 			command_id, le16_to_cpu(cqe->sq_id));
1091 		return;
1092 	}
1093 
1094 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1095 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1096 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1097 					nvme_pci_complete_batch))
1098 		nvme_pci_complete_rq(req);
1099 }
1100 
1101 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1102 {
1103 	u32 tmp = nvmeq->cq_head + 1;
1104 
1105 	if (tmp == nvmeq->q_depth) {
1106 		nvmeq->cq_head = 0;
1107 		nvmeq->cq_phase ^= 1;
1108 	} else {
1109 		nvmeq->cq_head = tmp;
1110 	}
1111 }
1112 
1113 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1114 			       struct io_comp_batch *iob)
1115 {
1116 	int found = 0;
1117 
1118 	while (nvme_cqe_pending(nvmeq)) {
1119 		found++;
1120 		/*
1121 		 * load-load control dependency between phase and the rest of
1122 		 * the cqe requires a full read memory barrier
1123 		 */
1124 		dma_rmb();
1125 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1126 		nvme_update_cq_head(nvmeq);
1127 	}
1128 
1129 	if (found)
1130 		nvme_ring_cq_doorbell(nvmeq);
1131 	return found;
1132 }
1133 
1134 static irqreturn_t nvme_irq(int irq, void *data)
1135 {
1136 	struct nvme_queue *nvmeq = data;
1137 	DEFINE_IO_COMP_BATCH(iob);
1138 
1139 	if (nvme_poll_cq(nvmeq, &iob)) {
1140 		if (!rq_list_empty(iob.req_list))
1141 			nvme_pci_complete_batch(&iob);
1142 		return IRQ_HANDLED;
1143 	}
1144 	return IRQ_NONE;
1145 }
1146 
1147 static irqreturn_t nvme_irq_check(int irq, void *data)
1148 {
1149 	struct nvme_queue *nvmeq = data;
1150 
1151 	if (nvme_cqe_pending(nvmeq))
1152 		return IRQ_WAKE_THREAD;
1153 	return IRQ_NONE;
1154 }
1155 
1156 /*
1157  * Poll for completions for any interrupt driven queue
1158  * Can be called from any context.
1159  */
1160 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1161 {
1162 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1163 
1164 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1165 
1166 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1167 	nvme_poll_cq(nvmeq, NULL);
1168 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1169 }
1170 
1171 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1172 {
1173 	struct nvme_queue *nvmeq = hctx->driver_data;
1174 	bool found;
1175 
1176 	if (!nvme_cqe_pending(nvmeq))
1177 		return 0;
1178 
1179 	spin_lock(&nvmeq->cq_poll_lock);
1180 	found = nvme_poll_cq(nvmeq, iob);
1181 	spin_unlock(&nvmeq->cq_poll_lock);
1182 
1183 	return found;
1184 }
1185 
1186 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1187 {
1188 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1189 	struct nvme_queue *nvmeq = &dev->queues[0];
1190 	struct nvme_command c = { };
1191 
1192 	c.common.opcode = nvme_admin_async_event;
1193 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1194 
1195 	spin_lock(&nvmeq->sq_lock);
1196 	nvme_sq_copy_cmd(nvmeq, &c);
1197 	nvme_write_sq_db(nvmeq, true);
1198 	spin_unlock(&nvmeq->sq_lock);
1199 }
1200 
1201 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1202 {
1203 	struct nvme_command c = { };
1204 
1205 	c.delete_queue.opcode = opcode;
1206 	c.delete_queue.qid = cpu_to_le16(id);
1207 
1208 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1209 }
1210 
1211 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1212 		struct nvme_queue *nvmeq, s16 vector)
1213 {
1214 	struct nvme_command c = { };
1215 	int flags = NVME_QUEUE_PHYS_CONTIG;
1216 
1217 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1218 		flags |= NVME_CQ_IRQ_ENABLED;
1219 
1220 	/*
1221 	 * Note: we (ab)use the fact that the prp fields survive if no data
1222 	 * is attached to the request.
1223 	 */
1224 	c.create_cq.opcode = nvme_admin_create_cq;
1225 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1226 	c.create_cq.cqid = cpu_to_le16(qid);
1227 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1228 	c.create_cq.cq_flags = cpu_to_le16(flags);
1229 	c.create_cq.irq_vector = cpu_to_le16(vector);
1230 
1231 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1232 }
1233 
1234 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1235 						struct nvme_queue *nvmeq)
1236 {
1237 	struct nvme_ctrl *ctrl = &dev->ctrl;
1238 	struct nvme_command c = { };
1239 	int flags = NVME_QUEUE_PHYS_CONTIG;
1240 
1241 	/*
1242 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1243 	 * set. Since URGENT priority is zeroes, it makes all queues
1244 	 * URGENT.
1245 	 */
1246 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1247 		flags |= NVME_SQ_PRIO_MEDIUM;
1248 
1249 	/*
1250 	 * Note: we (ab)use the fact that the prp fields survive if no data
1251 	 * is attached to the request.
1252 	 */
1253 	c.create_sq.opcode = nvme_admin_create_sq;
1254 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1255 	c.create_sq.sqid = cpu_to_le16(qid);
1256 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1257 	c.create_sq.sq_flags = cpu_to_le16(flags);
1258 	c.create_sq.cqid = cpu_to_le16(qid);
1259 
1260 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1261 }
1262 
1263 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1264 {
1265 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1266 }
1267 
1268 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1269 {
1270 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1271 }
1272 
1273 static void abort_endio(struct request *req, blk_status_t error)
1274 {
1275 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1276 	struct nvme_queue *nvmeq = iod->nvmeq;
1277 
1278 	dev_warn(nvmeq->dev->ctrl.device,
1279 		 "Abort status: 0x%x", nvme_req(req)->status);
1280 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1281 	blk_mq_free_request(req);
1282 }
1283 
1284 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1285 {
1286 	/* If true, indicates loss of adapter communication, possibly by a
1287 	 * NVMe Subsystem reset.
1288 	 */
1289 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1290 
1291 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1292 	switch (dev->ctrl.state) {
1293 	case NVME_CTRL_RESETTING:
1294 	case NVME_CTRL_CONNECTING:
1295 		return false;
1296 	default:
1297 		break;
1298 	}
1299 
1300 	/* We shouldn't reset unless the controller is on fatal error state
1301 	 * _or_ if we lost the communication with it.
1302 	 */
1303 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1310 {
1311 	/* Read a config register to help see what died. */
1312 	u16 pci_status;
1313 	int result;
1314 
1315 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1316 				      &pci_status);
1317 	if (result == PCIBIOS_SUCCESSFUL)
1318 		dev_warn(dev->ctrl.device,
1319 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1320 			 csts, pci_status);
1321 	else
1322 		dev_warn(dev->ctrl.device,
1323 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1324 			 csts, result);
1325 
1326 	if (csts != ~0)
1327 		return;
1328 
1329 	dev_warn(dev->ctrl.device,
1330 		 "Does your device have a faulty power saving mode enabled?\n");
1331 	dev_warn(dev->ctrl.device,
1332 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1333 }
1334 
1335 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1336 {
1337 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1338 	struct nvme_queue *nvmeq = iod->nvmeq;
1339 	struct nvme_dev *dev = nvmeq->dev;
1340 	struct request *abort_req;
1341 	struct nvme_command cmd = { };
1342 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1343 
1344 	/* If PCI error recovery process is happening, we cannot reset or
1345 	 * the recovery mechanism will surely fail.
1346 	 */
1347 	mb();
1348 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1349 		return BLK_EH_RESET_TIMER;
1350 
1351 	/*
1352 	 * Reset immediately if the controller is failed
1353 	 */
1354 	if (nvme_should_reset(dev, csts)) {
1355 		nvme_warn_reset(dev, csts);
1356 		nvme_dev_disable(dev, false);
1357 		nvme_reset_ctrl(&dev->ctrl);
1358 		return BLK_EH_DONE;
1359 	}
1360 
1361 	/*
1362 	 * Did we miss an interrupt?
1363 	 */
1364 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1365 		nvme_poll(req->mq_hctx, NULL);
1366 	else
1367 		nvme_poll_irqdisable(nvmeq);
1368 
1369 	if (blk_mq_request_completed(req)) {
1370 		dev_warn(dev->ctrl.device,
1371 			 "I/O %d QID %d timeout, completion polled\n",
1372 			 req->tag, nvmeq->qid);
1373 		return BLK_EH_DONE;
1374 	}
1375 
1376 	/*
1377 	 * Shutdown immediately if controller times out while starting. The
1378 	 * reset work will see the pci device disabled when it gets the forced
1379 	 * cancellation error. All outstanding requests are completed on
1380 	 * shutdown, so we return BLK_EH_DONE.
