xref: /linux/drivers/nvme/host/pci.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq-dma.h>
11 #include <linux/blk-integrity.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/kstrtox.h>
17 #include <linux/memremap.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/mutex.h>
21 #include <linux/nodemask.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 
31 #include "trace.h"
32 #include "nvme.h"
33 
34 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
35 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
36 
37 /* Optimisation for I/Os between 4k and 128k */
38 #define NVME_SMALL_POOL_SIZE	256
39 
40 /*
41  * Arbitrary upper bound.
42  */
43 #define NVME_MAX_BYTES		SZ_8M
44 #define NVME_MAX_NR_DESCRIPTORS	5
45 
46 /*
47  * For data SGLs we support a single descriptors worth of SGL entries.
48  * For PRPs, segments don't matter at all.
49  */
50 #define NVME_MAX_SEGS \
51 	(NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
52 
53 /*
54  * For metadata SGLs, only the small descriptor is supported, and the first
55  * entry is the segment descriptor, which for the data pointer sits in the SQE.
56  */
57 #define NVME_MAX_META_SEGS \
58 	((NVME_SMALL_POOL_SIZE / sizeof(struct nvme_sgl_desc)) - 1)
59 
60 /*
61  * The last entry is used to link to the next descriptor.
62  */
63 #define PRPS_PER_PAGE \
64 	(((NVME_CTRL_PAGE_SIZE / sizeof(__le64))) - 1)
65 
66 /*
67  * I/O could be non-aligned both at the beginning and end.
68  */
69 #define MAX_PRP_RANGE \
70 	(NVME_MAX_BYTES + 2 * (NVME_CTRL_PAGE_SIZE - 1))
71 
72 static_assert(MAX_PRP_RANGE / NVME_CTRL_PAGE_SIZE <=
73 	(1 /* prp1 */ + NVME_MAX_NR_DESCRIPTORS * PRPS_PER_PAGE));
74 
75 static int use_threaded_interrupts;
76 module_param(use_threaded_interrupts, int, 0444);
77 
78 static bool use_cmb_sqes = true;
79 module_param(use_cmb_sqes, bool, 0444);
80 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81 
82 static unsigned int max_host_mem_size_mb = 128;
83 module_param(max_host_mem_size_mb, uint, 0444);
84 MODULE_PARM_DESC(max_host_mem_size_mb,
85 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
86 
87 static unsigned int sgl_threshold = SZ_32K;
88 module_param(sgl_threshold, uint, 0644);
89 MODULE_PARM_DESC(sgl_threshold,
90 		"Use SGLs when average request segment size is larger or equal to "
91 		"this size. Use 0 to disable SGLs.");
92 
93 #define NVME_PCI_MIN_QUEUE_SIZE 2
94 #define NVME_PCI_MAX_QUEUE_SIZE 4095
95 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
96 static const struct kernel_param_ops io_queue_depth_ops = {
97 	.set = io_queue_depth_set,
98 	.get = param_get_uint,
99 };
100 
101 static unsigned int io_queue_depth = 1024;
102 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
103 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
104 
105 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
106 {
107 	unsigned int n;
108 	int ret;
109 
110 	ret = kstrtouint(val, 10, &n);
111 	if (ret != 0 || n > blk_mq_num_possible_queues(0))
112 		return -EINVAL;
113 	return param_set_uint(val, kp);
114 }
115 
116 static const struct kernel_param_ops io_queue_count_ops = {
117 	.set = io_queue_count_set,
118 	.get = param_get_uint,
119 };
120 
121 static unsigned int write_queues;
122 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
123 MODULE_PARM_DESC(write_queues,
124 	"Number of queues to use for writes. If not set, reads and writes "
125 	"will share a queue set.");
126 
127 static unsigned int poll_queues;
128 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
129 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
130 
131 static bool noacpi;
132 module_param(noacpi, bool, 0444);
133 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
134 
135 struct nvme_dev;
136 struct nvme_queue;
137 
138 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
139 static void nvme_delete_io_queues(struct nvme_dev *dev);
140 static void nvme_update_attrs(struct nvme_dev *dev);
141 
142 struct nvme_descriptor_pools {
143 	struct dma_pool *large;
144 	struct dma_pool *small;
145 };
146 
147 /*
148  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
149  */
150 struct nvme_dev {
151 	struct nvme_queue *queues;
152 	struct blk_mq_tag_set tagset;
153 	struct blk_mq_tag_set admin_tagset;
154 	u32 __iomem *dbs;
155 	struct device *dev;
156 	unsigned online_queues;
157 	unsigned max_qid;
158 	unsigned io_queues[HCTX_MAX_TYPES];
159 	unsigned int num_vecs;
160 	u32 q_depth;
161 	int io_sqes;
162 	u32 db_stride;
163 	void __iomem *bar;
164 	unsigned long bar_mapped_size;
165 	struct mutex shutdown_lock;
166 	bool subsystem;
167 	u64 cmb_size;
168 	bool cmb_use_sqes;
169 	u32 cmbsz;
170 	u32 cmbloc;
171 	struct nvme_ctrl ctrl;
172 	u32 last_ps;
173 	bool hmb;
174 	struct sg_table *hmb_sgt;
175 	mempool_t *dmavec_mempool;
176 
177 	/* shadow doorbell buffer support: */
178 	__le32 *dbbuf_dbs;
179 	dma_addr_t dbbuf_dbs_dma_addr;
180 	__le32 *dbbuf_eis;
181 	dma_addr_t dbbuf_eis_dma_addr;
182 
183 	/* host memory buffer support: */
184 	u64 host_mem_size;
185 	u32 nr_host_mem_descs;
186 	u32 host_mem_descs_size;
187 	dma_addr_t host_mem_descs_dma;
188 	struct nvme_host_mem_buf_desc *host_mem_descs;
189 	void **host_mem_desc_bufs;
190 	unsigned int nr_allocated_queues;
191 	unsigned int nr_write_queues;
192 	unsigned int nr_poll_queues;
193 	struct nvme_descriptor_pools descriptor_pools[];
194 };
195 
196 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
197 {
198 	return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
199 			NVME_PCI_MAX_QUEUE_SIZE);
200 }
201 
202 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
203 {
204 	return qid * 2 * stride;
205 }
206 
207 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
208 {
209 	return (qid * 2 + 1) * stride;
210 }
211 
212 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
213 {
214 	return container_of(ctrl, struct nvme_dev, ctrl);
215 }
216 
217 /*
218  * An NVM Express queue.  Each device has at least two (one for admin
219  * commands and one for I/O commands).
220  */
221 struct nvme_queue {
222 	struct nvme_dev *dev;
223 	struct nvme_descriptor_pools descriptor_pools;
224 	spinlock_t sq_lock;
225 	void *sq_cmds;
226 	 /* only used for poll queues: */
227 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
228 	struct nvme_completion *cqes;
229 	dma_addr_t sq_dma_addr;
230 	dma_addr_t cq_dma_addr;
231 	u32 __iomem *q_db;
232 	u32 q_depth;
233 	u16 cq_vector;
234 	u16 sq_tail;
235 	u16 last_sq_tail;
236 	u16 cq_head;
237 	u16 qid;
238 	u8 cq_phase;
239 	u8 sqes;
240 	unsigned long flags;
241 #define NVMEQ_ENABLED		0
242 #define NVMEQ_SQ_CMB		1
243 #define NVMEQ_DELETE_ERROR	2
244 #define NVMEQ_POLLED		3
245 	__le32 *dbbuf_sq_db;
246 	__le32 *dbbuf_cq_db;
247 	__le32 *dbbuf_sq_ei;
248 	__le32 *dbbuf_cq_ei;
249 	struct completion delete_done;
250 };
251 
252 /* bits for iod->flags */
253 enum nvme_iod_flags {
254 	/* this command has been aborted by the timeout handler */
255 	IOD_ABORTED		= 1U << 0,
256 
257 	/* uses the small descriptor pool */
258 	IOD_SMALL_DESCRIPTOR	= 1U << 1,
259 
260 	/* single segment dma mapping */
261 	IOD_SINGLE_SEGMENT	= 1U << 2,
262 
263 	/* Metadata using non-coalesced MPTR */
264 	IOD_SINGLE_META_SEGMENT	= 1U << 5,
265 };
266 
267 struct nvme_dma_vec {
268 	dma_addr_t addr;
269 	unsigned int len;
270 };
271 
272 /*
273  * The nvme_iod describes the data in an I/O.
274  */
275 struct nvme_iod {
276 	struct nvme_request req;
277 	struct nvme_command cmd;
278 	u8 flags;
279 	u8 nr_descriptors;
280 
281 	unsigned int total_len;
282 	struct dma_iova_state dma_state;
283 	void *descriptors[NVME_MAX_NR_DESCRIPTORS];
284 	struct nvme_dma_vec *dma_vecs;
285 	unsigned int nr_dma_vecs;
286 
287 	dma_addr_t meta_dma;
288 	unsigned int meta_total_len;
289 	struct dma_iova_state meta_dma_state;
290 	struct nvme_sgl_desc *meta_descriptor;
291 };
292 
293 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
294 {
295 	return dev->nr_allocated_queues * 8 * dev->db_stride;
296 }
297 
298 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
299 {
300 	unsigned int mem_size = nvme_dbbuf_size(dev);
301 
302 	if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
303 		return;
304 
305 	if (dev->dbbuf_dbs) {
306 		/*
307 		 * Clear the dbbuf memory so the driver doesn't observe stale
308 		 * values from the previous instantiation.
309 		 */
310 		memset(dev->dbbuf_dbs, 0, mem_size);
311 		memset(dev->dbbuf_eis, 0, mem_size);
312 		return;
313 	}
314 
315 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
316 					    &dev->dbbuf_dbs_dma_addr,
317 					    GFP_KERNEL);
318 	if (!dev->dbbuf_dbs)
319 		goto fail;
320 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
321 					    &dev->dbbuf_eis_dma_addr,
322 					    GFP_KERNEL);
323 	if (!dev->dbbuf_eis)
324 		goto fail_free_dbbuf_dbs;
325 	return;
326 
327 fail_free_dbbuf_dbs:
328 	dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs,
329 			  dev->dbbuf_dbs_dma_addr);
330 	dev->dbbuf_dbs = NULL;
331 fail:
332 	dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
333 }
334 
335 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
336 {
337 	unsigned int mem_size = nvme_dbbuf_size(dev);
338 
339 	if (dev->dbbuf_dbs) {
340 		dma_free_coherent(dev->dev, mem_size,
341 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
342 		dev->dbbuf_dbs = NULL;
343 	}
344 	if (dev->dbbuf_eis) {
345 		dma_free_coherent(dev->dev, mem_size,
346 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
347 		dev->dbbuf_eis = NULL;
348 	}
349 }
350 
351 static void nvme_dbbuf_init(struct nvme_dev *dev,
352 			    struct nvme_queue *nvmeq, int qid)
353 {
354 	if (!dev->dbbuf_dbs || !qid)
355 		return;
356 
357 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
358 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
359 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
360 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
361 }
362 
363 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
364 {
365 	if (!nvmeq->qid)
366 		return;
367 
368 	nvmeq->dbbuf_sq_db = NULL;
369 	nvmeq->dbbuf_cq_db = NULL;
370 	nvmeq->dbbuf_sq_ei = NULL;
371 	nvmeq->dbbuf_cq_ei = NULL;
372 }
373 
374 static void nvme_dbbuf_set(struct nvme_dev *dev)
375 {
376 	struct nvme_command c = { };
377 	unsigned int i;
378 
379 	if (!dev->dbbuf_dbs)
380 		return;
381 
382 	c.dbbuf.opcode = nvme_admin_dbbuf;
383 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
384 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
385 
386 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
387 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
388 		/* Free memory and continue on */
389 		nvme_dbbuf_dma_free(dev);
390 
391 		for (i = 1; i <= dev->online_queues; i++)
392 			nvme_dbbuf_free(&dev->queues[i]);
393 	}
394 }
395 
396 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
397 {
398 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
399 }
400 
401 /* Update dbbuf and return true if an MMIO is required */
402 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
403 					      volatile __le32 *dbbuf_ei)
404 {
405 	if (dbbuf_db) {
406 		u16 old_value, event_idx;
407 
408 		/*
409 		 * Ensure that the queue is written before updating
410 		 * the doorbell in memory
411 		 */
412 		wmb();
413 
414 		old_value = le32_to_cpu(*dbbuf_db);
415 		*dbbuf_db = cpu_to_le32(value);
416 
417 		/*
418 		 * Ensure that the doorbell is updated before reading the event
419 		 * index from memory.  The controller needs to provide similar
420 		 * ordering to ensure the event index is updated before reading
421 		 * the doorbell.
422 		 */
423 		mb();
424 
425 		event_idx = le32_to_cpu(*dbbuf_ei);
426 		if (!nvme_dbbuf_need_event(event_idx, value, old_value))
427 			return false;
428 	}
429 
430 	return true;
431 }
432 
433 static struct nvme_descriptor_pools *
434 nvme_setup_descriptor_pools(struct nvme_dev *dev, unsigned numa_node)
435 {
436 	struct nvme_descriptor_pools *pools = &dev->descriptor_pools[numa_node];
437 	size_t small_align = NVME_SMALL_POOL_SIZE;
438 
439 	if (pools->small)
440 		return pools; /* already initialized */
441 
442 	pools->large = dma_pool_create_node("nvme descriptor page", dev->dev,
443 			NVME_CTRL_PAGE_SIZE, NVME_CTRL_PAGE_SIZE, 0, numa_node);
444 	if (!pools->large)
445 		return ERR_PTR(-ENOMEM);
446 
447 	if (dev->ctrl.quirks & NVME_QUIRK_DMAPOOL_ALIGN_512)
448 		small_align = 512;
449 
450 	pools->small = dma_pool_create_node("nvme descriptor small", dev->dev,
451 			NVME_SMALL_POOL_SIZE, small_align, 0, numa_node);
452 	if (!pools->small) {
453 		dma_pool_destroy(pools->large);
454 		pools->large = NULL;
455 		return ERR_PTR(-ENOMEM);
456 	}
457 
458 	return pools;
459 }
460 
461 static void nvme_release_descriptor_pools(struct nvme_dev *dev)
462 {
463 	unsigned i;
464 
465 	for (i = 0; i < nr_node_ids; i++) {
466 		struct nvme_descriptor_pools *pools = &dev->descriptor_pools[i];
467 
468 		dma_pool_destroy(pools->large);
469 		dma_pool_destroy(pools->small);
470 	}
471 }
472 
473 static int nvme_init_hctx_common(struct blk_mq_hw_ctx *hctx, void *data,
474 		unsigned qid)
475 {
476 	struct nvme_dev *dev = to_nvme_dev(data);
477 	struct nvme_queue *nvmeq = &dev->queues[qid];
478 	struct nvme_descriptor_pools *pools;
479 	struct blk_mq_tags *tags;
480 
481 	tags = qid ? dev->tagset.tags[qid - 1] : dev->admin_tagset.tags[0];
482 	WARN_ON(tags != hctx->tags);
483 	pools = nvme_setup_descriptor_pools(dev, hctx->numa_node);
484 	if (IS_ERR(pools))
485 		return PTR_ERR(pools);
486 
487 	nvmeq->descriptor_pools = *pools;
488 	hctx->driver_data = nvmeq;
489 	return 0;
490 }
491 
492 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
493 				unsigned int hctx_idx)
494 {
495 	WARN_ON(hctx_idx != 0);
496 	return nvme_init_hctx_common(hctx, data, 0);
497 }
498 
499 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
500 			     unsigned int hctx_idx)
501 {
502 	return nvme_init_hctx_common(hctx, data, hctx_idx + 1);
503 }
504 
505 static int nvme_pci_init_request(struct blk_mq_tag_set *set,
506 		struct request *req, unsigned int hctx_idx,
507 		unsigned int numa_node)
508 {
509 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
510 
511 	nvme_req(req)->ctrl = set->driver_data;
512 	nvme_req(req)->cmd = &iod->cmd;
513 	return 0;
514 }
515 
516 static int queue_irq_offset(struct nvme_dev *dev)
517 {
518 	/* if we have more than 1 vec, admin queue offsets us by 1 */
519 	if (dev->num_vecs > 1)
520 		return 1;
521 
522 	return 0;
523 }
524 
525 static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
526 {
527 	struct nvme_dev *dev = to_nvme_dev(set->driver_data);
528 	int i, qoff, offset;
529 
530 	offset = queue_irq_offset(dev);
531 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
532 		struct blk_mq_queue_map *map = &set->map[i];
533 
534 		map->nr_queues = dev->io_queues[i];
535 		if (!map->nr_queues) {
536 			BUG_ON(i == HCTX_TYPE_DEFAULT);
537 			continue;
538 		}
539 
540 		/*
541 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
542 		 * affinity), so use the regular blk-mq cpu mapping
543 		 */
544 		map->queue_offset = qoff;
545 		if (i != HCTX_TYPE_POLL && offset)
546 			blk_mq_map_hw_queues(map, dev->dev, offset);
547 		else
548 			blk_mq_map_queues(map);
549 		qoff += map->nr_queues;
550 		offset += map->nr_queues;
551 	}
552 }
553 
554 /*
555  * Write sq tail if we are asked to, or if the next command would wrap.
