xref: /linux/drivers/nvme/host/nvme.h (revision 26bb0d3f38a764b743a3ad5c8b6e5b5044d7ceb4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2011-2014, Intel Corporation.
4  */
5 
6 #ifndef _NVME_H
7 #define _NVME_H
8 
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19 #include <linux/ratelimit_types.h>
20 
21 #include <trace/events/block.h>
22 
23 extern const struct pr_ops nvme_pr_ops;
24 
25 extern unsigned int nvme_io_timeout;
26 #define NVME_IO_TIMEOUT	(nvme_io_timeout * HZ)
27 
28 extern unsigned int admin_timeout;
29 #define NVME_ADMIN_TIMEOUT	(admin_timeout * HZ)
30 
31 #define NVME_DEFAULT_KATO	5
32 
33 #ifdef CONFIG_ARCH_NO_SG_CHAIN
34 #define  NVME_INLINE_SG_CNT  0
35 #define  NVME_INLINE_METADATA_SG_CNT  0
36 #else
37 #define  NVME_INLINE_SG_CNT  2
38 #define  NVME_INLINE_METADATA_SG_CNT  1
39 #endif
40 
41 /*
42  * Default to a 4K page size, with the intention to update this
43  * path in the future to accommodate architectures with differing
44  * kernel and IO page sizes.
45  */
46 #define NVME_CTRL_PAGE_SHIFT	12
47 #define NVME_CTRL_PAGE_SIZE	(1 << NVME_CTRL_PAGE_SHIFT)
48 
49 extern struct workqueue_struct *nvme_wq;
50 extern struct workqueue_struct *nvme_reset_wq;
51 extern struct workqueue_struct *nvme_delete_wq;
52 extern struct mutex nvme_subsystems_lock;
53 
54 /*
55  * List of workarounds for devices that required behavior not specified in
56  * the standard.
57  */
58 enum nvme_quirks {
59 	/*
60 	 * Prefers I/O aligned to a stripe size specified in a vendor
61 	 * specific Identify field.
62 	 */
63 	NVME_QUIRK_STRIPE_SIZE			= (1 << 0),
64 
65 	/*
66 	 * The controller doesn't handle Identify value others than 0 or 1
67 	 * correctly.
68 	 */
69 	NVME_QUIRK_IDENTIFY_CNS			= (1 << 1),
70 
71 	/*
72 	 * The controller deterministically returns O's on reads to
73 	 * logical blocks that deallocate was called on.
74 	 */
75 	NVME_QUIRK_DEALLOCATE_ZEROES		= (1 << 2),
76 
77 	/*
78 	 * The controller needs a delay before starts checking the device
79 	 * readiness, which is done by reading the NVME_CSTS_RDY bit.
80 	 */
81 	NVME_QUIRK_DELAY_BEFORE_CHK_RDY		= (1 << 3),
82 
83 	/*
84 	 * APST should not be used.
85 	 */
86 	NVME_QUIRK_NO_APST			= (1 << 4),
87 
88 	/*
89 	 * The deepest sleep state should not be used.
90 	 */
91 	NVME_QUIRK_NO_DEEPEST_PS		= (1 << 5),
92 
93 	/*
94 	 *  Problems seen with concurrent commands
95 	 */
96 	NVME_QUIRK_QDEPTH_ONE			= (1 << 6),
97 
98 	/*
99 	 * Set MEDIUM priority on SQ creation
100 	 */
101 	NVME_QUIRK_MEDIUM_PRIO_SQ		= (1 << 7),
102 
103 	/*
104 	 * Ignore device provided subnqn.
105 	 */
106 	NVME_QUIRK_IGNORE_DEV_SUBNQN		= (1 << 8),
107 
108 	/*
109 	 * Broken Write Zeroes.
110 	 */
111 	NVME_QUIRK_DISABLE_WRITE_ZEROES		= (1 << 9),
112 
113 	/*
114 	 * Force simple suspend/resume path.
115 	 */
116 	NVME_QUIRK_SIMPLE_SUSPEND		= (1 << 10),
117 
118 	/*
119 	 * Use only one interrupt vector for all queues
120 	 */
121 	NVME_QUIRK_SINGLE_VECTOR		= (1 << 11),
122 
123 	/*
124 	 * Use non-standard 128 bytes SQEs.
125 	 */
126 	NVME_QUIRK_128_BYTES_SQES		= (1 << 12),
127 
128 	/*
129 	 * Prevent tag overlap between queues
130 	 */
131 	NVME_QUIRK_SHARED_TAGS                  = (1 << 13),
132 
133 	/*
134 	 * Don't change the value of the temperature threshold feature
135 	 */
136 	NVME_QUIRK_NO_TEMP_THRESH_CHANGE	= (1 << 14),
137 
138 	/*
139 	 * The controller doesn't handle the Identify Namespace
140 	 * Identification Descriptor list subcommand despite claiming
141 	 * NVMe 1.3 compliance.
