1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2011-2014, Intel Corporation. 4 */ 5 6 #ifndef _NVME_H 7 #define _NVME_H 8 9 #include <linux/nvme.h> 10 #include <linux/cdev.h> 11 #include <linux/pci.h> 12 #include <linux/kref.h> 13 #include <linux/blk-mq.h> 14 #include <linux/sed-opal.h> 15 #include <linux/fault-inject.h> 16 #include <linux/rcupdate.h> 17 #include <linux/wait.h> 18 #include <linux/t10-pi.h> 19 #include <linux/ratelimit_types.h> 20 21 #include <trace/events/block.h> 22 23 extern const struct pr_ops nvme_pr_ops; 24 25 extern unsigned int nvme_io_timeout; 26 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ) 27 28 extern unsigned int admin_timeout; 29 #define NVME_ADMIN_TIMEOUT (admin_timeout * HZ) 30 31 #define NVME_DEFAULT_KATO 5 32 33 #ifdef CONFIG_ARCH_NO_SG_CHAIN 34 #define NVME_INLINE_SG_CNT 0 35 #define NVME_INLINE_METADATA_SG_CNT 0 36 #else 37 #define NVME_INLINE_SG_CNT 2 38 #define NVME_INLINE_METADATA_SG_CNT 1 39 #endif 40 41 /* 42 * Default to a 4K page size, with the intention to update this 43 * path in the future to accommodate architectures with differing 44 * kernel and IO page sizes. 45 */ 46 #define NVME_CTRL_PAGE_SHIFT 12 47 #define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT) 48 49 extern struct workqueue_struct *nvme_wq; 50 extern struct workqueue_struct *nvme_reset_wq; 51 extern struct workqueue_struct *nvme_delete_wq; 52 53 /* 54 * List of workarounds for devices that required behavior not specified in 55 * the standard. 56 */ 57 enum nvme_quirks { 58 /* 59 * Prefers I/O aligned to a stripe size specified in a vendor 60 * specific Identify field. 61 */ 62 NVME_QUIRK_STRIPE_SIZE = (1 << 0), 63 64 /* 65 * The controller doesn't handle Identify value others than 0 or 1 66 * correctly. 67 */ 68 NVME_QUIRK_IDENTIFY_CNS = (1 << 1), 69 70 /* 71 * The controller deterministically returns O's on reads to 72 * logical blocks that deallocate was called on. 73 */ 74 NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2), 75 76 /* 77 * The controller needs a delay before starts checking the device 78 * readiness, which is done by reading the NVME_CSTS_RDY bit. 79 */ 80 NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3), 81 82 /* 83 * APST should not be used. 84 */ 85 NVME_QUIRK_NO_APST = (1 << 4), 86 87 /* 88 * The deepest sleep state should not be used. 89 */ 90 NVME_QUIRK_NO_DEEPEST_PS = (1 << 5), 91 92 /* 93 * Set MEDIUM priority on SQ creation 94 */ 95 NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7), 96 97 /* 98 * Ignore device provided subnqn. 99 */ 100 NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8), 101 102 /* 103 * Broken Write Zeroes. 104 */ 105 NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9), 106 107 /* 108 * Force simple suspend/resume path. 109 */ 110 NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10), 111 112 /* 113 * Use only one interrupt vector for all queues 114 */ 115 NVME_QUIRK_SINGLE_VECTOR = (1 << 11), 116 117 /* 118 * Use non-standard 128 bytes SQEs. 119 */ 120 NVME_QUIRK_128_BYTES_SQES = (1 << 12), 121 122 /* 123 * Prevent tag overlap between queues 124 */ 125 NVME_QUIRK_SHARED_TAGS = (1 << 13), 126 127 /* 128 * Don't change the value of the temperature threshold feature 129 */ 130 NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14), 131 132 /* 133 * The controller doesn't handle the Identify Namespace 134 * Identification Descriptor list subcommand despite claiming 135 * NVMe 1.3 compliance. 136 */ 137 NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15), 138 139 /* 140 * The controller does not properly handle DMA addresses over 141 * 48 bits. 142 */ 143 NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16), 144 145 /* 146 * The controller requires the command_id value be limited, so skip 147 * encoding the generation sequence number. 148 */ 149 NVME_QUIRK_SKIP_CID_GEN = (1 << 17), 150 151 /* 152 * Reports garbage in the namespace identifiers (eui64, nguid, uuid). 153 */ 154 NVME_QUIRK_BOGUS_NID = (1 << 18), 155 156 /* 157 * No temperature thresholds for channels other than 0 (Composite). 