xref: /linux/drivers/nvme/host/pci.c (revision 1e0731c05c985deb68a97fa44c1adcd3305dda90)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
31 
32 #include "trace.h"
33 #include "nvme.h"
34 
35 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
37 
38 #define SGES_PER_PAGE	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39 
40 /*
41  * These can be higher, but we need to ensure that any command doesn't
42  * require an sg allocation that needs more than a page of data.
43  */
44 #define NVME_MAX_KB_SZ	8192
45 #define NVME_MAX_SEGS	128
46 #define NVME_MAX_NR_ALLOCATIONS	5
47 
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0444);
50 
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0444);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54 
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59 
60 static unsigned int sgl_threshold = SZ_32K;
61 module_param(sgl_threshold, uint, 0644);
62 MODULE_PARM_DESC(sgl_threshold,
63 		"Use SGLs when average request segment size is larger or equal to "
64 		"this size. Use 0 to disable SGLs.");
65 
66 #define NVME_PCI_MIN_QUEUE_SIZE 2
67 #define NVME_PCI_MAX_QUEUE_SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69 static const struct kernel_param_ops io_queue_depth_ops = {
70 	.set = io_queue_depth_set,
71 	.get = param_get_uint,
72 };
73 
74 static unsigned int io_queue_depth = 1024;
75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77 
78 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79 {
80 	unsigned int n;
81 	int ret;
82 
83 	ret = kstrtouint(val, 10, &n);
84 	if (ret != 0 || n > num_possible_cpus())
85 		return -EINVAL;
86 	return param_set_uint(val, kp);
87 }
88 
89 static const struct kernel_param_ops io_queue_count_ops = {
90 	.set = io_queue_count_set,
91 	.get = param_get_uint,
92 };
93 
94 static unsigned int write_queues;
95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96 MODULE_PARM_DESC(write_queues,
97 	"Number of queues to use for writes. If not set, reads and writes "
98 	"will share a queue set.");
99 
100 static unsigned int poll_queues;
101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103 
104 static bool noacpi;
105 module_param(noacpi, bool, 0444);
106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107 
108 struct nvme_dev;
109 struct nvme_queue;
110 
111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112 static void nvme_delete_io_queues(struct nvme_dev *dev);
113 static void nvme_update_attrs(struct nvme_dev *dev);
114 
115 /*
116  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
117  */
118 struct nvme_dev {
119 	struct nvme_queue *queues;
120 	struct blk_mq_tag_set tagset;
121 	struct blk_mq_tag_set admin_tagset;
122 	u32 __iomem *dbs;
123 	struct device *dev;
124 	struct dma_pool *prp_page_pool;
125 	struct dma_pool *prp_small_pool;
126 	unsigned online_queues;
127 	unsigned max_qid;
128 	unsigned io_queues[HCTX_MAX_TYPES];
129 	unsigned int num_vecs;
130 	u32 q_depth;
131 	int io_sqes;
132 	u32 db_stride;
133 	void __iomem *bar;
134 	unsigned long bar_mapped_size;
135 	struct mutex shutdown_lock;
136 	bool subsystem;
137 	u64 cmb_size;
138 	bool cmb_use_sqes;
139 	u32 cmbsz;
140 	u32 cmbloc;
141 	struct nvme_ctrl ctrl;
142 	u32 last_ps;
143 	bool hmb;
144 
145 	mempool_t *iod_mempool;
146 
147 	/* shadow doorbell buffer support: */
148 	__le32 *dbbuf_dbs;
149 	dma_addr_t dbbuf_dbs_dma_addr;
150 	__le32 *dbbuf_eis;
151 	dma_addr_t dbbuf_eis_dma_addr;
152 
153 	/* host memory buffer support: */
154 	u64 host_mem_size;
155 	u32 nr_host_mem_descs;
156 	dma_addr_t host_mem_descs_dma;
157 	struct nvme_host_mem_buf_desc *host_mem_descs;
158 	void **host_mem_desc_bufs;
159 	unsigned int nr_allocated_queues;
160 	unsigned int nr_write_queues;
161 	unsigned int nr_poll_queues;
162 };
163 
164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165 {
166 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 			NVME_PCI_MAX_QUEUE_SIZE);
168 }
169 
170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	__le32 *dbbuf_sq_db;
213 	__le32 *dbbuf_cq_db;
214 	__le32 *dbbuf_sq_ei;
215 	__le32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 union nvme_descriptor {
220 	struct nvme_sgl_desc	*sg_list;
221 	__le64			*prp_list;
222 };
223 
224 /*
225  * The nvme_iod describes the data in an I/O.
226  *
227  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228  * to the actual struct scatterlist.
229  */
230 struct nvme_iod {
231 	struct nvme_request req;
232 	struct nvme_command cmd;
233 	bool aborted;
234 	s8 nr_allocations;	/* PRP list pool allocations. 0 means small
235 				   pool in use */
236 	unsigned int dma_len;	/* length of single DMA segment mapping */
237 	dma_addr_t first_dma;
238 	dma_addr_t meta_dma;
239 	struct sg_table sgt;
240 	union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241 };
242 
243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244 {
245 	return dev->nr_allocated_queues * 8 * dev->db_stride;
246 }
247 
248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249 {
250 	unsigned int mem_size = nvme_dbbuf_size(dev);
251 
252 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 		return;
254 
255 	if (dev->dbbuf_dbs) {
256 		/*
257 		 * Clear the dbbuf memory so the driver doesn't observe stale
258 		 * values from the previous instantiation.
259 		 */
260 		memset(dev->dbbuf_dbs, 0, mem_size);
261 		memset(dev->dbbuf_eis, 0, mem_size);
262 		return;
263 	}
264 
265 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
266 					    &dev->dbbuf_dbs_dma_addr,
267 					    GFP_KERNEL);
268 	if (!dev->dbbuf_dbs)
269 		goto fail;
270 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
271 					    &dev->dbbuf_eis_dma_addr,
272 					    GFP_KERNEL);
273 	if (!dev->dbbuf_eis)
274 		goto fail_free_dbbuf_dbs;
275 	return;
276 
277 fail_free_dbbuf_dbs:
278 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
279 			  dev->dbbuf_dbs_dma_addr);
280 	dev->dbbuf_dbs = NULL;
281 fail:
282 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283 }
284 
285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286 {
287 	unsigned int mem_size = nvme_dbbuf_size(dev);
288 
289 	if (dev->dbbuf_dbs) {
290 		dma_free_coherent(dev->dev, mem_size,
291 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
292 		dev->dbbuf_dbs = NULL;
293 	}
294 	if (dev->dbbuf_eis) {
295 		dma_free_coherent(dev->dev, mem_size,
296 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
297 		dev->dbbuf_eis = NULL;
298 	}
299 }
300 
301 static void nvme_dbbuf_init(struct nvme_dev *dev,
302 			    struct nvme_queue *nvmeq, int qid)
303 {
304 	if (!dev->dbbuf_dbs || !qid)
305 		return;
306 
307 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
308 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
309 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
310 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
311 }
312 
313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314 {
315 	if (!nvmeq->qid)
316 		return;
317 
318 	nvmeq->dbbuf_sq_db = NULL;
319 	nvmeq->dbbuf_cq_db = NULL;
320 	nvmeq->dbbuf_sq_ei = NULL;
321 	nvmeq->dbbuf_cq_ei = NULL;
322 }
323 
324 static void nvme_dbbuf_set(struct nvme_dev *dev)
325 {
326 	struct nvme_command c = { };
327 	unsigned int i;
328 
329 	if (!dev->dbbuf_dbs)
330 		return;
331 
332 	c.dbbuf.opcode = nvme_admin_dbbuf;
333 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335 
336 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
337 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 		/* Free memory and continue on */
339 		nvme_dbbuf_dma_free(dev);
340 
341 		for (i = 1; i <= dev->online_queues; i++)
342 			nvme_dbbuf_free(&dev->queues[i]);
343 	}
344 }
345 
346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347 {
348 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349 }
350 
351 /* Update dbbuf and return true if an MMIO is required */
352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 					      volatile __le32 *dbbuf_ei)
354 {
355 	if (dbbuf_db) {
356 		u16 old_value, event_idx;
357 
358 		/*
359 		 * Ensure that the queue is written before updating
360 		 * the doorbell in memory
361 		 */
362 		wmb();
363 
364 		old_value = le32_to_cpu(*dbbuf_db);
365 		*dbbuf_db = cpu_to_le32(value);
366 
367 		/*
368 		 * Ensure that the doorbell is updated before reading the event
369 		 * index from memory.  The controller needs to provide similar
370 		 * ordering to ensure the envent index is updated before reading
371 		 * the doorbell.
372 		 */
373 		mb();
374 
375 		event_idx = le32_to_cpu(*dbbuf_ei);
376 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
377 			return false;
378 	}
379 
380 	return true;
381 }
382 
383 /*
384  * Will slightly overestimate the number of pages needed.  This is OK
385  * as it only leads to a small amount of wasted memory for the lifetime of
386  * the I/O.
387  */
388 static int nvme_pci_npages_prp(void)
389 {
390 	unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 	unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 	return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393 }
394 
395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 				unsigned int hctx_idx)
397 {
398 	struct nvme_dev *dev = to_nvme_dev(data);
399 	struct nvme_queue *nvmeq = &dev->queues[0];
400 
401 	WARN_ON(hctx_idx != 0);
402 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403 
404 	hctx->driver_data = nvmeq;
405 	return 0;
406 }
407 
408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 			  unsigned int hctx_idx)
410 {
411 	struct nvme_dev *dev = to_nvme_dev(data);
412 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413 
414 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 	hctx->driver_data = nvmeq;
416 	return 0;
417 }
418 
419 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 		struct request *req, unsigned int hctx_idx,
421 		unsigned int numa_node)
422 {
423 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
424 
425 	nvme_req(req)->ctrl = set->driver_data;
426 	nvme_req(req)->cmd = &iod->cmd;
427 	return 0;
428 }
429 
430 static int queue_irq_offset(struct nvme_dev *dev)
431 {
432 	/* if we have more than 1 vec, admin queue offsets us by 1 */
433 	if (dev->num_vecs > 1)
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440 {
441 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
442 	int i, qoff, offset;
443 
444 	offset = queue_irq_offset(dev);
445 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 		struct blk_mq_queue_map *map = &set->map[i];
447 
448 		map->nr_queues = dev->io_queues[i];
449 		if (!map->nr_queues) {
450 			BUG_ON(i == HCTX_TYPE_DEFAULT);
451 			continue;
452 		}
453 
454 		/*
455 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 		 * affinity), so use the regular blk-mq cpu mapping
457 		 */
458 		map->queue_offset = qoff;
459 		if (i != HCTX_TYPE_POLL && offset)
460 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
461 		else
462 			blk_mq_map_queues(map);
463 		qoff += map->nr_queues;
464 		offset += map->nr_queues;
465 	}
466 }
467 
468 /*
469  * Write sq tail if we are asked to, or if the next command would wrap.
