1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/async.h> 9 #include <linux/blkdev.h> 10 #include <linux/blk-mq.h> 11 #include <linux/blk-mq-pci.h> 12 #include <linux/blk-integrity.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/kstrtox.h> 18 #include <linux/memremap.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/once.h> 23 #include <linux/pci.h> 24 #include <linux/suspend.h> 25 #include <linux/t10-pi.h> 26 #include <linux/types.h> 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #include <linux/io-64-nonatomic-hi-lo.h> 29 #include <linux/sed-opal.h> 30 #include <linux/pci-p2pdma.h> 31 32 #include "trace.h" 33 #include "nvme.h" 34 35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) 36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) 37 38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc)) 39 40 /* 41 * These can be higher, but we need to ensure that any command doesn't 42 * require an sg allocation that needs more than a page of data. 43 */ 44 #define NVME_MAX_KB_SZ 8192 45 #define NVME_MAX_SEGS 128 46 #define NVME_MAX_NR_ALLOCATIONS 5 47 48 static int use_threaded_interrupts; 49 module_param(use_threaded_interrupts, int, 0444); 50 51 static bool use_cmb_sqes = true; 52 module_param(use_cmb_sqes, bool, 0444); 53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); 54 55 static unsigned int max_host_mem_size_mb = 128; 56 module_param(max_host_mem_size_mb, uint, 0444); 57 MODULE_PARM_DESC(max_host_mem_size_mb, 58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); 59 60 static unsigned int sgl_threshold = SZ_32K; 61 module_param(sgl_threshold, uint, 0644); 62 MODULE_PARM_DESC(sgl_threshold, 63 "Use SGLs when average request segment size is larger or equal to " 64 "this size. Use 0 to disable SGLs."); 65 66 #define NVME_PCI_MIN_QUEUE_SIZE 2 67 #define NVME_PCI_MAX_QUEUE_SIZE 4095 68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp); 69 static const struct kernel_param_ops io_queue_depth_ops = { 70 .set = io_queue_depth_set, 71 .get = param_get_uint, 72 }; 73 74 static unsigned int io_queue_depth = 1024; 75 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); 76 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096"); 77 78 static int io_queue_count_set(const char *val, const struct kernel_param *kp) 79 { 80 unsigned int n; 81 int ret; 82 83 ret = kstrtouint(val, 10, &n); 84 if (ret != 0 || n > num_possible_cpus()) 85 return -EINVAL; 86 return param_set_uint(val, kp); 87 } 88 89 static const struct kernel_param_ops io_queue_count_ops = { 90 .set = io_queue_count_set, 91 .get = param_get_uint, 92 }; 93 94 static unsigned int write_queues; 95 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); 96 MODULE_PARM_DESC(write_queues, 97 "Number of queues to use for writes. If not set, reads and writes " 98 "will share a queue set."); 99 100 static unsigned int poll_queues; 101 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); 102 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); 103 104 static bool noacpi; 105 module_param(noacpi, bool, 0444); 106 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); 107 108 struct nvme_dev; 109 struct nvme_queue; 110 111 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); 112 static void nvme_delete_io_queues(struct nvme_dev *dev); 113 static void nvme_update_attrs(struct nvme_dev *dev); 114 115 /* 116 * Represents an NVM Express device. Each nvme_dev is a PCI function. 117 */ 118 struct nvme_dev { 119 struct nvme_queue *queues; 120 struct blk_mq_tag_set tagset; 121 struct blk_mq_tag_set admin_tagset; 122 u32 __iomem *dbs; 123 struct device *dev; 124 struct dma_pool *prp_page_pool; 125 struct dma_pool *prp_small_pool; 126 unsigned online_queues; 127 unsigned max_qid; 128 unsigned io_queues[HCTX_MAX_TYPES]; 129 unsigned int num_vecs; 130 u32 q_depth; 131 int io_sqes; 132 u32 db_stride; 133 void __iomem *bar; 134 unsigned long bar_mapped_size; 135 struct mutex shutdown_lock; 136 bool subsystem; 137 u64 cmb_size; 138 bool cmb_use_sqes; 139 u32 cmbsz; 140 u32 cmbloc; 141 struct nvme_ctrl ctrl; 142 u32 last_ps; 143 bool hmb; 144 145 mempool_t *iod_mempool; 146 147 /* shadow doorbell buffer support: */ 148 __le32 *dbbuf_dbs; 149 dma_addr_t dbbuf_dbs_dma_addr; 150 __le32 *dbbuf_eis; 151 dma_addr_t dbbuf_eis_dma_addr; 152 153 /* host memory buffer support: */ 154 u64 host_mem_size; 155 u32 nr_host_mem_descs; 156 dma_addr_t host_mem_descs_dma; 157 struct nvme_host_mem_buf_desc *host_mem_descs; 158 void **host_mem_desc_bufs; 159 unsigned int nr_allocated_queues; 160 unsigned int nr_write_queues; 161 unsigned int nr_poll_queues; 162 }; 163 164 static int io_queue_depth_set(const char *val, const struct kernel_param *kp) 165 { 166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE, 167 NVME_PCI_MAX_QUEUE_SIZE); 168 } 169 170 static inline unsigned int sq_idx(unsigned int qid, u32 stride) 171 { 172 return qid * 2 * stride; 173 } 174 175 static inline unsigned int cq_idx(unsigned int qid, u32 stride) 176 { 177 return (qid * 2 + 1) * stride; 178 } 179 180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) 181 { 182 return container_of(ctrl, struct nvme_dev, ctrl); 183 } 184 185 /* 186 * An NVM Express queue. Each device has at least two (one for admin 187 * commands and one for I/O commands). 188 */ 189 struct nvme_queue { 190 struct nvme_dev *dev; 191 spinlock_t sq_lock; 192 void *sq_cmds; 193 /* only used for poll queues: */ 194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; 195 struct nvme_completion *cqes; 196 dma_addr_t sq_dma_addr; 197 dma_addr_t cq_dma_addr; 198 u32 __iomem *q_db; 199 u32 q_depth; 200 u16 cq_vector; 201 u16 sq_tail; 202 u16 last_sq_tail; 203 u16 cq_head; 204 u16 qid; 205 u8 cq_phase; 206 u8 sqes; 207 unsigned long flags; 208 #define NVMEQ_ENABLED 0 209 #define NVMEQ_SQ_CMB 1 210 #define NVMEQ_DELETE_ERROR 2 211 #define NVMEQ_POLLED 3 212 __le32 *dbbuf_sq_db; 213 __le32 *dbbuf_cq_db; 214 __le32 *dbbuf_sq_ei; 215 __le32 *dbbuf_cq_ei; 216 struct completion delete_done; 217 }; 218 219 union nvme_descriptor { 220 struct nvme_sgl_desc *sg_list; 221 __le64 *prp_list; 222 }; 223 224 /* 225 * The nvme_iod describes the data in an I/O. 226 * 227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition 228 * to the actual struct scatterlist. 229 */ 230 struct nvme_iod { 231 struct nvme_request req; 232 struct nvme_command cmd; 233 bool aborted; 234 s8 nr_allocations; /* PRP list pool allocations. 0 means small 235 pool in use */ 236 unsigned int dma_len; /* length of single DMA segment mapping */ 237 dma_addr_t first_dma; 238 dma_addr_t meta_dma; 239 struct sg_table sgt; 240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS]; 241 }; 242 243 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) 244 { 245 return dev->nr_allocated_queues * 8 * dev->db_stride; 246 } 247 248 static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev) 249 { 250 unsigned int mem_size = nvme_dbbuf_size(dev); 251 252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP)) 253 return; 254 255 if (dev->dbbuf_dbs) { 256 /* 257 * Clear the dbbuf memory so the driver doesn't observe stale 258 * values from the previous instantiation. 259 */ 260 memset(dev->dbbuf_dbs, 0, mem_size); 261 memset(dev->dbbuf_eis, 0, mem_size); 262 return; 263 } 264 265 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, 266 &dev->dbbuf_dbs_dma_addr, 267 GFP_KERNEL); 268 if (!dev->dbbuf_dbs) 269 goto fail; 270 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, 271 &dev->dbbuf_eis_dma_addr, 272 GFP_KERNEL); 273 if (!dev->dbbuf_eis) 274 goto fail_free_dbbuf_dbs; 275 return; 276 277 fail_free_dbbuf_dbs: 278 dma_free_coherent(dev->dev, mem_size, dev->dbbuf_dbs, 279 dev->dbbuf_dbs_dma_addr); 280 dev->dbbuf_dbs = NULL; 281 fail: 282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n"); 283 } 284 285 static void nvme_dbbuf_dma_free(struct nvme_dev *dev) 286 { 287 unsigned int mem_size = nvme_dbbuf_size(dev); 288 289 if (dev->dbbuf_dbs) { 290 dma_free_coherent(dev->dev, mem_size, 291 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); 292 dev->dbbuf_dbs = NULL; 293 } 294 if (dev->dbbuf_eis) { 295 dma_free_coherent(dev->dev, mem_size, 296 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); 297 dev->dbbuf_eis = NULL; 298 } 299 } 300 301 static void nvme_dbbuf_init(struct nvme_dev *dev, 302 struct nvme_queue *nvmeq, int qid) 303 { 304 if (!dev->dbbuf_dbs || !qid) 305 return; 306 307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; 308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; 309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; 310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; 311 } 312 313 static void nvme_dbbuf_free(struct nvme_queue *nvmeq) 314 { 315 if (!nvmeq->qid) 316 return; 317 318 nvmeq->dbbuf_sq_db = NULL; 319 nvmeq->dbbuf_cq_db = NULL; 320 nvmeq->dbbuf_sq_ei = NULL; 321 nvmeq->dbbuf_cq_ei = NULL; 322 } 323 324 static void nvme_dbbuf_set(struct nvme_dev *dev) 325 { 326 struct nvme_command c = { }; 327 unsigned int i; 328 329 if (!dev->dbbuf_dbs) 330 return; 331 332 c.dbbuf.opcode = nvme_admin_dbbuf; 333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); 334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); 335 336 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { 337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); 338 /* Free memory and continue on */ 339 nvme_dbbuf_dma_free(dev); 340 341 for (i = 1; i <= dev->online_queues; i++) 342 nvme_dbbuf_free(&dev->queues[i]); 343 } 344 } 345 346 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) 347 { 348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); 349 } 350 351 /* Update dbbuf and return true if an MMIO is required */ 352 static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db, 353 volatile __le32 *dbbuf_ei) 354 { 355 if (dbbuf_db) { 356 u16 old_value, event_idx; 357 358 /* 359 * Ensure that the queue is written before updating 360 * the doorbell in memory 361 */ 362 wmb(); 363 364 old_value = le32_to_cpu(*dbbuf_db); 365 *dbbuf_db = cpu_to_le32(value); 366 367 /* 368 * Ensure that the doorbell is updated before reading the event 369 * index from memory. The controller needs to provide similar 370 * ordering to ensure the envent index is updated before reading 371 * the doorbell. 372 */ 373 mb(); 374 375 event_idx = le32_to_cpu(*dbbuf_ei); 376 if (!nvme_dbbuf_need_event(event_idx, value, old_value)) 377 return false; 378 } 379 380 return true; 381 } 382 383 /* 384 * Will slightly overestimate the number of pages needed. This is OK 385 * as it only leads to a small amount of wasted memory for the lifetime of 386 * the I/O. 387 */ 388 static int nvme_pci_npages_prp(void) 389 { 390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE; 391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE); 392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8); 393 } 394 395 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 396 unsigned int hctx_idx) 397 { 398 struct nvme_dev *dev = to_nvme_dev(data); 399 struct nvme_queue *nvmeq = &dev->queues[0]; 400 401 WARN_ON(hctx_idx != 0); 402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); 403 404 hctx->driver_data = nvmeq; 405 return 0; 406 } 407 408 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 409 unsigned int hctx_idx) 410 { 411 struct nvme_dev *dev = to_nvme_dev(data); 412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; 413 414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); 415 hctx->driver_data = nvmeq; 416 return 0; 417 } 418 419 static int nvme_pci_init_request(struct blk_mq_tag_set *set, 420 struct request *req, unsigned int hctx_idx, 421 unsigned int numa_node) 422 { 423 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 424 425 nvme_req(req)->ctrl = set->driver_data; 426 nvme_req(req)->cmd = &iod->cmd; 427 return 0; 428 } 429 430 static int queue_irq_offset(struct nvme_dev *dev) 431 { 432 /* if we have more than 1 vec, admin queue offsets us by 1 */ 433 if (dev->num_vecs > 1) 434 return 1; 435 436 return 0; 437 } 438 439 static void nvme_pci_map_queues(struct blk_mq_tag_set *set) 440 { 441 struct nvme_dev *dev = to_nvme_dev(set->driver_data); 442 int i, qoff, offset; 443 444 offset = queue_irq_offset(dev); 445 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 446 struct blk_mq_queue_map *map = &set->map[i]; 447 448 map->nr_queues = dev->io_queues[i]; 449 if (!map->nr_queues) { 450 BUG_ON(i == HCTX_TYPE_DEFAULT); 451 continue; 452 } 453 454 /* 455 * The poll queue(s) doesn't have an IRQ (and hence IRQ 456 * affinity), so use the regular blk-mq cpu mapping 457 */ 458 map->queue_offset = qoff; 459 if (i != HCTX_TYPE_POLL && offset) 460 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); 461 else 462 blk_mq_map_queues(map); 463 qoff += map->nr_queues; 464 offset += map->nr_queues; 465 } 466 } 467 468 /* 469 * Write sq tail if we are asked to, or if the next command would wrap. 470 */ 471 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) 472 { 473 if (!write_sq) { 474 u16 next_tail = nvmeq->sq_tail + 1; 475 476 if (next_tail == nvmeq->q_depth) 477 next_tail = 0; 478 if (next_tail != nvmeq->last_sq_tail) 479 return; 480 } 481 482 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, 483 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) 484 writel(nvmeq->sq_tail, nvmeq->q_db); 485 nvmeq->last_sq_tail = nvmeq->sq_tail; 486 } 487 488 static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq, 