1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-integrity.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kstrtox.h> 17 #include <linux/memremap.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/once.h> 22 #include <linux/pci.h> 23 #include <linux/suspend.h> 24 #include <linux/t10-pi.h> 25 #include <linux/types.h> 26 #include <linux/io-64-nonatomic-lo-hi.h> 27 #include <linux/io-64-nonatomic-hi-lo.h> 28 #include <linux/sed-opal.h> 29 #include <linux/pci-p2pdma.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 38 39 /* 40 * These can be higher, but we need to ensure that any command doesn't 41 * require an sg allocation that needs more than a page of data. 42 */ 43 #define NVME_MAX_KB_SZ 8192 44 #define NVME_MAX_SEGS 128 45 #define NVME_MAX_META_SEGS 15 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 struct sg_table *hmb_sgt; 145 146 mempool_t *iod_mempool; 147 mempool_t *iod_meta_mempool; 148 149 /* shadow doorbell buffer support: */ 150 __le32 *dbbuf_dbs; 151 dma_addr_t dbbuf_dbs_dma_addr; 152 __le32 *dbbuf_eis; 153 dma_addr_t dbbuf_eis_dma_addr; 154 155 /* host memory buffer support: */ 156 u64 host_mem_size; 157 u32 nr_host_mem_descs; 158 u32 host_mem_descs_size; 159 dma_addr_t host_mem_descs_dma; 160 struct nvme_host_mem_buf_desc *host_mem_descs; 161 void **host_mem_desc_bufs; 162 unsigned int nr_allocated_queues; 163 unsigned int nr_write_queues; 164 unsigned int nr_poll_queues; 165 }; 166 167 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 168 { 169 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 170 NVME_PCI_MAX_QUEUE_SIZE); 171 } 172 173 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 174 { 175 return qid * 2 * stride; 176 } 177 178 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 179 { 180 return (qid * 2 + 1) * stride; 181 } 182 183 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_dev, ctrl); 186 } 187 188 /* 189 * An NVM Express queue. Each device has at least two (one for admin 190 * commands and one for I/O commands). 191 */ 192 struct nvme_queue { 193 struct nvme_dev *dev; 194 spinlock_t sq_lock; 195 void *sq_cmds; 196 /* only used for poll queues: */ 197 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 198 struct nvme_completion *cqes; 199 dma_addr_t sq_dma_addr; 200 dma_addr_t cq_dma_addr; 201 u32 __iomem *q_db; 202 u32 q_depth; 203 u16 cq_vector; 204 u16 sq_tail; 205 u16 last_sq_tail; 206 u16 cq_head; 207 u16 qid; 208 u8 cq_phase; 209 u8 sqes; 210 unsigned long flags; 211 #define NVMEQ_ENABLED 0 212 #define NVMEQ_SQ_CMB 1 213 #define NVMEQ_DELETE_ERROR 2 214 #define NVMEQ_POLLED 3 215 __le32 *dbbuf_sq_db; 216 __le32 *dbbuf_cq_db; 217 __le32 *dbbuf_sq_ei; 218 __le32 *dbbuf_cq_ei; 219 struct completion delete_done; 220 }; 221 222 union nvme_descriptor { 223 struct nvme_sgl_desc *sg_list; 224 __le64 *prp_list; 225 }; 226 227 /* 228 * The nvme_iod describes the data in an I/O. 229 * 230 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 231 * to the actual struct scatterlist. 232 */ 233 struct nvme_iod { 234 struct nvme_request req; 235 struct nvme_command cmd; 236 bool aborted; 237 s8 nr_allocations; /* PRP list pool allocations. 0 means small 238 pool in use */ 239 unsigned int dma_len; /* length of single DMA segment mapping */ 240 dma_addr_t first_dma; 241 dma_addr_t meta_dma; 242 struct sg_table sgt; 243 struct sg_table meta_sgt; 244 union nvme_descriptor meta_list; 245 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 246 }; 247 248 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 249 { 250 return dev->nr_allocated_queues * 8 * dev->db_stride; 251 } 252 253 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 254 { 255 unsigned int mem_size = nvme_dbbuf_size(dev); 256 257 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 258 return; 259 260 if (dev->dbbuf_dbs) { 261 /* 262 * Clear the dbbuf memory so the driver doesn't observe stale 263 * values from the previous instantiation. 264 */ 265 memset(dev->dbbuf_dbs, 0, mem_size); 266 memset(dev->dbbuf_eis, 0, mem_size); 267 return; 268 } 269 270 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_dbs_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_dbs) 274 goto fail; 275 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 276 &dev->dbbuf_eis_dma_addr, 277 GFP_KERNEL); 278 if (!dev->dbbuf_eis) 279 goto fail_free_dbbuf_dbs; 280 return; 281 282 fail_free_dbbuf_dbs: 283 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 284 dev->dbbuf_dbs_dma_addr); 285 dev->dbbuf_dbs = NULL; 286 fail: 287 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 288 } 289 290 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 291 { 292 unsigned int mem_size = nvme_dbbuf_size(dev); 293 294 if (dev->dbbuf_dbs) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 297 dev->dbbuf_dbs = NULL; 298 } 299 if (dev->dbbuf_eis) { 300 dma_free_coherent(dev->dev, mem_size, 301 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 302 dev->dbbuf_eis = NULL; 303 } 304 } 305 306 static void nvme_dbbuf_init(struct nvme_dev *dev, 307 struct nvme_queue *nvmeq, int qid) 308 { 309 if (!dev->dbbuf_dbs || !qid) 310 return; 311 312 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 313 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 314 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 315 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 316 } 317 318 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 319 { 320 if (!nvmeq->qid) 321 return; 322 323 nvmeq->dbbuf_sq_db = NULL; 324 nvmeq->dbbuf_cq_db = NULL; 325 nvmeq->dbbuf_sq_ei = NULL; 326 nvmeq->dbbuf_cq_ei = NULL; 327 } 328 329 static void nvme_dbbuf_set(struct nvme_dev *dev) 330 { 331 struct nvme_command c = { }; 332 unsigned int i; 333 334 if (!dev->dbbuf_dbs) 335 return; 336 337 c.dbbuf.opcode = nvme_admin_dbbuf; 338 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 339 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 340 341 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 342 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 343 /* Free memory and continue on */ 344 nvme_dbbuf_dma_free(dev); 345 346 for (i = 1; i <= dev->online_queues; i++) 347 nvme_dbbuf_free(&dev->queues[i]); 348 } 349 } 350 351 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 352 { 353 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 354 } 355 356 /* Update dbbuf and return true if an MMIO is required */ 357 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 358 volatile __le32 *dbbuf_ei) 359 { 360 if (dbbuf_db) { 361 u16 old_value, event_idx; 362 363 /* 364 * Ensure that the queue is written before updating 365 * the doorbell in memory 366 */ 367 wmb(); 368 369 old_value = le32_to_cpu(*dbbuf_db); 370 *dbbuf_db = cpu_to_le32(value); 371 372 /* 373 * Ensure that the doorbell is updated before reading the event 374 * index from memory. The controller needs to provide similar 375 * ordering to ensure the event index is updated before reading 376 * the doorbell. 377 */ 378 mb(); 379 380 event_idx = le32_to_cpu(*dbbuf_ei); 381 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 382 return false; 383 } 384 385 return true; 386 } 387 388 /* 389 * Will slightly overestimate the number of pages needed. This is OK 390 * as it only leads to a small amount of wasted memory for the lifetime of 391 * the I/O. 392 */ 393 static __always_inline int nvme_pci_npages_prp(void) 394 { 395 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 396 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 397 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 398 } 399 400 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 401 unsigned int hctx_idx) 402 { 403 struct nvme_dev *dev = to_nvme_dev(data); 404 struct nvme_queue *nvmeq = &dev->queues[0]; 405 406 WARN_ON(hctx_idx != 0); 407 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 408 409 hctx->driver_data = nvmeq; 410 return 0; 411 } 412 413 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 414 unsigned int hctx_idx) 415 { 416 struct nvme_dev *dev = to_nvme_dev(data); 417 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 418 419 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 420 hctx->driver_data = nvmeq; 421 return 0; 422 } 423 424 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 425 struct request *req, unsigned int hctx_idx, 426 unsigned int numa_node) 427 { 428 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 429 430 nvme_req(req)->ctrl = set->driver_data; 431 nvme_req(req)->cmd = &iod->cmd; 432 return 0; 433 } 434 435 static int queue_irq_offset(struct nvme_dev *dev) 436 { 437 /* if we have more than 1 vec, admin queue offsets us by 1 */ 438 if (dev->num_vecs > 1) 439 return 1; 440 441 return 0; 442 } 443 444 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 445 { 446 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 447 int i, qoff, offset; 448 449 offset = queue_irq_offset(dev); 450 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 451 struct blk_mq_queue_map *map = &set->map[i]; 452 453 map->nr_queues = dev->io_queues[i]; 454 if (!map->nr_queues) { 455 BUG_ON(i == HCTX_TYPE_DEFAULT); 456 continue; 457 } 458 459 /* 460 * The poll queue(s) doesn't have an IRQ (and hence IRQ 461 * affinity), so use the regular blk-mq cpu mapping 462 */ 463 map->queue_offset = qoff; 464 if (i != HCTX_TYPE_POLL && offset) 465 blk_mq_map_hw_queues(map, dev->dev, offset); 466 else 467 blk_mq_map_queues(map); 468 qoff += map->nr_queues; 469 offset += map->nr_queues; 470 } 471 } 472 473 /* 474 * Write sq tail if we are asked to, or if the next command would wrap. 475 */ 476 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 477 { 478 if (!write_sq) { 479 u16 next_tail = nvmeq->sq_tail + 1; 480 481 if (next_tail == nvmeq->q_depth) 482 next_tail = 0; 483 if (next_tail != nvmeq->last_sq_tail) 484 return; 485 } 486 487 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 488 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 489 writel(nvmeq->sq_tail, nvmeq->q_db); 490 nvmeq->last_sq_tail = nvmeq->sq_tail; 491 } 492 493 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 494 struct nvme_command *cmd) 495 { 496 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 497 absolute_pointer(cmd), sizeof(*cmd)); 498 if (++nvmeq->sq_tail == nvmeq->q_depth) 499 nvmeq->sq_tail = 0; 500 } 501 502 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 503 { 504 struct nvme_queue *nvmeq = hctx->driver_data; 505 506 spin_lock(&nvmeq->sq_lock); 507 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 508 nvme_write_sq_db(nvmeq, true); 509 spin_unlock(&nvmeq->sq_lock); 510 } 511 512 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev *dev, 513 struct request *req) 514 { 515 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 516 return false; 517 return req->nr_integrity_segments > 1 || 518 nvme_req(req)->flags & NVME_REQ_USERCMD; 519 } 520 521 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 522 int nseg) 523 { 524 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 525 unsigned int avg_seg_size; 526 527 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 528 529 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 530 return false; 531 if (!nvmeq->qid) 532 return false; 533 if (nvme_pci_metadata_use_sgls(dev, req)) 534 return true; 535 if (!sgl_threshold || avg_seg_size < sgl_threshold) 536 return nvme_req(req)->flags & NVME_REQ_USERCMD; 537 return true; 538 } 539 540 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 541 { 542 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 543 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 544 dma_addr_t dma_addr = iod->first_dma; 545 int i; 546 547 for (i = 0; i < iod->nr_allocations; i++) { 548 __le64 *prp_list = iod->list[i].prp_list; 549 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 550 551 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 552 dma_addr = next_dma_addr; 553 } 554 } 555 556 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 557 { 558 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 559 560 if (iod->dma_len) { 561 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 562 rq_dma_dir(req)); 563 return; 564 } 565 566 WARN_ON_ONCE(!iod->sgt.nents); 567 568 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 569 570 if (iod->nr_allocations == 0) 571 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 572 iod->first_dma); 573 else if (iod->nr_allocations == 1) 574 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 575 iod->first_dma); 576 else 577 nvme_free_prps(dev, req); 578 mempool_free(iod->sgt.sgl, dev->iod_mempool); 579 } 580 581 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 582 { 583 int i; 584 struct scatterlist *sg; 585 586 for_each_sg(sgl, sg, nents, i) { 587 dma_addr_t phys = sg_phys(sg); 588 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 589 "dma_address:%pad dma_length:%d\n", 590 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 591 sg_dma_len(sg)); 592 } 593 } 594 595 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 596 struct request *req, struct nvme_rw_command *cmnd) 597 { 598 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 599 struct dma_pool *pool; 600 int length = blk_rq_payload_bytes(req); 601 struct scatterlist *sg = iod->sgt.sgl; 602 int dma_len = sg_dma_len(sg); 603 u64 dma_addr = sg_dma_address(sg); 604 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 605 __le64 *prp_list; 606 dma_addr_t prp_dma; 607 int nprps, i; 608 609 length -= (NVME_CTRL_PAGE_SIZE - offset); 610 if (length <= 0) { 611 iod->first_dma = 0; 612 goto done; 613 } 614 615 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 616 if (dma_len) { 617 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 618 } else { 619 sg = sg_next(sg); 620 dma_addr = sg_dma_address(sg); 621 dma_len = sg_dma_len(sg); 622 } 623 624 if (length <= NVME_CTRL_PAGE_SIZE) { 625 iod->first_dma = dma_addr; 626 goto done; 627 } 628 629 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 630 if (nprps <= (256 / 8)) { 631 pool = dev->prp_small_pool; 632 iod->nr_allocations = 0; 633 } else { 634 pool = dev->prp_page_pool; 635 iod->nr_allocations = 1; 636 } 637 638 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 639 