470  */
471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472 {
473 	if (!write_sq) {
474 		u16 next_tail = nvmeq->sq_tail + 1;
475 
476 		if (next_tail == nvmeq->q_depth)
477 			next_tail = 0;
478 		if (next_tail != nvmeq->last_sq_tail)
479 			return;
480 	}
481 
482 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
483 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
484 		writel(nvmeq->sq_tail, nvmeq->q_db);
485 	nvmeq->last_sq_tail = nvmeq->sq_tail;
486 }
487 
488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 				    struct nvme_command *cmd)
490 {
491 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 		absolute_pointer(cmd), sizeof(*cmd));
493 	if (++nvmeq->sq_tail == nvmeq->q_depth)
494 		nvmeq->sq_tail = 0;
495 }
496 
497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498 {
499 	struct nvme_queue *nvmeq = hctx->driver_data;
500 
501 	spin_lock(&nvmeq->sq_lock);
502 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 		nvme_write_sq_db(nvmeq, true);
504 	spin_unlock(&nvmeq->sq_lock);
505 }
506 
507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 				     int nseg)
509 {
510 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 	unsigned int avg_seg_size;
512 
513 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514 
515 	if (!nvme_ctrl_sgl_supported(&dev->ctrl))
516 		return false;
517 	if (!nvmeq->qid)
518 		return false;
519 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 		return false;
521 	return true;
522 }
523 
524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525 {
526 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
528 	dma_addr_t dma_addr = iod->first_dma;
529 	int i;
530 
531 	for (i = 0; i < iod->nr_allocations; i++) {
532 		__le64 *prp_list = iod->list[i].prp_list;
533 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534 
535 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
536 		dma_addr = next_dma_addr;
537 	}
538 }
539 
540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541 {
542 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
543 
544 	if (iod->dma_len) {
545 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 			       rq_dma_dir(req));
547 		return;
548 	}
549 
550 	WARN_ON_ONCE(!iod->sgt.nents);
551 
552 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
553 
554 	if (iod->nr_allocations == 0)
555 		dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list,
556 			      iod->first_dma);
557 	else if (iod->nr_allocations == 1)
558 		dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list,
559 			      iod->first_dma);
560 	else
561 		nvme_free_prps(dev, req);
562 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
563 }
564 
565 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566 {
567 	int i;
568 	struct scatterlist *sg;
569 
570 	for_each_sg(sgl, sg, nents, i) {
571 		dma_addr_t phys = sg_phys(sg);
572 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 			"dma_address:%pad dma_length:%d\n",
574 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 			sg_dma_len(sg));
576 	}
577 }
578 
579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 		struct request *req, struct nvme_rw_command *cmnd)
581 {
582 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 	struct dma_pool *pool;
584 	int length = blk_rq_payload_bytes(req);
585 	struct scatterlist *sg = iod->sgt.sgl;
586 	int dma_len = sg_dma_len(sg);
587 	u64 dma_addr = sg_dma_address(sg);
588 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 	__le64 *prp_list;
590 	dma_addr_t prp_dma;
591 	int nprps, i;
592 
593 	length -= (NVME_CTRL_PAGE_SIZE - offset);
594 	if (length <= 0) {
595 		iod->first_dma = 0;
596 		goto done;
597 	}
598 
599 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 	if (dma_len) {
601 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 	} else {
603 		sg = sg_next(sg);
604 		dma_addr = sg_dma_address(sg);
605 		dma_len = sg_dma_len(sg);
606 	}
607 
608 	if (length <= NVME_CTRL_PAGE_SIZE) {
609 		iod->first_dma = dma_addr;
610 		goto done;
611 	}
612 
613 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 	if (nprps <= (256 / 8)) {
615 		pool = dev->prp_small_pool;
616 		iod->nr_allocations = 0;
617 	} else {
618 		pool = dev->prp_page_pool;
619 		iod->nr_allocations = 1;
620 	}
621 
622 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
623 	if (!prp_list) {
624 		iod->nr_allocations = -1;
625 		return BLK_STS_RESOURCE;
626 	}
627 	iod->list[0].prp_list = prp_list;
628 	iod->first_dma = prp_dma;
629 	i = 0;
630 	for (;;) {
631 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 			__le64 *old_prp_list = prp_list;
633 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
634 			if (!prp_list)
635 				goto free_prps;
636 			iod->list[iod->nr_allocations++].prp_list = prp_list;
637 			prp_list[0] = old_prp_list[i - 1];
638 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 			i = 1;
640 		}
641 		prp_list[i++] = cpu_to_le64(dma_addr);
642 		dma_len -= NVME_CTRL_PAGE_SIZE;
643 		dma_addr += NVME_CTRL_PAGE_SIZE;
644 		length -= NVME_CTRL_PAGE_SIZE;
645 		if (length <= 0)
646 			break;
647 		if (dma_len > 0)
648 			continue;
649 		if (unlikely(dma_len < 0))
650 			goto bad_sgl;
651 		sg = sg_next(sg);
652 		dma_addr = sg_dma_address(sg);
653 		dma_len = sg_dma_len(sg);
654 	}
655 done:
656 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 	return BLK_STS_OK;
659 free_prps:
660 	nvme_free_prps(dev, req);
661 	return BLK_STS_RESOURCE;
662 bad_sgl:
663 	WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 			"Invalid SGL for payload:%d nents:%d\n",
665 			blk_rq_payload_bytes(req), iod->sgt.nents);
666 	return BLK_STS_IOERR;
667 }
668 
669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 		struct scatterlist *sg)
671 {
672 	sge->addr = cpu_to_le64(sg_dma_address(sg));
673 	sge->length = cpu_to_le32(sg_dma_len(sg));
674 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675 }
676 
677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 		dma_addr_t dma_addr, int entries)
679 {
680 	sge->addr = cpu_to_le64(dma_addr);
681 	sge->length = cpu_to_le32(entries * sizeof(*sge));
682 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683 }
684 
685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 		struct request *req, struct nvme_rw_command *cmd)
687 {
688 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
689 	struct dma_pool *pool;
690 	struct nvme_sgl_desc *sg_list;
691 	struct scatterlist *sg = iod->sgt.sgl;
692 	unsigned int entries = iod->sgt.nents;
693 	dma_addr_t sgl_dma;
694 	int i = 0;
695 
696 	/* setting the transfer type as SGL */
697 	cmd->flags = NVME_CMD_SGL_METABUF;
698 
699 	if (entries == 1) {
700 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
701 		return BLK_STS_OK;
702 	}
703 
704 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 		pool = dev->prp_small_pool;
706 		iod->nr_allocations = 0;
707 	} else {
708 		pool = dev->prp_page_pool;
709 		iod->nr_allocations = 1;
710 	}
711 
712 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
713 	if (!sg_list) {
714 		iod->nr_allocations = -1;
715 		return BLK_STS_RESOURCE;
716 	}
717 
718 	iod->list[0].sg_list = sg_list;
719 	iod->first_dma = sgl_dma;
720 
721 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
722 	do {
723 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
724 		sg = sg_next(sg);
725 	} while (--entries > 0);
726 
727 	return BLK_STS_OK;
728 }
729 
730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 		struct request *req, struct nvme_rw_command *cmnd,
732 		struct bio_vec *bv)
733 {
734 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
735 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737 
738 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 	if (dma_mapping_error(dev->dev, iod->first_dma))
740 		return BLK_STS_RESOURCE;
741 	iod->dma_len = bv->bv_len;
742 
743 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 	if (bv->bv_len > first_prp_len)
745 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 	else
747 		cmnd->dptr.prp2 = 0;
748 	return BLK_STS_OK;
749 }
750 
751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 		struct request *req, struct nvme_rw_command *cmnd,
753 		struct bio_vec *bv)
754 {
755 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756 
757 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 	if (dma_mapping_error(dev->dev, iod->first_dma))
759 		return BLK_STS_RESOURCE;
760 	iod->dma_len = bv->bv_len;
761 
762 	cmnd->flags = NVME_CMD_SGL_METABUF;
763 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 	return BLK_STS_OK;
767 }
768 
769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 		struct nvme_command *cmnd)
771 {
772 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
773 	blk_status_t ret = BLK_STS_RESOURCE;
774 	int rc;
775 
776 	if (blk_rq_nr_phys_segments(req) == 1) {
777 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 		struct bio_vec bv = req_bvec(req);
779 
780 		if (!is_pci_p2pdma_page(bv.bv_page)) {
781 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 				return nvme_setup_prp_simple(dev, req,
783 							     &cmnd->rw, &bv);
784 
785 			if (nvmeq->qid && sgl_threshold &&
786 			    nvme_ctrl_sgl_supported(&dev->ctrl))
787 				return nvme_setup_sgl_simple(dev, req,
788 							     &cmnd->rw, &bv);
789 		}
790 	}
791 
792 	iod->dma_len = 0;
793 	iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
794 	if (!iod->sgt.sgl)
795 		return BLK_STS_RESOURCE;
796 	sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req));
797 	iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl);
798 	if (!iod->sgt.orig_nents)
799 		goto out_free_sg;
800 
801 	rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req),
802 			     DMA_ATTR_NO_WARN);
803 	if (rc) {
804 		if (rc == -EREMOTEIO)
805 			ret = BLK_STS_TARGET;
806 		goto out_free_sg;
807 	}
808 
809 	if (nvme_pci_use_sgls(dev, req, iod->sgt.nents))
810 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
811 	else
812 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813 	if (ret != BLK_STS_OK)
814 		goto out_unmap_sg;
815 	return BLK_STS_OK;
816 
817 out_unmap_sg:
818 	dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0);
819 out_free_sg:
820 	mempool_free(iod->sgt.sgl, dev->iod_mempool);
821 	return ret;
822 }
823 
824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
828 
829 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 			rq_dma_dir(req), 0);
831 	if (dma_mapping_error(dev->dev, iod->meta_dma))
832 		return BLK_STS_IOERR;
833 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 	return BLK_STS_OK;
835 }
836 
837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838 {
839 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
840 	blk_status_t ret;
841 
842 	iod->aborted = false;
843 	iod->nr_allocations = -1;
844 	iod->sgt.nents = 0;
845 
846 	ret = nvme_setup_cmd(req->q->queuedata, req);
847 	if (ret)
848 		return ret;
849 
850 	if (blk_rq_nr_phys_segments(req)) {
851 		ret = nvme_map_data(dev, req, &iod->cmd);
852 		if (ret)
853 			goto out_free_cmd;
854 	}
855 
856 	if (blk_integrity_rq(req)) {
857 		ret = nvme_map_metadata(dev, req, &iod->cmd);
858 		if (ret)
859 			goto out_unmap_data;
860 	}
861 
862 	nvme_start_request(req);
863 	return BLK_STS_OK;
864 out_unmap_data:
865 	nvme_unmap_data(dev, req);
866 out_free_cmd:
867 	nvme_cleanup_cmd(req);
868 	return ret;
869 }
870 
871 /*
872  * NOTE: ns is NULL when called on the admin queue.
873  */
874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 			 const struct blk_mq_queue_data *bd)
876 {
877 	struct nvme_queue *nvmeq = hctx->driver_data;
878 	struct nvme_dev *dev = nvmeq->dev;
879 	struct request *req = bd->rq;
880 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
881 	blk_status_t ret;
882 
883 	/*
884 	 * We should not need to do this, but we're still using this to
885 	 * ensure we can drain requests on a dying queue.
886 	 */
887 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 		return BLK_STS_IOERR;
889 
890 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 		return nvme_fail_nonready_command(&dev->ctrl, req);
892 
893 	ret = nvme_prep_rq(dev, req);
894 	if (unlikely(ret))
895 		return ret;
896 	spin_lock(&nvmeq->sq_lock);
897 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
898 	nvme_write_sq_db(nvmeq, bd->last);
899 	spin_unlock(&nvmeq->sq_lock);
900 	return BLK_STS_OK;
901 }
902 
903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904 {
905 	spin_lock(&nvmeq->sq_lock);
906 	while (!rq_list_empty(*rqlist)) {
907 		struct request *req = rq_list_pop(rqlist);
908 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
909 
910 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
911 	}
912 	nvme_write_sq_db(nvmeq, true);
913 	spin_unlock(&nvmeq->sq_lock);
914 }
915 
916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917 {
918 	/*
919 	 * We should not need to do this, but we're still using this to
920 	 * ensure we can drain requests on a dying queue.