489 struct nvme_command *cmd) 490 { 491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), 492 absolute_pointer(cmd), sizeof(*cmd)); 493 if (++nvmeq->sq_tail == nvmeq->q_depth) 494 nvmeq->sq_tail = 0; 495 } 496 497 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) 498 { 499 struct nvme_queue *nvmeq = hctx->driver_data; 500 501 spin_lock(&nvmeq->sq_lock); 502 if (nvmeq->sq_tail != nvmeq->last_sq_tail) 503 nvme_write_sq_db(nvmeq, true); 504 spin_unlock(&nvmeq->sq_lock); 505 } 506 507 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req, 508 int nseg) 509 { 510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 511 unsigned int avg_seg_size; 512 513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); 514 515 if (!nvme_ctrl_sgl_supported(&dev->ctrl)) 516 return false; 517 if (!nvmeq->qid) 518 return false; 519 if (!sgl_threshold || avg_seg_size < sgl_threshold) 520 return false; 521 return true; 522 } 523 524 static void nvme_free_prps(struct nvme_dev *dev, struct request *req) 525 { 526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; 527 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 528 dma_addr_t dma_addr = iod->first_dma; 529 int i; 530 531 for (i = 0; i < iod->nr_allocations; i++) { 532 __le64 *prp_list = iod->list[i].prp_list; 533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]); 534 535 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr); 536 dma_addr = next_dma_addr; 537 } 538 } 539 540 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) 541 { 542 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 543 544 if (iod->dma_len) { 545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len, 546 rq_dma_dir(req)); 547 return; 548 } 549 550 WARN_ON_ONCE(!iod->sgt.nents); 551 552 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 553 554 if (iod->nr_allocations == 0) 555 dma_pool_free(dev->prp_small_pool, iod->list[0].sg_list, 556 iod->first_dma); 557 else if (iod->nr_allocations == 1) 558 dma_pool_free(dev->prp_page_pool, iod->list[0].sg_list, 559 iod->first_dma); 560 else 561 nvme_free_prps(dev, req); 562 mempool_free(iod->sgt.sgl, dev->iod_mempool); 563 } 564 565 static void nvme_print_sgl(struct scatterlist *sgl, int nents) 566 { 567 int i; 568 struct scatterlist *sg; 569 570 for_each_sg(sgl, sg, nents, i) { 571 dma_addr_t phys = sg_phys(sg); 572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " 573 "dma_address:%pad dma_length:%d\n", 574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg), 575 sg_dma_len(sg)); 576 } 577 } 578 579 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, 580 struct request *req, struct nvme_rw_command *cmnd) 581 { 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 583 struct dma_pool *pool; 584 int length = blk_rq_payload_bytes(req); 585 struct scatterlist *sg = iod->sgt.sgl; 586 int dma_len = sg_dma_len(sg); 587 u64 dma_addr = sg_dma_address(sg); 588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); 589 __le64 *prp_list; 590 dma_addr_t prp_dma; 591 int nprps, i; 592 593 length -= (NVME_CTRL_PAGE_SIZE - offset); 594 if (length <= 0) { 595 iod->first_dma = 0; 596 goto done; 597 } 598 599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset); 600 if (dma_len) { 601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset); 602 } else { 603 sg = sg_next(sg); 604 dma_addr = sg_dma_address(sg); 605 dma_len = sg_dma_len(sg); 606 } 607 608 if (length <= NVME_CTRL_PAGE_SIZE) { 609 iod->first_dma = dma_addr; 610 goto done; 611 } 612 613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); 614 if (nprps <= (256 / 8)) { 615 pool = dev->prp_small_pool; 616 iod->nr_allocations = 0; 617 } else { 618 pool = dev->prp_page_pool; 619 iod->nr_allocations = 1; 620 } 621 622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 623 if (!prp_list) { 624 iod->nr_allocations = -1; 625 return BLK_STS_RESOURCE; 626 } 627 iod->list[0].prp_list = prp_list; 628 iod->first_dma = prp_dma; 629 i = 0; 630 for (;;) { 631 if (i == NVME_CTRL_PAGE_SIZE >> 3) { 632 __le64 *old_prp_list = prp_list; 633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); 634 if (!prp_list) 635 goto free_prps; 636 iod->list[iod->nr_allocations++].prp_list = prp_list; 637 prp_list[0] = old_prp_list[i - 1]; 638 old_prp_list[i - 1] = cpu_to_le64(prp_dma); 639 i = 1; 640 } 641 prp_list[i++] = cpu_to_le64(dma_addr); 642 dma_len -= NVME_CTRL_PAGE_SIZE; 643 dma_addr += NVME_CTRL_PAGE_SIZE; 644 length -= NVME_CTRL_PAGE_SIZE; 645 if (length <= 0) 646 break; 647 if (dma_len > 0) 648 continue; 649 if (unlikely(dma_len < 0)) 650 goto bad_sgl; 651 sg = sg_next(sg); 652 dma_addr = sg_dma_address(sg); 653 dma_len = sg_dma_len(sg); 654 } 655 done: 656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl)); 657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); 658 return BLK_STS_OK; 659 free_prps: 660 nvme_free_prps(dev, req); 661 return BLK_STS_RESOURCE; 662 bad_sgl: 663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents), 664 "Invalid SGL for payload:%d nents:%d\n", 665 blk_rq_payload_bytes(req), iod->sgt.nents); 666 return BLK_STS_IOERR; 667 } 668 669 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, 670 struct scatterlist *sg) 671 { 672 sge->addr = cpu_to_le64(sg_dma_address(sg)); 673 sge->length = cpu_to_le32(sg_dma_len(sg)); 674 sge->type = NVME_SGL_FMT_DATA_DESC << 4; 675 } 676 677 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, 678 dma_addr_t dma_addr, int entries) 679 { 680 sge->addr = cpu_to_le64(dma_addr); 681 sge->length = cpu_to_le32(entries * sizeof(*sge)); 682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; 683 } 684 685 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, 686 struct request *req, struct nvme_rw_command *cmd) 687 { 688 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 689 struct dma_pool *pool; 690 struct nvme_sgl_desc *sg_list; 691 struct scatterlist *sg = iod->sgt.sgl; 692 unsigned int entries = iod->sgt.nents; 693 dma_addr_t sgl_dma; 694 int i = 0; 695 696 /* setting the transfer type as SGL */ 697 cmd->flags = NVME_CMD_SGL_METABUF; 698 699 if (entries == 1) { 700 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); 701 return BLK_STS_OK; 702 } 703 704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { 705 pool = dev->prp_small_pool; 706 iod->nr_allocations = 0; 707 } else { 708 pool = dev->prp_page_pool; 709 iod->nr_allocations = 1; 710 } 711 712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); 713 if (!sg_list) { 714 iod->nr_allocations = -1; 715 return BLK_STS_RESOURCE; 716 } 717 718 iod->list[0].sg_list = sg_list; 719 iod->first_dma = sgl_dma; 720 721 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); 722 do { 723 nvme_pci_sgl_set_data(&sg_list[i++], sg); 724 sg = sg_next(sg); 725 } while (--entries > 0); 726 727 return BLK_STS_OK; 728 } 729 730 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, 731 struct request *req, struct nvme_rw_command *cmnd, 732 struct bio_vec *bv) 733 { 734 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); 736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; 737 738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 739 if (dma_mapping_error(dev->dev, iod->first_dma)) 740 return BLK_STS_RESOURCE; 741 iod->dma_len = bv->bv_len; 742 743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); 744 if (bv->bv_len > first_prp_len) 745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); 746 else 747 cmnd->dptr.prp2 = 0; 748 return BLK_STS_OK; 749 } 750 751 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, 752 struct request *req, struct nvme_rw_command *cmnd, 753 struct bio_vec *bv) 754 { 755 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 756 757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); 758 if (dma_mapping_error(dev->dev, iod->first_dma)) 759 return BLK_STS_RESOURCE; 760 iod->dma_len = bv->bv_len; 761 762 cmnd->flags = NVME_CMD_SGL_METABUF; 763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); 764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); 765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; 766 return BLK_STS_OK; 767 } 768 769 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, 770 struct nvme_command *cmnd) 771 { 772 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 773 blk_status_t ret = BLK_STS_RESOURCE; 774 int rc; 775 776 if (blk_rq_nr_phys_segments(req) == 1) { 777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 778 struct bio_vec bv = req_bvec(req); 779 780 if (!is_pci_p2pdma_page(bv.bv_page)) { 781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) 782 return nvme_setup_prp_simple(dev, req, 783 &cmnd->rw, &bv); 784 785 if (nvmeq->qid && sgl_threshold && 786 nvme_ctrl_sgl_supported(&dev->ctrl)) 787 return nvme_setup_sgl_simple(dev, req, 788 &cmnd->rw, &bv); 789 } 790 } 791 792 iod->dma_len = 0; 793 iod->sgt.sgl = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); 794 if (!iod->sgt.sgl) 795 return BLK_STS_RESOURCE; 796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(req)); 797 iod->sgt.orig_nents = blk_rq_map_sg(req->q, req, iod->sgt.sgl); 798 if (!iod->sgt.orig_nents) 799 goto out_free_sg; 800 801 rc = dma_map_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 802 DMA_ATTR_NO_WARN); 803 if (rc) { 804 if (rc == -EREMOTEIO) 805 ret = BLK_STS_TARGET; 806 goto out_free_sg; 807 } 808 809 if (nvme_pci_use_sgls(dev, req, iod->sgt.nents)) 810 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw); 811 else 812 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); 813 if (ret != BLK_STS_OK) 814 goto out_unmap_sg; 815 return BLK_STS_OK; 816 817 out_unmap_sg: 818 dma_unmap_sgtable(dev->dev, &iod->sgt, rq_dma_dir(req), 0); 819 out_free_sg: 820 mempool_free(iod->sgt.sgl, dev->iod_mempool); 821 return ret; 822 } 823 824 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, 825 struct nvme_command *cmnd) 826 { 827 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 828 829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), 830 rq_dma_dir(req), 0); 831 if (dma_mapping_error(dev->dev, iod->meta_dma)) 832 return BLK_STS_IOERR; 833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); 834 return BLK_STS_OK; 835 } 836 837 static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req) 838 { 839 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 840 blk_status_t ret; 841 842 iod->aborted = false; 843 iod->nr_allocations = -1; 844 iod->sgt.nents = 0; 845 846 ret = nvme_setup_cmd(req->q->queuedata, req); 847 if (ret) 848 return ret; 849 850 if (blk_rq_nr_phys_segments(req)) { 851 ret = nvme_map_data(dev, req, &iod->cmd); 852 if (ret) 853 goto out_free_cmd; 854 } 855 856 if (blk_integrity_rq(req)) { 857 ret = nvme_map_metadata(dev, req, &iod->cmd); 858 if (ret) 859 goto out_unmap_data; 860 } 861 862 nvme_start_request(req); 863 return BLK_STS_OK; 864 out_unmap_data: 865 nvme_unmap_data(dev, req); 866 out_free_cmd: 867 nvme_cleanup_cmd(req); 868 return ret; 869 } 870 871 /* 872 * NOTE: ns is NULL when called on the admin queue. 873 */ 874 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, 875 const struct blk_mq_queue_data *bd) 876 { 877 struct nvme_queue *nvmeq = hctx->driver_data; 878 struct nvme_dev *dev = nvmeq->dev; 879 struct request *req = bd->rq; 880 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 881 blk_status_t ret; 882 883 /* 884 * We should not need to do this, but we're still using this to 885 * ensure we can drain requests on a dying queue. 886 */ 887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 888 return BLK_STS_IOERR; 889 890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true))) 891 return nvme_fail_nonready_command(&dev->ctrl, req); 892 893 ret = nvme_prep_rq(dev, req); 894 if (unlikely(ret)) 895 return ret; 896 spin_lock(&nvmeq->sq_lock); 897 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 898 nvme_write_sq_db(nvmeq, bd->last); 899 spin_unlock(&nvmeq->sq_lock); 900 return BLK_STS_OK; 901 } 902 903 static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist) 904 { 905 spin_lock(&nvmeq->sq_lock); 906 while (!rq_list_empty(*rqlist)) { 907 struct request *req = rq_list_pop(rqlist); 908 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 909 910 nvme_sq_copy_cmd(nvmeq, &iod->cmd); 911 } 912 nvme_write_sq_db(nvmeq, true); 913 spin_unlock(&nvmeq->sq_lock); 914 } 915 916 static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req) 917 { 918 /* 919 * We should not need to do this, but we're still using this to 920 * ensure we can drain requests on a dying queue. 