xref: /linux/drivers/nvme/host/pci.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45 
46 #include "nvme.h"
47 
48 #define NVME_Q_DEPTH		1024
49 #define NVME_AQ_DEPTH		256
50 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
52 
53 /*
54  * We handle AEN commands ourselves and don't even let the
55  * block layer know about them.
56  */
57 #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS)
58 
59 static int use_threaded_interrupts;
60 module_param(use_threaded_interrupts, int, 0);
61 
62 static bool use_cmb_sqes = true;
63 module_param(use_cmb_sqes, bool, 0644);
64 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65 
66 static struct workqueue_struct *nvme_workq;
67 
68 struct nvme_dev;
69 struct nvme_queue;
70 
71 static int nvme_reset(struct nvme_dev *dev);
72 static void nvme_process_cq(struct nvme_queue *nvmeq);
73 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74 
75 /*
76  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
77  */
78 struct nvme_dev {
79 	struct nvme_queue **queues;
80 	struct blk_mq_tag_set tagset;
81 	struct blk_mq_tag_set admin_tagset;
82 	u32 __iomem *dbs;
83 	struct device *dev;
84 	struct dma_pool *prp_page_pool;
85 	struct dma_pool *prp_small_pool;
86 	unsigned queue_count;
87 	unsigned online_queues;
88 	unsigned max_qid;
89 	int q_depth;
90 	u32 db_stride;
91 	struct msix_entry *entry;
92 	void __iomem *bar;
93 	struct work_struct reset_work;
94 	struct work_struct remove_work;
95 	struct timer_list watchdog_timer;
96 	struct mutex shutdown_lock;
97 	bool subsystem;
98 	void __iomem *cmb;
99 	dma_addr_t cmb_dma_addr;
100 	u64 cmb_size;
101 	u32 cmbsz;
102 	struct nvme_ctrl ctrl;
103 	struct completion ioq_wait;
104 };
105 
106 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107 {
108 	return container_of(ctrl, struct nvme_dev, ctrl);
109 }
110 
111 /*
112  * An NVM Express queue.  Each device has at least two (one for admin
113  * commands and one for I/O commands).
114  */
115 struct nvme_queue {
116 	struct device *q_dmadev;
117 	struct nvme_dev *dev;
118 	char irqname[24];	/* nvme4294967295-65535\0 */
119 	spinlock_t q_lock;
120 	struct nvme_command *sq_cmds;
121 	struct nvme_command __iomem *sq_cmds_io;
122 	volatile struct nvme_completion *cqes;
123 	struct blk_mq_tags **tags;
124 	dma_addr_t sq_dma_addr;
125 	dma_addr_t cq_dma_addr;
126 	u32 __iomem *q_db;
127 	u16 q_depth;
128 	s16 cq_vector;
129 	u16 sq_tail;
130 	u16 cq_head;
131 	u16 qid;
132 	u8 cq_phase;
133 	u8 cqe_seen;
134 };
135 
136 /*
137  * The nvme_iod describes the data in an I/O, including the list of PRP
138  * entries.  You can't see it in this data structure because C doesn't let
139  * me express that.  Use nvme_init_iod to ensure there's enough space
140  * allocated to store the PRP list.
141  */
142 struct nvme_iod {
143 	struct nvme_queue *nvmeq;
144 	int aborted;
145 	int npages;		/* In the PRP list. 0 means small pool in use */
146 	int nents;		/* Used in scatterlist */
147 	int length;		/* Of data, in bytes */
148 	dma_addr_t first_dma;
149 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
150 	struct scatterlist *sg;
151 	struct scatterlist inline_sg[0];
152 };
153 
154 /*
155  * Check we didin't inadvertently grow the command struct
156  */
157 static inline void _nvme_check_size(void)
158 {
159 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171 }
172 
173 /*
174  * Max size of iod being embedded in the request payload
175  */
176 #define NVME_INT_PAGES		2
177 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size)
178 
179 /*
180  * Will slightly overestimate the number of pages needed.  This is OK
181  * as it only leads to a small amount of wasted memory for the lifetime of
182  * the I/O.
183  */
184 static int nvme_npages(unsigned size, struct nvme_dev *dev)
185 {
186 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 				      dev->ctrl.page_size);
188 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189 }
190 
191 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 		unsigned int size, unsigned int nseg)
193 {
194 	return sizeof(__le64 *) * nvme_npages(size, dev) +
195 			sizeof(struct scatterlist) * nseg;
196 }
197 
198 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199 {
200 	return sizeof(struct nvme_iod) +
201 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202 }
203 
204 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 				unsigned int hctx_idx)
206 {
207 	struct nvme_dev *dev = data;
208 	struct nvme_queue *nvmeq = dev->queues[0];
209 
210 	WARN_ON(hctx_idx != 0);
211 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 	WARN_ON(nvmeq->tags);
213 
214 	hctx->driver_data = nvmeq;
215 	nvmeq->tags = &dev->admin_tagset.tags[0];
216 	return 0;
217 }
218 
219 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220 {
221 	struct nvme_queue *nvmeq = hctx->driver_data;
222 
223 	nvmeq->tags = NULL;
224 }
225 
226 static int nvme_admin_init_request(void *data, struct request *req,
227 				unsigned int hctx_idx, unsigned int rq_idx,
228 				unsigned int numa_node)
229 {
230 	struct nvme_dev *dev = data;
231 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 	struct nvme_queue *nvmeq = dev->queues[0];
233 
234 	BUG_ON(!nvmeq);
235 	iod->nvmeq = nvmeq;
236 	return 0;
237 }
238 
239 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 			  unsigned int hctx_idx)
241 {
242 	struct nvme_dev *dev = data;
243 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244 
245 	if (!nvmeq->tags)
246 		nvmeq->tags = &dev->tagset.tags[hctx_idx];
247 
248 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 	hctx->driver_data = nvmeq;
250 	return 0;
251 }
252 
253 static int nvme_init_request(void *data, struct request *req,
254 				unsigned int hctx_idx, unsigned int rq_idx,
255 				unsigned int numa_node)
256 {
257 	struct nvme_dev *dev = data;
258 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260 
261 	BUG_ON(!nvmeq);
262 	iod->nvmeq = nvmeq;
263 	return 0;
264 }
265 
266 /**
267  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
268  * @nvmeq: The queue to use
269  * @cmd: The command to send
270  *
271  * Safe to use from interrupt context
272  */
273 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 						struct nvme_command *cmd)
275 {
276 	u16 tail = nvmeq->sq_tail;
277 
278 	if (nvmeq->sq_cmds_io)
279 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 	else
281 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282 
283 	if (++tail == nvmeq->q_depth)
284 		tail = 0;
285 	writel(tail, nvmeq->q_db);
286 	nvmeq->sq_tail = tail;
287 }
288 
289 static __le64 **iod_list(struct request *req)
290 {
291 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 	return (__le64 **)(iod->sg + req->nr_phys_segments);
293 }
294 
295 static int nvme_init_iod(struct request *rq, unsigned size,
296 		struct nvme_dev *dev)
297 {
298 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 	int nseg = rq->nr_phys_segments;
300 
301 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 		if (!iod->sg)
304 			return BLK_MQ_RQ_QUEUE_BUSY;
305 	} else {
306 		iod->sg = iod->inline_sg;
307 	}
308 
309 	iod->aborted = 0;
310 	iod->npages = -1;
311 	iod->nents = 0;
312 	iod->length = size;
313 	return 0;
314 }
315 
316 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
317 {
318 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319 	const int last_prp = dev->ctrl.page_size / 8 - 1;
320 	int i;
321 	__le64 **list = iod_list(req);
322 	dma_addr_t prp_dma = iod->first_dma;
323 
324 	nvme_cleanup_cmd(req);
325 
326 	if (iod->npages == 0)
327 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328 	for (i = 0; i < iod->npages; i++) {
329 		__le64 *prp_list = list[i];
330 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332 		prp_dma = next_prp_dma;
333 	}
334 
335 	if (iod->sg != iod->inline_sg)
336 		kfree(iod->sg);
337 }
338 
339 #ifdef CONFIG_BLK_DEV_INTEGRITY
340 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
341 {
342 	if (be32_to_cpu(pi->ref_tag) == v)
343 		pi->ref_tag = cpu_to_be32(p);
344 }
345 
346 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
347 {
348 	if (be32_to_cpu(pi->ref_tag) == p)
349 		pi->ref_tag = cpu_to_be32(v);
350 }
351 
352 /**
353  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
354  *
355  * The virtual start sector is the one that was originally submitted by the
356  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
357  * start sector may be different. Remap protection information to match the
358  * physical LBA on writes, and back to the original seed on reads.