1381 	 */
1382 	switch (dev->ctrl.state) {
1383 	case NVME_CTRL_CONNECTING:
1384 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1385 		fallthrough;
1386 	case NVME_CTRL_DELETING:
1387 		dev_warn_ratelimited(dev->ctrl.device,
1388 			 "I/O %d QID %d timeout, disable controller\n",
1389 			 req->tag, nvmeq->qid);
1390 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1391 		nvme_dev_disable(dev, true);
1392 		return BLK_EH_DONE;
1393 	case NVME_CTRL_RESETTING:
1394 		return BLK_EH_RESET_TIMER;
1395 	default:
1396 		break;
1397 	}
1398 
1399 	/*
1400 	 * Shutdown the controller immediately and schedule a reset if the
1401 	 * command was already aborted once before and still hasn't been
1402 	 * returned to the driver, or if this is the admin queue.
1403 	 */
1404 	if (!nvmeq->qid || iod->aborted) {
1405 		dev_warn(dev->ctrl.device,
1406 			 "I/O %d QID %d timeout, reset controller\n",
1407 			 req->tag, nvmeq->qid);
1408 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1409 		nvme_dev_disable(dev, false);
1410 		nvme_reset_ctrl(&dev->ctrl);
1411 
1412 		return BLK_EH_DONE;
1413 	}
1414 
1415 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1416 		atomic_inc(&dev->ctrl.abort_limit);
1417 		return BLK_EH_RESET_TIMER;
1418 	}
1419 	iod->aborted = 1;
1420 
1421 	cmd.abort.opcode = nvme_admin_abort_cmd;
1422 	cmd.abort.cid = nvme_cid(req);
1423 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1424 
1425 	dev_warn(nvmeq->dev->ctrl.device,
1426 		"I/O %d (%s) QID %d timeout, aborting\n",
1427 		 req->tag,
1428 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1429 		 nvmeq->qid);
1430 
1431 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1432 					 BLK_MQ_REQ_NOWAIT);
1433 	if (IS_ERR(abort_req)) {
1434 		atomic_inc(&dev->ctrl.abort_limit);
1435 		return BLK_EH_RESET_TIMER;
1436 	}
1437 	nvme_init_request(abort_req, &cmd);
1438 
1439 	abort_req->end_io = abort_endio;
1440 	abort_req->end_io_data = NULL;
1441 	abort_req->rq_flags |= RQF_QUIET;
1442 	blk_execute_rq_nowait(abort_req, false);
1443 
1444 	/*
1445 	 * The aborted req will be completed on receiving the abort req.
1446 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1447 	 * as the device then is in a faulty state.
1448 	 */
1449 	return BLK_EH_RESET_TIMER;
1450 }
1451 
1452 static void nvme_free_queue(struct nvme_queue *nvmeq)
1453 {
1454 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1455 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1456 	if (!nvmeq->sq_cmds)
1457 		return;
1458 
1459 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1460 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1461 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1462 	} else {
1463 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1464 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1465 	}
1466 }
1467 
1468 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1469 {
1470 	int i;
1471 
1472 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1473 		dev->ctrl.queue_count--;
1474 		nvme_free_queue(&dev->queues[i]);
1475 	}
1476 }
1477 
1478 /**
1479  * nvme_suspend_queue - put queue into suspended state
1480  * @nvmeq: queue to suspend
1481  */
1482 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1483 {
1484 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1485 		return 1;
1486 
1487 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1488 	mb();
1489 
1490 	nvmeq->dev->online_queues--;
1491 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1492 		nvme_stop_admin_queue(&nvmeq->dev->ctrl);
1493 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1494 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1495 	return 0;
1496 }
1497 
1498 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1499 {
1500 	int i;
1501 
1502 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1503 		nvme_suspend_queue(&dev->queues[i]);
1504 }
1505 
1506 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1507 {
1508 	struct nvme_queue *nvmeq = &dev->queues[0];
1509 
1510 	if (shutdown)
1511 		nvme_shutdown_ctrl(&dev->ctrl);
1512 	else
1513 		nvme_disable_ctrl(&dev->ctrl);
1514 
1515 	nvme_poll_irqdisable(nvmeq);
1516 }
1517 
1518 /*
1519  * Called only on a device that has been disabled and after all other threads
1520  * that can check this device's completion queues have synced, except
1521  * nvme_poll(). This is the last chance for the driver to see a natural
1522  * completion before nvme_cancel_request() terminates all incomplete requests.
1523  */
1524 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1525 {
1526 	int i;
1527 
1528 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1529 		spin_lock(&dev->queues[i].cq_poll_lock);
1530 		nvme_poll_cq(&dev->queues[i], NULL);
1531 		spin_unlock(&dev->queues[i].cq_poll_lock);
1532 	}
1533 }
1534 
1535 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1536 				int entry_size)
1537 {
1538 	int q_depth = dev->q_depth;
1539 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1540 					  NVME_CTRL_PAGE_SIZE);
1541 
1542 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1543 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1544 
1545 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1546 		q_depth = div_u64(mem_per_q, entry_size);
1547 
1548 		/*
1549 		 * Ensure the reduced q_depth is above some threshold where it
1550 		 * would be better to map queues in system memory with the
1551 		 * original depth
1552 		 */
1553 		if (q_depth < 64)
1554 			return -ENOMEM;
1555 	}
1556 
1557 	return q_depth;
1558 }
1559 
1560 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1561 				int qid)
1562 {
1563 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1564 
1565 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1566 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1567 		if (nvmeq->sq_cmds) {
1568 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1569 							nvmeq->sq_cmds);
1570 			if (nvmeq->sq_dma_addr) {
1571 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1572 				return 0;
1573 			}
1574 
1575 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1576 		}
1577 	}
1578 
1579 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1580 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1581 	if (!nvmeq->sq_cmds)
1582 		return -ENOMEM;
1583 	return 0;
1584 }
1585 
1586 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1587 {
1588 	struct nvme_queue *nvmeq = &dev->queues[qid];
1589 
1590 	if (dev->ctrl.queue_count > qid)
1591 		return 0;
1592 
1593 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1594 	nvmeq->q_depth = depth;
1595 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1596 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1597 	if (!nvmeq->cqes)
1598 		goto free_nvmeq;
1599 
1600 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1601 		goto free_cqdma;
1602 
1603 	nvmeq->dev = dev;
1604 	spin_lock_init(&nvmeq->sq_lock);
1605 	spin_lock_init(&nvmeq->cq_poll_lock);
1606 	nvmeq->cq_head = 0;
1607 	nvmeq->cq_phase = 1;
1608 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1609 	nvmeq->qid = qid;
1610 	dev->ctrl.queue_count++;
1611 
1612 	return 0;
1613 
1614  free_cqdma:
1615 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1616 			  nvmeq->cq_dma_addr);
1617  free_nvmeq:
1618 	return -ENOMEM;
1619 }
1620 
1621 static int queue_request_irq(struct nvme_queue *nvmeq)
1622 {
1623 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1624 	int nr = nvmeq->dev->ctrl.instance;
1625 
1626 	if (use_threaded_interrupts) {
1627 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1628 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1629 	} else {
1630 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1631 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1632 	}
1633 }
1634 
1635 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1636 {
1637 	struct nvme_dev *dev = nvmeq->dev;
1638 
1639 	nvmeq->sq_tail = 0;
1640 	nvmeq->last_sq_tail = 0;
1641 	nvmeq->cq_head = 0;
1642 	nvmeq->cq_phase = 1;
1643 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1644 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1645 	nvme_dbbuf_init(dev, nvmeq, qid);
1646 	dev->online_queues++;
1647 	wmb(); /* ensure the first interrupt sees the initialization */
1648 }
1649 
1650 /*
1651  * Try getting shutdown_lock while setting up IO queues.
1652  */
1653 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1654 {
1655 	/*
1656 	 * Give up if the lock is being held by nvme_dev_disable.
1657 	 */
1658 	if (!mutex_trylock(&dev->shutdown_lock))
1659 		return -ENODEV;
1660 
1661 	/*
1662 	 * Controller is in wrong state, fail early.
1663 	 */
1664 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1665 		mutex_unlock(&dev->shutdown_lock);
1666 		return -ENODEV;
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1673 {
1674 	struct nvme_dev *dev = nvmeq->dev;
1675 	int result;
1676 	u16 vector = 0;
1677 
1678 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1679 
1680 	/*
1681 	 * A queue's vector matches the queue identifier unless the controller
1682 	 * has only one vector available.
