1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq-dma.h> 11 #include <linux/blk-integrity.h> 12 #include <linux/dmi.h> 13 #include <linux/init.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/kstrtox.h> 17 #include <linux/memremap.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/mutex.h> 21 #include <linux/nodemask.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 31 #include "trace.h" 32 #include "nvme.h" 33 34 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 35 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 36 37 /* Optimisation for I/Os between 4k and 128k */ 38 #define NVME_SMALL_POOL_SIZE 256 39 40 /* 41 * Arbitrary upper bound. 42 */ 43 #define NVME_MAX_BYTES SZ_8M 44 #define NVME_MAX_NR_DESCRIPTORS 5 45 46 /* 47 * For data SGLs we support a single descriptors worth of SGL entries. 48 * For PRPs, segments don't matter at all. 49 */ 50 #define NVME_MAX_SEGS \ 51 (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 52 53 /* 54 * For metadata SGLs, only the small descriptor is supported, and the first 55 * entry is the segment descriptor, which for the data pointer sits in the SQE. 56 */ 57 #define NVME_MAX_META_SEGS \ 58 ((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1) 59 60 /* 61 * The last entry is used to link to the next descriptor. 62 */ 63 #define PRPS_PER_PAGE \ 64 (((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1) 65 66 /* 67 * I/O could be non-aligned both at the beginning and end. 68 */ 69 #define MAX_PRP_RANGE \ 70 (NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1)) 71 72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <= 73 (1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE)); 74 75 static int use_threaded_interrupts; 76 module_param(use_threaded_interrupts, int, 0444); 77 78 static bool use_cmb_sqes = true; 79 module_param(use_cmb_sqes, bool, 0444); 80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 81 82 static unsigned int max_host_mem_size_mb = 128; 83 module_param(max_host_mem_size_mb, uint, 0444); 84 MODULE_PARM_DESC(max_host_mem_size_mb, 85 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 86 87 static unsigned int sgl_threshold = SZ_32K; 88 module_param(sgl_threshold, uint, 0644); 89 MODULE_PARM_DESC(sgl_threshold, 90 "Use SGLs when average request segment size is larger or equal to " 91 "this size. Use 0 to disable SGLs."); 92 93 #define NVME_PCI_MIN_QUEUE_SIZE 2 94 #define NVME_PCI_MAX_QUEUE_SIZE 4095 95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 96 static const struct kernel_param_ops io_queue_depth_ops = { 97 .set = io_queue_depth_set, 98 .get = param_get_uint, 99 }; 100 101 static unsigned int io_queue_depth = 1024; 102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 104 105 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 106 { 107 unsigned int n; 108 int ret; 109 110 ret = kstrtouint(val, 10, &n); 111 if (ret != 0 || n > blk_mq_num_possible_queues(0)) 112 return -EINVAL; 113 return param_set_uint(val, kp); 114 } 115 116 static const struct kernel_param_ops io_queue_count_ops = { 117 .set = io_queue_count_set, 118 .get = param_get_uint, 119 }; 120 121 static unsigned int write_queues; 122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 123 MODULE_PARM_DESC(write_queues, 124 "Number of queues to use for writes. If not set, reads and writes " 125 "will share a queue set."); 126 127 static unsigned int poll_queues; 128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 130 131 static bool noacpi; 132 module_param(noacpi, bool, 0444); 133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 134 135 struct nvme_dev; 136 struct nvme_queue; 137 138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 139 static void nvme_delete_io_queues(struct nvme_dev *dev); 140 static void nvme_update_attrs(struct nvme_dev *dev); 141 142 struct nvme_descriptor_pools { 143 struct dma_pool *large; 144 struct dma_pool *small; 145 }; 146 147 /* 148 * Represents an NVM Express device. Each nvme_dev is a PCI function. 149 */ 150 struct nvme_dev { 151 struct nvme_queue *queues; 152 struct blk_mq_tag_set tagset; 153 struct blk_mq_tag_set admin_tagset; 154 u32 __iomem *dbs; 155 struct device *dev; 156 unsigned online_queues; 157 unsigned max_qid; 158 unsigned io_queues[HCTX_MAX_TYPES]; 159 unsigned int num_vecs; 160 u32 q_depth; 161 int io_sqes; 162 u32 db_stride; 163 void __iomem *bar; 164 unsigned long bar_mapped_size; 165 struct mutex shutdown_lock; 166 bool subsystem; 167 u64 cmb_size; 168 bool cmb_use_sqes; 169 u32 cmbsz; 170 u32 cmbloc; 171 struct nvme_ctrl ctrl; 172 u32 last_ps; 173 bool hmb; 174 struct sg_table *hmb_sgt; 175 mempool_t *dmavec_mempool; 176 177 /* shadow doorbell buffer support: */ 178 __le32 *dbbuf_dbs; 179 dma_addr_t dbbuf_dbs_dma_addr; 180 __le32 *dbbuf_eis; 181 dma_addr_t dbbuf_eis_dma_addr; 182 183 /* host memory buffer support: */ 184 u64 host_mem_size; 185 u32 nr_host_mem_descs; 186 u32 host_mem_descs_size; 187 dma_addr_t host_mem_descs_dma; 188 struct nvme_host_mem_buf_desc *host_mem_descs; 189 void **host_mem_desc_bufs; 190 unsigned int nr_allocated_queues; 191 unsigned int nr_write_queues; 192 unsigned int nr_poll_queues; 193 struct nvme_descriptor_pools descriptor_pools[]; 194 }; 195 196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 197 { 198 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 199 NVME_PCI_MAX_QUEUE_SIZE); 200 } 201 202 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 203 { 204 return qid * 2 * stride; 205 } 206 207 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 208 { 209 return (qid * 2 + 1) * stride; 210 } 211 212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 213 { 214 return container_of(ctrl, struct nvme_dev, ctrl); 215 } 216 217 /* 218 * An NVM Express queue. Each device has at least two (one for admin 219 * commands and one for I/O commands). 220 */ 221 struct nvme_queue { 222 struct nvme_dev *dev; 223 struct nvme_descriptor_pools descriptor_pools; 224 spinlock_t sq_lock; 225 void *sq_cmds; 226 /* only used for poll queues: */ 227 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 228 struct nvme_completion *cqes; 229 dma_addr_t sq_dma_addr; 230 dma_addr_t cq_dma_addr; 231 u32 __iomem *q_db; 232 u32 q_depth; 233 u16 cq_vector; 234 u16 sq_tail; 235 u16 last_sq_tail; 236 u16 cq_head; 237 u16 qid; 238 u8 cq_phase; 239 u8 sqes; 240 unsigned long flags; 241 #define NVMEQ_ENABLED 0 242 #define NVMEQ_SQ_CMB 1 243 #define NVMEQ_DELETE_ERROR 2 244 #define NVMEQ_POLLED 3 245 __le32 *dbbuf_sq_db; 246 __le32 *dbbuf_cq_db; 247 __le32 *dbbuf_sq_ei; 248 __le32 *dbbuf_cq_ei; 249 struct completion delete_done; 250 }; 251 252 /* bits for iod->flags */ 253 enum nvme_iod_flags { 254 /* this command has been aborted by the timeout handler */ 255 IOD_ABORTED = 1U << 0, 256 257 /* uses the small descriptor pool */ 258 IOD_SMALL_DESCRIPTOR = 1U << 1, 259 260 /* single segment dma mapping */ 261 IOD_SINGLE_SEGMENT = 1U << 2, 262 263 /* Metadata using non-coalesced MPTR */ 264 IOD_SINGLE_META_SEGMENT = 1U << 5, 265 }; 266 267 struct nvme_dma_vec { 268 dma_addr_t addr; 269 unsigned int len; 270 }; 271 272 /* 273 * The nvme_iod describes the data in an I/O. 274 */ 275 struct nvme_iod { 276 struct nvme_request req; 277 struct nvme_command cmd; 278 u8 flags; 279 u8 nr_descriptors; 280 281 unsigned int total_len; 282 struct dma_iova_state dma_state; 283 void *descriptors[NVME_MAX_NR_DESCRIPTORS]; 284 struct nvme_dma_vec *dma_vecs; 285 unsigned int nr_dma_vecs; 286 287 dma_addr_t meta_dma; 288 unsigned int meta_total_len; 289 struct dma_iova_state meta_dma_state; 290 struct nvme_sgl_desc *meta_descriptor; 291 }; 292 293 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 294 { 295 return dev->nr_allocated_queues * 8 * dev->db_stride; 296 } 297 298 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 299 { 300 unsigned int mem_size = nvme_dbbuf_size(dev); 301 302 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 303 return; 304 305 if (dev->dbbuf_dbs) { 306 /* 307 * Clear the dbbuf memory so the driver doesn't observe stale 308 * values from the previous instantiation. 309 */ 310 memset(dev->dbbuf_dbs, 0, mem_size); 311 memset(dev->dbbuf_eis, 0, mem_size); 312 return; 313 } 314 315 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 316 &dev->dbbuf_dbs_dma_addr, 317 GFP_KERNEL); 318 if (!dev->dbbuf_dbs) 319 goto fail; 320 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 321 &dev->dbbuf_eis_dma_addr, 322 GFP_KERNEL); 323 if (!dev->dbbuf_eis) 324 goto fail_free_dbbuf_dbs; 325 return; 326 327 fail_free_dbbuf_dbs: 328 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 329 dev->dbbuf_dbs_dma_addr); 330 dev->dbbuf_dbs = NULL; 331 fail: 332 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 333 } 334 335 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 336 { 337 unsigned int mem_size = nvme_dbbuf_size(dev); 338 339 if (dev->dbbuf_dbs) { 340 dma_free_coherent(dev->dev, mem_size, 341 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 342 dev->dbbuf_dbs = NULL; 343 } 344 if (dev->dbbuf_eis) { 345 dma_free_coherent(dev->dev, mem_size, 346 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 347 dev->dbbuf_eis = NULL; 348 } 349 } 350 351 static void nvme_dbbuf_init(struct nvme_dev *dev, 352 struct nvme_queue *nvmeq, int qid) 353 { 354 if (!dev->dbbuf_dbs || !qid) 355 return; 356 357 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 358 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 359 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 360 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 361 } 362 363 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 364 { 365 if (!nvmeq->qid) 366 return; 367 368 nvmeq->dbbuf_sq_db = NULL; 369 nvmeq->dbbuf_cq_db = NULL; 370 nvmeq->dbbuf_sq_ei = NULL; 371 nvmeq->dbbuf_cq_ei = NULL; 372 } 373 374 static void nvme_dbbuf_set(struct nvme_dev *dev) 375 { 376 struct nvme_command c = { }; 377 unsigned int i; 378 379 if (!dev->dbbuf_dbs) 380 return; 381 382 c.dbbuf.opcode = nvme_admin_dbbuf; 383 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 384 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 385 386 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 387 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 388 /* Free memory and continue on */ 389 nvme_dbbuf_dma_free(dev); 390 391 for (i = 1; i <= dev->online_queues; i++) 392 nvme_dbbuf_free(&dev->queues[i]); 393 } 394 } 395 396 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 397 { 398 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 399 } 400 401 /* Update dbbuf and return true if an MMIO is required */ 402 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 403 volatile __le32 *dbbuf_ei) 404 { 405 if (dbbuf_db) { 406 u16 old_value, event_idx; 407 408 /* 409 * Ensure that the queue is written before updating 410 * the doorbell in memory 411 */ 412 wmb(); 413 414 old_value = le32_to_cpu(*dbbuf_db); 415 *dbbuf_db = cpu_to_le32(value); 416 417 /* 418 * Ensure that the doorbell is updated before reading the event 419 * index from memory. The controller needs to provide similar 420 * ordering to ensure the event index is updated before reading 421 * the doorbell. 422 */ 423 mb(); 424 425 event_idx = le32_to_cpu(*dbbuf_ei); 426 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 427 return false; 428 } 429 430 return true; 431 } 432 433 static struct nvme_descriptor_pools * 434 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node) 435 { 436 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node]; 437 size_t small_align = NVME_SMALL_POOL_SIZE; 438 439 if (pools->small) 440 return pools; /* already initialized */ 441 442 pools->large = dma_pool_create_node("nvme descriptor page", dev->dev, 443 NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node); 444 if (!pools->large) 445 return ERR_PTR(-ENOMEM); 446 447 if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512) 448 small_align = 512; 449 450 pools->small = dma_pool_create_node("nvme descriptor small", dev->dev, 451 NVME_SMALL_POOL_SIZE, small_align, 0, numa_node); 452 if (!pools->small) { 453 dma_pool_destroy(pools->large); 454 pools->large = NULL; 455 return ERR_PTR(-ENOMEM); 456 } 457 458 return pools; 459 } 460 461 static void nvme_release_descriptor_pools(struct nvme_dev *dev) 462 { 463 unsigned i; 464 465 for (i = 0; i < nr_node_ids; i++) { 466 struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i]; 467 468 dma_pool_destroy(pools->large); 469 dma_pool_destroy(pools->small); 470 } 471 } 472 473 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data, 474 unsigned qid) 475 { 476 struct nvme_dev *dev = to_nvme_dev(data); 477 struct nvme_queue *nvmeq = &dev->queues[qid]; 478 struct nvme_descriptor_pools *pools; 479 struct blk_mq_tags *tags; 480 481 tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0]; 482 WARN_ON(tags != hctx->tags); 483 pools = nvme_setup_descriptor_pools(dev, hctx->numa_node); 484 if (IS_ERR(pools)) 485 return PTR_ERR(pools); 486 487 nvmeq->descriptor_pools = *pools; 488 hctx->driver_data = nvmeq; 489 return 0; 490 } 491 492 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 493 unsigned int hctx_idx) 494 { 495 WARN_ON(hctx_idx != 0); 496 return nvme_init_hctx_common(hctx, data, 0); 497 } 498 499 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 500 unsigned int hctx_idx) 501 { 502 return nvme_init_hctx_common(hctx, data, hctx_idx + 1); 503 } 504 505 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 506 struct request *req, unsigned int hctx_idx, 507 unsigned int numa_node) 508 { 509 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 510 511 nvme_req(req)->ctrl = set->driver_data; 512 nvme_req(req)->cmd = &iod->cmd; 513 return 0; 514 } 515 516 static int queue_irq_offset(struct nvme_dev *dev) 517 { 518 /* if we have more than 1 vec, admin queue offsets us by 1 */ 519 if (dev->num_vecs > 1) 520 return 1; 521 522 return 0; 523 } 524 525 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 526 { 527 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 528 int i, qoff, offset; 529 530 offset = queue_irq_offset(dev); 531 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 532 struct blk_mq_queue_map *map = &set->map[i]; 533 534 map->nr_queues = dev->io_queues[i]; 535 if (!map->nr_queues) { 536 BUG_ON(i == HCTX_TYPE_DEFAULT); 537 continue; 538 } 539 540 /* 541 * The poll queue(s) doesn't have an IRQ (and hence IRQ 542 * affinity), so use the regular blk-mq cpu mapping 543 */ 544 map->queue_offset = qoff; 545 if (i != HCTX_TYPE_POLL && offset) 546 blk_mq_map_hw_queues(map, dev->dev, offset); 547 else 548 blk_mq_map_queues(map); 549 qoff += map->nr_queues; 550 offset += map->nr_queues; 551 } 552 } 553 554 /* 555 * Write sq tail if we are asked to, or if the next command would wrap. 556 */ 557 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 558 { 559 if (!write_sq) { 560 u16 next_tail = nvmeq->sq_tail + 1; 561 562 if (next_tail == nvmeq->q_depth) 563 next_tail = 0; 564 if (next_tail != nvmeq->last_sq_tail) 565 return; 566 } 567 568 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 569 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 570 writel(nvmeq->sq_tail, nvmeq->q_db); 571 nvmeq->last_sq_tail = nvmeq->sq_tail; 572 } 573 574 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 575 struct nvme_command *cmd) 576 { 577 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 578 