556  */
557 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
558 {
559 	if (!write_sq) {
560 		u16 next_tail = nvmeq->sq_tail + 1;
561 
562 		if (next_tail == nvmeq->q_depth)
563 			next_tail = 0;
564 		if (next_tail != nvmeq->last_sq_tail)
565 			return;
566 	}
567 
568 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
569 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
570 		writel(nvmeq->sq_tail, nvmeq->q_db);
571 	nvmeq->last_sq_tail = nvmeq->sq_tail;
572 }
573 
574 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
575 				    struct nvme_command *cmd)
576 {
577 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
578 		absolute_pointer(cmd), sizeof(*cmd));
579 	if (++nvmeq->sq_tail == nvmeq->q_depth)
580 		nvmeq->sq_tail = 0;
581 }
582 
583 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
584 {
585 	struct nvme_queue *nvmeq = hctx->driver_data;
586 
587 	spin_lock(&nvmeq->sq_lock);
588 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
589 		nvme_write_sq_db(nvmeq, true);
590 	spin_unlock(&nvmeq->sq_lock);
591 }
592 
593 enum nvme_use_sgl {
594 	SGL_UNSUPPORTED,
595 	SGL_SUPPORTED,
596 	SGL_FORCED,
597 };
598 
599 static inline bool nvme_pci_metadata_use_sgls(struct request *req)
600 {
601 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
602 	struct nvme_dev *dev = nvmeq->dev;
603 
604 	if (!nvme_ctrl_meta_sgl_supported(&dev->ctrl))
605 		return false;
606 	return req->nr_integrity_segments > 1 ||
607 		nvme_req(req)->flags & NVME_REQ_USERCMD;
608 }
609 
610 static inline enum nvme_use_sgl nvme_pci_use_sgls(struct nvme_dev *dev,
611 		struct request *req)
612 {
613 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
614 
615 	if (nvmeq->qid && nvme_ctrl_sgl_supported(&dev->ctrl)) {
616 		if (nvme_req(req)->flags & NVME_REQ_USERCMD)
617 			return SGL_FORCED;
618 		if (req->nr_integrity_segments > 1)
619 			return SGL_FORCED;
620 		return SGL_SUPPORTED;
621 	}
622 
623 	return SGL_UNSUPPORTED;
624 }
625 
626 static unsigned int nvme_pci_avg_seg_size(struct request *req)
627 {
628 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629 	unsigned int nseg;
630 
631 	if (blk_rq_dma_map_coalesce(&iod->dma_state))
632 		nseg = 1;
633 	else
634 		nseg = blk_rq_nr_phys_segments(req);
635 	return DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
636 }
637 
638 static inline struct dma_pool *nvme_dma_pool(struct nvme_queue *nvmeq,
639 		struct nvme_iod *iod)
640 {
641 	if (iod->flags & IOD_SMALL_DESCRIPTOR)
642 		return nvmeq->descriptor_pools.small;
643 	return nvmeq->descriptor_pools.large;
644 }
645 
646 static inline bool nvme_pci_cmd_use_meta_sgl(struct nvme_command *cmd)
647 {
648 	return (cmd->common.flags & NVME_CMD_SGL_ALL) == NVME_CMD_SGL_METASEG;
649 }
650 
651 static inline bool nvme_pci_cmd_use_sgl(struct nvme_command *cmd)
652 {
653 	return cmd->common.flags &
654 		(NVME_CMD_SGL_METABUF | NVME_CMD_SGL_METASEG);
655 }
656 
657 static inline dma_addr_t nvme_pci_first_desc_dma_addr(struct nvme_command *cmd)
658 {
659 	if (nvme_pci_cmd_use_sgl(cmd))
660 		return le64_to_cpu(cmd->common.dptr.sgl.addr);
661 	return le64_to_cpu(cmd->common.dptr.prp2);
662 }
663 
664 static void nvme_free_descriptors(struct request *req)
665 {
666 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
667 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
668 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
669 	dma_addr_t dma_addr = nvme_pci_first_desc_dma_addr(&iod->cmd);
670 	int i;
671 
672 	if (iod->nr_descriptors == 1) {
673 		dma_pool_free(nvme_dma_pool(nvmeq, iod), iod->descriptors[0],
674 				dma_addr);
675 		return;
676 	}
677 
678 	for (i = 0; i < iod->nr_descriptors; i++) {
679 		__le64 *prp_list = iod->descriptors[i];
680 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
681 
682 		dma_pool_free(nvmeq->descriptor_pools.large, prp_list,
683 				dma_addr);
684 		dma_addr = next_dma_addr;
685 	}
686 }
687 
688 static void nvme_free_prps(struct request *req)
689 {
690 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
691 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
692 	unsigned int i;
693 
694 	for (i = 0; i < iod->nr_dma_vecs; i++)
695 		dma_unmap_page(nvmeq->dev->dev, iod->dma_vecs[i].addr,
696 				iod->dma_vecs[i].len, rq_dma_dir(req));
697 	mempool_free(iod->dma_vecs, nvmeq->dev->dmavec_mempool);
698 }
699 
700 static void nvme_free_sgls(struct request *req, struct nvme_sgl_desc *sge,
701 		struct nvme_sgl_desc *sg_list)
702 {
703 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
704 	enum dma_data_direction dir = rq_dma_dir(req);
705 	unsigned int len = le32_to_cpu(sge->length);
706 	struct device *dma_dev = nvmeq->dev->dev;
707 	unsigned int i;
708 
709 	if (sge->type == (NVME_SGL_FMT_DATA_DESC << 4)) {
710 		dma_unmap_page(dma_dev, le64_to_cpu(sge->addr), len, dir);
711 		return;
712 	}
713 
714 	for (i = 0; i < len / sizeof(*sg_list); i++)
715 		dma_unmap_page(dma_dev, le64_to_cpu(sg_list[i].addr),
716 			le32_to_cpu(sg_list[i].length), dir);
717 }
718 
719 static void nvme_unmap_metadata(struct request *req)
720 {
721 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
722 	enum dma_data_direction dir = rq_dma_dir(req);
723 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
724 	struct device *dma_dev = nvmeq->dev->dev;
725 	struct nvme_sgl_desc *sge = iod->meta_descriptor;
726 
727 	if (iod->flags & IOD_SINGLE_META_SEGMENT) {
728 		dma_unmap_page(dma_dev, iod->meta_dma,
729 			       rq_integrity_vec(req).bv_len,
730 			       rq_dma_dir(req));
731 		return;
732 	}
733 
734 	if (!blk_rq_integrity_dma_unmap(req, dma_dev, &iod->meta_dma_state,
735 					iod->meta_total_len)) {
736 		if (nvme_pci_cmd_use_meta_sgl(&iod->cmd))
737 			nvme_free_sgls(req, sge, &sge[1]);
738 		else
739 			dma_unmap_page(dma_dev, iod->meta_dma,
740 				       iod->meta_total_len, dir);
741 	}
742 
743 	if (iod->meta_descriptor)
744 		dma_pool_free(nvmeq->descriptor_pools.small,
745 			      iod->meta_descriptor, iod->meta_dma);
746 }
747 
748 static void nvme_unmap_data(struct request *req)
749 {
750 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
751 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
752 	struct device *dma_dev = nvmeq->dev->dev;
753 
754 	if (iod->flags & IOD_SINGLE_SEGMENT) {
755 		static_assert(offsetof(union nvme_data_ptr, prp1) ==
756 				offsetof(union nvme_data_ptr, sgl.addr));
757 		dma_unmap_page(dma_dev, le64_to_cpu(iod->cmd.common.dptr.prp1),
758 				iod->total_len, rq_dma_dir(req));
759 		return;
760 	}
761 
762 	if (!blk_rq_dma_unmap(req, dma_dev, &iod->dma_state, iod->total_len)) {
763 		if (nvme_pci_cmd_use_sgl(&iod->cmd))
764 			nvme_free_sgls(req, iod->descriptors[0],
765 				       &iod->cmd.common.dptr.sgl);
766 		else
767 			nvme_free_prps(req);
768 	}
769 
770 	if (iod->nr_descriptors)
771 		nvme_free_descriptors(req);
772 }
773 
774 static bool nvme_pci_prp_iter_next(struct request *req, struct device *dma_dev,
775 		struct blk_dma_iter *iter)
776 {
777 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
778 
779 	if (iter->len)
780 		return true;
781 	if (!blk_rq_dma_map_iter_next(req, dma_dev, &iod->dma_state, iter))
782 		return false;
783 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(dma_dev)) {
784 		iod->dma_vecs[iod->nr_dma_vecs].addr = iter->addr;
785 		iod->dma_vecs[iod->nr_dma_vecs].len = iter->len;
786 		iod->nr_dma_vecs++;
787 	}
788 	return true;
789 }
790 
791 static blk_status_t nvme_pci_setup_data_prp(struct request *req,
792 		struct blk_dma_iter *iter)
793 {
794 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
795 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
796 	unsigned int length = blk_rq_payload_bytes(req);
797 	dma_addr_t prp1_dma, prp2_dma = 0;
798 	unsigned int prp_len, i;
799 	__le64 *prp_list;
800 
801 	if (!dma_use_iova(&iod->dma_state) && dma_need_unmap(nvmeq->dev->dev)) {
802 		iod->dma_vecs = mempool_alloc(nvmeq->dev->dmavec_mempool,
803 				GFP_ATOMIC);
804 		if (!iod->dma_vecs)
805 			return BLK_STS_RESOURCE;
806 		iod->dma_vecs[0].addr = iter->addr;
807 		iod->dma_vecs[0].len = iter->len;
808 		iod->nr_dma_vecs = 1;
809 	}
810 
811 	/*
812 	 * PRP1 always points to the start of the DMA transfers.
813 	 *
814 	 * This is the only PRP (except for the list entries) that could be
815 	 * non-aligned.
816 	 */
817 	prp1_dma = iter->addr;
818 	prp_len = min(length, NVME_CTRL_PAGE_SIZE -
819 			(iter->addr & (NVME_CTRL_PAGE_SIZE - 1)));
820 	iod->total_len += prp_len;
821 	iter->addr += prp_len;
822 	iter->len -= prp_len;
823 	length -= prp_len;
824 	if (!length)
825 		goto done;
826 
827 	if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
828 		if (WARN_ON_ONCE(!iter->status))
829 			goto bad_sgl;
830 		goto done;
831 	}
832 
833 	/*
834 	 * PRP2 is usually a list, but can point to data if all data to be
835 	 * transferred fits into PRP1 + PRP2:
836 	 */
837 	if (length <= NVME_CTRL_PAGE_SIZE) {
838 		prp2_dma = iter->addr;
839 		iod->total_len += length;
840 		goto done;
841 	}
842 
843 	if (DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE) <=
844 	    NVME_SMALL_POOL_SIZE / sizeof(__le64))
845 		iod->flags |= IOD_SMALL_DESCRIPTOR;
846 
847 	prp_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
848 			&prp2_dma);
849 	if (!prp_list) {
850 		iter->status = BLK_STS_RESOURCE;
851 		goto done;
852 	}
853 	iod->descriptors[iod->nr_descriptors++] = prp_list;
854 
855 	i = 0;
856 	for (;;) {
857 		prp_list[i++] = cpu_to_le64(iter->addr);
858 		prp_len = min(length, NVME_CTRL_PAGE_SIZE);
859 		if (WARN_ON_ONCE(iter->len < prp_len))
860 			goto bad_sgl;
861 
862 		iod->total_len += prp_len;
863 		iter->addr += prp_len;
864 		iter->len -= prp_len;
865 		length -= prp_len;
866 		if (!length)
867 			break;
868 
869 		if (!nvme_pci_prp_iter_next(req, nvmeq->dev->dev, iter)) {
870 			if (WARN_ON_ONCE(!iter->status))
871 				goto bad_sgl;
872 			goto done;
873 		}
874 
875 		/*
876 		 * If we've filled the entire descriptor, allocate a new that is
877 		 * pointed to be the last entry in the previous PRP list.  To
878 		 * accommodate for that move the last actual entry to the new
879 		 * descriptor.
880 		 */
881 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
882 			__le64 *old_prp_list = prp_list;
883 			dma_addr_t prp_list_dma;
884 
885 			prp_list = dma_pool_alloc(nvmeq->descriptor_pools.large,
886 					GFP_ATOMIC, &prp_list_dma);
887 			if (!prp_list) {
888 				iter->status = BLK_STS_RESOURCE;
889 				goto done;
890 			}
891 			iod->descriptors[iod->nr_descriptors++] = prp_list;
892 
893 			prp_list[0] = old_prp_list[i - 1];
894 			old_prp_list[i - 1] = cpu_to_le64(prp_list_dma);
895 			i = 1;
896 		}
897 	}
898 
899 done:
900 	/*
901 	 * nvme_unmap_data uses the DPT field in the SQE to tear down the
902 	 * mapping, so initialize it even for failures.
903 	 */
904 	iod->cmd.common.dptr.prp1 = cpu_to_le64(prp1_dma);
905 	iod->cmd.common.dptr.prp2 = cpu_to_le64(prp2_dma);
906 	if (unlikely(iter->status))
907 		nvme_unmap_data(req);
908 	return iter->status;
909 
910 bad_sgl:
911 	dev_err_once(nvmeq->dev->dev,
912 		"Incorrectly formed request for payload:%d nents:%d\n",
913 		blk_rq_payload_bytes(req), blk_rq_nr_phys_segments(req));
914 	return BLK_STS_IOERR;
915 }
916 
917 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
918 		struct blk_dma_iter *iter)
919 {
920 	sge->addr = cpu_to_le64(iter->addr);
921 	sge->length = cpu_to_le32(iter->len);
922 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
923 }
924 
925 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
926 		dma_addr_t dma_addr, int entries)
927 {
928 	sge->addr = cpu_to_le64(dma_addr);
929 	sge->length = cpu_to_le32(entries * sizeof(*sge));
930 	sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
931 }
932 
933 static blk_status_t nvme_pci_setup_data_sgl(struct request *req,
934 		struct blk_dma_iter *iter)
935 {
936 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
937 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
938 	unsigned int entries = blk_rq_nr_phys_segments(req);
939 	struct nvme_sgl_desc *sg_list;
940 	dma_addr_t sgl_dma;
941 	unsigned int mapped = 0;
942 
943 	/* set the transfer type as SGL */
944 	iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
945 
946 	if (entries == 1 || blk_rq_dma_map_coalesce(&iod->dma_state)) {
947 		nvme_pci_sgl_set_data(&iod->cmd.common.dptr.sgl, iter);
948 		iod->total_len += iter->len;
949 		return BLK_STS_OK;
950 	}
951 
952 	if (entries <= NVME_SMALL_POOL_SIZE / sizeof(*sg_list))
953 		iod->flags |= IOD_SMALL_DESCRIPTOR;
954 
955 	sg_list = dma_pool_alloc(nvme_dma_pool(nvmeq, iod), GFP_ATOMIC,
956 			&sgl_dma);
957 	if (!sg_list)
958 		return BLK_STS_RESOURCE;
959 	iod->descriptors[iod->nr_descriptors++] = sg_list;
960 
961 	do {
962 		if (WARN_ON_ONCE(mapped == entries)) {
963 			iter->status = BLK_STS_IOERR;
964 			break;
965 		}
966 		nvme_pci_sgl_set_data(&sg_list[mapped++], iter);
967 		iod->total_len += iter->len;
968 	} while (blk_rq_dma_map_iter_next(req, nvmeq->dev->dev, &iod->dma_state,
969 				iter));
970 
971 	nvme_pci_sgl_set_seg(&iod->cmd.common.dptr.sgl, sgl_dma, mapped);
972 	if (unlikely(iter->status))
973 		nvme_unmap_data(req);
974 	return iter->status;
975 }
976 
977 static blk_status_t nvme_pci_setup_data_simple(struct request *req,
978 		enum nvme_use_sgl use_sgl)
979 {
980 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
981 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
982 	struct bio_vec bv = req_bvec(req);
983 	unsigned int prp1_offset = bv.bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
984 	bool prp_possible = prp1_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2;
985 	dma_addr_t dma_addr;
986 
987 	if (!use_sgl && !prp_possible)
988 		return BLK_STS_AGAIN;
989 	if (is_pci_p2pdma_page(bv.bv_page))
990 		return BLK_STS_AGAIN;
991 
992 	dma_addr = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
993 	if (dma_mapping_error(nvmeq->dev->dev, dma_addr))
994 		return BLK_STS_RESOURCE;
995 	iod->total_len = bv.bv_len;
996 	iod->flags |= IOD_SINGLE_SEGMENT;
997 
998 	if (use_sgl == SGL_FORCED || !prp_possible) {
999 		iod->cmd.common.flags = NVME_CMD_SGL_METABUF;
1000 		iod->cmd.common.dptr.sgl.addr = cpu_to_le64(dma_addr);
1001 		iod->cmd.common.dptr.sgl.length = cpu_to_le32(bv.bv_len);
1002 		iod->cmd.common.dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
1003 	} else {
1004 		unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - prp1_offset;
1005 
1006 		iod->cmd.common.dptr.prp1 = cpu_to_le64(dma_addr);
1007 		iod->cmd.common.dptr.prp2 = 0;
1008 		if (bv.bv_len > first_prp_len)
1009 			iod->cmd.common.dptr.prp2 =
1010 				cpu_to_le64(dma_addr + first_prp_len);
1011 	}
1012 
1013 	return BLK_STS_OK;
1014 }
1015 
1016 static blk_status_t nvme_map_data(struct request *req)
1017 {
1018 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1019 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1020 	struct nvme_dev *dev = nvmeq->dev;
1021 	enum nvme_use_sgl use_sgl = nvme_pci_use_sgls(dev, req);
1022 	struct blk_dma_iter iter;
1023 	blk_status_t ret;
1024 
1025 	/*
1026 	 * Try to skip the DMA iterator for single segment requests, as that
1027 	 * significantly improves performances for small I/O sizes.
