1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq-dma.h> 11 #include <linux/blk-integrity.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kstrtox.h> 17 #include <linux/memremap.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/nodemask.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 /* Optimisation for I/Os between 4k and 128k */ 38 #define NVME_SMALL_POOL_SIZE 256 39 40 /* 41 * Arbitrary upper bound. 42 */ 43 #define NVME_MAX_BYTES SZ_8M 44 #define NVME_MAX_NR_DESCRIPTORS 5 45 46 /* 47 * For data SGLs we support a single descriptors worth of SGL entries. 48 * For PRPs, segments don't matter at all. 49 */ 50 #define NVME_MAX_SEGS \ 51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 52 53 /* 54 * For metadata SGLs, only the small descriptor is supported, and the first 55 * entry is the segment descriptor, which for the data pointer sits in the SQE. 56 */ 57 #define NVME_MAX_META_SEGS \ 58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1) 59 60 /* 61 * The last entry is used to link to the next descriptor. 62 */ 63 #define PRPS_PER_PAGE \ 64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1) 65 66 /* 67 * I/O could be non-aligned both at the beginning and end. 68 */ 69 #define MAX_PRP_RANGE \ 70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1)) 71 72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <= 73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE)); 74 75 static int use_threaded_interrupts; 76 module_param(use_threaded_interrupts, int, 0444); 77 78 static bool use_cmb_sqes = true; 79 module_param(use_cmb_sqes, bool, 0444); 80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 81 82 static unsigned int max_host_mem_size_mb = 128; 83 module_param(max_host_mem_size_mb, uint, 0444); 84 MODULE_PARM_DESC(max_host_mem_size_mb, 85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 86 87 static unsigned int sgl_threshold = SZ_32K; 88 module_param(sgl_threshold, uint, 0644); 89 MODULE_PARM_DESC(sgl_threshold, 90 "Use SGLs when average request segment size is larger or equal to " 91 "this size. Use 0 to disable SGLs."); 92 93 #define NVME_PCI_MIN_QUEUE_SIZE 2 94 #define NVME_PCI_MAX_QUEUE_SIZE 4095 95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 96 static const struct kernel_param_ops io_queue_depth_ops = { 97 .set = io_queue_depth_set, 98 .get = param_get_uint, 99 }; 100 101 static unsigned int io_queue_depth = 1024; 102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 104 105 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 106 { 107 unsigned int n; 108 int ret; 109 110 ret = kstrtouint(val, 10, &n); 111 if (ret != 0 || n > blk_mq_num_possible_queues(0)) 112 return -EINVAL; 113 return param_set_uint(val, kp); 114 } 115 116 static const struct kernel_param_ops io_queue_count_ops = { 117 .set = io_queue_count_set, 118 .get = param_get_uint, 119 }; 120 121 static unsigned int write_queues; 122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 123 MODULE_PARM_DESC(write_queues, 124 "Number of queues to use for writes. If not set, reads and writes " 125 "will share a queue set."); 126 127 static unsigned int poll_queues; 128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 130 131 static bool noacpi; 132 module_param(noacpi, bool, 0444); 133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 134 135 struct nvme_dev; 136 struct nvme_queue; 137 138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 139 static void nvme_delete_io_queues(struct nvme_dev *dev); 140 static void nvme_update_attrs(struct nvme_dev *dev); 141 142 struct nvme_descriptor_pools { 143 struct dma_pool *large; 144 struct dma_pool *small; 145 }; 146 147 /* 148 * Represents an NVM Express device. Each nvme_dev is a PCI function. 149 */ 150 struct nvme_dev { 151 struct nvme_queue *queues; 152 struct blk_mq_tag_set tagset; 153 struct blk_mq_tag_set admin_tagset; 154 u32 __iomem *dbs; 155 struct device *dev; 156 unsigned online_queues; 157 unsigned max_qid; 158 unsigned io_queues[HCTX_MAX_TYPES]; 159 unsigned int num_vecs; 160 u32 q_depth; 161 int io_sqes; 162 u32 db_stride; 163 void __iomem *bar; 164 unsigned long bar_mapped_size; 165 struct mutex shutdown_lock; 166 bool subsystem; 167 u64 cmb_size; 168 bool cmb_use_sqes; 169 u32 cmbsz; 170 u32 cmbloc; 171 struct nvme_ctrl ctrl; 172 u32 last_ps; 173 bool hmb; 174 struct sg_table *hmb_sgt; 175 176 mempool_t *dmavec_mempool; 177 mempool_t *iod_meta_mempool; 178 179 /* shadow doorbell buffer support: */ 180 __le32 *dbbuf_dbs; 181 dma_addr_t dbbuf_dbs_dma_addr; 182 __le32 *dbbuf_eis; 183 dma_addr_t dbbuf_eis_dma_addr; 184 185 /* host memory buffer support: */ 186 u64 host_mem_size; 187 u32 nr_host_mem_descs; 188 u32 host_mem_descs_size; 189 dma_addr_t host_mem_descs_dma; 190 struct nvme_host_mem_buf_desc *host_mem_descs; 191 void **host_mem_desc_bufs; 192 unsigned int nr_allocated_queues; 193 unsigned int nr_write_queues; 194 unsigned int nr_poll_queues; 195 struct nvme_descriptor_pools descriptor_pools[]; 196 }; 197 198 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 199 { 200 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 201 NVME_PCI_MAX_QUEUE_SIZE); 202 } 203 204 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 205 { 206 return qid * 2 * stride; 207 } 208 209 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 210 { 211 return (qid * 2 + 1) * stride; 212 } 213 214 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 215 { 216 return container_of(ctrl, struct nvme_dev, ctrl); 217 } 218 219 /* 220 * An NVM Express queue. Each device has at least two (one for admin 221 * commands and one for I/O commands). 222 */ 223 struct nvme_queue { 224 struct nvme_dev *dev; 225 struct nvme_descriptor_pools descriptor_pools; 226 spinlock_t sq_lock; 227 void *sq_cmds; 228 /* only used for poll queues: */ 229 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 230 struct nvme_completion *cqes; 231 dma_addr_t sq_dma_addr; 232 dma_addr_t cq_dma_addr; 233 u32 __iomem *q_db; 234 u32 q_depth; 235 u16 cq_vector; 236 u16 sq_tail; 237 u16 last_sq_tail; 238 u16 cq_head; 239 u16 qid; 240 u8 cq_phase; 241 u8 sqes; 242 unsigned long flags; 243 #define NVMEQ_ENABLED 0 244 #define NVMEQ_SQ_CMB 1 245 #define NVMEQ_DELETE_ERROR 2 246 #define NVMEQ_POLLED 3 247 __le32 *dbbuf_sq_db; 248 __le32 *dbbuf_cq_db; 249 __le32 *dbbuf_sq_ei; 250 __le32 *dbbuf_cq_ei; 251 struct completion delete_done; 252 }; 253 254 /* bits for iod->flags */ 255 enum nvme_iod_flags { 256 /* this command has been aborted by the timeout handler */ 257 IOD_ABORTED = 1U << 0, 258 259 /* uses the small descriptor pool */ 260 IOD_SMALL_DESCRIPTOR = 1U << 1, 261 262 /* single segment dma mapping */ 263 IOD_SINGLE_SEGMENT = 1U << 2, 264 }; 265 266 struct nvme_dma_vec { 267 dma_addr_t addr; 268 unsigned int len; 269 }; 270 271 /* 272 * The nvme_iod describes the data in an I/O. 273 */ 274 struct nvme_iod { 275 struct nvme_request req; 276 struct nvme_command cmd; 277 u8 flags; 278 u8 nr_descriptors; 279 280 unsigned int total_len; 281 struct dma_iova_state dma_state; 282 void *descriptors[NVME_MAX_NR_DESCRIPTORS]; 283 struct nvme_dma_vec *dma_vecs; 284 unsigned int nr_dma_vecs; 285 286 dma_addr_t meta_dma; 287 struct sg_table meta_sgt; 288 struct nvme_sgl_desc *meta_descriptor; 289 }; 290 291 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 292 { 293 return dev->nr_allocated_queues * 8 * dev->db_stride; 294 } 295 296 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 297 { 298 unsigned int mem_size = nvme_dbbuf_size(dev); 299 300 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 301 return; 302 303 if (dev->dbbuf_dbs) { 304 /* 305 * Clear the dbbuf memory so the driver doesn't observe stale 306 * values from the previous instantiation. 307 */ 308 memset(dev->dbbuf_dbs, 0, mem_size); 309 memset(dev->dbbuf_eis, 0, mem_size); 310 return; 311 } 312 313 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 314 &dev->dbbuf_dbs_dma_addr, 315 GFP_KERNEL); 316 if (!dev->dbbuf_dbs) 317 goto fail; 318 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 319 &dev->dbbuf_eis_dma_addr, 320 GFP_KERNEL); 321 if (!dev->dbbuf_eis) 322 goto fail_free_dbbuf_dbs; 323 return; 324 325 fail_free_dbbuf_dbs: 326 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 327 dev->dbbuf_dbs_dma_addr); 328 dev->dbbuf_dbs = NULL; 329 fail: 330 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 331 } 332 333 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 334 { 335 unsigned int mem_size = nvme_dbbuf_size(dev); 336 337 if (dev->dbbuf_dbs) { 338 dma_free_coherent(dev->dev, mem_size, 339 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 340 dev->dbbuf_dbs = NULL; 341 } 342 if (dev->dbbuf_eis) { 343 dma_free_coherent(dev->dev, mem_size, 344 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 345 dev->dbbuf_eis = NULL; 346 } 347 } 348 349 static void nvme_dbbuf_init(struct nvme_dev *dev, 350 struct nvme_queue *nvmeq, int qid) 351 { 352 if (!dev->dbbuf_dbs || !qid) 353 return; 354 355 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 356 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 357 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 358 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 359 } 360 361 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 362 { 363 if (!nvmeq->qid) 364 return; 365 366 nvmeq->dbbuf_sq_db = NULL; 367 nvmeq->dbbuf_cq_db = NULL; 368 nvmeq->dbbuf_sq_ei = NULL; 369 nvmeq->dbbuf_cq_ei = NULL; 370 } 371 372 static void nvme_dbbuf_set(struct nvme_dev *dev) 373 { 374 struct nvme_command c = { }; 375 unsigned int i; 376 377 if (!dev->dbbuf_dbs) 378 return; 379 380 c.dbbuf.opcode = nvme_admin_dbbuf; 381 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 382 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 383 384 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 385 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 386 /* Free memory and continue on */ 387 nvme_dbbuf_dma_free(dev); 388 389 for (i = 1; i <= dev->online_queues; i++) 390 nvme_dbbuf_free(&dev->queues[i]); 391 } 392 } 393 394 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 395 { 396 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 397 } 398 399 /* Update dbbuf and return true if an MMIO is required */ 400 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 401 volatile __le32 *dbbuf_ei) 402 { 403 if (dbbuf_db) { 404 u16 old_value, event_idx; 405 406 /* 407 * Ensure that the queue is written before updating 408 * the doorbell in memory 409 */ 410 wmb(); 411 412 old_value = le32_to_cpu(*dbbuf_db); 413 *dbbuf_db = cpu_to_le32(value); 414 415 /* 416 * Ensure that the doorbell is updated before reading the event 417 * index from memory. The controller needs to provide similar 418 * ordering to ensure the event index is updated before reading 419 * the doorbell. 420 */ 421 mb(); 422 423 event_idx = le32_to_cpu(*dbbuf_ei); 424 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 425 return false; 426 } 427 428 return true; 429 } 430 431 static struct nvme_descriptor_pools * 432 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node) 433 { 434 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node]; 435 size_t small_align = NVME_SMALL_POOL_SIZE; 436 437 if (pools->small) 438 return pools; /* already initialized */ 439 440 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev, 441 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node); 442 if (!pools->large) 443 return ERR_PTR(-ENOMEM); 444 445 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) 446 small_align = 512; 447 448 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev, 449 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node); 450 if (!pools->small) { 451 dma_pool_destroy(pools->large); 452 pools->large = NULL; 453 return ERR_PTR(-ENOMEM); 454 } 455 456 return pools; 457 } 458 459 static void nvme_release_descriptor_pools(struct nvme_dev *dev) 460 { 461 unsigned i; 462 463 for (i = 0; i < nr_node_ids; i++) { 464 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i]; 465 466 dma_pool_destroy(pools->large); 467 dma_pool_destroy(pools->small); 468 } 469 } 470 471 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data, 472 unsigned qid) 473 { 474 struct nvme_dev *dev = to_nvme_dev(data); 475 struct nvme_queue *nvmeq = &dev->queues[qid]; 476 struct nvme_descriptor_pools *pools; 477 struct blk_mq_tags *tags; 478 479 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0]; 480 WARN_ON(tags != hctx->tags); 481 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node); 482 if (IS_ERR(pools)) 483 return PTR_ERR(pools); 484 485 nvmeq->descriptor_pools = *pools; 486 hctx->driver_data = nvmeq; 487 return 0; 488 } 489 490 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 491 unsigned int hctx_idx) 492 { 493 WARN_ON(hctx_idx != 0); 494 return nvme_init_hctx_common(hctx, data, 0); 495 } 496 497 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 498 unsigned int hctx_idx) 499 { 500 return nvme_init_hctx_common(hctx, data, hctx_idx + 1); 501 } 502 503 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 504 struct request *req, unsigned int hctx_idx, 505 unsigned int numa_node) 506 { 507 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 508 509 nvme_req(req)->ctrl = set->driver_data; 510 nvme_req(req)->cmd = &iod->cmd; 511 return 0; 512 } 513 514 static int queue_irq_offset(struct nvme_dev *dev) 515 { 516 /* if we have more than 1 vec, admin queue offsets us by 1 */ 517 if (dev->num_vecs > 1) 518 return 1; 519 520 return 0; 521 } 522 523 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 524 { 525 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 526 int i, qoff, offset; 527 528 offset = queue_irq_offset(dev); 529 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 530 struct blk_mq_queue_map *map = &set->map[i]; 531 532 map->nr_queues = dev->io_queues[i]; 533 if (!map->nr_queues) { 534 BUG_ON(i == HCTX_TYPE_DEFAULT); 535 continue; 536 } 537 538 /* 539 * The poll queue(s) doesn't have an IRQ (and hence IRQ 540 * affinity), so use the regular blk-mq cpu mapping 541 */ 542 map->queue_offset = qoff; 543 if (i != HCTX_TYPE_POLL && offset) 544 blk_mq_map_hw_queues(map, dev->dev, offset); 545 else 546 blk_mq_map_queues(map); 547 qoff += map->nr_queues; 548 offset += map->nr_queues; 549 } 550 } 551 552 /* 553 * Write sq tail if we are asked to, or if the next command would wrap. 554 */ 555 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 556 { 557 if (!write_sq) { 558 u16 next_tail = nvmeq->sq_tail + 1; 559 560 if (next_tail == nvmeq->q_depth) 561 next_tail = 0; 562 if (next_tail != nvmeq->last_sq_tail) 563 return; 564 } 565 566 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 567 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 568 writel(nvmeq->sq_tail, nvmeq->q_db); 569 nvmeq->last_sq_tail = nvmeq->sq_tail; 570 } 571 572 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 573 struct nvme_command *cmd) 574 { 575 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 576 absolute_pointer(cmd), sizeof(*cmd)); 577 if (++nvmeq->sq_tail == nvmeq->q_depth) 578 nvmeq->sq_tail = 0; 579 } 580 581 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 582 { 583 struct nvme_queue *nvmeq = hctx->driver_data; 584 585 