xref: /linux/drivers/nvme/host/multipath.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 	if (!multipath)
56 		return false;
57 	if (!ns->head->disk) {
58 		sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 			ns->head->instance);
60 		return true;
61 	}
62 	sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 		ns->ctrl->instance, ns->head->instance);
64 	*flags = GENHD_FL_HIDDEN;
65 	return true;
66 }
67 
68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 	struct bio *bio;
74 
75 	nvme_mpath_clear_current_path(ns);
76 
77 	/*
78 	 * If we got back an ANA error, we know the controller is alive but not
79 	 * ready to serve this namespace.  Kick of a re-read of the ANA
80 	 * information page, and just try any other available path for now.
81 	 */
82 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 		queue_work(nvme_wq, &ns->ctrl->ana_work);
85 	}
86 
87 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 	for (bio = req->bio; bio; bio = bio->bi_next) {
89 		bio_set_dev(bio, ns->head->disk->part0);
90 		if (bio->bi_opf & REQ_POLLED) {
91 			bio->bi_opf &= ~REQ_POLLED;
92 			bio->bi_cookie = BLK_QC_T_NONE;
93 		}
94 	}
95 	blk_steal_bios(&ns->head->requeue_list, req);
96 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
97 
98 	blk_mq_end_request(req, 0);
99 	kblockd_schedule_work(&ns->head->requeue_work);
100 }
101 
102 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
103 {
104 	struct nvme_ns *ns;
105 
106 	down_read(&ctrl->namespaces_rwsem);
107 	list_for_each_entry(ns, &ctrl->namespaces, list) {
108 		if (!ns->head->disk)
109 			continue;
110 		kblockd_schedule_work(&ns->head->requeue_work);
111 		if (ctrl->state == NVME_CTRL_LIVE)
112 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
113 	}
114 	up_read(&ctrl->namespaces_rwsem);
115 }
116 
117 static const char *nvme_ana_state_names[] = {
118 	[0]				= "invalid state",
119 	[NVME_ANA_OPTIMIZED]		= "optimized",
120 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
121 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
122 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
123 	[NVME_ANA_CHANGE]		= "change",
124 };
125 
126 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
127 {
128 	struct nvme_ns_head *head = ns->head;
129 	bool changed = false;
130 	int node;
131 
132 	if (!head)
133 		goto out;
134 
135 	for_each_node(node) {
136 		if (ns == rcu_access_pointer(head->current_path[node])) {
137 			rcu_assign_pointer(head->current_path[node], NULL);
138 			changed = true;
139 		}
140 	}
141 out:
142 	return changed;
143 }
144 
145 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
146 {
147 	struct nvme_ns *ns;
148 
149 	down_read(&ctrl->namespaces_rwsem);
150 	list_for_each_entry(ns, &ctrl->namespaces, list) {
151 		nvme_mpath_clear_current_path(ns);
152 		kblockd_schedule_work(&ns->head->requeue_work);
153 	}
154 	up_read(&ctrl->namespaces_rwsem);
155 }
156 
157 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
158 {
159 	struct nvme_ns_head *head = ns->head;
160 	sector_t capacity = get_capacity(head->disk);
161 	int node;
162 
163 	list_for_each_entry_rcu(ns, &head->list, siblings) {
164 		if (capacity != get_capacity(ns->disk))
165 			clear_bit(NVME_NS_READY, &ns->flags);
166 	}
167 
168 	for_each_node(node)
169 		rcu_assign_pointer(head->current_path[node], NULL);
170 }
171 
172 static bool nvme_path_is_disabled(struct nvme_ns *ns)
173 {
174 	/*
175 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
176 	 * still be able to complete assuming that the controller is connected.
177 	 * Otherwise it will fail immediately and return to the requeue list.