142 	 */
143 	NVME_QUIRK_NO_NS_DESC_LIST		= (1 << 15),
144 
145 	/*
146 	 * The controller does not properly handle DMA addresses over
147 	 * 48 bits.
148 	 */
149 	NVME_QUIRK_DMA_ADDRESS_BITS_48		= (1 << 16),
150 
151 	/*
152 	 * The controller requires the command_id value be limited, so skip
153 	 * encoding the generation sequence number.
154 	 */
155 	NVME_QUIRK_SKIP_CID_GEN			= (1 << 17),
156 
157 	/*
158 	 * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
159 	 */
160 	NVME_QUIRK_BOGUS_NID			= (1 << 18),
161 
162 	/*
163 	 * No temperature thresholds for channels other than 0 (Composite).
164 	 */
165 	NVME_QUIRK_NO_SECONDARY_TEMP_THRESH	= (1 << 19),
166 
167 	/*
168 	 * Disables simple suspend/resume path.
169 	 */
170 	NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND	= (1 << 20),
171 
172 	/*
173 	 * MSI (but not MSI-X) interrupts are broken and never fire.
174 	 */
175 	NVME_QUIRK_BROKEN_MSI			= (1 << 21),
176 };
177 
178 /*
179  * Common request structure for NVMe passthrough.  All drivers must have
180  * this structure as the first member of their request-private data.
181  */
182 struct nvme_request {
183 	struct nvme_command	*cmd;
184 	union nvme_result	result;
185 	u8			genctr;
186 	u8			retries;
187 	u8			flags;
188 	u16			status;
189 #ifdef CONFIG_NVME_MULTIPATH
190 	unsigned long		start_time;
191 #endif
192 	struct nvme_ctrl	*ctrl;
193 };
194 
195 /*
196  * Mark a bio as coming in through the mpath node.
197  */
198 #define REQ_NVME_MPATH		REQ_DRV
199 
200 enum {
201 	NVME_REQ_CANCELLED		= (1 << 0),
202 	NVME_REQ_USERCMD		= (1 << 1),
203 	NVME_MPATH_IO_STATS		= (1 << 2),
204 	NVME_MPATH_CNT_ACTIVE		= (1 << 3),
205 };
206 
207 static inline struct nvme_request *nvme_req(struct request *req)
208 {
209 	return blk_mq_rq_to_pdu(req);
210 }
211 
212 static inline u16 nvme_req_qid(struct request *req)
213 {
214 	if (!req->q->queuedata)
215 		return 0;
216 
217 	return req->mq_hctx->queue_num + 1;
218 }
219 
220 /* The below value is the specific amount of delay needed before checking
221  * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
222  * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
223  * found empirically.
224  */
225 #define NVME_QUIRK_DELAY_AMOUNT		2300
226 
227 /*
228  * enum nvme_ctrl_state: Controller state
229  *
230  * @NVME_CTRL_NEW:		New controller just allocated, initial state
231  * @NVME_CTRL_LIVE:		Controller is connected and I/O capable
232  * @NVME_CTRL_RESETTING:	Controller is resetting (or scheduled reset)
233  * @NVME_CTRL_CONNECTING:	Controller is disconnected, now connecting the
234  *				transport
235  * @NVME_CTRL_DELETING:		Controller is deleting (or scheduled deletion)
236  * @NVME_CTRL_DELETING_NOIO:	Controller is deleting and I/O is not
237  *				disabled/failed immediately. This state comes
238  * 				after all async event processing took place and
239  * 				before ns removal and the controller deletion
240  * 				progress
241  * @NVME_CTRL_DEAD:		Controller is non-present/unresponsive during
242  *				shutdown or removal. In this case we forcibly
243  *				kill all inflight I/O as they have no chance to
244  *				complete
245  */
246 enum nvme_ctrl_state {
247 	NVME_CTRL_NEW,
248 	NVME_CTRL_LIVE,
249 	NVME_CTRL_RESETTING,
250 	NVME_CTRL_CONNECTING,
251 	NVME_CTRL_DELETING,
252 	NVME_CTRL_DELETING_NOIO,
253 	NVME_CTRL_DEAD,
254 };
255 
256 struct nvme_fault_inject {
257 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
258 	struct fault_attr attr;
259 	struct dentry *parent;
260 	bool dont_retry;	/* DNR, do not retry */
261 	u16 status;		/* status code */
262 #endif
263 };
264 
265 enum nvme_ctrl_flags {
266 	NVME_CTRL_FAILFAST_EXPIRED	= 0,
267 	NVME_CTRL_ADMIN_Q_STOPPED	= 1,
268 	NVME_CTRL_STARTED_ONCE		= 2,
269 	NVME_CTRL_STOPPED		= 3,
270 	NVME_CTRL_SKIP_ID_CNS_CS	= 4,