921 */ 922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) 923 return false; 924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true))) 925 return false; 926 927 req->mq_hctx->tags->rqs[req->tag] = req; 928 return nvme_prep_rq(nvmeq->dev, req) == BLK_STS_OK; 929 } 930 931 static void nvme_queue_rqs(struct request **rqlist) 932 { 933 struct request *req, *next, *prev = NULL; 934 struct request *requeue_list = NULL; 935 936 rq_list_for_each_safe(rqlist, req, next) { 937 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 938 939 if (!nvme_prep_rq_batch(nvmeq, req)) { 940 /* detach 'req' and add to remainder list */ 941 rq_list_move(rqlist, &requeue_list, req, prev); 942 943 req = prev; 944 if (!req) 945 continue; 946 } 947 948 if (!next || req->mq_hctx != next->mq_hctx) { 949 /* detach rest of list, and submit */ 950 req->rq_next = NULL; 951 nvme_submit_cmds(nvmeq, rqlist); 952 *rqlist = next; 953 prev = NULL; 954 } else 955 prev = req; 956 } 957 958 *rqlist = requeue_list; 959 } 960 961 static __always_inline void nvme_pci_unmap_rq(struct request *req) 962 { 963 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 964 struct nvme_dev *dev = nvmeq->dev; 965 966 if (blk_integrity_rq(req)) { 967 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 968 969 dma_unmap_page(dev->dev, iod->meta_dma, 970 rq_integrity_vec(req)->bv_len, rq_dma_dir(req)); 971 } 972 973 if (blk_rq_nr_phys_segments(req)) 974 nvme_unmap_data(dev, req); 975 } 976 977 static void nvme_pci_complete_rq(struct request *req) 978 { 979 nvme_pci_unmap_rq(req); 980 nvme_complete_rq(req); 981 } 982 983 static void nvme_pci_complete_batch(struct io_comp_batch *iob) 984 { 985 nvme_complete_batch(iob, nvme_pci_unmap_rq); 986 } 987 988 /* We read the CQE phase first to check if the rest of the entry is valid */ 989 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) 990 { 991 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; 992 993 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; 994 } 995 996 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) 997 { 998 u16 head = nvmeq->cq_head; 999 1000 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, 1001 nvmeq->dbbuf_cq_ei)) 1002 writel(head, nvmeq->q_db + nvmeq->dev->db_stride); 1003 } 1004 1005 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) 1006 { 1007 if (!nvmeq->qid) 1008 return nvmeq->dev->admin_tagset.tags[0]; 1009 return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; 1010 } 1011 1012 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, 1013 struct io_comp_batch *iob, u16 idx) 1014 { 1015 struct nvme_completion *cqe = &nvmeq->cqes[idx]; 1016 __u16 command_id = READ_ONCE(cqe->command_id); 1017 struct request *req; 1018 1019 /* 1020 * AEN requests are special as they don't time out and can 1021 * survive any kind of queue freeze and often don't respond to 1022 * aborts. We don't even bother to allocate a struct request 1023 * for them but rather special case them here. 1024 */ 1025 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) { 1026 nvme_complete_async_event(&nvmeq->dev->ctrl, 1027 cqe->status, &cqe->result); 1028 return; 1029 } 1030 1031 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id); 1032 if (unlikely(!req)) { 1033 dev_warn(nvmeq->dev->ctrl.device, 1034 "invalid id %d completed on queue %d\n", 1035 command_id, le16_to_cpu(cqe->sq_id)); 1036 return; 1037 } 1038 1039 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); 1040 if (!nvme_try_complete_req(req, cqe->status, cqe->result) && 1041 !blk_mq_add_to_batch(req, iob, nvme_req(req)->status, 1042 nvme_pci_complete_batch)) 1043 nvme_pci_complete_rq(req); 1044 } 1045 1046 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) 1047 { 1048 u32 tmp = nvmeq->cq_head + 1; 1049 1050 if (tmp == nvmeq->q_depth) { 1051 nvmeq->cq_head = 0; 1052 nvmeq->cq_phase ^= 1; 1053 } else { 1054 nvmeq->cq_head = tmp; 1055 } 1056 } 1057 1058 static inline int nvme_poll_cq(struct nvme_queue *nvmeq, 1059 struct io_comp_batch *iob) 1060 { 1061 int found = 0; 1062 1063 while (nvme_cqe_pending(nvmeq)) { 1064 found++; 1065 /* 1066 * load-load control dependency between phase and the rest of 1067 * the cqe requires a full read memory barrier 1068 */ 1069 dma_rmb(); 1070 nvme_handle_cqe(nvmeq, iob, nvmeq->cq_head); 1071 nvme_update_cq_head(nvmeq); 1072 } 1073 1074 if (found) 1075 nvme_ring_cq_doorbell(nvmeq); 1076 return found; 1077 } 1078 1079 static irqreturn_t nvme_irq(int irq, void *data) 1080 { 1081 struct nvme_queue *nvmeq = data; 1082 DEFINE_IO_COMP_BATCH(iob); 1083 1084 if (nvme_poll_cq(nvmeq, &iob)) { 1085 if (!rq_list_empty(iob.req_list)) 1086 nvme_pci_complete_batch(&iob); 1087 return IRQ_HANDLED; 1088 } 1089 return IRQ_NONE; 1090 } 1091 1092 static irqreturn_t nvme_irq_check(int irq, void *data) 1093 { 1094 struct nvme_queue *nvmeq = data; 1095 1096 if (nvme_cqe_pending(nvmeq)) 1097 return IRQ_WAKE_THREAD; 1098 return IRQ_NONE; 1099 } 1100 1101 /* 1102 * Poll for completions for any interrupt driven queue 1103 * Can be called from any context. 1104 */ 1105 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) 1106 { 1107 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1108 1109 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); 1110 1111 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1112 nvme_poll_cq(nvmeq, NULL); 1113 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); 1114 } 1115 1116 static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1117 { 1118 struct nvme_queue *nvmeq = hctx->driver_data; 1119 bool found; 1120 1121 if (!nvme_cqe_pending(nvmeq)) 1122 return 0; 1123 1124 spin_lock(&nvmeq->cq_poll_lock); 1125 found = nvme_poll_cq(nvmeq, iob); 1126 spin_unlock(&nvmeq->cq_poll_lock); 1127 1128 return found; 1129 } 1130 1131 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) 1132 { 1133 struct nvme_dev *dev = to_nvme_dev(ctrl); 1134 struct nvme_queue *nvmeq = &dev->queues[0]; 1135 struct nvme_command c = { }; 1136 1137 c.common.opcode = nvme_admin_async_event; 1138 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; 1139 1140 spin_lock(&nvmeq->sq_lock); 1141 nvme_sq_copy_cmd(nvmeq, &c); 1142 nvme_write_sq_db(nvmeq, true); 1143 spin_unlock(&nvmeq->sq_lock); 1144 } 1145 1146 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) 1147 { 1148 struct nvme_command c = { }; 1149 1150 c.delete_queue.opcode = opcode; 1151 c.delete_queue.qid = cpu_to_le16(id); 1152 1153 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1154 } 1155 1156 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, 1157 struct nvme_queue *nvmeq, s16 vector) 1158 { 1159 struct nvme_command c = { }; 1160 int flags = NVME_QUEUE_PHYS_CONTIG; 1161 1162 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1163 flags |= NVME_CQ_IRQ_ENABLED; 1164 1165 /* 1166 * Note: we (ab)use the fact that the prp fields survive if no data 1167 * is attached to the request. 1168 */ 1169 c.create_cq.opcode = nvme_admin_create_cq; 1170 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); 1171 c.create_cq.cqid = cpu_to_le16(qid); 1172 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1173 c.create_cq.cq_flags = cpu_to_le16(flags); 1174 c.create_cq.irq_vector = cpu_to_le16(vector); 1175 1176 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1177 } 1178 1179 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, 1180 struct nvme_queue *nvmeq) 1181 { 1182 struct nvme_ctrl *ctrl = &dev->ctrl; 1183 struct nvme_command c = { }; 1184 int flags = NVME_QUEUE_PHYS_CONTIG; 1185 1186 /* 1187 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't 1188 * set. Since URGENT priority is zeroes, it makes all queues 1189 * URGENT. 1190 */ 1191 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) 1192 flags |= NVME_SQ_PRIO_MEDIUM; 1193 1194 /* 1195 * Note: we (ab)use the fact that the prp fields survive if no data 1196 * is attached to the request. 1197 */ 1198 c.create_sq.opcode = nvme_admin_create_sq; 1199 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); 1200 c.create_sq.sqid = cpu_to_le16(qid); 1201 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); 1202 c.create_sq.sq_flags = cpu_to_le16(flags); 1203 c.create_sq.cqid = cpu_to_le16(qid); 1204 1205 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1206 } 1207 1208 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) 1209 { 1210 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); 1211 } 1212 1213 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) 1214 { 1215 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 1216 } 1217 1218 static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error) 1219 { 1220 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1221 1222 dev_warn(nvmeq->dev->ctrl.device, 1223 "Abort status: 0x%x", nvme_req(req)->status); 1224 atomic_inc(&nvmeq->dev->ctrl.abort_limit); 1225 blk_mq_free_request(req); 1226 return RQ_END_IO_NONE; 1227 } 1228 1229 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) 1230 { 1231 /* If true, indicates loss of adapter communication, possibly by a 1232 * NVMe Subsystem reset. 1233 */ 1234 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); 1235 1236 /* If there is a reset/reinit ongoing, we shouldn't reset again. */ 1237 switch (dev->ctrl.state) { 1238 case NVME_CTRL_RESETTING: 1239 case NVME_CTRL_CONNECTING: 1240 return false; 1241 default: 1242 break; 1243 } 1244 1245 /* We shouldn't reset unless the controller is on fatal error state 1246 * _or_ if we lost the communication with it. 1247 */ 1248 if (!(csts & NVME_CSTS_CFS) && !nssro) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) 1255 { 1256 /* Read a config register to help see what died. */ 1257 u16 pci_status; 1258 int result; 1259 1260 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, 1261 &pci_status); 1262 if (result == PCIBIOS_SUCCESSFUL) 1263 dev_warn(dev->ctrl.device, 1264 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", 1265 csts, pci_status); 1266 else 1267 dev_warn(dev->ctrl.device, 1268 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", 1269 csts, result); 1270 1271 if (csts != ~0) 1272 return; 1273 1274 dev_warn(dev->ctrl.device, 1275 "Does your device have a faulty power saving mode enabled?\n"); 1276 dev_warn(dev->ctrl.device, 1277 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n"); 1278 } 1279 1280 static enum blk_eh_timer_return nvme_timeout(struct request *req) 1281 { 1282 struct nvme_iod *iod = blk_mq_rq_to_pdu(req); 1283 struct nvme_queue *nvmeq = req->mq_hctx->driver_data; 1284 struct nvme_dev *dev = nvmeq->dev; 1285 struct request *abort_req; 1286 struct nvme_command cmd = { }; 1287 u32 csts = readl(dev->bar + NVME_REG_CSTS); 1288 1289 /* If PCI error recovery process is happening, we cannot reset or 1290 * the recovery mechanism will surely fail. 1291 */ 1292 mb(); 1293 if (pci_channel_offline(to_pci_dev(dev->dev))) 1294 return BLK_EH_RESET_TIMER; 1295 1296 /* 1297 * Reset immediately if the controller is failed 1298 */ 1299 if (nvme_should_reset(dev, csts)) { 1300 nvme_warn_reset(dev, csts); 1301 goto disable; 1302 } 1303 1304 /* 1305 * Did we miss an interrupt? 1306 */ 1307 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) 1308 nvme_poll(req->mq_hctx, NULL); 1309 else 1310 nvme_poll_irqdisable(nvmeq); 1311 1312 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) { 1313 dev_warn(dev->ctrl.device, 1314 "I/O %d QID %d timeout, completion polled\n", 1315 req->tag, nvmeq->qid); 1316 return BLK_EH_DONE; 1317 } 1318 1319 /* 1320 * Shutdown immediately if controller times out while starting. The 1321 * reset work will see the pci device disabled when it gets the forced 1322 * cancellation error. All outstanding requests are completed on 1323 * shutdown, so we return BLK_EH_DONE. 1324 */ 1325 switch (dev->ctrl.state) { 1326 case NVME_CTRL_CONNECTING: 1327 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 1328 fallthrough; 1329 case NVME_CTRL_DELETING: 1330 dev_warn_ratelimited(dev->ctrl.device, 1331 "I/O %d QID %d timeout, disable controller\n", 1332 req->tag, nvmeq->qid); 1333 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1334 nvme_dev_disable(dev, true); 1335 return BLK_EH_DONE; 1336 case NVME_CTRL_RESETTING: 1337 return BLK_EH_RESET_TIMER; 1338 default: 1339 break; 1340 } 1341 1342 /* 1343 * Shutdown the controller immediately and schedule a reset if the 1344 * command was already aborted once before and still hasn't been 1345 * returned to the driver, or if this is the admin queue. 1346 */ 1347 if (!nvmeq->qid || iod->aborted) { 1348 dev_warn(dev->ctrl.device, 1349 "I/O %d QID %d timeout, reset controller\n", 1350 req->tag, nvmeq->qid); 1351 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 1352 goto disable; 1353 } 1354 1355 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { 1356 atomic_inc(&dev->ctrl.abort_limit); 1357 return BLK_EH_RESET_TIMER; 1358 } 1359 iod->aborted = true; 1360 1361 cmd.abort.opcode = nvme_admin_abort_cmd; 1362 cmd.abort.cid = nvme_cid(req); 1363 cmd.abort.sqid = cpu_to_le16(nvmeq->qid); 1364 1365 dev_warn(nvmeq->dev->ctrl.device, 1366 "I/O %d (%s) QID %d timeout, aborting\n", 1367 req->tag, 1368 nvme_get_opcode_str(nvme_req(req)->cmd->common.opcode), 1369 nvmeq->qid); 1370 1371 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, nvme_req_op(&cmd), 1372 BLK_MQ_REQ_NOWAIT); 1373 if (IS_ERR(abort_req)) { 1374 atomic_inc(&dev->ctrl.abort_limit); 1375 return BLK_EH_RESET_TIMER; 1376 } 1377 nvme_init_request(abort_req, &cmd); 1378 1379 abort_req->end_io = abort_endio; 1380 abort_req->end_io_data = NULL; 1381 blk_execute_rq_nowait(abort_req, false); 1382 1383 /* 1384 * The aborted req will be completed on receiving the abort req. 1385 * We enable the timer again. If hit twice, it'll cause a device reset, 1386 * as the device then is in a faulty state. 