178 	 */
179 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
180 	    ns->ctrl->state != NVME_CTRL_DELETING)
181 		return true;
182 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
183 	    !test_bit(NVME_NS_READY, &ns->flags))
184 		return true;
185 	return false;
186 }
187 
188 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
189 {
190 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
191 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
192 
193 	list_for_each_entry_rcu(ns, &head->list, siblings) {
194 		if (nvme_path_is_disabled(ns))
195 			continue;
196 
197 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
198 			distance = node_distance(node, ns->ctrl->numa_node);
199 		else
200 			distance = LOCAL_DISTANCE;
201 
202 		switch (ns->ana_state) {
203 		case NVME_ANA_OPTIMIZED:
204 			if (distance < found_distance) {
205 				found_distance = distance;
206 				found = ns;
207 			}
208 			break;
209 		case NVME_ANA_NONOPTIMIZED:
210 			if (distance < fallback_distance) {
211 				fallback_distance = distance;
212 				fallback = ns;
213 			}
214 			break;
215 		default:
216 			break;
217 		}
218 	}
219 
220 	if (!found)
221 		found = fallback;
222 	if (found)
223 		rcu_assign_pointer(head->current_path[node], found);
224 	return found;
225 }
226 
227 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
228 		struct nvme_ns *ns)
229 {
230 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
231 			siblings);
232 	if (ns)
233 		return ns;
234 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
235 }
236 
237 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
238 		int node, struct nvme_ns *old)
239 {
240 	struct nvme_ns *ns, *found = NULL;
241 
242 	if (list_is_singular(&head->list)) {
243 		if (nvme_path_is_disabled(old))
244 			return NULL;
245 		return old;
246 	}
247 
248 	for (ns = nvme_next_ns(head, old);
249 	     ns && ns != old;
250 	     ns = nvme_next_ns(head, ns)) {
251 		if (nvme_path_is_disabled(ns))
252 			continue;
253 
254 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
255 			found = ns;
256 			goto out;
257 		}
258 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
259 			found = ns;
260 	}
261 
262 	/*
263 	 * The loop above skips the current path for round-robin semantics.
264 	 * Fall back to the current path if either:
265 	 *  - no other optimized path found and current is optimized,
266 	 *  - no other usable path found and current is usable.
267 	 */
268 	if (!nvme_path_is_disabled(old) &&
269 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
270 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
271 		return old;
272 
273 	if (!found)
274 		return NULL;
275 out:
276 	rcu_assign_pointer(head->current_path[node], found);
277 	return found;
278 }
279 
280 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
281 {
282 	return ns->ctrl->state == NVME_CTRL_LIVE &&
283 		ns->ana_state == NVME_ANA_OPTIMIZED;
284 }
285 
286 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
287 {
288 	int node = numa_node_id();
289 	struct nvme_ns *ns;
290 
291 	ns = srcu_dereference(head->current_path[node], &head->srcu);
292 	if (unlikely(!ns))
293 		return __nvme_find_path(head, node);
294 
295 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
296 		return nvme_round_robin_path(head, node, ns);
297 	if (unlikely(!nvme_path_is_optimized(ns)))
298 		return __nvme_find_path(head, node);
299 	return ns;
300 }
301 
302 static bool nvme_available_path(struct nvme_ns_head *head)
303 {
304 	struct nvme_ns *ns;
305 
306 	list_for_each_entry_rcu(ns, &head->list, siblings) {
307 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
308 			continue;
309 		switch (ns->ctrl->state) {
310 		case NVME_CTRL_LIVE:
311 		case NVME_CTRL_RESETTING:
312 		case NVME_CTRL_CONNECTING:
313 			/* fallthru */
314 			return true;
315 		default:
316 			break;
317 		}
318 	}
319 	return false;
320 }
321 
322 static void nvme_ns_head_submit_bio(struct bio *bio)
323 {
324 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
325 	struct device *dev = disk_to_dev(head->disk);
326 	struct nvme_ns *ns;
327 	int srcu_idx;
328 
329 	/*
330 	 * The namespace might be going away and the bio might be moved to a
331 	 * different queue via blk_steal_bios(), so we need to use the bio_split
332 	 * pool from the original queue to allocate the bvecs from.