1683 	 */
1684 	if (!polled)
1685 		vector = dev->num_vecs == 1 ? 0 : qid;
1686 	else
1687 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1688 
1689 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1690 	if (result)
1691 		return result;
1692 
1693 	result = adapter_alloc_sq(dev, qid, nvmeq);
1694 	if (result < 0)
1695 		return result;
1696 	if (result)
1697 		goto release_cq;
1698 
1699 	nvmeq->cq_vector = vector;
1700 
1701 	result = nvme_setup_io_queues_trylock(dev);
1702 	if (result)
1703 		return result;
1704 	nvme_init_queue(nvmeq, qid);
1705 	if (!polled) {
1706 		result = queue_request_irq(nvmeq);
1707 		if (result < 0)
1708 			goto release_sq;
1709 	}
1710 
1711 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1712 	mutex_unlock(&dev->shutdown_lock);
1713 	return result;
1714 
1715 release_sq:
1716 	dev->online_queues--;
1717 	mutex_unlock(&dev->shutdown_lock);
1718 	adapter_delete_sq(dev, qid);
1719 release_cq:
1720 	adapter_delete_cq(dev, qid);
1721 	return result;
1722 }
1723 
1724 static const struct blk_mq_ops nvme_mq_admin_ops = {
1725 	.queue_rq	= nvme_queue_rq,
1726 	.complete	= nvme_pci_complete_rq,
1727 	.init_hctx	= nvme_admin_init_hctx,
1728 	.init_request	= nvme_pci_init_request,
1729 	.timeout	= nvme_timeout,
1730 };
1731 
1732 static const struct blk_mq_ops nvme_mq_ops = {
1733 	.queue_rq	= nvme_queue_rq,
1734 	.queue_rqs	= nvme_queue_rqs,
1735 	.complete	= nvme_pci_complete_rq,
1736 	.commit_rqs	= nvme_commit_rqs,
1737 	.init_hctx	= nvme_init_hctx,
1738 	.init_request	= nvme_pci_init_request,
1739 	.map_queues	= nvme_pci_map_queues,
1740 	.timeout	= nvme_timeout,
1741 	.poll		= nvme_poll,
1742 };
1743 
1744 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1745 {
1746 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1747 		/*
1748 		 * If the controller was reset during removal, it's possible
1749 		 * user requests may be waiting on a stopped queue. Start the
1750 		 * queue to flush these to completion.
1751 		 */
1752 		nvme_start_admin_queue(&dev->ctrl);
1753 		blk_mq_destroy_queue(dev->ctrl.admin_q);
1754 		blk_mq_free_tag_set(&dev->admin_tagset);
1755 	}
1756 }
1757 
1758 static int nvme_pci_alloc_admin_tag_set(struct nvme_dev *dev)
1759 {
1760 	struct blk_mq_tag_set *set = &dev->admin_tagset;
1761 
1762 	set->ops = &nvme_mq_admin_ops;
1763 	set->nr_hw_queues = 1;
1764 
1765 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1766 	set->timeout = NVME_ADMIN_TIMEOUT;
1767 	set->numa_node = dev->ctrl.numa_node;
1768 	set->cmd_size = sizeof(struct nvme_iod);
1769 	set->flags = BLK_MQ_F_NO_SCHED;
1770 	set->driver_data = dev;
1771 
1772 	if (blk_mq_alloc_tag_set(set))
1773 		return -ENOMEM;
1774 	dev->ctrl.admin_tagset = set;
1775 
1776 	dev->ctrl.admin_q = blk_mq_init_queue(set);
1777 	if (IS_ERR(dev->ctrl.admin_q)) {
1778 		blk_mq_free_tag_set(set);
1779 		dev->ctrl.admin_q = NULL;
1780 		return -ENOMEM;
1781 	}
1782 	if (!blk_get_queue(dev->ctrl.admin_q)) {
1783 		nvme_dev_remove_admin(dev);
1784 		dev->ctrl.admin_q = NULL;
1785 		return -ENODEV;
1786 	}
1787 	return 0;
1788 }
1789 
1790 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1791 {
1792 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1793 }
1794 
1795 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1796 {
1797 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1798 
1799 	if (size <= dev->bar_mapped_size)
1800 		return 0;
1801 	if (size > pci_resource_len(pdev, 0))
1802 		return -ENOMEM;
1803 	if (dev->bar)
1804 		iounmap(dev->bar);
1805 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1806 	if (!dev->bar) {
1807 		dev->bar_mapped_size = 0;
1808 		return -ENOMEM;
1809 	}
1810 	dev->bar_mapped_size = size;
1811 	dev->dbs = dev->bar + NVME_REG_DBS;
1812 
1813 	return 0;
1814 }
1815 
1816 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1817 {
1818 	int result;
1819 	u32 aqa;
1820 	struct nvme_queue *nvmeq;
1821 
1822 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1823 	if (result < 0)
1824 		return result;
1825 
1826 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1827 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1828 
1829 	if (dev->subsystem &&
1830 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1831 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1832 
1833 	result = nvme_disable_ctrl(&dev->ctrl);
1834 	if (result < 0)
1835 		return result;
1836 
1837 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1838 	if (result)
1839 		return result;
1840 
1841 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1842 
1843 	nvmeq = &dev->queues[0];
1844 	aqa = nvmeq->q_depth - 1;
1845 	aqa |= aqa << 16;
1846 
1847 	writel(aqa, dev->bar + NVME_REG_AQA);
1848 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1849 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1850 
1851 	result = nvme_enable_ctrl(&dev->ctrl);
1852 	if (result)
1853 		return result;
1854 
1855 	nvmeq->cq_vector = 0;
1856 	nvme_init_queue(nvmeq, 0);
1857 	result = queue_request_irq(nvmeq);
1858 	if (result) {
1859 		dev->online_queues--;
1860 		return result;
1861 	}
1862 
1863 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1864 	return result;
1865 }
1866 
1867 static int nvme_create_io_queues(struct nvme_dev *dev)
1868 {
1869 	unsigned i, max, rw_queues;
1870 	int ret = 0;
1871 
1872 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1873 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1874 			ret = -ENOMEM;
1875 			break;
1876 		}
1877 	}
1878 
1879 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1880 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1881 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1882 				dev->io_queues[HCTX_TYPE_READ];
1883 	} else {
1884 		rw_queues = max;
1885 	}
1886 
1887 	for (i = dev->online_queues; i <= max; i++) {
1888 		bool polled = i > rw_queues;
1889 
1890 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1891 		if (ret)
1892 			break;
1893 	}
1894 
1895 	/*
1896 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1897 	 * than the desired amount of queues, and even a controller without
1898 	 * I/O queues can still be used to issue admin commands.  This might
1899 	 * be useful to upgrade a buggy firmware for example.
1900 	 */
1901 	return ret >= 0 ? 0 : ret;
1902 }
1903 
1904 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1905 {
1906 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1907 
1908 	return 1ULL << (12 + 4 * szu);
1909 }
1910 
1911 static u32 nvme_cmb_size(struct nvme_dev *dev)
1912 {
1913 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1914 }
1915 
1916 static void nvme_map_cmb(struct nvme_dev *dev)
1917 {
1918 	u64 size, offset;
1919 	resource_size_t bar_size;
1920 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1921 	int bar;
1922 
1923 	if (dev->cmb_size)
1924 		return;
1925 
1926 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1927 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1928 
1929 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1930 	if (!dev->cmbsz)
1931 		return;
1932 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1933 
1934 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1935 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1936 	bar = NVME_CMB_BIR(dev->cmbloc);
1937 	bar_size = pci_resource_len(pdev, bar);
1938 
1939 	if (offset > bar_size)
1940 		return;
1941 
1942 	/*
1943 	 * Tell the controller about the host side address mapping the CMB,
1944 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1945 	 */
1946 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1947 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1948 			     (pci_bus_address(pdev, bar) + offset),
1949 			     dev->bar + NVME_REG_CMBMSC);
1950 	}
1951 
1952 	/*
1953 	 * Controllers may support a CMB size larger than their BAR,
1954 	 * for example, due to being behind a bridge. Reduce the CMB to
1955 	 * the reported size of the BAR
1956 	 */
1957 	if (size > bar_size - offset)
1958 		size = bar_size - offset;
1959 
1960 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1961 		dev_warn(dev->ctrl.device,
1962 			 "failed to register the CMB\n");
1963 		return;
1964 	}
1965 
1966 	dev->cmb_size = size;
1967 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1968 
1969 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1970 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1971 		pci_p2pmem_publish(pdev, true);
1972 }
1973 
1974 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1975 {
1976 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1977 	u64 dma_addr = dev->host_mem_descs_dma;
1978 	struct nvme_command c = { };
1979 	int ret;
1980 
1981 	c.features.opcode	= nvme_admin_set_features;
1982 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1983 	c.features.dword11	= cpu_to_le32(bits);
1984 	c.features.dword12	= cpu_to_le32(host_mem_size);
1985 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1986 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1987 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1988 
1989 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1990 	if (ret) {
1991 		dev_warn(dev->ctrl.device,
1992 			 "failed to set host mem (err %d, flags %#x).\n",
1993 			 ret, bits);
1994 	} else
1995 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1996 
1997 	return ret;
1998 }
1999 
2000 static void nvme_free_host_mem(struct nvme_dev *dev)
2001 {
2002 	int i;
2003 
2004 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2005 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2006 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2007 
2008 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2009 			       le64_to_cpu(desc->addr),
2010 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2011 	}
2012 
2013 	kfree(dev->host_mem_desc_bufs);
2014 	dev->host_mem_desc_bufs = NULL;
2015 	dma_free_coherent(dev->dev,
