xref: /linux/drivers/nvme/host/multipath.c (revision ed00aabd5eb9fb44d6aff1173234a2e911b9fead)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
54 			struct nvme_ctrl *ctrl, int *flags)
55 {
56 	if (!multipath) {
57 		sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
58 	} else if (ns->head->disk) {
59 		sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
60 				ctrl->instance, ns->head->instance);
61 		*flags = GENHD_FL_HIDDEN;
62 	} else {
63 		sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
64 				ns->head->instance);
65 	}
66 }
67 
68 bool nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status;
72 	unsigned long flags;
73 
74 	switch (status & 0x7ff) {
75 	case NVME_SC_ANA_TRANSITION:
76 	case NVME_SC_ANA_INACCESSIBLE:
77 	case NVME_SC_ANA_PERSISTENT_LOSS:
78 		/*
79 		 * If we got back an ANA error we know the controller is alive,
80 		 * but not ready to serve this namespaces.  The spec suggests
81 		 * we should update our general state here, but due to the fact
82 		 * that the admin and I/O queues are not serialized that is
83 		 * fundamentally racy.  So instead just clear the current path,
84 		 * mark the the path as pending and kick of a re-read of the ANA
85 		 * log page ASAP.
86 		 */
87 		nvme_mpath_clear_current_path(ns);
88 		if (ns->ctrl->ana_log_buf) {
89 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
90 			queue_work(nvme_wq, &ns->ctrl->ana_work);
91 		}
92 		break;
93 	case NVME_SC_HOST_PATH_ERROR:
94 	case NVME_SC_HOST_ABORTED_CMD:
95 		/*
96 		 * Temporary transport disruption in talking to the controller.
97 		 * Try to send on a new path.
98 		 */
99 		nvme_mpath_clear_current_path(ns);
100 		break;
101 	default:
102 		/* This was a non-ANA error so follow the normal error path. */
103 		return false;
104 	}
105 
106 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
107 	blk_steal_bios(&ns->head->requeue_list, req);
108 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
109 	blk_mq_end_request(req, 0);
110 
111 	kblockd_schedule_work(&ns->head->requeue_work);
112 	return true;
113 }
114 
115 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
116 {
117 	struct nvme_ns *ns;
118 
119 	down_read(&ctrl->namespaces_rwsem);
120 	list_for_each_entry(ns, &ctrl->namespaces, list) {
121 		if (ns->head->disk)
122 			kblockd_schedule_work(&ns->head->requeue_work);
123 	}
124 	up_read(&ctrl->namespaces_rwsem);
125 }
126 
127 static const char *nvme_ana_state_names[] = {
128 	[0]				= "invalid state",
129 	[NVME_ANA_OPTIMIZED]		= "optimized",
130 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
131 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
132 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
133 	[NVME_ANA_CHANGE]		= "change",
134 };
135 
136 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
137 {
138 	struct nvme_ns_head *head = ns->head;
139 	bool changed = false;
140 	int node;
141 
142 	if (!head)
143 		goto out;
144 
145 	for_each_node(node) {
146 		if (ns == rcu_access_pointer(head->current_path[node])) {
147 			rcu_assign_pointer(head->current_path[node], NULL);
148 			changed = true;
149 		}
150 	}
151 out:
152 	return changed;
153 }
154 
155 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
156 {
157 	struct nvme_ns *ns;
158 
159 	mutex_lock(&ctrl->scan_lock);
160 	down_read(&ctrl->namespaces_rwsem);
161 	list_for_each_entry(ns, &ctrl->namespaces, list)
162 		if (nvme_mpath_clear_current_path(ns))
163 			kblockd_schedule_work(&ns->head->requeue_work);
164 	up_read(&ctrl->namespaces_rwsem);
165 	mutex_unlock(&ctrl->scan_lock);
166 }
167 
168 static bool nvme_path_is_disabled(struct nvme_ns *ns)
169 {
170 	return ns->ctrl->state != NVME_CTRL_LIVE ||