if (!prp_list) { 640 iod->nr_allocations = -1; 641 return BLK_STS_RESOURCE; 642 } 643 iod->list[0].prp_list = prp_list; 644 iod->first_dma = prp_dma; 645 i = 0; 646 for (;;) { 647 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 648 __le64 *old_prp_list = prp_list; 649 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 650 if (!prp_list) 651 goto free_prps; 652 iod->list[iod->nr_allocations++].prp_list = prp_list; 653 prp_list[0] = old_prp_list[i - 1]; 654 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 655 i = 1; 656 } 657 prp_list[i++] = cpu_to_le64(dma_addr); 658 dma_len -= NVME_CTRL_PAGE_SIZE; 659 dma_addr += NVME_CTRL_PAGE_SIZE; 660 length -= NVME_CTRL_PAGE_SIZE; 661 if (length <= 0) 662 break; 663 if (dma_len > 0) 664 continue; 665 if (unlikely(dma_len < 0)) 666 goto bad_sgl; 667 sg = sg_next(sg); 668 dma_addr = sg_dma_address(sg); 669 dma_len = sg_dma_len(sg); 670 } 671 done: 672 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 673 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 674 return BLK_STS_OK; 675 free_prps: 676 nvme_free_prps(dev, req); 677 return BLK_STS_RESOURCE; 678 bad_sgl: 679 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 680 "Invalid SGL for payload:%d nents:%d\n", 681 blk_rq_payload_bytes(req), iod->sgt.nents); 682 return BLK_STS_IOERR; 683 } 684 685 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 686 struct scatterlist *sg) 687 { 688 sge->addr = cpu_to_le64(sg_dma_address(sg)); 689 sge->length = cpu_to_le32(sg_dma_len(sg)); 690 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 691 } 692 693 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 694 dma_addr_t dma_addr, int entries) 695 { 696 sge->addr = cpu_to_le64(dma_addr); 697 sge->length = cpu_to_le32(entries * sizeof(*sge)); 698 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 699 } 700 701 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 702 struct request *req, struct nvme_rw_command *cmd) 703 { 704 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 705 struct dma_pool *pool; 706 struct nvme_sgl_desc *sg_list; 707 struct scatterlist *sg = iod->sgt.sgl; 708 unsigned int entries = iod->sgt.nents; 709 dma_addr_t sgl_dma; 710 int i = 0; 711 712 /* setting the transfer type as SGL */ 713 cmd->flags = NVME_CMD_SGL_METABUF; 714 715 if (entries == 1) { 716 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 717 return BLK_STS_OK; 718 } 719 720 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 721 pool = dev->prp_small_pool; 722 iod->nr_allocations = 0; 723 } else { 724 pool = dev->prp_page_pool; 725 iod->nr_allocations = 1; 726 } 727 728 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 729 if (!sg_list) { 730 iod->nr_allocations = -1; 731 return BLK_STS_RESOURCE; 732 } 733 734 iod->list[0].sg_list = sg_list; 735 iod->first_dma = sgl_dma; 736 737 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 738 do { 739 nvme_pci_sgl_set_data(&sg_list[i++], sg); 740 sg = sg_next(sg); 741 } while (--entries > 0); 742 743 return BLK_STS_OK; 744 } 745 746 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 747 struct request *req, struct nvme_rw_command *cmnd, 748 struct bio_vec *bv) 749 { 750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 751 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 752 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 753 754 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 755 if (dma_mapping_error(dev->dev, iod->first_dma)) 756 return BLK_STS_RESOURCE; 757 iod->dma_len = bv->bv_len; 758 759 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 760 if (bv->bv_len > first_prp_len) 761 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 762 else 763 cmnd->dptr.prp2 = 0; 764 return BLK_STS_OK; 765 } 766 767 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 768 struct request *req, struct nvme_rw_command *cmnd, 769 struct bio_vec *bv) 770 { 771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 772 773 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 774 if (dma_mapping_error(dev->dev, iod->first_dma)) 775 return BLK_STS_RESOURCE; 776 iod->dma_len = bv->bv_len; 777 778 cmnd->flags = NVME_CMD_SGL_METABUF; 779 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 780 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 781 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 782 return BLK_STS_OK; 783 } 784 785 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 786 struct nvme_command *cmnd) 787 { 788 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 789 blk_status_t ret = BLK_STS_RESOURCE; 790 int rc; 791 792 if (blk_rq_nr_phys_segments(req) == 1) { 793 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 794 struct bio_vec bv = req_bvec(req); 795 796 if (!is_pci_p2pdma_page(bv.bv_page)) { 797 if (!nvme_pci_metadata_use_sgls(dev, req) && 798 (bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1)) + 799 bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 800 return nvme_setup_prp_simple(dev, req, 801 &cmnd->rw, &bv); 802 803 if (nvmeq->qid && sgl_threshold && 804 nvme_ctrl_sgl_supported(&dev->ctrl)) 805 return nvme_setup_sgl_simple(dev, req, 806 &cmnd->rw, &bv); 807 } 808 } 809 810 iod->dma_len = 0; 811 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 812 if (!iod->sgt.sgl) 813 return BLK_STS_RESOURCE; 814 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 815 iod->sgt.orig_nents = blk_rq_map_sg(req, iod->sgt.sgl); 816 if (!iod->sgt.orig_nents) 817 goto out_free_sg; 818 819 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 820 DMA_ATTR_NO_WARN); 821 if (rc) { 822 if (rc == -EREMOTEIO) 823 ret = BLK_STS_TARGET; 824 goto out_free_sg; 825 } 826 827 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 828 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 829 else 830 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 831 if (ret != BLK_STS_OK) 832 goto out_unmap_sg; 833 return BLK_STS_OK; 834 835 out_unmap_sg: 836 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 837 out_free_sg: 838 mempool_free(iod->sgt.sgl, dev->iod_mempool); 839 return ret; 840 } 841 842 static blk_status_t nvme_pci_setup_meta_sgls(struct nvme_dev *dev, 843 struct request *req) 844 { 845 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 846 struct nvme_rw_command *cmnd = &iod->cmd.rw; 847 struct nvme_sgl_desc *sg_list; 848 struct scatterlist *sgl, *sg; 849 unsigned int entries; 850 dma_addr_t sgl_dma; 851 int rc, i; 852 853 iod->meta_sgt.sgl = mempool_alloc(dev->iod_meta_mempool, GFP_ATOMIC); 854 if (!iod->meta_sgt.sgl) 855 return BLK_STS_RESOURCE; 856 857 sg_init_table(iod->meta_sgt.sgl, req->nr_integrity_segments); 858 iod->meta_sgt.orig_nents = blk_rq_map_integrity_sg(req, 859 iod->meta_sgt.sgl); 860 if (!iod->meta_sgt.orig_nents) 861 goto out_free_sg; 862 863 rc = dma_map_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 864 DMA_ATTR_NO_WARN); 865 if (rc) 866 goto out_free_sg; 867 868 sg_list = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, &sgl_dma); 869 if (!sg_list) 870 goto out_unmap_sg; 871 872 entries = iod->meta_sgt.nents; 873 iod->meta_list.sg_list = sg_list; 874 iod->meta_dma = sgl_dma; 875 876 cmnd->flags = NVME_CMD_SGL_METASEG; 877 cmnd->metadata = cpu_to_le64(sgl_dma); 878 879 sgl = iod->meta_sgt.sgl; 880 if (entries == 1) { 881 nvme_pci_sgl_set_data(sg_list, sgl); 882 return BLK_STS_OK; 883 } 884 885 sgl_dma += sizeof(*sg_list); 886 nvme_pci_sgl_set_seg(sg_list, sgl_dma, entries); 887 for_each_sg(sgl, sg, entries, i) 888 nvme_pci_sgl_set_data(&sg_list[i + 1], sg); 889 890 return BLK_STS_OK; 891 892 out_unmap_sg: 893 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 894 out_free_sg: 895 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 896 return BLK_STS_RESOURCE; 897 } 898 899 static blk_status_t nvme_pci_setup_meta_mptr(struct nvme_dev *dev, 900 struct request *req) 901 { 902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 903 struct bio_vec bv = rq_integrity_vec(req); 904 struct nvme_command *cmnd = &iod->cmd; 905 906 iod->meta_dma = dma_map_bvec(dev->dev, &bv, rq_dma_dir(req), 0); 907 if (dma_mapping_error(dev->dev, iod->meta_dma)) 908 return BLK_STS_IOERR; 909 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 910 return BLK_STS_OK; 911 } 912 913 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req) 914 { 915 if (nvme_pci_metadata_use_sgls(dev, req)) 916 return nvme_pci_setup_meta_sgls(dev, req); 917 return nvme_pci_setup_meta_mptr(dev, req); 918 } 919 920 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 921 { 922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 923 blk_status_t ret; 924 925 iod->aborted = false; 926 iod->nr_allocations = -1; 927 iod->sgt.nents = 0; 928 iod->meta_sgt.nents = 0; 929 930 ret = nvme_setup_cmd(req->q->queuedata, req); 931 if (ret) 932 return ret; 933 934 if (blk_rq_nr_phys_segments(req)) { 935 ret = nvme_map_data(dev, req, &iod->cmd); 936 if (ret) 937 goto out_free_cmd; 938 } 939 940 if (blk_integrity_rq(req)) { 941 ret = nvme_map_metadata(dev, req); 942 if (ret) 943 goto out_unmap_data; 944 } 945 946 nvme_start_request(req); 947 return BLK_STS_OK; 948 out_unmap_data: 949 if (blk_rq_nr_phys_segments(req)) 950 nvme_unmap_data(dev, req); 951 out_free_cmd: 952 nvme_cleanup_cmd(req); 953 return ret; 954 } 955 956 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 957 const struct blk_mq_queue_data *bd) 958 { 959 struct nvme_queue *nvmeq = hctx->driver_data; 960 struct nvme_dev *dev = nvmeq->dev; 961 struct request *req = bd->rq; 962 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 963 blk_status_t ret; 964 965 /* 966 * We should not need to do this, but we're still using this to 967 * ensure we can drain requests on a dying queue. 968 */ 969 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 970 return BLK_STS_IOERR; 971 972 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 973 return nvme_fail_nonready_command(&dev->ctrl, req); 974 975 ret = nvme_prep_rq(dev, req); 976 if (unlikely(ret)) 977 return ret; 978 spin_lock(&nvmeq->sq_lock); 979 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 980 nvme_write_sq_db(nvmeq, bd->last); 981 spin_unlock(&nvmeq->sq_lock); 982 return BLK_STS_OK; 983 } 984 985 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 986 { 987 struct request *req; 988 989 if (rq_list_empty(rqlist)) 990 return; 991 992 spin_lock(&nvmeq->sq_lock); 993 while ((req = rq_list_pop(rqlist))) { 994 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 995 996 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 997 } 998 nvme_write_sq_db(nvmeq, true); 999 spin_unlock(&nvmeq->sq_lock); 1000 } 1001 1002 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1003 { 1004 /* 1005 * We should not need to do this, but we're still using this to 1006 * ensure we can drain requests on a dying queue. 1007 */ 1008 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1009 return false; 1010 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1011 return false; 1012 1013 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 1014 } 1015 1016 static void nvme_queue_rqs(struct rq_list *rqlist) 1017 { 1018 struct rq_list submit_list = { }; 1019 struct rq_list requeue_list = { }; 1020 struct nvme_queue *nvmeq = NULL; 1021 struct request *req; 1022 1023 while ((req = rq_list_pop(rqlist))) { 1024 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1025 nvme_submit_cmds(nvmeq, &submit_list); 1026 nvmeq = req->mq_hctx->driver_data; 1027 1028 if (nvme_prep_rq_batch(nvmeq, req)) 1029 rq_list_add_tail(&submit_list, req); 1030 else 1031 rq_list_add_tail(&requeue_list, req); 1032 } 1033 1034 if (nvmeq) 1035 nvme_submit_cmds(nvmeq, &submit_list); 1036 *rqlist = requeue_list; 1037 } 1038 1039 static __always_inline void nvme_unmap_metadata(struct nvme_dev *dev, 1040 struct request *req) 1041 { 1042 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1043 1044 if (!iod->meta_sgt.nents) { 1045 dma_unmap_page(dev->dev, iod->meta_dma, 1046 rq_integrity_vec(req).bv_len, 1047 rq_dma_dir(req)); 1048 return; 1049 } 1050 1051 dma_pool_free(dev->prp_small_pool, iod->meta_list.sg_list, 1052 iod->meta_dma); 1053 dma_unmap_sgtable(dev->dev, &iod->meta_sgt, rq_dma_dir(req), 0); 1054 mempool_free(iod->meta_sgt.sgl, dev->iod_meta_mempool); 1055 } 1056 1057 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1058 { 1059 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1060 struct nvme_dev *dev = nvmeq->dev; 1061 1062 if (blk_integrity_rq(req)) 1063 nvme_unmap_metadata(dev, req); 1064 1065 if (blk_rq_nr_phys_segments(req)) 1066 nvme_unmap_data(dev, req); 1067 } 1068 1069 static void nvme_pci_complete_rq(struct request *req) 1070 { 1071 nvme_pci_unmap_rq(req); 1072 nvme_complete_rq(req); 1073 } 1074 1075 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1076 { 1077 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1078 } 1079 1080 /* We read the CQE phase first to check if the rest of the entry is valid */ 1081 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1082 { 1083 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1084 1085 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1086 } 1087 1088 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1089 { 1090 u16 head = nvmeq->cq_head; 1091 1092 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1093 nvmeq->dbbuf_cq_ei)) 1094 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1095 } 1096 1097 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1098 { 1099 if (!nvmeq->qid) 1100 return nvmeq->dev->admin_tagset.tags[0]; 1101 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1102 } 1103 1104 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1105 struct io_comp_batch *iob, u16 idx) 1106 { 1107 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1108 __u16 command_id = READ_ONCE(cqe->command_id); 1109 struct request *req; 1110 1111 /* 1112 * AEN requests are special as they don't time out and can 1113 * survive any kind of queue freeze and often don't respond to 1114 * aborts. We don't even bother to allocate a struct request 1115 * for them but rather special case them here. 1116 */ 1117 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1118 nvme_complete_async_event(&nvmeq->dev->ctrl, 1119 cqe->status, &cqe->result); 1120 return; 1121 } 1122 1123 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1124 if (unlikely(!req)) { 1125 dev_warn(nvmeq->dev->ctrl.device, 1126 "invalid id %d completed on queue %d\n", 1127 command_id, le16_to_cpu(cqe->sq_id)); 1128 return; 1129 } 1130 1131 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1132 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1133 !blk_mq_add_to_batch(req, iob, 1134 nvme_req(req)->status != NVME_SC_SUCCESS, 1135 nvme_pci_complete_batch)) 1136 nvme_pci_complete_rq(req); 1137 } 1138 1139 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1140 { 1141 u32 tmp = nvmeq->cq_head + 1; 1142 1143 if (tmp == nvmeq->q_depth) { 1144 nvmeq->cq_head = 0; 1145 nvmeq->cq_phase ^= 1; 1146 } else { 1147 nvmeq->cq_head = tmp; 1148 } 1149 } 1150 1151 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, 1152 struct io_comp_batch *iob) 1153 { 1154 bool found = false; 1155 1156 while (nvme_cqe_pending(nvmeq)) { 1157 found = true; 1158 /* 1159 * load-load control dependency between phase and the rest of 1160 * the cqe requires a full read memory barrier 1161 */ 1162 dma_rmb(); 1163 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1164 nvme_update_cq_head(nvmeq); 1165 } 1166 1167 if (found) 1168 nvme_ring_cq_doorbell(nvmeq); 1169 return found; 1170 } 1171 1172 static irqreturn_t nvme_irq(int irq, void *data) 1173 { 1174 struct nvme_queue *nvmeq = data; 1175 DEFINE_IO_COMP_BATCH(iob); 1176 1177 if (nvme_poll_cq(nvmeq, &iob)) { 1178 if (!rq_list_empty(&iob.req_list)) 1179 nvme_pci_complete_batch(&iob); 1180 return IRQ_HANDLED; 1181 } 1182 return IRQ_NONE; 1183 } 1184 1185 static irqreturn_t nvme_irq_check(int irq, void *data) 1186 { 1187 struct nvme_queue *nvmeq = data; 1188 1189 if (nvme_cqe_pending(nvmeq)) 1190 return IRQ_WAKE_THREAD; 1191 return IRQ_NONE; 1192 } 1193 1194 /* 1195 * Poll for completions for any interrupt driven queue 1196 * Can be called from any context. 