absolute_pointer(cmd), sizeof(*cmd)); 579 if (++nvmeq->sq_tail == nvmeq->q_depth) 580 nvmeq->sq_tail = 0; 581 } 582 583 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 584 { 585 struct nvme_queue *nvmeq = hctx->driver_data; 586 587 spin_lock(&nvmeq->sq_lock); 588 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 589 nvme_write_sq_db(nvmeq, true); 590 spin_unlock(&nvmeq->sq_lock); 591 } 592 593 enum nvme_use_sgl { 594 SGL_UNSUPPORTED, 595 SGL_SUPPORTED, 596 SGL_FORCED, 597 }; 598 599 static inline bool nvme_pci_metadata_use_sgls(struct request *req) 600 { 601 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 602 struct nvme_dev *dev = nvmeq->dev; 603 604 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 605 return false; 606 return req->nr_integrity_segments > 1 || 607 nvme_req(req)->flags & NVME_REQ_USERCMD; 608 } 609 610 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev, 611 struct request *req) 612 { 613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 614 615 if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) { 616 if (nvme_req(req)->flags & NVME_REQ_USERCMD) 617 return SGL_FORCED; 618 if (req->nr_integrity_segments > 1) 619 return SGL_FORCED; 620 return SGL_SUPPORTED; 621 } 622 623 return SGL_UNSUPPORTED; 624 } 625 626 static unsigned int nvme_pci_avg_seg_size(struct request *req) 627 { 628 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 629 unsigned int nseg; 630 631 if (blk_rq_dma_map_coalesce(&iod->dma_state)) 632 nseg = 1; 633 else 634 nseg = blk_rq_nr_phys_segments(req); 635 return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 636 } 637 638 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq, 639 struct nvme_iod *iod) 640 { 641 if (iod->flags & IOD_SMALL_DESCRIPTOR) 642 return nvmeq->descriptor_pools.small; 643 return nvmeq->descriptor_pools.large; 644 } 645 646 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd) 647 { 648 return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG; 649 } 650 651 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd) 652 { 653 return cmd->common.flags & 654 (NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG); 655 } 656 657 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd) 658 { 659 if (nvme_pci_cmd_use_sgl(cmd)) 660 return le64_to_cpu(cmd->common.dptr.sgl.addr); 661 return le64_to_cpu(cmd->common.dptr.prp2); 662 } 663 664 static void nvme_free_descriptors(struct request *req) 665 { 666 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 667 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 668 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 669 dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd); 670 int i; 671 672 if (iod->nr_descriptors == 1) { 673 dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0], 674 dma_addr); 675 return; 676 } 677 678 for (i = 0; i < iod->nr_descriptors; i++) { 679 __le64 *prp_list = iod->descriptors[i]; 680 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 681 682 dma_pool_free(nvmeq->descriptor_pools.large, prp_list, 683 dma_addr); 684 dma_addr = next_dma_addr; 685 } 686 } 687 688 static void nvme_free_prps(struct request *req) 689 { 690 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 691 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 692 unsigned int i; 693 694 for (i = 0; i < iod->nr_dma_vecs; i++) 695 dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr, 696 iod->dma_vecs[i].len, rq_dma_dir(req)); 697 mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool); 698 } 699 700 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge, 701 struct nvme_sgl_desc *sg_list) 702 { 703 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 704 enum dma_data_direction dir = rq_dma_dir(req); 705 unsigned int len = le32_to_cpu(sge->length); 706 struct device *dma_dev = nvmeq->dev->dev; 707 unsigned int i; 708 709 if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) { 710 dma_unmap_page(dma_dev, le64_to_cpu(sge->addr), len, dir); 711 return; 712 } 713 714 for (i = 0; i < len / sizeof(*sg_list); i++) 715 dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr), 716 le32_to_cpu(sg_list[i].length), dir); 717 } 718 719 static void nvme_unmap_metadata(struct request *req) 720 { 721 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 722 enum dma_data_direction dir = rq_dma_dir(req); 723 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 724 struct device *dma_dev = nvmeq->dev->dev; 725 struct nvme_sgl_desc *sge = iod->meta_descriptor; 726 727 if (iod->flags & IOD_SINGLE_META_SEGMENT) { 728 dma_unmap_page(dma_dev, iod->meta_dma, 729 rq_integrity_vec(req).bv_len, 730 rq_dma_dir(req)); 731 return; 732 } 733 734 if (!blk_rq_integrity_dma_unmap(req, dma_dev, &iod->meta_dma_state, 735 iod->meta_total_len)) { 736 if (nvme_pci_cmd_use_meta_sgl(&iod->cmd)) 737 nvme_free_sgls(req, sge, &sge[1]); 738 else 739 dma_unmap_page(dma_dev, iod->meta_dma, 740 iod->meta_total_len, dir); 741 } 742 743 if (iod->meta_descriptor) 744 dma_pool_free(nvmeq->descriptor_pools.small, 745 iod->meta_descriptor, iod->meta_dma); 746 } 747 748 static void nvme_unmap_data(struct request *req) 749 { 750 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 751 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 752 struct device *dma_dev = nvmeq->dev->dev; 753 754 if (iod->flags & IOD_SINGLE_SEGMENT) { 755 static_assert(offsetof(union nvme_data_ptr, prp1) == 756 offsetof(union nvme_data_ptr, sgl.addr)); 757 dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1), 758 iod->total_len, rq_dma_dir(req)); 759 return; 760 } 761 762 if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) { 763 if (nvme_pci_cmd_use_sgl(&iod->cmd)) 764 nvme_free_sgls(req, iod->descriptors[0], 765 &iod->cmd.common.dptr.sgl); 766 else 767 nvme_free_prps(req); 768 } 769 770 if (iod->nr_descriptors) 771 nvme_free_descriptors(req); 772 } 773 774 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev, 775 struct blk_dma_iter *iter) 776 { 777 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 778 779 if (iter->len) 780 return true; 781 if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter)) 782 return false; 783 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) { 784 iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr; 785 iod->dma_vecs[iod->nr_dma_vecs].len = iter->len; 786 iod->nr_dma_vecs++; 787 } 788 return true; 789 } 790 791 static blk_status_t nvme_pci_setup_data_prp(struct request *req, 792 struct blk_dma_iter *iter) 793 { 794 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 795 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 796 unsigned int length = blk_rq_payload_bytes(req); 797 dma_addr_t prp1_dma, prp2_dma = 0; 798 unsigned int prp_len, i; 799 __le64 *prp_list; 800 801 if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) { 802 iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool, 803 GFP_ATOMIC); 804 if (!iod->dma_vecs) 805 return BLK_STS_RESOURCE; 806 iod->dma_vecs[0].addr = iter->addr; 807 iod->dma_vecs[0].len = iter->len; 808 iod->nr_dma_vecs = 1; 809 } 810 811 /* 812 * PRP1 always points to the start of the DMA transfers. 813 * 814 * This is the only PRP (except for the list entries) that could be 815 * non-aligned. 816 */ 817 prp1_dma = iter->addr; 818 prp_len = min(length, NVME_CTRL_PAGE_SIZE - 819 (iter->addr & (NVME_CTRL_PAGE_SIZE - 1))); 820 iod->total_len += prp_len; 821 iter->addr += prp_len; 822 iter->len -= prp_len; 823 length -= prp_len; 824 if (!length) 825 goto done; 826 827 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { 828 if (WARN_ON_ONCE(!iter->status)) 829 goto bad_sgl; 830 goto done; 831 } 832 833 /* 834 * PRP2 is usually a list, but can point to data if all data to be 835 * transferred fits into PRP1 + PRP2: 836 */ 837 if (length <= NVME_CTRL_PAGE_SIZE) { 838 prp2_dma = iter->addr; 839 iod->total_len += length; 840 goto done; 841 } 842 843 if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <= 844 NVME_SMALL_POOL_SIZE / sizeof(__le64)) 845 iod->flags |= IOD_SMALL_DESCRIPTOR; 846 847 prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, 848 &prp2_dma); 849 if (!prp_list) { 850 iter->status = BLK_STS_RESOURCE; 851 goto done; 852 } 853 iod->descriptors[iod->nr_descriptors++] = prp_list; 854 855 i = 0; 856 for (;;) { 857 prp_list[i++] = cpu_to_le64(iter->addr); 858 prp_len = min(length, NVME_CTRL_PAGE_SIZE); 859 if (WARN_ON_ONCE(iter->len < prp_len)) 860 goto bad_sgl; 861 862 iod->total_len += prp_len; 863 iter->addr += prp_len; 864 iter->len -= prp_len; 865 length -= prp_len; 866 if (!length) 867 break; 868 869 if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) { 870 if (WARN_ON_ONCE(!iter->status)) 871 goto bad_sgl; 872 goto done; 873 } 874 875 /* 876 * If we've filled the entire descriptor, allocate a new that is 877 * pointed to be the last entry in the previous PRP list. To 878 * accommodate for that move the last actual entry to the new 879 * descriptor. 880 */ 881 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 882 __le64 *old_prp_list = prp_list; 883 dma_addr_t prp_list_dma; 884 885 prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large, 886 GFP_ATOMIC, &prp_list_dma); 887 if (!prp_list) { 888 iter->status = BLK_STS_RESOURCE; 889 goto done; 890 } 891 iod->descriptors[iod->nr_descriptors++] = prp_list; 892 893 prp_list[0] = old_prp_list[i - 1]; 894 old_prp_list[i - 1] = cpu_to_le64(prp_list_dma); 895 i = 1; 896 } 897 } 898 899 done: 900 /* 901 * nvme_unmap_data uses the DPT field in the SQE to tear down the 902 * mapping, so initialize it even for failures. 903 */ 904 iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma); 905 iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma); 906 if (unlikely(iter->status)) 907 nvme_unmap_data(req); 908 return iter->status; 909 910 bad_sgl: 911 dev_err_once(nvmeq->dev->dev, 912 "Incorrectly formed request for payload:%d nents:%d\n", 913 blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req)); 914 return BLK_STS_IOERR; 915 } 916 917 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 918 struct blk_dma_iter *iter) 919 { 920 sge->addr = cpu_to_le64(iter->addr); 921 sge->length = cpu_to_le32(iter->len); 922 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 923 } 924 925 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 926 dma_addr_t dma_addr, int entries) 927 { 928 sge->addr = cpu_to_le64(dma_addr); 929 sge->length = cpu_to_le32(entries * sizeof(*sge)); 930 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 931 } 932 933 static blk_status_t nvme_pci_setup_data_sgl(struct request *req, 934 struct blk_dma_iter *iter) 935 { 936 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 937 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 938 unsigned int entries = blk_rq_nr_phys_segments(req); 939 struct nvme_sgl_desc *sg_list; 940 dma_addr_t sgl_dma; 941 unsigned int mapped = 0; 942 943 /* set the transfer type as SGL */ 944 iod->cmd.common.flags = NVME_CMD_SGL_METABUF; 945 946 if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) { 947 nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter); 948 iod->total_len += iter->len; 949 return BLK_STS_OK; 950 } 951 952 if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list)) 953 iod->flags |= IOD_SMALL_DESCRIPTOR; 954 955 sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC, 956 &sgl_dma); 957 if (!sg_list) 958 return BLK_STS_RESOURCE; 959 iod->descriptors[iod->nr_descriptors++] = sg_list; 960 961 do { 962 if (WARN_ON_ONCE(mapped == entries)) { 963 iter->status = BLK_STS_IOERR; 964 break; 965 } 966 nvme_pci_sgl_set_data(&sg_list[mapped++], iter); 967 iod->total_len += iter->len; 968 } while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state, 969 iter)); 970 971 nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped); 972 if (unlikely(iter->status)) 973 nvme_unmap_data(req); 974 return iter->status; 975 } 976 977 static blk_status_t nvme_pci_setup_data_simple(struct request *req, 978 enum nvme_use_sgl use_sgl) 979 { 980 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 981 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 982 struct bio_vec bv = req_bvec(req); 983 unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 984 bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2; 985 dma_addr_t dma_addr; 986 987 if (!use_sgl && !prp_possible) 988 return BLK_STS_AGAIN; 989 if (is_pci_p2pdma_page(bv.bv_page)) 990 return BLK_STS_AGAIN; 991 992 dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); 993 if (dma_mapping_error(nvmeq->dev->dev, dma_addr)) 994 return BLK_STS_RESOURCE; 995 iod->total_len = bv.bv_len; 996 iod->flags |= IOD_SINGLE_SEGMENT; 997 998 if (use_sgl == SGL_FORCED || !prp_possible) { 999 iod->cmd.common.flags = NVME_CMD_SGL_METABUF; 1000 iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr); 1001 iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len); 1002 iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 1003 } else { 1004 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset; 1005 1006 iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr); 1007 iod->cmd.common.dptr.prp2 = 0; 1008 if (bv.bv_len > first_prp_len) 1009 iod->cmd.common.dptr.prp2 = 1010 cpu_to_le64(dma_addr + first_prp_len); 1011 } 1012 1013 return BLK_STS_OK; 1014 } 1015 1016 static blk_status_t nvme_map_data(struct request *req) 1017 { 1018 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1019 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1020 struct nvme_dev *dev = nvmeq->dev; 1021 enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req); 1022 struct blk_dma_iter iter; 1023 blk_status_t ret; 1024 1025 /* 1026 * Try to skip the DMA iterator for single segment requests, as that 1027 * significantly improves performances for small I/O sizes. 1028 */ 1029 if (blk_rq_nr_phys_segments(req) == 1) { 1030 ret = nvme_pci_setup_data_simple(req, use_sgl); 1031 if (ret != BLK_STS_AGAIN) 1032 return ret; 1033 } 1034 1035 if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter)) 1036 return iter.status; 1037 1038 if (use_sgl == SGL_FORCED || 1039 (use_sgl == SGL_SUPPORTED && 1040 (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold))) 1041 return nvme_pci_setup_data_sgl(req, &iter); 1042 return nvme_pci_setup_data_prp(req, &iter); 1043 } 1044 1045 static blk_status_t nvme_pci_setup_meta_iter(struct request *req) 1046 { 1047 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1048 unsigned int entries = req->nr_integrity_segments; 1049 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1050 struct nvme_dev *dev = nvmeq->dev; 1051 struct nvme_sgl_desc *sg_list; 1052 struct blk_dma_iter iter; 1053 dma_addr_t sgl_dma; 1054 int i = 0; 1055 1056 if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev, 1057 &iod->meta_dma_state, &iter)) 1058 return iter.status; 1059 1060 if (blk_rq_dma_map_coalesce(&iod->meta_dma_state)) 1061 entries = 1; 1062 1063 /* 1064 * The NVMe MPTR descriptor has an implicit length that the host and 1065 * device must agree on to avoid data/memory corruption. We trust the 1066 * kernel allocated correctly based on the format's parameters, so use 1067 * the more efficient MPTR to avoid extra dma pool allocations for the 1068 * SGL indirection. 1069 * 1070 * But for user commands, we don't necessarily know what they do, so 1071 * the driver can't validate the metadata buffer size. The SGL 1072 * descriptor provides an explicit length, so we're relying on that 1073 * mechanism to catch any misunderstandings between the application and 1074 * device. 