158 */ 159 NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19), 160 161 /* 162 * Disables simple suspend/resume path. 163 */ 164 NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND = (1 << 20), 165 }; 166 167 /* 168 * Common request structure for NVMe passthrough. All drivers must have 169 * this structure as the first member of their request-private data. 170 */ 171 struct nvme_request { 172 struct nvme_command *cmd; 173 union nvme_result result; 174 u8 genctr; 175 u8 retries; 176 u8 flags; 177 u16 status; 178 #ifdef CONFIG_NVME_MULTIPATH 179 unsigned long start_time; 180 #endif 181 struct nvme_ctrl *ctrl; 182 }; 183 184 /* 185 * Mark a bio as coming in through the mpath node. 186 */ 187 #define REQ_NVME_MPATH REQ_DRV 188 189 enum { 190 NVME_REQ_CANCELLED = (1 << 0), 191 NVME_REQ_USERCMD = (1 << 1), 192 NVME_MPATH_IO_STATS = (1 << 2), 193 }; 194 195 static inline struct nvme_request *nvme_req(struct request *req) 196 { 197 return blk_mq_rq_to_pdu(req); 198 } 199 200 static inline u16 nvme_req_qid(struct request *req) 201 { 202 if (!req->q->queuedata) 203 return 0; 204 205 return req->mq_hctx->queue_num + 1; 206 } 207 208 /* The below value is the specific amount of delay needed before checking 209 * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the 210 * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was 211 * found empirically. 212 */ 213 #define NVME_QUIRK_DELAY_AMOUNT 2300 214 215 /* 216 * enum nvme_ctrl_state: Controller state 217 * 218 * @NVME_CTRL_NEW: New controller just allocated, initial state 219 * @NVME_CTRL_LIVE: Controller is connected and I/O capable 220 * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset) 221 * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the 222 * transport 223 * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion) 224 * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not 225 * disabled/failed immediately. This state comes 226 * after all async event processing took place and 227 * before ns removal and the controller deletion 228 * progress 229 * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during 230 * shutdown or removal. In this case we forcibly 231 * kill all inflight I/O as they have no chance to 232 * complete 233 */ 234 enum nvme_ctrl_state { 235 NVME_CTRL_NEW, 236 NVME_CTRL_LIVE, 237 NVME_CTRL_RESETTING, 238 NVME_CTRL_CONNECTING, 239 NVME_CTRL_DELETING, 240 NVME_CTRL_DELETING_NOIO, 241 NVME_CTRL_DEAD, 242 }; 243 244 struct nvme_fault_inject { 245 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 246 struct fault_attr attr; 247 struct dentry *parent; 248 bool dont_retry; /* DNR, do not retry */ 249 u16 status; /* status code */ 250 #endif 251 }; 252 253 enum nvme_ctrl_flags { 254 NVME_CTRL_FAILFAST_EXPIRED = 0, 255 NVME_CTRL_ADMIN_Q_STOPPED = 1, 256 NVME_CTRL_STARTED_ONCE = 2, 257 NVME_CTRL_STOPPED = 3, 258 NVME_CTRL_SKIP_ID_CNS_CS = 4, 259 NVME_CTRL_DIRTY_CAPABILITY = 5, 260 NVME_CTRL_FROZEN = 6, 261 }; 262 263 struct nvme_ctrl { 264 bool comp_seen; 265 bool identified; 266 bool passthru_err_log_enabled; 267 enum nvme_ctrl_state state; 268 spinlock_t lock; 269 struct mutex scan_lock; 270 const struct nvme_ctrl_ops *ops; 271 struct request_queue *admin_q; 272 struct request_queue *connect_q; 273 struct request_queue *fabrics_q; 274 struct device *dev; 275 int instance; 276 int numa_node; 277 struct blk_mq_tag_set *tagset; 278 struct blk_mq_tag_set *admin_tagset; 279 struct list_head namespaces; 280 struct rw_semaphore namespaces_rwsem; 281 struct device ctrl_device; 282 struct device *device; /* char device */ 283 #ifdef CONFIG_NVME_HWMON 284 struct device *hwmon_device; 285 #endif 286 struct cdev cdev; 287 struct work_struct reset_work; 288 struct work_struct delete_work; 289 wait_queue_head_t state_wq; 290 291 struct nvme_subsystem *subsys; 292 struct list_head subsys_entry; 293 294 struct opal_dev *opal_dev; 295 296 char name[12]; 297 u16 cntlid; 298 299 u16 mtfa; 300 u32 ctrl_config; 301 u32 queue_count; 302 303 u64 cap; 304 u32 max_hw_sectors; 305 u32 max_segments; 306 u32 max_integrity_segments; 307 u32 max_zeroes_sectors; 308 #ifdef CONFIG_BLK_DEV_ZONED 309 u32 max_zone_append; 310 #endif 311 u16 crdt[3]; 312 u16 oncs; 313 u8 dmrl; 314 u32 dmrsl; 315 u16 oacs; 316 u16 sqsize; 317 u32 max_namespaces; 318 atomic_t abort_limit; 319 u8 vwc; 320 u32 vs; 321 u32 sgls; 322 u16 kas; 323 u8 npss; 324 u8 apsta; 325 u16 wctemp; 326 u16 cctemp; 327 u32 oaes; 328 u32 aen_result; 329 u32 ctratt; 330 unsigned int shutdown_timeout; 331 unsigned int kato; 332 bool subsystem; 333 unsigned long quirks; 334 struct nvme_id_power_state psd[32]; 335 struct nvme_effects_log *effects; 336 struct xarray cels; 337 struct work_struct scan_work; 338 struct work_struct async_event_work; 339 struct delayed_work ka_work; 340 struct delayed_work failfast_work; 