921 	 */
922 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 		return false;
924 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 		return false;
926 
927 	req->mq_hctx->tags->rqs[req->tag] = req;
928 	return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK;
929 }
930 
931 static void nvme_queue_rqs(struct request **rqlist)
932 {
933 	struct request *req, *next, *prev = NULL;
934 	struct request *requeue_list = NULL;
935 
936 	rq_list_for_each_safe(rqlist, req, next) {
937 		struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938 
939 		if (!nvme_prep_rq_batch(nvmeq, req)) {
940 			/* detach 'req' and add to remainder list */
941 			rq_list_move(rqlist, &requeue_list, req, prev);
942 
943 			req = prev;
944 			if (!req)
945 				continue;
946 		}
947 
948 		if (!next || req->mq_hctx != next->mq_hctx) {
949 			/* detach rest of list, and submit */
950 			req->rq_next = NULL;
951 			nvme_submit_cmds(nvmeq, rqlist);
952 			*rqlist = next;
953 			prev = NULL;
954 		} else
955 			prev = req;
956 	}
957 
958 	*rqlist = requeue_list;
959 }
960 
961 static __always_inline void nvme_pci_unmap_rq(struct request *req)
962 {
963 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
964 	struct nvme_dev *dev = nvmeq->dev;
965 
966 	if (blk_integrity_rq(req)) {
967 	        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
968 
969 		dma_unmap_page(dev->dev, iod->meta_dma,
970 			       rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
971 	}
972 
973 	if (blk_rq_nr_phys_segments(req))
974 		nvme_unmap_data(dev, req);
975 }
976 
977 static void nvme_pci_complete_rq(struct request *req)
978 {
979 	nvme_pci_unmap_rq(req);
980 	nvme_complete_rq(req);
981 }
982 
983 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
984 {
985 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
986 }
987 
988 /* We read the CQE phase first to check if the rest of the entry is valid */
989 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
990 {
991 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
992 
993 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
994 }
995 
996 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
997 {
998 	u16 head = nvmeq->cq_head;
999 
1000 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1001 					      nvmeq->dbbuf_cq_ei))
1002 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1003 }
1004 
1005 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1006 {
1007 	if (!nvmeq->qid)
1008 		return nvmeq->dev->admin_tagset.tags[0];
1009 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1010 }
1011 
1012 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1013 				   struct io_comp_batch *iob, u16 idx)
1014 {
1015 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1016 	__u16 command_id = READ_ONCE(cqe->command_id);
1017 	struct request *req;
1018 
1019 	/*
1020 	 * AEN requests are special as they don't time out and can
1021 	 * survive any kind of queue freeze and often don't respond to
1022 	 * aborts.  We don't even bother to allocate a struct request
1023 	 * for them but rather special case them here.
1024 	 */
1025 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1026 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1027 				cqe->status, &cqe->result);
1028 		return;
1029 	}
1030 
1031 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1032 	if (unlikely(!req)) {
1033 		dev_warn(nvmeq->dev->ctrl.device,
1034 			"invalid id %d completed on queue %d\n",
1035 			command_id, le16_to_cpu(cqe->sq_id));
1036 		return;
1037 	}
1038 
1039 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1040 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1041 	    !blk_mq_add_to_batch(req, iob, nvme_req(req)->status,
1042 					nvme_pci_complete_batch))
1043 		nvme_pci_complete_rq(req);
1044 }
1045 
1046 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1047 {
1048 	u32 tmp = nvmeq->cq_head + 1;
1049 
1050 	if (tmp == nvmeq->q_depth) {
1051 		nvmeq->cq_head = 0;
1052 		nvmeq->cq_phase ^= 1;
1053 	} else {
1054 		nvmeq->cq_head = tmp;
1055 	}
1056 }
1057 
1058 static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1059 			       struct io_comp_batch *iob)
1060 {
1061 	int found = 0;
1062 
1063 	while (nvme_cqe_pending(nvmeq)) {
1064 		found++;
1065 		/*
1066 		 * load-load control dependency between phase and the rest of
1067 		 * the cqe requires a full read memory barrier
1068 		 */
1069 		dma_rmb();
1070 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1071 		nvme_update_cq_head(nvmeq);
1072 	}
1073 
1074 	if (found)
1075 		nvme_ring_cq_doorbell(nvmeq);
1076 	return found;
1077 }
1078 
1079 static irqreturn_t nvme_irq(int irq, void *data)
1080 {
1081 	struct nvme_queue *nvmeq = data;
1082 	DEFINE_IO_COMP_BATCH(iob);
1083 
1084 	if (nvme_poll_cq(nvmeq, &iob)) {
1085 		if (!rq_list_empty(iob.req_list))
1086 			nvme_pci_complete_batch(&iob);
1087 		return IRQ_HANDLED;
1088 	}
1089 	return IRQ_NONE;
1090 }
1091 
1092 static irqreturn_t nvme_irq_check(int irq, void *data)
1093 {
1094 	struct nvme_queue *nvmeq = data;
1095 
1096 	if (nvme_cqe_pending(nvmeq))
1097 		return IRQ_WAKE_THREAD;
1098 	return IRQ_NONE;
1099 }
1100 
1101 /*
1102  * Poll for completions for any interrupt driven queue
1103  * Can be called from any context.
1104  */
1105 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1106 {
1107 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1108 
1109 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1110 
1111 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1112 	nvme_poll_cq(nvmeq, NULL);
1113 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1114 }
1115 
1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1117 {
1118 	struct nvme_queue *nvmeq = hctx->driver_data;
1119 	bool found;
1120 
1121 	if (!nvme_cqe_pending(nvmeq))
1122 		return 0;
1123 
1124 	spin_lock(&nvmeq->cq_poll_lock);
1125 	found = nvme_poll_cq(nvmeq, iob);
1126 	spin_unlock(&nvmeq->cq_poll_lock);
1127 
1128 	return found;
1129 }
1130 
1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1132 {
1133 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1134 	struct nvme_queue *nvmeq = &dev->queues[0];
1135 	struct nvme_command c = { };
1136 
1137 	c.common.opcode = nvme_admin_async_event;
1138 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1139 
1140 	spin_lock(&nvmeq->sq_lock);
1141 	nvme_sq_copy_cmd(nvmeq, &c);
1142 	nvme_write_sq_db(nvmeq, true);
1143 	spin_unlock(&nvmeq->sq_lock);
1144 }
1145 
1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1147 {
1148 	struct nvme_command c = { };
1149 
1150 	c.delete_queue.opcode = opcode;
1151 	c.delete_queue.qid = cpu_to_le16(id);
1152 
1153 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1154 }
1155 
1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1157 		struct nvme_queue *nvmeq, s16 vector)
1158 {
1159 	struct nvme_command c = { };
1160 	int flags = NVME_QUEUE_PHYS_CONTIG;
1161 
1162 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1163 		flags |= NVME_CQ_IRQ_ENABLED;
1164 
1165 	/*
1166 	 * Note: we (ab)use the fact that the prp fields survive if no data
1167 	 * is attached to the request.
1168 	 */
1169 	c.create_cq.opcode = nvme_admin_create_cq;
1170 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1171 	c.create_cq.cqid = cpu_to_le16(qid);
1172 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1173 	c.create_cq.cq_flags = cpu_to_le16(flags);
1174 	c.create_cq.irq_vector = cpu_to_le16(vector);
1175 
1176 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1177 }
1178 
1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1180 						struct nvme_queue *nvmeq)
1181 {
1182 	struct nvme_ctrl *ctrl = &dev->ctrl;
1183 	struct nvme_command c = { };
1184 	int flags = NVME_QUEUE_PHYS_CONTIG;
1185 
1186 	/*
1187 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1188 	 * set. Since URGENT priority is zeroes, it makes all queues
1189 	 * URGENT.
1190 	 */
1191 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1192 		flags |= NVME_SQ_PRIO_MEDIUM;
1193 
1194 	/*
1195 	 * Note: we (ab)use the fact that the prp fields survive if no data
1196 	 * is attached to the request.
1197 	 */
1198 	c.create_sq.opcode = nvme_admin_create_sq;
1199 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1200 	c.create_sq.sqid = cpu_to_le16(qid);
1201 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1202 	c.create_sq.sq_flags = cpu_to_le16(flags);
1203 	c.create_sq.cqid = cpu_to_le16(qid);
1204 
1205 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1206 }
1207 
1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1209 {
1210 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1211 }
1212 
1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1214 {
1215 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1216 }
1217 
1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1219 {
1220 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1221 
1222 	dev_warn(nvmeq->dev->ctrl.device,
1223 		 "Abort status: 0x%x", nvme_req(req)->status);
1224 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1225 	blk_mq_free_request(req);
1226 	return RQ_END_IO_NONE;
1227 }
1228 
1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1230 {
1231 	/* If true, indicates loss of adapter communication, possibly by a
1232 	 * NVMe Subsystem reset.
1233 	 */
1234 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1235 
1236 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1237 	switch (dev->ctrl.state) {
1238 	case NVME_CTRL_RESETTING:
1239 	case NVME_CTRL_CONNECTING:
1240 		return false;
1241 	default:
1242 		break;
1243 	}
1244 
1245 	/* We shouldn't reset unless the controller is on fatal error state
1246 	 * _or_ if we lost the communication with it.
1247 	 */
1248 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1255 {
1256 	/* Read a config register to help see what died. */
1257 	u16 pci_status;
1258 	int result;
1259 
1260 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1261 				      &pci_status);
1262 	if (result == PCIBIOS_SUCCESSFUL)
1263 		dev_warn(dev->ctrl.device,
1264 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1265 			 csts, pci_status);
1266 	else
1267 		dev_warn(dev->ctrl.device,
1268 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1269 			 csts, result);
1270 
1271 	if (csts != ~0)
1272 		return;
1273 
1274 	dev_warn(dev->ctrl.device,
1275 		 "Does your device have a faulty power saving mode enabled?\n");
1276 	dev_warn(dev->ctrl.device,
1277 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1278 }
1279 
1280 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1281 {
1282 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1283 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1284 	struct nvme_dev *dev = nvmeq->dev;
1285 	struct request *abort_req;
1286 	struct nvme_command cmd = { };
1287 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1288 
1289 	/* If PCI error recovery process is happening, we cannot reset or
1290 	 * the recovery mechanism will surely fail.
1291 	 */
1292 	mb();
1293 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1294 		return BLK_EH_RESET_TIMER;
1295 
1296 	/*
1297 	 * Reset immediately if the controller is failed
1298 	 */
1299 	if (nvme_should_reset(dev, csts)) {
1300 		nvme_warn_reset(dev, csts);
1301 		goto disable;
1302 	}
1303 
1304 	/*
1305 	 * Did we miss an interrupt?
1306 	 */
1307 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308 		nvme_poll(req->mq_hctx, NULL);
1309 	else
1310 		nvme_poll_irqdisable(nvmeq);
1311 
1312 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1313 		dev_warn(dev->ctrl.device,
1314 			 "I/O %d QID %d timeout, completion polled\n",
1315 			 req->tag, nvmeq->qid);
1316 		return BLK_EH_DONE;
1317 	}
1318 
1319 	/*
1320 	 * Shutdown immediately if controller times out while starting. The
1321 	 * reset work will see the pci device disabled when it gets the forced
1322 	 * cancellation error. All outstanding requests are completed on
1323 	 * shutdown, so we return BLK_EH_DONE.
1324 	 */
1325 	switch (dev->ctrl.state) {
1326 	case NVME_CTRL_CONNECTING:
1327 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1328 		fallthrough;
1329 	case NVME_CTRL_DELETING:
1330 		dev_warn_ratelimited(dev->ctrl.device,
1331 			 "I/O %d QID %d timeout, disable controller\n",
1332 			 req->tag, nvmeq->qid);
1333 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334 		nvme_dev_disable(dev, true);
1335 		return BLK_EH_DONE;
1336 	case NVME_CTRL_RESETTING:
1337 		return BLK_EH_RESET_TIMER;
1338 	default:
1339 		break;
1340 	}
1341 
1342 	/*
1343 	 * Shutdown the controller immediately and schedule a reset if the
1344 	 * command was already aborted once before and still hasn't been
1345 	 * returned to the driver, or if this is the admin queue.