1075 * 1076 * P2P DMA also needs to use the blk_dma_iter method, so mptr setup 1077 * leverages this routine when that happens. 1078 */ 1079 if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl) || 1080 (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD))) { 1081 iod->cmd.common.metadata = cpu_to_le64(iter.addr); 1082 iod->meta_total_len = iter.len; 1083 iod->meta_dma = iter.addr; 1084 iod->meta_descriptor = NULL; 1085 return BLK_STS_OK; 1086 } 1087 1088 sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC, 1089 &sgl_dma); 1090 if (!sg_list) 1091 return BLK_STS_RESOURCE; 1092 1093 iod->meta_descriptor = sg_list; 1094 iod->meta_dma = sgl_dma; 1095 iod->cmd.common.flags = NVME_CMD_SGL_METASEG; 1096 iod->cmd.common.metadata = cpu_to_le64(sgl_dma); 1097 if (entries == 1) { 1098 iod->meta_total_len = iter.len; 1099 nvme_pci_sgl_set_data(sg_list, &iter); 1100 return BLK_STS_OK; 1101 } 1102 1103 sgl_dma += sizeof(*sg_list); 1104 do { 1105 nvme_pci_sgl_set_data(&sg_list[++i], &iter); 1106 iod->meta_total_len += iter.len; 1107 } while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter)); 1108 1109 nvme_pci_sgl_set_seg(sg_list, sgl_dma, i); 1110 if (unlikely(iter.status)) 1111 nvme_unmap_metadata(req); 1112 return iter.status; 1113 } 1114 1115 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req) 1116 { 1117 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1118 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1119 struct bio_vec bv = rq_integrity_vec(req); 1120 1121 if (is_pci_p2pdma_page(bv.bv_page)) 1122 return nvme_pci_setup_meta_iter(req); 1123 1124 iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0); 1125 if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma)) 1126 return BLK_STS_IOERR; 1127 iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma); 1128 iod->flags |= IOD_SINGLE_META_SEGMENT; 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t nvme_map_metadata(struct request *req) 1133 { 1134 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1135 1136 if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) && 1137 nvme_pci_metadata_use_sgls(req)) 1138 return nvme_pci_setup_meta_iter(req); 1139 return nvme_pci_setup_meta_mptr(req); 1140 } 1141 1142 static blk_status_t nvme_prep_rq(struct request *req) 1143 { 1144 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1145 blk_status_t ret; 1146 1147 iod->flags = 0; 1148 iod->nr_descriptors = 0; 1149 iod->total_len = 0; 1150 iod->meta_total_len = 0; 1151 1152 ret = nvme_setup_cmd(req->q->queuedata, req); 1153 if (ret) 1154 return ret; 1155 1156 if (blk_rq_nr_phys_segments(req)) { 1157 ret = nvme_map_data(req); 1158 if (ret) 1159 goto out_free_cmd; 1160 } 1161 1162 if (blk_integrity_rq(req)) { 1163 ret = nvme_map_metadata(req); 1164 if (ret) 1165 goto out_unmap_data; 1166 } 1167 1168 nvme_start_request(req); 1169 return BLK_STS_OK; 1170 out_unmap_data: 1171 if (blk_rq_nr_phys_segments(req)) 1172 nvme_unmap_data(req); 1173 out_free_cmd: 1174 nvme_cleanup_cmd(req); 1175 return ret; 1176 } 1177 1178 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 1179 const struct blk_mq_queue_data *bd) 1180 { 1181 struct nvme_queue *nvmeq = hctx->driver_data; 1182 struct nvme_dev *dev = nvmeq->dev; 1183 struct request *req = bd->rq; 1184 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1185 blk_status_t ret; 1186 1187 /* 1188 * We should not need to do this, but we're still using this to 1189 * ensure we can drain requests on a dying queue. 1190 */ 1191 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1192 return BLK_STS_IOERR; 1193 1194 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 1195 return nvme_fail_nonready_command(&dev->ctrl, req); 1196 1197 ret = nvme_prep_rq(req); 1198 if (unlikely(ret)) 1199 return ret; 1200 spin_lock(&nvmeq->sq_lock); 1201 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 1202 nvme_write_sq_db(nvmeq, bd->last); 1203 spin_unlock(&nvmeq->sq_lock); 1204 return BLK_STS_OK; 1205 } 1206 1207 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist) 1208 { 1209 struct request *req; 1210 1211 if (rq_list_empty(rqlist)) 1212 return; 1213 1214 spin_lock(&nvmeq->sq_lock); 1215 while ((req = rq_list_pop(rqlist))) { 1216 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1217 1218 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 1219 } 1220 nvme_write_sq_db(nvmeq, true); 1221 spin_unlock(&nvmeq->sq_lock); 1222 } 1223 1224 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 1225 { 1226 /* 1227 * We should not need to do this, but we're still using this to 1228 * ensure we can drain requests on a dying queue. 1229 */ 1230 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 1231 return false; 1232 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 1233 return false; 1234 1235 return nvme_prep_rq(req) == BLK_STS_OK; 1236 } 1237 1238 static void nvme_queue_rqs(struct rq_list *rqlist) 1239 { 1240 struct rq_list submit_list = { }; 1241 struct rq_list requeue_list = { }; 1242 struct nvme_queue *nvmeq = NULL; 1243 struct request *req; 1244 1245 while ((req = rq_list_pop(rqlist))) { 1246 if (nvmeq && nvmeq != req->mq_hctx->driver_data) 1247 nvme_submit_cmds(nvmeq, &submit_list); 1248 nvmeq = req->mq_hctx->driver_data; 1249 1250 if (nvme_prep_rq_batch(nvmeq, req)) 1251 rq_list_add_tail(&submit_list, req); 1252 else 1253 rq_list_add_tail(&requeue_list, req); 1254 } 1255 1256 if (nvmeq) 1257 nvme_submit_cmds(nvmeq, &submit_list); 1258 *rqlist = requeue_list; 1259 } 1260 1261 static __always_inline void nvme_pci_unmap_rq(struct request *req) 1262 { 1263 if (blk_integrity_rq(req)) 1264 nvme_unmap_metadata(req); 1265 if (blk_rq_nr_phys_segments(req)) 1266 nvme_unmap_data(req); 1267 } 1268 1269 static void nvme_pci_complete_rq(struct request *req) 1270 { 1271 nvme_pci_unmap_rq(req); 1272 nvme_complete_rq(req); 1273 } 1274 1275 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 1276 { 1277 nvme_complete_batch(iob, nvme_pci_unmap_rq); 1278 } 1279 1280 /* We read the CQE phase first to check if the rest of the entry is valid */ 1281 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 1282 { 1283 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 1284 1285 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 1286 } 1287 1288 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 1289 { 1290 u16 head = nvmeq->cq_head; 1291 1292 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1293 nvmeq->dbbuf_cq_ei)) 1294 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1295 } 1296 1297 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1298 { 1299 if (!nvmeq->qid) 1300 return nvmeq->dev->admin_tagset.tags[0]; 1301 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1302 } 1303 1304 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1305 struct io_comp_batch *iob, u16 idx) 1306 { 1307 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1308 __u16 command_id = READ_ONCE(cqe->command_id); 1309 struct request *req; 1310 1311 /* 1312 * AEN requests are special as they don't time out and can 1313 * survive any kind of queue freeze and often don't respond to 1314 * aborts. We don't even bother to allocate a struct request 1315 * for them but rather special case them here. 1316 */ 1317 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1318 nvme_complete_async_event(&nvmeq->dev->ctrl, 1319 cqe->status, &cqe->result); 1320 return; 1321 } 1322 1323 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1324 if (unlikely(!req)) { 1325 dev_warn(nvmeq->dev->ctrl.device, 1326 "invalid id %d completed on queue %d\n", 1327 command_id, le16_to_cpu(cqe->sq_id)); 1328 return; 1329 } 1330 1331 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1332 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1333 !blk_mq_add_to_batch(req, iob, 1334 nvme_req(req)->status != NVME_SC_SUCCESS, 1335 nvme_pci_complete_batch)) 1336 nvme_pci_complete_rq(req); 1337 } 1338 1339 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1340 { 1341 u32 tmp = nvmeq->cq_head + 1; 1342 1343 if (tmp == nvmeq->q_depth) { 1344 nvmeq->cq_head = 0; 1345 nvmeq->cq_phase ^= 1; 1346 } else { 1347 nvmeq->cq_head = tmp; 1348 } 1349 } 1350 1351 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq, 1352 struct io_comp_batch *iob) 1353 { 1354 bool found = false; 1355 1356 while (nvme_cqe_pending(nvmeq)) { 1357 found = true; 1358 /* 1359 * load-load control dependency between phase and the rest of 1360 * the cqe requires a full read memory barrier 1361 */ 1362 dma_rmb(); 1363 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1364 nvme_update_cq_head(nvmeq); 1365 } 1366 1367 if (found) 1368 nvme_ring_cq_doorbell(nvmeq); 1369 return found; 1370 } 1371 1372 static irqreturn_t nvme_irq(int irq, void *data) 1373 { 1374 struct nvme_queue *nvmeq = data; 1375 DEFINE_IO_COMP_BATCH(iob); 1376 1377 if (nvme_poll_cq(nvmeq, &iob)) { 1378 if (!rq_list_empty(&iob.req_list)) 1379 nvme_pci_complete_batch(&iob); 1380 return IRQ_HANDLED; 1381 } 1382 return IRQ_NONE; 1383 } 1384 1385 static irqreturn_t nvme_irq_check(int irq, void *data) 1386 { 1387 struct nvme_queue *nvmeq = data; 1388 1389 if (nvme_cqe_pending(nvmeq)) 1390 return IRQ_WAKE_THREAD; 1391 return IRQ_NONE; 1392 } 1393 1394 /* 1395 * Poll for completions for any interrupt driven queue 1396 * Can be called from any context. 1397 */ 1398 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1399 { 1400 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1401 1402 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1403 1404 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1405 spin_lock(&nvmeq->cq_poll_lock); 1406 nvme_poll_cq(nvmeq, NULL); 1407 spin_unlock(&nvmeq->cq_poll_lock); 1408 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1409 } 1410 1411 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1412 { 1413 struct nvme_queue *nvmeq = hctx->driver_data; 1414 bool found; 1415 1416 if (!nvme_cqe_pending(nvmeq)) 1417 return 0; 1418 1419 spin_lock(&nvmeq->cq_poll_lock); 1420 found = nvme_poll_cq(nvmeq, iob); 1421 spin_unlock(&nvmeq->cq_poll_lock); 1422 1423 return found; 1424 } 1425 1426 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1427 { 1428 struct nvme_dev *dev = to_nvme_dev(ctrl); 1429 struct nvme_queue *nvmeq = &dev->queues[0]; 1430 struct nvme_command c = { }; 1431 1432 c.common.opcode = nvme_admin_async_event; 1433 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1434 1435 spin_lock(&nvmeq->sq_lock); 1436 nvme_sq_copy_cmd(nvmeq, &c); 1437 nvme_write_sq_db(nvmeq, true); 1438 spin_unlock(&nvmeq->sq_lock); 1439 } 1440 1441 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl) 1442 { 1443 struct nvme_dev *dev = to_nvme_dev(ctrl); 1444 int ret = 0; 1445 1446 /* 1447 * Taking the shutdown_lock ensures the BAR mapping is not being 1448 * altered by reset_work. Holding this lock before the RESETTING state 1449 * change, if successful, also ensures nvme_remove won't be able to 1450 * proceed to iounmap until we're done. 1451 */ 1452 mutex_lock(&dev->shutdown_lock); 1453 if (!dev->bar_mapped_size) { 1454 ret = -ENODEV; 1455 goto unlock; 1456 } 1457 1458 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 1459 ret = -EBUSY; 1460 goto unlock; 1461 } 1462 1463 writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR); 1464 nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE); 1465 1466 /* 1467 * Read controller status to flush the previous write and trigger a 1468 * pcie read error. 1469 */ 1470 readl(dev->bar + NVME_REG_CSTS); 1471 unlock: 1472 mutex_unlock(&dev->shutdown_lock); 1473 return ret; 1474 } 1475 1476 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1477 { 1478 struct nvme_command c = { }; 1479 1480 c.delete_queue.opcode = opcode; 1481 c.delete_queue.qid = cpu_to_le16(id); 1482 1483 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1484 } 1485 1486 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1487 struct nvme_queue *nvmeq, s16 vector) 1488 { 1489 struct nvme_command c = { }; 1490 int flags = NVME_QUEUE_PHYS_CONTIG; 1491 1492 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1493 flags |= NVME_CQ_IRQ_ENABLED; 1494 1495 /* 1496 * Note: we (ab)use the fact that the prp fields survive if no data 1497 * is attached to the request. 1498 */ 1499 c.create_cq.opcode = nvme_admin_create_cq; 1500 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1501 c.create_cq.cqid = cpu_to_le16(qid); 1502 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1503 c.create_cq.cq_flags = cpu_to_le16(flags); 1504 c.create_cq.irq_vector = cpu_to_le16(vector); 1505 1506 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1507 } 1508 1509 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1510 struct nvme_queue *nvmeq) 1511 { 1512 struct nvme_ctrl *ctrl = &dev->ctrl; 1513 struct nvme_command c = { }; 1514 int flags = NVME_QUEUE_PHYS_CONTIG; 1515 1516 /* 1517 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1518 * set. Since URGENT priority is zeroes, it makes all queues 1519 * URGENT. 1520 */ 1521 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1522 flags |= NVME_SQ_PRIO_MEDIUM; 1523 1524 /* 1525 * Note: we (ab)use the fact that the prp fields survive if no data 1526 * is attached to the request. 1527 */ 1528 c.create_sq.opcode = nvme_admin_create_sq; 1529 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1530 c.create_sq.sqid = cpu_to_le16(qid); 1531 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1532 c.create_sq.sq_flags = cpu_to_le16(flags); 1533 c.create_sq.cqid = cpu_to_le16(qid); 1534 1535 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1536 } 1537 1538 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1539 { 1540 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1541 } 1542 1543 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1544 { 1545 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1546 } 1547 1548 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1549 { 1550 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1551 1552 dev_warn(nvmeq->dev->ctrl.device, 1553 "Abort status: 0x%x", nvme_req(req)->status); 1554 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1555 blk_mq_free_request(req); 1556 return RQ_END_IO_NONE; 1557 } 1558 1559 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1560 { 1561 /* If true, indicates loss of adapter communication, possibly by a 1562 * NVMe Subsystem reset. 1563 */ 1564 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1565 1566 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1567 switch (nvme_ctrl_state(&dev->ctrl)) { 1568 case NVME_CTRL_RESETTING: 1569 case NVME_CTRL_CONNECTING: 1570 return false; 1571 default: 1572 break; 1573 } 1574 1575 /* We shouldn't reset unless the controller is on fatal error state 1576 * _or_ if we lost the communication with it. 1577 */ 1578 if (!(csts & NVME_CSTS_CFS) && !nssro) 1579 return false; 1580 1581 return true; 1582 } 1583 1584 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1585 { 1586 /* Read a config register to help see what died. */ 1587 u16 pci_status; 1588 int result; 1589 1590 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1591 &pci_status); 1592 if (result == PCIBIOS_SUCCESSFUL) 1593 dev_warn(dev->ctrl.device, 1594 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1595 csts, pci_status); 1596 else 1597 dev_warn(dev->ctrl.device, 1598 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1599 csts, result); 1600 1601 if (csts != ~0) 1602 return; 1603 1604 dev_warn(dev->ctrl.device, 1605 "Does your device have a faulty power saving mode enabled?