2016 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
2017 			dev->host_mem_descs, dev->host_mem_descs_dma);
2018 	dev->host_mem_descs = NULL;
2019 	dev->nr_host_mem_descs = 0;
2020 }
2021 
2022 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
2023 		u32 chunk_size)
2024 {
2025 	struct nvme_host_mem_buf_desc *descs;
2026 	u32 max_entries, len;
2027 	dma_addr_t descs_dma;
2028 	int i = 0;
2029 	void **bufs;
2030 	u64 size, tmp;
2031 
2032 	tmp = (preferred + chunk_size - 1);
2033 	do_div(tmp, chunk_size);
2034 	max_entries = tmp;
2035 
2036 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2037 		max_entries = dev->ctrl.hmmaxd;
2038 
2039 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
2040 				   &descs_dma, GFP_KERNEL);
2041 	if (!descs)
2042 		goto out;
2043 
2044 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2045 	if (!bufs)
2046 		goto out_free_descs;
2047 
2048 	for (size = 0; size < preferred && i < max_entries; size += len) {
2049 		dma_addr_t dma_addr;
2050 
2051 		len = min_t(u64, chunk_size, preferred - size);
2052 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2053 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2054 		if (!bufs[i])
2055 			break;
2056 
2057 		descs[i].addr = cpu_to_le64(dma_addr);
2058 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2059 		i++;
2060 	}
2061 
2062 	if (!size)
2063 		goto out_free_bufs;
2064 
2065 	dev->nr_host_mem_descs = i;
2066 	dev->host_mem_size = size;
2067 	dev->host_mem_descs = descs;
2068 	dev->host_mem_descs_dma = descs_dma;
2069 	dev->host_mem_desc_bufs = bufs;
2070 	return 0;
2071 
2072 out_free_bufs:
2073 	while (--i >= 0) {
2074 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
2075 
2076 		dma_free_attrs(dev->dev, size, bufs[i],
2077 			       le64_to_cpu(descs[i].addr),
2078 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2079 	}
2080 
2081 	kfree(bufs);
2082 out_free_descs:
2083 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2084 			descs_dma);
2085 out:
2086 	dev->host_mem_descs = NULL;
2087 	return -ENOMEM;
2088 }
2089 
2090 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2091 {
2092 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2093 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2094 	u64 chunk_size;
2095 
2096 	/* start big and work our way down */
2097 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2098 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2099 			if (!min || dev->host_mem_size >= min)
2100 				return 0;
2101 			nvme_free_host_mem(dev);
2102 		}
2103 	}
2104 
2105 	return -ENOMEM;
2106 }
2107 
2108 static int nvme_setup_host_mem(struct nvme_dev *dev)
2109 {
2110 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2111 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2112 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2113 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2114 	int ret;
2115 
2116 	preferred = min(preferred, max);
2117 	if (min > max) {
2118 		dev_warn(dev->ctrl.device,
2119 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2120 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2121 		nvme_free_host_mem(dev);
2122 		return 0;
2123 	}
2124 
2125 	/*
2126 	 * If we already have a buffer allocated check if we can reuse it.
2127 	 */
2128 	if (dev->host_mem_descs) {
2129 		if (dev->host_mem_size >= min)
2130 			enable_bits |= NVME_HOST_MEM_RETURN;
2131 		else
2132 			nvme_free_host_mem(dev);
2133 	}
2134 
2135 	if (!dev->host_mem_descs) {
2136 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2137 			dev_warn(dev->ctrl.device,
2138 				"failed to allocate host memory buffer.\n");
2139 			return 0; /* controller must work without HMB */
2140 		}
2141 
2142 		dev_info(dev->ctrl.device,
2143 			"allocated %lld MiB host memory buffer.\n",
2144 			dev->host_mem_size >> ilog2(SZ_1M));
2145 	}
2146 
2147 	ret = nvme_set_host_mem(dev, enable_bits);
2148 	if (ret)
2149 		nvme_free_host_mem(dev);
2150 	return ret;
2151 }
2152 
2153 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2154 		char *buf)
2155 {
2156 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2157 
2158 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2159 		       ndev->cmbloc, ndev->cmbsz);
2160 }
2161 static DEVICE_ATTR_RO(cmb);
2162 
2163 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2164 		char *buf)
2165 {
2166 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2167 
2168 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2169 }
2170 static DEVICE_ATTR_RO(cmbloc);
2171 
2172 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2173 		char *buf)
2174 {
2175 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2176 
2177 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2178 }
2179 static DEVICE_ATTR_RO(cmbsz);
2180 
2181 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2182 			char *buf)
2183 {
2184 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2185 
2186 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2187 }
2188 
2189 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2190 			 const char *buf, size_t count)
2191 {
2192 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2193 	bool new;
2194 	int ret;
2195 
2196 	if (strtobool(buf, &new) < 0)
2197 		return -EINVAL;
2198 
2199 	if (new == ndev->hmb)
2200 		return count;
2201 
2202 	if (new) {
2203 		ret = nvme_setup_host_mem(ndev);
2204 	} else {
2205 		ret = nvme_set_host_mem(ndev, 0);
2206 		if (!ret)
2207 			nvme_free_host_mem(ndev);
2208 	}
2209 
2210 	if (ret < 0)
2211 		return ret;
2212 
2213 	return count;
2214 }
2215 static DEVICE_ATTR_RW(hmb);
2216 
2217 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2218 		struct attribute *a, int n)
2219 {
2220 	struct nvme_ctrl *ctrl =
2221 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2222 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2223 
2224 	if (a == &dev_attr_cmb.attr ||
2225 	    a == &dev_attr_cmbloc.attr ||
2226 	    a == &dev_attr_cmbsz.attr) {
2227 	    	if (!dev->cmbsz)
2228 			return 0;
2229 	}
2230 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2231 		return 0;
2232 
2233 	return a->mode;
2234 }
2235 
2236 static struct attribute *nvme_pci_attrs[] = {
2237 	&dev_attr_cmb.attr,
2238 	&dev_attr_cmbloc.attr,
2239 	&dev_attr_cmbsz.attr,
2240 	&dev_attr_hmb.attr,
2241 	NULL,
2242 };
2243 
2244 static const struct attribute_group nvme_pci_attr_group = {
2245 	.attrs		= nvme_pci_attrs,
2246 	.is_visible	= nvme_pci_attrs_are_visible,
2247 };
2248 
2249 /*
2250  * nirqs is the number of interrupts available for write and read
2251  * queues. The core already reserved an interrupt for the admin queue.
2252  */
2253 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2254 {
2255 	struct nvme_dev *dev = affd->priv;
2256 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2257 
2258 	/*
2259 	 * If there is no interrupt available for queues, ensure that
2260 	 * the default queue is set to 1. The affinity set size is
2261 	 * also set to one, but the irq core ignores it for this case.
2262 	 *
2263 	 * If only one interrupt is available or 'write_queue' == 0, combine
2264 	 * write and read queues.
2265 	 *
2266 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2267 	 * queue.
2268 	 */
2269 	if (!nrirqs) {
2270 		nrirqs = 1;
2271 		nr_read_queues = 0;
2272 	} else if (nrirqs == 1 || !nr_write_queues) {
2273 		nr_read_queues = 0;
2274 	} else if (nr_write_queues >= nrirqs) {
2275 		nr_read_queues = 1;
2276 	} else {
2277 		nr_read_queues = nrirqs - nr_write_queues;
2278 	}
2279 
2280 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2281 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2282 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2283 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2284 	affd->nr_sets = nr_read_queues ? 2 : 1;
2285 }
2286 
2287 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2288 {
2289 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2290 	struct irq_affinity affd = {
2291 		.pre_vectors	= 1,
2292 		.calc_sets	= nvme_calc_irq_sets,
2293 		.priv		= dev,
2294 	};
2295 	unsigned int irq_queues, poll_queues;
2296 
2297 	/*
2298 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2299 	 * left over for non-polled I/O.
2300 	 */
2301 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2302 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2303 
2304 	/*
2305 	 * Initialize for the single interrupt case, will be updated in
2306 	 * nvme_calc_irq_sets().
2307 	 */
2308 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2309 	dev->io_queues[HCTX_TYPE_READ] = 0;
2310 
2311 	/*
2312 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2313 	 * but some Apple controllers require all queues to use the first
2314 	 * vector.
2315 	 */
2316 	irq_queues = 1;
2317 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2318 		irq_queues += (nr_io_queues - poll_queues);
2319 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2320 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2321 }
2322 
2323 static void nvme_disable_io_queues(struct nvme_dev *dev)
2324 {
2325 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2326 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2327 }
2328 
2329 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2330 {
2331 	/*
2332 	 * If tags are shared with admin queue (Apple bug), then
2333 	 * make sure we only use one IO queue.
2334 	 */
2335 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2336 		return 1;
2337 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2338 }
2339 
2340 static int nvme_setup_io_queues(struct nvme_dev *dev)
2341 {
2342 	struct nvme_queue *adminq = &dev->queues[0];
2343 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2344 	unsigned int nr_io_queues;
2345 	unsigned long size;
2346 	int result;
2347 
2348 	/*
2349 	 * Sample the module parameters once at reset time so that we have
2350 	 * stable values to work with.