271 	NVME_CTRL_DIRTY_CAPABILITY	= 5,
272 	NVME_CTRL_FROZEN		= 6,
273 };
274 
275 struct nvme_ctrl {
276 	bool comp_seen;
277 	bool identified;
278 	bool passthru_err_log_enabled;
279 	enum nvme_ctrl_state state;
280 	spinlock_t lock;
281 	struct mutex scan_lock;
282 	const struct nvme_ctrl_ops *ops;
283 	struct request_queue *admin_q;
284 	struct request_queue *connect_q;
285 	struct request_queue *fabrics_q;
286 	struct device *dev;
287 	int instance;
288 	int numa_node;
289 	struct blk_mq_tag_set *tagset;
290 	struct blk_mq_tag_set *admin_tagset;
291 	struct list_head namespaces;
292 	struct mutex namespaces_lock;
293 	struct srcu_struct srcu;
294 	struct device ctrl_device;
295 	struct device *device;	/* char device */
296 #ifdef CONFIG_NVME_HWMON
297 	struct device *hwmon_device;
298 #endif
299 	struct cdev cdev;
300 	struct work_struct reset_work;
301 	struct work_struct delete_work;
302 	wait_queue_head_t state_wq;
303 
304 	struct nvme_subsystem *subsys;
305 	struct list_head subsys_entry;
306 
307 	struct opal_dev *opal_dev;
308 
309 	u16 cntlid;
310 
311 	u16 mtfa;
312 	u32 ctrl_config;
313 	u32 queue_count;
314 
315 	u64 cap;
316 	u32 max_hw_sectors;
317 	u32 max_segments;
318 	u32 max_integrity_segments;
319 	u32 max_zeroes_sectors;
320 #ifdef CONFIG_BLK_DEV_ZONED
321 	u32 max_zone_append;
322 #endif
323 	u16 crdt[3];
324 	u16 oncs;
325 	u8 dmrl;
326 	u32 dmrsl;
327 	u16 oacs;
328 	u16 sqsize;
329 	u32 max_namespaces;
330 	atomic_t abort_limit;
331 	u8 vwc;
332 	u32 vs;
333 	u32 sgls;
334 	u16 kas;
335 	u8 npss;
336 	u8 apsta;
337 	u16 wctemp;
338 	u16 cctemp;
339 	u32 oaes;
340 	u32 aen_result;
341 	u32 ctratt;
342 	unsigned int shutdown_timeout;
343 	unsigned int kato;
344 	bool subsystem;
345 	unsigned long quirks;
346 	struct nvme_id_power_state psd[32];
347 	struct nvme_effects_log *effects;
348 	struct xarray cels;
349 	struct work_struct scan_work;
350 	struct work_struct async_event_work;
351 	struct delayed_work ka_work;
352 	struct delayed_work failfast_work;
353 	struct nvme_command ka_cmd;
354 	unsigned long ka_last_check_time;
355 	struct work_struct fw_act_work;
356 	unsigned long events;
357 
358 #ifdef CONFIG_NVME_MULTIPATH
359 	/* asymmetric namespace access: */
360 	u8 anacap;
361 	u8 anatt;
362 	u32 anagrpmax;
363 	u32 nanagrpid;
364 	struct mutex ana_lock;
365 	struct nvme_ana_rsp_hdr *ana_log_buf;
366 	size_t ana_log_size;
367 	struct timer_list anatt_timer;
368 	struct work_struct ana_work;
369 	atomic_t nr_active;
370 #endif
371 
372 #ifdef CONFIG_NVME_HOST_AUTH
373 	struct work_struct dhchap_auth_work;
374 	struct mutex dhchap_auth_mutex;
375 	struct nvme_dhchap_queue_context *dhchap_ctxs;
376 	struct nvme_dhchap_key *host_key;
377 	struct nvme_dhchap_key *ctrl_key;
378 	u16 transaction;
379 #endif
380 	key_serial_t tls_pskid;
381 
382 	/* Power saving configuration */
383 	u64 ps_max_latency_us;
384 	bool apst_enabled;
385 
386 	/* PCIe only: */
387 	u16 hmmaxd;
388 	u32 hmpre;
389 	u32 hmmin;
390 	u32 hmminds;
391 
392 	/* Fabrics only */
393 	u32 ioccsz;
394 	u32 iorcsz;
395 	u16 icdoff;
396 	u16 maxcmd;
397 	int nr_reconnects;
398 	unsigned long flags;
399 	struct nvmf_ctrl_options *opts;
400 
401 	struct page *discard_page;
402 	unsigned long discard_page_busy;
403 
404 	struct nvme_fault_inject fault_inject;
405 
406 	enum nvme_ctrl_type cntrltype;
407 	enum nvme_dctype dctype;
408 };
409 
410 static inline enum nvme_ctrl_state nvme_ctrl_state(struct nvme_ctrl *ctrl)
411 {
412 	return READ_ONCE(ctrl->state);
413 }
414 
415 enum nvme_iopolicy {
416 	NVME_IOPOLICY_NUMA,
417 	NVME_IOPOLICY_RR,
418 	NVME_IOPOLICY_QD,
419 };
420 
421 struct nvme_subsystem {
422 	int			instance;
423 	struct device		dev;
424 	/*
425 	 * Because we unregister the device on the last put we need
426 	 * a separate refcount.