spin_lock(&nvmeq->sq_lock); 586 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 587 nvme_write_sq_db(nvmeq, true); 588 spin_unlock(&nvmeq->sq_lock); 589 } 590 591 enum nvme_use_sgl { 592 SGL_UNSUPPORTED, 593 SGL_SUPPORTED, 594 SGL_FORCED, 595 }; 596 597 static inline bool nvme_pci_metadata_use_sgls(struct request *req) 598 { 599 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 600 struct nvme_dev *dev = nvmeq->dev; 601 602 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 603 return false; 604 return req->nr_integrity_segments > 1 || 605 nvme_req(req)->flags & NVME_REQ_USERCMD; 606 } 607 608 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev, 609 struct request *req) 610 { 611 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 612 613 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) { 614 if (nvme_req(req)->flags & NVME_REQ_USERCMD) 615 return SGL_FORCED; 616 if (req->nr_integrity_segments > 1) 617 return SGL_FORCED; 618 return SGL_SUPPORTED; 619 } 620 621 return SGL_UNSUPPORTED; 622 } 623 624 static unsigned int nvme_pci_avg_seg_size(struct request *req) 625 { 626 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 627 unsigned int nseg; 628 629 if (blk_rq_dma_map_coalesce(&iod->dma_state)) 630 nseg = 1; 631 else 632 nseg = blk_rq_nr_phys_segments(req); 633 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 634 } 635 636 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq, 637 struct nvme_iod *iod) 638 { 639 if (iod->flags & IOD_SMALL_DESCRIPTOR) 640 return nvmeq->descriptor_pools.small; 641 return nvmeq->descriptor_pools.large; 642 } 643 644 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd) 645 { 646 return cmd->common.flags & 647 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG); 648 } 649 650 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd) 651 { 652 if (nvme_pci_cmd_use_sgl(cmd)) 653 return le64_to_cpu(cmd->common.dptr.sgl.addr); 654 return le64_to_cpu(cmd->common.dptr.prp2); 655 } 656 657 static void nvme_free_descriptors(struct request *req) 658 { 659 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 660 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 661 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 662 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd); 663 int i; 664 665 if (iod->nr_descriptors == 1) { 666 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0], 667 dma_addr); 668 return; 669 } 670 671 for (i = 0; i < iod->nr_descriptors; i++) { 672 __le64 *prp_list = iod->descriptors[i]; 673 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 674 675 dma_pool_free(nvmeq->descriptor_pools.large, prp_list, 676 dma_addr); 677 dma_addr = next_dma_addr; 678 } 679 } 680 681 static void nvme_free_prps(struct request *req) 682 { 683 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 684 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 685 unsigned int i; 686 687 for (i = 0; i < iod->nr_dma_vecs; i++) 688 dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr, 689 iod->dma_vecs[i].len, rq_dma_dir(req)); 690 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool); 691 } 692 693 static void nvme_free_sgls(struct request *req) 694 { 695 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 696 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 697 struct device *dma_dev = nvmeq->dev->dev; 698 dma_addr_t sqe_dma_addr = le64_to_cpu(iod->cmd.common.dptr.sgl.addr); 699 unsigned int sqe_dma_len = le32_to_cpu(iod->cmd.common.dptr.sgl.length); 700 struct nvme_sgl_desc *sg_list = iod->descriptors[0]; 701 enum dma_data_direction dir = rq_dma_dir(req); 702 703 if (iod->nr_descriptors) { 704 unsigned int nr_entries = sqe_dma_len / sizeof(*sg_list), i; 705 706 for (i = 0; i < nr_entries; i++) 707 dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr), 708 le32_to_cpu(sg_list[i].length), dir); 709 } else { 710 dma_unmap_page(dma_dev, sqe_dma_addr, sqe_dma_len, dir); 711 } 712 } 713 714 static void nvme_unmap_data(struct request *req) 715 { 716 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 717 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 718 struct device *dma_dev = nvmeq->dev->dev; 719 720 if (iod->flags & IOD_SINGLE_SEGMENT) { 721 static_assert(offsetof(union nvme_data_ptr, prp1) == 722 offsetof(union nvme_data_ptr, sgl.addr)); 723 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1), 724 iod->total_len, rq_dma_dir(req)); 725 return; 726 } 727 728 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) { 729 if (nvme_pci_cmd_use_sgl(&iod->cmd)) 730 nvme_free_sgls(req); 731 else 732 nvme_free_prps(req); 733 } 734 735 if (iod->nr_descriptors) 736 nvme_free_descriptors(req); 737 } 738 739 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev, 740 struct blk_dma_iter *iter) 741 { 742 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 743 744 if (iter->len) 745 return true; 746 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter)) 747 return false; 748 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) { 749 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr; 750 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len; 751 iod->nr_dma_vecs++; 752 } 753 return true; 754 } 755 756 static blk_status_t nvme_pci_setup_data_prp(struct request *req, 757 struct blk_dma_iter *iter) 758 { 759 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 760 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 761 unsigned int length = blk_rq_payload_bytes(req); 762 dma_addr_t prp1_dma, prp2_dma = 0; 763 unsigned int prp_len, i; 764 __le64 *prp_list; 765 766 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) { 767 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool, 768 GFP_ATOMIC); 769 if (!iod->dma_vecs) 770 return BLK_STS_RESOURCE; 771 iod->dma_vecs[0].addr = iter->addr; 772 iod->dma_vecs[0].len = iter->len; 773 iod->nr_dma_vecs = 1; 774 } 775 776 /* 777 * PRP1 always points to the start of the DMA transfers. 778 * 779 * This is the only PRP (except for the list entries) that could be 780 * non-aligned. 781 */ 782 prp1_dma = iter->addr; 783 prp_len = min(length, NVME_CTRL_PAGE_SIZE - 784 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1))); 785 iod->total_len += prp_len; 786 iter->addr += prp_len; 787 iter->len -= prp_len; 788 length -= prp_len; 789 if (!length) 790 goto done; 791 792 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { 793 if (WARN_ON_ONCE(!iter->status)) 794 goto bad_sgl; 795 goto done; 796 } 797 798 /* 799 * PRP2 is usually a list, but can point to data if all data to be 800 * transferred fits into PRP1 + PRP2: 801 */ 802 if (length <= NVME_CTRL_PAGE_SIZE) { 803 prp2_dma = iter->addr; 804 iod->total_len += length; 805 goto done; 806 } 807 808 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <= 809 NVME_SMALL_POOL_SIZE / sizeof(__le64)) 810 iod->flags |= IOD_SMALL_DESCRIPTOR; 811 812 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, 813 &prp2_dma); 814 if (!prp_list) { 815 iter->status = BLK_STS_RESOURCE; 816 goto done; 817 } 818 iod->descriptors[iod->nr_descriptors++] = prp_list; 819 820 i = 0; 821 for (;;) { 822 prp_list[i++] = cpu_to_le64(iter->addr); 823 prp_len = min(length, NVME_CTRL_PAGE_SIZE); 824 if (WARN_ON_ONCE(iter->len < prp_len)) 825 goto bad_sgl; 826 827 iod->total_len += prp_len; 828 iter->addr += prp_len; 829 iter->len -= prp_len; 830 length -= prp_len; 831 if (!length) 832 break; 833 834 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { 835 if (WARN_ON_ONCE(!iter->status)) 836 goto bad_sgl; 837 goto done; 838 } 839 840 /* 841 * If we've filled the entire descriptor, allocate a new that is 842 * pointed to be the last entry in the previous PRP list. To 843 * accommodate for that move the last actual entry to the new 844 * descriptor. 845 */ 846 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 847 __le64 *old_prp_list = prp_list; 848 dma_addr_t prp_list_dma; 849 850 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large, 851 GFP_ATOMIC, &prp_list_dma); 852 if (!prp_list) { 853 iter->status = BLK_STS_RESOURCE; 854 goto done; 855 } 856 iod->descriptors[iod->nr_descriptors++] = prp_list; 857 858 prp_list[0] = old_prp_list[i - 1]; 859 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma); 860 i = 1; 861 } 862 } 863 864 done: 865 /* 866 * nvme_unmap_data uses the DPT field in the SQE to tear down the 867 * mapping, so initialize it even for failures. 868 */ 869 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma); 870 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma); 871 if (unlikely(iter->status)) 872 nvme_unmap_data(req); 873 return iter->status; 874 875 bad_sgl: 876 dev_err_once(nvmeq->dev->dev, 877 "Incorrectly formed request for payload:%d nents:%d\n", 878 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req)); 879 return BLK_STS_IOERR; 880 } 881 882 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 883 struct blk_dma_iter *iter) 884 { 885 sge->addr = cpu_to_le64(iter->addr); 886 sge->length = cpu_to_le32(iter->len); 887 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 888 } 889 890 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 891 dma_addr_t dma_addr, int entries) 892 { 893 sge->addr = cpu_to_le64(dma_addr); 894 sge->length = cpu_to_le32(entries * sizeof(*sge)); 895 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 896 } 897 898 static blk_status_t nvme_pci_setup_data_sgl(struct request *req, 899 struct blk_dma_iter *iter) 900 { 901 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 902 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 903 unsigned int entries = blk_rq_nr_phys_segments(req); 904 struct nvme_sgl_desc *sg_list; 905 dma_addr_t sgl_dma; 906 unsigned int mapped = 0; 907 908 /* set the transfer type as SGL */ 909 iod->cmd.common.flags = NVME_CMD_SGL_METABUF; 910 911 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) { 912 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter); 913 iod->total_len += iter->len; 914 return BLK_STS_OK; 915 } 916 917 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list)) 918 iod->flags |= IOD_SMALL_DESCRIPTOR; 919 920 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, 921 &sgl_dma); 922 if (!sg_list) 923 return BLK_STS_RESOURCE; 924 iod->descriptors[iod->nr_descriptors++] = sg_list; 925 926 do { 927 if (WARN_ON_ONCE(mapped == entries)) { 928 iter->status = BLK_STS_IOERR; 929 break; 930 } 931 nvme_pci_sgl_set_data(&sg_list[mapped++], iter); 932 iod->total_len += iter->len; 933 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state, 934 iter)); 935 936 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped); 937 if (unlikely(iter->status)) 938 nvme_unmap_data(req); 939 return iter->status; 940 } 941 942 static blk_status_t nvme_pci_setup_data_simple(struct request *req, 943 enum nvme_use_sgl use_sgl) 944 { 945 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 946 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 947 struct bio_vec bv = req_bvec(req); 948 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 949 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2; 950 dma_addr_t dma_addr; 951 952 if (!use_sgl && !prp_possible) 953 return BLK_STS_AGAIN; 954 if (is_pci_p2pdma_page(bv.bv_page)) 955 return BLK_STS_AGAIN; 956 957 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); 958 if (dma_mapping_error(nvmeq->dev->dev, dma_addr)) 959 return BLK_STS_RESOURCE; 960 iod->total_len = bv.bv_len; 961 iod->flags |= IOD_SINGLE_SEGMENT; 962 963 if (use_sgl == SGL_FORCED || !prp_possible) { 964 iod->cmd.common.flags = NVME_CMD_SGL_METABUF; 965 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr); 966 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len); 967 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 968 } else { 969 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset; 970 971 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr); 972 iod->cmd.common.dptr.prp2 = 0; 973 if (bv.bv_len > first_prp_len) 974 iod->cmd.common.dptr.prp2 = 975 cpu_to_le64(dma_addr + first_prp_len); 976 } 977 978 return BLK_STS_OK; 979 } 980 981 static blk_status_t nvme_map_data(struct request *req) 982 { 983 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 984 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 985 struct nvme_dev *dev = nvmeq->dev; 986 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req); 987 struct blk_dma_iter iter; 988 blk_status_t ret; 989 990 /* 991 * Try to skip the DMA iterator for single segment requests, as that 992 * significantly improves performances for small I/O sizes. 993 */ 994 if (blk_rq_nr_phys_segments(req) == 1) { 995 ret = nvme_pci_setup_data_simple(req, use_sgl); 996 if (ret != BLK_STS_AGAIN) 997 return ret; 998 } 999 1000 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter)) 1001 return iter.status; 1002 1003 if (use_sgl == SGL_FORCED || 1004 (use_sgl == SGL_SUPPORTED && 1005 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold))) 1006 return nvme_pci_setup_data_sgl(req, &iter); 1007 return nvme_pci_setup_data_prp(req, &iter); 1008 } 1009 1010 static void nvme_pci_sgl_set_data_sg(struct nvme_sgl_desc *sge, 1011 struct scatterlist *sg) 1012 { 1013 sge->addr = cpu_to_le64(sg_dma_address(sg)); 1014 sge->length = cpu_to_le32(sg_dma_len(sg)); 1015 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 1016 } 1017 1018 static blk_status_t nvme_pci_setup_meta_sgls(struct request *req) 1019 { 1020 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1021 struct nvme_dev *dev = nvmeq->dev; 1022 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1023 struct nvme_sgl_desc *sg_list; 1024 struct scatterlist *sgl, *sg; 1025 unsigned int entries; 1026 dma_addr_t sgl_dma; 1027 int rc, i; 1028 1029 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC); 1030 if (!iod->meta_sgt.sgl) 1031 return BLK_STS_RESOURCE; 1032 1033 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments); 1034 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req, 1035 iod->meta_sgt.sgl); 1036 if (!iod->meta_sgt.orig_nents) 1037 goto out_free_sg; 1038 1039 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 1040 DMA_ATTR_NO_WARN); 1041 if (rc) 1042 goto out_free_sg; 1043 1044 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC, 1045 &sgl_dma); 1046 if (!sg_list) 1047 goto out_unmap_sg; 1048 1049 entries = iod->meta_sgt.nents; 1050 iod->meta_descriptor = sg_list; 1051 iod->meta_dma = sgl_dma; 1052 1053 iod->cmd.common.flags = NVME_CMD_SGL_METASEG; 1054 iod->cmd.common.metadata = cpu_to_le64(sgl_dma); 1055 1056 sgl = iod->meta_sgt.sgl; 1057 if (entries == 1) { 1058 nvme_pci_sgl_set_data_sg(sg_list, sgl); 1059 return BLK_STS_OK; 1060 } 1061 1062 sgl_dma += sizeof(*sg_list); 1063 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries); 1064 for_each_sg(sgl, sg, entries, i) 1065 nvme_pci_sgl_set_data_sg(&sg_list[i + 1], sg); 1066 1067 return BLK_STS_OK; 1068 1069 out_unmap_sg: 1070 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1071 out_free_sg: 1072 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1073 return BLK_STS_RESOURCE; 1074 } 1075 1076 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req) 1077 { 1078 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1079 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1080 struct bio_vec bv = rq_integrity_vec(req); 1081 1082 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); 1083 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma)) 1084 return BLK_STS_IOERR; 1085 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma); 1086 return BLK_STS_OK; 1087 } 1088 1089 static blk_status_t nvme_map_metadata(struct request *req) 1090 { 1091 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1092 1093 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) && 1094 nvme_pci_metadata_use_sgls(req)) 1095 return nvme_pci_setup_meta_sgls(req); 1096 return nvme_pci_setup_meta_mptr(req); 1097 } 1098 1099 static blk_status_t nvme_prep_rq(struct request *req) 1100 { 1101 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1102 blk_status_t ret; 1103 1104 iod->flags = 0; 1105 iod->nr_descriptors = 0; 1106 iod->total_len = 0; 1107 iod->meta_sgt.nents = 0; 1108 1109 ret = nvme_setup_cmd(req->q->queuedata, req); 1110 if (ret) 1111 return ret; 1112 1113 if (blk_rq_nr_phys_segments(req)) { 1114 ret = nvme_map_data(req); 1115 if (ret) 1116 goto out_free_cmd; 1117 } 1118 1119 if (blk_integrity_rq(req)) { 1120 ret = nvme_map_metadata(req); 1121 if (ret) 1122 goto out_unmap_data; 1123 } 1124 1125 nvme_start_request(req); 1126 return BLK_STS_OK; 1127 out_unmap_data: 1128 if (blk_rq_nr_phys_segments(req)) 1129 nvme_unmap_data(req); 1130 out_free_cmd: 1131 nvme_cleanup_cmd(req); 1132 return ret; 1133 } 1134 1135 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 1136 const struct blk_mq_queue_data *bd) 1137 { 1138 struct nvme_queue *nvmeq = hctx->driver_data; 1139 struct nvme_dev *dev = nvmeq->dev; 1140 struct request *req = bd->rq; 1141 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1142 blk_status_t ret; 1143 1144 /* 1145 * We should not need to do this, but we're still using this to 1146 * ensure we can drain requests on a dying queue. 