1197 */ 1198 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1199 { 1200 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1201 1202 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1203 1204 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1205 spin_lock(&nvmeq->cq_poll_lock); 1206 nvme_poll_cq(nvmeq, NULL); 1207 spin_unlock(&nvmeq->cq_poll_lock); 1208 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1209 } 1210 1211 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1212 { 1213 struct nvme_queue *nvmeq = hctx->driver_data; 1214 bool found; 1215 1216 if (!nvme_cqe_pending(nvmeq)) 1217 return 0; 1218 1219 spin_lock(&nvmeq->cq_poll_lock); 1220 found = nvme_poll_cq(nvmeq, iob); 1221 spin_unlock(&nvmeq->cq_poll_lock); 1222 1223 return found; 1224 } 1225 1226 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1227 { 1228 struct nvme_dev *dev = to_nvme_dev(ctrl); 1229 struct nvme_queue *nvmeq = &dev->queues[0]; 1230 struct nvme_command c = { }; 1231 1232 c.common.opcode = nvme_admin_async_event; 1233 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1234 1235 spin_lock(&nvmeq->sq_lock); 1236 nvme_sq_copy_cmd(nvmeq, &c); 1237 nvme_write_sq_db(nvmeq, true); 1238 spin_unlock(&nvmeq->sq_lock); 1239 } 1240 1241 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1242 { 1243 struct nvme_dev *dev = to_nvme_dev(ctrl); 1244 int ret = 0; 1245 1246 /* 1247 * Taking the shutdown_lock ensures the BAR mapping is not being 1248 * altered by reset_work. Holding this lock before the RESETTING state 1249 * change, if successful, also ensures nvme_remove won't be able to 1250 * proceed to iounmap until we're done. 1251 */ 1252 mutex_lock(&dev->shutdown_lock); 1253 if (!dev->bar_mapped_size) { 1254 ret = -ENODEV; 1255 goto unlock; 1256 } 1257 1258 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1259 ret = -EBUSY; 1260 goto unlock; 1261 } 1262 1263 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1264 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1265 1266 /* 1267 * Read controller status to flush the previous write and trigger a 1268 * pcie read error. 1269 */ 1270 readl(dev->bar + NVME_REG_CSTS); 1271 unlock: 1272 mutex_unlock(&dev->shutdown_lock); 1273 return ret; 1274 } 1275 1276 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1277 { 1278 struct nvme_command c = { }; 1279 1280 c.delete_queue.opcode = opcode; 1281 c.delete_queue.qid = cpu_to_le16(id); 1282 1283 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1284 } 1285 1286 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1287 struct nvme_queue *nvmeq, s16 vector) 1288 { 1289 struct nvme_command c = { }; 1290 int flags = NVME_QUEUE_PHYS_CONTIG; 1291 1292 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1293 flags |= NVME_CQ_IRQ_ENABLED; 1294 1295 /* 1296 * Note: we (ab)use the fact that the prp fields survive if no data 1297 * is attached to the request. 1298 */ 1299 c.create_cq.opcode = nvme_admin_create_cq; 1300 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1301 c.create_cq.cqid = cpu_to_le16(qid); 1302 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1303 c.create_cq.cq_flags = cpu_to_le16(flags); 1304 c.create_cq.irq_vector = cpu_to_le16(vector); 1305 1306 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1307 } 1308 1309 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1310 struct nvme_queue *nvmeq) 1311 { 1312 struct nvme_ctrl *ctrl = &dev->ctrl; 1313 struct nvme_command c = { }; 1314 int flags = NVME_QUEUE_PHYS_CONTIG; 1315 1316 /* 1317 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1318 * set. Since URGENT priority is zeroes, it makes all queues 1319 * URGENT. 1320 */ 1321 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1322 flags |= NVME_SQ_PRIO_MEDIUM; 1323 1324 /* 1325 * Note: we (ab)use the fact that the prp fields survive if no data 1326 * is attached to the request. 1327 */ 1328 c.create_sq.opcode = nvme_admin_create_sq; 1329 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1330 c.create_sq.sqid = cpu_to_le16(qid); 1331 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1332 c.create_sq.sq_flags = cpu_to_le16(flags); 1333 c.create_sq.cqid = cpu_to_le16(qid); 1334 1335 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1336 } 1337 1338 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1339 { 1340 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1341 } 1342 1343 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1344 { 1345 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1346 } 1347 1348 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1349 { 1350 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1351 1352 dev_warn(nvmeq->dev->ctrl.device, 1353 "Abort status: 0x%x", nvme_req(req)->status); 1354 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1355 blk_mq_free_request(req); 1356 return RQ_END_IO_NONE; 1357 } 1358 1359 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1360 { 1361 /* If true, indicates loss of adapter communication, possibly by a 1362 * NVMe Subsystem reset. 1363 */ 1364 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1365 1366 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1367 switch (nvme_ctrl_state(&dev->ctrl)) { 1368 case NVME_CTRL_RESETTING: 1369 case NVME_CTRL_CONNECTING: 1370 return false; 1371 default: 1372 break; 1373 } 1374 1375 /* We shouldn't reset unless the controller is on fatal error state 1376 * _or_ if we lost the communication with it. 1377 */ 1378 if (!(csts & NVME_CSTS_CFS) && !nssro) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1385 { 1386 /* Read a config register to help see what died. */ 1387 u16 pci_status; 1388 int result; 1389 1390 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1391 &pci_status); 1392 if (result == PCIBIOS_SUCCESSFUL) 1393 dev_warn(dev->ctrl.device, 1394 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1395 csts, pci_status); 1396 else 1397 dev_warn(dev->ctrl.device, 1398 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1399 csts, result); 1400 1401 if (csts != ~0) 1402 return; 1403 1404 dev_warn(dev->ctrl.device, 1405 "Does your device have a faulty power saving mode enabled?\n"); 1406 dev_warn(dev->ctrl.device, 1407 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1408 } 1409 1410 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1411 { 1412 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1413 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1414 struct nvme_dev *dev = nvmeq->dev; 1415 struct request *abort_req; 1416 struct nvme_command cmd = { }; 1417 struct pci_dev *pdev = to_pci_dev(dev->dev); 1418 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1419 u8 opcode; 1420 1421 /* 1422 * Shutdown the device immediately if we see it is disconnected. This 1423 * unblocks PCIe error handling if the nvme driver is waiting in 1424 * error_resume for a device that has been removed. We can't unbind the 1425 * driver while the driver's error callback is waiting to complete, so 1426 * we're relying on a timeout to break that deadlock if a removal 1427 * occurs while reset work is running. 1428 */ 1429 if (pci_dev_is_disconnected(pdev)) 1430 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1431 if (nvme_state_terminal(&dev->ctrl)) 1432 goto disable; 1433 1434 /* If PCI error recovery process is happening, we cannot reset or 1435 * the recovery mechanism will surely fail. 1436 */ 1437 mb(); 1438 if (pci_channel_offline(pdev)) 1439 return BLK_EH_RESET_TIMER; 1440 1441 /* 1442 * Reset immediately if the controller is failed 1443 */ 1444 if (nvme_should_reset(dev, csts)) { 1445 nvme_warn_reset(dev, csts); 1446 goto disable; 1447 } 1448 1449 /* 1450 * Did we miss an interrupt? 1451 */ 1452 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1453 nvme_poll(req->mq_hctx, NULL); 1454 else 1455 nvme_poll_irqdisable(nvmeq); 1456 1457 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1458 dev_warn(dev->ctrl.device, 1459 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1460 req->tag, nvme_cid(req), nvmeq->qid); 1461 return BLK_EH_DONE; 1462 } 1463 1464 /* 1465 * Shutdown immediately if controller times out while starting. The 1466 * reset work will see the pci device disabled when it gets the forced 1467 * cancellation error. All outstanding requests are completed on 1468 * shutdown, so we return BLK_EH_DONE. 1469 */ 1470 switch (nvme_ctrl_state(&dev->ctrl)) { 1471 case NVME_CTRL_CONNECTING: 1472 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1473 fallthrough; 1474 case NVME_CTRL_DELETING: 1475 dev_warn_ratelimited(dev->ctrl.device, 1476 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1477 req->tag, nvme_cid(req), nvmeq->qid); 1478 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1479 nvme_dev_disable(dev, true); 1480 return BLK_EH_DONE; 1481 case NVME_CTRL_RESETTING: 1482 return BLK_EH_RESET_TIMER; 1483 default: 1484 break; 1485 } 1486 1487 /* 1488 * Shutdown the controller immediately and schedule a reset if the 1489 * command was already aborted once before and still hasn't been 1490 * returned to the driver, or if this is the admin queue. 1491 */ 1492 opcode = nvme_req(req)->cmd->common.opcode; 1493 if (!nvmeq->qid || iod->aborted) { 1494 dev_warn(dev->ctrl.device, 1495 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1496 req->tag, nvme_cid(req), opcode, 1497 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1498 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1499 goto disable; 1500 } 1501 1502 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1503 atomic_inc(&dev->ctrl.abort_limit); 1504 return BLK_EH_RESET_TIMER; 1505 } 1506 iod->aborted = true; 1507 1508 cmd.abort.opcode = nvme_admin_abort_cmd; 1509 cmd.abort.cid = nvme_cid(req); 1510 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1511 1512 dev_warn(nvmeq->dev->ctrl.device, 1513 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1514 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1515 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1516 blk_rq_bytes(req)); 1517 1518 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1519 BLK_MQ_REQ_NOWAIT); 1520 if (IS_ERR(abort_req)) { 1521 atomic_inc(&dev->ctrl.abort_limit); 1522 return BLK_EH_RESET_TIMER; 1523 } 1524 nvme_init_request(abort_req, &cmd); 1525 1526 abort_req->end_io = abort_endio; 1527 abort_req->end_io_data = NULL; 1528 blk_execute_rq_nowait(abort_req, false); 1529 1530 /* 1531 * The aborted req will be completed on receiving the abort req. 1532 * We enable the timer again. If hit twice, it'll cause a device reset, 1533 * as the device then is in a faulty state. 1534 */ 1535 return BLK_EH_RESET_TIMER; 1536 1537 disable: 1538 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1539 if (nvme_state_terminal(&dev->ctrl)) 1540 nvme_dev_disable(dev, true); 1541 return BLK_EH_DONE; 1542 } 1543 1544 nvme_dev_disable(dev, false); 1545 if (nvme_try_sched_reset(&dev->ctrl)) 1546 nvme_unquiesce_io_queues(&dev->ctrl); 1547 return BLK_EH_DONE; 1548 } 1549 1550 static void nvme_free_queue(struct nvme_queue *nvmeq) 1551 { 1552 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1553 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1554 if (!nvmeq->sq_cmds) 1555 return; 1556 1557 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1558 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1559 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1560 } else { 1561 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1562 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1563 } 1564 } 1565 1566 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1567 { 1568 int i; 1569 1570 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1571 dev->ctrl.queue_count--; 1572 nvme_free_queue(&dev->queues[i]); 1573 } 1574 } 1575 1576 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1577 { 1578 struct nvme_queue *nvmeq = &dev->queues[qid]; 1579 1580 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1581 return; 1582 1583 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1584 mb(); 1585 1586 nvmeq->dev->online_queues--; 1587 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1588 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1589 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1590 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1591 } 1592 1593 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1594 { 1595 int i; 1596 1597 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1598 nvme_suspend_queue(dev, i); 1599 } 1600 1601 /* 1602 * Called only on a device that has been disabled and after all other threads 1603 * that can check this device's completion queues have synced, except 1604 * nvme_poll(). This is the last chance for the driver to see a natural 1605 * completion before nvme_cancel_request() terminates all incomplete requests. 