1387 */ 1388 return BLK_EH_RESET_TIMER; 1389 1390 disable: 1391 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) 1392 return BLK_EH_DONE; 1393 1394 nvme_dev_disable(dev, false); 1395 if (nvme_try_sched_reset(&dev->ctrl)) 1396 nvme_unquiesce_io_queues(&dev->ctrl); 1397 return BLK_EH_DONE; 1398 } 1399 1400 static void nvme_free_queue(struct nvme_queue *nvmeq) 1401 { 1402 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), 1403 (void *)nvmeq->cqes, nvmeq->cq_dma_addr); 1404 if (!nvmeq->sq_cmds) 1405 return; 1406 1407 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { 1408 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), 1409 nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1410 } else { 1411 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), 1412 nvmeq->sq_cmds, nvmeq->sq_dma_addr); 1413 } 1414 } 1415 1416 static void nvme_free_queues(struct nvme_dev *dev, int lowest) 1417 { 1418 int i; 1419 1420 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { 1421 dev->ctrl.queue_count--; 1422 nvme_free_queue(&dev->queues[i]); 1423 } 1424 } 1425 1426 static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid) 1427 { 1428 struct nvme_queue *nvmeq = &dev->queues[qid]; 1429 1430 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) 1431 return; 1432 1433 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ 1434 mb(); 1435 1436 nvmeq->dev->online_queues--; 1437 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) 1438 nvme_quiesce_admin_queue(&nvmeq->dev->ctrl); 1439 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) 1440 pci_free_irq(to_pci_dev(dev->dev), nvmeq->cq_vector, nvmeq); 1441 } 1442 1443 static void nvme_suspend_io_queues(struct nvme_dev *dev) 1444 { 1445 int i; 1446 1447 for (i = dev->ctrl.queue_count - 1; i > 0; i--) 1448 nvme_suspend_queue(dev, i); 1449 } 1450 1451 /* 1452 * Called only on a device that has been disabled and after all other threads 1453 * that can check this device's completion queues have synced, except 1454 * nvme_poll(). This is the last chance for the driver to see a natural 1455 * completion before nvme_cancel_request() terminates all incomplete requests. 1456 */ 1457 static void nvme_reap_pending_cqes(struct nvme_dev *dev) 1458 { 1459 int i; 1460 1461 for (i = dev->ctrl.queue_count - 1; i > 0; i--) { 1462 spin_lock(&dev->queues[i].cq_poll_lock); 1463 nvme_poll_cq(&dev->queues[i], NULL); 1464 spin_unlock(&dev->queues[i].cq_poll_lock); 1465 } 1466 } 1467 1468 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, 1469 int entry_size) 1470 { 1471 int q_depth = dev->q_depth; 1472 unsigned q_size_aligned = roundup(q_depth * entry_size, 1473 NVME_CTRL_PAGE_SIZE); 1474 1475 if (q_size_aligned * nr_io_queues > dev->cmb_size) { 1476 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); 1477 1478 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); 1479 q_depth = div_u64(mem_per_q, entry_size); 1480 1481 /* 1482 * Ensure the reduced q_depth is above some threshold where it 1483 * would be better to map queues in system memory with the 1484 * original depth 1485 */ 1486 if (q_depth < 64) 1487 return -ENOMEM; 1488 } 1489 1490 return q_depth; 1491 } 1492 1493 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, 1494 int qid) 1495 { 1496 struct pci_dev *pdev = to_pci_dev(dev->dev); 1497 1498 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { 1499 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); 1500 if (nvmeq->sq_cmds) { 1501 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, 1502 nvmeq->sq_cmds); 1503 if (nvmeq->sq_dma_addr) { 1504 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); 1505 return 0; 1506 } 1507 1508 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); 1509 } 1510 } 1511 1512 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), 1513 &nvmeq->sq_dma_addr, GFP_KERNEL); 1514 if (!nvmeq->sq_cmds) 1515 return -ENOMEM; 1516 return 0; 1517 } 1518 1519 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) 1520 { 1521 struct nvme_queue *nvmeq = &dev->queues[qid]; 1522 1523 if (dev->ctrl.queue_count > qid) 1524 return 0; 1525 1526 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; 1527 nvmeq->q_depth = depth; 1528 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), 1529 &nvmeq->cq_dma_addr, GFP_KERNEL); 1530 if (!nvmeq->cqes) 1531 goto free_nvmeq; 1532 1533 if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) 1534 goto free_cqdma; 1535 1536 nvmeq->dev = dev; 1537 spin_lock_init(&nvmeq->sq_lock); 1538 spin_lock_init(&nvmeq->cq_poll_lock); 1539 nvmeq->cq_head = 0; 1540 nvmeq->cq_phase = 1; 1541 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1542 nvmeq->qid = qid; 1543 dev->ctrl.queue_count++; 1544 1545 return 0; 1546 1547 free_cqdma: 1548 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, 1549 nvmeq->cq_dma_addr); 1550 free_nvmeq: 1551 return -ENOMEM; 1552 } 1553 1554 static int queue_request_irq(struct nvme_queue *nvmeq) 1555 { 1556 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); 1557 int nr = nvmeq->dev->ctrl.instance; 1558 1559 if (use_threaded_interrupts) { 1560 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, 1561 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1562 } else { 1563 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, 1564 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); 1565 } 1566 } 1567 1568 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) 1569 { 1570 struct nvme_dev *dev = nvmeq->dev; 1571 1572 nvmeq->sq_tail = 0; 1573 nvmeq->last_sq_tail = 0; 1574 nvmeq->cq_head = 0; 1575 nvmeq->cq_phase = 1; 1576 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; 1577 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); 1578 nvme_dbbuf_init(dev, nvmeq, qid); 1579 dev->online_queues++; 1580 wmb(); /* ensure the first interrupt sees the initialization */ 1581 } 1582 1583 /* 1584 * Try getting shutdown_lock while setting up IO queues. 1585 */ 1586 static int nvme_setup_io_queues_trylock(struct nvme_dev *dev) 1587 { 1588 /* 1589 * Give up if the lock is being held by nvme_dev_disable. 1590 */ 1591 if (!mutex_trylock(&dev->shutdown_lock)) 1592 return -ENODEV; 1593 1594 /* 1595 * Controller is in wrong state, fail early. 1596 */ 1597 if (dev->ctrl.state != NVME_CTRL_CONNECTING) { 1598 mutex_unlock(&dev->shutdown_lock); 1599 return -ENODEV; 1600 } 1601 1602 return 0; 1603 } 1604 1605 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) 1606 { 1607 struct nvme_dev *dev = nvmeq->dev; 1608 int result; 1609 u16 vector = 0; 1610 1611 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 1612 1613 /* 1614 * A queue's vector matches the queue identifier unless the controller 1615 * has only one vector available. 1616 */ 1617 if (!polled) 1618 vector = dev->num_vecs == 1 ? 0 : qid; 1619 else 1620 set_bit(NVMEQ_POLLED, &nvmeq->flags); 1621 1622 result = adapter_alloc_cq(dev, qid, nvmeq, vector); 1623 if (result) 1624 return result; 1625 1626 result = adapter_alloc_sq(dev, qid, nvmeq); 1627 if (result < 0) 1628 return result; 1629 if (result) 1630 goto release_cq; 1631 1632 nvmeq->cq_vector = vector; 1633 1634 result = nvme_setup_io_queues_trylock(dev); 1635 if (result) 1636 return result; 1637 nvme_init_queue(nvmeq, qid); 1638 if (!polled) { 1639 result = queue_request_irq(nvmeq); 1640 if (result < 0) 1641 goto release_sq; 1642 } 1643 1644 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1645 mutex_unlock(&dev->shutdown_lock); 1646 return result; 1647 1648 release_sq: 1649 dev->online_queues--; 1650 mutex_unlock(&dev->shutdown_lock); 1651 adapter_delete_sq(dev, qid); 1652 release_cq: 1653 adapter_delete_cq(dev, qid); 1654 return result; 1655 } 1656 1657 static const struct blk_mq_ops nvme_mq_admin_ops = { 1658 .queue_rq = nvme_queue_rq, 1659 .complete = nvme_pci_complete_rq, 1660 .init_hctx = nvme_admin_init_hctx, 1661 .init_request = nvme_pci_init_request, 1662 .timeout = nvme_timeout, 1663 }; 1664 1665 static const struct blk_mq_ops nvme_mq_ops = { 1666 .queue_rq = nvme_queue_rq, 1667 .queue_rqs = nvme_queue_rqs, 1668 .complete = nvme_pci_complete_rq, 1669 .commit_rqs = nvme_commit_rqs, 1670 .init_hctx = nvme_init_hctx, 1671 .init_request = nvme_pci_init_request, 1672 .map_queues = nvme_pci_map_queues, 1673 .timeout = nvme_timeout, 1674 .poll = nvme_poll, 1675 }; 1676 1677 static void nvme_dev_remove_admin(struct nvme_dev *dev) 1678 { 1679 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { 1680 /* 1681 * If the controller was reset during removal, it's possible 1682 * user requests may be waiting on a stopped queue. Start the 1683 * queue to flush these to completion. 1684 */ 1685 nvme_unquiesce_admin_queue(&dev->ctrl); 1686 nvme_remove_admin_tag_set(&dev->ctrl); 1687 } 1688 } 1689 1690 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) 1691 { 1692 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); 1693 } 1694 1695 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) 1696 { 1697 struct pci_dev *pdev = to_pci_dev(dev->dev); 1698 1699 if (size <= dev->bar_mapped_size) 1700 return 0; 1701 if (size > pci_resource_len(pdev, 0)) 1702 return -ENOMEM; 1703 if (dev->bar) 1704 iounmap(dev->bar); 1705 dev->bar = ioremap(pci_resource_start(pdev, 0), size); 1706 if (!dev->bar) { 1707 dev->bar_mapped_size = 0; 1708 return -ENOMEM; 1709 } 1710 dev->bar_mapped_size = size; 1711 dev->dbs = dev->bar + NVME_REG_DBS; 1712 1713 return 0; 1714 } 1715 1716 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) 1717 { 1718 int result; 1719 u32 aqa; 1720 struct nvme_queue *nvmeq; 1721 1722 result = nvme_remap_bar(dev, db_bar_size(dev, 0)); 1723 if (result < 0) 1724 return result; 1725 1726 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? 1727 NVME_CAP_NSSRC(dev->ctrl.cap) : 0; 1728 1729 if (dev->subsystem && 1730 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) 1731 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); 1732 1733 /* 1734 * If the device has been passed off to us in an enabled state, just 1735 * clear the enabled bit. The spec says we should set the 'shutdown 1736 * notification bits', but doing so may cause the device to complete 1737 * commands to the admin queue ... and we don't know what memory that 1738 * might be pointing at! 1739 */ 1740 result = nvme_disable_ctrl(&dev->ctrl, false); 1741 if (result < 0) 1742 return result; 1743 1744 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); 1745 if (result) 1746 return result; 1747 1748 dev->ctrl.numa_node = dev_to_node(dev->dev); 1749 1750 nvmeq = &dev->queues[0]; 1751 aqa = nvmeq->q_depth - 1; 1752 aqa |= aqa << 16; 1753 1754 writel(aqa, dev->bar + NVME_REG_AQA); 1755 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); 1756 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); 1757 1758 result = nvme_enable_ctrl(&dev->ctrl); 1759 if (result) 1760 return result; 1761 1762 nvmeq->cq_vector = 0; 1763 nvme_init_queue(nvmeq, 0); 1764 result = queue_request_irq(nvmeq); 1765 if (result) { 1766 dev->online_queues--; 1767 return result; 1768 } 1769 1770 set_bit(NVMEQ_ENABLED, &nvmeq->flags); 1771 return result; 1772 } 1773 1774 static int nvme_create_io_queues(struct nvme_dev *dev) 1775 { 1776 unsigned i, max, rw_queues; 1777 int ret = 0; 1778 1779 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { 1780 if (nvme_alloc_queue(dev, i, dev->q_depth)) { 1781 ret = -ENOMEM; 1782 break; 1783 } 1784 } 1785 1786 max = min(dev->max_qid, dev->ctrl.queue_count - 1); 1787 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { 1788 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + 1789 dev->io_queues[HCTX_TYPE_READ]; 1790 } else { 1791 rw_queues = max; 1792 } 1793 1794 for (i = dev->online_queues; i <= max; i++) { 1795 bool polled = i > rw_queues; 1796 1797 ret = nvme_create_queue(&dev->queues[i], i, polled); 1798 if (ret) 1799 break; 1800 } 1801 1802 /* 1803 * Ignore failing Create SQ/CQ commands, we can continue with less 1804 * than the desired amount of queues, and even a controller without 1805 * I/O queues can still be used to issue admin commands. This might 1806 * be useful to upgrade a buggy firmware for example. 1807 */ 1808 return ret >= 0 ? 0 : ret; 1809 } 1810 1811 static u64 nvme_cmb_size_unit(struct nvme_dev *dev) 1812 { 1813 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; 1814 1815 return 1ULL << (12 + 4 * szu); 1816 } 1817 1818 static u32 nvme_cmb_size(struct nvme_dev *dev) 1819 { 1820 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; 1821 } 1822 1823 static void nvme_map_cmb(struct nvme_dev *dev) 1824 { 1825 u64 size, offset; 1826 resource_size_t bar_size; 1827 struct pci_dev *pdev = to_pci_dev(dev->dev); 1828 int bar; 1829 1830 if (dev->cmb_size) 1831 return; 1832 1833 if (NVME_CAP_CMBS(dev->ctrl.cap)) 1834 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC); 1835 1836 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); 1837 if (!dev->cmbsz) 1838 return; 1839 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); 1840 1841 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); 1842 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); 1843 bar = NVME_CMB_BIR(dev->cmbloc); 1844 bar_size = pci_resource_len(pdev, bar); 1845 1846 if (offset > bar_size) 1847 return; 1848 1849 /* 1850 * Tell the controller about the host side address mapping the CMB, 1851 * and enable CMB decoding for the NVMe 1.4+ scheme: 1852 */ 1853 if (NVME_CAP_CMBS(dev->ctrl.cap)) { 1854 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE | 1855 (pci_bus_address(pdev, bar) + offset), 1856 dev->bar + NVME_REG_CMBMSC); 1857 } 1858 1859 /* 1860 * Controllers may support a CMB size larger than their BAR, 1861 * for example, due to being behind a bridge. Reduce the CMB to 1862 * the reported size of the BAR 1863 */ 1864 if (size > bar_size - offset) 1865 size = bar_size - offset; 1866 1867 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { 1868 dev_warn(dev->ctrl.device, 1869 "failed to register the CMB\n"); 1870 return; 1871 } 1872 1873 dev->cmb_size = size; 1874 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); 1875 1876 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == 1877 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) 1878 pci_p2pmem_publish(pdev, true); 1879 1880 nvme_update_attrs(dev); 1881 } 1882 1883 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) 1884 { 1885 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; 1886 u64 dma_addr = dev->host_mem_descs_dma; 1887 struct nvme_command c = { }; 1888 int ret; 1889 1890 c.features.opcode = nvme_admin_set_features; 1891 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); 1892 c.features.dword11 = cpu_to_le32(bits); 1893 c.features.dword12 = cpu_to_le32(host_mem_size); 1894 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); 1895 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); 1896 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); 1897 1898 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); 1899 if (ret) { 1900 dev_warn(dev->ctrl.device, 1901 "failed to set host mem (err %d, flags %#x).