1147 */ 1148 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1149 return BLK_STS_IOERR; 1150 1151 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 1152 return nvme_fail_nonready_command(&dev->ctrl, req); 1153 1154 ret = nvme_prep_rq(req); 1155 if (unlikely(ret)) 1156 return ret; 1157 spin_lock(&nvmeq->sq_lock); 1158 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 1159 nvme_write_sq_db(nvmeq, bd->last); 1160 spin_unlock(&nvmeq->sq_lock); 1161 return BLK_STS_OK; 1162 } 1163 1164 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 1165 { 1166 struct request *req; 1167 1168 if (rq_list_empty(rqlist)) 1169 return; 1170 1171 spin_lock(&nvmeq->sq_lock); 1172 while ((req = rq_list_pop(rqlist))) { 1173 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1174 1175 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 1176 } 1177 nvme_write_sq_db(nvmeq, true); 1178 spin_unlock(&nvmeq->sq_lock); 1179 } 1180 1181 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1182 { 1183 /* 1184 * We should not need to do this, but we're still using this to 1185 * ensure we can drain requests on a dying queue. 1186 */ 1187 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1188 return false; 1189 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1190 return false; 1191 1192 return nvme_prep_rq(req) == BLK_STS_OK; 1193 } 1194 1195 static void nvme_queue_rqs(struct rq_list *rqlist) 1196 { 1197 struct rq_list submit_list = { }; 1198 struct rq_list requeue_list = { }; 1199 struct nvme_queue *nvmeq = NULL; 1200 struct request *req; 1201 1202 while ((req = rq_list_pop(rqlist))) { 1203 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1204 nvme_submit_cmds(nvmeq, &submit_list); 1205 nvmeq = req->mq_hctx->driver_data; 1206 1207 if (nvme_prep_rq_batch(nvmeq, req)) 1208 rq_list_add_tail(&submit_list, req); 1209 else 1210 rq_list_add_tail(&requeue_list, req); 1211 } 1212 1213 if (nvmeq) 1214 nvme_submit_cmds(nvmeq, &submit_list); 1215 *rqlist = requeue_list; 1216 } 1217 1218 static __always_inline void nvme_unmap_metadata(struct request *req) 1219 { 1220 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1221 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1222 struct nvme_dev *dev = nvmeq->dev; 1223 1224 if (!iod->meta_sgt.nents) { 1225 dma_unmap_page(dev->dev, iod->meta_dma, 1226 rq_integrity_vec(req).bv_len, 1227 rq_dma_dir(req)); 1228 return; 1229 } 1230 1231 dma_pool_free(nvmeq->descriptor_pools.small, iod->meta_descriptor, 1232 iod->meta_dma); 1233 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1234 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1235 } 1236 1237 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1238 { 1239 if (blk_integrity_rq(req)) 1240 nvme_unmap_metadata(req); 1241 if (blk_rq_nr_phys_segments(req)) 1242 nvme_unmap_data(req); 1243 } 1244 1245 static void nvme_pci_complete_rq(struct request *req) 1246 { 1247 nvme_pci_unmap_rq(req); 1248 nvme_complete_rq(req); 1249 } 1250 1251 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1252 { 1253 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1254 } 1255 1256 /* We read the CQE phase first to check if the rest of the entry is valid */ 1257 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1258 { 1259 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1260 1261 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1262 } 1263 1264 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1265 { 1266 u16 head = nvmeq->cq_head; 1267 1268 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1269 nvmeq->dbbuf_cq_ei)) 1270 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1271 } 1272 1273 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1274 { 1275 if (!nvmeq->qid) 1276 return nvmeq->dev->admin_tagset.tags[0]; 1277 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1278 } 1279 1280 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1281 struct io_comp_batch *iob, u16 idx) 1282 { 1283 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1284 __u16 command_id = READ_ONCE(cqe->command_id); 1285 struct request *req; 1286 1287 /* 1288 * AEN requests are special as they don't time out and can 1289 * survive any kind of queue freeze and often don't respond to 1290 * aborts. We don't even bother to allocate a struct request 1291 * for them but rather special case them here. 1292 */ 1293 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1294 nvme_complete_async_event(&nvmeq->dev->ctrl, 1295 cqe->status, &cqe->result); 1296 return; 1297 } 1298 1299 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1300 if (unlikely(!req)) { 1301 dev_warn(nvmeq->dev->ctrl.device, 1302 "invalid id %d completed on queue %d\n", 1303 command_id, le16_to_cpu(cqe->sq_id)); 1304 return; 1305 } 1306 1307 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1308 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1309 !blk_mq_add_to_batch(req, iob, 1310 nvme_req(req)->status != NVME_SC_SUCCESS, 1311 nvme_pci_complete_batch)) 1312 nvme_pci_complete_rq(req); 1313 } 1314 1315 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1316 { 1317 u32 tmp = nvmeq->cq_head + 1; 1318 1319 if (tmp == nvmeq->q_depth) { 1320 nvmeq->cq_head = 0; 1321 nvmeq->cq_phase ^= 1; 1322 } else { 1323 nvmeq->cq_head = tmp; 1324 } 1325 } 1326 1327 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, 1328 struct io_comp_batch *iob) 1329 { 1330 bool found = false; 1331 1332 while (nvme_cqe_pending(nvmeq)) { 1333 found = true; 1334 /* 1335 * load-load control dependency between phase and the rest of 1336 * the cqe requires a full read memory barrier 1337 */ 1338 dma_rmb(); 1339 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1340 nvme_update_cq_head(nvmeq); 1341 } 1342 1343 if (found) 1344 nvme_ring_cq_doorbell(nvmeq); 1345 return found; 1346 } 1347 1348 static irqreturn_t nvme_irq(int irq, void *data) 1349 { 1350 struct nvme_queue *nvmeq = data; 1351 DEFINE_IO_COMP_BATCH(iob); 1352 1353 if (nvme_poll_cq(nvmeq, &iob)) { 1354 if (!rq_list_empty(&iob.req_list)) 1355 nvme_pci_complete_batch(&iob); 1356 return IRQ_HANDLED; 1357 } 1358 return IRQ_NONE; 1359 } 1360 1361 static irqreturn_t nvme_irq_check(int irq, void *data) 1362 { 1363 struct nvme_queue *nvmeq = data; 1364 1365 if (nvme_cqe_pending(nvmeq)) 1366 return IRQ_WAKE_THREAD; 1367 return IRQ_NONE; 1368 } 1369 1370 /* 1371 * Poll for completions for any interrupt driven queue 1372 * Can be called from any context. 1373 */ 1374 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1375 { 1376 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1377 1378 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1379 1380 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1381 spin_lock(&nvmeq->cq_poll_lock); 1382 nvme_poll_cq(nvmeq, NULL); 1383 spin_unlock(&nvmeq->cq_poll_lock); 1384 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1385 } 1386 1387 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1388 { 1389 struct nvme_queue *nvmeq = hctx->driver_data; 1390 bool found; 1391 1392 if (!nvme_cqe_pending(nvmeq)) 1393 return 0; 1394 1395 spin_lock(&nvmeq->cq_poll_lock); 1396 found = nvme_poll_cq(nvmeq, iob); 1397 spin_unlock(&nvmeq->cq_poll_lock); 1398 1399 return found; 1400 } 1401 1402 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1403 { 1404 struct nvme_dev *dev = to_nvme_dev(ctrl); 1405 struct nvme_queue *nvmeq = &dev->queues[0]; 1406 struct nvme_command c = { }; 1407 1408 c.common.opcode = nvme_admin_async_event; 1409 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1410 1411 spin_lock(&nvmeq->sq_lock); 1412 nvme_sq_copy_cmd(nvmeq, &c); 1413 nvme_write_sq_db(nvmeq, true); 1414 spin_unlock(&nvmeq->sq_lock); 1415 } 1416 1417 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1418 { 1419 struct nvme_dev *dev = to_nvme_dev(ctrl); 1420 int ret = 0; 1421 1422 /* 1423 * Taking the shutdown_lock ensures the BAR mapping is not being 1424 * altered by reset_work. Holding this lock before the RESETTING state 1425 * change, if successful, also ensures nvme_remove won't be able to 1426 * proceed to iounmap until we're done. 1427 */ 1428 mutex_lock(&dev->shutdown_lock); 1429 if (!dev->bar_mapped_size) { 1430 ret = -ENODEV; 1431 goto unlock; 1432 } 1433 1434 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1435 ret = -EBUSY; 1436 goto unlock; 1437 } 1438 1439 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1440 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1441 1442 /* 1443 * Read controller status to flush the previous write and trigger a 1444 * pcie read error. 1445 */ 1446 readl(dev->bar + NVME_REG_CSTS); 1447 unlock: 1448 mutex_unlock(&dev->shutdown_lock); 1449 return ret; 1450 } 1451 1452 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1453 { 1454 struct nvme_command c = { }; 1455 1456 c.delete_queue.opcode = opcode; 1457 c.delete_queue.qid = cpu_to_le16(id); 1458 1459 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1460 } 1461 1462 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1463 struct nvme_queue *nvmeq, s16 vector) 1464 { 1465 struct nvme_command c = { }; 1466 int flags = NVME_QUEUE_PHYS_CONTIG; 1467 1468 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1469 flags |= NVME_CQ_IRQ_ENABLED; 1470 1471 /* 1472 * Note: we (ab)use the fact that the prp fields survive if no data 1473 * is attached to the request. 1474 */ 1475 c.create_cq.opcode = nvme_admin_create_cq; 1476 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1477 c.create_cq.cqid = cpu_to_le16(qid); 1478 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1479 c.create_cq.cq_flags = cpu_to_le16(flags); 1480 c.create_cq.irq_vector = cpu_to_le16(vector); 1481 1482 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1483 } 1484 1485 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1486 struct nvme_queue *nvmeq) 1487 { 1488 struct nvme_ctrl *ctrl = &dev->ctrl; 1489 struct nvme_command c = { }; 1490 int flags = NVME_QUEUE_PHYS_CONTIG; 1491 1492 /* 1493 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1494 * set. Since URGENT priority is zeroes, it makes all queues 1495 * URGENT. 1496 */ 1497 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1498 flags |= NVME_SQ_PRIO_MEDIUM; 1499 1500 /* 1501 * Note: we (ab)use the fact that the prp fields survive if no data 1502 * is attached to the request. 1503 */ 1504 c.create_sq.opcode = nvme_admin_create_sq; 1505 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1506 c.create_sq.sqid = cpu_to_le16(qid); 1507 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1508 c.create_sq.sq_flags = cpu_to_le16(flags); 1509 c.create_sq.cqid = cpu_to_le16(qid); 1510 1511 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1512 } 1513 1514 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1515 { 1516 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1517 } 1518 1519 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1520 { 1521 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1522 } 1523 1524 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1525 { 1526 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1527 1528 dev_warn(nvmeq->dev->ctrl.device, 1529 "Abort status: 0x%x", nvme_req(req)->status); 1530 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1531 blk_mq_free_request(req); 1532 return RQ_END_IO_NONE; 1533 } 1534 1535 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1536 { 1537 /* If true, indicates loss of adapter communication, possibly by a 1538 * NVMe Subsystem reset. 1539 */ 1540 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1541 1542 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1543 switch (nvme_ctrl_state(&dev->ctrl)) { 1544 case NVME_CTRL_RESETTING: 1545 case NVME_CTRL_CONNECTING: 1546 return false; 1547 default: 1548 break; 1549 } 1550 1551 /* We shouldn't reset unless the controller is on fatal error state 1552 * _or_ if we lost the communication with it. 1553 */ 1554 if (!(csts & NVME_CSTS_CFS) && !nssro) 1555 return false; 1556 1557 return true; 1558 } 1559 1560 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1561 { 1562 /* Read a config register to help see what died. */ 1563 u16 pci_status; 1564 int result; 1565 1566 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1567 &pci_status); 1568 if (result == PCIBIOS_SUCCESSFUL) 1569 dev_warn(dev->ctrl.device, 1570 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1571 csts, pci_status); 1572 else 1573 dev_warn(dev->ctrl.device, 1574 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1575 csts, result); 1576 1577 if (csts != ~0) 1578 return; 1579 1580 dev_warn(dev->ctrl.device, 1581 "Does your device have a faulty power saving mode enabled?\n"); 1582 dev_warn(dev->ctrl.device, 1583 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1584 } 1585 1586 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1587 { 1588 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1589 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1590 struct nvme_dev *dev = nvmeq->dev; 1591 struct request *abort_req; 1592 struct nvme_command cmd = { }; 1593 struct pci_dev *pdev = to_pci_dev(dev->dev); 1594 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1595 u8 opcode; 1596 1597 /* 1598 * Shutdown the device immediately if we see it is disconnected. This 1599 * unblocks PCIe error handling if the nvme driver is waiting in 1600 * error_resume for a device that has been removed. We can't unbind the 1601 * driver while the driver's error callback is waiting to complete, so 1602 * we're relying on a timeout to break that deadlock if a removal 1603 * occurs while reset work is running. 