359  *
360  * Type 0 and 3 do not have a ref tag, so no remapping required.
361  */
362 static void nvme_dif_remap(struct request *req,
363 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
364 {
365 	struct nvme_ns *ns = req->rq_disk->private_data;
366 	struct bio_integrity_payload *bip;
367 	struct t10_pi_tuple *pi;
368 	void *p, *pmap;
369 	u32 i, nlb, ts, phys, virt;
370 
371 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
372 		return;
373 
374 	bip = bio_integrity(req->bio);
375 	if (!bip)
376 		return;
377 
378 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
379 
380 	p = pmap;
381 	virt = bip_get_seed(bip);
382 	phys = nvme_block_nr(ns, blk_rq_pos(req));
383 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
384 	ts = ns->disk->queue->integrity.tuple_size;
385 
386 	for (i = 0; i < nlb; i++, virt++, phys++) {
387 		pi = (struct t10_pi_tuple *)p;
388 		dif_swap(phys, virt, pi);
389 		p += ts;
390 	}
391 	kunmap_atomic(pmap);
392 }
393 #else /* CONFIG_BLK_DEV_INTEGRITY */
394 static void nvme_dif_remap(struct request *req,
395 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
396 {
397 }
398 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
399 {
400 }
401 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
402 {
403 }
404 #endif
405 
406 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
407 		int total_len)
408 {
409 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410 	struct dma_pool *pool;
411 	int length = total_len;
412 	struct scatterlist *sg = iod->sg;
413 	int dma_len = sg_dma_len(sg);
414 	u64 dma_addr = sg_dma_address(sg);
415 	u32 page_size = dev->ctrl.page_size;
416 	int offset = dma_addr & (page_size - 1);
417 	__le64 *prp_list;
418 	__le64 **list = iod_list(req);
419 	dma_addr_t prp_dma;
420 	int nprps, i;
421 
422 	length -= (page_size - offset);
423 	if (length <= 0)
424 		return true;
425 
426 	dma_len -= (page_size - offset);
427 	if (dma_len) {
428 		dma_addr += (page_size - offset);
429 	} else {
430 		sg = sg_next(sg);
431 		dma_addr = sg_dma_address(sg);
432 		dma_len = sg_dma_len(sg);
433 	}
434 
435 	if (length <= page_size) {
436 		iod->first_dma = dma_addr;
437 		return true;
438 	}
439 
440 	nprps = DIV_ROUND_UP(length, page_size);
441 	if (nprps <= (256 / 8)) {
442 		pool = dev->prp_small_pool;
443 		iod->npages = 0;
444 	} else {
445 		pool = dev->prp_page_pool;
446 		iod->npages = 1;
447 	}
448 
449 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
450 	if (!prp_list) {
451 		iod->first_dma = dma_addr;
452 		iod->npages = -1;
453 		return false;
454 	}
455 	list[0] = prp_list;
456 	iod->first_dma = prp_dma;
457 	i = 0;
458 	for (;;) {
459 		if (i == page_size >> 3) {
460 			__le64 *old_prp_list = prp_list;
461 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
462 			if (!prp_list)
463 				return false;
464 			list[iod->npages++] = prp_list;
465 			prp_list[0] = old_prp_list[i - 1];
466 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
467 			i = 1;
468 		}
469 		prp_list[i++] = cpu_to_le64(dma_addr);
470 		dma_len -= page_size;
471 		dma_addr += page_size;
472 		length -= page_size;
473 		if (length <= 0)
474 			break;
475 		if (dma_len > 0)
476 			continue;
477 		BUG_ON(dma_len < 0);
478 		sg = sg_next(sg);
479 		dma_addr = sg_dma_address(sg);
480 		dma_len = sg_dma_len(sg);
481 	}
482 
483 	return true;
484 }
485 
486 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
487 		unsigned size, struct nvme_command *cmnd)
488 {
489 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
490 	struct request_queue *q = req->q;
491 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
492 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
493 	int ret = BLK_MQ_RQ_QUEUE_ERROR;
494 
495 	sg_init_table(iod->sg, req->nr_phys_segments);
496 	iod->nents = blk_rq_map_sg(q, req, iod->sg);
497 	if (!iod->nents)
498 		goto out;
499 
500 	ret = BLK_MQ_RQ_QUEUE_BUSY;
501 	if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
502 		goto out;
503 
504 	if (!nvme_setup_prps(dev, req, size))
505 		goto out_unmap;
506 
507 	ret = BLK_MQ_RQ_QUEUE_ERROR;
508 	if (blk_integrity_rq(req)) {
509 		if (blk_rq_count_integrity_sg(q, req->bio) != 1)
510 			goto out_unmap;
511 
512 		sg_init_table(&iod->meta_sg, 1);
513 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
514 			goto out_unmap;
515 
516 		if (rq_data_dir(req))
517 			nvme_dif_remap(req, nvme_dif_prep);
518 
519 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
520 			goto out_unmap;
521 	}
522 
523 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
525 	if (blk_integrity_rq(req))
526 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
527 	return BLK_MQ_RQ_QUEUE_OK;
528 
529 out_unmap:
530 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
531 out:
532 	return ret;
533 }
534 
535 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
536 {
537 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 	enum dma_data_direction dma_dir = rq_data_dir(req) ?
539 			DMA_TO_DEVICE : DMA_FROM_DEVICE;
540 
541 	if (iod->nents) {
542 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543 		if (blk_integrity_rq(req)) {
544 			if (!rq_data_dir(req))
545 				nvme_dif_remap(req, nvme_dif_complete);
546 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
547 		}
548 	}
549 
550 	nvme_free_iod(dev, req);
551 }
552 
553 /*
554  * NOTE: ns is NULL when called on the admin queue.
555  */
556 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557 			 const struct blk_mq_queue_data *bd)
558 {
559 	struct nvme_ns *ns = hctx->queue->queuedata;
560 	struct nvme_queue *nvmeq = hctx->driver_data;
561 	struct nvme_dev *dev = nvmeq->dev;
562 	struct request *req = bd->rq;
563 	struct nvme_command cmnd;
564 	unsigned map_len;
565 	int ret = BLK_MQ_RQ_QUEUE_OK;
566 
567 	/*
568 	 * If formated with metadata, require the block layer provide a buffer
569 	 * unless this namespace is formated such that the metadata can be
570 	 * stripped/generated by the controller with PRACT=1.