171 		test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
172 		test_bit(NVME_NS_REMOVING, &ns->flags);
173 }
174 
175 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
176 {
177 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
178 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
179 
180 	list_for_each_entry_rcu(ns, &head->list, siblings) {
181 		if (nvme_path_is_disabled(ns))
182 			continue;
183 
184 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
185 			distance = node_distance(node, ns->ctrl->numa_node);
186 		else
187 			distance = LOCAL_DISTANCE;
188 
189 		switch (ns->ana_state) {
190 		case NVME_ANA_OPTIMIZED:
191 			if (distance < found_distance) {
192 				found_distance = distance;
193 				found = ns;
194 			}
195 			break;
196 		case NVME_ANA_NONOPTIMIZED:
197 			if (distance < fallback_distance) {
198 				fallback_distance = distance;
199 				fallback = ns;
200 			}
201 			break;
202 		default:
203 			break;
204 		}
205 	}
206 
207 	if (!found)
208 		found = fallback;
209 	if (found)
210 		rcu_assign_pointer(head->current_path[node], found);
211 	return found;
212 }
213 
214 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
215 		struct nvme_ns *ns)
216 {
217 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
218 			siblings);
219 	if (ns)
220 		return ns;
221 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
222 }
223 
224 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
225 		int node, struct nvme_ns *old)
226 {
227 	struct nvme_ns *ns, *found, *fallback = NULL;
228 
229 	if (list_is_singular(&head->list)) {
230 		if (nvme_path_is_disabled(old))
231 			return NULL;
232 		return old;
233 	}
234 
235 	for (ns = nvme_next_ns(head, old);
236 	     ns != old;
237 	     ns = nvme_next_ns(head, ns)) {
238 		if (nvme_path_is_disabled(ns))
239 			continue;
240 
241 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
242 			found = ns;
243 			goto out;
244 		}
245 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
246 			fallback = ns;
247 	}
248 
249 	if (!fallback)
250 		return NULL;
251 	found = fallback;
252 out:
253 	rcu_assign_pointer(head->current_path[node], found);
254 	return found;
255 }
256 
257 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
258 {
259 	return ns->ctrl->state == NVME_CTRL_LIVE &&
260 		ns->ana_state == NVME_ANA_OPTIMIZED;
261 }
262 
263 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
264 {
265 	int node = numa_node_id();
266 	struct nvme_ns *ns;
267 
268 	ns = srcu_dereference(head->current_path[node], &head->srcu);
269 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
270 		ns = nvme_round_robin_path(head, node, ns);
271 	if (unlikely(!ns || !nvme_path_is_optimized(ns)))
272 		ns = __nvme_find_path(head, node);
273 	return ns;
274 }
275 
276 static bool nvme_available_path(struct nvme_ns_head *head)
277 {
278 	struct nvme_ns *ns;
279 
280 	list_for_each_entry_rcu(ns, &head->list, siblings) {
281 		switch (ns->ctrl->state) {
282 		case NVME_CTRL_LIVE:
283 		case NVME_CTRL_RESETTING:
284 		case NVME_CTRL_CONNECTING:
285 			/* fallthru */
286 			return true;
287 		default:
288 			break;
289 		}
290 	}
291 	return false;
292 }
293 
294 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
295 {
296 	struct nvme_ns_head *head = bio->bi_disk->private_data;
297 	struct device *dev = disk_to_dev(head->disk);
298 	struct nvme_ns *ns;
299 	blk_qc_t ret = BLK_QC_T_NONE;
300 	int srcu_idx;
301 
302 	/*
303 	 * The namespace might be going away and the bio might be moved to a
304 	 * different queue via blk_steal_bios(), so we need to use the bio_split
305 	 * pool from the original queue to allocate the bvecs from.