2351 	 */
2352 	dev->nr_write_queues = write_queues;
2353 	dev->nr_poll_queues = poll_queues;
2354 
2355 	nr_io_queues = dev->nr_allocated_queues - 1;
2356 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2357 	if (result < 0)
2358 		return result;
2359 
2360 	if (nr_io_queues == 0)
2361 		return 0;
2362 
2363 	/*
2364 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2365 	 * from set to unset. If there is a window to it is truely freed,
2366 	 * pci_free_irq_vectors() jumping into this window will crash.
2367 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2368 	 * nvme_dev_disable() path.
2369 	 */
2370 	result = nvme_setup_io_queues_trylock(dev);
2371 	if (result)
2372 		return result;
2373 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2374 		pci_free_irq(pdev, 0, adminq);
2375 
2376 	if (dev->cmb_use_sqes) {
2377 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2378 				sizeof(struct nvme_command));
2379 		if (result > 0)
2380 			dev->q_depth = result;
2381 		else
2382 			dev->cmb_use_sqes = false;
2383 	}
2384 
2385 	do {
2386 		size = db_bar_size(dev, nr_io_queues);
2387 		result = nvme_remap_bar(dev, size);
2388 		if (!result)
2389 			break;
2390 		if (!--nr_io_queues) {
2391 			result = -ENOMEM;
2392 			goto out_unlock;
2393 		}
2394 	} while (1);
2395 	adminq->q_db = dev->dbs;
2396 
2397  retry:
2398 	/* Deregister the admin queue's interrupt */
2399 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2400 		pci_free_irq(pdev, 0, adminq);
2401 
2402 	/*
2403 	 * If we enable msix early due to not intx, disable it again before
2404 	 * setting up the full range we need.
2405 	 */
2406 	pci_free_irq_vectors(pdev);
2407 
2408 	result = nvme_setup_irqs(dev, nr_io_queues);
2409 	if (result <= 0) {
2410 		result = -EIO;
2411 		goto out_unlock;
2412 	}
2413 
2414 	dev->num_vecs = result;
2415 	result = max(result - 1, 1);
2416 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2417 
2418 	/*
2419 	 * Should investigate if there's a performance win from allocating
2420 	 * more queues than interrupt vectors; it might allow the submission
2421 	 * path to scale better, even if the receive path is limited by the
2422 	 * number of interrupts.
2423 	 */
2424 	result = queue_request_irq(adminq);
2425 	if (result)
2426 		goto out_unlock;
2427 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2428 	mutex_unlock(&dev->shutdown_lock);
2429 
2430 	result = nvme_create_io_queues(dev);
2431 	if (result || dev->online_queues < 2)
2432 		return result;
2433 
2434 	if (dev->online_queues - 1 < dev->max_qid) {
2435 		nr_io_queues = dev->online_queues - 1;
2436 		nvme_disable_io_queues(dev);
2437 		result = nvme_setup_io_queues_trylock(dev);
2438 		if (result)
2439 			return result;
2440 		nvme_suspend_io_queues(dev);
2441 		goto retry;
2442 	}
2443 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2444 					dev->io_queues[HCTX_TYPE_DEFAULT],
2445 					dev->io_queues[HCTX_TYPE_READ],
2446 					dev->io_queues[HCTX_TYPE_POLL]);
2447 	return 0;
2448 out_unlock:
2449 	mutex_unlock(&dev->shutdown_lock);
2450 	return result;
2451 }
2452 
2453 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2454 {
2455 	struct nvme_queue *nvmeq = req->end_io_data;
2456 
2457 	blk_mq_free_request(req);
2458 	complete(&nvmeq->delete_done);
2459 }
2460 
2461 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2462 {
2463 	struct nvme_queue *nvmeq = req->end_io_data;
2464 
2465 	if (error)
2466 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2467 
2468 	nvme_del_queue_end(req, error);
2469 }
2470 
2471 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2472 {
2473 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2474 	struct request *req;
2475 	struct nvme_command cmd = { };
2476 
2477 	cmd.delete_queue.opcode = opcode;
2478 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2479 
2480 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2481 	if (IS_ERR(req))
2482 		return PTR_ERR(req);
2483 	nvme_init_request(req, &cmd);
2484 
2485 	if (opcode == nvme_admin_delete_cq)
2486 		req->end_io = nvme_del_cq_end;
2487 	else
2488 		req->end_io = nvme_del_queue_end;
2489 	req->end_io_data = nvmeq;
2490 
2491 	init_completion(&nvmeq->delete_done);
2492 	req->rq_flags |= RQF_QUIET;
2493 	blk_execute_rq_nowait(req, false);
2494 	return 0;
2495 }
2496 
2497 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2498 {
2499 	int nr_queues = dev->online_queues - 1, sent = 0;
2500 	unsigned long timeout;
2501 
2502  retry:
2503 	timeout = NVME_ADMIN_TIMEOUT;
2504 	while (nr_queues > 0) {
2505 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2506 			break;
2507 		nr_queues--;
2508 		sent++;
2509 	}
2510 	while (sent) {
2511 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2512 
2513 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2514 				timeout);
2515 		if (timeout == 0)
2516 			return false;
2517 
2518 		sent--;
2519 		if (nr_queues)
2520 			goto retry;
2521 	}
2522 	return true;
2523 }
2524 
2525 static void nvme_pci_alloc_tag_set(struct nvme_dev *dev)
2526 {
2527 	struct blk_mq_tag_set * set = &dev->tagset;
2528 	int ret;
2529 
2530 	set->ops = &nvme_mq_ops;
2531 	set->nr_hw_queues = dev->online_queues - 1;
2532 	set->nr_maps = 2; /* default + read */
2533 	if (dev->io_queues[HCTX_TYPE_POLL])
2534 		set->nr_maps++;
2535 	set->timeout = NVME_IO_TIMEOUT;
2536 	set->numa_node = dev->ctrl.numa_node;
2537 	set->queue_depth = min_t(unsigned, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2538 	set->cmd_size = sizeof(struct nvme_iod);
2539 	set->flags = BLK_MQ_F_SHOULD_MERGE;
2540 	set->driver_data = dev;
2541 
2542 	/*
2543 	 * Some Apple controllers requires tags to be unique
2544 	 * across admin and IO queue, so reserve the first 32
2545 	 * tags of the IO queue.
2546 	 */
2547 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2548 		set->reserved_tags = NVME_AQ_DEPTH;
2549 
2550 	ret = blk_mq_alloc_tag_set(set);
2551 	if (ret) {
2552 		dev_warn(dev->ctrl.device,
2553 			"IO queues tagset allocation failed %d\n", ret);
2554 		return;
2555 	}
2556 	dev->ctrl.tagset = set;
2557 }
2558 
2559 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2560 {
2561 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2562 	/* free previously allocated queues that are no longer usable */
2563 	nvme_free_queues(dev, dev->online_queues);
2564 }
2565 
2566 static int nvme_pci_enable(struct nvme_dev *dev)
2567 {
2568 	int result = -ENOMEM;
2569 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2570 	int dma_address_bits = 64;
2571 
2572 	if (pci_enable_device_mem(pdev))
2573 		return result;
2574 
2575 	pci_set_master(pdev);
2576 
2577 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2578 		dma_address_bits = 48;
2579 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2580 		goto disable;
2581 
2582 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2583 		result = -ENODEV;
2584 		goto disable;
2585 	}
2586 
2587 	/*
2588 	 * Some devices and/or platforms don't advertise or work with INTx
2589 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2590 	 * adjust this later.
2591 	 */
2592 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2593 	if (result < 0)
2594 		return result;
2595 
2596 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2597 
2598 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2599 				io_queue_depth);
2600 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2601 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2602 	dev->dbs = dev->bar + 4096;
2603 
2604 	/*
2605 	 * Some Apple controllers require a non-standard SQE size.
2606 	 * Interestingly they also seem to ignore the CC:IOSQES register
2607 	 * so we don't bother updating it here.
2608 	 */
2609 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2610 		dev->io_sqes = 7;
2611 	else
2612 		dev->io_sqes = NVME_NVM_IOSQES;
2613 
2614 	/*
2615 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2616 	 * some MacBook7,1 to avoid controller resets and data loss.