341 struct nvme_command ka_cmd; 342 unsigned long ka_last_check_time; 343 struct work_struct fw_act_work; 344 unsigned long events; 345 346 #ifdef CONFIG_NVME_MULTIPATH 347 /* asymmetric namespace access: */ 348 u8 anacap; 349 u8 anatt; 350 u32 anagrpmax; 351 u32 nanagrpid; 352 struct mutex ana_lock; 353 struct nvme_ana_rsp_hdr *ana_log_buf; 354 size_t ana_log_size; 355 struct timer_list anatt_timer; 356 struct work_struct ana_work; 357 #endif 358 359 #ifdef CONFIG_NVME_HOST_AUTH 360 struct work_struct dhchap_auth_work; 361 struct mutex dhchap_auth_mutex; 362 struct nvme_dhchap_queue_context *dhchap_ctxs; 363 struct nvme_dhchap_key *host_key; 364 struct nvme_dhchap_key *ctrl_key; 365 u16 transaction; 366 #endif 367 struct key *tls_key; 368 369 /* Power saving configuration */ 370 u64 ps_max_latency_us; 371 bool apst_enabled; 372 373 /* PCIe only: */ 374 u16 hmmaxd; 375 u32 hmpre; 376 u32 hmmin; 377 u32 hmminds; 378 379 /* Fabrics only */ 380 u32 ioccsz; 381 u32 iorcsz; 382 u16 icdoff; 383 u16 maxcmd; 384 int nr_reconnects; 385 unsigned long flags; 386 struct nvmf_ctrl_options *opts; 387 388 struct page *discard_page; 389 unsigned long discard_page_busy; 390 391 struct nvme_fault_inject fault_inject; 392 393 enum nvme_ctrl_type cntrltype; 394 enum nvme_dctype dctype; 395 }; 396 397 static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl) 398 { 399 return READ_ONCE(ctrl->state); 400 } 401 402 enum nvme_iopolicy { 403 NVME_IOPOLICY_NUMA, 404 NVME_IOPOLICY_RR, 405 }; 406 407 struct nvme_subsystem { 408 int instance; 409 struct device dev; 410 /* 411 * Because we unregister the device on the last put we need 412 * a separate refcount. 413 */ 414 struct kref ref; 415 struct list_head entry; 416 struct mutex lock; 417 struct list_head ctrls; 418 struct list_head nsheads; 419 char subnqn[NVMF_NQN_SIZE]; 420 char serial[20]; 421 char model[40]; 422 char firmware_rev[8]; 423 u8 cmic; 424 enum nvme_subsys_type subtype; 425 u16 vendor_id; 426 u16 awupf; /* 0's based awupf value. */ 427 struct ida ns_ida; 428 #ifdef CONFIG_NVME_MULTIPATH 429 enum nvme_iopolicy iopolicy; 430 #endif 431 }; 432 433 /* 434 * Container structure for uniqueue namespace identifiers. 435 */ 436 struct nvme_ns_ids { 437 u8 eui64[8]; 438 u8 nguid[16]; 439 uuid_t uuid; 440 u8 csi; 441 }; 442 443 /* 444 * Anchor structure for namespaces. There is one for each namespace in a 445 * NVMe subsystem that any of our controllers can see, and the namespace 446 * structure for each controller is chained of it. For private namespaces 447 * there is a 1:1 relation to our namespace structures, that is ->list 448 * only ever has a single entry for private namespaces. 449 */ 450 struct nvme_ns_head { 451 struct list_head list; 452 struct srcu_struct srcu; 453 struct nvme_subsystem *subsys; 454 struct nvme_ns_ids ids; 455 struct list_head entry; 456 struct kref ref; 457 bool shared; 458 bool passthru_err_log_enabled; 459 int instance; 460 struct nvme_effects_log *effects; 461 u64 nuse; 462 unsigned ns_id; 463 int lba_shift; 464 u16 ms; 465 u16 pi_size; 466 u8 pi_type; 467 u8 guard_type; 468 u16 sgs; 469 u32 sws; 470 #ifdef CONFIG_BLK_DEV_ZONED 471 u64 zsze; 472 #endif 473 unsigned long features; 474 475 struct ratelimit_state rs_nuse; 476 477 struct cdev cdev; 478 struct device cdev_device; 479 480 struct gendisk *disk; 481 #ifdef CONFIG_NVME_MULTIPATH 482 struct bio_list requeue_list; 483 spinlock_t requeue_lock; 484 struct work_struct requeue_work; 485 struct mutex lock; 486 unsigned long flags; 487 #define NVME_NSHEAD_DISK_LIVE 0 488 struct nvme_ns __rcu *current_path[]; 489 #endif 490 }; 491 492 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head) 493 { 494 return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk; 495 } 496 497 enum nvme_ns_features { 498 NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */ 499 NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */ 500 NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */ 501 }; 502 503 struct nvme_ns { 504 struct list_head list; 505 506 struct nvme_ctrl *ctrl; 507 struct request_queue *queue; 508 struct gendisk *disk; 509 #ifdef CONFIG_NVME_MULTIPATH 510 enum nvme_ana_state ana_state; 511 u32 ana_grpid; 512 #endif 513 struct list_head siblings; 514 struct kref kref; 515 struct nvme_ns_head *head; 516 517 unsigned long flags; 518 #define NVME_NS_REMOVING 0 519 #define NVME_NS_ANA_PENDING 2 520 #define NVME_NS_FORCE_RO 3 521 #define NVME_NS_READY 4 522 