1028 	 */
1029 	if (blk_rq_nr_phys_segments(req) == 1) {
1030 		ret = nvme_pci_setup_data_simple(req, use_sgl);
1031 		if (ret != BLK_STS_AGAIN)
1032 			return ret;
1033 	}
1034 
1035 	if (!blk_rq_dma_map_iter_start(req, dev->dev, &iod->dma_state, &iter))
1036 		return iter.status;
1037 
1038 	if (use_sgl == SGL_FORCED ||
1039 	    (use_sgl == SGL_SUPPORTED &&
1040 	     (sgl_threshold && nvme_pci_avg_seg_size(req) >= sgl_threshold)))
1041 		return nvme_pci_setup_data_sgl(req, &iter);
1042 	return nvme_pci_setup_data_prp(req, &iter);
1043 }
1044 
1045 static blk_status_t nvme_pci_setup_meta_sgls(struct request *req)
1046 {
1047 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1048 	unsigned int entries = req->nr_integrity_segments;
1049 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1050 	struct nvme_dev *dev = nvmeq->dev;
1051 	struct nvme_sgl_desc *sg_list;
1052 	struct blk_dma_iter iter;
1053 	dma_addr_t sgl_dma;
1054 	int i = 0;
1055 
1056 	if (!blk_rq_integrity_dma_map_iter_start(req, dev->dev,
1057 						&iod->meta_dma_state, &iter))
1058 		return iter.status;
1059 
1060 	if (blk_rq_dma_map_coalesce(&iod->meta_dma_state))
1061 		entries = 1;
1062 
1063 	/*
1064 	 * The NVMe MPTR descriptor has an implicit length that the host and
1065 	 * device must agree on to avoid data/memory corruption. We trust the
1066 	 * kernel allocated correctly based on the format's parameters, so use
1067 	 * the more efficient MPTR to avoid extra dma pool allocations for the
1068 	 * SGL indirection.
1069 	 *
1070 	 * But for user commands, we don't necessarily know what they do, so
1071 	 * the driver can't validate the metadata buffer size. The SGL
1072 	 * descriptor provides an explicit length, so we're relying on that
1073 	 * mechanism to catch any misunderstandings between the application and
1074 	 * device.
1075 	 */
1076 	if (entries == 1 && !(nvme_req(req)->flags & NVME_REQ_USERCMD)) {
1077 		iod->cmd.common.metadata = cpu_to_le64(iter.addr);
1078 		iod->meta_total_len = iter.len;
1079 		iod->meta_dma = iter.addr;
1080 		iod->meta_descriptor = NULL;
1081 		return BLK_STS_OK;
1082 	}
1083 
1084 	sg_list = dma_pool_alloc(nvmeq->descriptor_pools.small, GFP_ATOMIC,
1085 			&sgl_dma);
1086 	if (!sg_list)
1087 		return BLK_STS_RESOURCE;
1088 
1089 	iod->meta_descriptor = sg_list;
1090 	iod->meta_dma = sgl_dma;
1091 	iod->cmd.common.flags = NVME_CMD_SGL_METASEG;
1092 	iod->cmd.common.metadata = cpu_to_le64(sgl_dma);
1093 	if (entries == 1) {
1094 		iod->meta_total_len = iter.len;
1095 		nvme_pci_sgl_set_data(sg_list, &iter);
1096 		return BLK_STS_OK;
1097 	}
1098 
1099 	sgl_dma += sizeof(*sg_list);
1100 	do {
1101 		nvme_pci_sgl_set_data(&sg_list[++i], &iter);
1102 		iod->meta_total_len += iter.len;
1103 	} while (blk_rq_integrity_dma_map_iter_next(req, dev->dev, &iter));
1104 
1105 	nvme_pci_sgl_set_seg(sg_list, sgl_dma, i);
1106 	if (unlikely(iter.status))
1107 		nvme_unmap_metadata(req);
1108 	return iter.status;
1109 }
1110 
1111 static blk_status_t nvme_pci_setup_meta_mptr(struct request *req)
1112 {
1113 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1114 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1115 	struct bio_vec bv = rq_integrity_vec(req);
1116 
1117 	iod->meta_dma = dma_map_bvec(nvmeq->dev->dev, &bv, rq_dma_dir(req), 0);
1118 	if (dma_mapping_error(nvmeq->dev->dev, iod->meta_dma))
1119 		return BLK_STS_IOERR;
1120 	iod->cmd.common.metadata = cpu_to_le64(iod->meta_dma);
1121 	iod->flags |= IOD_SINGLE_META_SEGMENT;
1122 	return BLK_STS_OK;
1123 }
1124 
1125 static blk_status_t nvme_map_metadata(struct request *req)
1126 {
1127 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1128 
1129 	if ((iod->cmd.common.flags & NVME_CMD_SGL_METABUF) &&
1130 	    nvme_pci_metadata_use_sgls(req))
1131 		return nvme_pci_setup_meta_sgls(req);
1132 	return nvme_pci_setup_meta_mptr(req);
1133 }
1134 
1135 static blk_status_t nvme_prep_rq(struct request *req)
1136 {
1137 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1138 	blk_status_t ret;
1139 
1140 	iod->flags = 0;
1141 	iod->nr_descriptors = 0;
1142 	iod->total_len = 0;
1143 	iod->meta_total_len = 0;
1144 
1145 	ret = nvme_setup_cmd(req->q->queuedata, req);
1146 	if (ret)
1147 		return ret;
1148 
1149 	if (blk_rq_nr_phys_segments(req)) {
1150 		ret = nvme_map_data(req);
1151 		if (ret)
1152 			goto out_free_cmd;
1153 	}
1154 
1155 	if (blk_integrity_rq(req)) {
1156 		ret = nvme_map_metadata(req);
1157 		if (ret)
1158 			goto out_unmap_data;
1159 	}
1160 
1161 	nvme_start_request(req);
1162 	return BLK_STS_OK;
1163 out_unmap_data:
1164 	if (blk_rq_nr_phys_segments(req))
1165 		nvme_unmap_data(req);
1166 out_free_cmd:
1167 	nvme_cleanup_cmd(req);
1168 	return ret;
1169 }
1170 
1171 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
1172 			 const struct blk_mq_queue_data *bd)
1173 {
1174 	struct nvme_queue *nvmeq = hctx->driver_data;
1175 	struct nvme_dev *dev = nvmeq->dev;
1176 	struct request *req = bd->rq;
1177 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1178 	blk_status_t ret;
1179 
1180 	/*
1181 	 * We should not need to do this, but we're still using this to
1182 	 * ensure we can drain requests on a dying queue.
1183 	 */
1184 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1185 		return BLK_STS_IOERR;
1186 
1187 	if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
1188 		return nvme_fail_nonready_command(&dev->ctrl, req);
1189 
1190 	ret = nvme_prep_rq(req);
1191 	if (unlikely(ret))
1192 		return ret;
1193 	spin_lock(&nvmeq->sq_lock);
1194 	nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1195 	nvme_write_sq_db(nvmeq, bd->last);
1196 	spin_unlock(&nvmeq->sq_lock);
1197 	return BLK_STS_OK;
1198 }
1199 
1200 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct rq_list *rqlist)
1201 {
1202 	struct request *req;
1203 
1204 	if (rq_list_empty(rqlist))
1205 		return;
1206 
1207 	spin_lock(&nvmeq->sq_lock);
1208 	while ((req = rq_list_pop(rqlist))) {
1209 		struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1210 
1211 		nvme_sq_copy_cmd(nvmeq, &iod->cmd);
1212 	}
1213 	nvme_write_sq_db(nvmeq, true);
1214 	spin_unlock(&nvmeq->sq_lock);
1215 }
1216 
1217 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
1218 {
1219 	/*
1220 	 * We should not need to do this, but we're still using this to
1221 	 * ensure we can drain requests on a dying queue.
1222 	 */
1223 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
1224 		return false;
1225 	if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
1226 		return false;
1227 
1228 	return nvme_prep_rq(req) == BLK_STS_OK;
1229 }
1230 
1231 static void nvme_queue_rqs(struct rq_list *rqlist)
1232 {
1233 	struct rq_list submit_list = { };
1234 	struct rq_list requeue_list = { };
1235 	struct nvme_queue *nvmeq = NULL;
1236 	struct request *req;
1237 
1238 	while ((req = rq_list_pop(rqlist))) {
1239 		if (nvmeq && nvmeq != req->mq_hctx->driver_data)
1240 			nvme_submit_cmds(nvmeq, &submit_list);
1241 		nvmeq = req->mq_hctx->driver_data;
1242 
1243 		if (nvme_prep_rq_batch(nvmeq, req))
1244 			rq_list_add_tail(&submit_list, req);
1245 		else
1246 			rq_list_add_tail(&requeue_list, req);
1247 	}
1248 
1249 	if (nvmeq)
1250 		nvme_submit_cmds(nvmeq, &submit_list);
1251 	*rqlist = requeue_list;
1252 }
1253 
1254 static __always_inline void nvme_pci_unmap_rq(struct request *req)
1255 {
1256 	if (blk_integrity_rq(req))
1257 		nvme_unmap_metadata(req);
1258 	if (blk_rq_nr_phys_segments(req))
1259 		nvme_unmap_data(req);
1260 }
1261 
1262 static void nvme_pci_complete_rq(struct request *req)
1263 {
1264 	nvme_pci_unmap_rq(req);
1265 	nvme_complete_rq(req);
1266 }
1267 
1268 static void nvme_pci_complete_batch(struct io_comp_batch *iob)
1269 {
1270 	nvme_complete_batch(iob, nvme_pci_unmap_rq);
1271 }
1272 
1273 /* We read the CQE phase first to check if the rest of the entry is valid */
1274 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
1275 {
1276 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
1277 
1278 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
1279 }
1280 
1281 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
1282 {
1283 	u16 head = nvmeq->cq_head;
1284 
1285 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
1286 					      nvmeq->dbbuf_cq_ei))
1287 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
1288 }
1289 
1290 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1291 {
1292 	if (!nvmeq->qid)
1293 		return nvmeq->dev->admin_tagset.tags[0];
1294 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1295 }
1296 
1297 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1298 				   struct io_comp_batch *iob, u16 idx)
1299 {
1300 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1301 	__u16 command_id = READ_ONCE(cqe->command_id);
1302 	struct request *req;
1303 
1304 	/*
1305 	 * AEN requests are special as they don't time out and can
1306 	 * survive any kind of queue freeze and often don't respond to
1307 	 * aborts.  We don't even bother to allocate a struct request
1308 	 * for them but rather special case them here.
1309 	 */
1310 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1311 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1312 				cqe->status, &cqe->result);
1313 		return;
1314 	}
1315 
1316 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1317 	if (unlikely(!req)) {
1318 		dev_warn(nvmeq->dev->ctrl.device,
1319 			"invalid id %d completed on queue %d\n",
1320 			command_id, le16_to_cpu(cqe->sq_id));
1321 		return;
1322 	}
1323 
1324 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1325 	if (!nvme_try_complete_req(req, cqe->status, cqe->result) &&
1326 	    !blk_mq_add_to_batch(req, iob,
1327 				 nvme_req(req)->status != NVME_SC_SUCCESS,
1328 				 nvme_pci_complete_batch))
1329 		nvme_pci_complete_rq(req);
1330 }
1331 
1332 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1333 {
1334 	u32 tmp = nvmeq->cq_head + 1;
1335 
1336 	if (tmp == nvmeq->q_depth) {
1337 		nvmeq->cq_head = 0;
1338 		nvmeq->cq_phase ^= 1;
1339 	} else {
1340 		nvmeq->cq_head = tmp;
1341 	}
1342 }
1343 
1344 static inline bool nvme_poll_cq(struct nvme_queue *nvmeq,
1345 			        struct io_comp_batch *iob)
1346 {
1347 	bool found = false;
1348 
1349 	while (nvme_cqe_pending(nvmeq)) {
1350 		found = true;
1351 		/*
1352 		 * load-load control dependency between phase and the rest of
1353 		 * the cqe requires a full read memory barrier
1354 		 */
1355 		dma_rmb();
1356 		nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head);
1357 		nvme_update_cq_head(nvmeq);
1358 	}
1359 
1360 	if (found)
1361 		nvme_ring_cq_doorbell(nvmeq);
1362 	return found;
1363 }
1364 
1365 static irqreturn_t nvme_irq(int irq, void *data)
1366 {
1367 	struct nvme_queue *nvmeq = data;
1368 	DEFINE_IO_COMP_BATCH(iob);
1369 
1370 	if (nvme_poll_cq(nvmeq, &iob)) {
1371 		if (!rq_list_empty(&iob.req_list))
1372 			nvme_pci_complete_batch(&iob);
1373 		return IRQ_HANDLED;
1374 	}
1375 	return IRQ_NONE;
1376 }
1377 
1378 static irqreturn_t nvme_irq_check(int irq, void *data)
1379 {
1380 	struct nvme_queue *nvmeq = data;
1381 
1382 	if (nvme_cqe_pending(nvmeq))
1383 		return IRQ_WAKE_THREAD;
1384 	return IRQ_NONE;
1385 }
1386 
1387 /*
1388  * Poll for completions for any interrupt driven queue
1389  * Can be called from any context.