2617 	 */
2618 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2619 		dev->q_depth = 2;
2620 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2621 			"set queue depth=%u to work around controller resets\n",
2622 			dev->q_depth);
2623 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2624 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2625 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2626 		dev->q_depth = 64;
2627 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2628                         "set queue depth=%u\n", dev->q_depth);
2629 	}
2630 
2631 	/*
2632 	 * Controllers with the shared tags quirk need the IO queue to be
2633 	 * big enough so that we get 32 tags for the admin queue
2634 	 */
2635 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2636 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2637 		dev->q_depth = NVME_AQ_DEPTH + 2;
2638 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2639 			 dev->q_depth);
2640 	}
2641 
2642 
2643 	nvme_map_cmb(dev);
2644 
2645 	pci_enable_pcie_error_reporting(pdev);
2646 	pci_save_state(pdev);
2647 	return 0;
2648 
2649  disable:
2650 	pci_disable_device(pdev);
2651 	return result;
2652 }
2653 
2654 static void nvme_dev_unmap(struct nvme_dev *dev)
2655 {
2656 	if (dev->bar)
2657 		iounmap(dev->bar);
2658 	pci_release_mem_regions(to_pci_dev(dev->dev));
2659 }
2660 
2661 static void nvme_pci_disable(struct nvme_dev *dev)
2662 {
2663 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2664 
2665 	pci_free_irq_vectors(pdev);
2666 
2667 	if (pci_is_enabled(pdev)) {
2668 		pci_disable_pcie_error_reporting(pdev);
2669 		pci_disable_device(pdev);
2670 	}
2671 }
2672 
2673 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2674 {
2675 	bool dead = true, freeze = false;
2676 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2677 
2678 	mutex_lock(&dev->shutdown_lock);
2679 	if (pci_is_enabled(pdev)) {
2680 		u32 csts;
2681 
2682 		if (pci_device_is_present(pdev))
2683 			csts = readl(dev->bar + NVME_REG_CSTS);
2684 		else
2685 			csts = ~0;
2686 
2687 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2688 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2689 			freeze = true;
2690 			nvme_start_freeze(&dev->ctrl);
2691 		}
2692 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2693 			pdev->error_state  != pci_channel_io_normal);
2694 	}
2695 
2696 	/*
2697 	 * Give the controller a chance to complete all entered requests if
2698 	 * doing a safe shutdown.
2699 	 */
2700 	if (!dead && shutdown && freeze)
2701 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2702 
2703 	nvme_stop_queues(&dev->ctrl);
2704 
2705 	if (!dead && dev->ctrl.queue_count > 0) {
2706 		nvme_disable_io_queues(dev);
2707 		nvme_disable_admin_queue(dev, shutdown);
2708 	}
2709 	nvme_suspend_io_queues(dev);
2710 	nvme_suspend_queue(&dev->queues[0]);
2711 	nvme_pci_disable(dev);
2712 	nvme_reap_pending_cqes(dev);
2713 
2714 	nvme_cancel_tagset(&dev->ctrl);
2715 	nvme_cancel_admin_tagset(&dev->ctrl);
2716 
2717 	/*
2718 	 * The driver will not be starting up queues again if shutting down so
2719 	 * must flush all entered requests to their failed completion to avoid
2720 	 * deadlocking blk-mq hot-cpu notifier.
2721 	 */
2722 	if (shutdown) {
2723 		nvme_start_queues(&dev->ctrl);
2724 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2725 			nvme_start_admin_queue(&dev->ctrl);
2726 	}
2727 	mutex_unlock(&dev->shutdown_lock);
2728 }
2729 
2730 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2731 {
2732 	if (!nvme_wait_reset(&dev->ctrl))
2733 		return -EBUSY;
2734 	nvme_dev_disable(dev, shutdown);
2735 	return 0;
2736 }
2737 
2738 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2739 {
2740 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2741 						NVME_CTRL_PAGE_SIZE,
2742 						NVME_CTRL_PAGE_SIZE, 0);
2743 	if (!dev->prp_page_pool)
2744 		return -ENOMEM;
2745 
2746 	/* Optimisation for I/Os between 4k and 128k */
2747 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2748 						256, 256, 0);
2749 	if (!dev->prp_small_pool) {
2750 		dma_pool_destroy(dev->prp_page_pool);
2751 		return -ENOMEM;
2752 	}
2753 	return 0;
2754 }
2755 
2756 static void nvme_release_prp_pools(struct nvme_dev *dev)
2757 {
2758 	dma_pool_destroy(dev->prp_page_pool);
2759 	dma_pool_destroy(dev->prp_small_pool);
2760 }
2761 
2762 static void nvme_free_tagset(struct nvme_dev *dev)
2763 {
2764 	if (dev->tagset.tags)
2765 		blk_mq_free_tag_set(&dev->tagset);
2766 	dev->ctrl.tagset = NULL;
2767 }
2768 
2769 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2770 {
2771 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2772 
2773 	nvme_dbbuf_dma_free(dev);
2774 	nvme_free_tagset(dev);
2775 	if (dev->ctrl.admin_q)
2776 		blk_put_queue(dev->ctrl.admin_q);
2777 	free_opal_dev(dev->ctrl.opal_dev);
2778 	mempool_destroy(dev->iod_mempool);
2779 	put_device(dev->dev);
2780 	kfree(dev->queues);
2781 	kfree(dev);
2782 }
2783 
2784 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2785 {
2786 	/*
2787 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2788 	 * may be holding this pci_dev's device lock.
2789 	 */
2790 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2791 	nvme_get_ctrl(&dev->ctrl);
2792 	nvme_dev_disable(dev, false);
2793 	nvme_kill_queues(&dev->ctrl);
2794 	if (!queue_work(nvme_wq, &dev->remove_work))
2795 		nvme_put_ctrl(&dev->ctrl);
2796 }
2797 
2798 static void nvme_reset_work(struct work_struct *work)
2799 {
2800 	struct nvme_dev *dev =
2801 		container_of(work, struct nvme_dev, ctrl.reset_work);
2802 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2803 	int result;
2804 
2805 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2806 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2807 			 dev->ctrl.state);
2808 		result = -ENODEV;
2809 		goto out;
2810 	}
2811 
2812 	/*
2813 	 * If we're called to reset a live controller first shut it down before
2814 	 * moving on.
2815 	 */
2816 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2817 		nvme_dev_disable(dev, false);
2818 	nvme_sync_queues(&dev->ctrl);
2819 
2820 	mutex_lock(&dev->shutdown_lock);
2821 	result = nvme_pci_enable(dev);
2822 	if (result)
2823 		goto out_unlock;
2824 
2825 	result = nvme_pci_configure_admin_queue(dev);
2826 	if (result)
2827 		goto out_unlock;
2828 
2829 	if (!dev->ctrl.admin_q) {
2830 		result = nvme_pci_alloc_admin_tag_set(dev);
2831 		if (result)
2832 			goto out_unlock;
2833 	} else {
2834 		nvme_start_admin_queue(&dev->ctrl);
2835 	}
2836 
2837 	/*
2838 	 * Limit the max command size to prevent iod->sg allocations going
2839 	 * over a single page.
2840 	 */
2841 	dev->ctrl.max_hw_sectors = min_t(u32,
2842 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2843 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2844 
2845 	/*
2846 	 * Don't limit the IOMMU merged segment size.
2847 	 */
2848 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2849 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2850 
2851 	mutex_unlock(&dev->shutdown_lock);
2852 
2853 	/*
2854 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2855 	 * initializing procedure here.
2856 	 */
2857 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2858 		dev_warn(dev->ctrl.device,
2859 			"failed to mark controller CONNECTING\n");
2860 		result = -EBUSY;
2861 		goto out;
2862 	}
2863 
2864 	/*
2865 	 * We do not support an SGL for metadata (yet), so we are limited to a
2866 	 * single integrity segment for the separate metadata pointer.
2867 	 */
2868 	dev->ctrl.max_integrity_segments = 1;
2869 
2870 	result = nvme_init_ctrl_finish(&dev->ctrl);
2871 	if (result)
2872 		goto out;
2873 
2874 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2875 		if (!dev->ctrl.opal_dev)
2876 			dev->ctrl.opal_dev =
2877 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2878 		else if (was_suspend)
2879 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2880 	} else {
2881 		free_opal_dev(dev->ctrl.opal_dev);
2882 		dev->ctrl.opal_dev = NULL;
2883 	}
2884 
2885 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2886 		result = nvme_dbbuf_dma_alloc(dev);
2887 		if (result)
2888 			dev_warn(dev->dev,
2889 				 "unable to allocate dma for dbbuf\n");
2890 	}
2891 
2892 	if (dev->ctrl.hmpre) {
2893 		result = nvme_setup_host_mem(dev);
2894 		if (result < 0)
2895 			goto out;
2896 	}
2897 
2898 	result = nvme_setup_io_queues(dev);
2899 	if (result)
2900 		goto out;
2901 
2902 	/*
2903 	 * Keep the controller around but remove all namespaces if we don't have
2904 	 * any working I/O queue.
2905 	 */
2906 	if (dev->online_queues < 2) {
2907 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2908 		nvme_kill_queues(&dev->ctrl);
2909 		nvme_remove_namespaces(&dev->ctrl);
2910 		nvme_free_tagset(dev);
2911 	} else {
2912 		nvme_start_queues(&dev->ctrl);
2913 		nvme_wait_freeze(&dev->ctrl);
2914 		if (!dev->ctrl.tagset)
2915 			nvme_pci_alloc_tag_set(dev);
2916 		else
2917 			nvme_pci_update_nr_queues(dev);
2918 		nvme_dbbuf_set(dev);
2919 		nvme_unfreeze(&dev->ctrl);
2920 	}
2921 
2922 	/*
2923 	 * If only admin queue live, keep it to do further investigation or
2924 	 * recovery.