427 	 */
428 	struct kref		ref;
429 	struct list_head	entry;
430 	struct mutex		lock;
431 	struct list_head	ctrls;
432 	struct list_head	nsheads;
433 	char			subnqn[NVMF_NQN_SIZE];
434 	char			serial[20];
435 	char			model[40];
436 	char			firmware_rev[8];
437 	u8			cmic;
438 	enum nvme_subsys_type	subtype;
439 	u16			vendor_id;
440 	u16			awupf;	/* 0's based awupf value. */
441 	struct ida		ns_ida;
442 #ifdef CONFIG_NVME_MULTIPATH
443 	enum nvme_iopolicy	iopolicy;
444 #endif
445 };
446 
447 /*
448  * Container structure for uniqueue namespace identifiers.
449  */
450 struct nvme_ns_ids {
451 	u8	eui64[8];
452 	u8	nguid[16];
453 	uuid_t	uuid;
454 	u8	csi;
455 };
456 
457 /*
458  * Anchor structure for namespaces.  There is one for each namespace in a
459  * NVMe subsystem that any of our controllers can see, and the namespace
460  * structure for each controller is chained of it.  For private namespaces
461  * there is a 1:1 relation to our namespace structures, that is ->list
462  * only ever has a single entry for private namespaces.
463  */
464 struct nvme_ns_head {
465 	struct list_head	list;
466 	struct srcu_struct      srcu;
467 	struct nvme_subsystem	*subsys;
468 	struct nvme_ns_ids	ids;
469 	u8			lba_shift;
470 	u16			ms;
471 	u16			pi_size;
472 	u8			pi_type;
473 	u8			guard_type;
474 	struct list_head	entry;
475 	struct kref		ref;
476 	bool			shared;
477 	bool			passthru_err_log_enabled;
478 	struct nvme_effects_log *effects;
479 	u64			nuse;
480 	unsigned		ns_id;
481 	int			instance;
482 #ifdef CONFIG_BLK_DEV_ZONED
483 	u64			zsze;
484 #endif
485 	unsigned long		features;
486 
487 	struct ratelimit_state	rs_nuse;
488 
489 	struct cdev		cdev;
490 	struct device		cdev_device;
491 
492 	struct gendisk		*disk;
493 #ifdef CONFIG_NVME_MULTIPATH
494 	struct bio_list		requeue_list;
495 	spinlock_t		requeue_lock;
496 	struct work_struct	requeue_work;
497 	struct mutex		lock;
498 	unsigned long		flags;
499 #define NVME_NSHEAD_DISK_LIVE	0
500 	struct nvme_ns __rcu	*current_path[];
501 #endif
502 };
503 
504 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
505 {
506 	return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
507 }
508 
509 enum nvme_ns_features {
510 	NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
511 	NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
512 	NVME_NS_DEAC = 1 << 2,		/* DEAC bit in Write Zeores supported */
513 };
514 
515 struct nvme_ns {
516 	struct list_head list;
517 
518 	struct nvme_ctrl *ctrl;
519 	struct request_queue *queue;
520 	struct gendisk *disk;
521 #ifdef CONFIG_NVME_MULTIPATH
522 	enum nvme_ana_state ana_state;
523 	u32 ana_grpid;
524 #endif
525 	struct list_head siblings;
526 	struct kref kref;
527 	struct nvme_ns_head *head;
528 
529 	unsigned long flags;
530 #define NVME_NS_REMOVING	0
531 #define NVME_NS_ANA_PENDING	2
532 #define NVME_NS_FORCE_RO	3
533 #define NVME_NS_READY		4
534 
535 	struct cdev		cdev;
536 	struct device		cdev_device;
537 
538 	struct nvme_fault_inject fault_inject;
539 };
540 
541 /* NVMe ns supports metadata actions by the controller (generate/strip) */
542 static inline bool nvme_ns_has_pi(struct nvme_ns_head *head)
543 {
544 	return head->pi_type && head->ms == head->pi_size;
545 }
546 
547 struct nvme_ctrl_ops {
548 	const char *name;
549 	struct module *module;
550 	unsigned int flags;
551 #define NVME_F_FABRICS			(1 << 0)
552 #define NVME_F_METADATA_SUPPORTED	(1 << 1)
553 #define NVME_F_BLOCKING			(1 << 2)
554 
555 	const struct attribute_group **dev_attr_groups;
556 	int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
557 	int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
558 	int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
559 	void (*free_ctrl)(struct nvme_ctrl *ctrl);
560 	void (*submit_async_event)(struct nvme_ctrl *ctrl);
561 	int (*subsystem_reset)(struct nvme_ctrl *ctrl);
562 	void (*delete_ctrl)(struct nvme_ctrl *ctrl);
563 	void (*stop_ctrl)(struct nvme_ctrl *ctrl);
564 	int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
565 	void (*print_device_info)(struct nvme_ctrl *ctrl);
566 	bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
567 };
568 
569 /*
570  * nvme command_id is constructed as such:
571  * | xxxx | xxxxxxxxxxxx |
572  *   gen    request tag
573  */
574 #define nvme_genctr_mask(gen)			(gen & 0xf)
575 #define nvme_cid_install_genctr(gen)		(nvme_genctr_mask(gen) << 12)
576 #define nvme_genctr_from_cid(cid)		((cid & 0xf000) >> 12)
577 #define nvme_tag_from_cid(cid)			(cid & 0xfff)
578 
579 static inline u16 nvme_cid(struct request *rq)
580 {
581 	return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
582 }
583 
584 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
585 		u16 command_id)
586 {
587 	u8 genctr = nvme_genctr_from_cid(command_id);
588 	u16 tag = nvme_tag_from_cid(command_id);
589 	struct request *rq;
590 
591 	rq = blk_mq_tag_to_rq(tags, tag);
592 	if (unlikely(!rq)) {
593 		pr_err("could not locate request for tag %#x\n",
594 			tag);
595 		return NULL;
596 	}
597 	if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
598 		dev_err(nvme_req(rq)->ctrl->device,
599 			"request %#x genctr mismatch (got %#x expected %#x)\n",
600 			tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
601 		return NULL;
602 	}
603 	return rq;
604 }
605 
606 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
607                 u16 command_id)
608 {
609 	return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
610 }
611 
612 /*
613  * Return the length of the string without the space padding
614  */
615 static inline int nvme_strlen(char *s, int len)
616 {
617 	while (s[len - 1] == ' ')
618 		len--;
619 	return len;
620 }
621 
622 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
623 {
624 	struct nvme_subsystem *subsys = ctrl->subsys;
625 
626 	if (ctrl->ops->print_device_info) {
627 		ctrl->ops->print_device_info(ctrl);
628 		return;
629 	}
630 
631 	dev_err(ctrl->device,
632 		"VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
633 		nvme_strlen(subsys->model, sizeof(subsys->model)),
634 		subsys->model, nvme_strlen(subsys->firmware_rev,
635 					   sizeof(subsys->firmware_rev)),
636 		subsys->firmware_rev);
637 }
638 
639 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
640 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
641 			    const char *dev_name);
642 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
643 void nvme_should_fail(struct request *req);
644 #else
645 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
646 					  const char *dev_name)
647 {
648 }
649 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
650 {
651 }
652 static inline void nvme_should_fail(struct request *req) {}
653 #endif
654 
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
656 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
657 
658 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
659 {
660 	if (!ctrl->subsystem || !ctrl->ops->subsystem_reset)
661 		return -ENOTTY;
662 	return ctrl->ops->subsystem_reset(ctrl);
663 }
664 
665 /*
666  * Convert a 512B sector number to a device logical block number.
667  */
668 static inline u64 nvme_sect_to_lba(struct nvme_ns_head *head, sector_t sector)
669 {
670 	return sector >> (head->lba_shift - SECTOR_SHIFT);
671 }
672 
673 /*
674  * Convert a device logical block number to a 512B sector number.
675  */
676 static inline sector_t nvme_lba_to_sect(struct nvme_ns_head *head, u64 lba)
677 {
678 	return lba << (head->lba_shift - SECTOR_SHIFT);
679 }
680 
681 /*
682  * Convert byte length to nvme's 0-based num dwords
683  */
684 static inline u32 nvme_bytes_to_numd(size_t len)
685 {
686 	return (len >> 2) - 1;
687 }
688 
689 static inline bool nvme_is_ana_error(u16 status)
690 {
691 	switch (status & NVME_SCT_SC_MASK) {
692 	case NVME_SC_ANA_TRANSITION:
693 	case NVME_SC_ANA_INACCESSIBLE:
694 	case NVME_SC_ANA_PERSISTENT_LOSS:
695 		return true;
696 	default:
697 		return false;
698 	}
699 }
700 
701 static inline bool nvme_is_path_error(u16 status)
702 {
703 	/* check for a status code type of 'path related status' */
704 	return (status & NVME_SCT_MASK) == NVME_SCT_PATH;
705 }
706 
707 /*
708  * Fill in the status and result information from the CQE, and then figure out
709  * if blk-mq will need to use IPI magic to complete the request, and if yes do
710  * so.  If not let the caller complete the request without an indirect function
711  * call.