1604 */ 1605 if (pci_dev_is_disconnected(pdev)) 1606 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1607 if (nvme_state_terminal(&dev->ctrl)) 1608 goto disable; 1609 1610 /* If PCI error recovery process is happening, we cannot reset or 1611 * the recovery mechanism will surely fail. 1612 */ 1613 mb(); 1614 if (pci_channel_offline(pdev)) 1615 return BLK_EH_RESET_TIMER; 1616 1617 /* 1618 * Reset immediately if the controller is failed 1619 */ 1620 if (nvme_should_reset(dev, csts)) { 1621 nvme_warn_reset(dev, csts); 1622 goto disable; 1623 } 1624 1625 /* 1626 * Did we miss an interrupt? 1627 */ 1628 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1629 nvme_poll(req->mq_hctx, NULL); 1630 else 1631 nvme_poll_irqdisable(nvmeq); 1632 1633 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1634 dev_warn(dev->ctrl.device, 1635 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1636 req->tag, nvme_cid(req), nvmeq->qid); 1637 return BLK_EH_DONE; 1638 } 1639 1640 /* 1641 * Shutdown immediately if controller times out while starting. The 1642 * reset work will see the pci device disabled when it gets the forced 1643 * cancellation error. All outstanding requests are completed on 1644 * shutdown, so we return BLK_EH_DONE. 1645 */ 1646 switch (nvme_ctrl_state(&dev->ctrl)) { 1647 case NVME_CTRL_CONNECTING: 1648 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1649 fallthrough; 1650 case NVME_CTRL_DELETING: 1651 dev_warn_ratelimited(dev->ctrl.device, 1652 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1653 req->tag, nvme_cid(req), nvmeq->qid); 1654 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1655 nvme_dev_disable(dev, true); 1656 return BLK_EH_DONE; 1657 case NVME_CTRL_RESETTING: 1658 return BLK_EH_RESET_TIMER; 1659 default: 1660 break; 1661 } 1662 1663 /* 1664 * Shutdown the controller immediately and schedule a reset if the 1665 * command was already aborted once before and still hasn't been 1666 * returned to the driver, or if this is the admin queue. 1667 */ 1668 opcode = nvme_req(req)->cmd->common.opcode; 1669 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) { 1670 dev_warn(dev->ctrl.device, 1671 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1672 req->tag, nvme_cid(req), opcode, 1673 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1674 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1675 goto disable; 1676 } 1677 1678 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1679 atomic_inc(&dev->ctrl.abort_limit); 1680 return BLK_EH_RESET_TIMER; 1681 } 1682 iod->flags |= IOD_ABORTED; 1683 1684 cmd.abort.opcode = nvme_admin_abort_cmd; 1685 cmd.abort.cid = nvme_cid(req); 1686 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1687 1688 dev_warn(nvmeq->dev->ctrl.device, 1689 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1690 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1691 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1692 blk_rq_bytes(req)); 1693 1694 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1695 BLK_MQ_REQ_NOWAIT); 1696 if (IS_ERR(abort_req)) { 1697 atomic_inc(&dev->ctrl.abort_limit); 1698 return BLK_EH_RESET_TIMER; 1699 } 1700 nvme_init_request(abort_req, &cmd); 1701 1702 abort_req->end_io = abort_endio; 1703 abort_req->end_io_data = NULL; 1704 blk_execute_rq_nowait(abort_req, false); 1705 1706 /* 1707 * The aborted req will be completed on receiving the abort req. 1708 * We enable the timer again. If hit twice, it'll cause a device reset, 1709 * as the device then is in a faulty state. 1710 */ 1711 return BLK_EH_RESET_TIMER; 1712 1713 disable: 1714 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1715 if (nvme_state_terminal(&dev->ctrl)) 1716 nvme_dev_disable(dev, true); 1717 return BLK_EH_DONE; 1718 } 1719 1720 nvme_dev_disable(dev, false); 1721 if (nvme_try_sched_reset(&dev->ctrl)) 1722 nvme_unquiesce_io_queues(&dev->ctrl); 1723 return BLK_EH_DONE; 1724 } 1725 1726 static void nvme_free_queue(struct nvme_queue *nvmeq) 1727 { 1728 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1729 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1730 if (!nvmeq->sq_cmds) 1731 return; 1732 1733 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1734 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1735 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1736 } else { 1737 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1738 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1739 } 1740 } 1741 1742 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1743 { 1744 int i; 1745 1746 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1747 dev->ctrl.queue_count--; 1748 nvme_free_queue(&dev->queues[i]); 1749 } 1750 } 1751 1752 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1753 { 1754 struct nvme_queue *nvmeq = &dev->queues[qid]; 1755 1756 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1757 return; 1758 1759 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1760 mb(); 1761 1762 nvmeq->dev->online_queues--; 1763 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1764 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1765 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1766 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1767 } 1768 1769 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1770 { 1771 int i; 1772 1773 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1774 nvme_suspend_queue(dev, i); 1775 } 1776 1777 /* 1778 * Called only on a device that has been disabled and after all other threads 1779 * that can check this device's completion queues have synced, except 1780 * nvme_poll(). This is the last chance for the driver to see a natural 1781 * completion before nvme_cancel_request() terminates all incomplete requests. 1782 */ 1783 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1784 { 1785 int i; 1786 1787 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1788 spin_lock(&dev->queues[i].cq_poll_lock); 1789 nvme_poll_cq(&dev->queues[i], NULL); 1790 spin_unlock(&dev->queues[i].cq_poll_lock); 1791 } 1792 } 1793 1794 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1795 int entry_size) 1796 { 1797 int q_depth = dev->q_depth; 1798 unsigned q_size_aligned = roundup(q_depth * entry_size, 1799 NVME_CTRL_PAGE_SIZE); 1800 1801 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1802 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1803 1804 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1805 q_depth = div_u64(mem_per_q, entry_size); 1806 1807 /* 1808 * Ensure the reduced q_depth is above some threshold where it 1809 * would be better to map queues in system memory with the 1810 * original depth 1811 */ 1812 if (q_depth < 64) 1813 return -ENOMEM; 1814 } 1815 1816 return q_depth; 1817 } 1818 1819 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1820 int qid) 1821 { 1822 struct pci_dev *pdev = to_pci_dev(dev->dev); 1823 1824 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1825 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1826 if (nvmeq->sq_cmds) { 1827 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1828 nvmeq->sq_cmds); 1829 if (nvmeq->sq_dma_addr) { 1830 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1831 return 0; 1832 } 1833 1834 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1835 } 1836 } 1837 1838 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1839 &nvmeq->sq_dma_addr, GFP_KERNEL); 1840 if (!nvmeq->sq_cmds) 1841 return -ENOMEM; 1842 return 0; 1843 } 1844 1845 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1846 { 1847 struct nvme_queue *nvmeq = &dev->queues[qid]; 1848 1849 if (dev->ctrl.queue_count > qid) 1850 return 0; 1851 1852 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1853 nvmeq->q_depth = depth; 1854 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1855 &nvmeq->cq_dma_addr, GFP_KERNEL); 1856 if (!nvmeq->cqes) 1857 goto free_nvmeq; 1858 1859 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1860 goto free_cqdma; 1861 1862 nvmeq->dev = dev; 1863 spin_lock_init(&nvmeq->sq_lock); 1864 spin_lock_init(&nvmeq->cq_poll_lock); 1865 nvmeq->cq_head = 0; 1866 nvmeq->cq_phase = 1; 1867 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1868 nvmeq->qid = qid; 1869 dev->ctrl.queue_count++; 1870 1871 return 0; 1872 1873 free_cqdma: 1874 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1875 nvmeq->cq_dma_addr); 1876 free_nvmeq: 1877 return -ENOMEM; 1878 } 1879 1880 static int queue_request_irq(struct nvme_queue *nvmeq) 1881 { 1882 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1883 int nr = nvmeq->dev->ctrl.instance; 1884 1885 if (use_threaded_interrupts) { 1886 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1887 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1888 } else { 1889 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1890 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1891 } 1892 } 1893 1894 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1895 { 1896 struct nvme_dev *dev = nvmeq->dev; 1897 1898 nvmeq->sq_tail = 0; 1899 nvmeq->last_sq_tail = 0; 1900 nvmeq->cq_head = 0; 1901 nvmeq->cq_phase = 1; 1902 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1903 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1904 nvme_dbbuf_init(dev, nvmeq, qid); 1905 dev->online_queues++; 1906 wmb(); /* ensure the first interrupt sees the initialization */ 1907 } 1908 1909 /* 1910 * Try getting shutdown_lock while setting up IO queues. 1911 */ 1912 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1913 { 1914 /* 1915 * Give up if the lock is being held by nvme_dev_disable. 1916 */ 1917 if (!mutex_trylock(&dev->shutdown_lock)) 1918 return -ENODEV; 1919 1920 /* 1921 * Controller is in wrong state, fail early. 1922 */ 1923 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1924 mutex_unlock(&dev->shutdown_lock); 1925 return -ENODEV; 1926 } 1927 1928 return 0; 1929 } 1930 1931 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1932 { 1933 struct nvme_dev *dev = nvmeq->dev; 1934 int result; 1935 u16 vector = 0; 1936 1937 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1938 1939 /* 1940 * A queue's vector matches the queue identifier unless the controller 1941 * has only one vector available. 1942 */ 1943 if (!polled) 1944 vector = dev->num_vecs == 1 ? 0 : qid; 1945 else 1946 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1947 1948 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1949 if (result) 1950 return result; 1951 1952 result = adapter_alloc_sq(dev, qid, nvmeq); 1953 if (result < 0) 1954 return result; 1955 if (result) 1956 goto release_cq; 1957 1958 nvmeq->cq_vector = vector; 1959 1960 result = nvme_setup_io_queues_trylock(dev); 1961 if (result) 1962 return result; 1963 nvme_init_queue(nvmeq, qid); 1964 if (!polled) { 1965 result = queue_request_irq(nvmeq); 1966 if (result < 0) 1967 goto release_sq; 1968 } 1969 1970 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1971 mutex_unlock(&dev->shutdown_lock); 1972 return result; 1973 1974 release_sq: 1975 dev->online_queues--; 1976 mutex_unlock(&dev->shutdown_lock); 1977 adapter_delete_sq(dev, qid); 1978 release_cq: 1979 adapter_delete_cq(dev, qid); 1980 return result; 1981 } 1982 1983 static const struct blk_mq_ops nvme_mq_admin_ops = { 1984 .queue_rq = nvme_queue_rq, 1985 .complete = nvme_pci_complete_rq, 1986 .init_hctx = nvme_admin_init_hctx, 1987 .init_request = nvme_pci_init_request, 1988 .timeout = nvme_timeout, 1989 }; 1990 1991 static const struct blk_mq_ops nvme_mq_ops = { 1992 .queue_rq = nvme_queue_rq, 1993 .queue_rqs = nvme_queue_rqs, 1994 .complete = nvme_pci_complete_rq, 1995 .commit_rqs = nvme_commit_rqs, 1996 .init_hctx = nvme_init_hctx, 1997 .init_request = nvme_pci_init_request, 1998 .map_queues = nvme_pci_map_queues, 1999 .timeout = nvme_timeout, 2000 .poll = nvme_poll, 2001 }; 2002 2003 static void nvme_dev_remove_admin(struct nvme_dev *dev) 2004 { 2005 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 2006 /* 2007 * If the controller was reset during removal, it's possible 2008 * user requests may be waiting on a stopped queue. Start the 2009 * queue to flush these to completion. 2010 */ 2011 nvme_unquiesce_admin_queue(&dev->ctrl); 2012 nvme_remove_admin_tag_set(&dev->ctrl); 2013 } 2014 } 2015 2016 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 2017 { 2018 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 2019 } 2020 2021 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 2022 { 2023 struct pci_dev *pdev = to_pci_dev(dev->dev); 2024 2025 if (size <= dev->bar_mapped_size) 2026 return 0; 2027 if (size > pci_resource_len(pdev, 0)) 2028 return -ENOMEM; 2029 if (dev->bar) 2030 iounmap(dev->bar); 2031 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 2032 if (!dev->bar) { 2033 dev->bar_mapped_size = 0; 2034 return -ENOMEM; 2035 } 2036 dev->bar_mapped_size = size; 2037 dev->dbs = dev->bar + NVME_REG_DBS; 2038 2039 return 0; 2040 } 2041 2042 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 2043 { 2044 int result; 2045 u32 aqa; 2046 struct nvme_queue *nvmeq; 2047 2048 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 2049 if (result < 0) 2050 return result; 2051 2052 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 2053 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 2054 2055 if (dev->subsystem && 2056 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 2057 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 2058 2059 /* 2060 * If the device has been passed off to us in an enabled state, just 2061 * clear the enabled bit. The spec says we should set the 'shutdown 2062 * notification bits', but doing so may cause the device to complete 2063 * commands to the admin queue ... and we don't know what memory that 2064 * might be pointing at! 2065 */ 2066 result = nvme_disable_ctrl(&dev->ctrl, false); 2067 if (result < 0) { 2068 struct pci_dev *pdev = to_pci_dev(dev->dev); 2069 2070 /* 2071 * The NVMe Controller Reset method did not get an expected 2072 * CSTS.RDY transition, so something with the device appears to 2073 * be stuck. Use the lower level and bigger hammer PCIe 2074 * Function Level Reset to attempt restoring the device to its 2075 * initial state, and try again. 