1390  */
1391 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1392 {
1393 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1394 
1395 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1396 
1397 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1398 	spin_lock(&nvmeq->cq_poll_lock);
1399 	nvme_poll_cq(nvmeq, NULL);
1400 	spin_unlock(&nvmeq->cq_poll_lock);
1401 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1402 }
1403 
1404 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1405 {
1406 	struct nvme_queue *nvmeq = hctx->driver_data;
1407 	bool found;
1408 
1409 	if (!nvme_cqe_pending(nvmeq))
1410 		return 0;
1411 
1412 	spin_lock(&nvmeq->cq_poll_lock);
1413 	found = nvme_poll_cq(nvmeq, iob);
1414 	spin_unlock(&nvmeq->cq_poll_lock);
1415 
1416 	return found;
1417 }
1418 
1419 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1420 {
1421 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1422 	struct nvme_queue *nvmeq = &dev->queues[0];
1423 	struct nvme_command c = { };
1424 
1425 	c.common.opcode = nvme_admin_async_event;
1426 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1427 
1428 	spin_lock(&nvmeq->sq_lock);
1429 	nvme_sq_copy_cmd(nvmeq, &c);
1430 	nvme_write_sq_db(nvmeq, true);
1431 	spin_unlock(&nvmeq->sq_lock);
1432 }
1433 
1434 static int nvme_pci_subsystem_reset(struct nvme_ctrl *ctrl)
1435 {
1436 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1437 	int ret = 0;
1438 
1439 	/*
1440 	 * Taking the shutdown_lock ensures the BAR mapping is not being
1441 	 * altered by reset_work. Holding this lock before the RESETTING state
1442 	 * change, if successful, also ensures nvme_remove won't be able to
1443 	 * proceed to iounmap until we're done.
1444 	 */
1445 	mutex_lock(&dev->shutdown_lock);
1446 	if (!dev->bar_mapped_size) {
1447 		ret = -ENODEV;
1448 		goto unlock;
1449 	}
1450 
1451 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
1452 		ret = -EBUSY;
1453 		goto unlock;
1454 	}
1455 
1456 	writel(NVME_SUBSYS_RESET, dev->bar + NVME_REG_NSSR);
1457 	nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE);
1458 
1459 	/*
1460 	 * Read controller status to flush the previous write and trigger a
1461 	 * pcie read error.
1462 	 */
1463 	readl(dev->bar + NVME_REG_CSTS);
1464 unlock:
1465 	mutex_unlock(&dev->shutdown_lock);
1466 	return ret;
1467 }
1468 
1469 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1470 {
1471 	struct nvme_command c = { };
1472 
1473 	c.delete_queue.opcode = opcode;
1474 	c.delete_queue.qid = cpu_to_le16(id);
1475 
1476 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1477 }
1478 
1479 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1480 		struct nvme_queue *nvmeq, s16 vector)
1481 {
1482 	struct nvme_command c = { };
1483 	int flags = NVME_QUEUE_PHYS_CONTIG;
1484 
1485 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1486 		flags |= NVME_CQ_IRQ_ENABLED;
1487 
1488 	/*
1489 	 * Note: we (ab)use the fact that the prp fields survive if no data
1490 	 * is attached to the request.
1491 	 */
1492 	c.create_cq.opcode = nvme_admin_create_cq;
1493 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1494 	c.create_cq.cqid = cpu_to_le16(qid);
1495 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1496 	c.create_cq.cq_flags = cpu_to_le16(flags);
1497 	c.create_cq.irq_vector = cpu_to_le16(vector);
1498 
1499 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1500 }
1501 
1502 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1503 						struct nvme_queue *nvmeq)
1504 {
1505 	struct nvme_ctrl *ctrl = &dev->ctrl;
1506 	struct nvme_command c = { };
1507 	int flags = NVME_QUEUE_PHYS_CONTIG;
1508 
1509 	/*
1510 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1511 	 * set. Since URGENT priority is zeroes, it makes all queues
1512 	 * URGENT.
1513 	 */
1514 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1515 		flags |= NVME_SQ_PRIO_MEDIUM;
1516 
1517 	/*
1518 	 * Note: we (ab)use the fact that the prp fields survive if no data
1519 	 * is attached to the request.
1520 	 */
1521 	c.create_sq.opcode = nvme_admin_create_sq;
1522 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1523 	c.create_sq.sqid = cpu_to_le16(qid);
1524 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1525 	c.create_sq.sq_flags = cpu_to_le16(flags);
1526 	c.create_sq.cqid = cpu_to_le16(qid);
1527 
1528 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1529 }
1530 
1531 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1532 {
1533 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1534 }
1535 
1536 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1537 {
1538 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1539 }
1540 
1541 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1542 {
1543 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1544 
1545 	dev_warn(nvmeq->dev->ctrl.device,
1546 		 "Abort status: 0x%x", nvme_req(req)->status);
1547 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1548 	blk_mq_free_request(req);
1549 	return RQ_END_IO_NONE;
1550 }
1551 
1552 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1553 {
1554 	/* If true, indicates loss of adapter communication, possibly by a
1555 	 * NVMe Subsystem reset.
1556 	 */
1557 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1558 
1559 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1560 	switch (nvme_ctrl_state(&dev->ctrl)) {
1561 	case NVME_CTRL_RESETTING:
1562 	case NVME_CTRL_CONNECTING:
1563 		return false;
1564 	default:
1565 		break;
1566 	}
1567 
1568 	/* We shouldn't reset unless the controller is on fatal error state
1569 	 * _or_ if we lost the communication with it.
1570 	 */
1571 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1572 		return false;
1573 
1574 	return true;
1575 }
1576 
1577 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1578 {
1579 	/* Read a config register to help see what died. */
1580 	u16 pci_status;
1581 	int result;
1582 
1583 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1584 				      &pci_status);
1585 	if (result == PCIBIOS_SUCCESSFUL)
1586 		dev_warn(dev->ctrl.device,
1587 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1588 			 csts, pci_status);
1589 	else
1590 		dev_warn(dev->ctrl.device,
1591 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1592 			 csts, result);
1593 
1594 	if (csts != ~0)
1595 		return;
1596 
1597 	dev_warn(dev->ctrl.device,
1598 		 "Does your device have a faulty power saving mode enabled?\n");
1599 	dev_warn(dev->ctrl.device,
1600 		 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1601 }
1602 
1603 static enum blk_eh_timer_return nvme_timeout(struct request *req)
1604 {
1605 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1606 	struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1607 	struct nvme_dev *dev = nvmeq->dev;
1608 	struct request *abort_req;
1609 	struct nvme_command cmd = { };
1610 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1611 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1612 	u8 opcode;
1613 
1614 	/*
1615 	 * Shutdown the device immediately if we see it is disconnected. This
1616 	 * unblocks PCIe error handling if the nvme driver is waiting in
1617 	 * error_resume for a device that has been removed. We can't unbind the
1618 	 * driver while the driver's error callback is waiting to complete, so
1619 	 * we're relying on a timeout to break that deadlock if a removal
1620 	 * occurs while reset work is running.
1621 	 */
1622 	if (pci_dev_is_disconnected(pdev))
1623 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1624 	if (nvme_state_terminal(&dev->ctrl))
1625 		goto disable;
1626 
1627 	/* If PCI error recovery process is happening, we cannot reset or
1628 	 * the recovery mechanism will surely fail.
1629 	 */
1630 	mb();
1631 	if (pci_channel_offline(pdev))
1632 		return BLK_EH_RESET_TIMER;
1633 
1634 	/*
1635 	 * Reset immediately if the controller is failed
1636 	 */
1637 	if (nvme_should_reset(dev, csts)) {
1638 		nvme_warn_reset(dev, csts);
1639 		goto disable;
1640 	}
1641 
1642 	/*
1643 	 * Did we miss an interrupt?
1644 	 */
1645 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1646 		nvme_poll(req->mq_hctx, NULL);
1647 	else
1648 		nvme_poll_irqdisable(nvmeq);
1649 
1650 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) {
1651 		dev_warn(dev->ctrl.device,
1652 			 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1653 			 req->tag, nvme_cid(req), nvmeq->qid);
1654 		return BLK_EH_DONE;
1655 	}
1656 
1657 	/*
1658 	 * Shutdown immediately if controller times out while starting. The
1659 	 * reset work will see the pci device disabled when it gets the forced
1660 	 * cancellation error. All outstanding requests are completed on
1661 	 * shutdown, so we return BLK_EH_DONE.
1662 	 */
1663 	switch (nvme_ctrl_state(&dev->ctrl)) {
1664 	case NVME_CTRL_CONNECTING:
1665 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1666 		fallthrough;
1667 	case NVME_CTRL_DELETING:
1668 		dev_warn_ratelimited(dev->ctrl.device,
1669 			 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1670 			 req->tag, nvme_cid(req), nvmeq->qid);
1671 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1672 		nvme_dev_disable(dev, true);
1673 		return BLK_EH_DONE;
1674 	case NVME_CTRL_RESETTING:
1675 		return BLK_EH_RESET_TIMER;
1676 	default:
1677 		break;
1678 	}
1679 
1680 	/*
1681 	 * Shutdown the controller immediately and schedule a reset if the
1682 	 * command was already aborted once before and still hasn't been
1683 	 * returned to the driver, or if this is the admin queue.
1684 	 */
1685 	opcode = nvme_req(req)->cmd->common.opcode;
1686 	if (!nvmeq->qid || (iod->flags & IOD_ABORTED)) {
1687 		dev_warn(dev->ctrl.device,
1688 			 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1689 			 req->tag, nvme_cid(req), opcode,
1690 			 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1691 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1692 		goto disable;
1693 	}
1694 
1695 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1696 		atomic_inc(&dev->ctrl.abort_limit);
1697 		return BLK_EH_RESET_TIMER;
1698 	}
1699 	iod->flags |= IOD_ABORTED;
1700 
1701 	cmd.abort.opcode = nvme_admin_abort_cmd;
1702 	cmd.abort.cid = nvme_cid(req);
1703 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1704 
1705 	dev_warn(nvmeq->dev->ctrl.device,
1706 		 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1707 		 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1708 		 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1709 		 blk_rq_bytes(req));
1710 
1711 	abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd),
1712 					 BLK_MQ_REQ_NOWAIT);
1713 	if (IS_ERR(abort_req)) {
1714 		atomic_inc(&dev->ctrl.abort_limit);
1715 		return BLK_EH_RESET_TIMER;
1716 	}
1717 	nvme_init_request(abort_req, &cmd);
1718 
1719 	abort_req->end_io = abort_endio;
1720 	abort_req->end_io_data = NULL;
1721 	blk_execute_rq_nowait(abort_req, false);
1722 
1723 	/*
1724 	 * The aborted req will be completed on receiving the abort req.
1725 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1726 	 * as the device then is in a faulty state.
1727 	 */
1728 	return BLK_EH_RESET_TIMER;
1729 
1730 disable:
1731 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
1732 		if (nvme_state_terminal(&dev->ctrl))
1733 			nvme_dev_disable(dev, true);
1734 		return BLK_EH_DONE;
1735 	}
1736 
1737 	nvme_dev_disable(dev, false);
1738 	if (nvme_try_sched_reset(&dev->ctrl))
1739 		nvme_unquiesce_io_queues(&dev->ctrl);
1740 	return BLK_EH_DONE;
1741 }
1742 
1743 static void nvme_free_queue(struct nvme_queue *nvmeq)
1744 {
1745 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1746 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1747 	if (!nvmeq->sq_cmds)
1748 		return;
1749 
1750 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1751 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1752 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1753 	} else {
1754 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1755 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1756 	}
1757 }
1758 
1759 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1760 {
1761 	int i;
1762 
1763 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1764 		dev->ctrl.queue_count--;
1765 		nvme_free_queue(&dev->queues[i]);
1766 	}
1767 }
1768 
1769 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1770 {
1771 	struct nvme_queue *nvmeq = &dev->queues[qid];
1772 
1773 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1774 		return;
1775 
1776 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1777 	mb();
1778 
1779 	nvmeq->dev->online_queues--;
1780 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1781 		nvme_quiesce_admin_queue(&nvmeq->dev->ctrl);
1782 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1783 		pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq);
1784 }
1785 
1786 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1787 {
1788 	int i;
1789 
1790 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1791 		nvme_suspend_queue(dev, i);
1792 }
1793 
1794 /*
1795  * Called only on a device that has been disabled and after all other threads
1796  * that can check this device's completion queues have synced, except
1797  * nvme_poll(). This is the last chance for the driver to see a natural
1798  * completion before nvme_cancel_request() terminates all incomplete requests.
1799  */
1800 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1801 {
1802 	int i;
1803 
1804 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1805 		spin_lock(&dev->queues[i].cq_poll_lock);
1806 		nvme_poll_cq(&dev->queues[i], NULL);
1807 		spin_unlock(&dev->queues[i].cq_poll_lock);
1808 	}
1809 }
1810 
1811 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1812 				int entry_size)
1813 {
1814 	int q_depth = dev->q_depth;
1815 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1816 					  NVME_CTRL_PAGE_SIZE);
1817 
1818 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1819 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1820 
1821 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1822 		q_depth = div_u64(mem_per_q, entry_size);
1823 
1824 		/*
1825 		 * Ensure the reduced q_depth is above some threshold where it
1826 		 * would be better to map queues in system memory with the
1827 		 * original depth
1828 		 */
1829 		if (q_depth < 64)
1830 			return -ENOMEM;
1831 	}
1832 
1833 	return q_depth;
1834 }
1835 
1836 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1837 				int qid)
1838 {
1839 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1840 
1841 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1842 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1843 		if (nvmeq->sq_cmds) {
1844 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1845 							nvmeq->sq_cmds);
1846 			if (nvmeq->sq_dma_addr) {
1847 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1848 				return 0;
1849 			}
1850 
1851 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1852 		}
1853 	}
1854 
1855 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1856 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1857 	if (!nvmeq->sq_cmds)
1858 		return -ENOMEM;
1859 	return 0;
1860 }
1861 
1862 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1863 {
1864 	struct nvme_queue *nvmeq = &dev->queues[qid];
1865 
1866 	if (dev->ctrl.queue_count > qid)
1867 		return 0;
1868 
1869 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1870 	nvmeq->q_depth = depth;
1871 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1872 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1873 	if (!nvmeq->cqes)
1874 		goto free_nvmeq;
1875 
1876 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1877 		goto free_cqdma;
1878 
1879 	nvmeq->dev = dev;
1880 	spin_lock_init(&nvmeq->sq_lock);
1881 	spin_lock_init(&nvmeq->cq_poll_lock);
1882 	nvmeq->cq_head = 0;
1883 	nvmeq->cq_phase = 1;
1884 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1885 	nvmeq->qid = qid;
1886 	dev->ctrl.queue_count++;
1887 
1888 	return 0;
1889 
1890  free_cqdma:
1891 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1892 			  nvmeq->cq_dma_addr);
1893  free_nvmeq:
1894 	return -ENOMEM;
1895 }
1896 
1897 static int queue_request_irq(struct nvme_queue *nvmeq)
1898 {
1899 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1900 	int nr = nvmeq->dev->ctrl.instance;
1901 
1902 	if (use_threaded_interrupts) {
1903 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1904 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1905 	} else {
1906 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1907 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1908 	}
1909 }
1910 
1911 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1912 {
1913 	struct nvme_dev *dev = nvmeq->dev;
1914 
1915 	nvmeq->sq_tail = 0;
1916 	nvmeq->last_sq_tail = 0;
1917 	nvmeq->cq_head = 0;
1918 	nvmeq->cq_phase = 1;
1919 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1920 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1921 	nvme_dbbuf_init(dev, nvmeq, qid);
1922 	dev->online_queues++;
1923 	wmb(); /* ensure the first interrupt sees the initialization */
1924 }
1925 
1926 /*
1927  * Try getting shutdown_lock while setting up IO queues.
1928  */
1929 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1930 {
1931 	/*
1932 	 * Give up if the lock is being held by nvme_dev_disable.
1933 	 */
1934 	if (!mutex_trylock(&dev->shutdown_lock))
1935 		return -ENODEV;
1936 
1937 	/*
1938 	 * Controller is in wrong state, fail early.
1939 	 */
1940 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_CONNECTING) {
1941 		mutex_unlock(&dev->shutdown_lock);
1942 		return -ENODEV;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1949 {
1950 	struct nvme_dev *dev = nvmeq->dev;
1951 	int result;
1952 	u16 vector = 0;
1953 
1954 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1955 
1956 	/*
1957 	 * A queue's vector matches the queue identifier unless the controller
1958 	 * has only one vector available.