1346 	 */
1347 	if (!nvmeq->qid || iod->aborted) {
1348 		dev_warn(dev->ctrl.device,
1349 			 "I/O %d QID %d timeout, reset controller\n",
1350 			 req->tag, nvmeq->qid);
1351 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1352 		goto disable;
1353 	}
1354 
1355 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1356 		atomic_inc(&dev->ctrl.abort_limit);
1357 		return BLK_EH_RESET_TIMER;
1358 	}
1359 	iod->aborted = true;
1360 
1361 	cmd.abort.opcode = nvme_admin_abort_cmd;
1362 	cmd.abort.cid = nvme_cid(req);
1363 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1364 
1365 	dev_warn(nvmeq->dev->ctrl.device,
1366 		"I/O %d (%s) QID %d timeout, aborting\n",
1367 		 req->tag,
1368 		 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode),
1369 		 nvmeq->qid);
1370 
1371 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1372 					 BLK_MQ_REQ_NOWAIT);
1373 	if (IS_ERR(abort_req)) {
1374 		atomic_inc(&dev->ctrl.abort_limit);
1375 		return BLK_EH_RESET_TIMER;
1376 	}
1377 	nvme_init_request(abort_req, &cmd);
1378 
1379 	abort_req->end_io = abort_endio;
1380 	abort_req->end_io_data = NULL;
1381 	blk_execute_rq_nowait(abort_req, false);
1382 
1383 	/*
1384 	 * The aborted req will be completed on receiving the abort req.
1385 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1386 	 * as the device then is in a faulty state.
1387 	 */
1388 	return BLK_EH_RESET_TIMER;
1389 
1390 disable:
1391 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1392 		return BLK_EH_DONE;
1393 
1394 	nvme_dev_disable(dev, false);
1395 	if (nvme_try_sched_reset(&dev->ctrl))
1396 		nvme_unquiesce_io_queues(&dev->ctrl);
1397 	return BLK_EH_DONE;
1398 }
1399 
1400 static void nvme_free_queue(struct nvme_queue *nvmeq)
1401 {
1402 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1403 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1404 	if (!nvmeq->sq_cmds)
1405 		return;
1406 
1407 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1408 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1409 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1410 	} else {
1411 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1412 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1413 	}
1414 }
1415 
1416 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1417 {
1418 	int i;
1419 
1420 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1421 		dev->ctrl.queue_count--;
1422 		nvme_free_queue(&dev->queues[i]);
1423 	}
1424 }
1425 
1426 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1427 {
1428 	struct nvme_queue *nvmeq = &dev->queues[qid];
1429 
1430 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1431 		return;
1432 
1433 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1434 	mb();
1435 
1436 	nvmeq->dev->online_queues--;
1437 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1438 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1439 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1440 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1441 }
1442 
1443 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1444 {
1445 	int i;
1446 
1447 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1448 		nvme_suspend_queue(dev, i);
1449 }
1450 
1451 /*
1452  * Called only on a device that has been disabled and after all other threads
1453  * that can check this device's completion queues have synced, except
1454  * nvme_poll(). This is the last chance for the driver to see a natural
1455  * completion before nvme_cancel_request() terminates all incomplete requests.
1456  */
1457 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1458 {
1459 	int i;
1460 
1461 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1462 		spin_lock(&dev->queues[i].cq_poll_lock);
1463 		nvme_poll_cq(&dev->queues[i], NULL);
1464 		spin_unlock(&dev->queues[i].cq_poll_lock);
1465 	}
1466 }
1467 
1468 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1469 				int entry_size)
1470 {
1471 	int q_depth = dev->q_depth;
1472 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1473 					  NVME_CTRL_PAGE_SIZE);
1474 
1475 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1476 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1477 
1478 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1479 		q_depth = div_u64(mem_per_q, entry_size);
1480 
1481 		/*
1482 		 * Ensure the reduced q_depth is above some threshold where it
1483 		 * would be better to map queues in system memory with the
1484 		 * original depth
1485 		 */
1486 		if (q_depth < 64)
1487 			return -ENOMEM;
1488 	}
1489 
1490 	return q_depth;
1491 }
1492 
1493 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1494 				int qid)
1495 {
1496 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1497 
1498 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1499 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1500 		if (nvmeq->sq_cmds) {
1501 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1502 							nvmeq->sq_cmds);
1503 			if (nvmeq->sq_dma_addr) {
1504 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1505 				return 0;
1506 			}
1507 
1508 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1509 		}
1510 	}
1511 
1512 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1513 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1514 	if (!nvmeq->sq_cmds)
1515 		return -ENOMEM;
1516 	return 0;
1517 }
1518 
1519 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1520 {
1521 	struct nvme_queue *nvmeq = &dev->queues[qid];
1522 
1523 	if (dev->ctrl.queue_count > qid)
1524 		return 0;
1525 
1526 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1527 	nvmeq->q_depth = depth;
1528 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1529 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1530 	if (!nvmeq->cqes)
1531 		goto free_nvmeq;
1532 
1533 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1534 		goto free_cqdma;
1535 
1536 	nvmeq->dev = dev;
1537 	spin_lock_init(&nvmeq->sq_lock);
1538 	spin_lock_init(&nvmeq->cq_poll_lock);
1539 	nvmeq->cq_head = 0;
1540 	nvmeq->cq_phase = 1;
1541 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1542 	nvmeq->qid = qid;
1543 	dev->ctrl.queue_count++;
1544 
1545 	return 0;
1546 
1547  free_cqdma:
1548 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1549 			  nvmeq->cq_dma_addr);
1550  free_nvmeq:
1551 	return -ENOMEM;
1552 }
1553 
1554 static int queue_request_irq(struct nvme_queue *nvmeq)
1555 {
1556 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1557 	int nr = nvmeq->dev->ctrl.instance;
1558 
1559 	if (use_threaded_interrupts) {
1560 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1561 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1562 	} else {
1563 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1564 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1565 	}
1566 }
1567 
1568 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1569 {
1570 	struct nvme_dev *dev = nvmeq->dev;
1571 
1572 	nvmeq->sq_tail = 0;
1573 	nvmeq->last_sq_tail = 0;
1574 	nvmeq->cq_head = 0;
1575 	nvmeq->cq_phase = 1;
1576 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1577 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1578 	nvme_dbbuf_init(dev, nvmeq, qid);
1579 	dev->online_queues++;
1580 	wmb(); /* ensure the first interrupt sees the initialization */
1581 }
1582 
1583 /*
1584  * Try getting shutdown_lock while setting up IO queues.
1585  */
1586 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1587 {
1588 	/*
1589 	 * Give up if the lock is being held by nvme_dev_disable.
1590 	 */
1591 	if (!mutex_trylock(&dev->shutdown_lock))
1592 		return -ENODEV;
1593 
1594 	/*
1595 	 * Controller is in wrong state, fail early.
1596 	 */
1597 	if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1598 		mutex_unlock(&dev->shutdown_lock);
1599 		return -ENODEV;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1606 {
1607 	struct nvme_dev *dev = nvmeq->dev;
1608 	int result;
1609 	u16 vector = 0;
1610 
1611 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1612 
1613 	/*
1614 	 * A queue's vector matches the queue identifier unless the controller
1615 	 * has only one vector available.
1616 	 */
1617 	if (!polled)
1618 		vector = dev->num_vecs == 1 ? 0 : qid;
1619 	else
1620 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1621 
1622 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1623 	if (result)
1624 		return result;
1625 
1626 	result = adapter_alloc_sq(dev, qid, nvmeq);
1627 	if (result < 0)
1628 		return result;
1629 	if (result)
1630 		goto release_cq;
1631 
1632 	nvmeq->cq_vector = vector;
1633 
1634 	result = nvme_setup_io_queues_trylock(dev);
1635 	if (result)
1636 		return result;
1637 	nvme_init_queue(nvmeq, qid);
1638 	if (!polled) {
1639 		result = queue_request_irq(nvmeq);
1640 		if (result < 0)
1641 			goto release_sq;
1642 	}
1643 
1644 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1645 	mutex_unlock(&dev->shutdown_lock);
1646 	return result;
1647 
1648 release_sq:
1649 	dev->online_queues--;
1650 	mutex_unlock(&dev->shutdown_lock);
1651 	adapter_delete_sq(dev, qid);
1652 release_cq:
1653 	adapter_delete_cq(dev, qid);
1654 	return result;
1655 }
1656 
1657 static const struct blk_mq_ops nvme_mq_admin_ops = {
1658 	.queue_rq	= nvme_queue_rq,
1659 	.complete	= nvme_pci_complete_rq,
1660 	.init_hctx	= nvme_admin_init_hctx,
1661 	.init_request	= nvme_pci_init_request,
1662 	.timeout	= nvme_timeout,
1663 };
1664 
1665 static const struct blk_mq_ops nvme_mq_ops = {
1666 	.queue_rq	= nvme_queue_rq,
1667 	.queue_rqs	= nvme_queue_rqs,
1668 	.complete	= nvme_pci_complete_rq,
1669 	.commit_rqs	= nvme_commit_rqs,
1670 	.init_hctx	= nvme_init_hctx,
1671 	.init_request	= nvme_pci_init_request,
1672 	.map_queues	= nvme_pci_map_queues,
1673 	.timeout	= nvme_timeout,
1674 	.poll		= nvme_poll,
1675 };
1676 
1677 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1678 {
1679 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1680 		/*
1681 		 * If the controller was reset during removal, it's possible
1682 		 * user requests may be waiting on a stopped queue. Start the
1683 		 * queue to flush these to completion.
1684 		 */
1685 		nvme_unquiesce_admin_queue(&dev->ctrl);
1686 		nvme_remove_admin_tag_set(&dev->ctrl);
1687 	}
1688 }
1689 
1690 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1691 {
1692 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1693 }
1694 
1695 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1696 {
1697 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1698 
1699 	if (size <= dev->bar_mapped_size)
1700 		return 0;
1701 	if (size > pci_resource_len(pdev, 0))
1702 		return -ENOMEM;
1703 	if (dev->bar)
1704 		iounmap(dev->bar);
1705 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1706 	if (!dev->bar) {
1707 		dev->bar_mapped_size = 0;
1708 		return -ENOMEM;
1709 	}
1710 	dev->bar_mapped_size = size;
1711 	dev->dbs = dev->bar + NVME_REG_DBS;
1712 
1713 	return 0;
1714 }
1715 
1716 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1717 {
1718 	int result;
1719 	u32 aqa;
1720 	struct nvme_queue *nvmeq;
1721 
1722 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1723 	if (result < 0)
1724 		return result;
1725 
1726 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1727 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1728 
1729 	if (dev->subsystem &&
1730 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1731 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1732 
1733 	/*
1734 	 * If the device has been passed off to us in an enabled state, just
1735 	 * clear the enabled bit.  The spec says we should set the 'shutdown
1736 	 * notification bits', but doing so may cause the device to complete
1737 	 * commands to the admin queue ... and we don't know what memory that
1738 	 * might be pointing at!
1739 	 */
1740 	result = nvme_disable_ctrl(&dev->ctrl, false);
1741 	if (result < 0)
1742 		return result;
1743 
1744 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1745 	if (result)
1746 		return result;
1747 
1748 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1749 
1750 	nvmeq = &dev->queues[0];
1751 	aqa = nvmeq->q_depth - 1;
1752 	aqa |= aqa << 16;
1753 
1754 	writel(aqa, dev->bar + NVME_REG_AQA);
1755 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1756 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1757 
1758 	result = nvme_enable_ctrl(&dev->ctrl);
1759 	if (result)
1760 		return result;
1761 
1762 	nvmeq->cq_vector = 0;
1763 	nvme_init_queue(nvmeq, 0);
1764 	result = queue_request_irq(nvmeq);
1765 	if (result) {
1766 		dev->online_queues--;
1767 		return result;
1768 	}
1769 
1770 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1771 	return result;
1772 }
1773 
1774 static int nvme_create_io_queues(struct nvme_dev *dev)
1775 {
1776 	unsigned i, max, rw_queues;
1777 	int ret = 0;
1778 
1779 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1780 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1781 			ret = -ENOMEM;
1782 			break;
1783 		}
1784 	}
1785 
1786 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1787 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1788 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1789 				dev->io_queues[HCTX_TYPE_READ];
1790 	} else {
1791 		rw_queues = max;
1792 	}
1793 
1794 	for (i = dev->online_queues; i <= max; i++) {
1795 		bool polled = i > rw_queues;
1796 
1797 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1798 		if (ret)
1799 			break;
1800 	}
1801 
1802 	/*
1803 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1804 	 * than the desired amount of queues, and even a controller without
1805 	 * I/O queues can still be used to issue admin commands.  This might
1806 	 * be useful to upgrade a buggy firmware for example.