2925 	 */
2926 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2927 		dev_warn(dev->ctrl.device,
2928 			"failed to mark controller live state\n");
2929 		result = -ENODEV;
2930 		goto out;
2931 	}
2932 
2933 	if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2934 			&nvme_pci_attr_group))
2935 		dev->attrs_added = true;
2936 
2937 	nvme_start_ctrl(&dev->ctrl);
2938 	return;
2939 
2940  out_unlock:
2941 	mutex_unlock(&dev->shutdown_lock);
2942  out:
2943 	if (result)
2944 		dev_warn(dev->ctrl.device,
2945 			 "Removing after probe failure status: %d\n", result);
2946 	nvme_remove_dead_ctrl(dev);
2947 }
2948 
2949 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2950 {
2951 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2952 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2953 
2954 	if (pci_get_drvdata(pdev))
2955 		device_release_driver(&pdev->dev);
2956 	nvme_put_ctrl(&dev->ctrl);
2957 }
2958 
2959 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2960 {
2961 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2962 	return 0;
2963 }
2964 
2965 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2966 {
2967 	writel(val, to_nvme_dev(ctrl)->bar + off);
2968 	return 0;
2969 }
2970 
2971 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2972 {
2973 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2974 	return 0;
2975 }
2976 
2977 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2978 {
2979 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2980 
2981 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2982 }
2983 
2984 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2985 {
2986 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2987 	struct nvme_subsystem *subsys = ctrl->subsys;
2988 
2989 	dev_err(ctrl->device,
2990 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2991 		pdev->vendor, pdev->device,
2992 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2993 		subsys->model, nvme_strlen(subsys->firmware_rev,
2994 					   sizeof(subsys->firmware_rev)),
2995 		subsys->firmware_rev);
2996 }
2997 
2998 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2999 {
3000 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3001 
3002 	return dma_pci_p2pdma_supported(dev->dev);
3003 }
3004 
3005 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3006 	.name			= "pcie",
3007 	.module			= THIS_MODULE,
3008 	.flags			= NVME_F_METADATA_SUPPORTED,
3009 	.reg_read32		= nvme_pci_reg_read32,
3010 	.reg_write32		= nvme_pci_reg_write32,
3011 	.reg_read64		= nvme_pci_reg_read64,
3012 	.free_ctrl		= nvme_pci_free_ctrl,
3013 	.submit_async_event	= nvme_pci_submit_async_event,
3014 	.get_address		= nvme_pci_get_address,
3015 	.print_device_info	= nvme_pci_print_device_info,
3016 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3017 };
3018 
3019 static int nvme_dev_map(struct nvme_dev *dev)
3020 {
3021 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3022 
3023 	if (pci_request_mem_regions(pdev, "nvme"))
3024 		return -ENODEV;
3025 
3026 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3027 		goto release;
3028 
3029 	return 0;
3030   release:
3031 	pci_release_mem_regions(pdev);
3032 	return -ENODEV;
3033 }
3034 
3035 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3036 {
3037 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3038 		/*
3039 		 * Several Samsung devices seem to drop off the PCIe bus
3040 		 * randomly when APST is on and uses the deepest sleep state.
3041 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3042 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3043 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3044 		 * laptops.
3045 		 */
3046 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3047 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3048 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3049 			return NVME_QUIRK_NO_DEEPEST_PS;
3050 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3051 		/*
3052 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3053 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3054 		 * within few minutes after bootup on a Coffee Lake board -
3055 		 * ASUS PRIME Z370-A
3056 		 */
3057 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3058 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3059 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3060 			return NVME_QUIRK_NO_APST;
3061 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3062 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3063 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3064 		/*
3065 		 * Forcing to use host managed nvme power settings for
3066 		 * lowest idle power with quick resume latency on
3067 		 * Samsung and Toshiba SSDs based on suspend behavior
3068 		 * on Coffee Lake board for LENOVO C640
3069 		 */
3070 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3071 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3072 			return NVME_QUIRK_SIMPLE_SUSPEND;
3073 	}
3074 
3075 	return 0;
3076 }
3077 
3078 static void nvme_async_probe(void *data, async_cookie_t cookie)
3079 {
3080 	struct nvme_dev *dev = data;
3081 
3082 	flush_work(&dev->ctrl.reset_work);
3083 	flush_work(&dev->ctrl.scan_work);
3084 	nvme_put_ctrl(&dev->ctrl);
3085 }
3086 
3087 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3088 {
3089 	int node, result = -ENOMEM;
3090 	struct nvme_dev *dev;
3091 	unsigned long quirks = id->driver_data;
3092 	size_t alloc_size;
3093 
3094 	node = dev_to_node(&pdev->dev);
3095 	if (node == NUMA_NO_NODE)
3096 		set_dev_node(&pdev->dev, first_memory_node);
3097 
3098 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3099 	if (!dev)
3100 		return -ENOMEM;
3101 
3102 	dev->nr_write_queues = write_queues;
3103 	dev->nr_poll_queues = poll_queues;
3104 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3105 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3106 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3107 	if (!dev->queues)
3108 		goto free;
3109 
3110 	dev->dev = get_device(&pdev->dev);
3111 	pci_set_drvdata(pdev, dev);
3112 
3113 	result = nvme_dev_map(dev);
3114 	if (result)
3115 		goto put_pci;
3116 
3117 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3118 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
3119 	mutex_init(&dev->shutdown_lock);
3120 
3121 	result = nvme_setup_prp_pools(dev);
3122 	if (result)
3123 		goto unmap;
3124 
3125 	quirks |= check_vendor_combination_bug(pdev);
3126 
3127 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
3128 		/*
3129 		 * Some systems use a bios work around to ask for D3 on
3130 		 * platforms that support kernel managed suspend.
3131 		 */
3132 		dev_info(&pdev->dev,
3133 			 "platform quirk: setting simple suspend\n");
3134 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3135 	}
3136 
3137 	/*
3138 	 * Double check that our mempool alloc size will cover the biggest
3139 	 * command we support.
3140 	 */
3141 	alloc_size = nvme_pci_iod_alloc_size();
3142 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3143 
3144 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3145 						mempool_kfree,
3146 						(void *) alloc_size,
3147 						GFP_KERNEL, node);
3148 	if (!dev->iod_mempool) {
3149 		result = -ENOMEM;
3150 		goto release_pools;
3151 	}
3152 
3153 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3154 			quirks);
3155 	if (result)
3156 		goto release_mempool;
3157 
3158 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3159 
3160 	nvme_reset_ctrl(&dev->ctrl);
3161 	async_schedule(nvme_async_probe, dev);
3162 
3163 	return 0;
3164 
3165  release_mempool:
3166 	mempool_destroy(dev->iod_mempool);
3167  release_pools:
3168 	nvme_release_prp_pools(dev);
3169  unmap:
3170 	nvme_dev_unmap(dev);
3171  put_pci:
3172 	put_device(dev->dev);
3173  free:
3174 	kfree(dev->queues);
3175 	kfree(dev);
3176 	return result;
3177 }
3178 
3179 static void nvme_reset_prepare(struct pci_dev *pdev)
3180 {
3181 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3182 
3183 	/*
3184 	 * We don't need to check the return value from waiting for the reset
3185 	 * state as pci_dev device lock is held, making it impossible to race
3186 	 * with ->remove().
3187 	 */
3188 	nvme_disable_prepare_reset(dev, false);
3189 	nvme_sync_queues(&dev->ctrl);
3190 }
3191 
3192 static void nvme_reset_done(struct pci_dev *pdev)
3193 {
3194 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3195 
3196 	if (!nvme_try_sched_reset(&dev->ctrl))
3197 		flush_work(&dev->ctrl.reset_work);
3198 }
3199 
3200 static void nvme_shutdown(struct pci_dev *pdev)
3201 {
3202 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3203 
3204 	nvme_disable_prepare_reset(dev, true);
3205 }
3206 
3207 static void nvme_remove_attrs(struct nvme_dev *dev)
3208 {
3209 	if (dev->attrs_added)
3210 		sysfs_remove_group(&dev->ctrl.device->kobj,
3211 				   &nvme_pci_attr_group);
3212 }
3213 
3214 /*
3215  * The driver's remove may be called on a device in a partially initialized
3216  * state. This function must not have any dependencies on the device state in
3217  * order to proceed.