\n", 1902 ret, bits); 1903 } else 1904 dev->hmb = bits & NVME_HOST_MEM_ENABLE; 1905 1906 return ret; 1907 } 1908 1909 static void nvme_free_host_mem(struct nvme_dev *dev) 1910 { 1911 int i; 1912 1913 for (i = 0; i < dev->nr_host_mem_descs; i++) { 1914 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; 1915 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; 1916 1917 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], 1918 le64_to_cpu(desc->addr), 1919 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1920 } 1921 1922 kfree(dev->host_mem_desc_bufs); 1923 dev->host_mem_desc_bufs = NULL; 1924 dma_free_coherent(dev->dev, 1925 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), 1926 dev->host_mem_descs, dev->host_mem_descs_dma); 1927 dev->host_mem_descs = NULL; 1928 dev->nr_host_mem_descs = 0; 1929 } 1930 1931 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, 1932 u32 chunk_size) 1933 { 1934 struct nvme_host_mem_buf_desc *descs; 1935 u32 max_entries, len; 1936 dma_addr_t descs_dma; 1937 int i = 0; 1938 void **bufs; 1939 u64 size, tmp; 1940 1941 tmp = (preferred + chunk_size - 1); 1942 do_div(tmp, chunk_size); 1943 max_entries = tmp; 1944 1945 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) 1946 max_entries = dev->ctrl.hmmaxd; 1947 1948 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), 1949 &descs_dma, GFP_KERNEL); 1950 if (!descs) 1951 goto out; 1952 1953 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); 1954 if (!bufs) 1955 goto out_free_descs; 1956 1957 for (size = 0; size < preferred && i < max_entries; size += len) { 1958 dma_addr_t dma_addr; 1959 1960 len = min_t(u64, chunk_size, preferred - size); 1961 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, 1962 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1963 if (!bufs[i]) 1964 break; 1965 1966 descs[i].addr = cpu_to_le64(dma_addr); 1967 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); 1968 i++; 1969 } 1970 1971 if (!size) 1972 goto out_free_bufs; 1973 1974 dev->nr_host_mem_descs = i; 1975 dev->host_mem_size = size; 1976 dev->host_mem_descs = descs; 1977 dev->host_mem_descs_dma = descs_dma; 1978 dev->host_mem_desc_bufs = bufs; 1979 return 0; 1980 1981 out_free_bufs: 1982 while (--i >= 0) { 1983 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; 1984 1985 dma_free_attrs(dev->dev, size, bufs[i], 1986 le64_to_cpu(descs[i].addr), 1987 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); 1988 } 1989 1990 kfree(bufs); 1991 out_free_descs: 1992 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, 1993 descs_dma); 1994 out: 1995 dev->host_mem_descs = NULL; 1996 return -ENOMEM; 1997 } 1998 1999 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) 2000 { 2001 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); 2002 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); 2003 u64 chunk_size; 2004 2005 /* start big and work our way down */ 2006 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { 2007 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { 2008 if (!min || dev->host_mem_size >= min) 2009 return 0; 2010 nvme_free_host_mem(dev); 2011 } 2012 } 2013 2014 return -ENOMEM; 2015 } 2016 2017 static int nvme_setup_host_mem(struct nvme_dev *dev) 2018 { 2019 u64 max = (u64)max_host_mem_size_mb * SZ_1M; 2020 u64 preferred = (u64)dev->ctrl.hmpre * 4096; 2021 u64 min = (u64)dev->ctrl.hmmin * 4096; 2022 u32 enable_bits = NVME_HOST_MEM_ENABLE; 2023 int ret; 2024 2025 if (!dev->ctrl.hmpre) 2026 return 0; 2027 2028 preferred = min(preferred, max); 2029 if (min > max) { 2030 dev_warn(dev->ctrl.device, 2031 "min host memory (%lld MiB) above limit (%d MiB).\n", 2032 min >> ilog2(SZ_1M), max_host_mem_size_mb); 2033 nvme_free_host_mem(dev); 2034 return 0; 2035 } 2036 2037 /* 2038 * If we already have a buffer allocated check if we can reuse it. 2039 */ 2040 if (dev->host_mem_descs) { 2041 if (dev->host_mem_size >= min) 2042 enable_bits |= NVME_HOST_MEM_RETURN; 2043 else 2044 nvme_free_host_mem(dev); 2045 } 2046 2047 if (!dev->host_mem_descs) { 2048 if (nvme_alloc_host_mem(dev, min, preferred)) { 2049 dev_warn(dev->ctrl.device, 2050 "failed to allocate host memory buffer.\n"); 2051 return 0; /* controller must work without HMB */ 2052 } 2053 2054 dev_info(dev->ctrl.device, 2055 "allocated %lld MiB host memory buffer.\n", 2056 dev->host_mem_size >> ilog2(SZ_1M)); 2057 } 2058 2059 ret = nvme_set_host_mem(dev, enable_bits); 2060 if (ret) 2061 nvme_free_host_mem(dev); 2062 return ret; 2063 } 2064 2065 static ssize_t cmb_show(struct device *dev, struct device_attribute *attr, 2066 char *buf) 2067 { 2068 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2069 2070 return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz : x%08x\n", 2071 ndev->cmbloc, ndev->cmbsz); 2072 } 2073 static DEVICE_ATTR_RO(cmb); 2074 2075 static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr, 2076 char *buf) 2077 { 2078 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2079 2080 return sysfs_emit(buf, "%u\n", ndev->cmbloc); 2081 } 2082 static DEVICE_ATTR_RO(cmbloc); 2083 2084 static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr, 2085 char *buf) 2086 { 2087 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2088 2089 return sysfs_emit(buf, "%u\n", ndev->cmbsz); 2090 } 2091 static DEVICE_ATTR_RO(cmbsz); 2092 2093 static ssize_t hmb_show(struct device *dev, struct device_attribute *attr, 2094 char *buf) 2095 { 2096 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2097 2098 return sysfs_emit(buf, "%d\n", ndev->hmb); 2099 } 2100 2101 static ssize_t hmb_store(struct device *dev, struct device_attribute *attr, 2102 const char *buf, size_t count) 2103 { 2104 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); 2105 bool new; 2106 int ret; 2107 2108 if (kstrtobool(buf, &new) < 0) 2109 return -EINVAL; 2110 2111 if (new == ndev->hmb) 2112 return count; 2113 2114 if (new) { 2115 ret = nvme_setup_host_mem(ndev); 2116 } else { 2117 ret = nvme_set_host_mem(ndev, 0); 2118 if (!ret) 2119 nvme_free_host_mem(ndev); 2120 } 2121 2122 if (ret < 0) 2123 return ret; 2124 2125 return count; 2126 } 2127 static DEVICE_ATTR_RW(hmb); 2128 2129 static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj, 2130 struct attribute *a, int n) 2131 { 2132 struct nvme_ctrl *ctrl = 2133 dev_get_drvdata(container_of(kobj, struct device, kobj)); 2134 struct nvme_dev *dev = to_nvme_dev(ctrl); 2135 2136 if (a == &dev_attr_cmb.attr || 2137 a == &dev_attr_cmbloc.attr || 2138 a == &dev_attr_cmbsz.attr) { 2139 if (!dev->cmbsz) 2140 return 0; 2141 } 2142 if (a == &dev_attr_hmb.attr && !ctrl->hmpre) 2143 return 0; 2144 2145 return a->mode; 2146 } 2147 2148 static struct attribute *nvme_pci_attrs[] = { 2149 &dev_attr_cmb.attr, 2150 &dev_attr_cmbloc.attr, 2151 &dev_attr_cmbsz.attr, 2152 &dev_attr_hmb.attr, 2153 NULL, 2154 }; 2155 2156 static const struct attribute_group nvme_pci_dev_attrs_group = { 2157 .attrs = nvme_pci_attrs, 2158 .is_visible = nvme_pci_attrs_are_visible, 2159 }; 2160 2161 static const struct attribute_group *nvme_pci_dev_attr_groups[] = { 2162 &nvme_dev_attrs_group, 2163 &nvme_pci_dev_attrs_group, 2164 NULL, 2165 }; 2166 2167 static void nvme_update_attrs(struct nvme_dev *dev) 2168 { 2169 sysfs_update_group(&dev->ctrl.device->kobj, &nvme_pci_dev_attrs_group); 2170 } 2171 2172 /* 2173 * nirqs is the number of interrupts available for write and read 2174 * queues. The core already reserved an interrupt for the admin queue. 2175 */ 2176 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) 2177 { 2178 struct nvme_dev *dev = affd->priv; 2179 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; 2180 2181 /* 2182 * If there is no interrupt available for queues, ensure that 2183 * the default queue is set to 1. The affinity set size is 2184 * also set to one, but the irq core ignores it for this case. 2185 * 2186 * If only one interrupt is available or 'write_queue' == 0, combine 2187 * write and read queues. 2188 * 2189 * If 'write_queues' > 0, ensure it leaves room for at least one read 2190 * queue. 2191 */ 2192 if (!nrirqs) { 2193 nrirqs = 1; 2194 nr_read_queues = 0; 2195 } else if (nrirqs == 1 || !nr_write_queues) { 2196 nr_read_queues = 0; 2197 } else if (nr_write_queues >= nrirqs) { 2198 nr_read_queues = 1; 2199 } else { 2200 nr_read_queues = nrirqs - nr_write_queues; 2201 } 2202 2203 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2204 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; 2205 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; 2206 affd->set_size[HCTX_TYPE_READ] = nr_read_queues; 2207 affd->nr_sets = nr_read_queues ? 2 : 1; 2208 } 2209 2210 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) 2211 { 2212 struct pci_dev *pdev = to_pci_dev(dev->dev); 2213 struct irq_affinity affd = { 2214 .pre_vectors = 1, 2215 .calc_sets = nvme_calc_irq_sets, 2216 .priv = dev, 2217 }; 2218 unsigned int irq_queues, poll_queues; 2219 2220 /* 2221 * Poll queues don't need interrupts, but we need at least one I/O queue 2222 * left over for non-polled I/O. 2223 */ 2224 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); 2225 dev->io_queues[HCTX_TYPE_POLL] = poll_queues; 2226 2227 /* 2228 * Initialize for the single interrupt case, will be updated in 2229 * nvme_calc_irq_sets(). 2230 */ 2231 dev->io_queues[HCTX_TYPE_DEFAULT] = 1; 2232 dev->io_queues[HCTX_TYPE_READ] = 0; 2233 2234 /* 2235 * We need interrupts for the admin queue and each non-polled I/O queue, 2236 * but some Apple controllers require all queues to use the first 2237 * vector. 2238 */ 2239 irq_queues = 1; 2240 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) 2241 irq_queues += (nr_io_queues - poll_queues); 2242 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, 2243 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); 2244 } 2245 2246 static unsigned int nvme_max_io_queues(struct nvme_dev *dev) 2247 { 2248 /* 2249 * If tags are shared with admin queue (Apple bug), then 2250 * make sure we only use one IO queue. 2251 */ 2252 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) 2253 return 1; 2254 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; 2255 } 2256 2257 static int nvme_setup_io_queues(struct nvme_dev *dev) 2258 { 2259 struct nvme_queue *adminq = &dev->queues[0]; 2260 struct pci_dev *pdev = to_pci_dev(dev->dev); 2261 unsigned int nr_io_queues; 2262 unsigned long size; 2263 int result; 2264 2265 /* 2266 * Sample the module parameters once at reset time so that we have 2267 * stable values to work with. 2268 */ 2269 dev->nr_write_queues = write_queues; 2270 dev->nr_poll_queues = poll_queues; 2271 2272 nr_io_queues = dev->nr_allocated_queues - 1; 2273 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); 2274 if (result < 0) 2275 return result; 2276 2277 if (nr_io_queues == 0) 2278 return 0; 2279 2280 /* 2281 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions 2282 * from set to unset. If there is a window to it is truely freed, 2283 * pci_free_irq_vectors() jumping into this window will crash. 2284 * And take lock to avoid racing with pci_free_irq_vectors() in 2285 * nvme_dev_disable() path. 2286 */ 2287 result = nvme_setup_io_queues_trylock(dev); 2288 if (result) 2289 return result; 2290 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2291 pci_free_irq(pdev, 0, adminq); 2292 2293 if (dev->cmb_use_sqes) { 2294 result = nvme_cmb_qdepth(dev, nr_io_queues, 2295 sizeof(struct nvme_command)); 2296 if (result > 0) { 2297 dev->q_depth = result; 2298 dev->ctrl.sqsize = result - 1; 2299 } else { 2300 dev->cmb_use_sqes = false; 2301 } 2302 } 2303 2304 do { 2305 size = db_bar_size(dev, nr_io_queues); 2306 result = nvme_remap_bar(dev, size); 2307 if (!result) 2308 break; 2309 if (!--nr_io_queues) { 2310 result = -ENOMEM; 2311 goto out_unlock; 2312 } 2313 } while (1); 2314 adminq->q_db = dev->dbs; 2315 2316 retry: 2317 /* Deregister the admin queue's interrupt */ 2318 if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags)) 2319 pci_free_irq(pdev, 0, adminq); 2320 2321 /* 2322 * If we enable msix early due to not intx, disable it again before 2323 * setting up the full range we need. 2324 */ 2325 pci_free_irq_vectors(pdev); 2326 2327 result = nvme_setup_irqs(dev, nr_io_queues); 2328 if (result <= 0) { 2329 result = -EIO; 2330 goto out_unlock; 2331 } 2332 2333 dev->num_vecs = result; 2334 result = max(result - 1, 1); 2335 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; 2336 2337 /* 2338 * Should investigate if there's a performance win from allocating 2339 * more queues than interrupt vectors; it might allow the submission 2340 * path to scale better, even if the receive path is limited by the 2341 * number of interrupts. 