1807 	 */
1808 	return ret >= 0 ? 0 : ret;
1809 }
1810 
1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1812 {
1813 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1814 
1815 	return 1ULL << (12 + 4 * szu);
1816 }
1817 
1818 static u32 nvme_cmb_size(struct nvme_dev *dev)
1819 {
1820 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1821 }
1822 
1823 static void nvme_map_cmb(struct nvme_dev *dev)
1824 {
1825 	u64 size, offset;
1826 	resource_size_t bar_size;
1827 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1828 	int bar;
1829 
1830 	if (dev->cmb_size)
1831 		return;
1832 
1833 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1834 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1835 
1836 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1837 	if (!dev->cmbsz)
1838 		return;
1839 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1840 
1841 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1842 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1843 	bar = NVME_CMB_BIR(dev->cmbloc);
1844 	bar_size = pci_resource_len(pdev, bar);
1845 
1846 	if (offset > bar_size)
1847 		return;
1848 
1849 	/*
1850 	 * Tell the controller about the host side address mapping the CMB,
1851 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1852 	 */
1853 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1854 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1855 			     (pci_bus_address(pdev, bar) + offset),
1856 			     dev->bar + NVME_REG_CMBMSC);
1857 	}
1858 
1859 	/*
1860 	 * Controllers may support a CMB size larger than their BAR,
1861 	 * for example, due to being behind a bridge. Reduce the CMB to
1862 	 * the reported size of the BAR
1863 	 */
1864 	if (size > bar_size - offset)
1865 		size = bar_size - offset;
1866 
1867 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1868 		dev_warn(dev->ctrl.device,
1869 			 "failed to register the CMB\n");
1870 		return;
1871 	}
1872 
1873 	dev->cmb_size = size;
1874 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1875 
1876 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1877 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1878 		pci_p2pmem_publish(pdev, true);
1879 
1880 	nvme_update_attrs(dev);
1881 }
1882 
1883 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1884 {
1885 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1886 	u64 dma_addr = dev->host_mem_descs_dma;
1887 	struct nvme_command c = { };
1888 	int ret;
1889 
1890 	c.features.opcode	= nvme_admin_set_features;
1891 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1892 	c.features.dword11	= cpu_to_le32(bits);
1893 	c.features.dword12	= cpu_to_le32(host_mem_size);
1894 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1895 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1896 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1897 
1898 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1899 	if (ret) {
1900 		dev_warn(dev->ctrl.device,
1901 			 "failed to set host mem (err %d, flags %#x).\n",
1902 			 ret, bits);
1903 	} else
1904 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1905 
1906 	return ret;
1907 }
1908 
1909 static void nvme_free_host_mem(struct nvme_dev *dev)
1910 {
1911 	int i;
1912 
1913 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1914 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1915 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1916 
1917 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1918 			       le64_to_cpu(desc->addr),
1919 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1920 	}
1921 
1922 	kfree(dev->host_mem_desc_bufs);
1923 	dev->host_mem_desc_bufs = NULL;
1924 	dma_free_coherent(dev->dev,
1925 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1926 			dev->host_mem_descs, dev->host_mem_descs_dma);
1927 	dev->host_mem_descs = NULL;
1928 	dev->nr_host_mem_descs = 0;
1929 }
1930 
1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1932 		u32 chunk_size)
1933 {
1934 	struct nvme_host_mem_buf_desc *descs;
1935 	u32 max_entries, len;
1936 	dma_addr_t descs_dma;
1937 	int i = 0;
1938 	void **bufs;
1939 	u64 size, tmp;
1940 
1941 	tmp = (preferred + chunk_size - 1);
1942 	do_div(tmp, chunk_size);
1943 	max_entries = tmp;
1944 
1945 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1946 		max_entries = dev->ctrl.hmmaxd;
1947 
1948 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1949 				   &descs_dma, GFP_KERNEL);
1950 	if (!descs)
1951 		goto out;
1952 
1953 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1954 	if (!bufs)
1955 		goto out_free_descs;
1956 
1957 	for (size = 0; size < preferred && i < max_entries; size += len) {
1958 		dma_addr_t dma_addr;
1959 
1960 		len = min_t(u64, chunk_size, preferred - size);
1961 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1962 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1963 		if (!bufs[i])
1964 			break;
1965 
1966 		descs[i].addr = cpu_to_le64(dma_addr);
1967 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1968 		i++;
1969 	}
1970 
1971 	if (!size)
1972 		goto out_free_bufs;
1973 
1974 	dev->nr_host_mem_descs = i;
1975 	dev->host_mem_size = size;
1976 	dev->host_mem_descs = descs;
1977 	dev->host_mem_descs_dma = descs_dma;
1978 	dev->host_mem_desc_bufs = bufs;
1979 	return 0;
1980 
1981 out_free_bufs:
1982 	while (--i >= 0) {
1983 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1984 
1985 		dma_free_attrs(dev->dev, size, bufs[i],
1986 			       le64_to_cpu(descs[i].addr),
1987 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1988 	}
1989 
1990 	kfree(bufs);
1991 out_free_descs:
1992 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1993 			descs_dma);
1994 out:
1995 	dev->host_mem_descs = NULL;
1996 	return -ENOMEM;
1997 }
1998 
1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2000 {
2001 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2002 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2003 	u64 chunk_size;
2004 
2005 	/* start big and work our way down */
2006 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2007 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2008 			if (!min || dev->host_mem_size >= min)
2009 				return 0;
2010 			nvme_free_host_mem(dev);
2011 		}
2012 	}
2013 
2014 	return -ENOMEM;
2015 }
2016 
2017 static int nvme_setup_host_mem(struct nvme_dev *dev)
2018 {
2019 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2020 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2021 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2022 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2023 	int ret;
2024 
2025 	if (!dev->ctrl.hmpre)
2026 		return 0;
2027 
2028 	preferred = min(preferred, max);
2029 	if (min > max) {
2030 		dev_warn(dev->ctrl.device,
2031 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2032 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2033 		nvme_free_host_mem(dev);
2034 		return 0;
2035 	}
2036 
2037 	/*
2038 	 * If we already have a buffer allocated check if we can reuse it.
2039 	 */
2040 	if (dev->host_mem_descs) {
2041 		if (dev->host_mem_size >= min)
2042 			enable_bits |= NVME_HOST_MEM_RETURN;
2043 		else
2044 			nvme_free_host_mem(dev);
2045 	}
2046 
2047 	if (!dev->host_mem_descs) {
2048 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2049 			dev_warn(dev->ctrl.device,
2050 				"failed to allocate host memory buffer.\n");
2051 			return 0; /* controller must work without HMB */
2052 		}
2053 
2054 		dev_info(dev->ctrl.device,
2055 			"allocated %lld MiB host memory buffer.\n",
2056 			dev->host_mem_size >> ilog2(SZ_1M));
2057 	}
2058 
2059 	ret = nvme_set_host_mem(dev, enable_bits);
2060 	if (ret)
2061 		nvme_free_host_mem(dev);
2062 	return ret;
2063 }
2064 
2065 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2066 		char *buf)
2067 {
2068 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2069 
2070 	return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2071 		       ndev->cmbloc, ndev->cmbsz);
2072 }
2073 static DEVICE_ATTR_RO(cmb);
2074 
2075 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2076 		char *buf)
2077 {
2078 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2079 
2080 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2081 }
2082 static DEVICE_ATTR_RO(cmbloc);
2083 
2084 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2085 		char *buf)
2086 {
2087 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2088 
2089 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2090 }
2091 static DEVICE_ATTR_RO(cmbsz);
2092 
2093 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2094 			char *buf)
2095 {
2096 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2097 
2098 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2099 }
2100 
2101 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2102 			 const char *buf, size_t count)
2103 {
2104 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2105 	bool new;
2106 	int ret;
2107 
2108 	if (kstrtobool(buf, &new) < 0)
2109 		return -EINVAL;
2110 
2111 	if (new == ndev->hmb)
2112 		return count;
2113 
2114 	if (new) {
2115 		ret = nvme_setup_host_mem(ndev);
2116 	} else {
2117 		ret = nvme_set_host_mem(ndev, 0);
2118 		if (!ret)
2119 			nvme_free_host_mem(ndev);
2120 	}
2121 
2122 	if (ret < 0)
2123 		return ret;
2124 
2125 	return count;
2126 }
2127 static DEVICE_ATTR_RW(hmb);
2128 
2129 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2130 		struct attribute *a, int n)
2131 {
2132 	struct nvme_ctrl *ctrl =
2133 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2134 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2135 
2136 	if (a == &dev_attr_cmb.attr ||
2137 	    a == &dev_attr_cmbloc.attr ||
2138 	    a == &dev_attr_cmbsz.attr) {
2139 	    	if (!dev->cmbsz)
2140 			return 0;
2141 	}
2142 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2143 		return 0;
2144 
2145 	return a->mode;
2146 }
2147 
2148 static struct attribute *nvme_pci_attrs[] = {
2149 	&dev_attr_cmb.attr,
2150 	&dev_attr_cmbloc.attr,
2151 	&dev_attr_cmbsz.attr,
2152 	&dev_attr_hmb.attr,
2153 	NULL,
2154 };
2155 
2156 static const struct attribute_group nvme_pci_dev_attrs_group = {
2157 	.attrs		= nvme_pci_attrs,
2158 	.is_visible	= nvme_pci_attrs_are_visible,
2159 };
2160 
2161 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2162 	&nvme_dev_attrs_group,
2163 	&nvme_pci_dev_attrs_group,
2164 	NULL,
2165 };
2166 
2167 static void nvme_update_attrs(struct nvme_dev *dev)
2168 {
2169 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2170 }
2171 
2172 /*
2173  * nirqs is the number of interrupts available for write and read
2174  * queues. The core already reserved an interrupt for the admin queue.
2175  */
2176 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2177 {
2178 	struct nvme_dev *dev = affd->priv;
2179 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2180 
2181 	/*
2182 	 * If there is no interrupt available for queues, ensure that
2183 	 * the default queue is set to 1. The affinity set size is
2184 	 * also set to one, but the irq core ignores it for this case.
2185 	 *
2186 	 * If only one interrupt is available or 'write_queue' == 0, combine
2187 	 * write and read queues.
2188 	 *
2189 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2190 	 * queue.
2191 	 */
2192 	if (!nrirqs) {
2193 		nrirqs = 1;
2194 		nr_read_queues = 0;
2195 	} else if (nrirqs == 1 || !nr_write_queues) {
2196 		nr_read_queues = 0;
2197 	} else if (nr_write_queues >= nrirqs) {
2198 		nr_read_queues = 1;
2199 	} else {
2200 		nr_read_queues = nrirqs - nr_write_queues;
2201 	}
2202 
2203 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2204 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2205 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2206 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2207 	affd->nr_sets = nr_read_queues ? 2 : 1;
2208 }
2209 
2210 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2211 {
2212 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2213 	struct irq_affinity affd = {
2214 		.pre_vectors	= 1,
2215 		.calc_sets	= nvme_calc_irq_sets,
2216 		.priv		= dev,
2217 	};
2218 	unsigned int irq_queues, poll_queues;
2219 
2220 	/*
2221 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2222 	 * left over for non-polled I/O.
2223 	 */
2224 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2225 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2226 
2227 	/*
2228 	 * Initialize for the single interrupt case, will be updated in
2229 	 * nvme_calc_irq_sets().
2230 	 */
2231 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2232 	dev->io_queues[HCTX_TYPE_READ] = 0;
2233 
2234 	/*
2235 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2236 	 * but some Apple controllers require all queues to use the first
2237 	 * vector.
2238 	 */
2239 	irq_queues = 1;
2240 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2241 		irq_queues += (nr_io_queues - poll_queues);
2242 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2243 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2244 }
2245 
2246 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2247 {
2248 	/*
2249 	 * If tags are shared with admin queue (Apple bug), then
2250 	 * make sure we only use one IO queue.