306 	 */
307 	blk_queue_split(&bio);
308 
309 	srcu_idx = srcu_read_lock(&head->srcu);
310 	ns = nvme_find_path(head);
311 	if (likely(ns)) {
312 		bio->bi_disk = ns->disk;
313 		bio->bi_opf |= REQ_NVME_MPATH;
314 		trace_block_bio_remap(bio->bi_disk->queue, bio,
315 				      disk_devt(ns->head->disk),
316 				      bio->bi_iter.bi_sector);
317 		ret = direct_make_request(bio);
318 	} else if (nvme_available_path(head)) {
319 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
320 
321 		spin_lock_irq(&head->requeue_lock);
322 		bio_list_add(&head->requeue_list, bio);
323 		spin_unlock_irq(&head->requeue_lock);
324 	} else {
325 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
326 
327 		bio->bi_status = BLK_STS_IOERR;
328 		bio_endio(bio);
329 	}
330 
331 	srcu_read_unlock(&head->srcu, srcu_idx);
332 	return ret;
333 }
334 
335 static void nvme_requeue_work(struct work_struct *work)
336 {
337 	struct nvme_ns_head *head =
338 		container_of(work, struct nvme_ns_head, requeue_work);
339 	struct bio *bio, *next;
340 
341 	spin_lock_irq(&head->requeue_lock);
342 	next = bio_list_get(&head->requeue_list);
343 	spin_unlock_irq(&head->requeue_lock);
344 
345 	while ((bio = next) != NULL) {
346 		next = bio->bi_next;
347 		bio->bi_next = NULL;
348 
349 		/*
350 		 * Reset disk to the mpath node and resubmit to select a new
351 		 * path.
352 		 */
353 		bio->bi_disk = head->disk;
354 		submit_bio_noacct(bio);
355 	}
356 }
357 
358 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
359 {
360 	struct request_queue *q;
361 	bool vwc = false;
362 
363 	mutex_init(&head->lock);
364 	bio_list_init(&head->requeue_list);
365 	spin_lock_init(&head->requeue_lock);
366 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
367 
368 	/*
369 	 * Add a multipath node if the subsystems supports multiple controllers.
370 	 * We also do this for private namespaces as the namespace sharing data could
371 	 * change after a rescan.
372 	 */
373 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
374 		return 0;
375 
376 	q = blk_alloc_queue(ctrl->numa_node);
377 	if (!q)
378 		goto out;
379 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
380 	/* set to a default value for 512 until disk is validated */
381 	blk_queue_logical_block_size(q, 512);
382 	blk_set_stacking_limits(&q->limits);
383 
384 	/* we need to propagate up the VMC settings */
385 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
386 		vwc = true;
387 	blk_queue_write_cache(q, vwc, vwc);
388 
389 	head->disk = alloc_disk(0);
390 	if (!head->disk)
391 		goto out_cleanup_queue;
392 	head->disk->fops = &nvme_ns_head_ops;
393 	head->disk->private_data = head;
394 	head->disk->queue = q;
395 	head->disk->flags = GENHD_FL_EXT_DEVT;
396 	sprintf(head->disk->disk_name, "nvme%dn%d",
397 			ctrl->subsys->instance, head->instance);
398 	return 0;
399 
400 out_cleanup_queue:
401 	blk_cleanup_queue(q);
402 out:
403 	return -ENOMEM;
404 }
405 
406 static void nvme_mpath_set_live(struct nvme_ns *ns)
407 {
408 	struct nvme_ns_head *head = ns->head;
409 
410 	lockdep_assert_held(&ns->head->lock);
411 
412 	if (!head->disk)
413 		return;
414 
415 	if (!(head->disk->flags & GENHD_FL_UP))
416 		device_add_disk(&head->subsys->dev, head->disk,
417 				nvme_ns_id_attr_groups);
418 
419 	if (nvme_path_is_optimized(ns)) {
420 		int node, srcu_idx;
421 
422 		srcu_idx = srcu_read_lock(&head->srcu);
423 		for_each_node(node)
424 			__nvme_find_path(head, node);
425 		srcu_read_unlock(&head->srcu, srcu_idx);
426 	}
427 
428 	synchronize_srcu(&ns->head->srcu);
429 	kblockd_schedule_work(&ns->head->requeue_work);
430 }
431 
432 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