2076 */ 2077 result = pcie_reset_flr(pdev, false); 2078 if (result < 0) 2079 return result; 2080 2081 pci_restore_state(pdev); 2082 result = nvme_disable_ctrl(&dev->ctrl, false); 2083 if (result < 0) 2084 return result; 2085 2086 dev_info(dev->ctrl.device, 2087 "controller reset completed after pcie flr\n"); 2088 } 2089 2090 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 2091 if (result) 2092 return result; 2093 2094 dev->ctrl.numa_node = dev_to_node(dev->dev); 2095 2096 nvmeq = &dev->queues[0]; 2097 aqa = nvmeq->q_depth - 1; 2098 aqa |= aqa << 16; 2099 2100 writel(aqa, dev->bar + NVME_REG_AQA); 2101 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 2102 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 2103 2104 result = nvme_enable_ctrl(&dev->ctrl); 2105 if (result) 2106 return result; 2107 2108 nvmeq->cq_vector = 0; 2109 nvme_init_queue(nvmeq, 0); 2110 result = queue_request_irq(nvmeq); 2111 if (result) { 2112 dev->online_queues--; 2113 return result; 2114 } 2115 2116 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 2117 return result; 2118 } 2119 2120 static int nvme_create_io_queues(struct nvme_dev *dev) 2121 { 2122 unsigned i, max, rw_queues; 2123 int ret = 0; 2124 2125 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 2126 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 2127 ret = -ENOMEM; 2128 break; 2129 } 2130 } 2131 2132 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 2133 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 2134 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 2135 dev->io_queues[HCTX_TYPE_READ]; 2136 } else { 2137 rw_queues = max; 2138 } 2139 2140 for (i = dev->online_queues; i <= max; i++) { 2141 bool polled = i > rw_queues; 2142 2143 ret = nvme_create_queue(&dev->queues[i], i, polled); 2144 if (ret) 2145 break; 2146 } 2147 2148 /* 2149 * Ignore failing Create SQ/CQ commands, we can continue with less 2150 * than the desired amount of queues, and even a controller without 2151 * I/O queues can still be used to issue admin commands. This might 2152 * be useful to upgrade a buggy firmware for example. 2153 */ 2154 return ret >= 0 ? 0 : ret; 2155 } 2156 2157 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 2158 { 2159 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 2160 2161 return 1ULL << (12 + 4 * szu); 2162 } 2163 2164 static u32 nvme_cmb_size(struct nvme_dev *dev) 2165 { 2166 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 2167 } 2168 2169 static void nvme_map_cmb(struct nvme_dev *dev) 2170 { 2171 u64 size, offset; 2172 resource_size_t bar_size; 2173 struct pci_dev *pdev = to_pci_dev(dev->dev); 2174 int bar; 2175 2176 if (dev->cmb_size) 2177 return; 2178 2179 if (NVME_CAP_CMBS(dev->ctrl.cap)) 2180 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 2181 2182 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 2183 if (!dev->cmbsz) 2184 return; 2185 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 2186 2187 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 2188 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 2189 bar = NVME_CMB_BIR(dev->cmbloc); 2190 bar_size = pci_resource_len(pdev, bar); 2191 2192 if (offset > bar_size) 2193 return; 2194 2195 /* 2196 * Controllers may support a CMB size larger than their BAR, for 2197 * example, due to being behind a bridge. Reduce the CMB to the 2198 * reported size of the BAR 2199 */ 2200 size = min(size, bar_size - offset); 2201 2202 if (!IS_ALIGNED(size, memremap_compat_align()) || 2203 !IS_ALIGNED(pci_resource_start(pdev, bar), 2204 memremap_compat_align())) 2205 return; 2206 2207 /* 2208 * Tell the controller about the host side address mapping the CMB, 2209 * and enable CMB decoding for the NVMe 1.4+ scheme: 2210 */ 2211 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 2212 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 2213 (pci_bus_address(pdev, bar) + offset), 2214 dev->bar + NVME_REG_CMBMSC); 2215 } 2216 2217 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2218 dev_warn(dev->ctrl.device, 2219 "failed to register the CMB\n"); 2220 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); 2221 return; 2222 } 2223 2224 dev->cmb_size = size; 2225 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2226 2227 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2228 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2229 pci_p2pmem_publish(pdev, true); 2230 } 2231 2232 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2233 { 2234 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2235 u64 dma_addr = dev->host_mem_descs_dma; 2236 struct nvme_command c = { }; 2237 int ret; 2238 2239 c.features.opcode = nvme_admin_set_features; 2240 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2241 c.features.dword11 = cpu_to_le32(bits); 2242 c.features.dword12 = cpu_to_le32(host_mem_size); 2243 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2244 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2245 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2246 2247 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2248 if (ret) { 2249 dev_warn(dev->ctrl.device, 2250 "failed to set host mem (err %d, flags %#x).\n", 2251 ret, bits); 2252 } else 2253 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2254 2255 return ret; 2256 } 2257 2258 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2259 { 2260 int i; 2261 2262 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2263 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2264 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2265 2266 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2267 le64_to_cpu(desc->addr), 2268 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2269 } 2270 2271 kfree(dev->host_mem_desc_bufs); 2272 dev->host_mem_desc_bufs = NULL; 2273 } 2274 2275 static void nvme_free_host_mem(struct nvme_dev *dev) 2276 { 2277 if (dev->hmb_sgt) 2278 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2279 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2280 else 2281 nvme_free_host_mem_multi(dev); 2282 2283 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2284 dev->host_mem_descs, dev->host_mem_descs_dma); 2285 dev->host_mem_descs = NULL; 2286 dev->host_mem_descs_size = 0; 2287 dev->nr_host_mem_descs = 0; 2288 } 2289 2290 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2291 { 2292 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2293 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2294 if (!dev->hmb_sgt) 2295 return -ENOMEM; 2296 2297 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2298 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2299 GFP_KERNEL); 2300 if (!dev->host_mem_descs) { 2301 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, 2302 DMA_BIDIRECTIONAL); 2303 dev->hmb_sgt = NULL; 2304 return -ENOMEM; 2305 } 2306 dev->host_mem_size = size; 2307 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2308 dev->nr_host_mem_descs = 1; 2309 2310 dev->host_mem_descs[0].addr = 2311 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2312 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2313 return 0; 2314 } 2315 2316 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2317 u32 chunk_size) 2318 { 2319 struct nvme_host_mem_buf_desc *descs; 2320 u32 max_entries, len, descs_size; 2321 dma_addr_t descs_dma; 2322 int i = 0; 2323 void **bufs; 2324 u64 size, tmp; 2325 2326 tmp = (preferred + chunk_size - 1); 2327 do_div(tmp, chunk_size); 2328 max_entries = tmp; 2329 2330 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2331 max_entries = dev->ctrl.hmmaxd; 2332 2333 descs_size = max_entries * sizeof(*descs); 2334 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2335 GFP_KERNEL); 2336 if (!descs) 2337 goto out; 2338 2339 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2340 if (!bufs) 2341 goto out_free_descs; 2342 2343 for (size = 0; size < preferred && i < max_entries; size += len) { 2344 dma_addr_t dma_addr; 2345 2346 len = min_t(u64, chunk_size, preferred - size); 2347 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2348 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2349 if (!bufs[i]) 2350 break; 2351 2352 descs[i].addr = cpu_to_le64(dma_addr); 2353 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2354 i++; 2355 } 2356 2357 if (!size) 2358 goto out_free_bufs; 2359 2360 dev->nr_host_mem_descs = i; 2361 dev->host_mem_size = size; 2362 dev->host_mem_descs = descs; 2363 dev->host_mem_descs_dma = descs_dma; 2364 dev->host_mem_descs_size = descs_size; 2365 dev->host_mem_desc_bufs = bufs; 2366 return 0; 2367 2368 out_free_bufs: 2369 kfree(bufs); 2370 out_free_descs: 2371 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2372 out: 2373 dev->host_mem_descs = NULL; 2374 return -ENOMEM; 2375 } 2376 2377 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2378 { 2379 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); 2380 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2381 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2382 u64 chunk_size; 2383 2384 /* 2385 * If there is an IOMMU that can merge pages, try a virtually 2386 * non-contiguous allocation for a single segment first. 2387 */ 2388 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { 2389 if (!nvme_alloc_host_mem_single(dev, preferred)) 2390 return 0; 2391 } 2392 2393 /* start big and work our way down */ 2394 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2395 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2396 if (!min || dev->host_mem_size >= min) 2397 return 0; 2398 nvme_free_host_mem(dev); 2399 } 2400 } 2401 2402 return -ENOMEM; 2403 } 2404 2405 static int nvme_setup_host_mem(struct nvme_dev *dev) 2406 { 2407 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2408 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2409 u64 min = (u64)dev->ctrl.hmmin * 4096; 2410 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2411 int ret; 2412 2413 if (!dev->ctrl.hmpre) 2414 return 0; 2415 2416 preferred = min(preferred, max); 2417 if (min > max) { 2418 dev_warn(dev->ctrl.device, 2419 "min host memory (%lld MiB) above limit (%d MiB).\n", 2420 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2421 nvme_free_host_mem(dev); 2422 return 0; 2423 } 2424 2425 /* 2426 * If we already have a buffer allocated check if we can reuse it. 2427 */ 2428 if (dev->host_mem_descs) { 2429 if (dev->host_mem_size >= min) 2430 enable_bits |= NVME_HOST_MEM_RETURN; 2431 else 2432 nvme_free_host_mem(dev); 2433 } 2434 2435 if (!dev->host_mem_descs) { 2436 if (nvme_alloc_host_mem(dev, min, preferred)) { 2437 dev_warn(dev->ctrl.device, 2438 "failed to allocate host memory buffer.\n"); 2439 return 0; /* controller must work without HMB */ 2440 } 2441 2442 dev_info(dev->ctrl.device, 2443 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2444 dev->host_mem_size >> ilog2(SZ_1M), 2445 dev->nr_host_mem_descs, 2446 str_plural(dev->nr_host_mem_descs)); 2447 } 2448 2449 ret = nvme_set_host_mem(dev, enable_bits); 2450 if (ret) 2451 nvme_free_host_mem(dev); 2452 return ret; 2453 } 2454 2455 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2456 char *buf) 2457 { 2458 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2459 2460 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n", 2461 ndev->cmbloc, ndev->cmbsz); 2462 } 2463 static DEVICE_ATTR_RO(cmb); 2464 2465 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2466 char *buf) 2467 { 2468 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2469 2470 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2471 } 2472 static DEVICE_ATTR_RO(cmbloc); 2473 2474 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2475 char *buf) 2476 { 2477 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2478 2479 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2480 } 2481 static DEVICE_ATTR_RO(cmbsz); 2482 2483 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2484 char *buf) 2485 { 2486 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2487 2488 return sysfs_emit(buf, "%d\n", ndev->hmb); 2489 } 2490 2491 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2492 const char *buf, size_t count) 2493 { 2494 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2495 bool new; 2496 int ret; 2497 2498 if (kstrtobool(buf, &new) < 0) 2499 return -EINVAL; 2500 2501 if (new == ndev->hmb) 2502 return count; 2503 2504 if (new) { 2505 ret = nvme_setup_host_mem(ndev); 2506 } else { 2507 ret = nvme_set_host_mem(ndev, 0); 2508 if (!ret) 2509 nvme_free_host_mem(ndev); 2510 } 2511 2512 if (ret < 0) 2513 return ret; 2514 2515 return count; 2516 } 2517 static DEVICE_ATTR_RW(hmb); 2518 2519 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2520 struct attribute *a, int n) 2521 { 2522 struct nvme_ctrl *ctrl = 2523 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2524 struct nvme_dev *dev = to_nvme_dev(ctrl); 2525 2526 if (a == &dev_attr_cmb.attr || 2527 a == &dev_attr_cmbloc.attr || 2528 a == &dev_attr_cmbsz.attr) { 2529 if (!dev->cmbsz) 2530 return 0; 2531 } 2532 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2533 return 0; 2534 2535 return a->mode; 2536 } 2537 2538 static struct attribute *nvme_pci_attrs[] = { 2539 &dev_attr_cmb.attr, 2540 &dev_attr_cmbloc.attr, 2541 &dev_attr_cmbsz.attr, 2542 &dev_attr_hmb.attr, 2543 NULL, 2544 }; 2545 2546 static const struct attribute_group nvme_pci_dev_attrs_group = { 2547 .attrs = nvme_pci_attrs, 2548 .is_visible = nvme_pci_attrs_are_visible, 2549 }; 2550 2551 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2552 &nvme_dev_attrs_group, 2553 &nvme_pci_dev_attrs_group, 2554 NULL, 2555 }; 2556 2557 static void nvme_update_attrs(struct nvme_dev *dev) 2558 { 2559 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2560 } 2561 2562 /* 2563 * nirqs is the number of interrupts available for write and read 2564 * queues. The core already reserved an interrupt for the admin queue. 2565 */ 2566 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2567 { 2568 struct nvme_dev *dev = affd->priv; 2569 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2570 2571 /* 2572 * If there is no interrupt available for queues, ensure that 2573 * the default queue is set to 1. The affinity set size is 2574 * also set to one, but the irq core ignores it for this case. 2575 * 2576 * If only one interrupt is available or 'write_queue' == 0, combine 2577 * write and read queues. 2578 * 2579 * If 'write_queues' > 0, ensure it leaves room for at least one read 2580 * queue. 2581 */ 2582 if (!nrirqs) { 2583 nrirqs = 1; 2584 nr_read_queues = 0; 2585 } else if (nrirqs == 1 || !nr_write_queues) { 2586 nr_read_queues = 0; 2587 } else if (nr_write_queues >= nrirqs) { 2588 nr_read_queues = 1; 2589 } else { 2590 nr_read_queues = nrirqs - nr_write_queues; 2591 } 2592 2593 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2594 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2595 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2596 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2597 affd->nr_sets = nr_read_queues ? 2 : 1; 2598 } 2599 2600 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2601 { 2602 struct pci_dev *pdev = to_pci_dev(dev->dev); 2603 struct irq_affinity affd = { 2604 .pre_vectors = 1, 2605 .calc_sets = nvme_calc_irq_sets, 2606 .priv = dev, 2607 }; 2608 unsigned int irq_queues, poll_queues; 2609 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2610 2611 /* 2612 * Poll queues don't need interrupts, but we need at least one I/O queue 2613 * left over for non-polled I/O. 2614 */ 2615 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2616 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2617 2618 /* 2619 * Initialize for the single interrupt case, will be updated in 2620 * nvme_calc_irq_sets(). 2621 */ 2622 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2623 dev->io_queues[HCTX_TYPE_READ] = 0; 2624 2625 /* 2626 * We need interrupts for the admin queue and each non-polled I/O queue, 2627 * but some Apple controllers require all queues to use the first 2628 * vector. 