571 	 */
572 	if (ns && ns->ms && !blk_integrity_rq(req)) {
573 		if (!(ns->pi_type && ns->ms == 8) &&
574 					req->cmd_type != REQ_TYPE_DRV_PRIV) {
575 			blk_mq_end_request(req, -EFAULT);
576 			return BLK_MQ_RQ_QUEUE_OK;
577 		}
578 	}
579 
580 	map_len = nvme_map_len(req);
581 	ret = nvme_init_iod(req, map_len, dev);
582 	if (ret)
583 		return ret;
584 
585 	ret = nvme_setup_cmd(ns, req, &cmnd);
586 	if (ret)
587 		goto out;
588 
589 	if (req->nr_phys_segments)
590 		ret = nvme_map_data(dev, req, map_len, &cmnd);
591 
592 	if (ret)
593 		goto out;
594 
595 	cmnd.common.command_id = req->tag;
596 	blk_mq_start_request(req);
597 
598 	spin_lock_irq(&nvmeq->q_lock);
599 	if (unlikely(nvmeq->cq_vector < 0)) {
600 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601 			ret = BLK_MQ_RQ_QUEUE_BUSY;
602 		else
603 			ret = BLK_MQ_RQ_QUEUE_ERROR;
604 		spin_unlock_irq(&nvmeq->q_lock);
605 		goto out;
606 	}
607 	__nvme_submit_cmd(nvmeq, &cmnd);
608 	nvme_process_cq(nvmeq);
609 	spin_unlock_irq(&nvmeq->q_lock);
610 	return BLK_MQ_RQ_QUEUE_OK;
611 out:
612 	nvme_free_iod(dev, req);
613 	return ret;
614 }
615 
616 static void nvme_complete_rq(struct request *req)
617 {
618 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 	struct nvme_dev *dev = iod->nvmeq->dev;
620 	int error = 0;
621 
622 	nvme_unmap_data(dev, req);
623 
624 	if (unlikely(req->errors)) {
625 		if (nvme_req_needs_retry(req, req->errors)) {
626 			nvme_requeue_req(req);
627 			return;
628 		}
629 
630 		if (req->cmd_type == REQ_TYPE_DRV_PRIV)
631 			error = req->errors;
632 		else
633 			error = nvme_error_status(req->errors);
634 	}
635 
636 	if (unlikely(iod->aborted)) {
637 		dev_warn(dev->ctrl.device,
638 			"completing aborted command with status: %04x\n",
639 			req->errors);
640 	}
641 
642 	blk_mq_end_request(req, error);
643 }
644 
645 /* We read the CQE phase first to check if the rest of the entry is valid */
646 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
647 		u16 phase)
648 {
649 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
650 }
651 
652 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
653 {
654 	u16 head, phase;
655 
656 	head = nvmeq->cq_head;
657 	phase = nvmeq->cq_phase;
658 
659 	while (nvme_cqe_valid(nvmeq, head, phase)) {
660 		struct nvme_completion cqe = nvmeq->cqes[head];
661 		struct request *req;
662 
663 		if (++head == nvmeq->q_depth) {
664 			head = 0;
665 			phase = !phase;
666 		}
667 
668 		if (tag && *tag == cqe.command_id)
669 			*tag = -1;
670 
671 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
672 			dev_warn(nvmeq->dev->ctrl.device,
673 				"invalid id %d completed on queue %d\n",
674 				cqe.command_id, le16_to_cpu(cqe.sq_id));
675 			continue;
676 		}
677 
678 		/*
679 		 * AEN requests are special as they don't time out and can
680 		 * survive any kind of queue freeze and often don't respond to
681 		 * aborts.  We don't even bother to allocate a struct request
682 		 * for them but rather special case them here.
683 		 */
684 		if (unlikely(nvmeq->qid == 0 &&
685 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
686 			nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
687 			continue;
688 		}
689 
690 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
691 		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692 			memcpy(req->special, &cqe, sizeof(cqe));
693 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
694 
695 	}
696 
697 	/* If the controller ignores the cq head doorbell and continuously
698 	 * writes to the queue, it is theoretically possible to wrap around
699 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
700 	 * requires that 0.1% of your interrupts are handled, so this isn't
701 	 * a big problem.
702 	 */
703 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
704 		return;
705 
706 	if (likely(nvmeq->cq_vector >= 0))
707 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
708 	nvmeq->cq_head = head;
709 	nvmeq->cq_phase = phase;
710 
711 	nvmeq->cqe_seen = 1;
712 }
713 
714 static void nvme_process_cq(struct nvme_queue *nvmeq)
715 {
716 	__nvme_process_cq(nvmeq, NULL);
717 }
718 
719 static irqreturn_t nvme_irq(int irq, void *data)
720 {
721 	irqreturn_t result;
722 	struct nvme_queue *nvmeq = data;
723 	spin_lock(&nvmeq->q_lock);
724 	nvme_process_cq(nvmeq);
725 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
726 	nvmeq->cqe_seen = 0;
727 	spin_unlock(&nvmeq->q_lock);
728 	return result;
729 }
730 
731 static irqreturn_t nvme_irq_check(int irq, void *data)
732 {
733 	struct nvme_queue *nvmeq = data;
734 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735 		return IRQ_WAKE_THREAD;
736 	return IRQ_NONE;
737 }
738 
739 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
740 {
741 	struct nvme_queue *nvmeq = hctx->driver_data;
742 
743 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
744 		spin_lock_irq(&nvmeq->q_lock);
745 		__nvme_process_cq(nvmeq, &tag);
746 		spin_unlock_irq(&nvmeq->q_lock);
747 
748 		if (tag == -1)
749 			return 1;
750 	}
751 
752 	return 0;
753 }
754 
755 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
756 {
757 	struct nvme_dev *dev = to_nvme_dev(ctrl);
758 	struct nvme_queue *nvmeq = dev->queues[0];
759 	struct nvme_command c;
760 
761 	memset(&c, 0, sizeof(c));
762 	c.common.opcode = nvme_admin_async_event;
763 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
764 
765 	spin_lock_irq(&nvmeq->q_lock);
766 	__nvme_submit_cmd(nvmeq, &c);
767 	spin_unlock_irq(&nvmeq->q_lock);
768 }
769 
770 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
771 {
772 	struct nvme_command c;
773 
774 	memset(&c, 0, sizeof(c));
775 	c.delete_queue.opcode = opcode;
776 	c.delete_queue.qid = cpu_to_le16(id);
777 
778 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
779 }
780 
781 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782 						struct nvme_queue *nvmeq)
783 {
784 	struct nvme_command c;
785 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
786 
787 	/*
788 	 * Note: we (ab)use the fact the the prp fields survive if no data
789 	 * is attached to the request.
790 	 */
791 	memset(&c, 0, sizeof(c));
792 	c.create_cq.opcode = nvme_admin_create_cq;
793 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794 	c.create_cq.cqid = cpu_to_le16(qid);
795 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 	c.create_cq.cq_flags = cpu_to_le16(flags);
797 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
798 
799 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800 }
801 
802 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803 						struct nvme_queue *nvmeq)
804 {
805 	struct nvme_command c;
806 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
807 
808 	/*
809 	 * Note: we (ab)use the fact the the prp fields survive if no data
810 	 * is attached to the request.
811 	 */
812 	memset(&c, 0, sizeof(c));
813 	c.create_sq.opcode = nvme_admin_create_sq;
814 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815 	c.create_sq.sqid = cpu_to_le16(qid);
816 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 	c.create_sq.sq_flags = cpu_to_le16(flags);
818 	c.create_sq.cqid = cpu_to_le16(qid);
819 
820 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821 }
822 
823 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
824 {
825 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
826 }
827 
828 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
829 {
830 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
831 }
832 
833 static void abort_endio(struct request *req, int error)
834 {
835 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 	struct nvme_queue *nvmeq = iod->nvmeq;
837 	u16 status = req->errors;
838 
839 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
840 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
841 	blk_mq_free_request(req);
842 }
843 
844 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
845 {
846 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 	struct nvme_queue *nvmeq = iod->nvmeq;
848 	struct nvme_dev *dev = nvmeq->dev;
849 	struct request *abort_req;
850 	struct nvme_command cmd;
851 
852 	/*
853 	 * Shutdown immediately if controller times out while starting. The
854 	 * reset work will see the pci device disabled when it gets the forced
855 	 * cancellation error. All outstanding requests are completed on
856 	 * shutdown, so we return BLK_EH_HANDLED.