333 	 */
334 	blk_queue_split(&bio);
335 
336 	srcu_idx = srcu_read_lock(&head->srcu);
337 	ns = nvme_find_path(head);
338 	if (likely(ns)) {
339 		bio_set_dev(bio, ns->disk->part0);
340 		bio->bi_opf |= REQ_NVME_MPATH;
341 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
342 				      bio->bi_iter.bi_sector);
343 		submit_bio_noacct(bio);
344 	} else if (nvme_available_path(head)) {
345 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
346 
347 		spin_lock_irq(&head->requeue_lock);
348 		bio_list_add(&head->requeue_list, bio);
349 		spin_unlock_irq(&head->requeue_lock);
350 	} else {
351 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
352 
353 		bio->bi_status = BLK_STS_IOERR;
354 		bio_endio(bio);
355 	}
356 
357 	srcu_read_unlock(&head->srcu, srcu_idx);
358 }
359 
360 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
361 {
362 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
363 		return -ENXIO;
364 	return 0;
365 }
366 
367 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
368 {
369 	nvme_put_ns_head(disk->private_data);
370 }
371 
372 #ifdef CONFIG_BLK_DEV_ZONED
373 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
374 		unsigned int nr_zones, report_zones_cb cb, void *data)
375 {
376 	struct nvme_ns_head *head = disk->private_data;
377 	struct nvme_ns *ns;
378 	int srcu_idx, ret = -EWOULDBLOCK;
379 
380 	srcu_idx = srcu_read_lock(&head->srcu);
381 	ns = nvme_find_path(head);
382 	if (ns)
383 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
384 	srcu_read_unlock(&head->srcu, srcu_idx);
385 	return ret;
386 }
387 #else
388 #define nvme_ns_head_report_zones	NULL
389 #endif /* CONFIG_BLK_DEV_ZONED */
390 
391 const struct block_device_operations nvme_ns_head_ops = {
392 	.owner		= THIS_MODULE,
393 	.submit_bio	= nvme_ns_head_submit_bio,
394 	.open		= nvme_ns_head_open,
395 	.release	= nvme_ns_head_release,
396 	.ioctl		= nvme_ns_head_ioctl,
397 	.getgeo		= nvme_getgeo,
398 	.report_zones	= nvme_ns_head_report_zones,
399 	.pr_ops		= &nvme_pr_ops,
400 };
401 
402 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
403 {
404 	return container_of(cdev, struct nvme_ns_head, cdev);
405 }
406 
407 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
408 {
409 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
410 		return -ENXIO;
411 	return 0;
412 }
413 
414 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
415 {
416 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
417 	return 0;
418 }
419 
420 static const struct file_operations nvme_ns_head_chr_fops = {
421 	.owner		= THIS_MODULE,
422 	.open		= nvme_ns_head_chr_open,
423 	.release	= nvme_ns_head_chr_release,
424 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
425 	.compat_ioctl	= compat_ptr_ioctl,
426 };
427 
428 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
429 {
430 	int ret;
431 
432 	head->cdev_device.parent = &head->subsys->dev;
433 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
434 			   head->subsys->instance, head->instance);
435 	if (ret)
436 		return ret;
437 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
438 			    &nvme_ns_head_chr_fops, THIS_MODULE);
439 	return ret;
440 }
441 
442 static void nvme_requeue_work(struct work_struct *work)
443 {
444 	struct nvme_ns_head *head =
445 		container_of(work, struct nvme_ns_head, requeue_work);
446 	struct bio *bio, *next;
447 
448 	spin_lock_irq(&head->requeue_lock);
449 	next = bio_list_get(&head->requeue_list);
450 	spin_unlock_irq(&head->requeue_lock);
451 
452 	while ((bio = next) != NULL) {
453 		next = bio->bi_next;
454 		bio->bi_next = NULL;
455 
456 		submit_bio_noacct(bio);
457 	}
458 }
459 
460 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
461 {
462 	bool vwc = false;
463 
464 	mutex_init(&head->lock);
465 	bio_list_init(&head->requeue_list);
466 	spin_lock_init(&head->requeue_lock);
467 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
468 
469 	/*
470 	 * Add a multipath node if the subsystems supports multiple controllers.