\n"); 1606 dev_warn(dev->ctrl.device, 1607 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n"); 1608 } 1609 1610 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1611 { 1612 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1613 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1614 struct nvme_dev *dev = nvmeq->dev; 1615 struct request *abort_req; 1616 struct nvme_command cmd = { }; 1617 struct pci_dev *pdev = to_pci_dev(dev->dev); 1618 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1619 u8 opcode; 1620 1621 /* 1622 * Shutdown the device immediately if we see it is disconnected. This 1623 * unblocks PCIe error handling if the nvme driver is waiting in 1624 * error_resume for a device that has been removed. We can't unbind the 1625 * driver while the driver's error callback is waiting to complete, so 1626 * we're relying on a timeout to break that deadlock if a removal 1627 * occurs while reset work is running. 1628 */ 1629 if (pci_dev_is_disconnected(pdev)) 1630 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1631 if (nvme_state_terminal(&dev->ctrl)) 1632 goto disable; 1633 1634 /* If PCI error recovery process is happening, we cannot reset or 1635 * the recovery mechanism will surely fail. 1636 */ 1637 mb(); 1638 if (pci_channel_offline(pdev)) 1639 return BLK_EH_RESET_TIMER; 1640 1641 /* 1642 * Reset immediately if the controller is failed 1643 */ 1644 if (nvme_should_reset(dev, csts)) { 1645 nvme_warn_reset(dev, csts); 1646 goto disable; 1647 } 1648 1649 /* 1650 * Did we miss an interrupt? 1651 */ 1652 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1653 nvme_poll(req->mq_hctx, NULL); 1654 else 1655 nvme_poll_irqdisable(nvmeq); 1656 1657 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1658 dev_warn(dev->ctrl.device, 1659 "I/O tag %d (%04x) QID %d timeout, completion polled\n", 1660 req->tag, nvme_cid(req), nvmeq->qid); 1661 return BLK_EH_DONE; 1662 } 1663 1664 /* 1665 * Shutdown immediately if controller times out while starting. The 1666 * reset work will see the pci device disabled when it gets the forced 1667 * cancellation error. All outstanding requests are completed on 1668 * shutdown, so we return BLK_EH_DONE. 1669 */ 1670 switch (nvme_ctrl_state(&dev->ctrl)) { 1671 case NVME_CTRL_CONNECTING: 1672 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1673 fallthrough; 1674 case NVME_CTRL_DELETING: 1675 dev_warn_ratelimited(dev->ctrl.device, 1676 "I/O tag %d (%04x) QID %d timeout, disable controller\n", 1677 req->tag, nvme_cid(req), nvmeq->qid); 1678 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1679 nvme_dev_disable(dev, true); 1680 return BLK_EH_DONE; 1681 case NVME_CTRL_RESETTING: 1682 return BLK_EH_RESET_TIMER; 1683 default: 1684 break; 1685 } 1686 1687 /* 1688 * Shutdown the controller immediately and schedule a reset if the 1689 * command was already aborted once before and still hasn't been 1690 * returned to the driver, or if this is the admin queue. 1691 */ 1692 opcode = nvme_req(req)->cmd->common.opcode; 1693 if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) { 1694 dev_warn(dev->ctrl.device, 1695 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n", 1696 req->tag, nvme_cid(req), opcode, 1697 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid); 1698 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1699 goto disable; 1700 } 1701 1702 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1703 atomic_inc(&dev->ctrl.abort_limit); 1704 return BLK_EH_RESET_TIMER; 1705 } 1706 iod->flags |= IOD_ABORTED; 1707 1708 cmd.abort.opcode = nvme_admin_abort_cmd; 1709 cmd.abort.cid = nvme_cid(req); 1710 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1711 1712 dev_warn(nvmeq->dev->ctrl.device, 1713 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n", 1714 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode), 1715 nvmeq->qid, blk_op_str(req_op(req)), req_op(req), 1716 blk_rq_bytes(req)); 1717 1718 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1719 BLK_MQ_REQ_NOWAIT); 1720 if (IS_ERR(abort_req)) { 1721 atomic_inc(&dev->ctrl.abort_limit); 1722 return BLK_EH_RESET_TIMER; 1723 } 1724 nvme_init_request(abort_req, &cmd); 1725 1726 abort_req->end_io = abort_endio; 1727 abort_req->end_io_data = NULL; 1728 blk_execute_rq_nowait(abort_req, false); 1729 1730 /* 1731 * The aborted req will be completed on receiving the abort req. 1732 * We enable the timer again. If hit twice, it'll cause a device reset, 1733 * as the device then is in a faulty state. 1734 */ 1735 return BLK_EH_RESET_TIMER; 1736 1737 disable: 1738 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 1739 if (nvme_state_terminal(&dev->ctrl)) 1740 nvme_dev_disable(dev, true); 1741 return BLK_EH_DONE; 1742 } 1743 1744 nvme_dev_disable(dev, false); 1745 if (nvme_try_sched_reset(&dev->ctrl)) 1746 nvme_unquiesce_io_queues(&dev->ctrl); 1747 return BLK_EH_DONE; 1748 } 1749 1750 static void nvme_free_queue(struct nvme_queue *nvmeq) 1751 { 1752 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1753 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1754 if (!nvmeq->sq_cmds) 1755 return; 1756 1757 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1758 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1759 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1760 } else { 1761 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1762 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1763 } 1764 } 1765 1766 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1767 { 1768 int i; 1769 1770 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1771 dev->ctrl.queue_count--; 1772 nvme_free_queue(&dev->queues[i]); 1773 } 1774 } 1775 1776 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1777 { 1778 struct nvme_queue *nvmeq = &dev->queues[qid]; 1779 1780 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1781 return; 1782 1783 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1784 mb(); 1785 1786 nvmeq->dev->online_queues--; 1787 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1788 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1789 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1790 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1791 } 1792 1793 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1794 { 1795 int i; 1796 1797 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1798 nvme_suspend_queue(dev, i); 1799 } 1800 1801 /* 1802 * Called only on a device that has been disabled and after all other threads 1803 * that can check this device's completion queues have synced, except 1804 * nvme_poll(). This is the last chance for the driver to see a natural 1805 * completion before nvme_cancel_request() terminates all incomplete requests. 1806 */ 1807 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1808 { 1809 int i; 1810 1811 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1812 spin_lock(&dev->queues[i].cq_poll_lock); 1813 nvme_poll_cq(&dev->queues[i], NULL); 1814 spin_unlock(&dev->queues[i].cq_poll_lock); 1815 } 1816 } 1817 1818 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1819 int entry_size) 1820 { 1821 int q_depth = dev->q_depth; 1822 unsigned q_size_aligned = roundup(q_depth * entry_size, 1823 NVME_CTRL_PAGE_SIZE); 1824 1825 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1826 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1827 1828 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1829 q_depth = div_u64(mem_per_q, entry_size); 1830 1831 /* 1832 * Ensure the reduced q_depth is above some threshold where it 1833 * would be better to map queues in system memory with the 1834 * original depth 1835 */ 1836 if (q_depth < 64) 1837 return -ENOMEM; 1838 } 1839 1840 return q_depth; 1841 } 1842 1843 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1844 int qid) 1845 { 1846 struct pci_dev *pdev = to_pci_dev(dev->dev); 1847 1848 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1849 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1850 if (nvmeq->sq_cmds) { 1851 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1852 nvmeq->sq_cmds); 1853 if (nvmeq->sq_dma_addr) { 1854 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1855 return 0; 1856 } 1857 1858 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1859 } 1860 } 1861 1862 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1863 &nvmeq->sq_dma_addr, GFP_KERNEL); 1864 if (!nvmeq->sq_cmds) 1865 return -ENOMEM; 1866 return 0; 1867 } 1868 1869 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1870 { 1871 struct nvme_queue *nvmeq = &dev->queues[qid]; 1872 1873 if (dev->ctrl.queue_count > qid) 1874 return 0; 1875 1876 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1877 nvmeq->q_depth = depth; 1878 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1879 &nvmeq->cq_dma_addr, GFP_KERNEL); 1880 if (!nvmeq->cqes) 1881 goto free_nvmeq; 1882 1883 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1884 goto free_cqdma; 1885 1886 nvmeq->dev = dev; 1887 spin_lock_init(&nvmeq->sq_lock); 1888 spin_lock_init(&nvmeq->cq_poll_lock); 1889 nvmeq->cq_head = 0; 1890 nvmeq->cq_phase = 1; 1891 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1892 nvmeq->qid = qid; 1893 dev->ctrl.queue_count++; 1894 1895 return 0; 1896 1897 free_cqdma: 1898 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1899 nvmeq->cq_dma_addr); 1900 free_nvmeq: 1901 return -ENOMEM; 1902 } 1903 1904 static int queue_request_irq(struct nvme_queue *nvmeq) 1905 { 1906 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1907 int nr = nvmeq->dev->ctrl.instance; 1908 1909 if (use_threaded_interrupts) { 1910 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1911 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1912 } else { 1913 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1914 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1915 } 1916 } 1917 1918 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1919 { 1920 struct nvme_dev *dev = nvmeq->dev; 1921 1922 nvmeq->sq_tail = 0; 1923 nvmeq->last_sq_tail = 0; 1924 nvmeq->cq_head = 0; 1925 nvmeq->cq_phase = 1; 1926 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1927 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1928 nvme_dbbuf_init(dev, nvmeq, qid); 1929 dev->online_queues++; 1930 wmb(); /* ensure the first interrupt sees the initialization */ 1931 } 1932 1933 /* 1934 * Try getting shutdown_lock while setting up IO queues. 1935 */ 1936 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1937 { 1938 /* 1939 * Give up if the lock is being held by nvme_dev_disable. 1940 */ 1941 if (!mutex_trylock(&dev->shutdown_lock)) 1942 return -ENODEV; 1943 1944 /* 1945 * Controller is in wrong state, fail early. 1946 */ 1947 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) { 1948 mutex_unlock(&dev->shutdown_lock); 1949 return -ENODEV; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1956 { 1957 struct nvme_dev *dev = nvmeq->dev; 1958 int result; 1959 u16 vector = 0; 1960 1961 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1962 1963 /* 1964 * A queue's vector matches the queue identifier unless the controller 1965 * has only one vector available. 1966 */ 1967 if (!polled) 1968 vector = dev->num_vecs == 1 ? 0 : qid; 1969 else 1970 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1971 1972 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1973 if (result) 1974 return result; 1975 1976 result = adapter_alloc_sq(dev, qid, nvmeq); 1977 if (result < 0) 1978 return result; 1979 if (result) 1980 goto release_cq; 1981 1982 nvmeq->cq_vector = vector; 1983 1984 result = nvme_setup_io_queues_trylock(dev); 1985 if (result) 1986 return result; 1987 nvme_init_queue(nvmeq, qid); 1988 if (!polled) { 1989 result = queue_request_irq(nvmeq); 1990 if (result < 0) 1991 goto release_sq; 1992 } 1993 1994 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1995 mutex_unlock(&dev->shutdown_lock); 1996 return result; 1997 1998 release_sq: 1999 dev->online_queues--; 2000 mutex_unlock(&dev->shutdown_lock); 2001 adapter_delete_sq(dev, qid); 2002 release_cq: 2003 adapter_delete_cq(dev, qid); 2004 return result; 2005 } 2006 2007 static const struct blk_mq_ops nvme_mq_admin_ops = { 2008 .queue_rq = nvme_queue_rq, 2009 .complete = nvme_pci_complete_rq, 2010 .init_hctx = nvme_admin_init_hctx, 2011 .init_request = nvme_pci_init_request, 2012 .timeout = nvme_timeout, 2013 }; 2014 2015 static const struct blk_mq_ops nvme_mq_ops = { 2016 .queue_rq = nvme_queue_rq, 2017 .queue_rqs = nvme_queue_rqs, 2018 .complete = nvme_pci_complete_rq, 2019 .commit_rqs = nvme_commit_rqs, 2020 .init_hctx = nvme_init_hctx, 2021 .init_request = nvme_pci_init_request, 2022 .map_queues = nvme_pci_map_queues, 2023 .timeout = nvme_timeout, 2024 .poll = nvme_poll, 2025 }; 2026 2027 static void nvme_dev_remove_admin(struct nvme_dev *dev) 2028 { 2029 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 2030 /* 2031 * If the controller was reset during removal, it's possible 2032 * user requests may be waiting on a stopped queue. Start the 2033 * queue to flush these to completion. 2034 */ 2035 nvme_unquiesce_admin_queue(&dev->ctrl); 2036 nvme_remove_admin_tag_set(&dev->ctrl); 2037 } 2038 } 2039 2040 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 2041 { 2042 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 2043 } 2044 2045 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 2046 { 2047 struct pci_dev *pdev = to_pci_dev(dev->dev); 2048 2049 if (size <= dev->bar_mapped_size) 2050 return 0; 2051 if (size > pci_resource_len(pdev, 0)) 2052 return -ENOMEM; 2053 if (dev->bar) 2054 iounmap(dev->bar); 2055 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 2056 if (!dev->bar) { 2057 dev->bar_mapped_size = 0; 2058 return -ENOMEM; 2059 } 2060 dev->bar_mapped_size = size; 2061 dev->dbs = dev->bar + NVME_REG_DBS; 2062 2063 return 0; 2064 } 2065 2066 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 2067 { 2068 int result; 2069 u32 aqa; 2070 struct nvme_queue *nvmeq; 2071 2072 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 2073 if (result < 0) 2074 return result; 2075 2076 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 2077 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 2078 2079 if (dev->subsystem && 2080 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 2081 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 2082 2083 /* 2084 * If the device has been passed off to us in an enabled state, just 2085 * clear the enabled bit. The spec says we should set the 'shutdown 2086 * notification bits', but doing so may cause the device to complete 2087 * commands to the admin queue ... and we don't know what memory that 2088 * might be pointing at! 2089 */ 2090 result = nvme_disable_ctrl(&dev->ctrl, false); 2091 if (result < 0) { 2092 struct pci_dev *pdev = to_pci_dev(dev->dev); 2093 2094 /* 2095 * The NVMe Controller Reset method did not get an expected 2096 * CSTS.RDY transition, so something with the device appears to 2097 * be stuck. Use the lower level and bigger hammer PCIe 2098 * Function Level Reset to attempt restoring the device to its 2099 * initial state, and try again. 