857 	 */
858 	if (dev->ctrl.state == NVME_CTRL_RESETTING) {
859 		dev_warn(dev->ctrl.device,
860 			 "I/O %d QID %d timeout, disable controller\n",
861 			 req->tag, nvmeq->qid);
862 		nvme_dev_disable(dev, false);
863 		req->errors = NVME_SC_CANCELLED;
864 		return BLK_EH_HANDLED;
865 	}
866 
867 	/*
868  	 * Shutdown the controller immediately and schedule a reset if the
869  	 * command was already aborted once before and still hasn't been
870  	 * returned to the driver, or if this is the admin queue.
871 	 */
872 	if (!nvmeq->qid || iod->aborted) {
873 		dev_warn(dev->ctrl.device,
874 			 "I/O %d QID %d timeout, reset controller\n",
875 			 req->tag, nvmeq->qid);
876 		nvme_dev_disable(dev, false);
877 		queue_work(nvme_workq, &dev->reset_work);
878 
879 		/*
880 		 * Mark the request as handled, since the inline shutdown
881 		 * forces all outstanding requests to complete.
882 		 */
883 		req->errors = NVME_SC_CANCELLED;
884 		return BLK_EH_HANDLED;
885 	}
886 
887 	iod->aborted = 1;
888 
889 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
890 		atomic_inc(&dev->ctrl.abort_limit);
891 		return BLK_EH_RESET_TIMER;
892 	}
893 
894 	memset(&cmd, 0, sizeof(cmd));
895 	cmd.abort.opcode = nvme_admin_abort_cmd;
896 	cmd.abort.cid = req->tag;
897 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
898 
899 	dev_warn(nvmeq->dev->ctrl.device,
900 		"I/O %d QID %d timeout, aborting\n",
901 		 req->tag, nvmeq->qid);
902 
903 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
904 			BLK_MQ_REQ_NOWAIT);
905 	if (IS_ERR(abort_req)) {
906 		atomic_inc(&dev->ctrl.abort_limit);
907 		return BLK_EH_RESET_TIMER;
908 	}
909 
910 	abort_req->timeout = ADMIN_TIMEOUT;
911 	abort_req->end_io_data = NULL;
912 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
913 
914 	/*
915 	 * The aborted req will be completed on receiving the abort req.
916 	 * We enable the timer again. If hit twice, it'll cause a device reset,
917 	 * as the device then is in a faulty state.
918 	 */
919 	return BLK_EH_RESET_TIMER;
920 }
921 
922 static void nvme_cancel_io(struct request *req, void *data, bool reserved)
923 {
924 	int status;
925 
926 	if (!blk_mq_request_started(req))
927 		return;
928 
929 	dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
930 				"Cancelling I/O %d", req->tag);
931 
932 	status = NVME_SC_ABORT_REQ;
933 	if (blk_queue_dying(req->q))
934 		status |= NVME_SC_DNR;
935 	blk_mq_complete_request(req, status);
936 }
937 
938 static void nvme_free_queue(struct nvme_queue *nvmeq)
939 {
940 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
941 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
942 	if (nvmeq->sq_cmds)
943 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
944 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
945 	kfree(nvmeq);
946 }
947 
948 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
949 {
950 	int i;
951 
952 	for (i = dev->queue_count - 1; i >= lowest; i--) {
953 		struct nvme_queue *nvmeq = dev->queues[i];
954 		dev->queue_count--;
955 		dev->queues[i] = NULL;
956 		nvme_free_queue(nvmeq);
957 	}
958 }
959 
960 /**
961  * nvme_suspend_queue - put queue into suspended state
962  * @nvmeq - queue to suspend
963  */
964 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
965 {
966 	int vector;
967 
968 	spin_lock_irq(&nvmeq->q_lock);
969 	if (nvmeq->cq_vector == -1) {
970 		spin_unlock_irq(&nvmeq->q_lock);
971 		return 1;
972 	}
973 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
974 	nvmeq->dev->online_queues--;
975 	nvmeq->cq_vector = -1;
976 	spin_unlock_irq(&nvmeq->q_lock);
977 
978 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
979 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
980 
981 	irq_set_affinity_hint(vector, NULL);
982 	free_irq(vector, nvmeq);
983 
984 	return 0;
985 }
986 
987 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
988 {
989 	struct nvme_queue *nvmeq = dev->queues[0];
990 
991 	if (!nvmeq)
992 		return;
993 	if (nvme_suspend_queue(nvmeq))
994 		return;
995 
996 	if (shutdown)
997 		nvme_shutdown_ctrl(&dev->ctrl);
998 	else
999 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1000 						dev->bar + NVME_REG_CAP));
1001 
1002 	spin_lock_irq(&nvmeq->q_lock);
1003 	nvme_process_cq(nvmeq);
1004 	spin_unlock_irq(&nvmeq->q_lock);
1005 }
1006 
1007 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1008 				int entry_size)
1009 {
1010 	int q_depth = dev->q_depth;
1011 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1012 					  dev->ctrl.page_size);
1013 
1014 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1015 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1016 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1017 		q_depth = div_u64(mem_per_q, entry_size);
1018 
1019 		/*
1020 		 * Ensure the reduced q_depth is above some threshold where it
1021 		 * would be better to map queues in system memory with the
1022 		 * original depth
1023 		 */
1024 		if (q_depth < 64)
1025 			return -ENOMEM;
1026 	}
1027 
1028 	return q_depth;
1029 }
1030 
1031 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1032 				int qid, int depth)
1033 {
1034 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1035 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1036 						      dev->ctrl.page_size);
1037 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1038 		nvmeq->sq_cmds_io = dev->cmb + offset;
1039 	} else {
1040 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1041 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1042 		if (!nvmeq->sq_cmds)
1043 			return -ENOMEM;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1050 							int depth)
1051 {
1052 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1053 	if (!nvmeq)
1054 		return NULL;
1055 
1056 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1057 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1058 	if (!nvmeq->cqes)
1059 		goto free_nvmeq;
1060 
1061 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1062 		goto free_cqdma;
1063 
1064 	nvmeq->q_dmadev = dev->dev;
1065 	nvmeq->dev = dev;
1066 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1067 			dev->ctrl.instance, qid);
1068 	spin_lock_init(&nvmeq->q_lock);
1069 	nvmeq->cq_head = 0;
1070 	nvmeq->cq_phase = 1;
1071 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072 	nvmeq->q_depth = depth;
1073 	nvmeq->qid = qid;
1074 	nvmeq->cq_vector = -1;
1075 	dev->queues[qid] = nvmeq;
1076 	dev->queue_count++;
1077 
1078 	return nvmeq;
1079 
1080  free_cqdma:
1081 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1082 							nvmeq->cq_dma_addr);
1083  free_nvmeq:
1084 	kfree(nvmeq);
1085 	return NULL;
1086 }
1087 
1088 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1089 							const char *name)
1090 {
1091 	if (use_threaded_interrupts)
1092 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1093 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1094 					name, nvmeq);
1095 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1096 				IRQF_SHARED, name, nvmeq);
1097 }
1098 
1099 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100 {
1101 	struct nvme_dev *dev = nvmeq->dev;
1102 
1103 	spin_lock_irq(&nvmeq->q_lock);
1104 	nvmeq->sq_tail = 0;
1105 	nvmeq->cq_head = 0;
1106 	nvmeq->cq_phase = 1;
1107 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 	dev->online_queues++;
1110 	spin_unlock_irq(&nvmeq->q_lock);
1111 }
1112 
1113 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114 {
1115 	struct nvme_dev *dev = nvmeq->dev;
1116 	int result;
1117 
1118 	nvmeq->cq_vector = qid - 1;
1119 	result = adapter_alloc_cq(dev, qid, nvmeq);
1120 	if (result < 0)
1121 		return result;
1122 
1123 	result = adapter_alloc_sq(dev, qid, nvmeq);
1124 	if (result < 0)
1125 		goto release_cq;
1126 
1127 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1128 	if (result < 0)
1129 		goto release_sq;
1130 
1131 	nvme_init_queue(nvmeq, qid);
1132 	return result;
1133 
1134  release_sq:
1135 	adapter_delete_sq(dev, qid);
1136  release_cq:
1137 	adapter_delete_cq(dev, qid);
1138 	return result;
1139 }
1140 
1141 static struct blk_mq_ops nvme_mq_admin_ops = {
1142 	.queue_rq	= nvme_queue_rq,
1143 	.complete	= nvme_complete_rq,
1144 	.map_queue	= blk_mq_map_queue,
1145 	.init_hctx	= nvme_admin_init_hctx,
1146 	.exit_hctx      = nvme_admin_exit_hctx,
1147 	.init_request	= nvme_admin_init_request,
1148 	.timeout	= nvme_timeout,
1149 };
1150 
1151 static struct blk_mq_ops nvme_mq_ops = {
1152 	.queue_rq	= nvme_queue_rq,
1153 	.complete	= nvme_complete_rq,
1154 	.map_queue	= blk_mq_map_queue,
1155 	.init_hctx	= nvme_init_hctx,
1156 	.init_request	= nvme_init_request,
1157 	.timeout	= nvme_timeout,
1158 	.poll		= nvme_poll,
1159 };
1160 
1161 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162 {
1163 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164 		/*
1165 		 * If the controller was reset during removal, it's possible
1166 		 * user requests may be waiting on a stopped queue. Start the
1167 		 * queue to flush these to completion.