523 struct cdev cdev; 524 struct device cdev_device; 525 526 struct nvme_fault_inject fault_inject; 527 }; 528 529 /* NVMe ns supports metadata actions by the controller (generate/strip) */ 530 static inline bool nvme_ns_has_pi(struct nvme_ns_head *head) 531 { 532 return head->pi_type && head->ms == head->pi_size; 533 } 534 535 struct nvme_ctrl_ops { 536 const char *name; 537 struct module *module; 538 unsigned int flags; 539 #define NVME_F_FABRICS (1 << 0) 540 #define NVME_F_METADATA_SUPPORTED (1 << 1) 541 #define NVME_F_BLOCKING (1 << 2) 542 543 const struct attribute_group **dev_attr_groups; 544 int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val); 545 int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val); 546 int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val); 547 void (*free_ctrl)(struct nvme_ctrl *ctrl); 548 void (*submit_async_event)(struct nvme_ctrl *ctrl); 549 void (*delete_ctrl)(struct nvme_ctrl *ctrl); 550 void (*stop_ctrl)(struct nvme_ctrl *ctrl); 551 int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size); 552 void (*print_device_info)(struct nvme_ctrl *ctrl); 553 bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl); 554 }; 555 556 /* 557 * nvme command_id is constructed as such: 558 * | xxxx | xxxxxxxxxxxx | 559 * gen request tag 560 */ 561 #define nvme_genctr_mask(gen) (gen & 0xf) 562 #define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12) 563 #define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12) 564 #define nvme_tag_from_cid(cid) (cid & 0xfff) 565 566 static inline u16 nvme_cid(struct request *rq) 567 { 568 return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag; 569 } 570 571 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags, 572 u16 command_id) 573 { 574 u8 genctr = nvme_genctr_from_cid(command_id); 575 u16 tag = nvme_tag_from_cid(command_id); 576 struct request *rq; 577 578 rq = blk_mq_tag_to_rq(tags, tag); 579 if (unlikely(!rq)) { 580 pr_err("could not locate request for tag %#x\n", 581 tag); 582 return NULL; 583 } 584 if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) { 585 dev_err(nvme_req(rq)->ctrl->device, 586 "request %#x genctr mismatch (got %#x expected %#x)\n", 587 tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr)); 588 return NULL; 589 } 590 return rq; 591 } 592 593 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags, 594 u16 command_id) 595 { 596 return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id)); 597 } 598 599 /* 600 * Return the length of the string without the space padding 601 */ 602 static inline int nvme_strlen(char *s, int len) 603 { 604 while (s[len - 1] == ' ') 605 len--; 606 return len; 607 } 608 609 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl) 610 { 611 struct nvme_subsystem *subsys = ctrl->subsys; 612 613 if (ctrl->ops->print_device_info) { 614 ctrl->ops->print_device_info(ctrl); 615 return; 616 } 617 618 dev_err(ctrl->device, 619 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id, 620 nvme_strlen(subsys->model, sizeof(subsys->model)), 621 subsys->model, nvme_strlen(subsys->firmware_rev, 622 sizeof(subsys->firmware_rev)), 623 subsys->firmware_rev); 624 } 625 626 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 627 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, 628 const char *dev_name); 629 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject); 630 void nvme_should_fail(struct request *req); 631 #else 632 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj, 633 const char *dev_name) 634 { 635 } 636 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj) 637 { 638 } 639 static inline void nvme_should_fail(struct request *req) {} 640 #endif 641 642 bool nvme_wait_reset(struct nvme_ctrl *ctrl); 643 int nvme_try_sched_reset(struct nvme_ctrl *ctrl); 644 645 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl) 646 { 647 int ret; 648 649 if (!ctrl->subsystem) 650 return -ENOTTY; 651 if (!nvme_wait_reset(ctrl)) 652 return -EBUSY; 653 654 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65); 655 if (ret) 656 return ret; 657 658 return nvme_try_sched_reset(ctrl); 659 } 660 661 /* 662 * Convert a 512B sector number to a device logical block number. 663 */ 664 static inline u64 nvme_sect_to_lba(struct nvme_ns_head *head, sector_t sector) 665 { 666 return sector >> (head->lba_shift - SECTOR_SHIFT); 667 } 668 669 /* 670 * Convert a device logical block number to a 512B sector number. 