1959 	 */
1960 	if (!polled)
1961 		vector = dev->num_vecs == 1 ? 0 : qid;
1962 	else
1963 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1964 
1965 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1966 	if (result)
1967 		return result;
1968 
1969 	result = adapter_alloc_sq(dev, qid, nvmeq);
1970 	if (result < 0)
1971 		return result;
1972 	if (result)
1973 		goto release_cq;
1974 
1975 	nvmeq->cq_vector = vector;
1976 
1977 	result = nvme_setup_io_queues_trylock(dev);
1978 	if (result)
1979 		return result;
1980 	nvme_init_queue(nvmeq, qid);
1981 	if (!polled) {
1982 		result = queue_request_irq(nvmeq);
1983 		if (result < 0)
1984 			goto release_sq;
1985 	}
1986 
1987 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1988 	mutex_unlock(&dev->shutdown_lock);
1989 	return result;
1990 
1991 release_sq:
1992 	dev->online_queues--;
1993 	mutex_unlock(&dev->shutdown_lock);
1994 	adapter_delete_sq(dev, qid);
1995 release_cq:
1996 	adapter_delete_cq(dev, qid);
1997 	return result;
1998 }
1999 
2000 static const struct blk_mq_ops nvme_mq_admin_ops = {
2001 	.queue_rq	= nvme_queue_rq,
2002 	.complete	= nvme_pci_complete_rq,
2003 	.init_hctx	= nvme_admin_init_hctx,
2004 	.init_request	= nvme_pci_init_request,
2005 	.timeout	= nvme_timeout,
2006 };
2007 
2008 static const struct blk_mq_ops nvme_mq_ops = {
2009 	.queue_rq	= nvme_queue_rq,
2010 	.queue_rqs	= nvme_queue_rqs,
2011 	.complete	= nvme_pci_complete_rq,
2012 	.commit_rqs	= nvme_commit_rqs,
2013 	.init_hctx	= nvme_init_hctx,
2014 	.init_request	= nvme_pci_init_request,
2015 	.map_queues	= nvme_pci_map_queues,
2016 	.timeout	= nvme_timeout,
2017 	.poll		= nvme_poll,
2018 };
2019 
2020 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2021 {
2022 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
2023 		/*
2024 		 * If the controller was reset during removal, it's possible
2025 		 * user requests may be waiting on a stopped queue. Start the
2026 		 * queue to flush these to completion.
2027 		 */
2028 		nvme_unquiesce_admin_queue(&dev->ctrl);
2029 		nvme_remove_admin_tag_set(&dev->ctrl);
2030 	}
2031 }
2032 
2033 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2034 {
2035 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
2036 }
2037 
2038 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
2039 {
2040 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2041 
2042 	if (size <= dev->bar_mapped_size)
2043 		return 0;
2044 	if (size > pci_resource_len(pdev, 0))
2045 		return -ENOMEM;
2046 	if (dev->bar)
2047 		iounmap(dev->bar);
2048 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2049 	if (!dev->bar) {
2050 		dev->bar_mapped_size = 0;
2051 		return -ENOMEM;
2052 	}
2053 	dev->bar_mapped_size = size;
2054 	dev->dbs = dev->bar + NVME_REG_DBS;
2055 
2056 	return 0;
2057 }
2058 
2059 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
2060 {
2061 	int result;
2062 	u32 aqa;
2063 	struct nvme_queue *nvmeq;
2064 
2065 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
2066 	if (result < 0)
2067 		return result;
2068 
2069 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
2070 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
2071 
2072 	if (dev->subsystem &&
2073 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
2074 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
2075 
2076 	/*
2077 	 * If the device has been passed off to us in an enabled state, just
2078 	 * clear the enabled bit.  The spec says we should set the 'shutdown
2079 	 * notification bits', but doing so may cause the device to complete
2080 	 * commands to the admin queue ... and we don't know what memory that
2081 	 * might be pointing at!
2082 	 */
2083 	result = nvme_disable_ctrl(&dev->ctrl, false);
2084 	if (result < 0) {
2085 		struct pci_dev *pdev = to_pci_dev(dev->dev);
2086 
2087 		/*
2088 		 * The NVMe Controller Reset method did not get an expected
2089 		 * CSTS.RDY transition, so something with the device appears to
2090 		 * be stuck. Use the lower level and bigger hammer PCIe
2091 		 * Function Level Reset to attempt restoring the device to its
2092 		 * initial state, and try again.
2093 		 */
2094 		result = pcie_reset_flr(pdev, false);
2095 		if (result < 0)
2096 			return result;
2097 
2098 		pci_restore_state(pdev);
2099 		result = nvme_disable_ctrl(&dev->ctrl, false);
2100 		if (result < 0)
2101 			return result;
2102 
2103 		dev_info(dev->ctrl.device,
2104 			"controller reset completed after pcie flr\n");
2105 	}
2106 
2107 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
2108 	if (result)
2109 		return result;
2110 
2111 	dev->ctrl.numa_node = dev_to_node(dev->dev);
2112 
2113 	nvmeq = &dev->queues[0];
2114 	aqa = nvmeq->q_depth - 1;
2115 	aqa |= aqa << 16;
2116 
2117 	writel(aqa, dev->bar + NVME_REG_AQA);
2118 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
2119 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
2120 
2121 	result = nvme_enable_ctrl(&dev->ctrl);
2122 	if (result)
2123 		return result;
2124 
2125 	nvmeq->cq_vector = 0;
2126 	nvme_init_queue(nvmeq, 0);
2127 	result = queue_request_irq(nvmeq);
2128 	if (result) {
2129 		dev->online_queues--;
2130 		return result;
2131 	}
2132 
2133 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
2134 	return result;
2135 }
2136 
2137 static int nvme_create_io_queues(struct nvme_dev *dev)
2138 {
2139 	unsigned i, max, rw_queues;
2140 	int ret = 0;
2141 
2142 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
2143 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
2144 			ret = -ENOMEM;
2145 			break;
2146 		}
2147 	}
2148 
2149 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
2150 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
2151 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
2152 				dev->io_queues[HCTX_TYPE_READ];
2153 	} else {
2154 		rw_queues = max;
2155 	}
2156 
2157 	for (i = dev->online_queues; i <= max; i++) {
2158 		bool polled = i > rw_queues;
2159 
2160 		ret = nvme_create_queue(&dev->queues[i], i, polled);
2161 		if (ret)
2162 			break;
2163 	}
2164 
2165 	/*
2166 	 * Ignore failing Create SQ/CQ commands, we can continue with less
2167 	 * than the desired amount of queues, and even a controller without
2168 	 * I/O queues can still be used to issue admin commands.  This might
2169 	 * be useful to upgrade a buggy firmware for example.
2170 	 */
2171 	return ret >= 0 ? 0 : ret;
2172 }
2173 
2174 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
2175 {
2176 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
2177 
2178 	return 1ULL << (12 + 4 * szu);
2179 }
2180 
2181 static u32 nvme_cmb_size(struct nvme_dev *dev)
2182 {
2183 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
2184 }
2185 
2186 static void nvme_map_cmb(struct nvme_dev *dev)
2187 {
2188 	u64 size, offset;
2189 	resource_size_t bar_size;
2190 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2191 	int bar;
2192 
2193 	if (dev->cmb_size)
2194 		return;
2195 
2196 	if (NVME_CAP_CMBS(dev->ctrl.cap))
2197 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
2198 
2199 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
2200 	if (!dev->cmbsz)
2201 		return;
2202 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
2203 
2204 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
2205 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
2206 	bar = NVME_CMB_BIR(dev->cmbloc);
2207 	bar_size = pci_resource_len(pdev, bar);
2208 
2209 	if (offset > bar_size)
2210 		return;
2211 
2212 	/*
2213 	 * Controllers may support a CMB size larger than their BAR, for
2214 	 * example, due to being behind a bridge. Reduce the CMB to the
2215 	 * reported size of the BAR
2216 	 */
2217 	size = min(size, bar_size - offset);
2218 
2219 	if (!IS_ALIGNED(size, memremap_compat_align()) ||
2220 	    !IS_ALIGNED(pci_resource_start(pdev, bar),
2221 			memremap_compat_align()))
2222 		return;
2223 
2224 	/*
2225 	 * Tell the controller about the host side address mapping the CMB,
2226 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
2227 	 */
2228 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
2229 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
2230 			     (pci_bus_address(pdev, bar) + offset),
2231 			     dev->bar + NVME_REG_CMBMSC);
2232 	}
2233 
2234 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
2235 		dev_warn(dev->ctrl.device,
2236 			 "failed to register the CMB\n");
2237 		hi_lo_writeq(0, dev->bar + NVME_REG_CMBMSC);
2238 		return;
2239 	}
2240 
2241 	dev->cmb_size = size;
2242 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
2243 
2244 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
2245 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
2246 		pci_p2pmem_publish(pdev, true);
2247 }
2248 
2249 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
2250 {
2251 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
2252 	u64 dma_addr = dev->host_mem_descs_dma;
2253 	struct nvme_command c = { };
2254 	int ret;
2255 
2256 	c.features.opcode	= nvme_admin_set_features;
2257 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
2258 	c.features.dword11	= cpu_to_le32(bits);
2259 	c.features.dword12	= cpu_to_le32(host_mem_size);
2260 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
2261 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
2262 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
2263 
2264 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
2265 	if (ret) {
2266 		dev_warn(dev->ctrl.device,
2267 			 "failed to set host mem (err %d, flags %#x).\n",
2268 			 ret, bits);
2269 	} else
2270 		dev->hmb = bits & NVME_HOST_MEM_ENABLE;
2271 
2272 	return ret;
2273 }
2274 
2275 static void nvme_free_host_mem_multi(struct nvme_dev *dev)
2276 {
2277 	int i;
2278 
2279 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
2280 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
2281 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
2282 
2283 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
2284 			       le64_to_cpu(desc->addr),
2285 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2286 	}
2287 
2288 	kfree(dev->host_mem_desc_bufs);
2289 	dev->host_mem_desc_bufs = NULL;
2290 }
2291 
2292 static void nvme_free_host_mem(struct nvme_dev *dev)
2293 {
2294 	if (dev->hmb_sgt)
2295 		dma_free_noncontiguous(dev->dev, dev->host_mem_size,
2296 				dev->hmb_sgt, DMA_BIDIRECTIONAL);
2297 	else
2298 		nvme_free_host_mem_multi(dev);
2299 
2300 	dma_free_coherent(dev->dev, dev->host_mem_descs_size,
2301 			dev->host_mem_descs, dev->host_mem_descs_dma);
2302 	dev->host_mem_descs = NULL;
2303 	dev->host_mem_descs_size = 0;
2304 	dev->nr_host_mem_descs = 0;
2305 }
2306 
2307 static int nvme_alloc_host_mem_single(struct nvme_dev *dev, u64 size)
2308 {
2309 	dev->hmb_sgt = dma_alloc_noncontiguous(dev->dev, size,
2310 				DMA_BIDIRECTIONAL, GFP_KERNEL, 0);
2311 	if (!dev->hmb_sgt)
2312 		return -ENOMEM;
2313 
2314 	dev->host_mem_descs = dma_alloc_coherent(dev->dev,
2315 			sizeof(*dev->host_mem_descs), &dev->host_mem_descs_dma,
2316 			GFP_KERNEL);
2317 	if (!dev->host_mem_descs) {
2318 		dma_free_noncontiguous(dev->dev, size, dev->hmb_sgt,
2319 				DMA_BIDIRECTIONAL);
2320 		dev->hmb_sgt = NULL;
2321 		return -ENOMEM;
2322 	}
2323 	dev->host_mem_size = size;
2324 	dev->host_mem_descs_size = sizeof(*dev->host_mem_descs);
2325 	dev->nr_host_mem_descs = 1;
2326 
2327 	dev->host_mem_descs[0].addr =
2328 		cpu_to_le64(dev->hmb_sgt->sgl->dma_address);
2329 	dev->host_mem_descs[0].size = cpu_to_le32(size / NVME_CTRL_PAGE_SIZE);
2330 	return 0;
2331 }
2332 
2333 static int nvme_alloc_host_mem_multi(struct nvme_dev *dev, u64 preferred,
2334 		u32 chunk_size)
2335 {
2336 	struct nvme_host_mem_buf_desc *descs;
2337 	u32 max_entries, len, descs_size;
2338 	dma_addr_t descs_dma;
2339 	int i = 0;
2340 	void **bufs;
2341 	u64 size, tmp;
2342 
2343 	tmp = (preferred + chunk_size - 1);
2344 	do_div(tmp, chunk_size);
2345 	max_entries = tmp;
2346 
2347 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
2348 		max_entries = dev->ctrl.hmmaxd;
2349 
2350 	descs_size = max_entries * sizeof(*descs);
2351 	descs = dma_alloc_coherent(dev->dev, descs_size, &descs_dma,
2352 			GFP_KERNEL);
2353 	if (!descs)
2354 		goto out;
2355 
2356 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
2357 	if (!bufs)
2358 		goto out_free_descs;
2359 
2360 	for (size = 0; size < preferred && i < max_entries; size += len) {
2361 		dma_addr_t dma_addr;
2362 
2363 		len = min_t(u64, chunk_size, preferred - size);
2364 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
2365 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
2366 		if (!bufs[i])
2367 			break;
2368 
2369 		descs[i].addr = cpu_to_le64(dma_addr);
2370 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
2371 		i++;
2372 	}
2373 
2374 	if (!size)
2375 		goto out_free_bufs;
2376 
2377 	dev->nr_host_mem_descs = i;
2378 	dev->host_mem_size = size;
2379 	dev->host_mem_descs = descs;
2380 	dev->host_mem_descs_dma = descs_dma;
2381 	dev->host_mem_descs_size = descs_size;
2382 	dev->host_mem_desc_bufs = bufs;
2383 	return 0;
2384 
2385 out_free_bufs:
2386 	kfree(bufs);
2387 out_free_descs:
2388 	dma_free_coherent(dev->dev, descs_size, descs, descs_dma);
2389 out:
2390 	dev->host_mem_descs = NULL;
2391 	return -ENOMEM;
2392 }
2393 
2394 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2395 {
2396 	unsigned long dma_merge_boundary = dma_get_merge_boundary(dev->dev);
2397 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2398 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2399 	u64 chunk_size;
2400 
2401 	/*
2402 	 * If there is an IOMMU that can merge pages, try a virtually
2403 	 * non-contiguous allocation for a single segment first.
2404 	 */
2405 	if (dma_merge_boundary && (PAGE_SIZE & dma_merge_boundary) == 0) {
2406 		if (!nvme_alloc_host_mem_single(dev, preferred))
2407 			return 0;
2408 	}
2409 
2410 	/* start big and work our way down */
2411 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2412 		if (!nvme_alloc_host_mem_multi(dev, preferred, chunk_size)) {
2413 			if (!min || dev->host_mem_size >= min)
2414 				return 0;
2415 			nvme_free_host_mem(dev);
2416 		}
2417 	}
2418 
2419 	return -ENOMEM;
2420 }
2421 
2422 static int nvme_setup_host_mem(struct nvme_dev *dev)
2423 {
2424 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2425 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2426 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2427 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2428 	int ret;
2429 
2430 	if (!dev->ctrl.hmpre)
2431 		return 0;
2432 
2433 	preferred = min(preferred, max);
2434 	if (min > max) {
2435 		dev_warn(dev->ctrl.device,
2436 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2437 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2438 		nvme_free_host_mem(dev);
2439 		return 0;
2440 	}
2441 
2442 	/*
2443 	 * If we already have a buffer allocated check if we can reuse it.