712  */
713 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
714 		union nvme_result result)
715 {
716 	struct nvme_request *rq = nvme_req(req);
717 	struct nvme_ctrl *ctrl = rq->ctrl;
718 
719 	if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
720 		rq->genctr++;
721 
722 	rq->status = le16_to_cpu(status) >> 1;
723 	rq->result = result;
724 	/* inject error when permitted by fault injection framework */
725 	nvme_should_fail(req);
726 	if (unlikely(blk_should_fake_timeout(req->q)))
727 		return true;
728 	return blk_mq_complete_request_remote(req);
729 }
730 
731 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
732 {
733 	get_device(ctrl->device);
734 }
735 
736 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
737 {
738 	put_device(ctrl->device);
739 }
740 
741 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
742 {
743 	return !qid &&
744 		nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
745 }
746 
747 /*
748  * Returns true for sink states that can't ever transition back to live.
749  */
750 static inline bool nvme_state_terminal(struct nvme_ctrl *ctrl)
751 {
752 	switch (nvme_ctrl_state(ctrl)) {
753 	case NVME_CTRL_NEW:
754 	case NVME_CTRL_LIVE:
755 	case NVME_CTRL_RESETTING:
756 	case NVME_CTRL_CONNECTING:
757 		return false;
758 	case NVME_CTRL_DELETING:
759 	case NVME_CTRL_DELETING_NOIO:
760 	case NVME_CTRL_DEAD:
761 		return true;
762 	default:
763 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
764 		return true;
765 	}
766 }
767 
768 void nvme_end_req(struct request *req);
769 void nvme_complete_rq(struct request *req);
770 void nvme_complete_batch_req(struct request *req);
771 
772 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
773 						void (*fn)(struct request *rq))
774 {
775 	struct request *req;
776 
777 	rq_list_for_each(&iob->req_list, req) {
778 		fn(req);
779 		nvme_complete_batch_req(req);
780 	}
781 	blk_mq_end_request_batch(iob);
782 }
783 
784 blk_status_t nvme_host_path_error(struct request *req);
785 bool nvme_cancel_request(struct request *req, void *data);
786 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
787 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
788 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
789 		enum nvme_ctrl_state new_state);
790 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
791 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
792 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
793 		const struct nvme_ctrl_ops *ops, unsigned long quirks);
794 int nvme_add_ctrl(struct nvme_ctrl *ctrl);
795 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
796 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
797 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
798 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
799 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
800 		const struct blk_mq_ops *ops, unsigned int cmd_size);
801 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
802 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
803 		const struct blk_mq_ops *ops, unsigned int nr_maps,
804 		unsigned int cmd_size);
805 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
806 
807 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
808 
809 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
810 		volatile union nvme_result *res);
811 
812 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
813 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
814 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
815 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
816 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
817 void nvme_sync_queues(struct nvme_ctrl *ctrl);
818 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
819 void nvme_unfreeze(struct nvme_ctrl *ctrl);
820 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
821 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
822 void nvme_start_freeze(struct nvme_ctrl *ctrl);
823 
824 static inline enum req_op nvme_req_op(struct nvme_command *cmd)
825 {
826 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
827 }
828 
829 #define NVME_QID_ANY -1
830 void nvme_init_request(struct request *req, struct nvme_command *cmd);
831 void nvme_cleanup_cmd(struct request *req);
832 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
833 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
834 		struct request *req);
835 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
836 		bool queue_live, enum nvme_ctrl_state state);
837 
838 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
839 		bool queue_live)
840 {
841 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
842 
843 	if (likely(state == NVME_CTRL_LIVE))
844 		return true;
845 	if (ctrl->ops->flags & NVME_F_FABRICS && state == NVME_CTRL_DELETING)
846 		return queue_live;
847 	return __nvme_check_ready(ctrl, rq, queue_live, state);
848 }
849 
850 /*
851  * NSID shall be unique for all shared namespaces, or if at least one of the
852  * following conditions is met:
853  *   1. Namespace Management is supported by the controller
854  *   2. ANA is supported by the controller
855  *   3. NVM Set are supported by the controller
856  *
857  * In other case, private namespace are not required to report a unique NSID.