2251 	 */
2252 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2253 		return 1;
2254 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2255 }
2256 
2257 static int nvme_setup_io_queues(struct nvme_dev *dev)
2258 {
2259 	struct nvme_queue *adminq = &dev->queues[0];
2260 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2261 	unsigned int nr_io_queues;
2262 	unsigned long size;
2263 	int result;
2264 
2265 	/*
2266 	 * Sample the module parameters once at reset time so that we have
2267 	 * stable values to work with.
2268 	 */
2269 	dev->nr_write_queues = write_queues;
2270 	dev->nr_poll_queues = poll_queues;
2271 
2272 	nr_io_queues = dev->nr_allocated_queues - 1;
2273 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2274 	if (result < 0)
2275 		return result;
2276 
2277 	if (nr_io_queues == 0)
2278 		return 0;
2279 
2280 	/*
2281 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2282 	 * from set to unset. If there is a window to it is truely freed,
2283 	 * pci_free_irq_vectors() jumping into this window will crash.
2284 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2285 	 * nvme_dev_disable() path.
2286 	 */
2287 	result = nvme_setup_io_queues_trylock(dev);
2288 	if (result)
2289 		return result;
2290 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2291 		pci_free_irq(pdev, 0, adminq);
2292 
2293 	if (dev->cmb_use_sqes) {
2294 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2295 				sizeof(struct nvme_command));
2296 		if (result > 0) {
2297 			dev->q_depth = result;
2298 			dev->ctrl.sqsize = result - 1;
2299 		} else {
2300 			dev->cmb_use_sqes = false;
2301 		}
2302 	}
2303 
2304 	do {
2305 		size = db_bar_size(dev, nr_io_queues);
2306 		result = nvme_remap_bar(dev, size);
2307 		if (!result)
2308 			break;
2309 		if (!--nr_io_queues) {
2310 			result = -ENOMEM;
2311 			goto out_unlock;
2312 		}
2313 	} while (1);
2314 	adminq->q_db = dev->dbs;
2315 
2316  retry:
2317 	/* Deregister the admin queue's interrupt */
2318 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2319 		pci_free_irq(pdev, 0, adminq);
2320 
2321 	/*
2322 	 * If we enable msix early due to not intx, disable it again before
2323 	 * setting up the full range we need.
2324 	 */
2325 	pci_free_irq_vectors(pdev);
2326 
2327 	result = nvme_setup_irqs(dev, nr_io_queues);
2328 	if (result <= 0) {
2329 		result = -EIO;
2330 		goto out_unlock;
2331 	}
2332 
2333 	dev->num_vecs = result;
2334 	result = max(result - 1, 1);
2335 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2336 
2337 	/*
2338 	 * Should investigate if there's a performance win from allocating
2339 	 * more queues than interrupt vectors; it might allow the submission
2340 	 * path to scale better, even if the receive path is limited by the
2341 	 * number of interrupts.
2342 	 */
2343 	result = queue_request_irq(adminq);
2344 	if (result)
2345 		goto out_unlock;
2346 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2347 	mutex_unlock(&dev->shutdown_lock);
2348 
2349 	result = nvme_create_io_queues(dev);
2350 	if (result || dev->online_queues < 2)
2351 		return result;
2352 
2353 	if (dev->online_queues - 1 < dev->max_qid) {
2354 		nr_io_queues = dev->online_queues - 1;
2355 		nvme_delete_io_queues(dev);
2356 		result = nvme_setup_io_queues_trylock(dev);
2357 		if (result)
2358 			return result;
2359 		nvme_suspend_io_queues(dev);
2360 		goto retry;
2361 	}
2362 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2363 					dev->io_queues[HCTX_TYPE_DEFAULT],
2364 					dev->io_queues[HCTX_TYPE_READ],
2365 					dev->io_queues[HCTX_TYPE_POLL]);
2366 	return 0;
2367 out_unlock:
2368 	mutex_unlock(&dev->shutdown_lock);
2369 	return result;
2370 }
2371 
2372 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2373 					     blk_status_t error)
2374 {
2375 	struct nvme_queue *nvmeq = req->end_io_data;
2376 
2377 	blk_mq_free_request(req);
2378 	complete(&nvmeq->delete_done);
2379 	return RQ_END_IO_NONE;
2380 }
2381 
2382 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2383 					  blk_status_t error)
2384 {
2385 	struct nvme_queue *nvmeq = req->end_io_data;
2386 
2387 	if (error)
2388 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2389 
2390 	return nvme_del_queue_end(req, error);
2391 }
2392 
2393 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2394 {
2395 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2396 	struct request *req;
2397 	struct nvme_command cmd = { };
2398 
2399 	cmd.delete_queue.opcode = opcode;
2400 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2401 
2402 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2403 	if (IS_ERR(req))
2404 		return PTR_ERR(req);
2405 	nvme_init_request(req, &cmd);
2406 
2407 	if (opcode == nvme_admin_delete_cq)
2408 		req->end_io = nvme_del_cq_end;
2409 	else
2410 		req->end_io = nvme_del_queue_end;
2411 	req->end_io_data = nvmeq;
2412 
2413 	init_completion(&nvmeq->delete_done);
2414 	blk_execute_rq_nowait(req, false);
2415 	return 0;
2416 }
2417 
2418 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2419 {
2420 	int nr_queues = dev->online_queues - 1, sent = 0;
2421 	unsigned long timeout;
2422 
2423  retry:
2424 	timeout = NVME_ADMIN_TIMEOUT;
2425 	while (nr_queues > 0) {
2426 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2427 			break;
2428 		nr_queues--;
2429 		sent++;
2430 	}
2431 	while (sent) {
2432 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2433 
2434 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2435 				timeout);
2436 		if (timeout == 0)
2437 			return false;
2438 
2439 		sent--;
2440 		if (nr_queues)
2441 			goto retry;
2442 	}
2443 	return true;
2444 }
2445 
2446 static void nvme_delete_io_queues(struct nvme_dev *dev)
2447 {
2448 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2449 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2450 }
2451 
2452 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2453 {
2454 	if (dev->io_queues[HCTX_TYPE_POLL])
2455 		return 3;
2456 	if (dev->io_queues[HCTX_TYPE_READ])
2457 		return 2;
2458 	return 1;
2459 }
2460 
2461 static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2462 {
2463 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2464 	/* free previously allocated queues that are no longer usable */
2465 	nvme_free_queues(dev, dev->online_queues);
2466 }
2467 
2468 static int nvme_pci_enable(struct nvme_dev *dev)
2469 {
2470 	int result = -ENOMEM;
2471 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2472 
2473 	if (pci_enable_device_mem(pdev))
2474 		return result;
2475 
2476 	pci_set_master(pdev);
2477 
2478 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2479 		result = -ENODEV;
2480 		goto disable;
2481 	}
2482 
2483 	/*
2484 	 * Some devices and/or platforms don't advertise or work with INTx
2485 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2486 	 * adjust this later.
2487 	 */
2488 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2489 	if (result < 0)
2490 		goto disable;
2491 
2492 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2493 
2494 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2495 				io_queue_depth);
2496 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2497 	dev->dbs = dev->bar + 4096;
2498 
2499 	/*
2500 	 * Some Apple controllers require a non-standard SQE size.
2501 	 * Interestingly they also seem to ignore the CC:IOSQES register
2502 	 * so we don't bother updating it here.
2503 	 */
2504 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2505 		dev->io_sqes = 7;
2506 	else
2507 		dev->io_sqes = NVME_NVM_IOSQES;
2508 
2509 	/*
2510 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2511 	 * some MacBook7,1 to avoid controller resets and data loss.
2512 	 */
2513 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2514 		dev->q_depth = 2;
2515 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2516 			"set queue depth=%u to work around controller resets\n",
2517 			dev->q_depth);
2518 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2519 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2520 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2521 		dev->q_depth = 64;
2522 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2523                         "set queue depth=%u\n", dev->q_depth);
2524 	}
2525 
2526 	/*
2527 	 * Controllers with the shared tags quirk need the IO queue to be
2528 	 * big enough so that we get 32 tags for the admin queue
2529 	 */
2530 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2531 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2532 		dev->q_depth = NVME_AQ_DEPTH + 2;
2533 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2534 			 dev->q_depth);
2535 	}
2536 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2537 
2538 	nvme_map_cmb(dev);
2539 
2540 	pci_save_state(pdev);
2541 
2542 	result = nvme_pci_configure_admin_queue(dev);
2543 	if (result)
2544 		goto free_irq;
2545 	return result;
2546 
2547  free_irq:
2548 	pci_free_irq_vectors(pdev);
2549  disable:
2550 	pci_disable_device(pdev);
2551 	return result;
2552 }
2553 
2554 static void nvme_dev_unmap(struct nvme_dev *dev)
2555 {
2556 	if (dev->bar)
2557 		iounmap(dev->bar);
2558 	pci_release_mem_regions(to_pci_dev(dev->dev));
2559 }
2560 
2561 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2562 {
2563 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2564 	u32 csts;
2565 
2566 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2567 		return true;
2568 	if (pdev->error_state != pci_channel_io_normal)
2569 		return true;
2570 
2571 	csts = readl(dev->bar + NVME_REG_CSTS);
2572 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2573 }
2574 
2575 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2576 {
2577 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2578 	bool dead;
2579 
2580 	mutex_lock(&dev->shutdown_lock);
2581 	dead = nvme_pci_ctrl_is_dead(dev);
2582 	if (dev->ctrl.state == NVME_CTRL_LIVE ||
2583 	    dev->ctrl.state == NVME_CTRL_RESETTING) {
2584 		if (pci_is_enabled(pdev))
2585 			nvme_start_freeze(&dev->ctrl);
2586 		/*
2587 		 * Give the controller a chance to complete all entered requests
2588 		 * if doing a safe shutdown.
2589 		 */
2590 		if (!dead && shutdown)
2591 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2592 	}
2593 
2594 	nvme_quiesce_io_queues(&dev->ctrl);
2595 
2596 	if (!dead && dev->ctrl.queue_count > 0) {
2597 		nvme_delete_io_queues(dev);
2598 		nvme_disable_ctrl(&dev->ctrl, shutdown);
2599 		nvme_poll_irqdisable(&dev->queues[0]);
2600 	}
2601 	nvme_suspend_io_queues(dev);
2602 	nvme_suspend_queue(dev, 0);
2603 	pci_free_irq_vectors(pdev);
2604 	if (pci_is_enabled(pdev))
2605 		pci_disable_device(pdev);
2606 	nvme_reap_pending_cqes(dev);
2607 
2608 	nvme_cancel_tagset(&dev->ctrl);
2609 	nvme_cancel_admin_tagset(&dev->ctrl);
2610 
2611 	/*
2612 	 * The driver will not be starting up queues again if shutting down so
2613 	 * must flush all entered requests to their failed completion to avoid
2614 	 * deadlocking blk-mq hot-cpu notifier.