671 */ 672 static inline sector_t nvme_lba_to_sect(struct nvme_ns_head *head, u64 lba) 673 { 674 return lba << (head->lba_shift - SECTOR_SHIFT); 675 } 676 677 /* 678 * Convert byte length to nvme's 0-based num dwords 679 */ 680 static inline u32 nvme_bytes_to_numd(size_t len) 681 { 682 return (len >> 2) - 1; 683 } 684 685 static inline bool nvme_is_ana_error(u16 status) 686 { 687 switch (status & 0x7ff) { 688 case NVME_SC_ANA_TRANSITION: 689 case NVME_SC_ANA_INACCESSIBLE: 690 case NVME_SC_ANA_PERSISTENT_LOSS: 691 return true; 692 default: 693 return false; 694 } 695 } 696 697 static inline bool nvme_is_path_error(u16 status) 698 { 699 /* check for a status code type of 'path related status' */ 700 return (status & 0x700) == 0x300; 701 } 702 703 /* 704 * Fill in the status and result information from the CQE, and then figure out 705 * if blk-mq will need to use IPI magic to complete the request, and if yes do 706 * so. If not let the caller complete the request without an indirect function 707 * call. 708 */ 709 static inline bool nvme_try_complete_req(struct request *req, __le16 status, 710 union nvme_result result) 711 { 712 struct nvme_request *rq = nvme_req(req); 713 struct nvme_ctrl *ctrl = rq->ctrl; 714 715 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN)) 716 rq->genctr++; 717 718 rq->status = le16_to_cpu(status) >> 1; 719 rq->result = result; 720 /* inject error when permitted by fault injection framework */ 721 nvme_should_fail(req); 722 if (unlikely(blk_should_fake_timeout(req->q))) 723 return true; 724 return blk_mq_complete_request_remote(req); 725 } 726 727 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl) 728 { 729 get_device(ctrl->device); 730 } 731 732 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl) 733 { 734 put_device(ctrl->device); 735 } 736 737 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id) 738 { 739 return !qid && 740 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH; 741 } 742 743 void nvme_complete_rq(struct request *req); 744 void nvme_complete_batch_req(struct request *req); 745 746 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob, 747 void (*fn)(struct request *rq)) 748 { 749 struct request *req; 750 751 rq_list_for_each(&iob->req_list, req) { 752 fn(req); 753 nvme_complete_batch_req(req); 754 } 755 blk_mq_end_request_batch(iob); 756 } 757 758 blk_status_t nvme_host_path_error(struct request *req); 759 bool nvme_cancel_request(struct request *req, void *data); 760 void nvme_cancel_tagset(struct nvme_ctrl *ctrl); 761 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl); 762 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 763 enum nvme_ctrl_state new_state); 764 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown); 765 int nvme_enable_ctrl(struct nvme_ctrl *ctrl); 766 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 767 const struct nvme_ctrl_ops *ops, unsigned long quirks); 768 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl); 769 void nvme_start_ctrl(struct nvme_ctrl *ctrl); 770 void nvme_stop_ctrl(struct nvme_ctrl *ctrl); 771 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended); 772 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 773 const struct blk_mq_ops *ops, unsigned int cmd_size); 774 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl); 775 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 776 const struct blk_mq_ops *ops, unsigned int nr_maps, 777 unsigned int cmd_size); 778 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl); 779 780 void nvme_remove_namespaces(struct nvme_ctrl *ctrl); 781 782 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 783 volatile union nvme_result *res); 784 785 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl); 786 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl); 787 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl); 788 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl); 789 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl); 790 void nvme_sync_queues(struct nvme_ctrl *ctrl); 791 void nvme_sync_io_queues(struct nvme_ctrl *ctrl); 792 void nvme_unfreeze(struct nvme_ctrl *ctrl); 793 void nvme_wait_freeze(struct nvme_ctrl *ctrl); 794 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout); 795 void nvme_start_freeze(struct nvme_ctrl *ctrl); 796 797 static inline enum req_op nvme_req_op(struct nvme_command *cmd) 798 { 799 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 800 } 801 802 #define NVME_QID_ANY -1 803 void nvme_init_request(struct request *req, struct nvme_command *cmd); 804 void nvme_cleanup_cmd(struct request *req); 805 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req); 806 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 807 struct request *req); 808 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 809 bool queue_live, enum nvme_ctrl_state state); 810 811 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 812 bool queue_live) 813 { 814 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 815 816 if (likely(state == NVME_CTRL_LIVE)) 817 return true; 818 if (ctrl->ops->flags & NVME_F_FABRICS && state == NVME_CTRL_DELETING) 819 return queue_live; 820 return __nvme_check_ready(ctrl, rq, queue_live, state); 821 } 822 823 /* 824 * NSID shall be unique for all shared namespaces, or if at least one of the 825 * following conditions is met: 826 * 1. Namespace Management is supported by the controller 827 * 2. ANA is supported by the controller 828 * 3. NVM Set are supported by the controller 829 * 830 * In other case, private namespace are not required to report a unique NSID. 831 */ 832 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl, 833 struct nvme_ns_head *head) 834 { 835 return head->shared || 836 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) || 837 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) || 838 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS); 839 } 840 841 /* 842 * Flags for __nvme_submit_sync_cmd() 843 */ 844 typedef __u32 __bitwise nvme_submit_flags_t; 845 846 enum { 847 /* Insert request at the head of the queue */ 848 NVME_SUBMIT_AT_HEAD = (__force nvme_submit_flags_t)(1 << 0), 849 /* Set BLK_MQ_REQ_NOWAIT when allocating request */ 850 NVME_SUBMIT_NOWAIT = (__force nvme_submit_flags_t)(1 << 1), 851 /* Set BLK_MQ_REQ_RESERVED when allocating request */ 852 NVME_SUBMIT_RESERVED = (__force nvme_submit_flags_t)(1 << 2), 853 /* Retry command when NVME_SC_DNR is not set in the result */ 854 NVME_SUBMIT_RETRY = (__force nvme_submit_flags_t)(1 << 3), 855 }; 856 857 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 858 void *buf, unsigned bufflen); 859 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 860 union nvme_result *result, void *buffer, unsigned bufflen, 861 int qid, nvme_submit_flags_t flags); 862 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 863 unsigned int dword11, void *buffer, size_t buflen, 864 u32 *result); 865 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 866 unsigned int dword11, void *buffer, size_t buflen, 867 u32 *result); 868 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count); 869 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl); 870 int nvme_reset_ctrl(struct nvme_ctrl *ctrl); 871 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl); 872 int nvme_delete_ctrl(struct nvme_ctrl *ctrl); 873 void nvme_queue_scan(struct nvme_ctrl *ctrl); 874 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 875 void *log, size_t size, u64 offset); 876 bool nvme_tryget_ns_head(struct nvme_ns_head *head); 877 void nvme_put_ns_head(struct nvme_ns_head *head); 878 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 879 const struct file_operations *fops, struct module *owner); 880 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device); 881 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode, 882 unsigned int cmd, unsigned long arg); 883 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 884 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode, 885 unsigned int cmd, unsigned long arg); 886 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd, 887 unsigned long arg); 888 long nvme_dev_ioctl(struct file *file, unsigned int cmd, 889 unsigned long arg); 890 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd, 891 struct io_comp_batch *iob, unsigned int poll_flags); 892 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, 893 unsigned int issue_flags); 894 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd, 895 unsigned int issue_flags); 896 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 897 struct nvme_id_ns **id); 898 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo); 899 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags); 900 901 extern const struct attribute_group *nvme_ns_attr_groups[]; 902 extern const struct pr_ops nvme_pr_ops; 903 extern const struct block_device_operations nvme_ns_head_ops; 904 extern const struct