1168 		 */
1169 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 		blk_cleanup_queue(dev->ctrl.admin_q);
1171 		blk_mq_free_tag_set(&dev->admin_tagset);
1172 	}
1173 }
1174 
1175 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176 {
1177 	if (!dev->ctrl.admin_q) {
1178 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 		dev->admin_tagset.nr_hw_queues = 1;
1180 
1181 		/*
1182 		 * Subtract one to leave an empty queue entry for 'Full Queue'
1183 		 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1184 		 */
1185 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 		dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 		dev->admin_tagset.driver_data = dev;
1190 
1191 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192 			return -ENOMEM;
1193 
1194 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 		if (IS_ERR(dev->ctrl.admin_q)) {
1196 			blk_mq_free_tag_set(&dev->admin_tagset);
1197 			return -ENOMEM;
1198 		}
1199 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 			nvme_dev_remove_admin(dev);
1201 			dev->ctrl.admin_q = NULL;
1202 			return -ENODEV;
1203 		}
1204 	} else
1205 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206 
1207 	return 0;
1208 }
1209 
1210 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211 {
1212 	int result;
1213 	u32 aqa;
1214 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 	struct nvme_queue *nvmeq;
1216 
1217 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 						NVME_CAP_NSSRC(cap) : 0;
1219 
1220 	if (dev->subsystem &&
1221 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223 
1224 	result = nvme_disable_ctrl(&dev->ctrl, cap);
1225 	if (result < 0)
1226 		return result;
1227 
1228 	nvmeq = dev->queues[0];
1229 	if (!nvmeq) {
1230 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231 		if (!nvmeq)
1232 			return -ENOMEM;
1233 	}
1234 
1235 	aqa = nvmeq->q_depth - 1;
1236 	aqa |= aqa << 16;
1237 
1238 	writel(aqa, dev->bar + NVME_REG_AQA);
1239 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241 
1242 	result = nvme_enable_ctrl(&dev->ctrl, cap);
1243 	if (result)
1244 		goto free_nvmeq;
1245 
1246 	nvmeq->cq_vector = 0;
1247 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1248 	if (result) {
1249 		nvmeq->cq_vector = -1;
1250 		goto free_nvmeq;
1251 	}
1252 
1253 	return result;
1254 
1255  free_nvmeq:
1256 	nvme_free_queues(dev, 0);
1257 	return result;
1258 }
1259 
1260 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261 {
1262 
1263 	/* If true, indicates loss of adapter communication, possibly by a
1264 	 * NVMe Subsystem reset.
1265 	 */
1266 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267 
1268 	/* If there is a reset ongoing, we shouldn't reset again. */
1269 	if (work_busy(&dev->reset_work))
1270 		return false;
1271 
1272 	/* We shouldn't reset unless the controller is on fatal error state
1273 	 * _or_ if we lost the communication with it.
1274 	 */
1275 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1276 		return false;
1277 
1278 	/* If PCI error recovery process is happening, we cannot reset or
1279 	 * the recovery mechanism will surely fail.
1280 	 */
1281 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1282 		return false;
1283 
1284 	return true;
1285 }
1286 
1287 static void nvme_watchdog_timer(unsigned long data)
1288 {
1289 	struct nvme_dev *dev = (struct nvme_dev *)data;
1290 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291 
1292 	/* Skip controllers under certain specific conditions. */
1293 	if (nvme_should_reset(dev, csts)) {
1294 		if (queue_work(nvme_workq, &dev->reset_work))
1295 			dev_warn(dev->dev,
1296 				"Failed status: 0x%x, reset controller.\n",
1297 				csts);
1298 		return;
1299 	}
1300 
1301 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302 }
1303 
1304 static int nvme_create_io_queues(struct nvme_dev *dev)
1305 {
1306 	unsigned i, max;
1307 	int ret = 0;
1308 
1309 	for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311 			ret = -ENOMEM;
1312 			break;
1313 		}
1314 	}
1315 
1316 	max = min(dev->max_qid, dev->queue_count - 1);
1317 	for (i = dev->online_queues; i <= max; i++) {
1318 		ret = nvme_create_queue(dev->queues[i], i);
1319 		if (ret) {
1320 			nvme_free_queues(dev, i);
1321 			break;
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1327 	 * than the desired aount of queues, and even a controller without
1328 	 * I/O queues an still be used to issue admin commands.  This might
1329 	 * be useful to upgrade a buggy firmware for example.
1330 	 */
1331 	return ret >= 0 ? 0 : ret;
1332 }
1333 
1334 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335 {
1336 	u64 szu, size, offset;
1337 	u32 cmbloc;
1338 	resource_size_t bar_size;
1339 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1340 	void __iomem *cmb;
1341 	dma_addr_t dma_addr;
1342 
1343 	if (!use_cmb_sqes)
1344 		return NULL;
1345 
1346 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 	if (!(NVME_CMB_SZ(dev->cmbsz)))
1348 		return NULL;
1349 
1350 	cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351 
1352 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 	size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 	offset = szu * NVME_CMB_OFST(cmbloc);
1355 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356 
1357 	if (offset > bar_size)
1358 		return NULL;
1359 
1360 	/*
1361 	 * Controllers may support a CMB size larger than their BAR,
1362 	 * for example, due to being behind a bridge. Reduce the CMB to
1363 	 * the reported size of the BAR
1364 	 */
1365 	if (size > bar_size - offset)
1366 		size = bar_size - offset;
1367 
1368 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 	cmb = ioremap_wc(dma_addr, size);
1370 	if (!cmb)
1371 		return NULL;
1372 
1373 	dev->cmb_dma_addr = dma_addr;
1374 	dev->cmb_size = size;
1375 	return cmb;
1376 }
1377 
1378 static inline void nvme_release_cmb(struct nvme_dev *dev)
1379 {
1380 	if (dev->cmb) {
1381 		iounmap(dev->cmb);
1382 		dev->cmb = NULL;
1383 	}
1384 }
1385 
1386 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387 {
1388 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389 }
1390 
1391 static int nvme_setup_io_queues(struct nvme_dev *dev)
1392 {
1393 	struct nvme_queue *adminq = dev->queues[0];
1394 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 	int result, i, vecs, nr_io_queues, size;
1396 
1397 	nr_io_queues = num_online_cpus();
1398 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399 	if (result < 0)
1400 		return result;
1401 
1402 	/*
1403 	 * Degraded controllers might return an error when setting the queue
1404 	 * count.  We still want to be able to bring them online and offer
1405 	 * access to the admin queue, as that might be only way to fix them up.