2629 */ 2630 irq_queues = 1; 2631 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2632 irq_queues += (nr_io_queues - poll_queues); 2633 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2634 flags &= ~PCI_IRQ_MSI; 2635 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2636 &affd); 2637 } 2638 2639 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2640 { 2641 /* 2642 * If tags are shared with admin queue (Apple bug), then 2643 * make sure we only use one IO queue. 2644 */ 2645 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2646 return 1; 2647 return blk_mq_num_possible_queues(0) + dev->nr_write_queues + 2648 dev->nr_poll_queues; 2649 } 2650 2651 static int nvme_setup_io_queues(struct nvme_dev *dev) 2652 { 2653 struct nvme_queue *adminq = &dev->queues[0]; 2654 struct pci_dev *pdev = to_pci_dev(dev->dev); 2655 unsigned int nr_io_queues; 2656 unsigned long size; 2657 int result; 2658 2659 /* 2660 * Sample the module parameters once at reset time so that we have 2661 * stable values to work with. 2662 */ 2663 dev->nr_write_queues = write_queues; 2664 dev->nr_poll_queues = poll_queues; 2665 2666 nr_io_queues = dev->nr_allocated_queues - 1; 2667 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2668 if (result < 0) 2669 return result; 2670 2671 if (nr_io_queues == 0) 2672 return 0; 2673 2674 /* 2675 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2676 * from set to unset. If there is a window to it is truely freed, 2677 * pci_free_irq_vectors() jumping into this window will crash. 2678 * And take lock to avoid racing with pci_free_irq_vectors() in 2679 * nvme_dev_disable() path. 2680 */ 2681 result = nvme_setup_io_queues_trylock(dev); 2682 if (result) 2683 return result; 2684 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2685 pci_free_irq(pdev, 0, adminq); 2686 2687 if (dev->cmb_use_sqes) { 2688 result = nvme_cmb_qdepth(dev, nr_io_queues, 2689 sizeof(struct nvme_command)); 2690 if (result > 0) { 2691 dev->q_depth = result; 2692 dev->ctrl.sqsize = result - 1; 2693 } else { 2694 dev->cmb_use_sqes = false; 2695 } 2696 } 2697 2698 do { 2699 size = db_bar_size(dev, nr_io_queues); 2700 result = nvme_remap_bar(dev, size); 2701 if (!result) 2702 break; 2703 if (!--nr_io_queues) { 2704 result = -ENOMEM; 2705 goto out_unlock; 2706 } 2707 } while (1); 2708 adminq->q_db = dev->dbs; 2709 2710 retry: 2711 /* Deregister the admin queue's interrupt */ 2712 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2713 pci_free_irq(pdev, 0, adminq); 2714 2715 /* 2716 * If we enable msix early due to not intx, disable it again before 2717 * setting up the full range we need. 2718 */ 2719 pci_free_irq_vectors(pdev); 2720 2721 result = nvme_setup_irqs(dev, nr_io_queues); 2722 if (result <= 0) { 2723 result = -EIO; 2724 goto out_unlock; 2725 } 2726 2727 dev->num_vecs = result; 2728 result = max(result - 1, 1); 2729 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2730 2731 /* 2732 * Should investigate if there's a performance win from allocating 2733 * more queues than interrupt vectors; it might allow the submission 2734 * path to scale better, even if the receive path is limited by the 2735 * number of interrupts. 2736 */ 2737 result = queue_request_irq(adminq); 2738 if (result) 2739 goto out_unlock; 2740 set_bit(NVMEQ_ENABLED, &adminq->flags); 2741 mutex_unlock(&dev->shutdown_lock); 2742 2743 result = nvme_create_io_queues(dev); 2744 if (result || dev->online_queues < 2) 2745 return result; 2746 2747 if (dev->online_queues - 1 < dev->max_qid) { 2748 nr_io_queues = dev->online_queues - 1; 2749 nvme_delete_io_queues(dev); 2750 result = nvme_setup_io_queues_trylock(dev); 2751 if (result) 2752 return result; 2753 nvme_suspend_io_queues(dev); 2754 goto retry; 2755 } 2756 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2757 dev->io_queues[HCTX_TYPE_DEFAULT], 2758 dev->io_queues[HCTX_TYPE_READ], 2759 dev->io_queues[HCTX_TYPE_POLL]); 2760 return 0; 2761 out_unlock: 2762 mutex_unlock(&dev->shutdown_lock); 2763 return result; 2764 } 2765 2766 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2767 blk_status_t error) 2768 { 2769 struct nvme_queue *nvmeq = req->end_io_data; 2770 2771 blk_mq_free_request(req); 2772 complete(&nvmeq->delete_done); 2773 return RQ_END_IO_NONE; 2774 } 2775 2776 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2777 blk_status_t error) 2778 { 2779 struct nvme_queue *nvmeq = req->end_io_data; 2780 2781 if (error) 2782 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2783 2784 return nvme_del_queue_end(req, error); 2785 } 2786 2787 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2788 { 2789 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2790 struct request *req; 2791 struct nvme_command cmd = { }; 2792 2793 cmd.delete_queue.opcode = opcode; 2794 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2795 2796 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2797 if (IS_ERR(req)) 2798 return PTR_ERR(req); 2799 nvme_init_request(req, &cmd); 2800 2801 if (opcode == nvme_admin_delete_cq) 2802 req->end_io = nvme_del_cq_end; 2803 else 2804 req->end_io = nvme_del_queue_end; 2805 req->end_io_data = nvmeq; 2806 2807 init_completion(&nvmeq->delete_done); 2808 blk_execute_rq_nowait(req, false); 2809 return 0; 2810 } 2811 2812 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2813 { 2814 int nr_queues = dev->online_queues - 1, sent = 0; 2815 unsigned long timeout; 2816 2817 retry: 2818 timeout = NVME_ADMIN_TIMEOUT; 2819 while (nr_queues > 0) { 2820 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2821 break; 2822 nr_queues--; 2823 sent++; 2824 } 2825 while (sent) { 2826 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2827 2828 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2829 timeout); 2830 if (timeout == 0) 2831 return false; 2832 2833 sent--; 2834 if (nr_queues) 2835 goto retry; 2836 } 2837 return true; 2838 } 2839 2840 static void nvme_delete_io_queues(struct nvme_dev *dev) 2841 { 2842 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2843 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2844 } 2845 2846 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2847 { 2848 if (dev->io_queues[HCTX_TYPE_POLL]) 2849 return 3; 2850 if (dev->io_queues[HCTX_TYPE_READ]) 2851 return 2; 2852 return 1; 2853 } 2854 2855 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2856 { 2857 if (!dev->ctrl.tagset) { 2858 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2859 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2860 return true; 2861 } 2862 2863 /* Give up if we are racing with nvme_dev_disable() */ 2864 if (!mutex_trylock(&dev->shutdown_lock)) 2865 return false; 2866 2867 /* Check if nvme_dev_disable() has been executed already */ 2868 if (!dev->online_queues) { 2869 mutex_unlock(&dev->shutdown_lock); 2870 return false; 2871 } 2872 2873 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2874 /* free previously allocated queues that are no longer usable */ 2875 nvme_free_queues(dev, dev->online_queues); 2876 mutex_unlock(&dev->shutdown_lock); 2877 return true; 2878 } 2879 2880 static int nvme_pci_enable(struct nvme_dev *dev) 2881 { 2882 int result = -ENOMEM; 2883 struct pci_dev *pdev = to_pci_dev(dev->dev); 2884 unsigned int flags = PCI_IRQ_ALL_TYPES; 2885 2886 if (pci_enable_device_mem(pdev)) 2887 return result; 2888 2889 pci_set_master(pdev); 2890 2891 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2892 result = -ENODEV; 2893 goto disable; 2894 } 2895 2896 /* 2897 * Some devices and/or platforms don't advertise or work with INTx 2898 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2899 * adjust this later. 2900 */ 2901 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2902 flags &= ~PCI_IRQ_MSI; 2903 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2904 if (result < 0) 2905 goto disable; 2906 2907 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2908 2909 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2910 io_queue_depth); 2911 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2912 dev->dbs = dev->bar + 4096; 2913 2914 /* 2915 * Some Apple controllers require a non-standard SQE size. 2916 * Interestingly they also seem to ignore the CC:IOSQES register 2917 * so we don't bother updating it here. 2918 */ 2919 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2920 dev->io_sqes = 7; 2921 else 2922 dev->io_sqes = NVME_NVM_IOSQES; 2923 2924 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2925 dev->q_depth = 2; 2926 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2927 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2928 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2929 dev->q_depth = 64; 2930 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2931 "set queue depth=%u\n", dev->q_depth); 2932 } 2933 2934 /* 2935 * Controllers with the shared tags quirk need the IO queue to be 2936 * big enough so that we get 32 tags for the admin queue 2937 */ 2938 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2939 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2940 dev->q_depth = NVME_AQ_DEPTH + 2; 2941 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2942 dev->q_depth); 2943 } 2944 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2945 2946 nvme_map_cmb(dev); 2947 2948 pci_save_state(pdev); 2949 2950 result = nvme_pci_configure_admin_queue(dev); 2951 if (result) 2952 goto free_irq; 2953 return result; 2954 2955 free_irq: 2956 pci_free_irq_vectors(pdev); 2957 disable: 2958 pci_disable_device(pdev); 2959 return result; 2960 } 2961 2962 static void nvme_dev_unmap(struct nvme_dev *dev) 2963 { 2964 if (dev->bar) 2965 iounmap(dev->bar); 2966 pci_release_mem_regions(to_pci_dev(dev->dev)); 2967 } 2968 2969 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2970 { 2971 struct pci_dev *pdev = to_pci_dev(dev->dev); 2972 u32 csts; 2973 2974 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2975 return true; 2976 if (pdev->error_state != pci_channel_io_normal) 2977 return true; 2978 2979 csts = readl(dev->bar + NVME_REG_CSTS); 2980 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2981 } 2982 2983 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2984 { 2985 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2986 struct pci_dev *pdev = to_pci_dev(dev->dev); 2987 bool dead; 2988 2989 mutex_lock(&dev->shutdown_lock); 2990 dead = nvme_pci_ctrl_is_dead(dev); 2991 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2992 if (pci_is_enabled(pdev)) 2993 nvme_start_freeze(&dev->ctrl); 2994 /* 2995 * Give the controller a chance to complete all entered requests 2996 * if doing a safe shutdown. 2997 */ 2998 if (!dead && shutdown) 2999 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 3000 } 3001 3002 nvme_quiesce_io_queues(&dev->ctrl); 3003 3004 if (!dead && dev->ctrl.queue_count > 0) { 3005 nvme_delete_io_queues(dev); 3006 nvme_disable_ctrl(&dev->ctrl, shutdown); 3007 nvme_poll_irqdisable(&dev->queues[0]); 3008 } 3009 nvme_suspend_io_queues(dev); 3010 nvme_suspend_queue(dev, 0); 3011 pci_free_irq_vectors(pdev); 3012 if (pci_is_enabled(pdev)) 3013 pci_disable_device(pdev); 3014 nvme_reap_pending_cqes(dev); 3015 3016 nvme_cancel_tagset(&dev->ctrl); 3017 nvme_cancel_admin_tagset(&dev->ctrl); 3018 3019 /* 3020 * The driver will not be starting up queues again if shutting down so 3021 * must flush all entered requests to their failed completion to avoid 3022 * deadlocking blk-mq hot-cpu notifier. 3023 */ 3024 if (shutdown) { 3025 nvme_unquiesce_io_queues(&dev->ctrl); 3026 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 3027 nvme_unquiesce_admin_queue(&dev->ctrl); 3028 } 3029 mutex_unlock(&dev->shutdown_lock); 3030 } 3031 3032 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 3033 { 3034 if (!nvme_wait_reset(&dev->ctrl)) 3035 return -EBUSY; 3036 nvme_dev_disable(dev, shutdown); 3037 return 0; 3038 } 3039 3040 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 3041 { 3042 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1); 3043 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS; 3044 3045 dev->dmavec_mempool = mempool_create_node(1, 3046 mempool_kmalloc, mempool_kfree, 3047 (void *)alloc_size, GFP_KERNEL, 3048 dev_to_node(dev->dev)); 3049 if (!dev->dmavec_mempool) 3050 return -ENOMEM; 3051 3052 dev->iod_meta_mempool = mempool_create_node(1, 3053 mempool_kmalloc, mempool_kfree, 3054 (void *)meta_size, GFP_KERNEL, 3055 dev_to_node(dev->dev)); 3056 if (!dev->iod_meta_mempool) 3057 goto free; 3058 return 0; 3059 free: 3060 mempool_destroy(dev->dmavec_mempool); 3061 return -ENOMEM; 3062 } 3063 3064 static void nvme_free_tagset(struct nvme_dev *dev) 3065 { 3066 if (dev->tagset.tags) 3067 nvme_remove_io_tag_set(&dev->ctrl); 3068 dev->ctrl.tagset = NULL; 3069 } 3070 3071 /* pairs with nvme_pci_alloc_dev */ 3072 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 3073 { 3074 struct nvme_dev *dev = to_nvme_dev(ctrl); 3075 3076 nvme_free_tagset(dev); 3077 put_device(dev->dev); 3078 kfree(dev->queues); 3079 kfree(dev); 3080 } 3081 3082 static void nvme_reset_work(struct work_struct *work) 3083 { 3084 struct nvme_dev *dev = 3085 container_of(work, struct nvme_dev, ctrl.reset_work); 3086 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 3087 int result; 3088 3089 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 3090 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 3091 dev->ctrl.state); 3092 result = -ENODEV; 3093 goto out; 3094 } 3095 3096 /* 3097 * If we're called to reset a live controller first shut it down before 3098 * moving on. 3099 */ 3100 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 3101 nvme_dev_disable(dev, false); 3102 nvme_sync_queues(&dev->ctrl); 3103 3104 mutex_lock(&dev->shutdown_lock); 3105 result = nvme_pci_enable(dev); 3106 if (result) 3107 goto out_unlock; 3108 nvme_unquiesce_admin_queue(&dev->ctrl); 3109 mutex_unlock(&dev->shutdown_lock); 3110 3111 /* 3112 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 3113 * initializing procedure here. 3114 */ 3115 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3116 dev_warn(dev->ctrl.device, 3117 "failed to mark controller CONNECTING\n"); 3118 result = -EBUSY; 3119 goto out; 3120 } 3121 3122 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 3123 if (result) 3124 goto out; 3125 3126 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3127 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3128 else 3129 dev->ctrl.max_integrity_segments = 1; 3130 3131 nvme_dbbuf_dma_alloc(dev); 3132 3133 result = nvme_setup_host_mem(dev); 3134 if (result < 0) 3135 goto out; 3136 3137 nvme_update_attrs(dev); 3138 3139 result = nvme_setup_io_queues(dev); 3140 if (result) 3141 goto out; 3142 3143 /* 3144 * Freeze and update the number of I/O queues as those might have 3145 * changed. If there are no I/O queues left after this reset, keep the 3146 * controller around but remove all namespaces. 3147 */ 3148 if (dev->online_queues > 1) { 3149 nvme_dbbuf_set(dev); 3150 nvme_unquiesce_io_queues(&dev->ctrl); 3151 nvme_wait_freeze(&dev->ctrl); 3152 if (!nvme_pci_update_nr_queues(dev)) 3153 goto out; 3154 nvme_unfreeze(&dev->ctrl); 3155 } else { 3156 dev_warn(dev->ctrl.device, "IO queues lost\n"); 3157 nvme_mark_namespaces_dead(&dev->ctrl); 3158 nvme_unquiesce_io_queues(&dev->ctrl); 3159 nvme_remove_namespaces(&dev->ctrl); 3160 nvme_free_tagset(dev); 3161 } 3162 3163 /* 3164 * If only admin queue live, keep it to do further investigation or 3165 * recovery. 