1606 */ 1607 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1608 { 1609 int i; 1610 1611 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1612 spin_lock(&dev->queues[i].cq_poll_lock); 1613 nvme_poll_cq(&dev->queues[i], NULL); 1614 spin_unlock(&dev->queues[i].cq_poll_lock); 1615 } 1616 } 1617 1618 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1619 int entry_size) 1620 { 1621 int q_depth = dev->q_depth; 1622 unsigned q_size_aligned = roundup(q_depth * entry_size, 1623 NVME_CTRL_PAGE_SIZE); 1624 1625 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1626 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1627 1628 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1629 q_depth = div_u64(mem_per_q, entry_size); 1630 1631 /* 1632 * Ensure the reduced q_depth is above some threshold where it 1633 * would be better to map queues in system memory with the 1634 * original depth 1635 */ 1636 if (q_depth < 64) 1637 return -ENOMEM; 1638 } 1639 1640 return q_depth; 1641 } 1642 1643 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1644 int qid) 1645 { 1646 struct pci_dev *pdev = to_pci_dev(dev->dev); 1647 1648 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1649 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1650 if (nvmeq->sq_cmds) { 1651 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1652 nvmeq->sq_cmds); 1653 if (nvmeq->sq_dma_addr) { 1654 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1655 return 0; 1656 } 1657 1658 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1659 } 1660 } 1661 1662 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1663 &nvmeq->sq_dma_addr, GFP_KERNEL); 1664 if (!nvmeq->sq_cmds) 1665 return -ENOMEM; 1666 return 0; 1667 } 1668 1669 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1670 { 1671 struct nvme_queue *nvmeq = &dev->queues[qid]; 1672 1673 if (dev->ctrl.queue_count > qid) 1674 return 0; 1675 1676 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1677 nvmeq->q_depth = depth; 1678 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1679 &nvmeq->cq_dma_addr, GFP_KERNEL); 1680 if (!nvmeq->cqes) 1681 goto free_nvmeq; 1682 1683 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1684 goto free_cqdma; 1685 1686 nvmeq->dev = dev; 1687 spin_lock_init(&nvmeq->sq_lock); 1688 spin_lock_init(&nvmeq->cq_poll_lock); 1689 nvmeq->cq_head = 0; 1690 nvmeq->cq_phase = 1; 1691 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1692 nvmeq->qid = qid; 1693 dev->ctrl.queue_count++; 1694 1695 return 0; 1696 1697 free_cqdma: 1698 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1699 nvmeq->cq_dma_addr); 1700 free_nvmeq: 1701 return -ENOMEM; 1702 } 1703 1704 static int queue_request_irq(struct nvme_queue *nvmeq) 1705 { 1706 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1707 int nr = nvmeq->dev->ctrl.instance; 1708 1709 if (use_threaded_interrupts) { 1710 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1711 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1712 } else { 1713 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1714 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1715 } 1716 } 1717 1718 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1719 { 1720 struct nvme_dev *dev = nvmeq->dev; 1721 1722 nvmeq->sq_tail = 0; 1723 nvmeq->last_sq_tail = 0; 1724 nvmeq->cq_head = 0; 1725 nvmeq->cq_phase = 1; 1726 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1727 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1728 nvme_dbbuf_init(dev, nvmeq, qid); 1729 dev->online_queues++; 1730 wmb(); /* ensure the first interrupt sees the initialization */ 1731 } 1732 1733 /* 1734 * Try getting shutdown_lock while setting up IO queues. 1735 */ 1736 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1737 { 1738 /* 1739 * Give up if the lock is being held by nvme_dev_disable. 1740 */ 1741 if (!mutex_trylock(&dev->shutdown_lock)) 1742 return -ENODEV; 1743 1744 /* 1745 * Controller is in wrong state, fail early. 1746 */ 1747 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1748 mutex_unlock(&dev->shutdown_lock); 1749 return -ENODEV; 1750 } 1751 1752 return 0; 1753 } 1754 1755 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1756 { 1757 struct nvme_dev *dev = nvmeq->dev; 1758 int result; 1759 u16 vector = 0; 1760 1761 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1762 1763 /* 1764 * A queue's vector matches the queue identifier unless the controller 1765 * has only one vector available. 1766 */ 1767 if (!polled) 1768 vector = dev->num_vecs == 1 ? 0 : qid; 1769 else 1770 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1771 1772 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1773 if (result) 1774 return result; 1775 1776 result = adapter_alloc_sq(dev, qid, nvmeq); 1777 if (result < 0) 1778 return result; 1779 if (result) 1780 goto release_cq; 1781 1782 nvmeq->cq_vector = vector; 1783 1784 result = nvme_setup_io_queues_trylock(dev); 1785 if (result) 1786 return result; 1787 nvme_init_queue(nvmeq, qid); 1788 if (!polled) { 1789 result = queue_request_irq(nvmeq); 1790 if (result < 0) 1791 goto release_sq; 1792 } 1793 1794 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1795 mutex_unlock(&dev->shutdown_lock); 1796 return result; 1797 1798 release_sq: 1799 dev->online_queues--; 1800 mutex_unlock(&dev->shutdown_lock); 1801 adapter_delete_sq(dev, qid); 1802 release_cq: 1803 adapter_delete_cq(dev, qid); 1804 return result; 1805 } 1806 1807 static const struct blk_mq_ops nvme_mq_admin_ops = { 1808 .queue_rq = nvme_queue_rq, 1809 .complete = nvme_pci_complete_rq, 1810 .init_hctx = nvme_admin_init_hctx, 1811 .init_request = nvme_pci_init_request, 1812 .timeout = nvme_timeout, 1813 }; 1814 1815 static const struct blk_mq_ops nvme_mq_ops = { 1816 .queue_rq = nvme_queue_rq, 1817 .queue_rqs = nvme_queue_rqs, 1818 .complete = nvme_pci_complete_rq, 1819 .commit_rqs = nvme_commit_rqs, 1820 .init_hctx = nvme_init_hctx, 1821 .init_request = nvme_pci_init_request, 1822 .map_queues = nvme_pci_map_queues, 1823 .timeout = nvme_timeout, 1824 .poll = nvme_poll, 1825 }; 1826 1827 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1828 { 1829 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1830 /* 1831 * If the controller was reset during removal, it's possible 1832 * user requests may be waiting on a stopped queue. Start the 1833 * queue to flush these to completion. 1834 */ 1835 nvme_unquiesce_admin_queue(&dev->ctrl); 1836 nvme_remove_admin_tag_set(&dev->ctrl); 1837 } 1838 } 1839 1840 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1841 { 1842 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1843 } 1844 1845 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1846 { 1847 struct pci_dev *pdev = to_pci_dev(dev->dev); 1848 1849 if (size <= dev->bar_mapped_size) 1850 return 0; 1851 if (size > pci_resource_len(pdev, 0)) 1852 return -ENOMEM; 1853 if (dev->bar) 1854 iounmap(dev->bar); 1855 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1856 if (!dev->bar) { 1857 dev->bar_mapped_size = 0; 1858 return -ENOMEM; 1859 } 1860 dev->bar_mapped_size = size; 1861 dev->dbs = dev->bar + NVME_REG_DBS; 1862 1863 return 0; 1864 } 1865 1866 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1867 { 1868 int result; 1869 u32 aqa; 1870 struct nvme_queue *nvmeq; 1871 1872 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1873 if (result < 0) 1874 return result; 1875 1876 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1877 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1878 1879 if (dev->subsystem && 1880 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1881 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1882 1883 /* 1884 * If the device has been passed off to us in an enabled state, just 1885 * clear the enabled bit. The spec says we should set the 'shutdown 1886 * notification bits', but doing so may cause the device to complete 1887 * commands to the admin queue ... and we don't know what memory that 1888 * might be pointing at! 1889 */ 1890 result = nvme_disable_ctrl(&dev->ctrl, false); 1891 if (result < 0) 1892 return result; 1893 1894 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1895 if (result) 1896 return result; 1897 1898 dev->ctrl.numa_node = dev_to_node(dev->dev); 1899 1900 nvmeq = &dev->queues[0]; 1901 aqa = nvmeq->q_depth - 1; 1902 aqa |= aqa << 16; 1903 1904 writel(aqa, dev->bar + NVME_REG_AQA); 1905 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1906 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1907 1908 result = nvme_enable_ctrl(&dev->ctrl); 1909 if (result) 1910 return result; 1911 1912 nvmeq->cq_vector = 0; 1913 nvme_init_queue(nvmeq, 0); 1914 result = queue_request_irq(nvmeq); 1915 if (result) { 1916 dev->online_queues--; 1917 return result; 1918 } 1919 1920 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1921 return result; 1922 } 1923 1924 static int nvme_create_io_queues(struct nvme_dev *dev) 1925 { 1926 unsigned i, max, rw_queues; 1927 int ret = 0; 1928 1929 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1930 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1931 ret = -ENOMEM; 1932 break; 1933 } 1934 } 1935 1936 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1937 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1938 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1939 dev->io_queues[HCTX_TYPE_READ]; 1940 } else { 1941 rw_queues = max; 1942 } 1943 1944 for (i = dev->online_queues; i <= max; i++) { 1945 bool polled = i > rw_queues; 1946 1947 ret = nvme_create_queue(&dev->queues[i], i, polled); 1948 if (ret) 1949 break; 1950 } 1951 1952 /* 1953 * Ignore failing Create SQ/CQ commands, we can continue with less 1954 * than the desired amount of queues, and even a controller without 1955 * I/O queues can still be used to issue admin commands. This might 1956 * be useful to upgrade a buggy firmware for example. 1957 */ 1958 return ret >= 0 ? 0 : ret; 1959 } 1960 1961 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1962 { 1963 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1964 1965 return 1ULL << (12 + 4 * szu); 1966 } 1967 1968 static u32 nvme_cmb_size(struct nvme_dev *dev) 1969 { 1970 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1971 } 1972 1973 static void nvme_map_cmb(struct nvme_dev *dev) 1974 { 1975 u64 size, offset; 1976 resource_size_t bar_size; 1977 struct pci_dev *pdev = to_pci_dev(dev->dev); 1978 int bar; 1979 1980 if (dev->cmb_size) 1981 return; 1982 1983 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1984 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1985 1986 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1987 if (!dev->cmbsz) 1988 return; 1989 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1990 1991 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1992 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1993 bar = NVME_CMB_BIR(dev->cmbloc); 1994 bar_size = pci_resource_len(pdev, bar); 1995 1996 if (offset > bar_size) 1997 return; 1998 1999 /* 2000 * Controllers may support a CMB size larger than their BAR, for 2001 * example, due to being behind a bridge. Reduce the CMB to the 2002 * reported size of the BAR 2003 */ 2004 size = min(size, bar_size - offset); 2005 2006 if (!IS_ALIGNED(size, memremap_compat_align()) || 2007 !IS_ALIGNED(pci_resource_start(pdev, bar), 2008 memremap_compat_align())) 2009 return; 2010 2011 /* 2012 * Tell the controller about the host side address mapping the CMB, 2013 * and enable CMB decoding for the NVMe 1.4+ scheme: 2014 */ 2015 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 2016 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 2017 (pci_bus_address(pdev, bar) + offset), 2018 dev->bar + NVME_REG_CMBMSC); 2019 } 2020 2021 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2022 dev_warn(dev->ctrl.device, 2023 "failed to register the CMB\n"); 2024 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); 2025 return; 2026 } 2027 2028 dev->cmb_size = size; 2029 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2030 2031 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2032 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2033 pci_p2pmem_publish(pdev, true); 2034 2035 nvme_update_attrs(dev); 2036 } 2037 2038 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2039 { 2040 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2041 u64 dma_addr = dev->host_mem_descs_dma; 2042 struct nvme_command c = { }; 2043 int ret; 2044 2045 c.features.opcode = nvme_admin_set_features; 2046 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2047 c.features.dword11 = cpu_to_le32(bits); 2048 c.features.dword12 = cpu_to_le32(host_mem_size); 2049 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2050 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2051 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2052 2053 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2054 if (ret) { 2055 dev_warn(dev->ctrl.device, 2056 "failed to set host mem (err %d, flags %#x).