1406 	 */
1407 	if (result > 0) {
1408 		dev_err(dev->ctrl.device,
1409 			"Could not set queue count (%d)\n", result);
1410 		return 0;
1411 	}
1412 
1413 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1414 		result = nvme_cmb_qdepth(dev, nr_io_queues,
1415 				sizeof(struct nvme_command));
1416 		if (result > 0)
1417 			dev->q_depth = result;
1418 		else
1419 			nvme_release_cmb(dev);
1420 	}
1421 
1422 	size = db_bar_size(dev, nr_io_queues);
1423 	if (size > 8192) {
1424 		iounmap(dev->bar);
1425 		do {
1426 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1427 			if (dev->bar)
1428 				break;
1429 			if (!--nr_io_queues)
1430 				return -ENOMEM;
1431 			size = db_bar_size(dev, nr_io_queues);
1432 		} while (1);
1433 		dev->dbs = dev->bar + 4096;
1434 		adminq->q_db = dev->dbs;
1435 	}
1436 
1437 	/* Deregister the admin queue's interrupt */
1438 	free_irq(dev->entry[0].vector, adminq);
1439 
1440 	/*
1441 	 * If we enable msix early due to not intx, disable it again before
1442 	 * setting up the full range we need.
1443 	 */
1444 	if (pdev->msi_enabled)
1445 		pci_disable_msi(pdev);
1446 	else if (pdev->msix_enabled)
1447 		pci_disable_msix(pdev);
1448 
1449 	for (i = 0; i < nr_io_queues; i++)
1450 		dev->entry[i].entry = i;
1451 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1452 	if (vecs < 0) {
1453 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1454 		if (vecs < 0) {
1455 			vecs = 1;
1456 		} else {
1457 			for (i = 0; i < vecs; i++)
1458 				dev->entry[i].vector = i + pdev->irq;
1459 		}
1460 	}
1461 
1462 	/*
1463 	 * Should investigate if there's a performance win from allocating
1464 	 * more queues than interrupt vectors; it might allow the submission
1465 	 * path to scale better, even if the receive path is limited by the
1466 	 * number of interrupts.
1467 	 */
1468 	nr_io_queues = vecs;
1469 	dev->max_qid = nr_io_queues;
1470 
1471 	result = queue_request_irq(dev, adminq, adminq->irqname);
1472 	if (result) {
1473 		adminq->cq_vector = -1;
1474 		goto free_queues;
1475 	}
1476 	return nvme_create_io_queues(dev);
1477 
1478  free_queues:
1479 	nvme_free_queues(dev, 1);
1480 	return result;
1481 }
1482 
1483 static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1484 {
1485 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1486 	struct nvme_queue *nvmeq;
1487 	int i;
1488 
1489 	for (i = 0; i < dev->online_queues; i++) {
1490 		nvmeq = dev->queues[i];
1491 
1492 		if (!nvmeq->tags || !(*nvmeq->tags))
1493 			continue;
1494 
1495 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1496 					blk_mq_tags_cpumask(*nvmeq->tags));
1497 	}
1498 }
1499 
1500 static void nvme_del_queue_end(struct request *req, int error)
1501 {
1502 	struct nvme_queue *nvmeq = req->end_io_data;
1503 
1504 	blk_mq_free_request(req);
1505 	complete(&nvmeq->dev->ioq_wait);
1506 }
1507 
1508 static void nvme_del_cq_end(struct request *req, int error)
1509 {
1510 	struct nvme_queue *nvmeq = req->end_io_data;
1511 
1512 	if (!error) {
1513 		unsigned long flags;
1514 
1515 		/*
1516 		 * We might be called with the AQ q_lock held
1517 		 * and the I/O queue q_lock should always
1518 		 * nest inside the AQ one.
1519 		 */
1520 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1521 					SINGLE_DEPTH_NESTING);
1522 		nvme_process_cq(nvmeq);
1523 		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1524 	}
1525 
1526 	nvme_del_queue_end(req, error);
1527 }
1528 
1529 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1530 {
1531 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1532 	struct request *req;
1533 	struct nvme_command cmd;
1534 
1535 	memset(&cmd, 0, sizeof(cmd));
1536 	cmd.delete_queue.opcode = opcode;
1537 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1538 
1539 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1540 	if (IS_ERR(req))
1541 		return PTR_ERR(req);
1542 
1543 	req->timeout = ADMIN_TIMEOUT;
1544 	req->end_io_data = nvmeq;
1545 
1546 	blk_execute_rq_nowait(q, NULL, req, false,
1547 			opcode == nvme_admin_delete_cq ?
1548 				nvme_del_cq_end : nvme_del_queue_end);
1549 	return 0;
1550 }
1551 
1552 static void nvme_disable_io_queues(struct nvme_dev *dev)
1553 {
1554 	int pass, queues = dev->online_queues - 1;
1555 	unsigned long timeout;
1556 	u8 opcode = nvme_admin_delete_sq;
1557 
1558 	for (pass = 0; pass < 2; pass++) {
1559 		int sent = 0, i = queues;
1560 
1561 		reinit_completion(&dev->ioq_wait);
1562  retry:
1563 		timeout = ADMIN_TIMEOUT;
1564 		for (; i > 0; i--) {
1565 			struct nvme_queue *nvmeq = dev->queues[i];
1566 
1567 			if (!pass)
1568 				nvme_suspend_queue(nvmeq);
1569 			if (nvme_delete_queue(nvmeq, opcode))
1570 				break;
1571 			++sent;
1572 		}
1573 		while (sent--) {
1574 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1575 			if (timeout == 0)
1576 				return;
1577 			if (i)
1578 				goto retry;
1579 		}
1580 		opcode = nvme_admin_delete_cq;
1581 	}
1582 }
1583 
1584 /*
1585  * Return: error value if an error occurred setting up the queues or calling
1586  * Identify Device.  0 if these succeeded, even if adding some of the
1587  * namespaces failed.  At the moment, these failures are silent.  TBD which
1588  * failures should be reported.
1589  */
1590 static int nvme_dev_add(struct nvme_dev *dev)
1591 {
1592 	if (!dev->ctrl.tagset) {
1593 		dev->tagset.ops = &nvme_mq_ops;
1594 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
1595 		dev->tagset.timeout = NVME_IO_TIMEOUT;
1596 		dev->tagset.numa_node = dev_to_node(dev->dev);
1597 		dev->tagset.queue_depth =
1598 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1599 		dev->tagset.cmd_size = nvme_cmd_size(dev);
1600 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1601 		dev->tagset.driver_data = dev;
1602 
1603 		if (blk_mq_alloc_tag_set(&dev->tagset))
1604 			return 0;
1605 		dev->ctrl.tagset = &dev->tagset;
1606 	} else {
1607 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1608 
1609 		/* Free previously allocated queues that are no longer usable */
1610 		nvme_free_queues(dev, dev->online_queues);
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int nvme_pci_enable(struct nvme_dev *dev)
1617 {
1618 	u64 cap;
1619 	int result = -ENOMEM;
1620 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1621 
1622 	if (pci_enable_device_mem(pdev))
1623 		return result;
1624 
1625 	pci_set_master(pdev);
1626 
1627 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1628 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1629 		goto disable;
1630 
1631 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1632 		result = -ENODEV;
1633 		goto disable;
1634 	}
1635 
1636 	/*
1637 	 * Some devices and/or platforms don't advertise or work with INTx
1638 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1639 	 * adjust this later.
1640 	 */
1641 	if (pci_enable_msix(pdev, dev->entry, 1)) {
1642 		pci_enable_msi(pdev);
1643 		dev->entry[0].vector = pdev->irq;
1644 	}
1645 
1646 	if (!dev->entry[0].vector) {
1647 		result = -ENODEV;
1648 		goto disable;
1649 	}
1650 
1651 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1652 
1653 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1654 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1655 	dev->dbs = dev->bar + 4096;
1656 
1657 	/*
1658 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
1659 	 * some MacBook7,1 to avoid controller resets and data loss.