2444 	 */
2445 	if (dev->host_mem_descs) {
2446 		if (dev->host_mem_size >= min)
2447 			enable_bits |= NVME_HOST_MEM_RETURN;
2448 		else
2449 			nvme_free_host_mem(dev);
2450 	}
2451 
2452 	if (!dev->host_mem_descs) {
2453 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2454 			dev_warn(dev->ctrl.device,
2455 				"failed to allocate host memory buffer.\n");
2456 			return 0; /* controller must work without HMB */
2457 		}
2458 
2459 		dev_info(dev->ctrl.device,
2460 			"allocated %lld MiB host memory buffer (%u segment%s).\n",
2461 			dev->host_mem_size >> ilog2(SZ_1M),
2462 			dev->nr_host_mem_descs,
2463 			str_plural(dev->nr_host_mem_descs));
2464 	}
2465 
2466 	ret = nvme_set_host_mem(dev, enable_bits);
2467 	if (ret)
2468 		nvme_free_host_mem(dev);
2469 	return ret;
2470 }
2471 
2472 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2473 		char *buf)
2474 {
2475 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2476 
2477 	return sysfs_emit(buf, "cmbloc : 0x%08x\ncmbsz  : 0x%08x\n",
2478 		       ndev->cmbloc, ndev->cmbsz);
2479 }
2480 static DEVICE_ATTR_RO(cmb);
2481 
2482 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2483 		char *buf)
2484 {
2485 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2486 
2487 	return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2488 }
2489 static DEVICE_ATTR_RO(cmbloc);
2490 
2491 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2492 		char *buf)
2493 {
2494 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2495 
2496 	return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2497 }
2498 static DEVICE_ATTR_RO(cmbsz);
2499 
2500 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2501 			char *buf)
2502 {
2503 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2504 
2505 	return sysfs_emit(buf, "%d\n", ndev->hmb);
2506 }
2507 
2508 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2509 			 const char *buf, size_t count)
2510 {
2511 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2512 	bool new;
2513 	int ret;
2514 
2515 	if (kstrtobool(buf, &new) < 0)
2516 		return -EINVAL;
2517 
2518 	if (new == ndev->hmb)
2519 		return count;
2520 
2521 	if (new) {
2522 		ret = nvme_setup_host_mem(ndev);
2523 	} else {
2524 		ret = nvme_set_host_mem(ndev, 0);
2525 		if (!ret)
2526 			nvme_free_host_mem(ndev);
2527 	}
2528 
2529 	if (ret < 0)
2530 		return ret;
2531 
2532 	return count;
2533 }
2534 static DEVICE_ATTR_RW(hmb);
2535 
2536 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2537 		struct attribute *a, int n)
2538 {
2539 	struct nvme_ctrl *ctrl =
2540 		dev_get_drvdata(container_of(kobj, struct device, kobj));
2541 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2542 
2543 	if (a == &dev_attr_cmb.attr ||
2544 	    a == &dev_attr_cmbloc.attr ||
2545 	    a == &dev_attr_cmbsz.attr) {
2546 	    	if (!dev->cmbsz)
2547 			return 0;
2548 	}
2549 	if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2550 		return 0;
2551 
2552 	return a->mode;
2553 }
2554 
2555 static struct attribute *nvme_pci_attrs[] = {
2556 	&dev_attr_cmb.attr,
2557 	&dev_attr_cmbloc.attr,
2558 	&dev_attr_cmbsz.attr,
2559 	&dev_attr_hmb.attr,
2560 	NULL,
2561 };
2562 
2563 static const struct attribute_group nvme_pci_dev_attrs_group = {
2564 	.attrs		= nvme_pci_attrs,
2565 	.is_visible	= nvme_pci_attrs_are_visible,
2566 };
2567 
2568 static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2569 	&nvme_dev_attrs_group,
2570 	&nvme_pci_dev_attrs_group,
2571 	NULL,
2572 };
2573 
2574 static void nvme_update_attrs(struct nvme_dev *dev)
2575 {
2576 	sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group);
2577 }
2578 
2579 /*
2580  * nirqs is the number of interrupts available for write and read
2581  * queues. The core already reserved an interrupt for the admin queue.
2582  */
2583 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2584 {
2585 	struct nvme_dev *dev = affd->priv;
2586 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2587 
2588 	/*
2589 	 * If there is no interrupt available for queues, ensure that
2590 	 * the default queue is set to 1. The affinity set size is
2591 	 * also set to one, but the irq core ignores it for this case.
2592 	 *
2593 	 * If only one interrupt is available or 'write_queue' == 0, combine
2594 	 * write and read queues.
2595 	 *
2596 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2597 	 * queue.
2598 	 */
2599 	if (!nrirqs) {
2600 		nrirqs = 1;
2601 		nr_read_queues = 0;
2602 	} else if (nrirqs == 1 || !nr_write_queues) {
2603 		nr_read_queues = 0;
2604 	} else if (nr_write_queues >= nrirqs) {
2605 		nr_read_queues = 1;
2606 	} else {
2607 		nr_read_queues = nrirqs - nr_write_queues;
2608 	}
2609 
2610 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2611 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2612 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2613 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2614 	affd->nr_sets = nr_read_queues ? 2 : 1;
2615 }
2616 
2617 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2618 {
2619 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2620 	struct irq_affinity affd = {
2621 		.pre_vectors	= 1,
2622 		.calc_sets	= nvme_calc_irq_sets,
2623 		.priv		= dev,
2624 	};
2625 	unsigned int irq_queues, poll_queues;
2626 	unsigned int flags = PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY;
2627 
2628 	/*
2629 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2630 	 * left over for non-polled I/O.
2631 	 */
2632 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2633 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2634 
2635 	/*
2636 	 * Initialize for the single interrupt case, will be updated in
2637 	 * nvme_calc_irq_sets().
2638 	 */
2639 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2640 	dev->io_queues[HCTX_TYPE_READ] = 0;
2641 
2642 	/*
2643 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2644 	 * but some Apple controllers require all queues to use the first
2645 	 * vector.
2646 	 */
2647 	irq_queues = 1;
2648 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2649 		irq_queues += (nr_io_queues - poll_queues);
2650 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2651 		flags &= ~PCI_IRQ_MSI;
2652 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, flags,
2653 					      &affd);
2654 }
2655 
2656 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2657 {
2658 	/*
2659 	 * If tags are shared with admin queue (Apple bug), then
2660 	 * make sure we only use one IO queue.
2661 	 */
2662 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2663 		return 1;
2664 	return blk_mq_num_possible_queues(0) + dev->nr_write_queues +
2665 		dev->nr_poll_queues;
2666 }
2667 
2668 static int nvme_setup_io_queues(struct nvme_dev *dev)
2669 {
2670 	struct nvme_queue *adminq = &dev->queues[0];
2671 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2672 	unsigned int nr_io_queues;
2673 	unsigned long size;
2674 	int result;
2675 
2676 	/*
2677 	 * Sample the module parameters once at reset time so that we have
2678 	 * stable values to work with.
2679 	 */
2680 	dev->nr_write_queues = write_queues;
2681 	dev->nr_poll_queues = poll_queues;
2682 
2683 	nr_io_queues = dev->nr_allocated_queues - 1;
2684 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2685 	if (result < 0)
2686 		return result;
2687 
2688 	if (nr_io_queues == 0)
2689 		return 0;
2690 
2691 	/*
2692 	 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2693 	 * from set to unset. If there is a window to it is truely freed,
2694 	 * pci_free_irq_vectors() jumping into this window will crash.
2695 	 * And take lock to avoid racing with pci_free_irq_vectors() in
2696 	 * nvme_dev_disable() path.
2697 	 */
2698 	result = nvme_setup_io_queues_trylock(dev);
2699 	if (result)
2700 		return result;
2701 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2702 		pci_free_irq(pdev, 0, adminq);
2703 
2704 	if (dev->cmb_use_sqes) {
2705 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2706 				sizeof(struct nvme_command));
2707 		if (result > 0) {
2708 			dev->q_depth = result;
2709 			dev->ctrl.sqsize = result - 1;
2710 		} else {
2711 			dev->cmb_use_sqes = false;
2712 		}
2713 	}
2714 
2715 	do {
2716 		size = db_bar_size(dev, nr_io_queues);
2717 		result = nvme_remap_bar(dev, size);
2718 		if (!result)
2719 			break;
2720 		if (!--nr_io_queues) {
2721 			result = -ENOMEM;
2722 			goto out_unlock;
2723 		}
2724 	} while (1);
2725 	adminq->q_db = dev->dbs;
2726 
2727  retry:
2728 	/* Deregister the admin queue's interrupt */
2729 	if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2730 		pci_free_irq(pdev, 0, adminq);
2731 
2732 	/*
2733 	 * If we enable msix early due to not intx, disable it again before
2734 	 * setting up the full range we need.
2735 	 */
2736 	pci_free_irq_vectors(pdev);
2737 
2738 	result = nvme_setup_irqs(dev, nr_io_queues);
2739 	if (result <= 0) {
2740 		result = -EIO;
2741 		goto out_unlock;
2742 	}
2743 
2744 	dev->num_vecs = result;
2745 	result = max(result - 1, 1);
2746 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2747 
2748 	/*
2749 	 * Should investigate if there's a performance win from allocating
2750 	 * more queues than interrupt vectors; it might allow the submission
2751 	 * path to scale better, even if the receive path is limited by the
2752 	 * number of interrupts.
2753 	 */
2754 	result = queue_request_irq(adminq);
2755 	if (result)
2756 		goto out_unlock;
2757 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2758 	mutex_unlock(&dev->shutdown_lock);
2759 
2760 	result = nvme_create_io_queues(dev);
2761 	if (result || dev->online_queues < 2)
2762 		return result;
2763 
2764 	if (dev->online_queues - 1 < dev->max_qid) {
2765 		nr_io_queues = dev->online_queues - 1;
2766 		nvme_delete_io_queues(dev);
2767 		result = nvme_setup_io_queues_trylock(dev);
2768 		if (result)
2769 			return result;
2770 		nvme_suspend_io_queues(dev);
2771 		goto retry;
2772 	}
2773 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2774 					dev->io_queues[HCTX_TYPE_DEFAULT],
2775 					dev->io_queues[HCTX_TYPE_READ],
2776 					dev->io_queues[HCTX_TYPE_POLL]);
2777 	return 0;
2778 out_unlock:
2779 	mutex_unlock(&dev->shutdown_lock);
2780 	return result;
2781 }
2782 
2783 static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2784 					     blk_status_t error)
2785 {
2786 	struct nvme_queue *nvmeq = req->end_io_data;
2787 
2788 	blk_mq_free_request(req);
2789 	complete(&nvmeq->delete_done);
2790 	return RQ_END_IO_NONE;
2791 }
2792 
2793 static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2794 					  blk_status_t error)
2795 {
2796 	struct nvme_queue *nvmeq = req->end_io_data;
2797 
2798 	if (error)
2799 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2800 
2801 	return nvme_del_queue_end(req, error);
2802 }
2803 
2804 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2805 {
2806 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2807 	struct request *req;
2808 	struct nvme_command cmd = { };
2809 
2810 	cmd.delete_queue.opcode = opcode;
2811 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2812 
2813 	req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT);
2814 	if (IS_ERR(req))
2815 		return PTR_ERR(req);
2816 	nvme_init_request(req, &cmd);
2817 
2818 	if (opcode == nvme_admin_delete_cq)
2819 		req->end_io = nvme_del_cq_end;
2820 	else
2821 		req->end_io = nvme_del_queue_end;
2822 	req->end_io_data = nvmeq;
2823 
2824 	init_completion(&nvmeq->delete_done);
2825 	blk_execute_rq_nowait(req, false);
2826 	return 0;
2827 }
2828 
2829 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2830 {
2831 	int nr_queues = dev->online_queues - 1, sent = 0;
2832 	unsigned long timeout;
2833 
2834  retry:
2835 	timeout = NVME_ADMIN_TIMEOUT;
2836 	while (nr_queues > 0) {
2837 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2838 			break;
2839 		nr_queues--;
2840 		sent++;
2841 	}
2842 	while (sent) {
2843 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2844 
2845 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2846 				timeout);
2847 		if (timeout == 0)
2848 			return false;
2849 
2850 		sent--;
2851 		if (nr_queues)
2852 			goto retry;
2853 	}
2854 	return true;
2855 }
2856 
2857 static void nvme_delete_io_queues(struct nvme_dev *dev)
2858 {
2859 	if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq))
2860 		__nvme_delete_io_queues(dev, nvme_admin_delete_cq);
2861 }
2862 
2863 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2864 {
2865 	if (dev->io_queues[HCTX_TYPE_POLL])
2866 		return 3;
2867 	if (dev->io_queues[HCTX_TYPE_READ])
2868 		return 2;
2869 	return 1;
2870 }
2871 
2872 static bool nvme_pci_update_nr_queues(struct nvme_dev *dev)
2873 {
2874 	if (!dev->ctrl.tagset) {
2875 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
2876 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
2877 		return true;
2878 	}
2879 
2880 	/* Give up if we are racing with nvme_dev_disable() */
2881 	if (!mutex_trylock(&dev->shutdown_lock))
2882 		return false;
2883 
2884 	/* Check if nvme_dev_disable() has been executed already */
2885 	if (!dev->online_queues) {
2886 		mutex_unlock(&dev->shutdown_lock);
2887 		return false;
2888 	}
2889 
2890 	blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2891 	/* free previously allocated queues that are no longer usable */
2892 	nvme_free_queues(dev, dev->online_queues);
2893 	mutex_unlock(&dev->shutdown_lock);
2894 	return true;
2895 }
2896 
2897 static int nvme_pci_enable(struct nvme_dev *dev)
2898 {
2899 	int result = -ENOMEM;
2900 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2901 	unsigned int flags = PCI_IRQ_ALL_TYPES;
2902 
2903 	if (pci_enable_device_mem(pdev))
2904 		return result;
2905 
2906 	pci_set_master(pdev);
2907 
2908 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2909 		result = -ENODEV;
2910 		goto disable;
2911 	}
2912 
2913 	/*
2914 	 * Some devices and/or platforms don't advertise or work with INTx
2915 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2916 	 * adjust this later.
2917 	 */
2918 	if (dev->ctrl.quirks & NVME_QUIRK_BROKEN_MSI)
2919 		flags &= ~PCI_IRQ_MSI;
2920 	result = pci_alloc_irq_vectors(pdev, 1, 1, flags);
2921 	if (result < 0)
2922 		goto disable;
2923 
2924 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2925 
2926 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2927 				io_queue_depth);
2928 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2929 	dev->dbs = dev->bar + 4096;
2930 
2931 	/*
2932 	 * Some Apple controllers require a non-standard SQE size.
2933 	 * Interestingly they also seem to ignore the CC:IOSQES register
2934 	 * so we don't bother updating it here.
2935 	 */
2936 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2937 		dev->io_sqes = 7;
2938 	else
2939 		dev->io_sqes = NVME_NVM_IOSQES;
2940 
2941 	if (dev->ctrl.quirks & NVME_QUIRK_QDEPTH_ONE) {
2942 		dev->q_depth = 2;
2943 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2944 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2945 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2946 		dev->q_depth = 64;
2947 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2948                         "set queue depth=%u\n", dev->q_depth);
2949 	}
2950 
2951 	/*
2952 	 * Controllers with the shared tags quirk need the IO queue to be
2953 	 * big enough so that we get 32 tags for the admin queue
2954 	 */
2955 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2956 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2957 		dev->q_depth = NVME_AQ_DEPTH + 2;
2958 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2959 			 dev->q_depth);
2960 	}
2961 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2962 
2963 	nvme_map_cmb(dev);
2964 
2965 	pci_save_state(pdev);
2966 
2967 	result = nvme_pci_configure_admin_queue(dev);
2968 	if (result)
2969 		goto free_irq;
2970 	return result;
2971 
2972  free_irq:
2973 	pci_free_irq_vectors(pdev);
2974  disable:
2975 	pci_disable_device(pdev);
2976 	return result;
2977 }
2978 
2979 static void nvme_dev_unmap(struct nvme_dev *dev)
2980 {
2981 	if (dev->bar)
2982 		iounmap(dev->bar);
2983 	pci_release_mem_regions(to_pci_dev(dev->dev));
2984 }
2985 
2986 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2987 {
2988 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2989 	u32 csts;
2990 
2991 	if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2992 		return true;
2993 	if (pdev->error_state != pci_channel_io_normal)
2994 		return true;
2995 
2996 	csts = readl(dev->bar + NVME_REG_CSTS);
2997 	return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2998 }
2999 
3000 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
3001 {
3002 	enum nvme_ctrl_state state = nvme_ctrl_state(&dev->ctrl);
3003 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3004 	bool dead;
3005 
3006 	mutex_lock(&dev->shutdown_lock);
3007 	dead = nvme_pci_ctrl_is_dead(dev);
3008 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
3009 		if (pci_is_enabled(pdev))
3010 			nvme_start_freeze(&dev->ctrl);
3011 		/*
3012 		 * Give the controller a chance to complete all entered requests
3013 		 * if doing a safe shutdown.
3014 		 */
3015 		if (!dead && shutdown)
3016 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
3017 	}
3018 
3019 	nvme_quiesce_io_queues(&dev->ctrl);
3020 
3021 	if (!dead && dev->ctrl.queue_count > 0) {
3022 		nvme_delete_io_queues(dev);
3023 		nvme_disable_ctrl(&dev->ctrl, shutdown);
3024 		nvme_poll_irqdisable(&dev->queues[0]);
3025 	}
3026 	nvme_suspend_io_queues(dev);
3027 	nvme_suspend_queue(dev, 0);
3028 	pci_free_irq_vectors(pdev);
3029 	if (pci_is_enabled(pdev))
3030 		pci_disable_device(pdev);
3031 	nvme_reap_pending_cqes(dev);
3032 
3033 	nvme_cancel_tagset(&dev->ctrl);
3034 	nvme_cancel_admin_tagset(&dev->ctrl);
3035 
3036 	/*
3037 	 * The driver will not be starting up queues again if shutting down so
3038 	 * must flush all entered requests to their failed completion to avoid
3039 	 * deadlocking blk-mq hot-cpu notifier.