\n", 2057 ret, bits); 2058 } else 2059 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2060 2061 return ret; 2062 } 2063 2064 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2065 { 2066 int i; 2067 2068 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2069 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2070 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2071 2072 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2073 le64_to_cpu(desc->addr), 2074 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2075 } 2076 2077 kfree(dev->host_mem_desc_bufs); 2078 dev->host_mem_desc_bufs = NULL; 2079 } 2080 2081 static void nvme_free_host_mem(struct nvme_dev *dev) 2082 { 2083 if (dev->hmb_sgt) 2084 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2085 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2086 else 2087 nvme_free_host_mem_multi(dev); 2088 2089 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2090 dev->host_mem_descs, dev->host_mem_descs_dma); 2091 dev->host_mem_descs = NULL; 2092 dev->host_mem_descs_size = 0; 2093 dev->nr_host_mem_descs = 0; 2094 } 2095 2096 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2097 { 2098 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2099 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2100 if (!dev->hmb_sgt) 2101 return -ENOMEM; 2102 2103 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2104 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2105 GFP_KERNEL); 2106 if (!dev->host_mem_descs) { 2107 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, 2108 DMA_BIDIRECTIONAL); 2109 dev->hmb_sgt = NULL; 2110 return -ENOMEM; 2111 } 2112 dev->host_mem_size = size; 2113 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2114 dev->nr_host_mem_descs = 1; 2115 2116 dev->host_mem_descs[0].addr = 2117 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2118 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2119 return 0; 2120 } 2121 2122 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2123 u32 chunk_size) 2124 { 2125 struct nvme_host_mem_buf_desc *descs; 2126 u32 max_entries, len, descs_size; 2127 dma_addr_t descs_dma; 2128 int i = 0; 2129 void **bufs; 2130 u64 size, tmp; 2131 2132 tmp = (preferred + chunk_size - 1); 2133 do_div(tmp, chunk_size); 2134 max_entries = tmp; 2135 2136 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2137 max_entries = dev->ctrl.hmmaxd; 2138 2139 descs_size = max_entries * sizeof(*descs); 2140 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2141 GFP_KERNEL); 2142 if (!descs) 2143 goto out; 2144 2145 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2146 if (!bufs) 2147 goto out_free_descs; 2148 2149 for (size = 0; size < preferred && i < max_entries; size += len) { 2150 dma_addr_t dma_addr; 2151 2152 len = min_t(u64, chunk_size, preferred - size); 2153 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2154 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2155 if (!bufs[i]) 2156 break; 2157 2158 descs[i].addr = cpu_to_le64(dma_addr); 2159 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2160 i++; 2161 } 2162 2163 if (!size) 2164 goto out_free_bufs; 2165 2166 dev->nr_host_mem_descs = i; 2167 dev->host_mem_size = size; 2168 dev->host_mem_descs = descs; 2169 dev->host_mem_descs_dma = descs_dma; 2170 dev->host_mem_descs_size = descs_size; 2171 dev->host_mem_desc_bufs = bufs; 2172 return 0; 2173 2174 out_free_bufs: 2175 kfree(bufs); 2176 out_free_descs: 2177 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2178 out: 2179 dev->host_mem_descs = NULL; 2180 return -ENOMEM; 2181 } 2182 2183 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2184 { 2185 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); 2186 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2187 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2188 u64 chunk_size; 2189 2190 /* 2191 * If there is an IOMMU that can merge pages, try a virtually 2192 * non-contiguous allocation for a single segment first. 2193 */ 2194 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { 2195 if (!nvme_alloc_host_mem_single(dev, preferred)) 2196 return 0; 2197 } 2198 2199 /* start big and work our way down */ 2200 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2201 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2202 if (!min || dev->host_mem_size >= min) 2203 return 0; 2204 nvme_free_host_mem(dev); 2205 } 2206 } 2207 2208 return -ENOMEM; 2209 } 2210 2211 static int nvme_setup_host_mem(struct nvme_dev *dev) 2212 { 2213 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2214 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2215 u64 min = (u64)dev->ctrl.hmmin * 4096; 2216 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2217 int ret; 2218 2219 if (!dev->ctrl.hmpre) 2220 return 0; 2221 2222 preferred = min(preferred, max); 2223 if (min > max) { 2224 dev_warn(dev->ctrl.device, 2225 "min host memory (%lld MiB) above limit (%d MiB).\n", 2226 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2227 nvme_free_host_mem(dev); 2228 return 0; 2229 } 2230 2231 /* 2232 * If we already have a buffer allocated check if we can reuse it. 2233 */ 2234 if (dev->host_mem_descs) { 2235 if (dev->host_mem_size >= min) 2236 enable_bits |= NVME_HOST_MEM_RETURN; 2237 else 2238 nvme_free_host_mem(dev); 2239 } 2240 2241 if (!dev->host_mem_descs) { 2242 if (nvme_alloc_host_mem(dev, min, preferred)) { 2243 dev_warn(dev->ctrl.device, 2244 "failed to allocate host memory buffer.\n"); 2245 return 0; /* controller must work without HMB */ 2246 } 2247 2248 dev_info(dev->ctrl.device, 2249 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2250 dev->host_mem_size >> ilog2(SZ_1M), 2251 dev->nr_host_mem_descs, 2252 str_plural(dev->nr_host_mem_descs)); 2253 } 2254 2255 ret = nvme_set_host_mem(dev, enable_bits); 2256 if (ret) 2257 nvme_free_host_mem(dev); 2258 return ret; 2259 } 2260 2261 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2262 char *buf) 2263 { 2264 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2265 2266 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2267 ndev->cmbloc, ndev->cmbsz); 2268 } 2269 static DEVICE_ATTR_RO(cmb); 2270 2271 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2272 char *buf) 2273 { 2274 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2275 2276 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2277 } 2278 static DEVICE_ATTR_RO(cmbloc); 2279 2280 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2281 char *buf) 2282 { 2283 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2284 2285 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2286 } 2287 static DEVICE_ATTR_RO(cmbsz); 2288 2289 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2290 char *buf) 2291 { 2292 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2293 2294 return sysfs_emit(buf, "%d\n", ndev->hmb); 2295 } 2296 2297 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2298 const char *buf, size_t count) 2299 { 2300 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2301 bool new; 2302 int ret; 2303 2304 if (kstrtobool(buf, &new) < 0) 2305 return -EINVAL; 2306 2307 if (new == ndev->hmb) 2308 return count; 2309 2310 if (new) { 2311 ret = nvme_setup_host_mem(ndev); 2312 } else { 2313 ret = nvme_set_host_mem(ndev, 0); 2314 if (!ret) 2315 nvme_free_host_mem(ndev); 2316 } 2317 2318 if (ret < 0) 2319 return ret; 2320 2321 return count; 2322 } 2323 static DEVICE_ATTR_RW(hmb); 2324 2325 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2326 struct attribute *a, int n) 2327 { 2328 struct nvme_ctrl *ctrl = 2329 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2330 struct nvme_dev *dev = to_nvme_dev(ctrl); 2331 2332 if (a == &dev_attr_cmb.attr || 2333 a == &dev_attr_cmbloc.attr || 2334 a == &dev_attr_cmbsz.attr) { 2335 if (!dev->cmbsz) 2336 return 0; 2337 } 2338 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2339 return 0; 2340 2341 return a->mode; 2342 } 2343 2344 static struct attribute *nvme_pci_attrs[] = { 2345 &dev_attr_cmb.attr, 2346 &dev_attr_cmbloc.attr, 2347 &dev_attr_cmbsz.attr, 2348 &dev_attr_hmb.attr, 2349 NULL, 2350 }; 2351 2352 static const struct attribute_group nvme_pci_dev_attrs_group = { 2353 .attrs = nvme_pci_attrs, 2354 .is_visible = nvme_pci_attrs_are_visible, 2355 }; 2356 2357 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2358 &nvme_dev_attrs_group, 2359 &nvme_pci_dev_attrs_group, 2360 NULL, 2361 }; 2362 2363 static void nvme_update_attrs(struct nvme_dev *dev) 2364 { 2365 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2366 } 2367 2368 /* 2369 * nirqs is the number of interrupts available for write and read 2370 * queues. The core already reserved an interrupt for the admin queue. 2371 */ 2372 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2373 { 2374 struct nvme_dev *dev = affd->priv; 2375 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2376 2377 /* 2378 * If there is no interrupt available for queues, ensure that 2379 * the default queue is set to 1. The affinity set size is 2380 * also set to one, but the irq core ignores it for this case. 2381 * 2382 * If only one interrupt is available or 'write_queue' == 0, combine 2383 * write and read queues. 2384 * 2385 * If 'write_queues' > 0, ensure it leaves room for at least one read 2386 * queue. 2387 */ 2388 if (!nrirqs) { 2389 nrirqs = 1; 2390 nr_read_queues = 0; 2391 } else if (nrirqs == 1 || !nr_write_queues) { 2392 nr_read_queues = 0; 2393 } else if (nr_write_queues >= nrirqs) { 2394 nr_read_queues = 1; 2395 } else { 2396 nr_read_queues = nrirqs - nr_write_queues; 2397 } 2398 2399 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2400 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2401 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2402 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2403 affd->nr_sets = nr_read_queues ? 2 : 1; 2404 } 2405 2406 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2407 { 2408 struct pci_dev *pdev = to_pci_dev(dev->dev); 2409 struct irq_affinity affd = { 2410 .pre_vectors = 1, 2411 .calc_sets = nvme_calc_irq_sets, 2412 .priv = dev, 2413 }; 2414 unsigned int irq_queues, poll_queues; 2415 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2416 2417 /* 2418 * Poll queues don't need interrupts, but we need at least one I/O queue 2419 * left over for non-polled I/O. 2420 */ 2421 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2422 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2423 2424 /* 2425 * Initialize for the single interrupt case, will be updated in 2426 * nvme_calc_irq_sets(). 2427 */ 2428 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2429 dev->io_queues[HCTX_TYPE_READ] = 0; 2430 2431 /* 2432 * We need interrupts for the admin queue and each non-polled I/O queue, 2433 * but some Apple controllers require all queues to use the first 2434 * vector. 2435 */ 2436 irq_queues = 1; 2437 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2438 irq_queues += (nr_io_queues - poll_queues); 2439 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2440 flags &= ~PCI_IRQ_MSI; 2441 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2442 &affd); 2443 } 2444 2445 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2446 { 2447 /* 2448 * If tags are shared with admin queue (Apple bug), then 2449 * make sure we only use one IO queue. 2450 */ 2451 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2452 return 1; 2453 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2454 } 2455 2456 static int nvme_setup_io_queues(struct nvme_dev *dev) 2457 { 2458 struct nvme_queue *adminq = &dev->queues[0]; 2459 struct pci_dev *pdev = to_pci_dev(dev->dev); 2460 unsigned int nr_io_queues; 2461 unsigned long size; 2462 int result; 2463 2464 /* 2465 * Sample the module parameters once at reset time so that we have 2466 * stable values to work with. 2467 */ 2468 dev->nr_write_queues = write_queues; 2469 dev->nr_poll_queues = poll_queues; 2470 2471 nr_io_queues = dev->nr_allocated_queues - 1; 2472 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2473 if (result < 0) 2474 return result; 2475 2476 if (nr_io_queues == 0) 2477 return 0; 2478 2479 /* 2480 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2481 * from set to unset. If there is a window to it is truely freed, 2482 * pci_free_irq_vectors() jumping into this window will crash. 2483 * And take lock to avoid racing with pci_free_irq_vectors() in 2484 * nvme_dev_disable() path. 2485 */ 2486 result = nvme_setup_io_queues_trylock(dev); 2487 if (result) 2488 return result; 2489 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2490 pci_free_irq(pdev, 0, adminq); 2491 2492 if (dev->cmb_use_sqes) { 2493 result = nvme_cmb_qdepth(dev, nr_io_queues, 2494 sizeof(struct nvme_command)); 2495 if (result > 0) { 2496 dev->q_depth = result; 2497 dev->ctrl.sqsize = result - 1; 2498 } else { 2499 dev->cmb_use_sqes = false; 2500 } 2501 } 2502 2503 do { 2504 size = db_bar_size(dev, nr_io_queues); 2505 result = nvme_remap_bar(dev, size); 2506 if (!result) 2507 break; 2508 if (!--nr_io_queues) { 2509 result = -ENOMEM; 2510 goto out_unlock; 2511 } 2512 } while (1); 2513 adminq->q_db = dev->dbs; 2514 2515 retry: 2516 /* Deregister the admin queue's interrupt */ 2517 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2518 pci_free_irq(pdev, 0, adminq); 2519 2520 /* 2521 * If we enable msix early due to not intx, disable it again before 2522 * setting up the full range we need. 2523 */ 2524 pci_free_irq_vectors(pdev); 2525 2526 result = nvme_setup_irqs(dev, nr_io_queues); 2527 if (result <= 0) { 2528 result = -EIO; 2529 goto out_unlock; 2530 } 2531 2532 dev->num_vecs = result; 2533 result = max(result - 1, 1); 2534 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2535 2536 /* 2537 * Should investigate if there's a performance win from allocating 2538 * more queues than interrupt vectors; it might allow the submission 2539 * path to scale better, even if the receive path is limited by the 2540 * number of interrupts. 