attribute_group nvme_dev_attrs_group; 905 extern const struct attribute_group *nvme_subsys_attrs_groups[]; 906 extern const struct attribute_group *nvme_dev_attr_groups[]; 907 extern const struct block_device_operations nvme_bdev_ops; 908 909 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl); 910 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head); 911 #ifdef CONFIG_NVME_MULTIPATH 912 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 913 { 914 return ctrl->ana_log_buf != NULL; 915 } 916 917 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys); 918 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys); 919 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys); 920 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys); 921 void nvme_failover_req(struct request *req); 922 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl); 923 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head); 924 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid); 925 void nvme_mpath_remove_disk(struct nvme_ns_head *head); 926 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id); 927 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl); 928 void nvme_mpath_update(struct nvme_ctrl *ctrl); 929 void nvme_mpath_uninit(struct nvme_ctrl *ctrl); 930 void nvme_mpath_stop(struct nvme_ctrl *ctrl); 931 bool nvme_mpath_clear_current_path(struct nvme_ns *ns); 932 void nvme_mpath_revalidate_paths(struct nvme_ns *ns); 933 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl); 934 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head); 935 void nvme_mpath_start_request(struct request *rq); 936 void nvme_mpath_end_request(struct request *rq); 937 938 static inline void nvme_trace_bio_complete(struct request *req) 939 { 940 struct nvme_ns *ns = req->q->queuedata; 941 942 if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio) 943 trace_block_bio_complete(ns->head->disk->queue, req->bio); 944 } 945 946 extern bool multipath; 947 extern struct device_attribute dev_attr_ana_grpid; 948 extern struct device_attribute dev_attr_ana_state; 949 extern struct device_attribute subsys_attr_iopolicy; 950 951 static inline bool nvme_disk_is_ns_head(struct gendisk *disk) 952 { 953 return disk->fops == &nvme_ns_head_ops; 954 } 955 #else 956 #define multipath false 957 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl) 958 { 959 return false; 960 } 961 static inline void nvme_failover_req(struct request *req) 962 { 963 } 964 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 965 { 966 } 967 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, 968 struct nvme_ns_head *head) 969 { 970 return 0; 971 } 972 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) 973 { 974 } 975 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head) 976 { 977 } 978 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 979 { 980 return false; 981 } 982 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns) 983 { 984 } 985 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 986 { 987 } 988 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) 989 { 990 } 991 static inline void nvme_trace_bio_complete(struct request *req) 992 { 993 } 994 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) 995 { 996 } 997 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, 998 struct nvme_id_ctrl *id) 999 { 1000 if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) 1001 dev_warn(ctrl->device, 1002 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n"); 1003 return 0; 1004 } 1005 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl) 1006 { 1007 } 1008 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 1009 { 1010 } 1011 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl) 1012 { 1013 } 1014 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 1015 { 1016 } 1017 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 1018 { 1019 } 1020 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 1021 { 1022 } 1023 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) 1024 { 1025 } 1026 static inline void nvme_mpath_start_request(struct request *rq) 1027 { 1028 } 1029 static inline void nvme_mpath_end_request(struct request *rq) 1030 { 1031 } 1032 static inline bool nvme_disk_is_ns_head(struct gendisk *disk) 1033 { 1034 return false; 1035 } 1036 #endif /* CONFIG_NVME_MULTIPATH */ 1037 1038 int nvme_revalidate_zones(struct nvme_ns *ns); 1039 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector, 