1660 	 */
1661 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1662 		dev->q_depth = 2;
1663 		dev_warn(dev->dev, "detected Apple NVMe controller, set "
1664 			"queue depth=%u to work around controller resets\n",
1665 			dev->q_depth);
1666 	}
1667 
1668 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1669 		dev->cmb = nvme_map_cmb(dev);
1670 
1671 	pci_enable_pcie_error_reporting(pdev);
1672 	pci_save_state(pdev);
1673 	return 0;
1674 
1675  disable:
1676 	pci_disable_device(pdev);
1677 	return result;
1678 }
1679 
1680 static void nvme_dev_unmap(struct nvme_dev *dev)
1681 {
1682 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1683 	int bars;
1684 
1685 	if (dev->bar)
1686 		iounmap(dev->bar);
1687 
1688 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1689 	pci_release_selected_regions(pdev, bars);
1690 }
1691 
1692 static void nvme_pci_disable(struct nvme_dev *dev)
1693 {
1694 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1695 
1696 	if (pdev->msi_enabled)
1697 		pci_disable_msi(pdev);
1698 	else if (pdev->msix_enabled)
1699 		pci_disable_msix(pdev);
1700 
1701 	if (pci_is_enabled(pdev)) {
1702 		pci_disable_pcie_error_reporting(pdev);
1703 		pci_disable_device(pdev);
1704 	}
1705 }
1706 
1707 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1708 {
1709 	int i;
1710 	u32 csts = -1;
1711 
1712 	del_timer_sync(&dev->watchdog_timer);
1713 
1714 	mutex_lock(&dev->shutdown_lock);
1715 	if (pci_is_enabled(to_pci_dev(dev->dev))) {
1716 		nvme_stop_queues(&dev->ctrl);
1717 		csts = readl(dev->bar + NVME_REG_CSTS);
1718 	}
1719 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1720 		for (i = dev->queue_count - 1; i >= 0; i--) {
1721 			struct nvme_queue *nvmeq = dev->queues[i];
1722 			nvme_suspend_queue(nvmeq);
1723 		}
1724 	} else {
1725 		nvme_disable_io_queues(dev);
1726 		nvme_disable_admin_queue(dev, shutdown);
1727 	}
1728 	nvme_pci_disable(dev);
1729 
1730 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1731 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1732 	mutex_unlock(&dev->shutdown_lock);
1733 }
1734 
1735 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1736 {
1737 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1738 						PAGE_SIZE, PAGE_SIZE, 0);
1739 	if (!dev->prp_page_pool)
1740 		return -ENOMEM;
1741 
1742 	/* Optimisation for I/Os between 4k and 128k */
1743 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1744 						256, 256, 0);
1745 	if (!dev->prp_small_pool) {
1746 		dma_pool_destroy(dev->prp_page_pool);
1747 		return -ENOMEM;
1748 	}
1749 	return 0;
1750 }
1751 
1752 static void nvme_release_prp_pools(struct nvme_dev *dev)
1753 {
1754 	dma_pool_destroy(dev->prp_page_pool);
1755 	dma_pool_destroy(dev->prp_small_pool);
1756 }
1757 
1758 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1759 {
1760 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1761 
1762 	put_device(dev->dev);
1763 	if (dev->tagset.tags)
1764 		blk_mq_free_tag_set(&dev->tagset);
1765 	if (dev->ctrl.admin_q)
1766 		blk_put_queue(dev->ctrl.admin_q);
1767 	kfree(dev->queues);
1768 	kfree(dev->entry);
1769 	kfree(dev);
1770 }
1771 
1772 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1773 {
1774 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1775 
1776 	kref_get(&dev->ctrl.kref);
1777 	nvme_dev_disable(dev, false);
1778 	if (!schedule_work(&dev->remove_work))
1779 		nvme_put_ctrl(&dev->ctrl);
1780 }
1781 
1782 static void nvme_reset_work(struct work_struct *work)
1783 {
1784 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1785 	int result = -ENODEV;
1786 
1787 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1788 		goto out;
1789 
1790 	/*
1791 	 * If we're called to reset a live controller first shut it down before
1792 	 * moving on.
1793 	 */
1794 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1795 		nvme_dev_disable(dev, false);
1796 
1797 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1798 		goto out;
1799 
1800 	result = nvme_pci_enable(dev);
1801 	if (result)
1802 		goto out;
1803 
1804 	result = nvme_configure_admin_queue(dev);
1805 	if (result)
1806 		goto out;
1807 
1808 	nvme_init_queue(dev->queues[0], 0);
1809 	result = nvme_alloc_admin_tags(dev);
1810 	if (result)
1811 		goto out;
1812 
1813 	result = nvme_init_identify(&dev->ctrl);
1814 	if (result)
1815 		goto out;
1816 
1817 	result = nvme_setup_io_queues(dev);
1818 	if (result)
1819 		goto out;
1820 
1821 	/*
1822 	 * A controller that can not execute IO typically requires user
1823 	 * intervention to correct. For such degraded controllers, the driver
1824 	 * should not submit commands the user did not request, so skip
1825 	 * registering for asynchronous event notification on this condition.
1826 	 */
1827 	if (dev->online_queues > 1)
1828 		nvme_queue_async_events(&dev->ctrl);
1829 
1830 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1831 
1832 	/*
1833 	 * Keep the controller around but remove all namespaces if we don't have
1834 	 * any working I/O queue.
1835 	 */
1836 	if (dev->online_queues < 2) {
1837 		dev_warn(dev->ctrl.device, "IO queues not created\n");
1838 		nvme_kill_queues(&dev->ctrl);
1839 		nvme_remove_namespaces(&dev->ctrl);
1840 	} else {
1841 		nvme_start_queues(&dev->ctrl);
1842 		nvme_dev_add(dev);
1843 	}
1844 
1845 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1846 		dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1847 		goto out;
1848 	}
1849 
1850 	if (dev->online_queues > 1)
1851 		nvme_queue_scan(&dev->ctrl);
1852 	return;
1853 
1854  out:
1855 	nvme_remove_dead_ctrl(dev, result);
1856 }
1857 
1858 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1859 {
1860 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1861 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1862 
1863 	nvme_kill_queues(&dev->ctrl);
1864 	if (pci_get_drvdata(pdev))
1865 		device_release_driver(&pdev->dev);
1866 	nvme_put_ctrl(&dev->ctrl);
1867 }
1868 
1869 static int nvme_reset(struct nvme_dev *dev)
1870 {
1871 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1872 		return -ENODEV;
1873 
1874 	if (!queue_work(nvme_workq, &dev->reset_work))
1875 		return -EBUSY;
1876 
1877 	flush_work(&dev->reset_work);
1878 	return 0;
1879 }
1880 
1881 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1882 {
1883 	*val = readl(to_nvme_dev(ctrl)->bar + off);
1884 	return 0;
1885 }
1886 
1887 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1888 {
1889 	writel(val, to_nvme_dev(ctrl)->bar + off);
1890 	return 0;
1891 }
1892 
1893 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1894 {
1895 	*val = readq(to_nvme_dev(ctrl)->bar + off);
1896 	return 0;
1897 }
1898 
1899 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1900 {
1901 	return nvme_reset(to_nvme_dev(ctrl));
1902 }
1903 
1904 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1905 	.module			= THIS_MODULE,
1906 	.reg_read32		= nvme_pci_reg_read32,
1907 	.reg_write32		= nvme_pci_reg_write32,
1908 	.reg_read64		= nvme_pci_reg_read64,
1909 	.reset_ctrl		= nvme_pci_reset_ctrl,
1910 	.free_ctrl		= nvme_pci_free_ctrl,
1911 	.post_scan		= nvme_pci_post_scan,
1912 	.submit_async_event	= nvme_pci_submit_async_event,
1913 };
1914 
1915 static int nvme_dev_map(struct nvme_dev *dev)
1916 {
1917 	int bars;
1918 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1919 