2541 */ 2542 result = queue_request_irq(adminq); 2543 if (result) 2544 goto out_unlock; 2545 set_bit(NVMEQ_ENABLED, &adminq->flags); 2546 mutex_unlock(&dev->shutdown_lock); 2547 2548 result = nvme_create_io_queues(dev); 2549 if (result || dev->online_queues < 2) 2550 return result; 2551 2552 if (dev->online_queues - 1 < dev->max_qid) { 2553 nr_io_queues = dev->online_queues - 1; 2554 nvme_delete_io_queues(dev); 2555 result = nvme_setup_io_queues_trylock(dev); 2556 if (result) 2557 return result; 2558 nvme_suspend_io_queues(dev); 2559 goto retry; 2560 } 2561 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2562 dev->io_queues[HCTX_TYPE_DEFAULT], 2563 dev->io_queues[HCTX_TYPE_READ], 2564 dev->io_queues[HCTX_TYPE_POLL]); 2565 return 0; 2566 out_unlock: 2567 mutex_unlock(&dev->shutdown_lock); 2568 return result; 2569 } 2570 2571 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2572 blk_status_t error) 2573 { 2574 struct nvme_queue *nvmeq = req->end_io_data; 2575 2576 blk_mq_free_request(req); 2577 complete(&nvmeq->delete_done); 2578 return RQ_END_IO_NONE; 2579 } 2580 2581 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2582 blk_status_t error) 2583 { 2584 struct nvme_queue *nvmeq = req->end_io_data; 2585 2586 if (error) 2587 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2588 2589 return nvme_del_queue_end(req, error); 2590 } 2591 2592 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2593 { 2594 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2595 struct request *req; 2596 struct nvme_command cmd = { }; 2597 2598 cmd.delete_queue.opcode = opcode; 2599 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2600 2601 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2602 if (IS_ERR(req)) 2603 return PTR_ERR(req); 2604 nvme_init_request(req, &cmd); 2605 2606 if (opcode == nvme_admin_delete_cq) 2607 req->end_io = nvme_del_cq_end; 2608 else 2609 req->end_io = nvme_del_queue_end; 2610 req->end_io_data = nvmeq; 2611 2612 init_completion(&nvmeq->delete_done); 2613 blk_execute_rq_nowait(req, false); 2614 return 0; 2615 } 2616 2617 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2618 { 2619 int nr_queues = dev->online_queues - 1, sent = 0; 2620 unsigned long timeout; 2621 2622 retry: 2623 timeout = NVME_ADMIN_TIMEOUT; 2624 while (nr_queues > 0) { 2625 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2626 break; 2627 nr_queues--; 2628 sent++; 2629 } 2630 while (sent) { 2631 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2632 2633 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2634 timeout); 2635 if (timeout == 0) 2636 return false; 2637 2638 sent--; 2639 if (nr_queues) 2640 goto retry; 2641 } 2642 return true; 2643 } 2644 2645 static void nvme_delete_io_queues(struct nvme_dev *dev) 2646 { 2647 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2648 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2649 } 2650 2651 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2652 { 2653 if (dev->io_queues[HCTX_TYPE_POLL]) 2654 return 3; 2655 if (dev->io_queues[HCTX_TYPE_READ]) 2656 return 2; 2657 return 1; 2658 } 2659 2660 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2661 { 2662 if (!dev->ctrl.tagset) { 2663 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2664 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2665 return true; 2666 } 2667 2668 /* Give up if we are racing with nvme_dev_disable() */ 2669 if (!mutex_trylock(&dev->shutdown_lock)) 2670 return false; 2671 2672 /* Check if nvme_dev_disable() has been executed already */ 2673 if (!dev->online_queues) { 2674 mutex_unlock(&dev->shutdown_lock); 2675 return false; 2676 } 2677 2678 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2679 /* free previously allocated queues that are no longer usable */ 2680 nvme_free_queues(dev, dev->online_queues); 2681 mutex_unlock(&dev->shutdown_lock); 2682 return true; 2683 } 2684 2685 static int nvme_pci_enable(struct nvme_dev *dev) 2686 { 2687 int result = -ENOMEM; 2688 struct pci_dev *pdev = to_pci_dev(dev->dev); 2689 unsigned int flags = PCI_IRQ_ALL_TYPES; 2690 2691 if (pci_enable_device_mem(pdev)) 2692 return result; 2693 2694 pci_set_master(pdev); 2695 2696 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2697 result = -ENODEV; 2698 goto disable; 2699 } 2700 2701 /* 2702 * Some devices and/or platforms don't advertise or work with INTx 2703 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2704 * adjust this later. 2705 */ 2706 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2707 flags &= ~PCI_IRQ_MSI; 2708 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2709 if (result < 0) 2710 goto disable; 2711 2712 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2713 2714 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2715 io_queue_depth); 2716 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2717 dev->dbs = dev->bar + 4096; 2718 2719 /* 2720 * Some Apple controllers require a non-standard SQE size. 2721 * Interestingly they also seem to ignore the CC:IOSQES register 2722 * so we don't bother updating it here. 2723 */ 2724 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2725 dev->io_sqes = 7; 2726 else 2727 dev->io_sqes = NVME_NVM_IOSQES; 2728 2729 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2730 dev->q_depth = 2; 2731 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2732 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2733 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2734 dev->q_depth = 64; 2735 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2736 "set queue depth=%u\n", dev->q_depth); 2737 } 2738 2739 /* 2740 * Controllers with the shared tags quirk need the IO queue to be 2741 * big enough so that we get 32 tags for the admin queue 2742 */ 2743 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2744 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2745 dev->q_depth = NVME_AQ_DEPTH + 2; 2746 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2747 dev->q_depth); 2748 } 2749 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2750 2751 nvme_map_cmb(dev); 2752 2753 pci_save_state(pdev); 2754 2755 result = nvme_pci_configure_admin_queue(dev); 2756 if (result) 2757 goto free_irq; 2758 return result; 2759 2760 free_irq: 2761 pci_free_irq_vectors(pdev); 2762 disable: 2763 pci_disable_device(pdev); 2764 return result; 2765 } 2766 2767 static void nvme_dev_unmap(struct nvme_dev *dev) 2768 { 2769 if (dev->bar) 2770 iounmap(dev->bar); 2771 pci_release_mem_regions(to_pci_dev(dev->dev)); 2772 } 2773 2774 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2775 { 2776 struct pci_dev *pdev = to_pci_dev(dev->dev); 2777 u32 csts; 2778 2779 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2780 return true; 2781 if (pdev->error_state != pci_channel_io_normal) 2782 return true; 2783 2784 csts = readl(dev->bar + NVME_REG_CSTS); 2785 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2786 } 2787 2788 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2789 { 2790 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 2791 struct pci_dev *pdev = to_pci_dev(dev->dev); 2792 bool dead; 2793 2794 mutex_lock(&dev->shutdown_lock); 2795 dead = nvme_pci_ctrl_is_dead(dev); 2796 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 2797 if (pci_is_enabled(pdev)) 2798 nvme_start_freeze(&dev->ctrl); 2799 /* 2800 * Give the controller a chance to complete all entered requests 2801 * if doing a safe shutdown. 2802 */ 2803 if (!dead && shutdown) 2804 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2805 } 2806 2807 nvme_quiesce_io_queues(&dev->ctrl); 2808 2809 if (!dead && dev->ctrl.queue_count > 0) { 2810 nvme_delete_io_queues(dev); 2811 nvme_disable_ctrl(&dev->ctrl, shutdown); 2812 nvme_poll_irqdisable(&dev->queues[0]); 2813 } 2814 nvme_suspend_io_queues(dev); 2815 nvme_suspend_queue(dev, 0); 2816 pci_free_irq_vectors(pdev); 2817 if (pci_is_enabled(pdev)) 2818 pci_disable_device(pdev); 2819 nvme_reap_pending_cqes(dev); 2820 2821 nvme_cancel_tagset(&dev->ctrl); 2822 nvme_cancel_admin_tagset(&dev->ctrl); 2823 2824 /* 2825 * The driver will not be starting up queues again if shutting down so 2826 * must flush all entered requests to their failed completion to avoid 2827 * deadlocking blk-mq hot-cpu notifier. 2828 */ 2829 if (shutdown) { 2830 nvme_unquiesce_io_queues(&dev->ctrl); 2831 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2832 nvme_unquiesce_admin_queue(&dev->ctrl); 2833 } 2834 mutex_unlock(&dev->shutdown_lock); 2835 } 2836 2837 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2838 { 2839 if (!nvme_wait_reset(&dev->ctrl)) 2840 return -EBUSY; 2841 nvme_dev_disable(dev, shutdown); 2842 return 0; 2843 } 2844 2845 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2846 { 2847 size_t small_align = 256; 2848 2849 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2850 NVME_CTRL_PAGE_SIZE, 2851 NVME_CTRL_PAGE_SIZE, 0); 2852 if (!dev->prp_page_pool) 2853 return -ENOMEM; 2854 2855 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) 2856 small_align = 512; 2857 2858 /* Optimisation for I/Os between 4k and 128k */ 2859 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2860 256, small_align, 0); 2861 if (!dev->prp_small_pool) { 2862 dma_pool_destroy(dev->prp_page_pool); 2863 return -ENOMEM; 2864 } 2865 return 0; 2866 } 2867 2868 static void nvme_release_prp_pools(struct nvme_dev *dev) 2869 { 2870 dma_pool_destroy(dev->prp_page_pool); 2871 dma_pool_destroy(dev->prp_small_pool); 2872 } 2873 2874 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2875 { 2876 size_t meta_size = sizeof(struct scatterlist) * (NVME_MAX_META_SEGS + 1); 2877 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2878 2879 dev->iod_mempool = mempool_create_node(1, 2880 mempool_kmalloc, mempool_kfree, 2881 (void *)alloc_size, GFP_KERNEL, 2882 dev_to_node(dev->dev)); 2883 if (!dev->iod_mempool) 2884 return -ENOMEM; 2885 2886 dev->iod_meta_mempool = mempool_create_node(1, 2887 mempool_kmalloc, mempool_kfree, 2888 (void *)meta_size, GFP_KERNEL, 2889 dev_to_node(dev->dev)); 2890 if (!dev->iod_meta_mempool) 2891 goto free; 2892 2893 return 0; 2894 free: 2895 mempool_destroy(dev->iod_mempool); 2896 return -ENOMEM; 2897 } 2898 2899 static void nvme_free_tagset(struct nvme_dev *dev) 2900 { 2901 if (dev->tagset.tags) 2902 nvme_remove_io_tag_set(&dev->ctrl); 2903 dev->ctrl.tagset = NULL; 2904 } 2905 2906 /* pairs with nvme_pci_alloc_dev */ 2907 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2908 { 2909 struct nvme_dev *dev = to_nvme_dev(ctrl); 2910 2911 nvme_free_tagset(dev); 2912 put_device(dev->dev); 2913 kfree(dev->queues); 2914 kfree(dev); 2915 } 2916 2917 static void nvme_reset_work(struct work_struct *work) 2918 { 2919 struct nvme_dev *dev = 2920 container_of(work, struct nvme_dev, ctrl.reset_work); 2921 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2922 int result; 2923 2924 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 2925 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2926 dev->ctrl.state); 2927 result = -ENODEV; 2928 goto out; 2929 } 2930 2931 /* 2932 * If we're called to reset a live controller first shut it down before 2933 * moving on. 2934 */ 2935 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2936 nvme_dev_disable(dev, false); 2937 nvme_sync_queues(&dev->ctrl); 2938 2939 mutex_lock(&dev->shutdown_lock); 2940 result = nvme_pci_enable(dev); 2941 if (result) 2942 goto out_unlock; 2943 nvme_unquiesce_admin_queue(&dev->ctrl); 2944 mutex_unlock(&dev->shutdown_lock); 2945 2946 /* 2947 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2948 * initializing procedure here. 2949 */ 2950 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2951 dev_warn(dev->ctrl.device, 2952 "failed to mark controller CONNECTING\n"); 2953 result = -EBUSY; 2954 goto out; 2955 } 2956 2957 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2958 if (result) 2959 goto out; 2960 2961 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 2962 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 2963 else 2964 dev->ctrl.max_integrity_segments = 1; 2965 2966 nvme_dbbuf_dma_alloc(dev); 2967 2968 result = nvme_setup_host_mem(dev); 2969 if (result < 0) 2970 goto out; 2971 2972 result = nvme_setup_io_queues(dev); 2973 if (result) 2974 goto out; 2975 2976 /* 2977 * Freeze and update the number of I/O queues as thos might have 2978 * changed. If there are no I/O queues left after this reset, keep the 2979 * controller around but remove all namespaces. 2980 */ 2981 if (dev->online_queues > 1) { 2982 nvme_dbbuf_set(dev); 2983 nvme_unquiesce_io_queues(&dev->ctrl); 2984 nvme_wait_freeze(&dev->ctrl); 2985 if (!nvme_pci_update_nr_queues(dev)) 2986 goto out; 2987 nvme_unfreeze(&dev->ctrl); 2988 } else { 2989 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2990 nvme_mark_namespaces_dead(&dev->ctrl); 2991 nvme_unquiesce_io_queues(&dev->ctrl); 2992 nvme_remove_namespaces(&dev->ctrl); 2993 nvme_free_tagset(dev); 2994 } 2995 2996 /* 2997 * If only admin queue live, keep it to do further investigation or 2998 * recovery. 2999 */ 3000 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3001 dev_warn(dev->ctrl.device, 3002 "failed to mark controller live state\n"); 3003 result = -ENODEV; 3004 goto out; 3005 } 3006 3007 nvme_start_ctrl(&dev->ctrl); 3008 return; 3009 3010 out_unlock: 3011 mutex_unlock(&dev->shutdown_lock); 3012 out: 3013 /* 3014 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 3015 * may be holding this pci_dev's device lock. 3016 */ 3017 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3018 result); 3019 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3020 nvme_dev_disable(dev, true); 3021 nvme_sync_queues(&dev->ctrl); 3022 nvme_mark_namespaces_dead(&dev->ctrl); 3023 nvme_unquiesce_io_queues(&dev->ctrl); 3024 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3025 } 3026 3027 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3028 { 3029 *val = readl(to_nvme_dev(ctrl)->bar + off); 3030 return 0; 3031 } 3032 3033 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3034 { 3035 writel(val, to_nvme_dev(ctrl)->bar + off); 3036 return 0; 3037 } 3038 3039 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3040 { 3041 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3042 return 0; 3043 } 3044 3045 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3046 { 3047 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3048 3049 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3050 } 3051 3052 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3053 { 3054 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3055 struct nvme_subsystem *subsys = ctrl->subsys; 3056 3057 dev_err(ctrl->device, 3058 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3059 pdev->vendor, pdev->device, 3060 nvme_strlen(subsys->model, sizeof(subsys->model)), 3061 subsys->model, nvme_strlen(subsys->firmware_rev, 3062 sizeof(subsys->firmware_rev)), 3063 subsys->firmware_rev); 3064 } 3065 3066 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3067 { 3068 struct nvme_dev *dev = to_nvme_dev(ctrl); 3069 3070 return dma_pci_p2pdma_supported(dev->dev); 3071 } 3072 3073 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3074 .name = "pcie", 3075 .module = THIS_MODULE, 3076 .flags = NVME_F_METADATA_SUPPORTED, 3077 .dev_attr_groups = nvme_pci_dev_attr_groups, 3078 .reg_read32 = nvme_pci_reg_read32, 3079 .reg_write32 = nvme_pci_reg_write32, 3080 .reg_read64 = nvme_pci_reg_read64, 3081 .free_ctrl = nvme_pci_free_ctrl, 3082 .submit_async_event = nvme_pci_submit_async_event, 3083 .subsystem_reset = nvme_pci_subsystem_reset, 3084 .get_address = nvme_pci_get_address, 3085 .print_device_info = nvme_pci_print_device_info, 3086 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3087 }; 3088 3089 static int nvme_dev_map(struct nvme_dev *dev) 3090 { 3091 struct pci_dev *pdev = to_pci_dev(dev->dev); 3092 3093 if (pci_request_mem_regions(pdev, "nvme")) 3094 return -ENODEV; 3095 3096 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3097 goto release; 3098 3099 return 0; 3100 release: 3101 pci_release_mem_regions(pdev); 3102 return -ENODEV; 3103 } 3104 3105 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3106 { 3107 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3108 /* 3109 * Several Samsung devices seem to drop off the PCIe bus 3110 * randomly when APST is on and uses the deepest sleep state. 