2100 */ 2101 result = pcie_reset_flr(pdev, false); 2102 if (result < 0) 2103 return result; 2104 2105 pci_restore_state(pdev); 2106 result = nvme_disable_ctrl(&dev->ctrl, false); 2107 if (result < 0) 2108 return result; 2109 2110 dev_info(dev->ctrl.device, 2111 "controller reset completed after pcie flr\n"); 2112 } 2113 2114 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 2115 if (result) 2116 return result; 2117 2118 dev->ctrl.numa_node = dev_to_node(dev->dev); 2119 2120 nvmeq = &dev->queues[0]; 2121 aqa = nvmeq->q_depth - 1; 2122 aqa |= aqa << 16; 2123 2124 writel(aqa, dev->bar + NVME_REG_AQA); 2125 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 2126 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 2127 2128 result = nvme_enable_ctrl(&dev->ctrl); 2129 if (result) 2130 return result; 2131 2132 nvmeq->cq_vector = 0; 2133 nvme_init_queue(nvmeq, 0); 2134 result = queue_request_irq(nvmeq); 2135 if (result) { 2136 dev->online_queues--; 2137 return result; 2138 } 2139 2140 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 2141 return result; 2142 } 2143 2144 static int nvme_create_io_queues(struct nvme_dev *dev) 2145 { 2146 unsigned i, max, rw_queues; 2147 int ret = 0; 2148 2149 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 2150 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 2151 ret = -ENOMEM; 2152 break; 2153 } 2154 } 2155 2156 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 2157 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 2158 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 2159 dev->io_queues[HCTX_TYPE_READ]; 2160 } else { 2161 rw_queues = max; 2162 } 2163 2164 for (i = dev->online_queues; i <= max; i++) { 2165 bool polled = i > rw_queues; 2166 2167 ret = nvme_create_queue(&dev->queues[i], i, polled); 2168 if (ret) 2169 break; 2170 } 2171 2172 /* 2173 * Ignore failing Create SQ/CQ commands, we can continue with less 2174 * than the desired amount of queues, and even a controller without 2175 * I/O queues can still be used to issue admin commands. This might 2176 * be useful to upgrade a buggy firmware for example. 2177 */ 2178 return ret >= 0 ? 0 : ret; 2179 } 2180 2181 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 2182 { 2183 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 2184 2185 return 1ULL << (12 + 4 * szu); 2186 } 2187 2188 static u32 nvme_cmb_size(struct nvme_dev *dev) 2189 { 2190 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 2191 } 2192 2193 static void nvme_map_cmb(struct nvme_dev *dev) 2194 { 2195 u64 size, offset; 2196 resource_size_t bar_size; 2197 struct pci_dev *pdev = to_pci_dev(dev->dev); 2198 int bar; 2199 2200 if (dev->cmb_size) 2201 return; 2202 2203 if (NVME_CAP_CMBS(dev->ctrl.cap)) 2204 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 2205 2206 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 2207 if (!dev->cmbsz) 2208 return; 2209 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 2210 2211 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 2212 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 2213 bar = NVME_CMB_BIR(dev->cmbloc); 2214 bar_size = pci_resource_len(pdev, bar); 2215 2216 if (offset > bar_size) 2217 return; 2218 2219 /* 2220 * Controllers may support a CMB size larger than their BAR, for 2221 * example, due to being behind a bridge. Reduce the CMB to the 2222 * reported size of the BAR 2223 */ 2224 size = min(size, bar_size - offset); 2225 2226 if (!IS_ALIGNED(size, memremap_compat_align()) || 2227 !IS_ALIGNED(pci_resource_start(pdev, bar), 2228 memremap_compat_align())) 2229 return; 2230 2231 /* 2232 * Tell the controller about the host side address mapping the CMB, 2233 * and enable CMB decoding for the NVMe 1.4+ scheme: 2234 */ 2235 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 2236 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 2237 (pci_bus_address(pdev, bar) + offset), 2238 dev->bar + NVME_REG_CMBMSC); 2239 } 2240 2241 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 2242 dev_warn(dev->ctrl.device, 2243 "failed to register the CMB\n"); 2244 hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC); 2245 return; 2246 } 2247 2248 dev->cmb_size = size; 2249 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 2250 2251 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 2252 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 2253 pci_p2pmem_publish(pdev, true); 2254 } 2255 2256 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 2257 { 2258 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 2259 u64 dma_addr = dev->host_mem_descs_dma; 2260 struct nvme_command c = { }; 2261 int ret; 2262 2263 c.features.opcode = nvme_admin_set_features; 2264 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 2265 c.features.dword11 = cpu_to_le32(bits); 2266 c.features.dword12 = cpu_to_le32(host_mem_size); 2267 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 2268 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 2269 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 2270 2271 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 2272 if (ret) { 2273 dev_warn(dev->ctrl.device, 2274 "failed to set host mem (err %d, flags %#x).\n", 2275 ret, bits); 2276 } else 2277 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 2278 2279 return ret; 2280 } 2281 2282 static void nvme_free_host_mem_multi(struct nvme_dev *dev) 2283 { 2284 int i; 2285 2286 for (i = 0; i < dev->nr_host_mem_descs; i++) { 2287 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 2288 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 2289 2290 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 2291 le64_to_cpu(desc->addr), 2292 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2293 } 2294 2295 kfree(dev->host_mem_desc_bufs); 2296 dev->host_mem_desc_bufs = NULL; 2297 } 2298 2299 static void nvme_free_host_mem(struct nvme_dev *dev) 2300 { 2301 if (dev->hmb_sgt) 2302 dma_free_noncontiguous(dev->dev, dev->host_mem_size, 2303 dev->hmb_sgt, DMA_BIDIRECTIONAL); 2304 else 2305 nvme_free_host_mem_multi(dev); 2306 2307 dma_free_coherent(dev->dev, dev->host_mem_descs_size, 2308 dev->host_mem_descs, dev->host_mem_descs_dma); 2309 dev->host_mem_descs = NULL; 2310 dev->host_mem_descs_size = 0; 2311 dev->nr_host_mem_descs = 0; 2312 } 2313 2314 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size) 2315 { 2316 dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size, 2317 DMA_BIDIRECTIONAL, GFP_KERNEL, 0); 2318 if (!dev->hmb_sgt) 2319 return -ENOMEM; 2320 2321 dev->host_mem_descs = dma_alloc_coherent(dev->dev, 2322 sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma, 2323 GFP_KERNEL); 2324 if (!dev->host_mem_descs) { 2325 dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt, 2326 DMA_BIDIRECTIONAL); 2327 dev->hmb_sgt = NULL; 2328 return -ENOMEM; 2329 } 2330 dev->host_mem_size = size; 2331 dev->host_mem_descs_size = sizeof(*dev->host_mem_descs); 2332 dev->nr_host_mem_descs = 1; 2333 2334 dev->host_mem_descs[0].addr = 2335 cpu_to_le64(dev->hmb_sgt->sgl->dma_address); 2336 dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE); 2337 return 0; 2338 } 2339 2340 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred, 2341 u32 chunk_size) 2342 { 2343 struct nvme_host_mem_buf_desc *descs; 2344 u32 max_entries, len, descs_size; 2345 dma_addr_t descs_dma; 2346 int i = 0; 2347 void **bufs; 2348 u64 size, tmp; 2349 2350 tmp = (preferred + chunk_size - 1); 2351 do_div(tmp, chunk_size); 2352 max_entries = tmp; 2353 2354 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 2355 max_entries = dev->ctrl.hmmaxd; 2356 2357 descs_size = max_entries * sizeof(*descs); 2358 descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma, 2359 GFP_KERNEL); 2360 if (!descs) 2361 goto out; 2362 2363 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 2364 if (!bufs) 2365 goto out_free_descs; 2366 2367 for (size = 0; size < preferred && i < max_entries; size += len) { 2368 dma_addr_t dma_addr; 2369 2370 len = min_t(u64, chunk_size, preferred - size); 2371 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 2372 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 2373 if (!bufs[i]) 2374 break; 2375 2376 descs[i].addr = cpu_to_le64(dma_addr); 2377 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 2378 i++; 2379 } 2380 2381 if (!size) 2382 goto out_free_bufs; 2383 2384 dev->nr_host_mem_descs = i; 2385 dev->host_mem_size = size; 2386 dev->host_mem_descs = descs; 2387 dev->host_mem_descs_dma = descs_dma; 2388 dev->host_mem_descs_size = descs_size; 2389 dev->host_mem_desc_bufs = bufs; 2390 return 0; 2391 2392 out_free_bufs: 2393 kfree(bufs); 2394 out_free_descs: 2395 dma_free_coherent(dev->dev, descs_size, descs, descs_dma); 2396 out: 2397 dev->host_mem_descs = NULL; 2398 return -ENOMEM; 2399 } 2400 2401 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2402 { 2403 unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev); 2404 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2405 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2406 u64 chunk_size; 2407 2408 /* 2409 * If there is an IOMMU that can merge pages, try a virtually 2410 * non-contiguous allocation for a single segment first. 2411 */ 2412 if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) { 2413 if (!nvme_alloc_host_mem_single(dev, preferred)) 2414 return 0; 2415 } 2416 2417 /* start big and work our way down */ 2418 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2419 if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) { 2420 if (!min || dev->host_mem_size >= min) 2421 return 0; 2422 nvme_free_host_mem(dev); 2423 } 2424 } 2425 2426 return -ENOMEM; 2427 } 2428 2429 static int nvme_setup_host_mem(struct nvme_dev *dev) 2430 { 2431 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2432 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2433 u64 min = (u64)dev->ctrl.hmmin * 4096; 2434 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2435 int ret; 2436 2437 if (!dev->ctrl.hmpre) 2438 return 0; 2439 2440 preferred = min(preferred, max); 2441 if (min > max) { 2442 dev_warn(dev->ctrl.device, 2443 "min host memory (%lld MiB) above limit (%d MiB).\n", 2444 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2445 nvme_free_host_mem(dev); 2446 return 0; 2447 } 2448 2449 /* 2450 * If we already have a buffer allocated check if we can reuse it. 2451 */ 2452 if (dev->host_mem_descs) { 2453 if (dev->host_mem_size >= min) 2454 enable_bits |= NVME_HOST_MEM_RETURN; 2455 else 2456 nvme_free_host_mem(dev); 2457 } 2458 2459 if (!dev->host_mem_descs) { 2460 if (nvme_alloc_host_mem(dev, min, preferred)) { 2461 dev_warn(dev->ctrl.device, 2462 "failed to allocate host memory buffer.\n"); 2463 return 0; /* controller must work without HMB */ 2464 } 2465 2466 dev_info(dev->ctrl.device, 2467 "allocated %lld MiB host memory buffer (%u segment%s).\n", 2468 dev->host_mem_size >> ilog2(SZ_1M), 2469 dev->nr_host_mem_descs, 2470 str_plural(dev->nr_host_mem_descs)); 2471 } 2472 2473 ret = nvme_set_host_mem(dev, enable_bits); 2474 if (ret) 2475 nvme_free_host_mem(dev); 2476 return ret; 2477 } 2478 2479 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2480 char *buf) 2481 { 2482 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2483 2484 return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz : 0x%08x\n", 2485 ndev->cmbloc, ndev->cmbsz); 2486 } 2487 static DEVICE_ATTR_RO(cmb); 2488 2489 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2490 char *buf) 2491 { 2492 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2493 2494 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2495 } 2496 static DEVICE_ATTR_RO(cmbloc); 2497 2498 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2499 char *buf) 2500 { 2501 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2502 2503 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2504 } 2505 static DEVICE_ATTR_RO(cmbsz); 2506 2507 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2508 char *buf) 2509 { 2510 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2511 2512 return sysfs_emit(buf, "%d\n", ndev->hmb); 2513 } 2514 2515 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2516 const char *buf, size_t count) 2517 { 2518 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2519 bool new; 2520 int ret; 2521 2522 if (kstrtobool(buf, &new) < 0) 2523 return -EINVAL; 2524 2525 if (new == ndev->hmb) 2526 return count; 2527 2528 if (new) { 2529 ret = nvme_setup_host_mem(ndev); 2530 } else { 2531 ret = nvme_set_host_mem(ndev, 0); 2532 if (!ret) 2533 nvme_free_host_mem(ndev); 2534 } 2535 2536 if (ret < 0) 2537 return ret; 2538 2539 return count; 2540 } 2541 static DEVICE_ATTR_RW(hmb); 2542 2543 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2544 struct attribute *a, int n) 2545 { 2546 struct nvme_ctrl *ctrl = 2547 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2548 struct nvme_dev *dev = to_nvme_dev(ctrl); 2549 2550 if (a == &dev_attr_cmb.attr || 2551 a == &dev_attr_cmbloc.attr || 2552 a == &dev_attr_cmbsz.attr) { 2553 if (!dev->cmbsz) 2554 return 0; 2555 } 2556 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2557 return 0; 2558 2559 return a->mode; 2560 } 2561 2562 static struct attribute *nvme_pci_attrs[] = { 2563 &dev_attr_cmb.attr, 2564 &dev_attr_cmbloc.attr, 2565 &dev_attr_cmbsz.attr, 2566 &dev_attr_hmb.attr, 2567 NULL, 2568 }; 2569 2570 static const struct attribute_group nvme_pci_dev_attrs_group = { 2571 .attrs = nvme_pci_attrs, 2572 .is_visible = nvme_pci_attrs_are_visible, 2573 }; 2574 2575 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2576 &nvme_dev_attrs_group, 2577 &nvme_pci_dev_attrs_group, 2578 NULL, 2579 }; 2580 2581 static void nvme_update_attrs(struct nvme_dev *dev) 2582 { 2583 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2584 } 2585 2586 /* 2587 * nirqs is the number of interrupts available for write and read 2588 * queues. The core already reserved an interrupt for the admin queue. 2589 */ 2590 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2591 { 2592 struct nvme_dev *dev = affd->priv; 2593 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2594 2595 /* 2596 * If there is no interrupt available for queues, ensure that 2597 * the default queue is set to 1. The affinity set size is 2598 * also set to one, but the irq core ignores it for this case. 2599 * 2600 * If only one interrupt is available or 'write_queue' == 0, combine 2601 * write and read queues. 2602 * 2603 * If 'write_queues' > 0, ensure it leaves room for at least one read 2604 * queue. 2605 */ 2606 if (!nrirqs) { 2607 nrirqs = 1; 2608 nr_read_queues = 0; 2609 } else if (nrirqs == 1 || !nr_write_queues) { 2610 nr_read_queues = 0; 2611 } else if (nr_write_queues >= nrirqs) { 2612 nr_read_queues = 1; 2613 } else { 2614 nr_read_queues = nrirqs - nr_write_queues; 2615 } 2616 2617 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2618 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2619 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2620 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2621 affd->nr_sets = nr_read_queues ? 2 : 1; 2622 } 2623 2624 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2625 { 2626 struct pci_dev *pdev = to_pci_dev(dev->dev); 2627 struct irq_affinity affd = { 2628 .pre_vectors = 1, 2629 .calc_sets = nvme_calc_irq_sets, 2630 .priv = dev, 2631 }; 2632 unsigned int irq_queues, poll_queues; 2633 unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY; 2634 2635 /* 2636 * Poll queues don't need interrupts, but we need at least one I/O queue 2637 * left over for non-polled I/O. 2638 */ 2639 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2640 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2641 2642 /* 2643 * Initialize for the single interrupt case, will be updated in 2644 * nvme_calc_irq_sets(). 