3166 */ 3167 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3168 dev_warn(dev->ctrl.device, 3169 "failed to mark controller live state\n"); 3170 result = -ENODEV; 3171 goto out; 3172 } 3173 3174 nvme_start_ctrl(&dev->ctrl); 3175 return; 3176 3177 out_unlock: 3178 mutex_unlock(&dev->shutdown_lock); 3179 out: 3180 /* 3181 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 3182 * may be holding this pci_dev's device lock. 3183 */ 3184 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3185 result); 3186 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3187 nvme_dev_disable(dev, true); 3188 nvme_sync_queues(&dev->ctrl); 3189 nvme_mark_namespaces_dead(&dev->ctrl); 3190 nvme_unquiesce_io_queues(&dev->ctrl); 3191 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3192 } 3193 3194 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3195 { 3196 *val = readl(to_nvme_dev(ctrl)->bar + off); 3197 return 0; 3198 } 3199 3200 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3201 { 3202 writel(val, to_nvme_dev(ctrl)->bar + off); 3203 return 0; 3204 } 3205 3206 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3207 { 3208 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3209 return 0; 3210 } 3211 3212 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3213 { 3214 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3215 3216 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3217 } 3218 3219 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3220 { 3221 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3222 struct nvme_subsystem *subsys = ctrl->subsys; 3223 3224 dev_err(ctrl->device, 3225 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3226 pdev->vendor, pdev->device, 3227 nvme_strlen(subsys->model, sizeof(subsys->model)), 3228 subsys->model, nvme_strlen(subsys->firmware_rev, 3229 sizeof(subsys->firmware_rev)), 3230 subsys->firmware_rev); 3231 } 3232 3233 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3234 { 3235 struct nvme_dev *dev = to_nvme_dev(ctrl); 3236 3237 return dma_pci_p2pdma_supported(dev->dev); 3238 } 3239 3240 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3241 .name = "pcie", 3242 .module = THIS_MODULE, 3243 .flags = NVME_F_METADATA_SUPPORTED, 3244 .dev_attr_groups = nvme_pci_dev_attr_groups, 3245 .reg_read32 = nvme_pci_reg_read32, 3246 .reg_write32 = nvme_pci_reg_write32, 3247 .reg_read64 = nvme_pci_reg_read64, 3248 .free_ctrl = nvme_pci_free_ctrl, 3249 .submit_async_event = nvme_pci_submit_async_event, 3250 .subsystem_reset = nvme_pci_subsystem_reset, 3251 .get_address = nvme_pci_get_address, 3252 .print_device_info = nvme_pci_print_device_info, 3253 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3254 }; 3255 3256 static int nvme_dev_map(struct nvme_dev *dev) 3257 { 3258 struct pci_dev *pdev = to_pci_dev(dev->dev); 3259 3260 if (pci_request_mem_regions(pdev, "nvme")) 3261 return -ENODEV; 3262 3263 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3264 goto release; 3265 3266 return 0; 3267 release: 3268 pci_release_mem_regions(pdev); 3269 return -ENODEV; 3270 } 3271 3272 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3273 { 3274 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3275 /* 3276 * Several Samsung devices seem to drop off the PCIe bus 3277 * randomly when APST is on and uses the deepest sleep state. 3278 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3279 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3280 * 950 PRO 256GB", but it seems to be restricted to two Dell 3281 * laptops. 3282 */ 3283 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3284 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3285 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3286 return NVME_QUIRK_NO_DEEPEST_PS; 3287 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3288 /* 3289 * Samsung SSD 960 EVO drops off the PCIe bus after system 3290 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3291 * within few minutes after bootup on a Coffee Lake board - 3292 * ASUS PRIME Z370-A 3293 */ 3294 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3295 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3296 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3297 return NVME_QUIRK_NO_APST; 3298 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3299 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3300 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3301 /* 3302 * Forcing to use host managed nvme power settings for 3303 * lowest idle power with quick resume latency on 3304 * Samsung and Toshiba SSDs based on suspend behavior 3305 * on Coffee Lake board for LENOVO C640 3306 */ 3307 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3308 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3309 return NVME_QUIRK_SIMPLE_SUSPEND; 3310 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3311 pdev->device == 0x500f)) { 3312 /* 3313 * Exclude some Kingston NV1 and A2000 devices from 3314 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3315 * lot of energy with s2idle sleep on some TUXEDO platforms. 3316 */ 3317 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3318 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3319 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3320 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3321 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3322 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3323 /* 3324 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3325 * because of high power consumption (> 2 Watt) in s2idle 3326 * sleep. Only some boards with Intel CPU are affected. 3327 */ 3328 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || 3329 dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3330 dmi_match(DMI_BOARD_NAME, "GXxMRXx") || 3331 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3332 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3333 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3334 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3335 } 3336 3337 /* 3338 * NVMe SSD drops off the PCIe bus after system idle 3339 * for 10 hours on a Lenovo N60z board. 3340 */ 3341 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3342 return NVME_QUIRK_NO_APST; 3343 3344 return 0; 3345 } 3346 3347 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3348 const struct pci_device_id *id) 3349 { 3350 unsigned long quirks = id->driver_data; 3351 int node = dev_to_node(&pdev->dev); 3352 struct nvme_dev *dev; 3353 int ret = -ENOMEM; 3354 3355 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids), 3356 GFP_KERNEL, node); 3357 if (!dev) 3358 return ERR_PTR(-ENOMEM); 3359 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3360 mutex_init(&dev->shutdown_lock); 3361 3362 dev->nr_write_queues = write_queues; 3363 dev->nr_poll_queues = poll_queues; 3364 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3365 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3366 sizeof(struct nvme_queue), GFP_KERNEL, node); 3367 if (!dev->queues) 3368 goto out_free_dev; 3369 3370 dev->dev = get_device(&pdev->dev); 3371 3372 quirks |= check_vendor_combination_bug(pdev); 3373 if (!noacpi && 3374 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3375 acpi_storage_d3(&pdev->dev)) { 3376 /* 3377 * Some systems use a bios work around to ask for D3 on 3378 * platforms that support kernel managed suspend. 3379 */ 3380 dev_info(&pdev->dev, 3381 "platform quirk: setting simple suspend\n"); 3382 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3383 } 3384 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3385 quirks); 3386 if (ret) 3387 goto out_put_device; 3388 3389 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3390 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3391 else 3392 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3393 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3394 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3395 3396 /* 3397 * Limit the max command size to prevent iod->sg allocations going 3398 * over a single page. 3399 */ 3400 dev->ctrl.max_hw_sectors = min_t(u32, 3401 NVME_MAX_BYTES >> SECTOR_SHIFT, 3402 dma_opt_mapping_size(&pdev->dev) >> 9); 3403 dev->ctrl.max_segments = NVME_MAX_SEGS; 3404 dev->ctrl.max_integrity_segments = 1; 3405 return dev; 3406 3407 out_put_device: 3408 put_device(dev->dev); 3409 kfree(dev->queues); 3410 out_free_dev: 3411 kfree(dev); 3412 return ERR_PTR(ret); 3413 } 3414 3415 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3416 { 3417 struct nvme_dev *dev; 3418 int result = -ENOMEM; 3419 3420 dev = nvme_pci_alloc_dev(pdev, id); 3421 if (IS_ERR(dev)) 3422 return PTR_ERR(dev); 3423 3424 result = nvme_add_ctrl(&dev->ctrl); 3425 if (result) 3426 goto out_put_ctrl; 3427 3428 result = nvme_dev_map(dev); 3429 if (result) 3430 goto out_uninit_ctrl; 3431 3432 result = nvme_pci_alloc_iod_mempool(dev); 3433 if (result) 3434 goto out_dev_unmap; 3435 3436 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3437 3438 result = nvme_pci_enable(dev); 3439 if (result) 3440 goto out_release_iod_mempool; 3441 3442 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3443 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3444 if (result) 3445 goto out_disable; 3446 3447 /* 3448 * Mark the controller as connecting before sending admin commands to 3449 * allow the timeout handler to do the right thing. 3450 */ 3451 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3452 dev_warn(dev->ctrl.device, 3453 "failed to mark controller CONNECTING\n"); 3454 result = -EBUSY; 3455 goto out_disable; 3456 } 3457 3458 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3459 if (result) 3460 goto out_disable; 3461 3462 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3463 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3464 else 3465 dev->ctrl.max_integrity_segments = 1; 3466 3467 nvme_dbbuf_dma_alloc(dev); 3468 3469 result = nvme_setup_host_mem(dev); 3470 if (result < 0) 3471 goto out_disable; 3472 3473 nvme_update_attrs(dev); 3474 3475 result = nvme_setup_io_queues(dev); 3476 if (result) 3477 goto out_disable; 3478 3479 if (dev->online_queues > 1) { 3480 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3481 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3482 nvme_dbbuf_set(dev); 3483 } 3484 3485 if (!dev->ctrl.tagset) 3486 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3487 3488 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3489 dev_warn(dev->ctrl.device, 3490 "failed to mark controller live state\n"); 3491 result = -ENODEV; 3492 goto out_disable; 3493 } 3494 3495 pci_set_drvdata(pdev, dev); 3496 3497 nvme_start_ctrl(&dev->ctrl); 3498 nvme_put_ctrl(&dev->ctrl); 3499 flush_work(&dev->ctrl.scan_work); 3500 return 0; 3501 3502 out_disable: 3503 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3504 nvme_dev_disable(dev, true); 3505 nvme_free_host_mem(dev); 3506 nvme_dev_remove_admin(dev); 3507 nvme_dbbuf_dma_free(dev); 3508 nvme_free_queues(dev, 0); 3509 out_release_iod_mempool: 3510 mempool_destroy(dev->dmavec_mempool); 3511 mempool_destroy(dev->iod_meta_mempool); 3512 out_dev_unmap: 3513 nvme_dev_unmap(dev); 3514 out_uninit_ctrl: 3515 nvme_uninit_ctrl(&dev->ctrl); 3516 out_put_ctrl: 3517 nvme_put_ctrl(&dev->ctrl); 3518 return result; 3519 } 3520 3521 static void nvme_reset_prepare(struct pci_dev *pdev) 3522 { 3523 struct nvme_dev *dev = pci_get_drvdata(pdev); 3524 3525 /* 3526 * We don't need to check the return value from waiting for the reset 3527 * state as pci_dev device lock is held, making it impossible to race 3528 * with ->remove(). 3529 */ 3530 nvme_disable_prepare_reset(dev, false); 3531 nvme_sync_queues(&dev->ctrl); 3532 } 3533 3534 static void nvme_reset_done(struct pci_dev *pdev) 3535 { 3536 struct nvme_dev *dev = pci_get_drvdata(pdev); 3537 3538 if (!nvme_try_sched_reset(&dev->ctrl)) 3539 flush_work(&dev->ctrl.reset_work); 3540 } 3541 3542 static void nvme_shutdown(struct pci_dev *pdev) 3543 { 3544 struct nvme_dev *dev = pci_get_drvdata(pdev); 3545 3546 nvme_disable_prepare_reset(dev, true); 3547 } 3548 3549 /* 3550 * The driver's remove may be called on a device in a partially initialized 3551 * state. This function must not have any dependencies on the device state in 3552 * order to proceed. 3553 */ 3554 static void nvme_remove(struct pci_dev *pdev) 3555 { 3556 struct nvme_dev *dev = pci_get_drvdata(pdev); 3557 3558 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3559 pci_set_drvdata(pdev, NULL); 3560 3561 if (!pci_device_is_present(pdev)) { 3562 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3563 nvme_dev_disable(dev, true); 3564 } 3565 3566 flush_work(&dev->ctrl.reset_work); 3567 nvme_stop_ctrl(&dev->ctrl); 3568 nvme_remove_namespaces(&dev->ctrl); 3569 nvme_dev_disable(dev, true); 3570 nvme_free_host_mem(dev); 3571 nvme_dev_remove_admin(dev); 3572 nvme_dbbuf_dma_free(dev); 3573 nvme_free_queues(dev, 0); 3574 mempool_destroy(dev->dmavec_mempool); 3575 mempool_destroy(dev->iod_meta_mempool); 3576 nvme_release_descriptor_pools(dev); 3577 nvme_dev_unmap(dev); 3578 nvme_uninit_ctrl(&dev->ctrl); 3579 } 3580 3581 #ifdef CONFIG_PM_SLEEP 3582 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3583 { 3584 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3585 } 3586 3587 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3588 { 3589 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3590 } 3591 3592 static int nvme_resume(struct device *dev) 3593 { 3594 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3595 struct nvme_ctrl *ctrl = &ndev->ctrl; 3596 3597 if (ndev->last_ps == U32_MAX || 3598 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3599 goto reset; 3600 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3601 goto reset; 3602 3603 return 0; 3604 reset: 3605 return nvme_try_sched_reset(ctrl); 3606 } 3607 3608 static int nvme_suspend(struct device *dev) 3609 { 3610 struct pci_dev *pdev = to_pci_dev(dev); 3611 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3612 struct nvme_ctrl *ctrl = &ndev->ctrl; 3613 int ret = -EBUSY; 3614 3615 ndev->last_ps = U32_MAX; 3616 3617 /* 3618 * The platform does not remove power for a kernel managed suspend so 3619 * use host managed nvme power settings for lowest idle power if 3620 * possible. This should have quicker resume latency than a full device 3621 * shutdown. But if the firmware is involved after the suspend or the 3622 * device does not support any non-default power states, shut down the 3623 * device fully. 3624 * 3625 * If ASPM is not enabled for the device, shut down the device and allow 3626 * the PCI bus layer to put it into D3 in order to take the PCIe link 3627 * down, so as to allow the platform to achieve its minimum low-power 3628 * state (which may not be possible if the link is up). 3629 */ 3630 if (pm_suspend_via_firmware() || !ctrl->npss || 3631 !pcie_aspm_enabled(pdev) || 3632 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3633 return nvme_disable_prepare_reset(ndev, true); 3634 3635 nvme_start_freeze(ctrl); 3636 nvme_wait_freeze(ctrl); 3637 nvme_sync_queues(ctrl); 3638 3639 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3640 goto unfreeze; 3641 3642 /* 3643 * Host memory access may not be successful in a system suspend state, 3644 * but the specification allows the controller to access memory in a 3645 * non-operational power state. 