3111 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3112 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3113 * 950 PRO 256GB", but it seems to be restricted to two Dell 3114 * laptops. 3115 */ 3116 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3117 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3118 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3119 return NVME_QUIRK_NO_DEEPEST_PS; 3120 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3121 /* 3122 * Samsung SSD 960 EVO drops off the PCIe bus after system 3123 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3124 * within few minutes after bootup on a Coffee Lake board - 3125 * ASUS PRIME Z370-A 3126 */ 3127 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3128 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3129 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3130 return NVME_QUIRK_NO_APST; 3131 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3132 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3133 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3134 /* 3135 * Forcing to use host managed nvme power settings for 3136 * lowest idle power with quick resume latency on 3137 * Samsung and Toshiba SSDs based on suspend behavior 3138 * on Coffee Lake board for LENOVO C640 3139 */ 3140 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3141 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3142 return NVME_QUIRK_SIMPLE_SUSPEND; 3143 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3144 pdev->device == 0x500f)) { 3145 /* 3146 * Exclude some Kingston NV1 and A2000 devices from 3147 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3148 * lot fo energy with s2idle sleep on some TUXEDO platforms. 3149 */ 3150 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3151 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3152 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3153 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3154 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3155 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3156 /* 3157 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3158 * because of high power consumption (> 2 Watt) in s2idle 3159 * sleep. Only some boards with Intel CPU are affected. 3160 */ 3161 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || 3162 dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3163 dmi_match(DMI_BOARD_NAME, "GXxMRXx") || 3164 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3165 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3166 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3167 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3168 } 3169 3170 /* 3171 * NVMe SSD drops off the PCIe bus after system idle 3172 * for 10 hours on a Lenovo N60z board. 3173 */ 3174 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3175 return NVME_QUIRK_NO_APST; 3176 3177 return 0; 3178 } 3179 3180 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3181 const struct pci_device_id *id) 3182 { 3183 unsigned long quirks = id->driver_data; 3184 int node = dev_to_node(&pdev->dev); 3185 struct nvme_dev *dev; 3186 int ret = -ENOMEM; 3187 3188 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 3189 if (!dev) 3190 return ERR_PTR(-ENOMEM); 3191 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3192 mutex_init(&dev->shutdown_lock); 3193 3194 dev->nr_write_queues = write_queues; 3195 dev->nr_poll_queues = poll_queues; 3196 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3197 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3198 sizeof(struct nvme_queue), GFP_KERNEL, node); 3199 if (!dev->queues) 3200 goto out_free_dev; 3201 3202 dev->dev = get_device(&pdev->dev); 3203 3204 quirks |= check_vendor_combination_bug(pdev); 3205 if (!noacpi && 3206 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3207 acpi_storage_d3(&pdev->dev)) { 3208 /* 3209 * Some systems use a bios work around to ask for D3 on 3210 * platforms that support kernel managed suspend. 3211 */ 3212 dev_info(&pdev->dev, 3213 "platform quirk: setting simple suspend\n"); 3214 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3215 } 3216 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3217 quirks); 3218 if (ret) 3219 goto out_put_device; 3220 3221 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3222 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3223 else 3224 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3225 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3226 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3227 3228 /* 3229 * Limit the max command size to prevent iod->sg allocations going 3230 * over a single page. 3231 */ 3232 dev->ctrl.max_hw_sectors = min_t(u32, 3233 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 3234 dev->ctrl.max_segments = NVME_MAX_SEGS; 3235 dev->ctrl.max_integrity_segments = 1; 3236 return dev; 3237 3238 out_put_device: 3239 put_device(dev->dev); 3240 kfree(dev->queues); 3241 out_free_dev: 3242 kfree(dev); 3243 return ERR_PTR(ret); 3244 } 3245 3246 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3247 { 3248 struct nvme_dev *dev; 3249 int result = -ENOMEM; 3250 3251 dev = nvme_pci_alloc_dev(pdev, id); 3252 if (IS_ERR(dev)) 3253 return PTR_ERR(dev); 3254 3255 result = nvme_add_ctrl(&dev->ctrl); 3256 if (result) 3257 goto out_put_ctrl; 3258 3259 result = nvme_dev_map(dev); 3260 if (result) 3261 goto out_uninit_ctrl; 3262 3263 result = nvme_setup_prp_pools(dev); 3264 if (result) 3265 goto out_dev_unmap; 3266 3267 result = nvme_pci_alloc_iod_mempool(dev); 3268 if (result) 3269 goto out_release_prp_pools; 3270 3271 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3272 3273 result = nvme_pci_enable(dev); 3274 if (result) 3275 goto out_release_iod_mempool; 3276 3277 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3278 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3279 if (result) 3280 goto out_disable; 3281 3282 /* 3283 * Mark the controller as connecting before sending admin commands to 3284 * allow the timeout handler to do the right thing. 3285 */ 3286 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3287 dev_warn(dev->ctrl.device, 3288 "failed to mark controller CONNECTING\n"); 3289 result = -EBUSY; 3290 goto out_disable; 3291 } 3292 3293 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3294 if (result) 3295 goto out_disable; 3296 3297 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3298 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3299 else 3300 dev->ctrl.max_integrity_segments = 1; 3301 3302 nvme_dbbuf_dma_alloc(dev); 3303 3304 result = nvme_setup_host_mem(dev); 3305 if (result < 0) 3306 goto out_disable; 3307 3308 result = nvme_setup_io_queues(dev); 3309 if (result) 3310 goto out_disable; 3311 3312 if (dev->online_queues > 1) { 3313 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3314 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3315 nvme_dbbuf_set(dev); 3316 } 3317 3318 if (!dev->ctrl.tagset) 3319 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3320 3321 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3322 dev_warn(dev->ctrl.device, 3323 "failed to mark controller live state\n"); 3324 result = -ENODEV; 3325 goto out_disable; 3326 } 3327 3328 pci_set_drvdata(pdev, dev); 3329 3330 nvme_start_ctrl(&dev->ctrl); 3331 nvme_put_ctrl(&dev->ctrl); 3332 flush_work(&dev->ctrl.scan_work); 3333 return 0; 3334 3335 out_disable: 3336 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3337 nvme_dev_disable(dev, true); 3338 nvme_free_host_mem(dev); 3339 nvme_dev_remove_admin(dev); 3340 nvme_dbbuf_dma_free(dev); 3341 nvme_free_queues(dev, 0); 3342 out_release_iod_mempool: 3343 mempool_destroy(dev->iod_mempool); 3344 mempool_destroy(dev->iod_meta_mempool); 3345 out_release_prp_pools: 3346 nvme_release_prp_pools(dev); 3347 out_dev_unmap: 3348 nvme_dev_unmap(dev); 3349 out_uninit_ctrl: 3350 nvme_uninit_ctrl(&dev->ctrl); 3351 out_put_ctrl: 3352 nvme_put_ctrl(&dev->ctrl); 3353 return result; 3354 } 3355 3356 static void nvme_reset_prepare(struct pci_dev *pdev) 3357 { 3358 struct nvme_dev *dev = pci_get_drvdata(pdev); 3359 3360 /* 3361 * We don't need to check the return value from waiting for the reset 3362 * state as pci_dev device lock is held, making it impossible to race 3363 * with ->remove(). 3364 */ 3365 nvme_disable_prepare_reset(dev, false); 3366 nvme_sync_queues(&dev->ctrl); 3367 } 3368 3369 static void nvme_reset_done(struct pci_dev *pdev) 3370 { 3371 struct nvme_dev *dev = pci_get_drvdata(pdev); 3372 3373 if (!nvme_try_sched_reset(&dev->ctrl)) 3374 flush_work(&dev->ctrl.reset_work); 3375 } 3376 3377 static void nvme_shutdown(struct pci_dev *pdev) 3378 { 3379 struct nvme_dev *dev = pci_get_drvdata(pdev); 3380 3381 nvme_disable_prepare_reset(dev, true); 3382 } 3383 3384 /* 3385 * The driver's remove may be called on a device in a partially initialized 3386 * state. This function must not have any dependencies on the device state in 3387 * order to proceed. 3388 */ 3389 static void nvme_remove(struct pci_dev *pdev) 3390 { 3391 struct nvme_dev *dev = pci_get_drvdata(pdev); 3392 3393 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3394 pci_set_drvdata(pdev, NULL); 3395 3396 if (!pci_device_is_present(pdev)) { 3397 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3398 nvme_dev_disable(dev, true); 3399 } 3400 3401 flush_work(&dev->ctrl.reset_work); 3402 nvme_stop_ctrl(&dev->ctrl); 3403 nvme_remove_namespaces(&dev->ctrl); 3404 nvme_dev_disable(dev, true); 3405 nvme_free_host_mem(dev); 3406 nvme_dev_remove_admin(dev); 3407 nvme_dbbuf_dma_free(dev); 3408 nvme_free_queues(dev, 0); 3409 mempool_destroy(dev->iod_mempool); 3410 mempool_destroy(dev->iod_meta_mempool); 3411 nvme_release_prp_pools(dev); 3412 nvme_dev_unmap(dev); 3413 nvme_uninit_ctrl(&dev->ctrl); 3414 } 3415 3416 #ifdef CONFIG_PM_SLEEP 3417 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3418 { 3419 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3420 } 3421 3422 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3423 { 3424 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3425 } 3426 3427 static int nvme_resume(struct device *dev) 3428 { 3429 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3430 struct nvme_ctrl *ctrl = &ndev->ctrl; 3431 3432 if (ndev->last_ps == U32_MAX || 3433 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3434 goto reset; 3435 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3436 goto reset; 3437 3438 return 0; 3439 reset: 3440 return nvme_try_sched_reset(ctrl); 3441 } 3442 3443 static int nvme_suspend(struct device *dev) 3444 { 3445 struct pci_dev *pdev = to_pci_dev(dev); 3446 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3447 struct nvme_ctrl *ctrl = &ndev->ctrl; 3448 int ret = -EBUSY; 3449 3450 ndev->last_ps = U32_MAX; 3451 3452 /* 3453 * The platform does not remove power for a kernel managed suspend so 3454 * use host managed nvme power settings for lowest idle power if 3455 * possible. This should have quicker resume latency than a full device 3456 * shutdown. But if the firmware is involved after the suspend or the 3457 * device does not support any non-default power states, shut down the 3458 * device fully. 3459 * 3460 * If ASPM is not enabled for the device, shut down the device and allow 3461 * the PCI bus layer to put it into D3 in order to take the PCIe link 3462 * down, so as to allow the platform to achieve its minimum low-power 3463 * state (which may not be possible if the link is up). 3464 */ 3465 if (pm_suspend_via_firmware() || !ctrl->npss || 3466 !pcie_aspm_enabled(pdev) || 3467 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3468 return nvme_disable_prepare_reset(ndev, true); 3469 3470 nvme_start_freeze(ctrl); 3471 nvme_wait_freeze(ctrl); 3472 nvme_sync_queues(ctrl); 3473 3474 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3475 goto unfreeze; 3476 3477 /* 3478 * Host memory access may not be successful in a system suspend state, 3479 * but the specification allows the controller to access memory in a 3480 * non-operational power state. 3481 */ 3482 if (ndev->hmb) { 3483 ret = nvme_set_host_mem(ndev, 0); 3484 if (ret < 0) 3485 goto unfreeze; 3486 } 3487 3488 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3489 if (ret < 0) 3490 goto unfreeze; 3491 3492 /* 3493 * A saved state prevents pci pm from generically controlling the 3494 * device's power. If we're using protocol specific settings, we don't 3495 * want pci interfering. 