2645 */ 2646 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2647 dev->io_queues[HCTX_TYPE_READ] = 0; 2648 2649 /* 2650 * We need interrupts for the admin queue and each non-polled I/O queue, 2651 * but some Apple controllers require all queues to use the first 2652 * vector. 2653 */ 2654 irq_queues = 1; 2655 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2656 irq_queues += (nr_io_queues - poll_queues); 2657 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2658 flags &= ~PCI_IRQ_MSI; 2659 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags, 2660 &affd); 2661 } 2662 2663 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2664 { 2665 /* 2666 * If tags are shared with admin queue (Apple bug), then 2667 * make sure we only use one IO queue. 2668 */ 2669 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2670 return 1; 2671 return blk_mq_num_possible_queues(0) + dev->nr_write_queues + 2672 dev->nr_poll_queues; 2673 } 2674 2675 static int nvme_setup_io_queues(struct nvme_dev *dev) 2676 { 2677 struct nvme_queue *adminq = &dev->queues[0]; 2678 struct pci_dev *pdev = to_pci_dev(dev->dev); 2679 unsigned int nr_io_queues; 2680 unsigned long size; 2681 int result; 2682 2683 /* 2684 * Sample the module parameters once at reset time so that we have 2685 * stable values to work with. 2686 */ 2687 dev->nr_write_queues = write_queues; 2688 dev->nr_poll_queues = poll_queues; 2689 2690 nr_io_queues = dev->nr_allocated_queues - 1; 2691 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2692 if (result < 0) 2693 return result; 2694 2695 if (nr_io_queues == 0) 2696 return 0; 2697 2698 /* 2699 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2700 * from set to unset. If there is a window to it is truely freed, 2701 * pci_free_irq_vectors() jumping into this window will crash. 2702 * And take lock to avoid racing with pci_free_irq_vectors() in 2703 * nvme_dev_disable() path. 2704 */ 2705 result = nvme_setup_io_queues_trylock(dev); 2706 if (result) 2707 return result; 2708 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2709 pci_free_irq(pdev, 0, adminq); 2710 2711 if (dev->cmb_use_sqes) { 2712 result = nvme_cmb_qdepth(dev, nr_io_queues, 2713 sizeof(struct nvme_command)); 2714 if (result > 0) { 2715 dev->q_depth = result; 2716 dev->ctrl.sqsize = result - 1; 2717 } else { 2718 dev->cmb_use_sqes = false; 2719 } 2720 } 2721 2722 do { 2723 size = db_bar_size(dev, nr_io_queues); 2724 result = nvme_remap_bar(dev, size); 2725 if (!result) 2726 break; 2727 if (!--nr_io_queues) { 2728 result = -ENOMEM; 2729 goto out_unlock; 2730 } 2731 } while (1); 2732 adminq->q_db = dev->dbs; 2733 2734 retry: 2735 /* Deregister the admin queue's interrupt */ 2736 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2737 pci_free_irq(pdev, 0, adminq); 2738 2739 /* 2740 * If we enable msix early due to not intx, disable it again before 2741 * setting up the full range we need. 2742 */ 2743 pci_free_irq_vectors(pdev); 2744 2745 result = nvme_setup_irqs(dev, nr_io_queues); 2746 if (result <= 0) { 2747 result = -EIO; 2748 goto out_unlock; 2749 } 2750 2751 dev->num_vecs = result; 2752 result = max(result - 1, 1); 2753 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2754 2755 /* 2756 * Should investigate if there's a performance win from allocating 2757 * more queues than interrupt vectors; it might allow the submission 2758 * path to scale better, even if the receive path is limited by the 2759 * number of interrupts. 2760 */ 2761 result = queue_request_irq(adminq); 2762 if (result) 2763 goto out_unlock; 2764 set_bit(NVMEQ_ENABLED, &adminq->flags); 2765 mutex_unlock(&dev->shutdown_lock); 2766 2767 result = nvme_create_io_queues(dev); 2768 if (result || dev->online_queues < 2) 2769 return result; 2770 2771 if (dev->online_queues - 1 < dev->max_qid) { 2772 nr_io_queues = dev->online_queues - 1; 2773 nvme_delete_io_queues(dev); 2774 result = nvme_setup_io_queues_trylock(dev); 2775 if (result) 2776 return result; 2777 nvme_suspend_io_queues(dev); 2778 goto retry; 2779 } 2780 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2781 dev->io_queues[HCTX_TYPE_DEFAULT], 2782 dev->io_queues[HCTX_TYPE_READ], 2783 dev->io_queues[HCTX_TYPE_POLL]); 2784 return 0; 2785 out_unlock: 2786 mutex_unlock(&dev->shutdown_lock); 2787 return result; 2788 } 2789 2790 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2791 blk_status_t error) 2792 { 2793 struct nvme_queue *nvmeq = req->end_io_data; 2794 2795 blk_mq_free_request(req); 2796 complete(&nvmeq->delete_done); 2797 return RQ_END_IO_NONE; 2798 } 2799 2800 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2801 blk_status_t error) 2802 { 2803 struct nvme_queue *nvmeq = req->end_io_data; 2804 2805 if (error) 2806 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2807 2808 return nvme_del_queue_end(req, error); 2809 } 2810 2811 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2812 { 2813 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2814 struct request *req; 2815 struct nvme_command cmd = { }; 2816 2817 cmd.delete_queue.opcode = opcode; 2818 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2819 2820 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2821 if (IS_ERR(req)) 2822 return PTR_ERR(req); 2823 nvme_init_request(req, &cmd); 2824 2825 if (opcode == nvme_admin_delete_cq) 2826 req->end_io = nvme_del_cq_end; 2827 else 2828 req->end_io = nvme_del_queue_end; 2829 req->end_io_data = nvmeq; 2830 2831 init_completion(&nvmeq->delete_done); 2832 blk_execute_rq_nowait(req, false); 2833 return 0; 2834 } 2835 2836 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2837 { 2838 int nr_queues = dev->online_queues - 1, sent = 0; 2839 unsigned long timeout; 2840 2841 retry: 2842 timeout = NVME_ADMIN_TIMEOUT; 2843 while (nr_queues > 0) { 2844 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2845 break; 2846 nr_queues--; 2847 sent++; 2848 } 2849 while (sent) { 2850 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2851 2852 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2853 timeout); 2854 if (timeout == 0) 2855 return false; 2856 2857 sent--; 2858 if (nr_queues) 2859 goto retry; 2860 } 2861 return true; 2862 } 2863 2864 static void nvme_delete_io_queues(struct nvme_dev *dev) 2865 { 2866 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2867 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2868 } 2869 2870 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2871 { 2872 if (dev->io_queues[HCTX_TYPE_POLL]) 2873 return 3; 2874 if (dev->io_queues[HCTX_TYPE_READ]) 2875 return 2; 2876 return 1; 2877 } 2878 2879 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev) 2880 { 2881 if (!dev->ctrl.tagset) { 2882 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 2883 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 2884 return true; 2885 } 2886 2887 /* Give up if we are racing with nvme_dev_disable() */ 2888 if (!mutex_trylock(&dev->shutdown_lock)) 2889 return false; 2890 2891 /* Check if nvme_dev_disable() has been executed already */ 2892 if (!dev->online_queues) { 2893 mutex_unlock(&dev->shutdown_lock); 2894 return false; 2895 } 2896 2897 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2898 /* free previously allocated queues that are no longer usable */ 2899 nvme_free_queues(dev, dev->online_queues); 2900 mutex_unlock(&dev->shutdown_lock); 2901 return true; 2902 } 2903 2904 static int nvme_pci_enable(struct nvme_dev *dev) 2905 { 2906 int result = -ENOMEM; 2907 struct pci_dev *pdev = to_pci_dev(dev->dev); 2908 unsigned int flags = PCI_IRQ_ALL_TYPES; 2909 2910 if (pci_enable_device_mem(pdev)) 2911 return result; 2912 2913 pci_set_master(pdev); 2914 2915 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2916 result = -ENODEV; 2917 goto disable; 2918 } 2919 2920 /* 2921 * Some devices and/or platforms don't advertise or work with INTx 2922 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2923 * adjust this later. 2924 */ 2925 if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI) 2926 flags &= ~PCI_IRQ_MSI; 2927 result = pci_alloc_irq_vectors(pdev, 1, 1, flags); 2928 if (result < 0) 2929 goto disable; 2930 2931 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2932 2933 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2934 io_queue_depth); 2935 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2936 dev->dbs = dev->bar + 4096; 2937 2938 /* 2939 * Some Apple controllers require a non-standard SQE size. 2940 * Interestingly they also seem to ignore the CC:IOSQES register 2941 * so we don't bother updating it here. 2942 */ 2943 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2944 dev->io_sqes = 7; 2945 else 2946 dev->io_sqes = NVME_NVM_IOSQES; 2947 2948 if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) { 2949 dev->q_depth = 2; 2950 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2951 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2952 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2953 dev->q_depth = 64; 2954 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2955 "set queue depth=%u\n", dev->q_depth); 2956 } 2957 2958 /* 2959 * Controllers with the shared tags quirk need the IO queue to be 2960 * big enough so that we get 32 tags for the admin queue 2961 */ 2962 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2963 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2964 dev->q_depth = NVME_AQ_DEPTH + 2; 2965 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2966 dev->q_depth); 2967 } 2968 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2969 2970 nvme_map_cmb(dev); 2971 2972 pci_save_state(pdev); 2973 2974 result = nvme_pci_configure_admin_queue(dev); 2975 if (result) 2976 goto free_irq; 2977 return result; 2978 2979 free_irq: 2980 pci_free_irq_vectors(pdev); 2981 disable: 2982 pci_disable_device(pdev); 2983 return result; 2984 } 2985 2986 static void nvme_dev_unmap(struct nvme_dev *dev) 2987 { 2988 if (dev->bar) 2989 iounmap(dev->bar); 2990 pci_release_mem_regions(to_pci_dev(dev->dev)); 2991 } 2992 2993 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2994 { 2995 struct pci_dev *pdev = to_pci_dev(dev->dev); 2996 u32 csts; 2997 2998 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2999 return true; 3000 if (pdev->error_state != pci_channel_io_normal) 3001 return true; 3002 3003 csts = readl(dev->bar + NVME_REG_CSTS); 3004 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 3005 } 3006 3007 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 3008 { 3009 enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl); 3010 struct pci_dev *pdev = to_pci_dev(dev->dev); 3011 bool dead; 3012 3013 mutex_lock(&dev->shutdown_lock); 3014 dead = nvme_pci_ctrl_is_dead(dev); 3015 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) { 3016 if (pci_is_enabled(pdev)) 3017 nvme_start_freeze(&dev->ctrl); 3018 /* 3019 * Give the controller a chance to complete all entered requests 3020 * if doing a safe shutdown. 3021 */ 3022 if (!dead && shutdown) 3023 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 3024 } 3025 3026 nvme_quiesce_io_queues(&dev->ctrl); 3027 3028 if (!dead && dev->ctrl.queue_count > 0) { 3029 nvme_delete_io_queues(dev); 3030 nvme_disable_ctrl(&dev->ctrl, shutdown); 3031 nvme_poll_irqdisable(&dev->queues[0]); 3032 } 3033 nvme_suspend_io_queues(dev); 3034 nvme_suspend_queue(dev, 0); 3035 pci_free_irq_vectors(pdev); 3036 if (pci_is_enabled(pdev)) 3037 pci_disable_device(pdev); 3038 nvme_reap_pending_cqes(dev); 3039 3040 nvme_cancel_tagset(&dev->ctrl); 3041 nvme_cancel_admin_tagset(&dev->ctrl); 3042 3043 /* 3044 * The driver will not be starting up queues again if shutting down so 3045 * must flush all entered requests to their failed completion to avoid 3046 * deadlocking blk-mq hot-cpu notifier. 3047 */ 3048 if (shutdown) { 3049 nvme_unquiesce_io_queues(&dev->ctrl); 3050 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 3051 nvme_unquiesce_admin_queue(&dev->ctrl); 3052 } 3053 mutex_unlock(&dev->shutdown_lock); 3054 } 3055 3056 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 3057 { 3058 if (!nvme_wait_reset(&dev->ctrl)) 3059 return -EBUSY; 3060 nvme_dev_disable(dev, shutdown); 3061 return 0; 3062 } 3063 3064 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 3065 { 3066 size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS; 3067 3068 dev->dmavec_mempool = mempool_create_node(1, 3069 mempool_kmalloc, mempool_kfree, 3070 (void *)alloc_size, GFP_KERNEL, 3071 dev_to_node(dev->dev)); 3072 if (!dev->dmavec_mempool) 3073 return -ENOMEM; 3074 return 0; 3075 } 3076 3077 static void nvme_free_tagset(struct nvme_dev *dev) 3078 { 3079 if (dev->tagset.tags) 3080 nvme_remove_io_tag_set(&dev->ctrl); 3081 dev->ctrl.tagset = NULL; 3082 } 3083 3084 /* pairs with nvme_pci_alloc_dev */ 3085 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 3086 { 3087 struct nvme_dev *dev = to_nvme_dev(ctrl); 3088 3089 nvme_free_tagset(dev); 3090 put_device(dev->dev); 3091 kfree(dev->queues); 3092 kfree(dev); 3093 } 3094 3095 static void nvme_reset_work(struct work_struct *work) 3096 { 3097 struct nvme_dev *dev = 3098 container_of(work, struct nvme_dev, ctrl.reset_work); 3099 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 3100 int result; 3101 3102 if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) { 3103 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 3104 dev->ctrl.state); 3105 result = -ENODEV; 3106 goto out; 3107 } 3108 3109 /* 3110 * If we're called to reset a live controller first shut it down before 3111 * moving on. 3112 */ 3113 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 3114 nvme_dev_disable(dev, false); 3115 nvme_sync_queues(&dev->ctrl); 3116 3117 mutex_lock(&dev->shutdown_lock); 3118 result = nvme_pci_enable(dev); 3119 if (result) 3120 goto out_unlock; 3121 nvme_unquiesce_admin_queue(&dev->ctrl); 3122 mutex_unlock(&dev->shutdown_lock); 3123 3124 /* 3125 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 3126 * initializing procedure here. 3127 */ 3128 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3129 dev_warn(dev->ctrl.device, 3130 "failed to mark controller CONNECTING\n"); 3131 result = -EBUSY; 3132 goto out; 3133 } 3134 3135 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 3136 if (result) 3137 goto out; 3138 3139 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3140 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3141 else 3142 dev->ctrl.max_integrity_segments = 1; 3143 3144 nvme_dbbuf_dma_alloc(dev); 3145 3146 result = nvme_setup_host_mem(dev); 3147 if (result < 0) 3148 goto out; 3149 3150 nvme_update_attrs(dev); 3151 3152 result = nvme_setup_io_queues(dev); 3153 if (result) 3154 goto out; 3155 3156 /* 3157 * Freeze and update the number of I/O queues as those might have 3158 * changed. If there are no I/O queues left after this reset, keep the 3159 * controller around but remove all namespaces. 