1040 unsigned int nr_zones, report_zones_cb cb, void *data); 1041 #ifdef CONFIG_BLK_DEV_ZONED 1042 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf); 1043 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req, 1044 struct nvme_command *cmnd, 1045 enum nvme_zone_mgmt_action action); 1046 #else 1047 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, 1048 struct request *req, struct nvme_command *cmnd, 1049 enum nvme_zone_mgmt_action action) 1050 { 1051 return BLK_STS_NOTSUPP; 1052 } 1053 1054 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf) 1055 { 1056 dev_warn(ns->ctrl->device, 1057 "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n"); 1058 return -EPROTONOSUPPORT; 1059 } 1060 #endif 1061 1062 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev) 1063 { 1064 struct gendisk *disk = dev_to_disk(dev); 1065 1066 WARN_ON(nvme_disk_is_ns_head(disk)); 1067 return disk->private_data; 1068 } 1069 1070 #ifdef CONFIG_NVME_HWMON 1071 int nvme_hwmon_init(struct nvme_ctrl *ctrl); 1072 void nvme_hwmon_exit(struct nvme_ctrl *ctrl); 1073 #else 1074 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl) 1075 { 1076 return 0; 1077 } 1078 1079 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl) 1080 { 1081 } 1082 #endif 1083 1084 static inline void nvme_start_request(struct request *rq) 1085 { 1086 if (rq->cmd_flags & REQ_NVME_MPATH) 1087 nvme_mpath_start_request(rq); 1088 blk_mq_start_request(rq); 1089 } 1090 1091 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl) 1092 { 1093 return ctrl->sgls & ((1 << 0) | (1 << 1)); 1094 } 1095 1096 #ifdef CONFIG_NVME_HOST_AUTH 1097 int __init nvme_init_auth(void); 1098 void __exit nvme_exit_auth(void); 1099 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl); 1100 void nvme_auth_stop(struct nvme_ctrl *ctrl); 1101 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid); 1102 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid); 1103 void nvme_auth_free(struct nvme_ctrl *ctrl); 1104 #else 1105 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl) 1106 { 1107 return 0; 1108 } 1109 static inline int __init nvme_init_auth(void) 1110 { 1111 return 0; 1112 } 1113 static inline void __exit nvme_exit_auth(void) 1114 { 1115 } 1116 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {}; 1117 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid) 1118 { 1119 return -EPROTONOSUPPORT; 1120 } 1121 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid) 1122 { 1123 return NVME_SC_AUTH_REQUIRED; 1124 } 1125 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {}; 1126 #endif 1127 1128 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1129 u8 opcode); 1130 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode); 1131 int nvme_execute_rq(struct request *rq, bool at_head); 1132 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1133 struct nvme_command *cmd, int status); 1134 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file); 1135 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid); 1136 void nvme_put_ns(struct nvme_ns *ns); 1137 1138 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl) 1139 { 1140 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1141 } 1142 1143 #ifdef CONFIG_NVME_VERBOSE_ERRORS 1144 const char *nvme_get_error_status_str(u16 status); 1145 const char *nvme_get_opcode_str(u8 opcode); 1146 const char *nvme_get_admin_opcode_str(u8 opcode); 1147 const char *nvme_get_fabrics_opcode_str(u8 opcode); 1148 #else /* CONFIG_NVME_VERBOSE_ERRORS */ 1149 static inline const char *nvme_get_error_status_str(u16 status) 1150 { 1151 return "I/O Error"; 1152 } 1153 static inline const char *nvme_get_opcode_str(u8 opcode) 1154 { 1155 return "I/O Cmd"; 1156 } 1157 static inline const char *nvme_get_admin_opcode_str(u8 opcode) 1158 { 1159 return "Admin Cmd"; 1160 } 1161 1162 static inline const char *nvme_get_fabrics_opcode_str(u8 opcode) 1163 { 1164 return "Fabrics Cmd"; 1165 } 1166 #endif /* CONFIG_NVME_VERBOSE_ERRORS */ 1167 1168 static inline const char *nvme_opcode_str(int qid, u8 opcode) 1169 { 1170 return qid ? nvme_get_opcode_str(opcode) : 1171 nvme_get_admin_opcode_str(opcode); 1172 } 1173 1174 static inline const char *nvme_fabrics_opcode_str( 1175 int qid, const struct nvme_command *cmd) 1176 { 1177 if (nvme_is_fabrics(cmd)) 1178 return nvme_get_fabrics_opcode_str(cmd->fabrics.fctype); 1179 1180 return nvme_opcode_str(qid, cmd->common.opcode); 1181 } 1182 #endif /* _NVME_H */ 1183