3496 */ 3497 pci_save_state(pdev); 3498 3499 ret = nvme_set_power_state(ctrl, ctrl->npss); 3500 if (ret < 0) 3501 goto unfreeze; 3502 3503 if (ret) { 3504 /* discard the saved state */ 3505 pci_load_saved_state(pdev, NULL); 3506 3507 /* 3508 * Clearing npss forces a controller reset on resume. The 3509 * correct value will be rediscovered then. 3510 */ 3511 ret = nvme_disable_prepare_reset(ndev, true); 3512 ctrl->npss = 0; 3513 } 3514 unfreeze: 3515 nvme_unfreeze(ctrl); 3516 return ret; 3517 } 3518 3519 static int nvme_simple_suspend(struct device *dev) 3520 { 3521 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3522 3523 return nvme_disable_prepare_reset(ndev, true); 3524 } 3525 3526 static int nvme_simple_resume(struct device *dev) 3527 { 3528 struct pci_dev *pdev = to_pci_dev(dev); 3529 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3530 3531 return nvme_try_sched_reset(&ndev->ctrl); 3532 } 3533 3534 static const struct dev_pm_ops nvme_dev_pm_ops = { 3535 .suspend = nvme_suspend, 3536 .resume = nvme_resume, 3537 .freeze = nvme_simple_suspend, 3538 .thaw = nvme_simple_resume, 3539 .poweroff = nvme_simple_suspend, 3540 .restore = nvme_simple_resume, 3541 }; 3542 #endif /* CONFIG_PM_SLEEP */ 3543 3544 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3545 pci_channel_state_t state) 3546 { 3547 struct nvme_dev *dev = pci_get_drvdata(pdev); 3548 3549 /* 3550 * A frozen channel requires a reset. When detected, this method will 3551 * shutdown the controller to quiesce. The controller will be restarted 3552 * after the slot reset through driver's slot_reset callback. 3553 */ 3554 switch (state) { 3555 case pci_channel_io_normal: 3556 return PCI_ERS_RESULT_CAN_RECOVER; 3557 case pci_channel_io_frozen: 3558 dev_warn(dev->ctrl.device, 3559 "frozen state error detected, reset controller\n"); 3560 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3561 nvme_dev_disable(dev, true); 3562 return PCI_ERS_RESULT_DISCONNECT; 3563 } 3564 nvme_dev_disable(dev, false); 3565 return PCI_ERS_RESULT_NEED_RESET; 3566 case pci_channel_io_perm_failure: 3567 dev_warn(dev->ctrl.device, 3568 "failure state error detected, request disconnect\n"); 3569 return PCI_ERS_RESULT_DISCONNECT; 3570 } 3571 return PCI_ERS_RESULT_NEED_RESET; 3572 } 3573 3574 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3575 { 3576 struct nvme_dev *dev = pci_get_drvdata(pdev); 3577 3578 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3579 pci_restore_state(pdev); 3580 if (nvme_try_sched_reset(&dev->ctrl)) 3581 nvme_unquiesce_io_queues(&dev->ctrl); 3582 return PCI_ERS_RESULT_RECOVERED; 3583 } 3584 3585 static void nvme_error_resume(struct pci_dev *pdev) 3586 { 3587 struct nvme_dev *dev = pci_get_drvdata(pdev); 3588 3589 flush_work(&dev->ctrl.reset_work); 3590 } 3591 3592 static const struct pci_error_handlers nvme_err_handler = { 3593 .error_detected = nvme_error_detected, 3594 .slot_reset = nvme_slot_reset, 3595 .resume = nvme_error_resume, 3596 .reset_prepare = nvme_reset_prepare, 3597 .reset_done = nvme_reset_done, 3598 }; 3599 3600 static const struct pci_device_id nvme_id_table[] = { 3601 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3602 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3603 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3604 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3605 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3606 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3607 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3608 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3609 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3610 NVME_QUIRK_BOGUS_NID, }, 3611 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3612 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 3613 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3614 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3615 NVME_QUIRK_MEDIUM_PRIO_SQ | 3616 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3617 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3618 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3619 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3620 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3621 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3622 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3623 NVME_QUIRK_BOGUS_NID, }, 3624 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3625 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3626 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3627 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, 3628 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */ 3629 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3630 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3631 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3632 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3633 NVME_QUIRK_BOGUS_NID, }, 3634 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3635 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3636 NVME_QUIRK_BOGUS_NID, }, 3637 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3638 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3639 NVME_QUIRK_NO_NS_DESC_LIST, }, 3640 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3641 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3642 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3643 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3644 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3645 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3646 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3647 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3648 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3649 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3650 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3651 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3652 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3653 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3654 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */ 3655 .driver_data = NVME_QUIRK_BROKEN_MSI | 3656 NVME_QUIRK_NO_DEEPEST_PS }, 3657 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3658 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3659 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3660 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3661 NVME_QUIRK_BOGUS_NID, }, 3662 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3663 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3664 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3665 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3666 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3667 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3668 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3669 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3670 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3671 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3672 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3673 NVME_QUIRK_BOGUS_NID, }, 3674 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3675 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3676 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3677 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3678 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3679 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3680 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3681 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3682 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3683 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3684 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3685 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3686 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3687 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3688 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3689 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3690 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3691 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3692 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3693 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3694 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3695 NVME_QUIRK_BOGUS_NID, }, 3696 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3697 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3698 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3699 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3700 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3701 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3702 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3703 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3704 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3705 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3706 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3707 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3708 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3709 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3710 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3711 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3712 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3713 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3714 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3715 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3716 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3717 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3718 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3719 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3720 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3721 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3722 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3723 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3724 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3725 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3726 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3727 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3728 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3729 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3730 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3731 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3732 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3733 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3734 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ 3735 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3736 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3737 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3738 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3739 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3740 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3741 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3742 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */ 3743 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3744 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3745 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3746 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3747 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3748 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3749 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3750 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3751 .driver_data = NVME_QUIRK_BOGUS_NID | 3752 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3753 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3754 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3755 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3756 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3757 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3758 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3759 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3760 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3761 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3762 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3763 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3764 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3765 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3766 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3767 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3768 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3769 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3770 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3771 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3772 /* 3773 * Fix for the Apple controller found in the MacBook8,1 and 3774 * some MacBook7,1 to avoid controller resets and data loss. 3775 */ 3776 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3777 NVME_QUIRK_QDEPTH_ONE }, 3778 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3779 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3780 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3781 NVME_QUIRK_128_BYTES_SQES | 3782 NVME_QUIRK_SHARED_TAGS | 3783 NVME_QUIRK_SKIP_CID_GEN | 3784 NVME_QUIRK_IDENTIFY_CNS }, 3785 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3786 { 0, } 3787 }; 3788 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3789 3790 static struct pci_driver nvme_driver = { 3791 .name = "nvme", 3792 .id_table = nvme_id_table, 3793 .probe = nvme_probe, 3794 .remove = nvme_remove, 3795 .shutdown = nvme_shutdown, 3796 .driver = { 3797 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3798 #ifdef CONFIG_PM_SLEEP 3799 .pm = &nvme_dev_pm_ops, 3800 #endif 3801 }, 3802 .sriov_configure = pci_sriov_configure_simple, 3803 .err_handler = &nvme_err_handler, 3804 }; 3805 3806 static int __init nvme_init(void) 3807 { 3808 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3809 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3810 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3811 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3812 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3813 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3814 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3815 3816 return pci_register_driver(&nvme_driver); 3817 } 3818 3819 static void __exit nvme_exit(void) 3820 { 3821 pci_unregister_driver(&nvme_driver); 3822 flush_workqueue(nvme_wq); 3823 } 3824 3825 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3826 MODULE_LICENSE("GPL"); 3827 MODULE_VERSION("1.0"); 3828 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 3829 module_init(nvme_init); 3830 module_exit(nvme_exit); 3831