2342 */ 2343 result = queue_request_irq(adminq); 2344 if (result) 2345 goto out_unlock; 2346 set_bit(NVMEQ_ENABLED, &adminq->flags); 2347 mutex_unlock(&dev->shutdown_lock); 2348 2349 result = nvme_create_io_queues(dev); 2350 if (result || dev->online_queues < 2) 2351 return result; 2352 2353 if (dev->online_queues - 1 < dev->max_qid) { 2354 nr_io_queues = dev->online_queues - 1; 2355 nvme_delete_io_queues(dev); 2356 result = nvme_setup_io_queues_trylock(dev); 2357 if (result) 2358 return result; 2359 nvme_suspend_io_queues(dev); 2360 goto retry; 2361 } 2362 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", 2363 dev->io_queues[HCTX_TYPE_DEFAULT], 2364 dev->io_queues[HCTX_TYPE_READ], 2365 dev->io_queues[HCTX_TYPE_POLL]); 2366 return 0; 2367 out_unlock: 2368 mutex_unlock(&dev->shutdown_lock); 2369 return result; 2370 } 2371 2372 static enum rq_end_io_ret nvme_del_queue_end(struct request *req, 2373 blk_status_t error) 2374 { 2375 struct nvme_queue *nvmeq = req->end_io_data; 2376 2377 blk_mq_free_request(req); 2378 complete(&nvmeq->delete_done); 2379 return RQ_END_IO_NONE; 2380 } 2381 2382 static enum rq_end_io_ret nvme_del_cq_end(struct request *req, 2383 blk_status_t error) 2384 { 2385 struct nvme_queue *nvmeq = req->end_io_data; 2386 2387 if (error) 2388 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); 2389 2390 return nvme_del_queue_end(req, error); 2391 } 2392 2393 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) 2394 { 2395 struct request_queue *q = nvmeq->dev->ctrl.admin_q; 2396 struct request *req; 2397 struct nvme_command cmd = { }; 2398 2399 cmd.delete_queue.opcode = opcode; 2400 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); 2401 2402 req = blk_mq_alloc_request(q, nvme_req_op(&cmd), BLK_MQ_REQ_NOWAIT); 2403 if (IS_ERR(req)) 2404 return PTR_ERR(req); 2405 nvme_init_request(req, &cmd); 2406 2407 if (opcode == nvme_admin_delete_cq) 2408 req->end_io = nvme_del_cq_end; 2409 else 2410 req->end_io = nvme_del_queue_end; 2411 req->end_io_data = nvmeq; 2412 2413 init_completion(&nvmeq->delete_done); 2414 blk_execute_rq_nowait(req, false); 2415 return 0; 2416 } 2417 2418 static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode) 2419 { 2420 int nr_queues = dev->online_queues - 1, sent = 0; 2421 unsigned long timeout; 2422 2423 retry: 2424 timeout = NVME_ADMIN_TIMEOUT; 2425 while (nr_queues > 0) { 2426 if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) 2427 break; 2428 nr_queues--; 2429 sent++; 2430 } 2431 while (sent) { 2432 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; 2433 2434 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, 2435 timeout); 2436 if (timeout == 0) 2437 return false; 2438 2439 sent--; 2440 if (nr_queues) 2441 goto retry; 2442 } 2443 return true; 2444 } 2445 2446 static void nvme_delete_io_queues(struct nvme_dev *dev) 2447 { 2448 if (__nvme_delete_io_queues(dev, nvme_admin_delete_sq)) 2449 __nvme_delete_io_queues(dev, nvme_admin_delete_cq); 2450 } 2451 2452 static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev) 2453 { 2454 if (dev->io_queues[HCTX_TYPE_POLL]) 2455 return 3; 2456 if (dev->io_queues[HCTX_TYPE_READ]) 2457 return 2; 2458 return 1; 2459 } 2460 2461 static void nvme_pci_update_nr_queues(struct nvme_dev *dev) 2462 { 2463 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); 2464 /* free previously allocated queues that are no longer usable */ 2465 nvme_free_queues(dev, dev->online_queues); 2466 } 2467 2468 static int nvme_pci_enable(struct nvme_dev *dev) 2469 { 2470 int result = -ENOMEM; 2471 struct pci_dev *pdev = to_pci_dev(dev->dev); 2472 2473 if (pci_enable_device_mem(pdev)) 2474 return result; 2475 2476 pci_set_master(pdev); 2477 2478 if (readl(dev->bar + NVME_REG_CSTS) == -1) { 2479 result = -ENODEV; 2480 goto disable; 2481 } 2482 2483 /* 2484 * Some devices and/or platforms don't advertise or work with INTx 2485 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll 2486 * adjust this later. 2487 */ 2488 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); 2489 if (result < 0) 2490 goto disable; 2491 2492 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); 2493 2494 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, 2495 io_queue_depth); 2496 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); 2497 dev->dbs = dev->bar + 4096; 2498 2499 /* 2500 * Some Apple controllers require a non-standard SQE size. 2501 * Interestingly they also seem to ignore the CC:IOSQES register 2502 * so we don't bother updating it here. 2503 */ 2504 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) 2505 dev->io_sqes = 7; 2506 else 2507 dev->io_sqes = NVME_NVM_IOSQES; 2508 2509 /* 2510 * Temporary fix for the Apple controller found in the MacBook8,1 and 2511 * some MacBook7,1 to avoid controller resets and data loss. 2512 */ 2513 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { 2514 dev->q_depth = 2; 2515 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " 2516 "set queue depth=%u to work around controller resets\n", 2517 dev->q_depth); 2518 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && 2519 (pdev->device == 0xa821 || pdev->device == 0xa822) && 2520 NVME_CAP_MQES(dev->ctrl.cap) == 0) { 2521 dev->q_depth = 64; 2522 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " 2523 "set queue depth=%u\n", dev->q_depth); 2524 } 2525 2526 /* 2527 * Controllers with the shared tags quirk need the IO queue to be 2528 * big enough so that we get 32 tags for the admin queue 2529 */ 2530 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && 2531 (dev->q_depth < (NVME_AQ_DEPTH + 2))) { 2532 dev->q_depth = NVME_AQ_DEPTH + 2; 2533 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", 2534 dev->q_depth); 2535 } 2536 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ 2537 2538 nvme_map_cmb(dev); 2539 2540 pci_save_state(pdev); 2541 2542 result = nvme_pci_configure_admin_queue(dev); 2543 if (result) 2544 goto free_irq; 2545 return result; 2546 2547 free_irq: 2548 pci_free_irq_vectors(pdev); 2549 disable: 2550 pci_disable_device(pdev); 2551 return result; 2552 } 2553 2554 static void nvme_dev_unmap(struct nvme_dev *dev) 2555 { 2556 if (dev->bar) 2557 iounmap(dev->bar); 2558 pci_release_mem_regions(to_pci_dev(dev->dev)); 2559 } 2560 2561 static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev) 2562 { 2563 struct pci_dev *pdev = to_pci_dev(dev->dev); 2564 u32 csts; 2565 2566 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev)) 2567 return true; 2568 if (pdev->error_state != pci_channel_io_normal) 2569 return true; 2570 2571 csts = readl(dev->bar + NVME_REG_CSTS); 2572 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY); 2573 } 2574 2575 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) 2576 { 2577 struct pci_dev *pdev = to_pci_dev(dev->dev); 2578 bool dead; 2579 2580 mutex_lock(&dev->shutdown_lock); 2581 dead = nvme_pci_ctrl_is_dead(dev); 2582 if (dev->ctrl.state == NVME_CTRL_LIVE || 2583 dev->ctrl.state == NVME_CTRL_RESETTING) { 2584 if (pci_is_enabled(pdev)) 2585 nvme_start_freeze(&dev->ctrl); 2586 /* 2587 * Give the controller a chance to complete all entered requests 2588 * if doing a safe shutdown. 2589 */ 2590 if (!dead && shutdown) 2591 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); 2592 } 2593 2594 nvme_quiesce_io_queues(&dev->ctrl); 2595 2596 if (!dead && dev->ctrl.queue_count > 0) { 2597 nvme_delete_io_queues(dev); 2598 nvme_disable_ctrl(&dev->ctrl, shutdown); 2599 nvme_poll_irqdisable(&dev->queues[0]); 2600 } 2601 nvme_suspend_io_queues(dev); 2602 nvme_suspend_queue(dev, 0); 2603 pci_free_irq_vectors(pdev); 2604 if (pci_is_enabled(pdev)) 2605 pci_disable_device(pdev); 2606 nvme_reap_pending_cqes(dev); 2607 2608 nvme_cancel_tagset(&dev->ctrl); 2609 nvme_cancel_admin_tagset(&dev->ctrl); 2610 2611 /* 2612 * The driver will not be starting up queues again if shutting down so 2613 * must flush all entered requests to their failed completion to avoid 2614 * deadlocking blk-mq hot-cpu notifier. 2615 */ 2616 if (shutdown) { 2617 nvme_unquiesce_io_queues(&dev->ctrl); 2618 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) 2619 nvme_unquiesce_admin_queue(&dev->ctrl); 2620 } 2621 mutex_unlock(&dev->shutdown_lock); 2622 } 2623 2624 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) 2625 { 2626 if (!nvme_wait_reset(&dev->ctrl)) 2627 return -EBUSY; 2628 nvme_dev_disable(dev, shutdown); 2629 return 0; 2630 } 2631 2632 static int nvme_setup_prp_pools(struct nvme_dev *dev) 2633 { 2634 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, 2635 NVME_CTRL_PAGE_SIZE, 2636 NVME_CTRL_PAGE_SIZE, 0); 2637 if (!dev->prp_page_pool) 2638 return -ENOMEM; 2639 2640 /* Optimisation for I/Os between 4k and 128k */ 2641 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, 2642 256, 256, 0); 2643 if (!dev->prp_small_pool) { 2644 dma_pool_destroy(dev->prp_page_pool); 2645 return -ENOMEM; 2646 } 2647 return 0; 2648 } 2649 2650 static void nvme_release_prp_pools(struct nvme_dev *dev) 2651 { 2652 dma_pool_destroy(dev->prp_page_pool); 2653 dma_pool_destroy(dev->prp_small_pool); 2654 } 2655 2656 static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev) 2657 { 2658 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS; 2659 2660 dev->iod_mempool = mempool_create_node(1, 2661 mempool_kmalloc, mempool_kfree, 2662 (void *)alloc_size, GFP_KERNEL, 2663 dev_to_node(dev->dev)); 2664 if (!dev->iod_mempool) 2665 return -ENOMEM; 2666 return 0; 2667 } 2668 2669 static void nvme_free_tagset(struct nvme_dev *dev) 2670 { 2671 if (dev->tagset.tags) 2672 nvme_remove_io_tag_set(&dev->ctrl); 2673 dev->ctrl.tagset = NULL; 2674 } 2675 2676 /* pairs with nvme_pci_alloc_dev */ 2677 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) 2678 { 2679 struct nvme_dev *dev = to_nvme_dev(ctrl); 2680 2681 nvme_free_tagset(dev); 2682 put_device(dev->dev); 2683 kfree(dev->queues); 2684 kfree(dev); 2685 } 2686 2687 static void nvme_reset_work(struct work_struct *work) 2688 { 2689 struct nvme_dev *dev = 2690 container_of(work, struct nvme_dev, ctrl.reset_work); 2691 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); 2692 int result; 2693 2694 if (dev->ctrl.state != NVME_CTRL_RESETTING) { 2695 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n", 2696 dev->ctrl.state); 2697 result = -ENODEV; 2698 goto out; 2699 } 2700 2701 /* 2702 * If we're called to reset a live controller first shut it down before 2703 * moving on. 2704 */ 2705 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) 2706 nvme_dev_disable(dev, false); 2707 nvme_sync_queues(&dev->ctrl); 2708 2709 mutex_lock(&dev->shutdown_lock); 2710 result = nvme_pci_enable(dev); 2711 if (result) 2712 goto out_unlock; 2713 nvme_unquiesce_admin_queue(&dev->ctrl); 2714 mutex_unlock(&dev->shutdown_lock); 2715 2716 /* 2717 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the 2718 * initializing procedure here. 2719 */ 2720 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 2721 dev_warn(dev->ctrl.device, 2722 "failed to mark controller CONNECTING\n"); 2723 result = -EBUSY; 2724 goto out; 2725 } 2726 2727 result = nvme_init_ctrl_finish(&dev->ctrl, was_suspend); 2728 if (result) 2729 goto out; 2730 2731 nvme_dbbuf_dma_alloc(dev); 2732 2733 result = nvme_setup_host_mem(dev); 2734 if (result < 0) 2735 goto out; 2736 2737 result = nvme_setup_io_queues(dev); 2738 if (result) 2739 goto out; 2740 2741 /* 2742 * Freeze and update the number of I/O queues as thos might have 2743 * changed. If there are no I/O queues left after this reset, keep the 2744 * controller around but remove all namespaces. 2745 */ 2746 if (dev->online_queues > 1) { 2747 nvme_unquiesce_io_queues(&dev->ctrl); 2748 nvme_wait_freeze(&dev->ctrl); 2749 nvme_pci_update_nr_queues(dev); 2750 nvme_dbbuf_set(dev); 2751 nvme_unfreeze(&dev->ctrl); 2752 } else { 2753 dev_warn(dev->ctrl.device, "IO queues lost\n"); 2754 nvme_mark_namespaces_dead(&dev->ctrl); 2755 nvme_unquiesce_io_queues(&dev->ctrl); 2756 nvme_remove_namespaces(&dev->ctrl); 2757 nvme_free_tagset(dev); 2758 } 2759 2760 /* 2761 * If only admin queue live, keep it to do further investigation or 2762 * recovery. 