3160 */ 3161 if (dev->online_queues > 1) { 3162 nvme_dbbuf_set(dev); 3163 nvme_unquiesce_io_queues(&dev->ctrl); 3164 nvme_wait_freeze(&dev->ctrl); 3165 if (!nvme_pci_update_nr_queues(dev)) 3166 goto out; 3167 nvme_unfreeze(&dev->ctrl); 3168 } else { 3169 dev_warn(dev->ctrl.device, "IO queues lost\n"); 3170 nvme_mark_namespaces_dead(&dev->ctrl); 3171 nvme_unquiesce_io_queues(&dev->ctrl); 3172 nvme_remove_namespaces(&dev->ctrl); 3173 nvme_free_tagset(dev); 3174 } 3175 3176 /* 3177 * If only admin queue live, keep it to do further investigation or 3178 * recovery. 3179 */ 3180 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3181 dev_warn(dev->ctrl.device, 3182 "failed to mark controller live state\n"); 3183 result = -ENODEV; 3184 goto out; 3185 } 3186 3187 nvme_start_ctrl(&dev->ctrl); 3188 return; 3189 3190 out_unlock: 3191 mutex_unlock(&dev->shutdown_lock); 3192 out: 3193 /* 3194 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 3195 * may be holding this pci_dev's device lock. 3196 */ 3197 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 3198 result); 3199 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3200 nvme_dev_disable(dev, true); 3201 nvme_sync_queues(&dev->ctrl); 3202 nvme_mark_namespaces_dead(&dev->ctrl); 3203 nvme_unquiesce_io_queues(&dev->ctrl); 3204 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3205 } 3206 3207 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 3208 { 3209 *val = readl(to_nvme_dev(ctrl)->bar + off); 3210 return 0; 3211 } 3212 3213 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 3214 { 3215 writel(val, to_nvme_dev(ctrl)->bar + off); 3216 return 0; 3217 } 3218 3219 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 3220 { 3221 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 3222 return 0; 3223 } 3224 3225 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 3226 { 3227 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3228 3229 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 3230 } 3231 3232 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 3233 { 3234 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 3235 struct nvme_subsystem *subsys = ctrl->subsys; 3236 3237 dev_err(ctrl->device, 3238 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 3239 pdev->vendor, pdev->device, 3240 nvme_strlen(subsys->model, sizeof(subsys->model)), 3241 subsys->model, nvme_strlen(subsys->firmware_rev, 3242 sizeof(subsys->firmware_rev)), 3243 subsys->firmware_rev); 3244 } 3245 3246 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 3247 { 3248 struct nvme_dev *dev = to_nvme_dev(ctrl); 3249 3250 return dma_pci_p2pdma_supported(dev->dev); 3251 } 3252 3253 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 3254 .name = "pcie", 3255 .module = THIS_MODULE, 3256 .flags = NVME_F_METADATA_SUPPORTED, 3257 .dev_attr_groups = nvme_pci_dev_attr_groups, 3258 .reg_read32 = nvme_pci_reg_read32, 3259 .reg_write32 = nvme_pci_reg_write32, 3260 .reg_read64 = nvme_pci_reg_read64, 3261 .free_ctrl = nvme_pci_free_ctrl, 3262 .submit_async_event = nvme_pci_submit_async_event, 3263 .subsystem_reset = nvme_pci_subsystem_reset, 3264 .get_address = nvme_pci_get_address, 3265 .print_device_info = nvme_pci_print_device_info, 3266 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 3267 }; 3268 3269 static int nvme_dev_map(struct nvme_dev *dev) 3270 { 3271 struct pci_dev *pdev = to_pci_dev(dev->dev); 3272 3273 if (pci_request_mem_regions(pdev, "nvme")) 3274 return -ENODEV; 3275 3276 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 3277 goto release; 3278 3279 return 0; 3280 release: 3281 pci_release_mem_regions(pdev); 3282 return -ENODEV; 3283 } 3284 3285 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 3286 { 3287 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 3288 /* 3289 * Several Samsung devices seem to drop off the PCIe bus 3290 * randomly when APST is on and uses the deepest sleep state. 3291 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 3292 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 3293 * 950 PRO 256GB", but it seems to be restricted to two Dell 3294 * laptops. 3295 */ 3296 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 3297 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 3298 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 3299 return NVME_QUIRK_NO_DEEPEST_PS; 3300 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 3301 /* 3302 * Samsung SSD 960 EVO drops off the PCIe bus after system 3303 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 3304 * within few minutes after bootup on a Coffee Lake board - 3305 * ASUS PRIME Z370-A 3306 */ 3307 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 3308 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 3309 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 3310 return NVME_QUIRK_NO_APST; 3311 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 3312 pdev->device == 0xa808 || pdev->device == 0xa809)) || 3313 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 3314 /* 3315 * Forcing to use host managed nvme power settings for 3316 * lowest idle power with quick resume latency on 3317 * Samsung and Toshiba SSDs based on suspend behavior 3318 * on Coffee Lake board for LENOVO C640 3319 */ 3320 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 3321 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 3322 return NVME_QUIRK_SIMPLE_SUSPEND; 3323 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 || 3324 pdev->device == 0x500f)) { 3325 /* 3326 * Exclude some Kingston NV1 and A2000 devices from 3327 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a 3328 * lot of energy with s2idle sleep on some TUXEDO platforms. 3329 */ 3330 if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3331 dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") || 3332 dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") || 3333 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1")) 3334 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3335 } else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) { 3336 /* 3337 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND 3338 * because of high power consumption (> 2 Watt) in s2idle 3339 * sleep. Only some boards with Intel CPU are affected. 3340 * (Note for testing: Samsung 990 Evo Plus has same PCI ID) 3341 */ 3342 if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") || 3343 dmi_match(DMI_BOARD_NAME, "GMxPXxx") || 3344 dmi_match(DMI_BOARD_NAME, "GXxMRXx") || 3345 dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") || 3346 dmi_match(DMI_BOARD_NAME, "PH4PG31") || 3347 dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") || 3348 dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71")) 3349 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND; 3350 } 3351 3352 /* 3353 * NVMe SSD drops off the PCIe bus after system idle 3354 * for 10 hours on a Lenovo N60z board. 3355 */ 3356 if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6")) 3357 return NVME_QUIRK_NO_APST; 3358 3359 return 0; 3360 } 3361 3362 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 3363 const struct pci_device_id *id) 3364 { 3365 unsigned long quirks = id->driver_data; 3366 int node = dev_to_node(&pdev->dev); 3367 struct nvme_dev *dev; 3368 int ret = -ENOMEM; 3369 3370 dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids), 3371 GFP_KERNEL, node); 3372 if (!dev) 3373 return ERR_PTR(-ENOMEM); 3374 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 3375 mutex_init(&dev->shutdown_lock); 3376 3377 dev->nr_write_queues = write_queues; 3378 dev->nr_poll_queues = poll_queues; 3379 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 3380 dev->queues = kcalloc_node(dev->nr_allocated_queues, 3381 sizeof(struct nvme_queue), GFP_KERNEL, node); 3382 if (!dev->queues) 3383 goto out_free_dev; 3384 3385 dev->dev = get_device(&pdev->dev); 3386 3387 quirks |= check_vendor_combination_bug(pdev); 3388 if (!noacpi && 3389 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) && 3390 acpi_storage_d3(&pdev->dev)) { 3391 /* 3392 * Some systems use a bios work around to ask for D3 on 3393 * platforms that support kernel managed suspend. 3394 */ 3395 dev_info(&pdev->dev, 3396 "platform quirk: setting simple suspend\n"); 3397 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 3398 } 3399 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 3400 quirks); 3401 if (ret) 3402 goto out_put_device; 3403 3404 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 3405 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 3406 else 3407 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3408 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 3409 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 3410 3411 /* 3412 * Limit the max command size to prevent iod->sg allocations going 3413 * over a single page. 3414 */ 3415 dev->ctrl.max_hw_sectors = min_t(u32, 3416 NVME_MAX_BYTES >> SECTOR_SHIFT, 3417 dma_opt_mapping_size(&pdev->dev) >> 9); 3418 dev->ctrl.max_segments = NVME_MAX_SEGS; 3419 dev->ctrl.max_integrity_segments = 1; 3420 return dev; 3421 3422 out_put_device: 3423 put_device(dev->dev); 3424 kfree(dev->queues); 3425 out_free_dev: 3426 kfree(dev); 3427 return ERR_PTR(ret); 3428 } 3429 3430 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3431 { 3432 struct nvme_dev *dev; 3433 int result = -ENOMEM; 3434 3435 dev = nvme_pci_alloc_dev(pdev, id); 3436 if (IS_ERR(dev)) 3437 return PTR_ERR(dev); 3438 3439 result = nvme_add_ctrl(&dev->ctrl); 3440 if (result) 3441 goto out_put_ctrl; 3442 3443 result = nvme_dev_map(dev); 3444 if (result) 3445 goto out_uninit_ctrl; 3446 3447 result = nvme_pci_alloc_iod_mempool(dev); 3448 if (result) 3449 goto out_dev_unmap; 3450 3451 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3452 3453 result = nvme_pci_enable(dev); 3454 if (result) 3455 goto out_release_iod_mempool; 3456 3457 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3458 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3459 if (result) 3460 goto out_disable; 3461 3462 /* 3463 * Mark the controller as connecting before sending admin commands to 3464 * allow the timeout handler to do the right thing. 3465 */ 3466 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3467 dev_warn(dev->ctrl.device, 3468 "failed to mark controller CONNECTING\n"); 3469 result = -EBUSY; 3470 goto out_disable; 3471 } 3472 3473 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3474 if (result) 3475 goto out_disable; 3476 3477 if (nvme_ctrl_meta_sgl_supported(&dev->ctrl)) 3478 dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS; 3479 else 3480 dev->ctrl.max_integrity_segments = 1; 3481 3482 nvme_dbbuf_dma_alloc(dev); 3483 3484 result = nvme_setup_host_mem(dev); 3485 if (result < 0) 3486 goto out_disable; 3487 3488 nvme_update_attrs(dev); 3489 3490 result = nvme_setup_io_queues(dev); 3491 if (result) 3492 goto out_disable; 3493 3494 if (dev->online_queues > 1) { 3495 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3496 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3497 nvme_dbbuf_set(dev); 3498 } 3499 3500 if (!dev->ctrl.tagset) 3501 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3502 3503 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3504 dev_warn(dev->ctrl.device, 3505 "failed to mark controller live state\n"); 3506 result = -ENODEV; 3507 goto out_disable; 3508 } 3509 3510 pci_set_drvdata(pdev, dev); 3511 3512 nvme_start_ctrl(&dev->ctrl); 3513 nvme_put_ctrl(&dev->ctrl); 3514 flush_work(&dev->ctrl.scan_work); 3515 return 0; 3516 3517 out_disable: 3518 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3519 nvme_dev_disable(dev, true); 3520 nvme_free_host_mem(dev); 3521 nvme_dev_remove_admin(dev); 3522 nvme_dbbuf_dma_free(dev); 3523 nvme_free_queues(dev, 0); 3524 out_release_iod_mempool: 3525 mempool_destroy(dev->dmavec_mempool); 3526 out_dev_unmap: 3527 nvme_dev_unmap(dev); 3528 out_uninit_ctrl: 3529 nvme_uninit_ctrl(&dev->ctrl); 3530 out_put_ctrl: 3531 nvme_put_ctrl(&dev->ctrl); 3532 return result; 3533 } 3534 3535 static void nvme_reset_prepare(struct pci_dev *pdev) 3536 { 3537 struct nvme_dev *dev = pci_get_drvdata(pdev); 3538 3539 /* 3540 * We don't need to check the return value from waiting for the reset 3541 * state as pci_dev device lock is held, making it impossible to race 3542 * with ->remove(). 3543 */ 3544 nvme_disable_prepare_reset(dev, false); 3545 nvme_sync_queues(&dev->ctrl); 3546 } 3547 3548 static void nvme_reset_done(struct pci_dev *pdev) 3549 { 3550 struct nvme_dev *dev = pci_get_drvdata(pdev); 3551 3552 if (!nvme_try_sched_reset(&dev->ctrl)) 3553 flush_work(&dev->ctrl.reset_work); 3554 } 3555 3556 static void nvme_shutdown(struct pci_dev *pdev) 3557 { 3558 struct nvme_dev *dev = pci_get_drvdata(pdev); 3559 3560 nvme_disable_prepare_reset(dev, true); 3561 } 3562 3563 /* 3564 * The driver's remove may be called on a device in a partially initialized 3565 * state. This function must not have any dependencies on the device state in 3566 * order to proceed. 3567 */ 3568 static void nvme_remove(struct pci_dev *pdev) 3569 { 3570 struct nvme_dev *dev = pci_get_drvdata(pdev); 3571 3572 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3573 pci_set_drvdata(pdev, NULL); 3574 3575 if (!pci_device_is_present(pdev)) { 3576 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3577 nvme_dev_disable(dev, true); 3578 } 3579 3580 flush_work(&dev->ctrl.reset_work); 3581 nvme_stop_ctrl(&dev->ctrl); 3582 nvme_remove_namespaces(&dev->ctrl); 3583 nvme_dev_disable(dev, true); 3584 nvme_free_host_mem(dev); 3585 nvme_dev_remove_admin(dev); 3586 nvme_dbbuf_dma_free(dev); 3587 nvme_free_queues(dev, 0); 3588 mempool_destroy(dev->dmavec_mempool); 3589 nvme_release_descriptor_pools(dev); 3590 nvme_dev_unmap(dev); 3591 nvme_uninit_ctrl(&dev->ctrl); 3592 } 3593 3594 #ifdef CONFIG_PM_SLEEP 3595 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3596 { 3597 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3598 } 3599 3600 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3601 { 3602 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3603 } 3604 3605 static int nvme_resume(struct device *dev) 3606 { 3607 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3608 struct nvme_ctrl *ctrl = &ndev->ctrl; 3609 3610 if (ndev->last_ps == U32_MAX || 3611 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3612 goto reset; 3613 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3614 goto reset; 3615 3616 return 0; 3617 reset: 3618 return nvme_try_sched_reset(ctrl); 3619 } 3620 3621 static int nvme_suspend(struct device *dev) 3622 { 3623 struct pci_dev *pdev = to_pci_dev(dev); 3624 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3625 struct nvme_ctrl *ctrl = &ndev->ctrl; 3626 int ret = -EBUSY; 3627 3628 ndev->last_ps = U32_MAX; 3629 3630 /* 3631 * The platform does not remove power for a kernel managed suspend so 3632 * use host managed nvme power settings for lowest idle power if 3633 * possible. This should have quicker resume latency than a full device 3634 * shutdown. But if the firmware is involved after the suspend or the 3635 * device does not support any non-default power states, shut down the 3636 * device fully. 3637 * 3638 * If ASPM is not enabled for the device, shut down the device and allow 3639 * the PCI bus layer to put it into D3 in order to take the PCIe link 3640 * down, so as to allow the platform to achieve its minimum low-power 3641 * state (which may not be possible if the link is up). 