471 	 * We also do this for private namespaces as the namespace sharing data could
472 	 * change after a rescan.
473 	 */
474 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
475 		return 0;
476 
477 	head->disk = blk_alloc_disk(ctrl->numa_node);
478 	if (!head->disk)
479 		return -ENOMEM;
480 	head->disk->fops = &nvme_ns_head_ops;
481 	head->disk->private_data = head;
482 	sprintf(head->disk->disk_name, "nvme%dn%d",
483 			ctrl->subsys->instance, head->instance);
484 
485 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
486 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
487 	/*
488 	 * This assumes all controllers that refer to a namespace either
489 	 * support poll queues or not.  That is not a strict guarantee,
490 	 * but if the assumption is wrong the effect is only suboptimal
491 	 * performance but not correctness problem.
492 	 */
493 	if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
494 	    ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
495 		blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
496 
497 	/* set to a default value of 512 until the disk is validated */
498 	blk_queue_logical_block_size(head->disk->queue, 512);
499 	blk_set_stacking_limits(&head->disk->queue->limits);
500 
501 	/* we need to propagate up the VMC settings */
502 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
503 		vwc = true;
504 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
505 	return 0;
506 }
507 
508 static void nvme_mpath_set_live(struct nvme_ns *ns)
509 {
510 	struct nvme_ns_head *head = ns->head;
511 	int rc;
512 
513 	if (!head->disk)
514 		return;
515 
516 	/*
517 	 * test_and_set_bit() is used because it is protecting against two nvme
518 	 * paths simultaneously calling device_add_disk() on the same namespace
519 	 * head.
520 	 */
521 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
522 		rc = device_add_disk(&head->subsys->dev, head->disk,
523 				     nvme_ns_id_attr_groups);
524 		if (rc) {
525 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
526 			return;
527 		}
528 		nvme_add_ns_head_cdev(head);
529 	}
530 
531 	mutex_lock(&head->lock);
532 	if (nvme_path_is_optimized(ns)) {
533 		int node, srcu_idx;
534 
535 		srcu_idx = srcu_read_lock(&head->srcu);
536 		for_each_node(node)
537 			__nvme_find_path(head, node);
538 		srcu_read_unlock(&head->srcu, srcu_idx);
539 	}
540 	mutex_unlock(&head->lock);
541 
542 	synchronize_srcu(&head->srcu);
543 	kblockd_schedule_work(&head->requeue_work);
544 }
545 
546 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
547 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
548 			void *))
549 {
550 	void *base = ctrl->ana_log_buf;
551 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
552 	int error, i;
553 
554 	lockdep_assert_held(&ctrl->ana_lock);
555 
556 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
557 		struct nvme_ana_group_desc *desc = base + offset;
558 		u32 nr_nsids;
559 		size_t nsid_buf_size;
560 
561 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
562 			return -EINVAL;
563 
564 		nr_nsids = le32_to_cpu(desc->nnsids);
565 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
566 
567 		if (WARN_ON_ONCE(desc->grpid == 0))
568 			return -EINVAL;
569 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
570 			return -EINVAL;
571 		if (WARN_ON_ONCE(desc->state == 0))
572 			return -EINVAL;
573 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
574 			return -EINVAL;
575 
576 		offset += sizeof(*desc);
577 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
578 			return -EINVAL;
579 
580 		error = cb(ctrl, desc, data);
581 		if (error)
582 			return error;
583 
584 		offset += nsid_buf_size;
585 	}
586 
587 	return 0;
588 }
589 
590 static inline bool nvme_state_is_live(enum nvme_ana_state state)
591 {
592 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
593 }
594 
595 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
596 		struct nvme_ns *ns)
597 {
598 	ns->ana_grpid = le32_to_cpu(desc->grpid);
599 	ns->ana_state = desc->state;
600 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
601 
602 	if (nvme_state_is_live(ns->ana_state))
603 		nvme_mpath_set_live(ns);
604 }
605 
606 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