2763 */ 2764 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 2765 dev_warn(dev->ctrl.device, 2766 "failed to mark controller live state\n"); 2767 result = -ENODEV; 2768 goto out; 2769 } 2770 2771 nvme_start_ctrl(&dev->ctrl); 2772 return; 2773 2774 out_unlock: 2775 mutex_unlock(&dev->shutdown_lock); 2776 out: 2777 /* 2778 * Set state to deleting now to avoid blocking nvme_wait_reset(), which 2779 * may be holding this pci_dev's device lock. 2780 */ 2781 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n", 2782 result); 2783 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 2784 nvme_dev_disable(dev, true); 2785 nvme_sync_queues(&dev->ctrl); 2786 nvme_mark_namespaces_dead(&dev->ctrl); 2787 nvme_unquiesce_io_queues(&dev->ctrl); 2788 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 2789 } 2790 2791 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 2792 { 2793 *val = readl(to_nvme_dev(ctrl)->bar + off); 2794 return 0; 2795 } 2796 2797 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 2798 { 2799 writel(val, to_nvme_dev(ctrl)->bar + off); 2800 return 0; 2801 } 2802 2803 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 2804 { 2805 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); 2806 return 0; 2807 } 2808 2809 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 2810 { 2811 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2812 2813 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); 2814 } 2815 2816 static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl) 2817 { 2818 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); 2819 struct nvme_subsystem *subsys = ctrl->subsys; 2820 2821 dev_err(ctrl->device, 2822 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n", 2823 pdev->vendor, pdev->device, 2824 nvme_strlen(subsys->model, sizeof(subsys->model)), 2825 subsys->model, nvme_strlen(subsys->firmware_rev, 2826 sizeof(subsys->firmware_rev)), 2827 subsys->firmware_rev); 2828 } 2829 2830 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl) 2831 { 2832 struct nvme_dev *dev = to_nvme_dev(ctrl); 2833 2834 return dma_pci_p2pdma_supported(dev->dev); 2835 } 2836 2837 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { 2838 .name = "pcie", 2839 .module = THIS_MODULE, 2840 .flags = NVME_F_METADATA_SUPPORTED, 2841 .dev_attr_groups = nvme_pci_dev_attr_groups, 2842 .reg_read32 = nvme_pci_reg_read32, 2843 .reg_write32 = nvme_pci_reg_write32, 2844 .reg_read64 = nvme_pci_reg_read64, 2845 .free_ctrl = nvme_pci_free_ctrl, 2846 .submit_async_event = nvme_pci_submit_async_event, 2847 .get_address = nvme_pci_get_address, 2848 .print_device_info = nvme_pci_print_device_info, 2849 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma, 2850 }; 2851 2852 static int nvme_dev_map(struct nvme_dev *dev) 2853 { 2854 struct pci_dev *pdev = to_pci_dev(dev->dev); 2855 2856 if (pci_request_mem_regions(pdev, "nvme")) 2857 return -ENODEV; 2858 2859 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) 2860 goto release; 2861 2862 return 0; 2863 release: 2864 pci_release_mem_regions(pdev); 2865 return -ENODEV; 2866 } 2867 2868 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) 2869 { 2870 if (pdev->vendor == 0x144d && pdev->device == 0xa802) { 2871 /* 2872 * Several Samsung devices seem to drop off the PCIe bus 2873 * randomly when APST is on and uses the deepest sleep state. 2874 * This has been observed on a Samsung "SM951 NVMe SAMSUNG 2875 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD 2876 * 950 PRO 256GB", but it seems to be restricted to two Dell 2877 * laptops. 2878 */ 2879 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && 2880 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || 2881 dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) 2882 return NVME_QUIRK_NO_DEEPEST_PS; 2883 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { 2884 /* 2885 * Samsung SSD 960 EVO drops off the PCIe bus after system 2886 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as 2887 * within few minutes after bootup on a Coffee Lake board - 2888 * ASUS PRIME Z370-A 2889 */ 2890 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && 2891 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || 2892 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) 2893 return NVME_QUIRK_NO_APST; 2894 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || 2895 pdev->device == 0xa808 || pdev->device == 0xa809)) || 2896 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { 2897 /* 2898 * Forcing to use host managed nvme power settings for 2899 * lowest idle power with quick resume latency on 2900 * Samsung and Toshiba SSDs based on suspend behavior 2901 * on Coffee Lake board for LENOVO C640 2902 */ 2903 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && 2904 dmi_match(DMI_BOARD_NAME, "LNVNB161216")) 2905 return NVME_QUIRK_SIMPLE_SUSPEND; 2906 } 2907 2908 return 0; 2909 } 2910 2911 static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev, 2912 const struct pci_device_id *id) 2913 { 2914 unsigned long quirks = id->driver_data; 2915 int node = dev_to_node(&pdev->dev); 2916 struct nvme_dev *dev; 2917 int ret = -ENOMEM; 2918 2919 if (node == NUMA_NO_NODE) 2920 set_dev_node(&pdev->dev, first_memory_node); 2921 2922 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); 2923 if (!dev) 2924 return ERR_PTR(-ENOMEM); 2925 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); 2926 mutex_init(&dev->shutdown_lock); 2927 2928 dev->nr_write_queues = write_queues; 2929 dev->nr_poll_queues = poll_queues; 2930 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; 2931 dev->queues = kcalloc_node(dev->nr_allocated_queues, 2932 sizeof(struct nvme_queue), GFP_KERNEL, node); 2933 if (!dev->queues) 2934 goto out_free_dev; 2935 2936 dev->dev = get_device(&pdev->dev); 2937 2938 quirks |= check_vendor_combination_bug(pdev); 2939 if (!noacpi && acpi_storage_d3(&pdev->dev)) { 2940 /* 2941 * Some systems use a bios work around to ask for D3 on 2942 * platforms that support kernel managed suspend. 2943 */ 2944 dev_info(&pdev->dev, 2945 "platform quirk: setting simple suspend\n"); 2946 quirks |= NVME_QUIRK_SIMPLE_SUSPEND; 2947 } 2948 ret = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, 2949 quirks); 2950 if (ret) 2951 goto out_put_device; 2952 2953 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48) 2954 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2955 else 2956 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2957 dma_set_min_align_mask(&pdev->dev, NVME_CTRL_PAGE_SIZE - 1); 2958 dma_set_max_seg_size(&pdev->dev, 0xffffffff); 2959 2960 /* 2961 * Limit the max command size to prevent iod->sg allocations going 2962 * over a single page. 2963 */ 2964 dev->ctrl.max_hw_sectors = min_t(u32, 2965 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9); 2966 dev->ctrl.max_segments = NVME_MAX_SEGS; 2967 2968 /* 2969 * There is no support for SGLs for metadata (yet), so we are limited to 2970 * a single integrity segment for the separate metadata pointer. 2971 */ 2972 dev->ctrl.max_integrity_segments = 1; 2973 return dev; 2974 2975 out_put_device: 2976 put_device(dev->dev); 2977 kfree(dev->queues); 2978 out_free_dev: 2979 kfree(dev); 2980 return ERR_PTR(ret); 2981 } 2982 2983 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2984 { 2985 struct nvme_dev *dev; 2986 int result = -ENOMEM; 2987 2988 dev = nvme_pci_alloc_dev(pdev, id); 2989 if (IS_ERR(dev)) 2990 return PTR_ERR(dev); 2991 2992 result = nvme_dev_map(dev); 2993 if (result) 2994 goto out_uninit_ctrl; 2995 2996 result = nvme_setup_prp_pools(dev); 2997 if (result) 2998 goto out_dev_unmap; 2999 3000 result = nvme_pci_alloc_iod_mempool(dev); 3001 if (result) 3002 goto out_release_prp_pools; 3003 3004 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); 3005 3006 result = nvme_pci_enable(dev); 3007 if (result) 3008 goto out_release_iod_mempool; 3009 3010 result = nvme_alloc_admin_tag_set(&dev->ctrl, &dev->admin_tagset, 3011 &nvme_mq_admin_ops, sizeof(struct nvme_iod)); 3012 if (result) 3013 goto out_disable; 3014 3015 /* 3016 * Mark the controller as connecting before sending admin commands to 3017 * allow the timeout handler to do the right thing. 3018 */ 3019 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { 3020 dev_warn(dev->ctrl.device, 3021 "failed to mark controller CONNECTING\n"); 3022 result = -EBUSY; 3023 goto out_disable; 3024 } 3025 3026 result = nvme_init_ctrl_finish(&dev->ctrl, false); 3027 if (result) 3028 goto out_disable; 3029 3030 nvme_dbbuf_dma_alloc(dev); 3031 3032 result = nvme_setup_host_mem(dev); 3033 if (result < 0) 3034 goto out_disable; 3035 3036 result = nvme_setup_io_queues(dev); 3037 if (result) 3038 goto out_disable; 3039 3040 if (dev->online_queues > 1) { 3041 nvme_alloc_io_tag_set(&dev->ctrl, &dev->tagset, &nvme_mq_ops, 3042 nvme_pci_nr_maps(dev), sizeof(struct nvme_iod)); 3043 nvme_dbbuf_set(dev); 3044 } 3045 3046 if (!dev->ctrl.tagset) 3047 dev_warn(dev->ctrl.device, "IO queues not created\n"); 3048 3049 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { 3050 dev_warn(dev->ctrl.device, 3051 "failed to mark controller live state\n"); 3052 result = -ENODEV; 3053 goto out_disable; 3054 } 3055 3056 pci_set_drvdata(pdev, dev); 3057 3058 nvme_start_ctrl(&dev->ctrl); 3059 nvme_put_ctrl(&dev->ctrl); 3060 flush_work(&dev->ctrl.scan_work); 3061 return 0; 3062 3063 out_disable: 3064 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3065 nvme_dev_disable(dev, true); 3066 nvme_free_host_mem(dev); 3067 nvme_dev_remove_admin(dev); 3068 nvme_dbbuf_dma_free(dev); 3069 nvme_free_queues(dev, 0); 3070 out_release_iod_mempool: 3071 mempool_destroy(dev->iod_mempool); 3072 out_release_prp_pools: 3073 nvme_release_prp_pools(dev); 3074 out_dev_unmap: 3075 nvme_dev_unmap(dev); 3076 out_uninit_ctrl: 3077 nvme_uninit_ctrl(&dev->ctrl); 3078 nvme_put_ctrl(&dev->ctrl); 3079 return result; 3080 } 3081 3082 static void nvme_reset_prepare(struct pci_dev *pdev) 3083 { 3084 struct nvme_dev *dev = pci_get_drvdata(pdev); 3085 3086 /* 3087 * We don't need to check the return value from waiting for the reset 3088 * state as pci_dev device lock is held, making it impossible to race 3089 * with ->remove(). 3090 */ 3091 nvme_disable_prepare_reset(dev, false); 3092 nvme_sync_queues(&dev->ctrl); 3093 } 3094 3095 static void nvme_reset_done(struct pci_dev *pdev) 3096 { 3097 struct nvme_dev *dev = pci_get_drvdata(pdev); 3098 3099 if (!nvme_try_sched_reset(&dev->ctrl)) 3100 flush_work(&dev->ctrl.reset_work); 3101 } 3102 3103 static void nvme_shutdown(struct pci_dev *pdev) 3104 { 3105 struct nvme_dev *dev = pci_get_drvdata(pdev); 3106 3107 nvme_disable_prepare_reset(dev, true); 3108 } 3109 3110 /* 3111 * The driver's remove may be called on a device in a partially initialized 3112 * state. This function must not have any dependencies on the device state in 3113 * order to proceed. 3114 */ 3115 static void nvme_remove(struct pci_dev *pdev) 3116 { 3117 struct nvme_dev *dev = pci_get_drvdata(pdev); 3118 3119 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); 3120 pci_set_drvdata(pdev, NULL); 3121 3122 if (!pci_device_is_present(pdev)) { 3123 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); 3124 nvme_dev_disable(dev, true); 3125 } 3126 3127 flush_work(&dev->ctrl.reset_work); 3128 nvme_stop_ctrl(&dev->ctrl); 3129 nvme_remove_namespaces(&dev->ctrl); 3130 nvme_dev_disable(dev, true); 3131 nvme_free_host_mem(dev); 3132 nvme_dev_remove_admin(dev); 3133 nvme_dbbuf_dma_free(dev); 3134 nvme_free_queues(dev, 0); 3135 mempool_destroy(dev->iod_mempool); 3136 nvme_release_prp_pools(dev); 3137 nvme_dev_unmap(dev); 3138 nvme_uninit_ctrl(&dev->ctrl); 3139 } 3140 3141 #ifdef CONFIG_PM_SLEEP 3142 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) 3143 { 3144 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); 3145 } 3146 3147 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) 3148 { 3149 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); 3150 } 3151 3152 static int nvme_resume(struct device *dev) 3153 { 3154 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3155 struct nvme_ctrl *ctrl = &ndev->ctrl; 3156 3157 if (ndev->last_ps == U32_MAX || 3158 nvme_set_power_state(ctrl, ndev->last_ps) != 0) 3159 goto reset; 3160 if (ctrl->hmpre && nvme_setup_host_mem(ndev)) 3161 goto reset; 3162 3163 return 0; 3164 reset: 3165 return nvme_try_sched_reset(ctrl); 3166 } 3167 3168 static int nvme_suspend(struct device *dev) 3169 { 3170 struct pci_dev *pdev = to_pci_dev(dev); 3171 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3172 struct nvme_ctrl *ctrl = &ndev->ctrl; 3173 int ret = -EBUSY; 3174 3175 ndev->last_ps = U32_MAX; 3176 3177 /* 3178 * The platform does not remove power for a kernel managed suspend so 3179 * use host managed nvme power settings for lowest idle power if 3180 * possible. This should have quicker resume latency than a full device 3181 * shutdown. But if the firmware is involved after the suspend or the 3182 * device does not support any non-default power states, shut down the 3183 * device fully. 3184 * 3185 * If ASPM is not enabled for the device, shut down the device and allow 3186 * the PCI bus layer to put it into D3 in order to take the PCIe link 3187 * down, so as to allow the platform to achieve its minimum low-power 3188 * state (which may not be possible if the link is up). 3189 */ 3190 if (pm_suspend_via_firmware() || !ctrl->npss || 3191 !pcie_aspm_enabled(pdev) || 3192 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) 3193 return nvme_disable_prepare_reset(ndev, true); 3194 3195 nvme_start_freeze(ctrl); 3196 nvme_wait_freeze(ctrl); 3197 nvme_sync_queues(ctrl); 3198 3199 if (ctrl->state != NVME_CTRL_LIVE) 3200 goto unfreeze; 3201 3202 /* 3203 * Host memory access may not be successful in a system suspend state, 3204 * but the specification allows the controller to access memory in a 3205 * non-operational power state. 3206 */ 3207 if (ndev->hmb) { 3208 ret = nvme_set_host_mem(ndev, 0); 3209 if (ret < 0) 3210 goto unfreeze; 3211 } 3212 3213 ret = nvme_get_power_state(ctrl, &ndev->last_ps); 3214 if (ret < 0) 3215 goto unfreeze; 3216 3217 /* 3218 * A saved state prevents pci pm from generically controlling the 3219 * device's power. If we're using protocol specific settings, we don't 3220 * want pci interfering. 