3218  */
3219 static void nvme_remove(struct pci_dev *pdev)
3220 {
3221 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3222 
3223 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3224 	pci_set_drvdata(pdev, NULL);
3225 
3226 	if (!pci_device_is_present(pdev)) {
3227 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3228 		nvme_dev_disable(dev, true);
3229 	}
3230 
3231 	flush_work(&dev->ctrl.reset_work);
3232 	nvme_stop_ctrl(&dev->ctrl);
3233 	nvme_remove_namespaces(&dev->ctrl);
3234 	nvme_dev_disable(dev, true);
3235 	nvme_remove_attrs(dev);
3236 	nvme_free_host_mem(dev);
3237 	nvme_dev_remove_admin(dev);
3238 	nvme_free_queues(dev, 0);
3239 	nvme_release_prp_pools(dev);
3240 	nvme_dev_unmap(dev);
3241 	nvme_uninit_ctrl(&dev->ctrl);
3242 }
3243 
3244 #ifdef CONFIG_PM_SLEEP
3245 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3246 {
3247 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3248 }
3249 
3250 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3251 {
3252 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3253 }
3254 
3255 static int nvme_resume(struct device *dev)
3256 {
3257 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3258 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3259 
3260 	if (ndev->last_ps == U32_MAX ||
3261 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3262 		goto reset;
3263 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3264 		goto reset;
3265 
3266 	return 0;
3267 reset:
3268 	return nvme_try_sched_reset(ctrl);
3269 }
3270 
3271 static int nvme_suspend(struct device *dev)
3272 {
3273 	struct pci_dev *pdev = to_pci_dev(dev);
3274 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3275 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3276 	int ret = -EBUSY;
3277 
3278 	ndev->last_ps = U32_MAX;
3279 
3280 	/*
3281 	 * The platform does not remove power for a kernel managed suspend so
3282 	 * use host managed nvme power settings for lowest idle power if
3283 	 * possible. This should have quicker resume latency than a full device
3284 	 * shutdown.  But if the firmware is involved after the suspend or the
3285 	 * device does not support any non-default power states, shut down the
3286 	 * device fully.
3287 	 *
3288 	 * If ASPM is not enabled for the device, shut down the device and allow
3289 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3290 	 * down, so as to allow the platform to achieve its minimum low-power
3291 	 * state (which may not be possible if the link is up).
3292 	 */
3293 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3294 	    !pcie_aspm_enabled(pdev) ||
3295 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3296 		return nvme_disable_prepare_reset(ndev, true);
3297 
3298 	nvme_start_freeze(ctrl);
3299 	nvme_wait_freeze(ctrl);
3300 	nvme_sync_queues(ctrl);
3301 
3302 	if (ctrl->state != NVME_CTRL_LIVE)
3303 		goto unfreeze;
3304 
3305 	/*
3306 	 * Host memory access may not be successful in a system suspend state,
3307 	 * but the specification allows the controller to access memory in a
3308 	 * non-operational power state.
3309 	 */
3310 	if (ndev->hmb) {
3311 		ret = nvme_set_host_mem(ndev, 0);
3312 		if (ret < 0)
3313 			goto unfreeze;
3314 	}
3315 
3316 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3317 	if (ret < 0)
3318 		goto unfreeze;
3319 
3320 	/*
3321 	 * A saved state prevents pci pm from generically controlling the
3322 	 * device's power. If we're using protocol specific settings, we don't
3323 	 * want pci interfering.
3324 	 */
3325 	pci_save_state(pdev);
3326 
3327 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3328 	if (ret < 0)
3329 		goto unfreeze;
3330 
3331 	if (ret) {
3332 		/* discard the saved state */
3333 		pci_load_saved_state(pdev, NULL);
3334 
3335 		/*
3336 		 * Clearing npss forces a controller reset on resume. The
3337 		 * correct value will be rediscovered then.
3338 		 */
3339 		ret = nvme_disable_prepare_reset(ndev, true);
3340 		ctrl->npss = 0;
3341 	}
3342 unfreeze:
3343 	nvme_unfreeze(ctrl);
3344 	return ret;
3345 }
3346 
3347 static int nvme_simple_suspend(struct device *dev)
3348 {
3349 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3350 
3351 	return nvme_disable_prepare_reset(ndev, true);
3352 }
3353 
3354 static int nvme_simple_resume(struct device *dev)
3355 {
3356 	struct pci_dev *pdev = to_pci_dev(dev);
3357 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3358 
3359 	return nvme_try_sched_reset(&ndev->ctrl);
3360 }
3361 
3362 static const struct dev_pm_ops nvme_dev_pm_ops = {
3363 	.suspend	= nvme_suspend,
3364 	.resume		= nvme_resume,
3365 	.freeze		= nvme_simple_suspend,
3366 	.thaw		= nvme_simple_resume,
3367 	.poweroff	= nvme_simple_suspend,
3368 	.restore	= nvme_simple_resume,
3369 };
3370 #endif /* CONFIG_PM_SLEEP */
3371 
3372 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3373 						pci_channel_state_t state)
3374 {
3375 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3376 
3377 	/*
3378 	 * A frozen channel requires a reset. When detected, this method will
3379 	 * shutdown the controller to quiesce. The controller will be restarted
3380 	 * after the slot reset through driver's slot_reset callback.
3381 	 */
3382 	switch (state) {
3383 	case pci_channel_io_normal:
3384 		return PCI_ERS_RESULT_CAN_RECOVER;
3385 	case pci_channel_io_frozen:
3386 		dev_warn(dev->ctrl.device,
3387 			"frozen state error detected, reset controller\n");
3388 		nvme_dev_disable(dev, false);
3389 		return PCI_ERS_RESULT_NEED_RESET;
3390 	case pci_channel_io_perm_failure:
3391 		dev_warn(dev->ctrl.device,
3392 			"failure state error detected, request disconnect\n");
3393 		return PCI_ERS_RESULT_DISCONNECT;
3394 	}
3395 	return PCI_ERS_RESULT_NEED_RESET;
3396 }
3397 
3398 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3399 {
3400 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3401 
3402 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3403 	pci_restore_state(pdev);
3404 	nvme_reset_ctrl(&dev->ctrl);
3405 	return PCI_ERS_RESULT_RECOVERED;
3406 }
3407 
3408 static void nvme_error_resume(struct pci_dev *pdev)
3409 {
3410 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3411 
3412 	flush_work(&dev->ctrl.reset_work);
3413 }
3414 
3415 static const struct pci_error_handlers nvme_err_handler = {
3416 	.error_detected	= nvme_error_detected,
3417 	.slot_reset	= nvme_slot_reset,
3418 	.resume		= nvme_error_resume,
3419 	.reset_prepare	= nvme_reset_prepare,
3420 	.reset_done	= nvme_reset_done,
3421 };
3422 
3423 static const struct pci_device_id nvme_id_table[] = {
3424 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3425 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3426 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3427 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3428 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3429 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3430 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3431 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3432 				NVME_QUIRK_DEALLOCATE_ZEROES |
3433 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3434 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3435 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3436 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3437 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3438 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3439 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3440 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3441 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3443 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3444 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3445 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3446 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3447 				NVME_QUIRK_BOGUS_NID, },
3448 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3449 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3450 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3451 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3452 				NVME_QUIRK_BOGUS_NID, },
3453 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3454 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3455 				NVME_QUIRK_NO_NS_DESC_LIST, },
3456 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3457 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3458 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3459 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3460 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3461 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3462 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3463 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3464 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3465 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3466 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3467 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3468 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3469 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3470 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3471 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3472 				NVME_QUIRK_BOGUS_NID, },
3473 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3474 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3475 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3476 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3477 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3478 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3479 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3480 				NVME_QUIRK_BOGUS_NID, },
3481 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3482 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3483 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3484 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3485 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3486 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3487 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3488 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3489 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3490 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3491 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3492 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3493 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3494 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3495 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3496 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3497 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3498 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3499 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3500 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3501 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3502 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3503 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3504 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3505 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3506 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3507 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3508 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3509 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3510 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3511 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3512 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3513 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3514 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3515 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3516 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3517 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3518 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3519 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3520 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3521 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3522 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3523 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3524 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3525 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3526 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3527 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3528 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3529 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3530 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3531 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3532 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3533 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3534 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3535 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3536 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3537 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3538 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3539 				NVME_QUIRK_128_BYTES_SQES |
3540 				NVME_QUIRK_SHARED_TAGS |
3541 				NVME_QUIRK_SKIP_CID_GEN },
3542 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3543 	{ 0, }
3544 };
3545 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3546 
3547 static struct pci_driver nvme_driver = {
3548 	.name		= "nvme",
3549 	.id_table	= nvme_id_table,
3550 	.probe		= nvme_probe,
3551 	.remove		= nvme_remove,
3552 	.shutdown	= nvme_shutdown,
3553 #ifdef CONFIG_PM_SLEEP
3554 	.driver		= {
3555 		.pm	= &nvme_dev_pm_ops,
3556 	},
3557 #endif
3558 	.sriov_configure = pci_sriov_configure_simple,
3559 	.err_handler	= &nvme_err_handler,
3560 };
3561 
3562 static int __init nvme_init(void)
3563 {
3564 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3565 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3566 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3567 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3568 
3569 	return pci_register_driver(&nvme_driver);
3570 }
3571 
3572 static void __exit nvme_exit(void)
3573 {
3574 	pci_unregister_driver(&nvme_driver);
3575 	flush_workqueue(nvme_wq);
3576 }
3577 
3578 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3579 MODULE_LICENSE("GPL");
3580 MODULE_VERSION("1.0");
3581 module_init(nvme_init);
3582 module_exit(nvme_exit);
3583