2615 	 */
2616 	if (shutdown) {
2617 		nvme_unquiesce_io_queues(&dev->ctrl);
2618 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2619 			nvme_unquiesce_admin_queue(&dev->ctrl);
2620 	}
2621 	mutex_unlock(&dev->shutdown_lock);
2622 }
2623 
2624 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2625 {
2626 	if (!nvme_wait_reset(&dev->ctrl))
2627 		return -EBUSY;
2628 	nvme_dev_disable(dev, shutdown);
2629 	return 0;
2630 }
2631 
2632 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2633 {
2634 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2635 						NVME_CTRL_PAGE_SIZE,
2636 						NVME_CTRL_PAGE_SIZE, 0);
2637 	if (!dev->prp_page_pool)
2638 		return -ENOMEM;
2639 
2640 	/* Optimisation for I/Os between 4k and 128k */
2641 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2642 						256, 256, 0);
2643 	if (!dev->prp_small_pool) {
2644 		dma_pool_destroy(dev->prp_page_pool);
2645 		return -ENOMEM;
2646 	}
2647 	return 0;
2648 }
2649 
2650 static void nvme_release_prp_pools(struct nvme_dev *dev)
2651 {
2652 	dma_pool_destroy(dev->prp_page_pool);
2653 	dma_pool_destroy(dev->prp_small_pool);
2654 }
2655 
2656 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2657 {
2658 	size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2659 
2660 	dev->iod_mempool = mempool_create_node(1,
2661 			mempool_kmalloc, mempool_kfree,
2662 			(void *)alloc_size, GFP_KERNEL,
2663 			dev_to_node(dev->dev));
2664 	if (!dev->iod_mempool)
2665 		return -ENOMEM;
2666 	return 0;
2667 }
2668 
2669 static void nvme_free_tagset(struct nvme_dev *dev)
2670 {
2671 	if (dev->tagset.tags)
2672 		nvme_remove_io_tag_set(&dev->ctrl);
2673 	dev->ctrl.tagset = NULL;
2674 }
2675 
2676 /* pairs with nvme_pci_alloc_dev */
2677 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2678 {
2679 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2680 
2681 	nvme_free_tagset(dev);
2682 	put_device(dev->dev);
2683 	kfree(dev->queues);
2684 	kfree(dev);
2685 }
2686 
2687 static void nvme_reset_work(struct work_struct *work)
2688 {
2689 	struct nvme_dev *dev =
2690 		container_of(work, struct nvme_dev, ctrl.reset_work);
2691 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2692 	int result;
2693 
2694 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2695 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2696 			 dev->ctrl.state);
2697 		result = -ENODEV;
2698 		goto out;
2699 	}
2700 
2701 	/*
2702 	 * If we're called to reset a live controller first shut it down before
2703 	 * moving on.
2704 	 */
2705 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2706 		nvme_dev_disable(dev, false);
2707 	nvme_sync_queues(&dev->ctrl);
2708 
2709 	mutex_lock(&dev->shutdown_lock);
2710 	result = nvme_pci_enable(dev);
2711 	if (result)
2712 		goto out_unlock;
2713 	nvme_unquiesce_admin_queue(&dev->ctrl);
2714 	mutex_unlock(&dev->shutdown_lock);
2715 
2716 	/*
2717 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2718 	 * initializing procedure here.
2719 	 */
2720 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2721 		dev_warn(dev->ctrl.device,
2722 			"failed to mark controller CONNECTING\n");
2723 		result = -EBUSY;
2724 		goto out;
2725 	}
2726 
2727 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
2728 	if (result)
2729 		goto out;
2730 
2731 	nvme_dbbuf_dma_alloc(dev);
2732 
2733 	result = nvme_setup_host_mem(dev);
2734 	if (result < 0)
2735 		goto out;
2736 
2737 	result = nvme_setup_io_queues(dev);
2738 	if (result)
2739 		goto out;
2740 
2741 	/*
2742 	 * Freeze and update the number of I/O queues as thos might have
2743 	 * changed.  If there are no I/O queues left after this reset, keep the
2744 	 * controller around but remove all namespaces.
2745 	 */
2746 	if (dev->online_queues > 1) {
2747 		nvme_unquiesce_io_queues(&dev->ctrl);
2748 		nvme_wait_freeze(&dev->ctrl);
2749 		nvme_pci_update_nr_queues(dev);
2750 		nvme_dbbuf_set(dev);
2751 		nvme_unfreeze(&dev->ctrl);
2752 	} else {
2753 		dev_warn(dev->ctrl.device, "IO queues lost\n");
2754 		nvme_mark_namespaces_dead(&dev->ctrl);
2755 		nvme_unquiesce_io_queues(&dev->ctrl);
2756 		nvme_remove_namespaces(&dev->ctrl);
2757 		nvme_free_tagset(dev);
2758 	}
2759 
2760 	/*
2761 	 * If only admin queue live, keep it to do further investigation or
2762 	 * recovery.
2763 	 */
2764 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2765 		dev_warn(dev->ctrl.device,
2766 			"failed to mark controller live state\n");
2767 		result = -ENODEV;
2768 		goto out;
2769 	}
2770 
2771 	nvme_start_ctrl(&dev->ctrl);
2772 	return;
2773 
2774  out_unlock:
2775 	mutex_unlock(&dev->shutdown_lock);
2776  out:
2777 	/*
2778 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2779 	 * may be holding this pci_dev's device lock.
2780 	 */
2781 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2782 		 result);
2783 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2784 	nvme_dev_disable(dev, true);
2785 	nvme_sync_queues(&dev->ctrl);
2786 	nvme_mark_namespaces_dead(&dev->ctrl);
2787 	nvme_unquiesce_io_queues(&dev->ctrl);
2788 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2789 }
2790 
2791 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2792 {
2793 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2794 	return 0;
2795 }
2796 
2797 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2798 {
2799 	writel(val, to_nvme_dev(ctrl)->bar + off);
2800 	return 0;
2801 }
2802 
2803 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2804 {
2805 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2806 	return 0;
2807 }
2808 
2809 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2810 {
2811 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2812 
2813 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2814 }
2815 
2816 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2817 {
2818 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2819 	struct nvme_subsystem *subsys = ctrl->subsys;
2820 
2821 	dev_err(ctrl->device,
2822 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2823 		pdev->vendor, pdev->device,
2824 		nvme_strlen(subsys->model, sizeof(subsys->model)),
2825 		subsys->model, nvme_strlen(subsys->firmware_rev,
2826 					   sizeof(subsys->firmware_rev)),
2827 		subsys->firmware_rev);
2828 }
2829 
2830 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2831 {
2832 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2833 
2834 	return dma_pci_p2pdma_supported(dev->dev);
2835 }
2836 
2837 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2838 	.name			= "pcie",
2839 	.module			= THIS_MODULE,
2840 	.flags			= NVME_F_METADATA_SUPPORTED,
2841 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
2842 	.reg_read32		= nvme_pci_reg_read32,
2843 	.reg_write32		= nvme_pci_reg_write32,
2844 	.reg_read64		= nvme_pci_reg_read64,
2845 	.free_ctrl		= nvme_pci_free_ctrl,
2846 	.submit_async_event	= nvme_pci_submit_async_event,
2847 	.get_address		= nvme_pci_get_address,
2848 	.print_device_info	= nvme_pci_print_device_info,
2849 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
2850 };
2851 
2852 static int nvme_dev_map(struct nvme_dev *dev)
2853 {
2854 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2855 
2856 	if (pci_request_mem_regions(pdev, "nvme"))
2857 		return -ENODEV;
2858 
2859 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2860 		goto release;
2861 
2862 	return 0;
2863   release:
2864 	pci_release_mem_regions(pdev);
2865 	return -ENODEV;
2866 }
2867 
2868 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2869 {
2870 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2871 		/*
2872 		 * Several Samsung devices seem to drop off the PCIe bus
2873 		 * randomly when APST is on and uses the deepest sleep state.
2874 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2875 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2876 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2877 		 * laptops.
2878 		 */
2879 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2880 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2881 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2882 			return NVME_QUIRK_NO_DEEPEST_PS;
2883 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2884 		/*
2885 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2886 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2887 		 * within few minutes after bootup on a Coffee Lake board -
2888 		 * ASUS PRIME Z370-A
2889 		 */
2890 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2891 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2892 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2893 			return NVME_QUIRK_NO_APST;
2894 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2895 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2896 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2897 		/*
2898 		 * Forcing to use host managed nvme power settings for
2899 		 * lowest idle power with quick resume latency on
2900 		 * Samsung and Toshiba SSDs based on suspend behavior
2901 		 * on Coffee Lake board for LENOVO C640
2902 		 */
2903 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2904 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2905 			return NVME_QUIRK_SIMPLE_SUSPEND;
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2912 		const struct pci_device_id *id)
2913 {
2914 	unsigned long quirks = id->driver_data;
2915 	int node = dev_to_node(&pdev->dev);
2916 	struct nvme_dev *dev;
2917 	int ret = -ENOMEM;
2918 
2919 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2920 	if (!dev)
2921 		return ERR_PTR(-ENOMEM);
2922 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2923 	mutex_init(&dev->shutdown_lock);
2924 
2925 	dev->nr_write_queues = write_queues;
2926 	dev->nr_poll_queues = poll_queues;
2927 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2928 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2929 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2930 	if (!dev->queues)
2931 		goto out_free_dev;
2932 
2933 	dev->dev = get_device(&pdev->dev);
2934 
2935 	quirks |= check_vendor_combination_bug(pdev);
2936 	if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2937 		/*
2938 		 * Some systems use a bios work around to ask for D3 on
2939 		 * platforms that support kernel managed suspend.
2940 		 */
2941 		dev_info(&pdev->dev,
2942 			 "platform quirk: setting simple suspend\n");
2943 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2944 	}
2945 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2946 			     quirks);
2947 	if (ret)
2948 		goto out_put_device;
2949 
2950 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2951 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2952 	else
2953 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2954 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2955 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
2956 
2957 	/*
2958 	 * Limit the max command size to prevent iod->sg allocations going
2959 	 * over a single page.
2960 	 */
2961 	dev->ctrl.max_hw_sectors = min_t(u32,
2962 		NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2963 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2964 
2965 	/*
2966 	 * There is no support for SGLs for metadata (yet), so we are limited to
2967 	 * a single integrity segment for the separate metadata pointer.
2968 	 */
2969 	dev->ctrl.max_integrity_segments = 1;
2970 	return dev;
2971 
2972 out_put_device:
2973 	put_device(dev->dev);
2974 	kfree(dev->queues);
2975 out_free_dev:
2976 	kfree(dev);
2977 	return ERR_PTR(ret);
2978 }
2979 
2980 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2981 {
2982 	struct nvme_dev *dev;
2983 	int result = -ENOMEM;
2984 
2985 	dev = nvme_pci_alloc_dev(pdev, id);
2986 	if (IS_ERR(dev))
2987 		return PTR_ERR(dev);
2988 
2989 	result = nvme_dev_map(dev);
2990 	if (result)
2991 		goto out_uninit_ctrl;
2992 
2993 	result = nvme_setup_prp_pools(dev);
2994 	if (result)
2995 		goto out_dev_unmap;
2996 
2997 	result = nvme_pci_alloc_iod_mempool(dev);
2998 	if (result)
2999 		goto out_release_prp_pools;
3000 
3001 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3002 
3003 	result = nvme_pci_enable(dev);
3004 	if (result)
3005 		goto out_release_iod_mempool;
3006 
3007 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3008 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3009 	if (result)
3010 		goto out_disable;
3011 
3012 	/*
3013 	 * Mark the controller as connecting before sending admin commands to
3014 	 * allow the timeout handler to do the right thing.
3015 	 */
3016 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3017 		dev_warn(dev->ctrl.device,
3018 			"failed to mark controller CONNECTING\n");
3019 		result = -EBUSY;
3020 		goto out_disable;
3021 	}
3022 
3023 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3024 	if (result)
3025 		goto out_disable;
3026 
3027 	nvme_dbbuf_dma_alloc(dev);
3028 
3029 	result = nvme_setup_host_mem(dev);
3030 	if (result < 0)
3031 		goto out_disable;
3032 
3033 	result = nvme_setup_io_queues(dev);
3034 	if (result)
3035 		goto out_disable;
3036 
3037 	if (dev->online_queues > 1) {
3038 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3039 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3040 		nvme_dbbuf_set(dev);
3041 	}
3042 
3043 	if (!dev->ctrl.tagset)
3044 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3045 
3046 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3047 		dev_warn(dev->ctrl.device,
3048 			"failed to mark controller live state\n");
3049 		result = -ENODEV;
3050 		goto out_disable;
3051 	}
3052 
3053 	pci_set_drvdata(pdev, dev);
3054 
3055 	nvme_start_ctrl(&dev->ctrl);
3056 	nvme_put_ctrl(&dev->ctrl);
3057 	flush_work(&dev->ctrl.scan_work);
3058 	return 0;
3059 
3060 out_disable:
3061 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3062 	nvme_dev_disable(dev, true);
3063 	nvme_free_host_mem(dev);
3064 	nvme_dev_remove_admin(dev);
3065 	nvme_dbbuf_dma_free(dev);
3066 	nvme_free_queues(dev, 0);
3067 out_release_iod_mempool:
3068 	mempool_destroy(dev->iod_mempool);
3069 out_release_prp_pools:
3070 	nvme_release_prp_pools(dev);
3071 out_dev_unmap:
3072 	nvme_dev_unmap(dev);
3073 out_uninit_ctrl:
3074 	nvme_uninit_ctrl(&dev->ctrl);
3075 	nvme_put_ctrl(&dev->ctrl);
3076 	return result;
3077 }
3078 
3079 static void nvme_reset_prepare(struct pci_dev *pdev)
3080 {
3081 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3082 
3083 	/*
3084 	 * We don't need to check the return value from waiting for the reset
3085 	 * state as pci_dev device lock is held, making it impossible to race
3086 	 * with ->remove().