607 		struct nvme_ana_group_desc *desc, void *data)
608 {
609 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
610 	unsigned *nr_change_groups = data;
611 	struct nvme_ns *ns;
612 
613 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
614 			le32_to_cpu(desc->grpid),
615 			nvme_ana_state_names[desc->state]);
616 
617 	if (desc->state == NVME_ANA_CHANGE)
618 		(*nr_change_groups)++;
619 
620 	if (!nr_nsids)
621 		return 0;
622 
623 	down_read(&ctrl->namespaces_rwsem);
624 	list_for_each_entry(ns, &ctrl->namespaces, list) {
625 		unsigned nsid;
626 again:
627 		nsid = le32_to_cpu(desc->nsids[n]);
628 		if (ns->head->ns_id < nsid)
629 			continue;
630 		if (ns->head->ns_id == nsid)
631 			nvme_update_ns_ana_state(desc, ns);
632 		if (++n == nr_nsids)
633 			break;
634 		if (ns->head->ns_id > nsid)
635 			goto again;
636 	}
637 	up_read(&ctrl->namespaces_rwsem);
638 	return 0;
639 }
640 
641 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
642 {
643 	u32 nr_change_groups = 0;
644 	int error;
645 
646 	mutex_lock(&ctrl->ana_lock);
647 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
648 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
649 	if (error) {
650 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
651 		goto out_unlock;
652 	}
653 
654 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
655 			nvme_update_ana_state);
656 	if (error)
657 		goto out_unlock;
658 
659 	/*
660 	 * In theory we should have an ANATT timer per group as they might enter
661 	 * the change state at different times.  But that is a lot of overhead
662 	 * just to protect against a target that keeps entering new changes
663 	 * states while never finishing previous ones.  But we'll still
664 	 * eventually time out once all groups are in change state, so this
665 	 * isn't a big deal.
666 	 *
667 	 * We also double the ANATT value to provide some slack for transports
668 	 * or AEN processing overhead.
669 	 */
670 	if (nr_change_groups)
671 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
672 	else
673 		del_timer_sync(&ctrl->anatt_timer);
674 out_unlock:
675 	mutex_unlock(&ctrl->ana_lock);
676 	return error;
677 }
678 
679 static void nvme_ana_work(struct work_struct *work)
680 {
681 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
682 
683 	if (ctrl->state != NVME_CTRL_LIVE)
684 		return;
685 
686 	nvme_read_ana_log(ctrl);
687 }
688 
689 static void nvme_anatt_timeout(struct timer_list *t)
690 {
691 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
692 
693 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
694 	nvme_reset_ctrl(ctrl);
695 }
696 
697 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
698 {
699 	if (!nvme_ctrl_use_ana(ctrl))
700 		return;
701 	del_timer_sync(&ctrl->anatt_timer);
702 	cancel_work_sync(&ctrl->ana_work);
703 }
704 
705 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
706 	struct device_attribute subsys_attr_##_name =	\
707 		__ATTR(_name, _mode, _show, _store)
708 
709 static const char *nvme_iopolicy_names[] = {
710 	[NVME_IOPOLICY_NUMA]	= "numa",
711 	[NVME_IOPOLICY_RR]	= "round-robin",
712 };
713 
714 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
715 		struct device_attribute *attr, char *buf)
716 {
717 	struct nvme_subsystem *subsys =
718 		container_of(dev, struct nvme_subsystem, dev);
719 
720 	return sysfs_emit(buf, "%s\n",
721 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
722 }
723 
724 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
725 		struct device_attribute *attr, const char *buf, size_t count)
726 {
727 	struct nvme_subsystem *subsys =
728 		container_of(dev, struct nvme_subsystem, dev);
729 	int i;
730 
731 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
732 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
733 			WRITE_ONCE(subsys->iopolicy, i);
734 			return count;
735 		}
736 	}
737 
738 	return -EINVAL;
739 }
740 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
741 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
742 
743 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
744 		char *buf)
745 {
746 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
747 }
748 DEVICE_ATTR_RO(ana_grpid);
749 
750 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