3642 */ 3643 if (pm_suspend_via_firmware() || !ctrl->npss || 3644 !pcie_aspm_enabled(pdev) || 3645 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3646 return nvme_disable_prepare_reset(ndev, true); 3647 3648 nvme_start_freeze(ctrl); 3649 nvme_wait_freeze(ctrl); 3650 nvme_sync_queues(ctrl); 3651 3652 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 3653 goto unfreeze; 3654 3655 /* 3656 * Host memory access may not be successful in a system suspend state, 3657 * but the specification allows the controller to access memory in a 3658 * non-operational power state. 3659 */ 3660 if (ndev->hmb) { 3661 ret = nvme_set_host_mem(ndev, 0); 3662 if (ret < 0) 3663 goto unfreeze; 3664 } 3665 3666 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3667 if (ret < 0) 3668 goto unfreeze; 3669 3670 /* 3671 * A saved state prevents pci pm from generically controlling the 3672 * device's power. If we're using protocol specific settings, we don't 3673 * want pci interfering. 3674 */ 3675 pci_save_state(pdev); 3676 3677 ret = nvme_set_power_state(ctrl, ctrl->npss); 3678 if (ret < 0) 3679 goto unfreeze; 3680 3681 if (ret) { 3682 /* discard the saved state */ 3683 pci_load_saved_state(pdev, NULL); 3684 3685 /* 3686 * Clearing npss forces a controller reset on resume. The 3687 * correct value will be rediscovered then. 3688 */ 3689 ret = nvme_disable_prepare_reset(ndev, true); 3690 ctrl->npss = 0; 3691 } 3692 unfreeze: 3693 nvme_unfreeze(ctrl); 3694 return ret; 3695 } 3696 3697 static int nvme_simple_suspend(struct device *dev) 3698 { 3699 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3700 3701 return nvme_disable_prepare_reset(ndev, true); 3702 } 3703 3704 static int nvme_simple_resume(struct device *dev) 3705 { 3706 struct pci_dev *pdev = to_pci_dev(dev); 3707 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3708 3709 return nvme_try_sched_reset(&ndev->ctrl); 3710 } 3711 3712 static const struct dev_pm_ops nvme_dev_pm_ops = { 3713 .suspend = nvme_suspend, 3714 .resume = nvme_resume, 3715 .freeze = nvme_simple_suspend, 3716 .thaw = nvme_simple_resume, 3717 .poweroff = nvme_simple_suspend, 3718 .restore = nvme_simple_resume, 3719 }; 3720 #endif /* CONFIG_PM_SLEEP */ 3721 3722 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3723 pci_channel_state_t state) 3724 { 3725 struct nvme_dev *dev = pci_get_drvdata(pdev); 3726 3727 /* 3728 * A frozen channel requires a reset. When detected, this method will 3729 * shutdown the controller to quiesce. The controller will be restarted 3730 * after the slot reset through driver's slot_reset callback. 3731 */ 3732 switch (state) { 3733 case pci_channel_io_normal: 3734 return PCI_ERS_RESULT_CAN_RECOVER; 3735 case pci_channel_io_frozen: 3736 dev_warn(dev->ctrl.device, 3737 "frozen state error detected, reset controller\n"); 3738 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3739 nvme_dev_disable(dev, true); 3740 return PCI_ERS_RESULT_DISCONNECT; 3741 } 3742 nvme_dev_disable(dev, false); 3743 return PCI_ERS_RESULT_NEED_RESET; 3744 case pci_channel_io_perm_failure: 3745 dev_warn(dev->ctrl.device, 3746 "failure state error detected, request disconnect\n"); 3747 return PCI_ERS_RESULT_DISCONNECT; 3748 } 3749 return PCI_ERS_RESULT_NEED_RESET; 3750 } 3751 3752 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3753 { 3754 struct nvme_dev *dev = pci_get_drvdata(pdev); 3755 3756 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3757 pci_restore_state(pdev); 3758 if (nvme_try_sched_reset(&dev->ctrl)) 3759 nvme_unquiesce_io_queues(&dev->ctrl); 3760 return PCI_ERS_RESULT_RECOVERED; 3761 } 3762 3763 static void nvme_error_resume(struct pci_dev *pdev) 3764 { 3765 struct nvme_dev *dev = pci_get_drvdata(pdev); 3766 3767 flush_work(&dev->ctrl.reset_work); 3768 } 3769 3770 static const struct pci_error_handlers nvme_err_handler = { 3771 .error_detected = nvme_error_detected, 3772 .slot_reset = nvme_slot_reset, 3773 .resume = nvme_error_resume, 3774 .reset_prepare = nvme_reset_prepare, 3775 .reset_done = nvme_reset_done, 3776 }; 3777 3778 static const struct pci_device_id nvme_id_table[] = { 3779 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3780 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3781 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3782 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3783 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3784 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3785 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3786 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3787 NVME_QUIRK_IGNORE_DEV_SUBNQN | 3788 NVME_QUIRK_BOGUS_NID, }, 3789 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3790 .driver_data = NVME_QUIRK_STRIPE_SIZE, }, 3791 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3792 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3793 NVME_QUIRK_MEDIUM_PRIO_SQ | 3794 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3795 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3796 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3797 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3798 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3799 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3800 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3801 NVME_QUIRK_BOGUS_NID, }, 3802 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3803 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3804 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */ 3805 .driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, }, 3806 { PCI_DEVICE(0x126f, 0x1001), /* Silicon Motion generic */ 3807 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3808 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3809 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */ 3810 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3811 NVME_QUIRK_BOGUS_NID, }, 3812 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3813 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3814 NVME_QUIRK_BOGUS_NID, }, 3815 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3816 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3817 NVME_QUIRK_NO_NS_DESC_LIST, }, 3818 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3819 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3820 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3821 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3822 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3823 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3824 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3825 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3826 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3827 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3828 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3829 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3830 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */ 3831 .driver_data = NVME_QUIRK_BROKEN_MSI }, 3832 { PCI_DEVICE(0x15b7, 0x5009), /* Sandisk SN550 */ 3833 .driver_data = NVME_QUIRK_BROKEN_MSI | 3834 NVME_QUIRK_NO_DEEPEST_PS }, 3835 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3836 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3837 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3838 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3839 NVME_QUIRK_BOGUS_NID, }, 3840 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3841 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3842 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3843 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3844 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3845 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3846 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3847 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3848 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3849 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3850 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3851 NVME_QUIRK_BOGUS_NID, }, 3852 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3853 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3854 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3855 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3856 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3857 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3858 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3859 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3860 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3861 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3862 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3863 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3864 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3865 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */ 3866 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3867 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3868 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3869 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3870 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3871 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3872 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3873 NVME_QUIRK_BOGUS_NID, }, 3874 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3875 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3876 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3877 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3878 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3879 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3880 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3881 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3882 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3883 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3884 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3885 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3886 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3887 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3888 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3889 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3890 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3891 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3892 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3893 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3894 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3895 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3896 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3897 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3898 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3899 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3900 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3901 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3902 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3903 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3904 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3905 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3906 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3907 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3908 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3909 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3910 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3911 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3912 { PCI_DEVICE(0x1dbe, 0x5216), /* Acer/INNOGRIT FA100/5216 NVMe SSD */ 3913 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3914 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3915 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3916 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3917 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3918 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3919 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3920 { PCI_DEVICE(0x025e, 0xf1ac), /* SOLIDIGM P44 pro SSDPFKKW020X7 */ 3921 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3922 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3923 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3924 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3925 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3926 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3927 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3928 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3929 .driver_data = NVME_QUIRK_BOGUS_NID | 3930 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3931 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3932 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3933 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3934 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3935 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3936 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3937 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3938 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3939 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3940 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3941 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3942 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3943 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3944 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3945 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3946 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3947 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3948 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3949 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3950 /* 3951 * Fix for the Apple controller found in the MacBook8,1 and 3952 * some MacBook7,1 to avoid controller resets and data loss. 3953 */ 3954 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3955 NVME_QUIRK_QDEPTH_ONE }, 3956 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3957 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3958 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3959 NVME_QUIRK_128_BYTES_SQES | 3960 NVME_QUIRK_SHARED_TAGS | 3961 NVME_QUIRK_SKIP_CID_GEN | 3962 NVME_QUIRK_IDENTIFY_CNS }, 3963 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3964 { 0, } 3965 }; 3966 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3967 3968 static struct pci_driver nvme_driver = { 3969 .name = "nvme", 3970 .id_table = nvme_id_table, 3971 .probe = nvme_probe, 3972 .remove = nvme_remove, 3973 .shutdown = nvme_shutdown, 3974 .driver = { 3975 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3976 #ifdef CONFIG_PM_SLEEP 3977 .pm = &nvme_dev_pm_ops, 3978 #endif 3979 }, 3980 .sriov_configure = pci_sriov_configure_simple, 3981 .err_handler = &nvme_err_handler, 3982 }; 3983 3984 static int __init nvme_init(void) 3985 { 3986 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3987 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3988 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3989 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3990 3991 return pci_register_driver(&nvme_driver); 3992 } 3993 3994 static void __exit nvme_exit(void) 3995 { 3996 pci_unregister_driver(&nvme_driver); 3997 flush_workqueue(nvme_wq); 3998 } 3999 4000 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 4001 MODULE_LICENSE("GPL"); 4002 MODULE_VERSION("1.0"); 4003 MODULE_DESCRIPTION("NVMe host PCIe transport driver"); 4004 module_init(nvme_init); 4005 module_exit(nvme_exit); 4006