3087 	 */
3088 	nvme_disable_prepare_reset(dev, false);
3089 	nvme_sync_queues(&dev->ctrl);
3090 }
3091 
3092 static void nvme_reset_done(struct pci_dev *pdev)
3093 {
3094 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3095 
3096 	if (!nvme_try_sched_reset(&dev->ctrl))
3097 		flush_work(&dev->ctrl.reset_work);
3098 }
3099 
3100 static void nvme_shutdown(struct pci_dev *pdev)
3101 {
3102 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3103 
3104 	nvme_disable_prepare_reset(dev, true);
3105 }
3106 
3107 /*
3108  * The driver's remove may be called on a device in a partially initialized
3109  * state. This function must not have any dependencies on the device state in
3110  * order to proceed.
3111  */
3112 static void nvme_remove(struct pci_dev *pdev)
3113 {
3114 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3115 
3116 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3117 	pci_set_drvdata(pdev, NULL);
3118 
3119 	if (!pci_device_is_present(pdev)) {
3120 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3121 		nvme_dev_disable(dev, true);
3122 	}
3123 
3124 	flush_work(&dev->ctrl.reset_work);
3125 	nvme_stop_ctrl(&dev->ctrl);
3126 	nvme_remove_namespaces(&dev->ctrl);
3127 	nvme_dev_disable(dev, true);
3128 	nvme_free_host_mem(dev);
3129 	nvme_dev_remove_admin(dev);
3130 	nvme_dbbuf_dma_free(dev);
3131 	nvme_free_queues(dev, 0);
3132 	mempool_destroy(dev->iod_mempool);
3133 	nvme_release_prp_pools(dev);
3134 	nvme_dev_unmap(dev);
3135 	nvme_uninit_ctrl(&dev->ctrl);
3136 }
3137 
3138 #ifdef CONFIG_PM_SLEEP
3139 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3140 {
3141 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3142 }
3143 
3144 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3145 {
3146 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3147 }
3148 
3149 static int nvme_resume(struct device *dev)
3150 {
3151 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3152 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3153 
3154 	if (ndev->last_ps == U32_MAX ||
3155 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3156 		goto reset;
3157 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3158 		goto reset;
3159 
3160 	return 0;
3161 reset:
3162 	return nvme_try_sched_reset(ctrl);
3163 }
3164 
3165 static int nvme_suspend(struct device *dev)
3166 {
3167 	struct pci_dev *pdev = to_pci_dev(dev);
3168 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3169 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3170 	int ret = -EBUSY;
3171 
3172 	ndev->last_ps = U32_MAX;
3173 
3174 	/*
3175 	 * The platform does not remove power for a kernel managed suspend so
3176 	 * use host managed nvme power settings for lowest idle power if
3177 	 * possible. This should have quicker resume latency than a full device
3178 	 * shutdown.  But if the firmware is involved after the suspend or the
3179 	 * device does not support any non-default power states, shut down the
3180 	 * device fully.
3181 	 *
3182 	 * If ASPM is not enabled for the device, shut down the device and allow
3183 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3184 	 * down, so as to allow the platform to achieve its minimum low-power
3185 	 * state (which may not be possible if the link is up).
3186 	 */
3187 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3188 	    !pcie_aspm_enabled(pdev) ||
3189 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3190 		return nvme_disable_prepare_reset(ndev, true);
3191 
3192 	nvme_start_freeze(ctrl);
3193 	nvme_wait_freeze(ctrl);
3194 	nvme_sync_queues(ctrl);
3195 
3196 	if (ctrl->state != NVME_CTRL_LIVE)
3197 		goto unfreeze;
3198 
3199 	/*
3200 	 * Host memory access may not be successful in a system suspend state,
3201 	 * but the specification allows the controller to access memory in a
3202 	 * non-operational power state.
3203 	 */
3204 	if (ndev->hmb) {
3205 		ret = nvme_set_host_mem(ndev, 0);
3206 		if (ret < 0)
3207 			goto unfreeze;
3208 	}
3209 
3210 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3211 	if (ret < 0)
3212 		goto unfreeze;
3213 
3214 	/*
3215 	 * A saved state prevents pci pm from generically controlling the
3216 	 * device's power. If we're using protocol specific settings, we don't
3217 	 * want pci interfering.
3218 	 */
3219 	pci_save_state(pdev);
3220 
3221 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3222 	if (ret < 0)
3223 		goto unfreeze;
3224 
3225 	if (ret) {
3226 		/* discard the saved state */
3227 		pci_load_saved_state(pdev, NULL);
3228 
3229 		/*
3230 		 * Clearing npss forces a controller reset on resume. The
3231 		 * correct value will be rediscovered then.
3232 		 */
3233 		ret = nvme_disable_prepare_reset(ndev, true);
3234 		ctrl->npss = 0;
3235 	}
3236 unfreeze:
3237 	nvme_unfreeze(ctrl);
3238 	return ret;
3239 }
3240 
3241 static int nvme_simple_suspend(struct device *dev)
3242 {
3243 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3244 
3245 	return nvme_disable_prepare_reset(ndev, true);
3246 }
3247 
3248 static int nvme_simple_resume(struct device *dev)
3249 {
3250 	struct pci_dev *pdev = to_pci_dev(dev);
3251 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3252 
3253 	return nvme_try_sched_reset(&ndev->ctrl);
3254 }
3255 
3256 static const struct dev_pm_ops nvme_dev_pm_ops = {
3257 	.suspend	= nvme_suspend,
3258 	.resume		= nvme_resume,
3259 	.freeze		= nvme_simple_suspend,
3260 	.thaw		= nvme_simple_resume,
3261 	.poweroff	= nvme_simple_suspend,
3262 	.restore	= nvme_simple_resume,
3263 };
3264 #endif /* CONFIG_PM_SLEEP */
3265 
3266 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3267 						pci_channel_state_t state)
3268 {
3269 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3270 
3271 	/*
3272 	 * A frozen channel requires a reset. When detected, this method will
3273 	 * shutdown the controller to quiesce. The controller will be restarted
3274 	 * after the slot reset through driver's slot_reset callback.
3275 	 */
3276 	switch (state) {
3277 	case pci_channel_io_normal:
3278 		return PCI_ERS_RESULT_CAN_RECOVER;
3279 	case pci_channel_io_frozen:
3280 		dev_warn(dev->ctrl.device,
3281 			"frozen state error detected, reset controller\n");
3282 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3283 			nvme_dev_disable(dev, true);
3284 			return PCI_ERS_RESULT_DISCONNECT;
3285 		}
3286 		nvme_dev_disable(dev, false);
3287 		return PCI_ERS_RESULT_NEED_RESET;
3288 	case pci_channel_io_perm_failure:
3289 		dev_warn(dev->ctrl.device,
3290 			"failure state error detected, request disconnect\n");
3291 		return PCI_ERS_RESULT_DISCONNECT;
3292 	}
3293 	return PCI_ERS_RESULT_NEED_RESET;
3294 }
3295 
3296 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3297 {
3298 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3299 
3300 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3301 	pci_restore_state(pdev);
3302 	if (!nvme_try_sched_reset(&dev->ctrl))
3303 		nvme_unquiesce_io_queues(&dev->ctrl);
3304 	return PCI_ERS_RESULT_RECOVERED;
3305 }
3306 
3307 static void nvme_error_resume(struct pci_dev *pdev)
3308 {
3309 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3310 
3311 	flush_work(&dev->ctrl.reset_work);
3312 }
3313 
3314 static const struct pci_error_handlers nvme_err_handler = {
3315 	.error_detected	= nvme_error_detected,
3316 	.slot_reset	= nvme_slot_reset,
3317 	.resume		= nvme_error_resume,
3318 	.reset_prepare	= nvme_reset_prepare,
3319 	.reset_done	= nvme_reset_done,
3320 };
3321 
3322 static const struct pci_device_id nvme_id_table[] = {
3323 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3324 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3325 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3326 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3327 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3328 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3329 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3330 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3331 				NVME_QUIRK_DEALLOCATE_ZEROES |
3332 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3333 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3334 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3335 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3336 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3337 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3338 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3339 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3340 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3341 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3342 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3343 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3344 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3345 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3346 				NVME_QUIRK_BOGUS_NID, },
3347 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3348 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3349 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3350 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3351 				NVME_QUIRK_BOGUS_NID, },
3352 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3353 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3354 				NVME_QUIRK_NO_NS_DESC_LIST, },
3355 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3356 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3357 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3358 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3359 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3360 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3361 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3362 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3363 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3364 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3365 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3366 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3367 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3368 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3369 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3370 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3371 				NVME_QUIRK_BOGUS_NID, },
3372 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3373 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3374 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3375 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3376 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3377 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3378 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3379 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3380 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3381 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3382 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3383 				NVME_QUIRK_BOGUS_NID, },
3384 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3385 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3386 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3387 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3388 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3389 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3390 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3391 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3392 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3393 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3394 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3395 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3396 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3397 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3398 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3399 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3400 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3401 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3402 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3403 				NVME_QUIRK_BOGUS_NID, },
3404 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3405 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3406 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3407 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3408 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3409 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3410 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3411 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3412 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3413 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3414 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3415 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3416 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3417 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3418 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3419 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3420 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3421 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3422 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3423 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3424 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3425 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3426 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3427 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3429 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3430 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3431 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3432 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3433 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3434 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3435 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3436 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3437 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3438 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3439 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3440 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3441 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3442 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3443 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3444 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3445 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3446 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3447 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3448 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3449 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3450 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3451 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3452 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3453 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3454 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3455 		.driver_data = NVME_QUIRK_BOGUS_NID |
3456 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3457 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3458 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3459 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3460 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3461 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3462 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3463 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3464 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3465 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3466 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3467 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3468 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3469 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3470 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3471 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3472 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3473 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3474 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3475 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3476 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3477 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3478 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3479 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3480 				NVME_QUIRK_128_BYTES_SQES |
3481 				NVME_QUIRK_SHARED_TAGS |
3482 				NVME_QUIRK_SKIP_CID_GEN |
3483 				NVME_QUIRK_IDENTIFY_CNS },
3484 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3485 	{ 0, }
3486 };
3487 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3488 
3489 static struct pci_driver nvme_driver = {
3490 	.name		= "nvme",
3491 	.id_table	= nvme_id_table,
3492 	.probe		= nvme_probe,
3493 	.remove		= nvme_remove,
3494 	.shutdown	= nvme_shutdown,
3495 	.driver		= {
3496 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3497 #ifdef CONFIG_PM_SLEEP
3498 		.pm		= &nvme_dev_pm_ops,
3499 #endif
3500 	},
3501 	.sriov_configure = pci_sriov_configure_simple,
3502 	.err_handler	= &nvme_err_handler,
3503 };
3504 
3505 static int __init nvme_init(void)
3506 {
3507 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3508 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3509 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3510 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3511 	BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3512 	BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3513 	BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3514 
3515 	return pci_register_driver(&nvme_driver);
3516 }
3517 
3518 static void __exit nvme_exit(void)
3519 {
3520 	pci_unregister_driver(&nvme_driver);
3521 	flush_workqueue(nvme_wq);
3522 }
3523 
3524 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3525 MODULE_LICENSE("GPL");
3526 MODULE_VERSION("1.0");
3527 module_init(nvme_init);
3528 module_exit(nvme_exit);
3529