3040 	 */
3041 	if (shutdown) {
3042 		nvme_unquiesce_io_queues(&dev->ctrl);
3043 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
3044 			nvme_unquiesce_admin_queue(&dev->ctrl);
3045 	}
3046 	mutex_unlock(&dev->shutdown_lock);
3047 }
3048 
3049 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
3050 {
3051 	if (!nvme_wait_reset(&dev->ctrl))
3052 		return -EBUSY;
3053 	nvme_dev_disable(dev, shutdown);
3054 	return 0;
3055 }
3056 
3057 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
3058 {
3059 	size_t alloc_size = sizeof(struct nvme_dma_vec) * NVME_MAX_SEGS;
3060 
3061 	dev->dmavec_mempool = mempool_create_node(1,
3062 			mempool_kmalloc, mempool_kfree,
3063 			(void *)alloc_size, GFP_KERNEL,
3064 			dev_to_node(dev->dev));
3065 	if (!dev->dmavec_mempool)
3066 		return -ENOMEM;
3067 	return 0;
3068 }
3069 
3070 static void nvme_free_tagset(struct nvme_dev *dev)
3071 {
3072 	if (dev->tagset.tags)
3073 		nvme_remove_io_tag_set(&dev->ctrl);
3074 	dev->ctrl.tagset = NULL;
3075 }
3076 
3077 /* pairs with nvme_pci_alloc_dev */
3078 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
3079 {
3080 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3081 
3082 	nvme_free_tagset(dev);
3083 	put_device(dev->dev);
3084 	kfree(dev->queues);
3085 	kfree(dev);
3086 }
3087 
3088 static void nvme_reset_work(struct work_struct *work)
3089 {
3090 	struct nvme_dev *dev =
3091 		container_of(work, struct nvme_dev, ctrl.reset_work);
3092 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
3093 	int result;
3094 
3095 	if (nvme_ctrl_state(&dev->ctrl) != NVME_CTRL_RESETTING) {
3096 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
3097 			 dev->ctrl.state);
3098 		result = -ENODEV;
3099 		goto out;
3100 	}
3101 
3102 	/*
3103 	 * If we're called to reset a live controller first shut it down before
3104 	 * moving on.
3105 	 */
3106 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
3107 		nvme_dev_disable(dev, false);
3108 	nvme_sync_queues(&dev->ctrl);
3109 
3110 	mutex_lock(&dev->shutdown_lock);
3111 	result = nvme_pci_enable(dev);
3112 	if (result)
3113 		goto out_unlock;
3114 	nvme_unquiesce_admin_queue(&dev->ctrl);
3115 	mutex_unlock(&dev->shutdown_lock);
3116 
3117 	/*
3118 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
3119 	 * initializing procedure here.
3120 	 */
3121 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3122 		dev_warn(dev->ctrl.device,
3123 			"failed to mark controller CONNECTING\n");
3124 		result = -EBUSY;
3125 		goto out;
3126 	}
3127 
3128 	result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend);
3129 	if (result)
3130 		goto out;
3131 
3132 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3133 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3134 	else
3135 		dev->ctrl.max_integrity_segments = 1;
3136 
3137 	nvme_dbbuf_dma_alloc(dev);
3138 
3139 	result = nvme_setup_host_mem(dev);
3140 	if (result < 0)
3141 		goto out;
3142 
3143 	nvme_update_attrs(dev);
3144 
3145 	result = nvme_setup_io_queues(dev);
3146 	if (result)
3147 		goto out;
3148 
3149 	/*
3150 	 * Freeze and update the number of I/O queues as those might have
3151 	 * changed.  If there are no I/O queues left after this reset, keep the
3152 	 * controller around but remove all namespaces.
3153 	 */
3154 	if (dev->online_queues > 1) {
3155 		nvme_dbbuf_set(dev);
3156 		nvme_unquiesce_io_queues(&dev->ctrl);
3157 		nvme_wait_freeze(&dev->ctrl);
3158 		if (!nvme_pci_update_nr_queues(dev))
3159 			goto out;
3160 		nvme_unfreeze(&dev->ctrl);
3161 	} else {
3162 		dev_warn(dev->ctrl.device, "IO queues lost\n");
3163 		nvme_mark_namespaces_dead(&dev->ctrl);
3164 		nvme_unquiesce_io_queues(&dev->ctrl);
3165 		nvme_remove_namespaces(&dev->ctrl);
3166 		nvme_free_tagset(dev);
3167 	}
3168 
3169 	/*
3170 	 * If only admin queue live, keep it to do further investigation or
3171 	 * recovery.
3172 	 */
3173 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3174 		dev_warn(dev->ctrl.device,
3175 			"failed to mark controller live state\n");
3176 		result = -ENODEV;
3177 		goto out;
3178 	}
3179 
3180 	nvme_start_ctrl(&dev->ctrl);
3181 	return;
3182 
3183  out_unlock:
3184 	mutex_unlock(&dev->shutdown_lock);
3185  out:
3186 	/*
3187 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
3188 	 * may be holding this pci_dev's device lock.
3189 	 */
3190 	dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
3191 		 result);
3192 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3193 	nvme_dev_disable(dev, true);
3194 	nvme_sync_queues(&dev->ctrl);
3195 	nvme_mark_namespaces_dead(&dev->ctrl);
3196 	nvme_unquiesce_io_queues(&dev->ctrl);
3197 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3198 }
3199 
3200 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3201 {
3202 	*val = readl(to_nvme_dev(ctrl)->bar + off);
3203 	return 0;
3204 }
3205 
3206 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
3207 {
3208 	writel(val, to_nvme_dev(ctrl)->bar + off);
3209 	return 0;
3210 }
3211 
3212 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
3213 {
3214 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
3215 	return 0;
3216 }
3217 
3218 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
3219 {
3220 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3221 
3222 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
3223 }
3224 
3225 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
3226 {
3227 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
3228 	struct nvme_subsystem *subsys = ctrl->subsys;
3229 
3230 	dev_err(ctrl->device,
3231 		"VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3232 		pdev->vendor, pdev->device,
3233 		nvme_strlen(subsys->model, sizeof(subsys->model)),
3234 		subsys->model, nvme_strlen(subsys->firmware_rev,
3235 					   sizeof(subsys->firmware_rev)),
3236 		subsys->firmware_rev);
3237 }
3238 
3239 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
3240 {
3241 	struct nvme_dev *dev = to_nvme_dev(ctrl);
3242 
3243 	return dma_pci_p2pdma_supported(dev->dev);
3244 }
3245 
3246 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3247 	.name			= "pcie",
3248 	.module			= THIS_MODULE,
3249 	.flags			= NVME_F_METADATA_SUPPORTED,
3250 	.dev_attr_groups	= nvme_pci_dev_attr_groups,
3251 	.reg_read32		= nvme_pci_reg_read32,
3252 	.reg_write32		= nvme_pci_reg_write32,
3253 	.reg_read64		= nvme_pci_reg_read64,
3254 	.free_ctrl		= nvme_pci_free_ctrl,
3255 	.submit_async_event	= nvme_pci_submit_async_event,
3256 	.subsystem_reset	= nvme_pci_subsystem_reset,
3257 	.get_address		= nvme_pci_get_address,
3258 	.print_device_info	= nvme_pci_print_device_info,
3259 	.supports_pci_p2pdma	= nvme_pci_supports_pci_p2pdma,
3260 };
3261 
3262 static int nvme_dev_map(struct nvme_dev *dev)
3263 {
3264 	struct pci_dev *pdev = to_pci_dev(dev->dev);
3265 
3266 	if (pci_request_mem_regions(pdev, "nvme"))
3267 		return -ENODEV;
3268 
3269 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
3270 		goto release;
3271 
3272 	return 0;
3273   release:
3274 	pci_release_mem_regions(pdev);
3275 	return -ENODEV;
3276 }
3277 
3278 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
3279 {
3280 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
3281 		/*
3282 		 * Several Samsung devices seem to drop off the PCIe bus
3283 		 * randomly when APST is on and uses the deepest sleep state.
3284 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3285 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3286 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
3287 		 * laptops.
3288 		 */
3289 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
3290 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
3291 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
3292 			return NVME_QUIRK_NO_DEEPEST_PS;
3293 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
3294 		/*
3295 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
3296 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3297 		 * within few minutes after bootup on a Coffee Lake board -
3298 		 * ASUS PRIME Z370-A
3299 		 */
3300 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
3301 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
3302 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
3303 			return NVME_QUIRK_NO_APST;
3304 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
3305 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
3306 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
3307 		/*
3308 		 * Forcing to use host managed nvme power settings for
3309 		 * lowest idle power with quick resume latency on
3310 		 * Samsung and Toshiba SSDs based on suspend behavior
3311 		 * on Coffee Lake board for LENOVO C640
3312 		 */
3313 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
3314 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
3315 			return NVME_QUIRK_SIMPLE_SUSPEND;
3316 	} else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
3317 		   pdev->device == 0x500f)) {
3318 		/*
3319 		 * Exclude some Kingston NV1 and A2000 devices from
3320 		 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3321 		 * lot of energy with s2idle sleep on some TUXEDO platforms.
3322 		 */
3323 		if (dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3324 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xAU") ||
3325 		    dmi_match(DMI_BOARD_NAME, "NS5x_7xPU") ||
3326 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"))
3327 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3328 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa80d) {
3329 		/*
3330 		 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3331 		 * because of high power consumption (> 2 Watt) in s2idle
3332 		 * sleep. Only some boards with Intel CPU are affected.
3333 		 * (Note for testing: Samsung 990 Evo Plus has same PCI ID)
3334 		 */
3335 		if (dmi_match(DMI_BOARD_NAME, "DN50Z-140HC-YD") ||
3336 		    dmi_match(DMI_BOARD_NAME, "GMxPXxx") ||
3337 		    dmi_match(DMI_BOARD_NAME, "GXxMRXx") ||
3338 		    dmi_match(DMI_BOARD_NAME, "NS5X_NS7XAU") ||
3339 		    dmi_match(DMI_BOARD_NAME, "PH4PG31") ||
3340 		    dmi_match(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1") ||
3341 		    dmi_match(DMI_BOARD_NAME, "PH6PG01_PH6PG71"))
3342 			return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
3343 	}
3344 
3345 	/*
3346 	 * NVMe SSD drops off the PCIe bus after system idle
3347 	 * for 10 hours on a Lenovo N60z board.
3348 	 */
3349 	if (dmi_match(DMI_BOARD_NAME, "LXKT-ZXEG-N6"))
3350 		return NVME_QUIRK_NO_APST;
3351 
3352 	return 0;
3353 }
3354 
3355 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
3356 		const struct pci_device_id *id)
3357 {
3358 	unsigned long quirks = id->driver_data;
3359 	int node = dev_to_node(&pdev->dev);
3360 	struct nvme_dev *dev;
3361 	int ret = -ENOMEM;
3362 
3363 	dev = kzalloc_node(struct_size(dev, descriptor_pools, nr_node_ids),
3364 			GFP_KERNEL, node);
3365 	if (!dev)
3366 		return ERR_PTR(-ENOMEM);
3367 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
3368 	mutex_init(&dev->shutdown_lock);
3369 
3370 	dev->nr_write_queues = write_queues;
3371 	dev->nr_poll_queues = poll_queues;
3372 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
3373 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
3374 			sizeof(struct nvme_queue), GFP_KERNEL, node);
3375 	if (!dev->queues)
3376 		goto out_free_dev;
3377 
3378 	dev->dev = get_device(&pdev->dev);
3379 
3380 	quirks |= check_vendor_combination_bug(pdev);
3381 	if (!noacpi &&
3382 	    !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
3383 	    acpi_storage_d3(&pdev->dev)) {
3384 		/*
3385 		 * Some systems use a bios work around to ask for D3 on
3386 		 * platforms that support kernel managed suspend.
3387 		 */
3388 		dev_info(&pdev->dev,
3389 			 "platform quirk: setting simple suspend\n");
3390 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3391 	}
3392 	ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3393 			     quirks);
3394 	if (ret)
3395 		goto out_put_device;
3396 
3397 	if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
3398 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
3399 	else
3400 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3401 	dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
3402 	dma_set_max_seg_size(&pdev->dev, 0xffffffff);
3403 
3404 	/*
3405 	 * Limit the max command size to prevent iod->sg allocations going
3406 	 * over a single page.
3407 	 */
3408 	dev->ctrl.max_hw_sectors = min_t(u32,
3409 			NVME_MAX_BYTES >> SECTOR_SHIFT,
3410 			dma_opt_mapping_size(&pdev->dev) >> 9);
3411 	dev->ctrl.max_segments = NVME_MAX_SEGS;
3412 	dev->ctrl.max_integrity_segments = 1;
3413 	return dev;
3414 
3415 out_put_device:
3416 	put_device(dev->dev);
3417 	kfree(dev->queues);
3418 out_free_dev:
3419 	kfree(dev);
3420 	return ERR_PTR(ret);
3421 }
3422 
3423 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3424 {
3425 	struct nvme_dev *dev;
3426 	int result = -ENOMEM;
3427 
3428 	dev = nvme_pci_alloc_dev(pdev, id);
3429 	if (IS_ERR(dev))
3430 		return PTR_ERR(dev);
3431 
3432 	result = nvme_add_ctrl(&dev->ctrl);
3433 	if (result)
3434 		goto out_put_ctrl;
3435 
3436 	result = nvme_dev_map(dev);
3437 	if (result)
3438 		goto out_uninit_ctrl;
3439 
3440 	result = nvme_pci_alloc_iod_mempool(dev);
3441 	if (result)
3442 		goto out_dev_unmap;
3443 
3444 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3445 
3446 	result = nvme_pci_enable(dev);
3447 	if (result)
3448 		goto out_release_iod_mempool;
3449 
3450 	result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset,
3451 				&nvme_mq_admin_ops, sizeof(struct nvme_iod));
3452 	if (result)
3453 		goto out_disable;
3454 
3455 	/*
3456 	 * Mark the controller as connecting before sending admin commands to
3457 	 * allow the timeout handler to do the right thing.
3458 	 */
3459 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
3460 		dev_warn(dev->ctrl.device,
3461 			"failed to mark controller CONNECTING\n");
3462 		result = -EBUSY;
3463 		goto out_disable;
3464 	}
3465 
3466 	result = nvme_init_ctrl_finish(&dev->ctrl, false);
3467 	if (result)
3468 		goto out_disable;
3469 
3470 	if (nvme_ctrl_meta_sgl_supported(&dev->ctrl))
3471 		dev->ctrl.max_integrity_segments = NVME_MAX_META_SEGS;
3472 	else
3473 		dev->ctrl.max_integrity_segments = 1;
3474 
3475 	nvme_dbbuf_dma_alloc(dev);
3476 
3477 	result = nvme_setup_host_mem(dev);
3478 	if (result < 0)
3479 		goto out_disable;
3480 
3481 	nvme_update_attrs(dev);
3482 
3483 	result = nvme_setup_io_queues(dev);
3484 	if (result)
3485 		goto out_disable;
3486 
3487 	if (dev->online_queues > 1) {
3488 		nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops,
3489 				nvme_pci_nr_maps(dev), sizeof(struct nvme_iod));
3490 		nvme_dbbuf_set(dev);
3491 	}
3492 
3493 	if (!dev->ctrl.tagset)
3494 		dev_warn(dev->ctrl.device, "IO queues not created\n");
3495 
3496 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
3497 		dev_warn(dev->ctrl.device,
3498 			"failed to mark controller live state\n");
3499 		result = -ENODEV;
3500 		goto out_disable;
3501 	}
3502 
3503 	pci_set_drvdata(pdev, dev);
3504 
3505 	nvme_start_ctrl(&dev->ctrl);
3506 	nvme_put_ctrl(&dev->ctrl);
3507 	flush_work(&dev->ctrl.scan_work);
3508 	return 0;
3509 
3510 out_disable:
3511 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3512 	nvme_dev_disable(dev, true);
3513 	nvme_free_host_mem(dev);
3514 	nvme_dev_remove_admin(dev);
3515 	nvme_dbbuf_dma_free(dev);
3516 	nvme_free_queues(dev, 0);
3517 out_release_iod_mempool:
3518 	mempool_destroy(dev->dmavec_mempool);
3519 out_dev_unmap:
3520 	nvme_dev_unmap(dev);
3521 out_uninit_ctrl:
3522 	nvme_uninit_ctrl(&dev->ctrl);
3523 out_put_ctrl:
3524 	nvme_put_ctrl(&dev->ctrl);
3525 	return result;
3526 }
3527 
3528 static void nvme_reset_prepare(struct pci_dev *pdev)
3529 {
3530 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3531 
3532 	/*
3533 	 * We don't need to check the return value from waiting for the reset
3534 	 * state as pci_dev device lock is held, making it impossible to race
3535 	 * with ->remove().