3221 */ 3222 pci_save_state(pdev); 3223 3224 ret = nvme_set_power_state(ctrl, ctrl->npss); 3225 if (ret < 0) 3226 goto unfreeze; 3227 3228 if (ret) { 3229 /* discard the saved state */ 3230 pci_load_saved_state(pdev, NULL); 3231 3232 /* 3233 * Clearing npss forces a controller reset on resume. The 3234 * correct value will be rediscovered then. 3235 */ 3236 ret = nvme_disable_prepare_reset(ndev, true); 3237 ctrl->npss = 0; 3238 } 3239 unfreeze: 3240 nvme_unfreeze(ctrl); 3241 return ret; 3242 } 3243 3244 static int nvme_simple_suspend(struct device *dev) 3245 { 3246 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); 3247 3248 return nvme_disable_prepare_reset(ndev, true); 3249 } 3250 3251 static int nvme_simple_resume(struct device *dev) 3252 { 3253 struct pci_dev *pdev = to_pci_dev(dev); 3254 struct nvme_dev *ndev = pci_get_drvdata(pdev); 3255 3256 return nvme_try_sched_reset(&ndev->ctrl); 3257 } 3258 3259 static const struct dev_pm_ops nvme_dev_pm_ops = { 3260 .suspend = nvme_suspend, 3261 .resume = nvme_resume, 3262 .freeze = nvme_simple_suspend, 3263 .thaw = nvme_simple_resume, 3264 .poweroff = nvme_simple_suspend, 3265 .restore = nvme_simple_resume, 3266 }; 3267 #endif /* CONFIG_PM_SLEEP */ 3268 3269 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, 3270 pci_channel_state_t state) 3271 { 3272 struct nvme_dev *dev = pci_get_drvdata(pdev); 3273 3274 /* 3275 * A frozen channel requires a reset. When detected, this method will 3276 * shutdown the controller to quiesce. The controller will be restarted 3277 * after the slot reset through driver's slot_reset callback. 3278 */ 3279 switch (state) { 3280 case pci_channel_io_normal: 3281 return PCI_ERS_RESULT_CAN_RECOVER; 3282 case pci_channel_io_frozen: 3283 dev_warn(dev->ctrl.device, 3284 "frozen state error detected, reset controller\n"); 3285 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) { 3286 nvme_dev_disable(dev, true); 3287 return PCI_ERS_RESULT_DISCONNECT; 3288 } 3289 nvme_dev_disable(dev, false); 3290 return PCI_ERS_RESULT_NEED_RESET; 3291 case pci_channel_io_perm_failure: 3292 dev_warn(dev->ctrl.device, 3293 "failure state error detected, request disconnect\n"); 3294 return PCI_ERS_RESULT_DISCONNECT; 3295 } 3296 return PCI_ERS_RESULT_NEED_RESET; 3297 } 3298 3299 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) 3300 { 3301 struct nvme_dev *dev = pci_get_drvdata(pdev); 3302 3303 dev_info(dev->ctrl.device, "restart after slot reset\n"); 3304 pci_restore_state(pdev); 3305 if (!nvme_try_sched_reset(&dev->ctrl)) 3306 nvme_unquiesce_io_queues(&dev->ctrl); 3307 return PCI_ERS_RESULT_RECOVERED; 3308 } 3309 3310 static void nvme_error_resume(struct pci_dev *pdev) 3311 { 3312 struct nvme_dev *dev = pci_get_drvdata(pdev); 3313 3314 flush_work(&dev->ctrl.reset_work); 3315 } 3316 3317 static const struct pci_error_handlers nvme_err_handler = { 3318 .error_detected = nvme_error_detected, 3319 .slot_reset = nvme_slot_reset, 3320 .resume = nvme_error_resume, 3321 .reset_prepare = nvme_reset_prepare, 3322 .reset_done = nvme_reset_done, 3323 }; 3324 3325 static const struct pci_device_id nvme_id_table[] = { 3326 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ 3327 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3328 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3329 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ 3330 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3331 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3332 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ 3333 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3334 NVME_QUIRK_DEALLOCATE_ZEROES | 3335 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3336 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ 3337 .driver_data = NVME_QUIRK_STRIPE_SIZE | 3338 NVME_QUIRK_DEALLOCATE_ZEROES, }, 3339 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ 3340 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3341 NVME_QUIRK_MEDIUM_PRIO_SQ | 3342 NVME_QUIRK_NO_TEMP_THRESH_CHANGE | 3343 NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3344 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ 3345 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3346 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ 3347 .driver_data = NVME_QUIRK_IDENTIFY_CNS | 3348 NVME_QUIRK_DISABLE_WRITE_ZEROES | 3349 NVME_QUIRK_BOGUS_NID, }, 3350 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */ 3351 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3352 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ 3353 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3354 NVME_QUIRK_BOGUS_NID, }, 3355 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ 3356 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3357 NVME_QUIRK_NO_NS_DESC_LIST, }, 3358 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ 3359 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3360 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ 3361 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3362 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ 3363 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3364 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ 3365 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, 3366 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ 3367 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3368 NVME_QUIRK_DISABLE_WRITE_ZEROES| 3369 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3370 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */ 3371 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3372 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */ 3373 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3374 NVME_QUIRK_BOGUS_NID, }, 3375 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */ 3376 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3377 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */ 3378 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3379 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */ 3380 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST | 3381 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3382 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */ 3383 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3384 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ 3385 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN | 3386 NVME_QUIRK_BOGUS_NID, }, 3387 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */ 3388 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3389 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ 3390 .driver_data = NVME_QUIRK_NO_DEEPEST_PS | 3391 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3392 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */ 3393 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN }, 3394 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */ 3395 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3396 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ 3397 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3398 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */ 3399 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3400 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ 3401 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3402 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */ 3403 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3404 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */ 3405 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES | 3406 NVME_QUIRK_BOGUS_NID, }, 3407 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */ 3408 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3409 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */ 3410 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3411 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */ 3412 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3413 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */ 3414 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3415 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */ 3416 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3417 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */ 3418 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3419 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */ 3420 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, }, 3421 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */ 3422 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3423 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */ 3424 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3425 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */ 3426 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3427 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */ 3428 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3429 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */ 3430 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, 3431 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */ 3432 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3433 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */ 3434 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3435 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */ 3436 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3437 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */ 3438 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3439 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */ 3440 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3441 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */ 3442 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3443 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */ 3444 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3445 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */ 3446 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3447 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */ 3448 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3449 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */ 3450 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, }, 3451 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */ 3452 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3453 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */ 3454 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3455 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */ 3456 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3457 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */ 3458 .driver_data = NVME_QUIRK_BOGUS_NID | 3459 NVME_QUIRK_IGNORE_DEV_SUBNQN, }, 3460 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */ 3461 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3462 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */ 3463 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3464 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */ 3465 .driver_data = NVME_QUIRK_BOGUS_NID, }, 3466 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061), 3467 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3468 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065), 3469 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3470 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061), 3471 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3472 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00), 3473 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3474 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01), 3475 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3476 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02), 3477 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, }, 3478 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), 3479 .driver_data = NVME_QUIRK_SINGLE_VECTOR }, 3480 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, 3481 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), 3482 .driver_data = NVME_QUIRK_SINGLE_VECTOR | 3483 NVME_QUIRK_128_BYTES_SQES | 3484 NVME_QUIRK_SHARED_TAGS | 3485 NVME_QUIRK_SKIP_CID_GEN | 3486 NVME_QUIRK_IDENTIFY_CNS }, 3487 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, 3488 { 0, } 3489 }; 3490 MODULE_DEVICE_TABLE(pci, nvme_id_table); 3491 3492 static struct pci_driver nvme_driver = { 3493 .name = "nvme", 3494 .id_table = nvme_id_table, 3495 .probe = nvme_probe, 3496 .remove = nvme_remove, 3497 .shutdown = nvme_shutdown, 3498 .driver = { 3499 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3500 #ifdef CONFIG_PM_SLEEP 3501 .pm = &nvme_dev_pm_ops, 3502 #endif 3503 }, 3504 .sriov_configure = pci_sriov_configure_simple, 3505 .err_handler = &nvme_err_handler, 3506 }; 3507 3508 static int __init nvme_init(void) 3509 { 3510 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); 3511 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); 3512 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); 3513 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); 3514 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE); 3515 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE); 3516 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS); 3517 3518 return pci_register_driver(&nvme_driver); 3519 } 3520 3521 static void __exit nvme_exit(void) 3522 { 3523 pci_unregister_driver(&nvme_driver); 3524 flush_workqueue(nvme_wq); 3525 } 3526 3527 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); 3528 MODULE_LICENSE("GPL"); 3529 MODULE_VERSION("1.0"); 3530 module_init(nvme_init); 3531 module_exit(nvme_exit); 3532