1920 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1921 	if (!bars)
1922 		return -ENODEV;
1923 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1924 		return -ENODEV;
1925 
1926 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1927 	if (!dev->bar)
1928 		goto release;
1929 
1930        return 0;
1931   release:
1932        pci_release_selected_regions(pdev, bars);
1933        return -ENODEV;
1934 }
1935 
1936 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1937 {
1938 	int node, result = -ENOMEM;
1939 	struct nvme_dev *dev;
1940 
1941 	node = dev_to_node(&pdev->dev);
1942 	if (node == NUMA_NO_NODE)
1943 		set_dev_node(&pdev->dev, 0);
1944 
1945 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1946 	if (!dev)
1947 		return -ENOMEM;
1948 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1949 							GFP_KERNEL, node);
1950 	if (!dev->entry)
1951 		goto free;
1952 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1953 							GFP_KERNEL, node);
1954 	if (!dev->queues)
1955 		goto free;
1956 
1957 	dev->dev = get_device(&pdev->dev);
1958 	pci_set_drvdata(pdev, dev);
1959 
1960 	result = nvme_dev_map(dev);
1961 	if (result)
1962 		goto free;
1963 
1964 	INIT_WORK(&dev->reset_work, nvme_reset_work);
1965 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1966 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1967 		(unsigned long)dev);
1968 	mutex_init(&dev->shutdown_lock);
1969 	init_completion(&dev->ioq_wait);
1970 
1971 	result = nvme_setup_prp_pools(dev);
1972 	if (result)
1973 		goto put_pci;
1974 
1975 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1976 			id->driver_data);
1977 	if (result)
1978 		goto release_pools;
1979 
1980 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1981 
1982 	queue_work(nvme_workq, &dev->reset_work);
1983 	return 0;
1984 
1985  release_pools:
1986 	nvme_release_prp_pools(dev);
1987  put_pci:
1988 	put_device(dev->dev);
1989 	nvme_dev_unmap(dev);
1990  free:
1991 	kfree(dev->queues);
1992 	kfree(dev->entry);
1993 	kfree(dev);
1994 	return result;
1995 }
1996 
1997 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1998 {
1999 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2000 
2001 	if (prepare)
2002 		nvme_dev_disable(dev, false);
2003 	else
2004 		queue_work(nvme_workq, &dev->reset_work);
2005 }
2006 
2007 static void nvme_shutdown(struct pci_dev *pdev)
2008 {
2009 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2010 	nvme_dev_disable(dev, true);
2011 }
2012 
2013 /*
2014  * The driver's remove may be called on a device in a partially initialized
2015  * state. This function must not have any dependencies on the device state in
2016  * order to proceed.
2017  */
2018 static void nvme_remove(struct pci_dev *pdev)
2019 {
2020 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2021 
2022 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2023 
2024 	pci_set_drvdata(pdev, NULL);
2025 
2026 	if (!pci_device_is_present(pdev))
2027 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2028 
2029 	flush_work(&dev->reset_work);
2030 	nvme_uninit_ctrl(&dev->ctrl);
2031 	nvme_dev_disable(dev, true);
2032 	nvme_dev_remove_admin(dev);
2033 	nvme_free_queues(dev, 0);
2034 	nvme_release_cmb(dev);
2035 	nvme_release_prp_pools(dev);
2036 	nvme_dev_unmap(dev);
2037 	nvme_put_ctrl(&dev->ctrl);
2038 }
2039 
2040 #ifdef CONFIG_PM_SLEEP
2041 static int nvme_suspend(struct device *dev)
2042 {
2043 	struct pci_dev *pdev = to_pci_dev(dev);
2044 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2045 
2046 	nvme_dev_disable(ndev, true);
2047 	return 0;
2048 }
2049 
2050 static int nvme_resume(struct device *dev)
2051 {
2052 	struct pci_dev *pdev = to_pci_dev(dev);
2053 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2054 
2055 	queue_work(nvme_workq, &ndev->reset_work);
2056 	return 0;
2057 }
2058 #endif
2059 
2060 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2061 
2062 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2063 						pci_channel_state_t state)
2064 {
2065 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2066 
2067 	/*
2068 	 * A frozen channel requires a reset. When detected, this method will
2069 	 * shutdown the controller to quiesce. The controller will be restarted
2070 	 * after the slot reset through driver's slot_reset callback.
2071 	 */
2072 	switch (state) {
2073 	case pci_channel_io_normal:
2074 		return PCI_ERS_RESULT_CAN_RECOVER;
2075 	case pci_channel_io_frozen:
2076 		dev_warn(dev->ctrl.device,
2077 			"frozen state error detected, reset controller\n");
2078 		nvme_dev_disable(dev, false);
2079 		return PCI_ERS_RESULT_NEED_RESET;
2080 	case pci_channel_io_perm_failure:
2081 		dev_warn(dev->ctrl.device,
2082 			"failure state error detected, request disconnect\n");
2083 		return PCI_ERS_RESULT_DISCONNECT;
2084 	}
2085 	return PCI_ERS_RESULT_NEED_RESET;
2086 }
2087 
2088 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2089 {
2090 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2091 
2092 	dev_info(dev->ctrl.device, "restart after slot reset\n");
2093 	pci_restore_state(pdev);
2094 	queue_work(nvme_workq, &dev->reset_work);
2095 	return PCI_ERS_RESULT_RECOVERED;
2096 }
2097 
2098 static void nvme_error_resume(struct pci_dev *pdev)
2099 {
2100 	pci_cleanup_aer_uncorrect_error_status(pdev);
2101 }
2102 
2103 static const struct pci_error_handlers nvme_err_handler = {
2104 	.error_detected	= nvme_error_detected,
2105 	.slot_reset	= nvme_slot_reset,
2106 	.resume		= nvme_error_resume,
2107 	.reset_notify	= nvme_reset_notify,
2108 };
2109 
2110 /* Move to pci_ids.h later */
2111 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
2112 
2113 static const struct pci_device_id nvme_id_table[] = {
2114 	{ PCI_VDEVICE(INTEL, 0x0953),
2115 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2116 				NVME_QUIRK_DISCARD_ZEROES, },
2117 	{ PCI_VDEVICE(INTEL, 0x0a53),
2118 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2119 				NVME_QUIRK_DISCARD_ZEROES, },
2120 	{ PCI_VDEVICE(INTEL, 0x0a54),
2121 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
2122 				NVME_QUIRK_DISCARD_ZEROES, },
2123 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
2124 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2125 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2126 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2127 	{ 0, }
2128 };
2129 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130 
2131 static struct pci_driver nvme_driver = {
2132 	.name		= "nvme",
2133 	.id_table	= nvme_id_table,
2134 	.probe		= nvme_probe,
2135 	.remove		= nvme_remove,
2136 	.shutdown	= nvme_shutdown,
2137 	.driver		= {
2138 		.pm	= &nvme_dev_pm_ops,
2139 	},
2140 	.err_handler	= &nvme_err_handler,
2141 };
2142 
2143 static int __init nvme_init(void)
2144 {
2145 	int result;
2146 
2147 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2148 	if (!nvme_workq)
2149 		return -ENOMEM;
2150 
2151 	result = pci_register_driver(&nvme_driver);
2152 	if (result)
2153 		destroy_workqueue(nvme_workq);
2154 	return result;
2155 }
2156 
2157 static void __exit nvme_exit(void)
2158 {
2159 	pci_unregister_driver(&nvme_driver);
2160 	destroy_workqueue(nvme_workq);
2161 	_nvme_check_size();
2162 }
2163 
2164 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2165 MODULE_LICENSE("GPL");
2166 MODULE_VERSION("1.0");
2167 module_init(nvme_init);
2168 module_exit(nvme_exit);
2169