433 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
434 			void *))
435 {
436 	void *base = ctrl->ana_log_buf;
437 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
438 	int error, i;
439 
440 	lockdep_assert_held(&ctrl->ana_lock);
441 
442 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
443 		struct nvme_ana_group_desc *desc = base + offset;
444 		u32 nr_nsids;
445 		size_t nsid_buf_size;
446 
447 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
448 			return -EINVAL;
449 
450 		nr_nsids = le32_to_cpu(desc->nnsids);
451 		nsid_buf_size = nr_nsids * sizeof(__le32);
452 
453 		if (WARN_ON_ONCE(desc->grpid == 0))
454 			return -EINVAL;
455 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
456 			return -EINVAL;
457 		if (WARN_ON_ONCE(desc->state == 0))
458 			return -EINVAL;
459 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
460 			return -EINVAL;
461 
462 		offset += sizeof(*desc);
463 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
464 			return -EINVAL;
465 
466 		error = cb(ctrl, desc, data);
467 		if (error)
468 			return error;
469 
470 		offset += nsid_buf_size;
471 	}
472 
473 	return 0;
474 }
475 
476 static inline bool nvme_state_is_live(enum nvme_ana_state state)
477 {
478 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
479 }
480 
481 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
482 		struct nvme_ns *ns)
483 {
484 	mutex_lock(&ns->head->lock);
485 	ns->ana_grpid = le32_to_cpu(desc->grpid);
486 	ns->ana_state = desc->state;
487 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
488 
489 	if (nvme_state_is_live(ns->ana_state))
490 		nvme_mpath_set_live(ns);
491 	mutex_unlock(&ns->head->lock);
492 }
493 
494 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
495 		struct nvme_ana_group_desc *desc, void *data)
496 {
497 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
498 	unsigned *nr_change_groups = data;
499 	struct nvme_ns *ns;
500 
501 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
502 			le32_to_cpu(desc->grpid),
503 			nvme_ana_state_names[desc->state]);
504 
505 	if (desc->state == NVME_ANA_CHANGE)
506 		(*nr_change_groups)++;
507 
508 	if (!nr_nsids)
509 		return 0;
510 
511 	down_read(&ctrl->namespaces_rwsem);
512 	list_for_each_entry(ns, &ctrl->namespaces, list) {
513 		unsigned nsid = le32_to_cpu(desc->nsids[n]);
514 
515 		if (ns->head->ns_id < nsid)
516 			continue;
517 		if (ns->head->ns_id == nsid)
518 			nvme_update_ns_ana_state(desc, ns);
519 		if (++n == nr_nsids)
520 			break;
521 	}
522 	up_read(&ctrl->namespaces_rwsem);
523 	return 0;
524 }
525 
526 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
527 {
528 	u32 nr_change_groups = 0;
529 	int error;
530 
531 	mutex_lock(&ctrl->ana_lock);
532 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0,
533 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
534 	if (error) {
535 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
536 		goto out_unlock;
537 	}
538 
539 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
540 			nvme_update_ana_state);
541 	if (error)
542 		goto out_unlock;
543 
544 	/*
545 	 * In theory we should have an ANATT timer per group as they might enter
546 	 * the change state at different times.  But that is a lot of overhead
547 	 * just to protect against a target that keeps entering new changes
548 	 * states while never finishing previous ones.  But we'll still
549 	 * eventually time out once all groups are in change state, so this
550 	 * isn't a big deal.
551 	 *
552 	 * We also double the ANATT value to provide some slack for transports
553 	 * or AEN processing overhead.