751 		char *buf)
752 {
753 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
754 
755 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
756 }
757 DEVICE_ATTR_RO(ana_state);
758 
759 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
760 		struct nvme_ana_group_desc *desc, void *data)
761 {
762 	struct nvme_ana_group_desc *dst = data;
763 
764 	if (desc->grpid != dst->grpid)
765 		return 0;
766 
767 	*dst = *desc;
768 	return -ENXIO; /* just break out of the loop */
769 }
770 
771 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
772 {
773 	if (nvme_ctrl_use_ana(ns->ctrl)) {
774 		struct nvme_ana_group_desc desc = {
775 			.grpid = id->anagrpid,
776 			.state = 0,
777 		};
778 
779 		mutex_lock(&ns->ctrl->ana_lock);
780 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
781 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
782 		mutex_unlock(&ns->ctrl->ana_lock);
783 		if (desc.state) {
784 			/* found the group desc: update */
785 			nvme_update_ns_ana_state(&desc, ns);
786 		} else {
787 			/* group desc not found: trigger a re-read */
788 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
789 			queue_work(nvme_wq, &ns->ctrl->ana_work);
790 		}
791 	} else {
792 		ns->ana_state = NVME_ANA_OPTIMIZED;
793 		nvme_mpath_set_live(ns);
794 	}
795 
796 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
797 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
798 				   ns->head->disk->queue);
799 #ifdef CONFIG_BLK_DEV_ZONED
800 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
801 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
802 #endif
803 }
804 
805 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
806 {
807 	if (!head->disk)
808 		return;
809 	kblockd_schedule_work(&head->requeue_work);
810 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
811 		nvme_cdev_del(&head->cdev, &head->cdev_device);
812 		del_gendisk(head->disk);
813 	}
814 }
815 
816 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
817 {
818 	if (!head->disk)
819 		return;
820 	blk_set_queue_dying(head->disk->queue);
821 	/* make sure all pending bios are cleaned up */
822 	kblockd_schedule_work(&head->requeue_work);
823 	flush_work(&head->requeue_work);
824 	blk_cleanup_disk(head->disk);
825 }
826 
827 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
828 {
829 	mutex_init(&ctrl->ana_lock);
830 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
831 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
832 }
833 
834 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
835 {
836 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
837 	size_t ana_log_size;
838 	int error = 0;
839 
840 	/* check if multipath is enabled and we have the capability */
841 	if (!multipath || !ctrl->subsys ||
842 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
843 		return 0;
844 
845 	if (!ctrl->max_namespaces ||
846 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
847 		dev_err(ctrl->device,
848 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
849 		return -EINVAL;
850 	}
851 
852 	ctrl->anacap = id->anacap;
853 	ctrl->anatt = id->anatt;
854 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
855 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
856 
857 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
858 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
859 		ctrl->max_namespaces * sizeof(__le32);
860 	if (ana_log_size > max_transfer_size) {
861 		dev_err(ctrl->device,
862 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
863 			ana_log_size, max_transfer_size);
864 		dev_err(ctrl->device, "disabling ANA support.\n");
865 		goto out_uninit;
866 	}
867 	if (ana_log_size > ctrl->ana_log_size) {
868 		nvme_mpath_stop(ctrl);
869 		kfree(ctrl->ana_log_buf);
870 		ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
871 		if (!ctrl->ana_log_buf)
872 			return -ENOMEM;
873 	}
874 	ctrl->ana_log_size = ana_log_size;
875 	error = nvme_read_ana_log(ctrl);
876 	if (error)
877 		goto out_uninit;
878 	return 0;
879 
880 out_uninit:
881 	nvme_mpath_uninit(ctrl);
882 	return error;
883 }
884 
885 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
886 {
887 	kfree(ctrl->ana_log_buf);
888 	ctrl->ana_log_buf = NULL;
889 }
890