3536 	 */
3537 	nvme_disable_prepare_reset(dev, false);
3538 	nvme_sync_queues(&dev->ctrl);
3539 }
3540 
3541 static void nvme_reset_done(struct pci_dev *pdev)
3542 {
3543 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3544 
3545 	if (!nvme_try_sched_reset(&dev->ctrl))
3546 		flush_work(&dev->ctrl.reset_work);
3547 }
3548 
3549 static void nvme_shutdown(struct pci_dev *pdev)
3550 {
3551 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3552 
3553 	nvme_disable_prepare_reset(dev, true);
3554 }
3555 
3556 /*
3557  * The driver's remove may be called on a device in a partially initialized
3558  * state. This function must not have any dependencies on the device state in
3559  * order to proceed.
3560  */
3561 static void nvme_remove(struct pci_dev *pdev)
3562 {
3563 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3564 
3565 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3566 	pci_set_drvdata(pdev, NULL);
3567 
3568 	if (!pci_device_is_present(pdev)) {
3569 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3570 		nvme_dev_disable(dev, true);
3571 	}
3572 
3573 	flush_work(&dev->ctrl.reset_work);
3574 	nvme_stop_ctrl(&dev->ctrl);
3575 	nvme_remove_namespaces(&dev->ctrl);
3576 	nvme_dev_disable(dev, true);
3577 	nvme_free_host_mem(dev);
3578 	nvme_dev_remove_admin(dev);
3579 	nvme_dbbuf_dma_free(dev);
3580 	nvme_free_queues(dev, 0);
3581 	mempool_destroy(dev->dmavec_mempool);
3582 	nvme_release_descriptor_pools(dev);
3583 	nvme_dev_unmap(dev);
3584 	nvme_uninit_ctrl(&dev->ctrl);
3585 }
3586 
3587 #ifdef CONFIG_PM_SLEEP
3588 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3589 {
3590 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3591 }
3592 
3593 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3594 {
3595 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3596 }
3597 
3598 static int nvme_resume(struct device *dev)
3599 {
3600 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3601 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3602 
3603 	if (ndev->last_ps == U32_MAX ||
3604 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3605 		goto reset;
3606 	if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3607 		goto reset;
3608 
3609 	return 0;
3610 reset:
3611 	return nvme_try_sched_reset(ctrl);
3612 }
3613 
3614 static int nvme_suspend(struct device *dev)
3615 {
3616 	struct pci_dev *pdev = to_pci_dev(dev);
3617 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3618 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3619 	int ret = -EBUSY;
3620 
3621 	ndev->last_ps = U32_MAX;
3622 
3623 	/*
3624 	 * The platform does not remove power for a kernel managed suspend so
3625 	 * use host managed nvme power settings for lowest idle power if
3626 	 * possible. This should have quicker resume latency than a full device
3627 	 * shutdown.  But if the firmware is involved after the suspend or the
3628 	 * device does not support any non-default power states, shut down the
3629 	 * device fully.
3630 	 *
3631 	 * If ASPM is not enabled for the device, shut down the device and allow
3632 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3633 	 * down, so as to allow the platform to achieve its minimum low-power
3634 	 * state (which may not be possible if the link is up).
3635 	 */
3636 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3637 	    !pcie_aspm_enabled(pdev) ||
3638 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3639 		return nvme_disable_prepare_reset(ndev, true);
3640 
3641 	nvme_start_freeze(ctrl);
3642 	nvme_wait_freeze(ctrl);
3643 	nvme_sync_queues(ctrl);
3644 
3645 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3646 		goto unfreeze;
3647 
3648 	/*
3649 	 * Host memory access may not be successful in a system suspend state,
3650 	 * but the specification allows the controller to access memory in a
3651 	 * non-operational power state.
3652 	 */
3653 	if (ndev->hmb) {
3654 		ret = nvme_set_host_mem(ndev, 0);
3655 		if (ret < 0)
3656 			goto unfreeze;
3657 	}
3658 
3659 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3660 	if (ret < 0)
3661 		goto unfreeze;
3662 
3663 	/*
3664 	 * A saved state prevents pci pm from generically controlling the
3665 	 * device's power. If we're using protocol specific settings, we don't
3666 	 * want pci interfering.
3667 	 */
3668 	pci_save_state(pdev);
3669 
3670 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3671 	if (ret < 0)
3672 		goto unfreeze;
3673 
3674 	if (ret) {
3675 		/* discard the saved state */
3676 		pci_load_saved_state(pdev, NULL);
3677 
3678 		/*
3679 		 * Clearing npss forces a controller reset on resume. The
3680 		 * correct value will be rediscovered then.
3681 		 */
3682 		ret = nvme_disable_prepare_reset(ndev, true);
3683 		ctrl->npss = 0;
3684 	}
3685 unfreeze:
3686 	nvme_unfreeze(ctrl);
3687 	return ret;
3688 }
3689 
3690 static int nvme_simple_suspend(struct device *dev)
3691 {
3692 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3693 
3694 	return nvme_disable_prepare_reset(ndev, true);
3695 }
3696 
3697 static int nvme_simple_resume(struct device *dev)
3698 {
3699 	struct pci_dev *pdev = to_pci_dev(dev);
3700 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3701 
3702 	return nvme_try_sched_reset(&ndev->ctrl);
3703 }
3704 
3705 static const struct dev_pm_ops nvme_dev_pm_ops = {
3706 	.suspend	= nvme_suspend,
3707 	.resume		= nvme_resume,
3708 	.freeze		= nvme_simple_suspend,
3709 	.thaw		= nvme_simple_resume,
3710 	.poweroff	= nvme_simple_suspend,
3711 	.restore	= nvme_simple_resume,
3712 };
3713 #endif /* CONFIG_PM_SLEEP */
3714 
3715 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3716 						pci_channel_state_t state)
3717 {
3718 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3719 
3720 	/*
3721 	 * A frozen channel requires a reset. When detected, this method will
3722 	 * shutdown the controller to quiesce. The controller will be restarted
3723 	 * after the slot reset through driver's slot_reset callback.
3724 	 */
3725 	switch (state) {
3726 	case pci_channel_io_normal:
3727 		return PCI_ERS_RESULT_CAN_RECOVER;
3728 	case pci_channel_io_frozen:
3729 		dev_warn(dev->ctrl.device,
3730 			"frozen state error detected, reset controller\n");
3731 		if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) {
3732 			nvme_dev_disable(dev, true);
3733 			return PCI_ERS_RESULT_DISCONNECT;
3734 		}
3735 		nvme_dev_disable(dev, false);
3736 		return PCI_ERS_RESULT_NEED_RESET;
3737 	case pci_channel_io_perm_failure:
3738 		dev_warn(dev->ctrl.device,
3739 			"failure state error detected, request disconnect\n");
3740 		return PCI_ERS_RESULT_DISCONNECT;
3741 	}
3742 	return PCI_ERS_RESULT_NEED_RESET;
3743 }
3744 
3745 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3746 {
3747 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3748 
3749 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3750 	pci_restore_state(pdev);
3751 	if (nvme_try_sched_reset(&dev->ctrl))
3752 		nvme_unquiesce_io_queues(&dev->ctrl);
3753 	return PCI_ERS_RESULT_RECOVERED;
3754 }
3755 
3756 static void nvme_error_resume(struct pci_dev *pdev)
3757 {
3758 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3759 
3760 	flush_work(&dev->ctrl.reset_work);
3761 }
3762 
3763 static const struct pci_error_handlers nvme_err_handler = {
3764 	.error_detected	= nvme_error_detected,
3765 	.slot_reset	= nvme_slot_reset,
3766 	.resume		= nvme_error_resume,
3767 	.reset_prepare	= nvme_reset_prepare,
3768 	.reset_done	= nvme_reset_done,
3769 };
3770 
3771 static const struct pci_device_id nvme_id_table[] = {
3772 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3773 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3774 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3775 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3776 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3777 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3778 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3779 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3780 				NVME_QUIRK_IGNORE_DEV_SUBNQN |
3781 				NVME_QUIRK_BOGUS_NID, },
3782 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3783 		.driver_data = NVME_QUIRK_STRIPE_SIZE, },
3784 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3785 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3786 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3787 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3788 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3789 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3790 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3791 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3792 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3793 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3794 				NVME_QUIRK_BOGUS_NID, },
3795 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3796 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3797 	{ PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3798 		.driver_data = NVME_QUIRK_DMAPOOL_ALIGN_512, },
3799 	{ PCI_DEVICE(0x126f, 0x1001),	/* Silicon Motion generic */
3800 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3801 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3802 	{ PCI_DEVICE(0x126f, 0x2262),	/* Silicon Motion generic */
3803 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3804 				NVME_QUIRK_BOGUS_NID, },
3805 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3806 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3807 				NVME_QUIRK_BOGUS_NID, },
3808 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3809 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3810 				NVME_QUIRK_NO_NS_DESC_LIST, },
3811 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3812 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3813 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3814 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3815 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3816 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3817 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3818 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3819 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3820 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3821 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3822 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3823 	{ PCI_DEVICE(0x15b7, 0x5008),   /* Sandisk SN530 */
3824 		.driver_data = NVME_QUIRK_BROKEN_MSI },
3825 	{ PCI_DEVICE(0x15b7, 0x5009),   /* Sandisk SN550 */
3826 		.driver_data = NVME_QUIRK_BROKEN_MSI |
3827 				NVME_QUIRK_NO_DEEPEST_PS },
3828 	{ PCI_DEVICE(0x1987, 0x5012),	/* Phison E12 */
3829 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3830 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3831 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3832 				NVME_QUIRK_BOGUS_NID, },
3833 	{ PCI_DEVICE(0x1987, 0x5019),  /* phison E19 */
3834 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3835 	{ PCI_DEVICE(0x1987, 0x5021),   /* Phison E21 */
3836 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3837 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3838 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3839 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3840 	{ PCI_DEVICE(0x1cc1, 0x33f8),   /* ADATA IM2P33F8ABR1 1 TB */
3841 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3842 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3843 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3844 				NVME_QUIRK_BOGUS_NID, },
3845 	{ PCI_DEVICE(0x10ec, 0x5763),  /* ADATA SX6000PNP */
3846 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3847 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3848 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3849 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3850 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3851 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3852 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3853 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3854 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3855 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3856 	{ PCI_DEVICE(0x1c5c, 0x174a),   /* SK Hynix P31 SSD */
3857 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3858 	{ PCI_DEVICE(0x1c5c, 0x1D59),   /* SK Hynix BC901 */
3859 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3860 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3861 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3862 	{ PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3863 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3864 	{ PCI_DEVICE(0x144d, 0xa80b),   /* Samsung PM9B1 256G and 512G */
3865 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3866 				NVME_QUIRK_BOGUS_NID, },
3867 	{ PCI_DEVICE(0x144d, 0xa809),   /* Samsung MZALQ256HBJD 256G */
3868 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3869 	{ PCI_DEVICE(0x144d, 0xa802),   /* Samsung SM953 */
3870 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3871 	{ PCI_DEVICE(0x1cc4, 0x6303),   /* UMIS RPJTJ512MGE1QDY 512G */
3872 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3873 	{ PCI_DEVICE(0x1cc4, 0x6302),   /* UMIS RPJTJ256MGE1QDY 256G */
3874 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3875 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3876 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3877 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3878 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3879 	{ PCI_DEVICE(0x2646, 0x5013),   /* Kingston KC3000, Kingston FURY Renegade */
3880 		.driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3881 	{ PCI_DEVICE(0x2646, 0x5018),   /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3882 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3883 	{ PCI_DEVICE(0x2646, 0x5016),   /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3884 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3885 	{ PCI_DEVICE(0x2646, 0x501A),   /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3886 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3887 	{ PCI_DEVICE(0x2646, 0x501B),   /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3888 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3889 	{ PCI_DEVICE(0x2646, 0x501E),   /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3890 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3891 	{ PCI_DEVICE(0x1f40, 0x1202),   /* Netac Technologies Co. NV3000 NVMe SSD */
3892 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3893 	{ PCI_DEVICE(0x1f40, 0x5236),   /* Netac Technologies Co. NV7000 NVMe SSD */
3894 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3895 	{ PCI_DEVICE(0x1e4B, 0x1001),   /* MAXIO MAP1001 */
3896 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3897 	{ PCI_DEVICE(0x1e4B, 0x1002),   /* MAXIO MAP1002 */
3898 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3899 	{ PCI_DEVICE(0x1e4B, 0x1202),   /* MAXIO MAP1202 */
3900 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3901 	{ PCI_DEVICE(0x1e4B, 0x1602),   /* MAXIO MAP1602 */
3902 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3903 	{ PCI_DEVICE(0x1cc1, 0x5350),   /* ADATA XPG GAMMIX S50 */
3904 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3905 	{ PCI_DEVICE(0x1dbe, 0x5216),   /* Acer/INNOGRIT FA100/5216 NVMe SSD */
3906 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3907 	{ PCI_DEVICE(0x1dbe, 0x5236),   /* ADATA XPG GAMMIX S70 */
3908 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3909 	{ PCI_DEVICE(0x1e49, 0x0021),   /* ZHITAI TiPro5000 NVMe SSD */
3910 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3911 	{ PCI_DEVICE(0x1e49, 0x0041),   /* ZHITAI TiPro7000 NVMe SSD */
3912 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3913 	{ PCI_DEVICE(0x025e, 0xf1ac),   /* SOLIDIGM  P44 pro SSDPFKKW020X7  */
3914 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3915 	{ PCI_DEVICE(0xc0a9, 0x540a),   /* Crucial P2 */
3916 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3917 	{ PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3918 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3919 	{ PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3920 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3921 	{ PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3922 		.driver_data = NVME_QUIRK_BOGUS_NID |
3923 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3924 	{ PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3925 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3926 	{ PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G  */
3927 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3928 	{ PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3929 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3930 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3931 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3932 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3933 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3934 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3935 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3936 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3937 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3938 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3939 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3940 	{ PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3941 		.driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3942 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3943 		/*
3944 		 * Fix for the Apple controller found in the MacBook8,1 and
3945 		 * some MacBook7,1 to avoid controller resets and data loss.
3946 		 */
3947 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3948 				NVME_QUIRK_QDEPTH_ONE },
3949 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3950 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3951 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3952 				NVME_QUIRK_128_BYTES_SQES |
3953 				NVME_QUIRK_SHARED_TAGS |
3954 				NVME_QUIRK_SKIP_CID_GEN |
3955 				NVME_QUIRK_IDENTIFY_CNS },
3956 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3957 	{ 0, }
3958 };
3959 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3960 
3961 static struct pci_driver nvme_driver = {
3962 	.name		= "nvme",
3963 	.id_table	= nvme_id_table,
3964 	.probe		= nvme_probe,
3965 	.remove		= nvme_remove,
3966 	.shutdown	= nvme_shutdown,
3967 	.driver		= {
3968 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
3969 #ifdef CONFIG_PM_SLEEP
3970 		.pm		= &nvme_dev_pm_ops,
3971 #endif
3972 	},
3973 	.sriov_configure = pci_sriov_configure_simple,
3974 	.err_handler	= &nvme_err_handler,
3975 };
3976 
3977 static int __init nvme_init(void)
3978 {
3979 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3980 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3981 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3982 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3983 
3984 	return pci_register_driver(&nvme_driver);
3985 }
3986 
3987 static void __exit nvme_exit(void)
3988 {
3989 	pci_unregister_driver(&nvme_driver);
3990 	flush_workqueue(nvme_wq);
3991 }
3992 
3993 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3994 MODULE_LICENSE("GPL");
3995 MODULE_VERSION("1.0");
3996 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3997 module_init(nvme_init);
3998 module_exit(nvme_exit);
3999