858  */
859 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
860 		struct nvme_ns_head *head)
861 {
862 	return head->shared ||
863 		(ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
864 		(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
865 		(ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
866 }
867 
868 /*
869  * Flags for __nvme_submit_sync_cmd()
870  */
871 typedef __u32 __bitwise nvme_submit_flags_t;
872 
873 enum {
874 	/* Insert request at the head of the queue */
875 	NVME_SUBMIT_AT_HEAD  = (__force nvme_submit_flags_t)(1 << 0),
876 	/* Set BLK_MQ_REQ_NOWAIT when allocating request */
877 	NVME_SUBMIT_NOWAIT = (__force nvme_submit_flags_t)(1 << 1),
878 	/* Set BLK_MQ_REQ_RESERVED when allocating request */
879 	NVME_SUBMIT_RESERVED = (__force nvme_submit_flags_t)(1 << 2),
880 	/* Retry command when NVME_STATUS_DNR is not set in the result */
881 	NVME_SUBMIT_RETRY = (__force nvme_submit_flags_t)(1 << 3),
882 };
883 
884 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
885 		void *buf, unsigned bufflen);
886 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
887 		union nvme_result *result, void *buffer, unsigned bufflen,
888 		int qid, nvme_submit_flags_t flags);
889 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
890 		      unsigned int dword11, void *buffer, size_t buflen,
891 		      u32 *result);
892 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
893 		      unsigned int dword11, void *buffer, size_t buflen,
894 		      u32 *result);
895 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
896 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
897 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
898 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
899 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
900 void nvme_queue_scan(struct nvme_ctrl *ctrl);
901 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
902 		void *log, size_t size, u64 offset);
903 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
904 void nvme_put_ns_head(struct nvme_ns_head *head);
905 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
906 		const struct file_operations *fops, struct module *owner);
907 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
908 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
909 		unsigned int cmd, unsigned long arg);
910 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
911 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
912 		unsigned int cmd, unsigned long arg);
913 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
914 		unsigned long arg);
915 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
916 		unsigned long arg);
917 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
918 		struct io_comp_batch *iob, unsigned int poll_flags);
919 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
920 		unsigned int issue_flags);
921 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
922 		unsigned int issue_flags);
923 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
924 		struct nvme_id_ns **id);
925 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
926 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
927 
928 extern const struct attribute_group *nvme_ns_attr_groups[];
929 extern const struct pr_ops nvme_pr_ops;
930 extern const struct block_device_operations nvme_ns_head_ops;
931 extern const struct attribute_group nvme_dev_attrs_group;
932 extern const struct attribute_group *nvme_subsys_attrs_groups[];
933 extern const struct attribute_group *nvme_dev_attr_groups[];
934 extern const struct block_device_operations nvme_bdev_ops;
935 
936 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
937 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
938 #ifdef CONFIG_NVME_MULTIPATH
939 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
940 {
941 	return ctrl->ana_log_buf != NULL;
942 }
943 
944 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
945 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
946 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
947 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
948 void nvme_failover_req(struct request *req);
949 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
950 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
951 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
952 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
953 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
954 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
955 void nvme_mpath_update(struct nvme_ctrl *ctrl);
956 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
957 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
958 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
959 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
960 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
961 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
962 void nvme_mpath_start_request(struct request *rq);
963 void nvme_mpath_end_request(struct request *rq);
964 
965 static inline void nvme_trace_bio_complete(struct request *req)
966 {
967 	struct nvme_ns *ns = req->q->queuedata;
968 
969 	if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
970 		trace_block_bio_complete(ns->head->disk->queue, req->bio);
971 }
972 
973 extern bool multipath;
974 extern struct device_attribute dev_attr_ana_grpid;
975 extern struct device_attribute dev_attr_ana_state;
976 extern struct device_attribute subsys_attr_iopolicy;
977 
978 static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
979 {
980 	return disk->fops == &nvme_ns_head_ops;
981 }
982 #else
983 #define multipath false
984 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
985 {
986 	return false;
987 }
988 static inline void nvme_failover_req(struct request *req)
989 {
990 }
991 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
992 {
993 }
994 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
995 		struct nvme_ns_head *head)
996 {
997 	return 0;
998 }
999 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
1000 {
1001 }
1002 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1003 {
1004 }
1005 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
1006 {
1007 	return false;