3646 */ 3647 if (ndev->hmb) { 3648 ret = nvme_set_host_mem(ndev, 0); 3649 if (ret < 0) 3650 goto unfreeze; 3651 } 3652 3653 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3654 if (ret < 0) 3655 goto unfreeze; 3656 3657 /* 3658 * A saved state prevents pci pm from generically controlling the 3659 * device's power. If we're using protocol specific settings, we don't 3660 * want pci interfering. 3661 */ 3662 pci_save_state(pdev); 3663 3664 ret = nvme_set_power_state(ctrl, ctrl->npss); 3665 if (ret < 0) 3666 goto unfreeze; 3667 3668 if (ret) { 3669 /* discard the saved state */ 3670 pci_load_saved_state(pdev, NULL); 3671 3672 /* 3673 * Clearing npss forces a controller reset on resume. The 3674 * correct value will be rediscovered then. 3675 */ 3676 ret = nvme_disable_prepare_reset(ndev, true); 3677 ctrl->npss = 0; 3678 } 3679 unfreeze: 3680 nvme_unfreeze(ctrl); 3681 return ret; 3682 } 3683 3684 static int nvme_simple_suspend(struct device *dev) 3685 { 3686 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3687 3688 return nvme_disable_prepare_reset(ndev, true); 3689 } 3690 3691 static int nvme_simple_resume(struct device *dev) 3692 { 3693 struct pci_dev *pdev = to_pci_dev(dev); 3694 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3695 3696 return nvme_try_sched_reset(&ndev->ctrl); 3697 } 3698 3699 static const struct dev_pm_ops nvme_dev_pm_ops = { 3700 .suspend = nvme_suspend, 3701 .resume = nvme_resume, 3702 .freeze = nvme_simple_suspend, 3703 .thaw = nvme_simple_resume, 3704 .poweroff = nvme_simple_suspend, 3705 .restore = nvme_simple_resume, 3706 }; 3707 #endif /* CONFIG_PM_SLEEP */ 3708 3709 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3710 pci_channel_state_t state) 3711 { 3712 struct nvme_dev *dev = pci_get_drvdata(pdev); 3713 3714 /* 3715 * A frozen channel requires a reset. When detected, this method will 3716 * shutdown the controller to quiesce. The controller will be restarted 3717 * after the slot reset through driver's slot_reset callback. 3718 */ 3719 switch (state) { 3720 case pci_channel_io_normal: 3721 return PCI_ERS_RESULT_CAN_RECOVER; 3722 case pci_channel_io_frozen: 3723 dev_warn(dev->ctrl.device, 3724 "frozen state error detected, reset controller\n"); 3725 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3726 nvme_dev_disable(dev, true); 3727 return PCI_ERS_RESULT_DISCONNECT; 3728 } 3729 nvme_dev_disable(dev, false); 3730 return PCI_ERS_RESULT_NEED_RESET; 3731 case pci_channel_io_perm_failure: 3732 dev_warn(dev->ctrl.device, 3733 "failure state error detected, request disconnect\n"); 3734 return PCI_ERS_RESULT_DISCONNECT; 3735 } 3736 return PCI_ERS_RESULT_NEED_RESET; 3737 } 3738 3739 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3740 { 3741 struct nvme_dev *dev = pci_get_drvdata(pdev); 3742 3743 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3744 pci_restore_state(pdev); 3745 if (nvme_try_sched_reset(&dev->ctrl)) 3746 nvme_unquiesce_io_queues(&dev->ctrl); 3747 return PCI_ERS_RESULT_RECOVERED; 3748 } 3749 3750 static void nvme_error_resume(struct pci_dev *pdev) 3751 { 3752 struct nvme_dev *dev = pci_get_drvdata(pdev); 3753 3754 flush_work(&dev->ctrl.reset_work); 3755 } 3756 3757 static const struct pci_error_handlers nvme_err_handler = { 3758 .error_detected = nvme_error_detected, 3759 .slot_reset = nvme_slot_reset, 3760 .resume = nvme_error_resume, 3761 .reset_prepare = nvme_reset_prepare, 3762 .reset_done = nvme_reset_done, 3763 }; 3764 3765 static const struct pci_device_id nvme_id_table[] = { 3766 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3767 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3768 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3769 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3770 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3771 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3772 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3773 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3774 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3775 NVME_QUIRK_BOGUS_NID, }, 3776 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3777 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 3778 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3779 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3780 NVME_QUIRK_MEDIUM_PRIO_SQ | 3781 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3782 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3783 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3784 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3785 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3786 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3787 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3788 NVME_QUIRK_BOGUS_NID, }, 3789 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3790 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3791 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3792 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, 3793 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */ 3794 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3795 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3796 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3797 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3798 NVME_QUIRK_BOGUS_NID, }, 3799 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3800 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3801 NVME_QUIRK_BOGUS_NID, }, 3802 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3803 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3804 NVME_QUIRK_NO_NS_DESC_LIST, }, 3805 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3806 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3807 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3808 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3809 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3810 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3811 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3812 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3813 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3814 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3815 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3816 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3817 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3818 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3819 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */ 3820 .driver_data = NVME_QUIRK_BROKEN_MSI | 3821 NVME_QUIRK_NO_DEEPEST_PS }, 3822 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3823 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3824 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3825 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3826 NVME_QUIRK_BOGUS_NID, }, 3827 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3828 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3829 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3830 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3831 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3832 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3833 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3834 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3835 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3836 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3837 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3838 NVME_QUIRK_BOGUS_NID, }, 3839 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3840 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3841 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3842 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3843 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3844 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3845 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3846 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3847 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3848 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3849 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3850 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3851 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3852 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3853 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3854 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3855 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3856 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3857 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3858 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3859 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3860 NVME_QUIRK_BOGUS_NID, }, 3861 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3862 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3863 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3864 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3865 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3866 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3867 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3868 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3869 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3870 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3871 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3872 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3873 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3874 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3875 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3876 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3877 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3878 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3879 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3880 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3881 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3882 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3883 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3884 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3885 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3886 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3887 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3888 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3889 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3890 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3891 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3892 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3893 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3894 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3895 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3896 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3897 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3898 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3899 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ 3900 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3901 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3902 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3903 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3904 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3905 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3906 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3907 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */ 3908 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3909 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3910 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3911 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3912 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3913 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3914 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3915 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3916 .driver_data = NVME_QUIRK_BOGUS_NID | 3917 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3918 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3919 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3920 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3921 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3922 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3923 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3924 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3925 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3926 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3927 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3928 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3929 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3930 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3931 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3932 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3933 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3934 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3935 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3936 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3937 /* 3938 * Fix for the Apple controller found in the MacBook8,1 and 3939 * some MacBook7,1 to avoid controller resets and data loss. 3940 */ 3941 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3942 NVME_QUIRK_QDEPTH_ONE }, 3943 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3944 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3945 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3946 NVME_QUIRK_128_BYTES_SQES | 3947 NVME_QUIRK_SHARED_TAGS | 3948 NVME_QUIRK_SKIP_CID_GEN | 3949 NVME_QUIRK_IDENTIFY_CNS }, 3950 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3951 { 0, } 3952 }; 3953 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3954 3955 static struct pci_driver nvme_driver = { 3956 .name = "nvme", 3957 .id_table = nvme_id_table, 3958 .probe = nvme_probe, 3959 .remove = nvme_remove, 3960 .shutdown = nvme_shutdown, 3961 .driver = { 3962 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3963 #ifdef CONFIG_PM_SLEEP 3964 .pm = &nvme_dev_pm_ops, 3965 #endif 3966 }, 3967 .sriov_configure = pci_sriov_configure_simple, 3968 .err_handler = &nvme_err_handler, 3969 }; 3970 3971 static int __init nvme_init(void) 3972 { 3973 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3974 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3975 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3976 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3977 3978 return pci_register_driver(&nvme_driver); 3979 } 3980 3981 static void __exit nvme_exit(void) 3982 { 3983 pci_unregister_driver(&nvme_driver); 3984 flush_workqueue(nvme_wq); 3985 } 3986 3987 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3988 MODULE_LICENSE("GPL"); 3989 MODULE_VERSION("1.0"); 3990 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3991 module_init(nvme_init); 3992 module_exit(nvme_exit); 3993