554 	 */
555 	if (nr_change_groups)
556 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
557 	else
558 		del_timer_sync(&ctrl->anatt_timer);
559 out_unlock:
560 	mutex_unlock(&ctrl->ana_lock);
561 	return error;
562 }
563 
564 static void nvme_ana_work(struct work_struct *work)
565 {
566 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
567 
568 	nvme_read_ana_log(ctrl);
569 }
570 
571 static void nvme_anatt_timeout(struct timer_list *t)
572 {
573 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
574 
575 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
576 	nvme_reset_ctrl(ctrl);
577 }
578 
579 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
580 {
581 	if (!nvme_ctrl_use_ana(ctrl))
582 		return;
583 	del_timer_sync(&ctrl->anatt_timer);
584 	cancel_work_sync(&ctrl->ana_work);
585 }
586 
587 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
588 	struct device_attribute subsys_attr_##_name =	\
589 		__ATTR(_name, _mode, _show, _store)
590 
591 static const char *nvme_iopolicy_names[] = {
592 	[NVME_IOPOLICY_NUMA]	= "numa",
593 	[NVME_IOPOLICY_RR]	= "round-robin",
594 };
595 
596 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
597 		struct device_attribute *attr, char *buf)
598 {
599 	struct nvme_subsystem *subsys =
600 		container_of(dev, struct nvme_subsystem, dev);
601 
602 	return sprintf(buf, "%s\n",
603 			nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
604 }
605 
606 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
607 		struct device_attribute *attr, const char *buf, size_t count)
608 {
609 	struct nvme_subsystem *subsys =
610 		container_of(dev, struct nvme_subsystem, dev);
611 	int i;
612 
613 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
614 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
615 			WRITE_ONCE(subsys->iopolicy, i);
616 			return count;
617 		}
618 	}
619 
620 	return -EINVAL;
621 }
622 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
623 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
624 
625 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
626 		char *buf)
627 {
628 	return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
629 }
630 DEVICE_ATTR_RO(ana_grpid);
631 
632 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
633 		char *buf)
634 {
635 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
636 
637 	return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
638 }
639 DEVICE_ATTR_RO(ana_state);
640 
641 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
642 		struct nvme_ana_group_desc *desc, void *data)
643 {
644 	struct nvme_ns *ns = data;
645 
646 	if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
647 		nvme_update_ns_ana_state(desc, ns);
648 		return -ENXIO; /* just break out of the loop */
649 	}
650 
651 	return 0;
652 }
653 
654 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
655 {
656 	if (nvme_ctrl_use_ana(ns->ctrl)) {
657 		mutex_lock(&ns->ctrl->ana_lock);
658 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
659 		nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
660 		mutex_unlock(&ns->ctrl->ana_lock);
661 	} else {
662 		mutex_lock(&ns->head->lock);
663 		ns->ana_state = NVME_ANA_OPTIMIZED;
664 		nvme_mpath_set_live(ns);
665 		mutex_unlock(&ns->head->lock);
666 	}
667 
668 	if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
669 		struct backing_dev_info *info =
670 					ns->head->disk->queue->backing_dev_info;
671 
672 		info->capabilities |= BDI_CAP_STABLE_WRITES;
673 	}
674 }
675 
676 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
677 {
678 	if (!head->disk)
679 		return;
680 	if (head->disk->flags & GENHD_FL_UP)
681 		del_gendisk(head->disk);
682 	blk_set_queue_dying(head->disk->queue);
683 	/* make sure all pending bios are cleaned up */
684 	kblockd_schedule_work(&head->requeue_work);
685 	flush_work(&head->requeue_work);
686 	blk_cleanup_queue(head->disk->queue);
687 	put_disk(head->disk);
688 }
689 
690 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
691 {
692 	int error;
693 
694 	/* check if multipath is enabled and we have the capability */
695 	if (!multipath || !ctrl->subsys ||
696 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
697 		return 0;
698 
699 	ctrl->anacap = id->anacap;
700 	ctrl->anatt = id->anatt;
701 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
702 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
703 
704 	mutex_init(&ctrl->ana_lock);
705 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
706 	ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
707 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
708 	ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
709 
710 	if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
711 		dev_err(ctrl->device,
712 			"ANA log page size (%zd) larger than MDTS (%d).\n",
713 			ctrl->ana_log_size,
714 			ctrl->max_hw_sectors << SECTOR_SHIFT);
715 		dev_err(ctrl->device, "disabling ANA support.\n");
716 		return 0;
717 	}
718 
719 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
720 	kfree(ctrl->ana_log_buf);
721 	ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
722 	if (!ctrl->ana_log_buf) {
723 		error = -ENOMEM;
724 		goto out;
725 	}
726 
727 	error = nvme_read_ana_log(ctrl);
728 	if (error)
729 		goto out_free_ana_log_buf;
730 	return 0;
731 out_free_ana_log_buf:
732 	kfree(ctrl->ana_log_buf);
733 	ctrl->ana_log_buf = NULL;
734 out:
735 	return error;
736 }
737 
738 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
739 {
740 	kfree(ctrl->ana_log_buf);
741 	ctrl->ana_log_buf = NULL;
742 }
743 
744