1008 }
1009 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
1010 {
1011 }
1012 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
1013 {
1014 }
1015 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1016 {
1017 }
1018 static inline void nvme_trace_bio_complete(struct request *req)
1019 {
1020 }
1021 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1022 {
1023 }
1024 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
1025 		struct nvme_id_ctrl *id)
1026 {
1027 	if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
1028 		dev_warn(ctrl->device,
1029 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
1030 	return 0;
1031 }
1032 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
1033 {
1034 }
1035 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1036 {
1037 }
1038 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
1039 {
1040 }
1041 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
1042 {
1043 }
1044 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
1045 {
1046 }
1047 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
1048 {
1049 }
1050 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
1051 {
1052 }
1053 static inline void nvme_mpath_start_request(struct request *rq)
1054 {
1055 }
1056 static inline void nvme_mpath_end_request(struct request *rq)
1057 {
1058 }
1059 static inline bool nvme_disk_is_ns_head(struct gendisk *disk)
1060 {
1061 	return false;
1062 }
1063 #endif /* CONFIG_NVME_MULTIPATH */
1064 
1065 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
1066 		enum blk_unique_id type);
1067 
1068 struct nvme_zone_info {
1069 	u64 zone_size;
1070 	unsigned int max_open_zones;
1071 	unsigned int max_active_zones;
1072 };
1073 
1074 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
1075 		unsigned int nr_zones, report_zones_cb cb, void *data);
1076 int nvme_query_zone_info(struct nvme_ns *ns, unsigned lbaf,
1077 		struct nvme_zone_info *zi);
1078 void nvme_update_zone_info(struct nvme_ns *ns, struct queue_limits *lim,
1079 		struct nvme_zone_info *zi);
1080 #ifdef CONFIG_BLK_DEV_ZONED
1081 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
1082 				       struct nvme_command *cmnd,
1083 				       enum nvme_zone_mgmt_action action);
1084 #else
1085 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
1086 		struct request *req, struct nvme_command *cmnd,
1087 		enum nvme_zone_mgmt_action action)
1088 {
1089 	return BLK_STS_NOTSUPP;
1090 }
1091 #endif
1092 
1093 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1094 {
1095 	struct gendisk *disk = dev_to_disk(dev);
1096 
1097 	WARN_ON(nvme_disk_is_ns_head(disk));
1098 	return disk->private_data;
1099 }
1100 
1101 #ifdef CONFIG_NVME_HWMON
1102 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1103 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1104 #else
1105 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1106 {
1107 	return 0;
1108 }
1109 
1110 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1111 {
1112 }
1113 #endif
1114 
1115 static inline void nvme_start_request(struct request *rq)
1116 {
1117 	if (rq->cmd_flags & REQ_NVME_MPATH)
1118 		nvme_mpath_start_request(rq);
1119 	blk_mq_start_request(rq);
1120 }
1121 
1122 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1123 {
1124 	return ctrl->sgls & ((1 << 0) | (1 << 1));
1125 }
1126 
1127 #ifdef CONFIG_NVME_HOST_AUTH
1128 int __init nvme_init_auth(void);
1129 void __exit nvme_exit_auth(void);
1130 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1131 void nvme_auth_stop(struct nvme_ctrl *ctrl);
1132 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1133 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1134 void nvme_auth_free(struct nvme_ctrl *ctrl);
1135 #else
1136 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1137 {
1138 	return 0;
1139 }
1140 static inline int __init nvme_init_auth(void)
1141 {
1142 	return 0;
1143 }
1144 static inline void __exit nvme_exit_auth(void)
1145 {
1146 }
1147 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
1148 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1149 {
1150 	return -EPROTONOSUPPORT;
1151 }
1152 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1153 {
1154 	return -EPROTONOSUPPORT;
1155 }
1156 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1157 #endif
1158 
1159 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1160 			 u8 opcode);
1161 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1162 int nvme_execute_rq(struct request *rq, bool at_head);
1163 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1164 		       struct nvme_command *cmd, int status);
1165 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1166 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1167 bool nvme_get_ns(struct nvme_ns *ns);
1168 void nvme_put_ns(struct nvme_ns *ns);
1169 
1170 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1171 {
1172 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1173 }
1174 
1175 #ifdef CONFIG_NVME_VERBOSE_ERRORS
1176 const char *nvme_get_error_status_str(u16 status);
1177 const char *nvme_get_opcode_str(u8 opcode);
1178 const char *nvme_get_admin_opcode_str(u8 opcode);
1179 const char *nvme_get_fabrics_opcode_str(u8 opcode);
1180 #else /* CONFIG_NVME_VERBOSE_ERRORS */
1181 static inline const char *nvme_get_error_status_str(u16 status)
1182 {
1183 	return "I/O Error";
1184 }
1185 static inline const char *nvme_get_opcode_str(u8 opcode)
1186 {
1187 	return "I/O Cmd";
1188 }
1189 static inline const char *nvme_get_admin_opcode_str(u8 opcode)
1190 {
1191 	return "Admin Cmd";
1192 }
1193 
1194 static inline const char *nvme_get_fabrics_opcode_str(u8 opcode)
1195 {
1196 	return "Fabrics Cmd";
1197 }
1198 #endif /* CONFIG_NVME_VERBOSE_ERRORS */
1199 
1200 static inline const char *nvme_opcode_str(int qid, u8 opcode)
1201 {
1202 	return qid ? nvme_get_opcode_str(opcode) :
1203 		nvme_get_admin_opcode_str(opcode);
1204 }
1205 
1206 static inline const char *nvme_fabrics_opcode_str(
1207 		int qid, const struct nvme_command *cmd)
1208 {
1209 	if (nvme_is_fabrics(cmd))
1210 		return nvme_get_fabrics_opcode_str(cmd->fabrics.fctype);
1211 
1212 	return nvme_opcode_str(qid, cmd->common.opcode);
1213 }
1214 #endif /* _NVME_H */
1215