1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/moduleparam.h> 7 #include <trace/events/block.h> 8 #include "nvme.h" 9 10 static bool multipath = true; 11 module_param(multipath, bool, 0444); 12 MODULE_PARM_DESC(multipath, 13 "turn on native support for multiple controllers per subsystem"); 14 15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 16 { 17 struct nvme_ns_head *h; 18 19 lockdep_assert_held(&subsys->lock); 20 list_for_each_entry(h, &subsys->nsheads, entry) 21 if (h->disk) 22 blk_mq_unfreeze_queue(h->disk->queue); 23 } 24 25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 26 { 27 struct nvme_ns_head *h; 28 29 lockdep_assert_held(&subsys->lock); 30 list_for_each_entry(h, &subsys->nsheads, entry) 31 if (h->disk) 32 blk_mq_freeze_queue_wait(h->disk->queue); 33 } 34 35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 36 { 37 struct nvme_ns_head *h; 38 39 lockdep_assert_held(&subsys->lock); 40 list_for_each_entry(h, &subsys->nsheads, entry) 41 if (h->disk) 42 blk_freeze_queue_start(h->disk->queue); 43 } 44 45 /* 46 * If multipathing is enabled we need to always use the subsystem instance 47 * number for numbering our devices to avoid conflicts between subsystems that 48 * have multiple controllers and thus use the multipath-aware subsystem node 49 * and those that have a single controller and use the controller node 50 * directly. 51 */ 52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 53 struct nvme_ctrl *ctrl, int *flags) 54 { 55 if (!multipath) { 56 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 57 } else if (ns->head->disk) { 58 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 59 ctrl->instance, ns->head->instance); 60 *flags = GENHD_FL_HIDDEN; 61 } else { 62 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 63 ns->head->instance); 64 } 65 } 66 67 void nvme_failover_req(struct request *req) 68 { 69 struct nvme_ns *ns = req->q->queuedata; 70 u16 status = nvme_req(req)->status; 71 unsigned long flags; 72 73 spin_lock_irqsave(&ns->head->requeue_lock, flags); 74 blk_steal_bios(&ns->head->requeue_list, req); 75 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 76 blk_mq_end_request(req, 0); 77 78 switch (status & 0x7ff) { 79 case NVME_SC_ANA_TRANSITION: 80 case NVME_SC_ANA_INACCESSIBLE: 81 case NVME_SC_ANA_PERSISTENT_LOSS: 82 /* 83 * If we got back an ANA error we know the controller is alive, 84 * but not ready to serve this namespaces. The spec suggests 85 * we should update our general state here, but due to the fact 86 * that the admin and I/O queues are not serialized that is 87 * fundamentally racy. So instead just clear the current path, 88 * mark the the path as pending and kick of a re-read of the ANA 89 * log page ASAP. 90 */ 91 nvme_mpath_clear_current_path(ns); 92 if (ns->ctrl->ana_log_buf) { 93 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 94 queue_work(nvme_wq, &ns->ctrl->ana_work); 95 } 96 break; 97 case NVME_SC_HOST_PATH_ERROR: 98 /* 99 * Temporary transport disruption in talking to the controller. 100 * Try to send on a new path. 101 */ 102 nvme_mpath_clear_current_path(ns); 103 break; 104 default: 105 /* 106 * Reset the controller for any non-ANA error as we don't know 107 * what caused the error. 108 */ 109 nvme_reset_ctrl(ns->ctrl); 110 break; 111 } 112 113 kblockd_schedule_work(&ns->head->requeue_work); 114 } 115 116 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 117 { 118 struct nvme_ns *ns; 119 120 down_read(&ctrl->namespaces_rwsem); 121 list_for_each_entry(ns, &ctrl->namespaces, list) { 122 if (ns->head->disk) 123 kblockd_schedule_work(&ns->head->requeue_work); 124 } 125 up_read(&ctrl->namespaces_rwsem); 126 } 127 128 static const char *nvme_ana_state_names[] = { 129 [0] = "invalid state", 130 [NVME_ANA_OPTIMIZED] = "optimized", 131 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 132 [NVME_ANA_INACCESSIBLE] = "inaccessible", 133 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 134 [NVME_ANA_CHANGE] = "change", 135 }; 136 137 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 138 { 139 struct nvme_ns_head *head = ns->head; 140 bool changed = false; 141 int node; 142 143 if (!head) 144 goto out; 145 146 for_each_node(node) { 147 if (ns == rcu_access_pointer(head->current_path[node])) { 148 rcu_assign_pointer(head->current_path[node], NULL); 149 changed = true; 150 } 151 } 152 out: 153 return changed; 154 } 155 156 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 157 { 158 struct nvme_ns *ns; 159 160 mutex_lock(&ctrl->scan_lock); 161 list_for_each_entry(ns, &ctrl->namespaces, list) 162 if (nvme_mpath_clear_current_path(ns)) 163 kblockd_schedule_work(&ns->head->requeue_work); 164 mutex_unlock(&ctrl->scan_lock); 165 } 166 167 static bool nvme_path_is_disabled(struct nvme_ns *ns) 168 { 169 return ns->ctrl->state != NVME_CTRL_LIVE || 170 test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 171 test_bit(NVME_NS_REMOVING, &ns->flags); 172 } 173 174 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 175 { 176 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 177 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 178 179 list_for_each_entry_rcu(ns, &head->list, siblings) { 180 if (nvme_path_is_disabled(ns)) 181 continue; 182 183 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 184 distance = node_distance(node, ns->ctrl->numa_node); 185 else 186 distance = LOCAL_DISTANCE; 187 188 switch (ns->ana_state) { 189 case NVME_ANA_OPTIMIZED: 190 if (distance < found_distance) { 191 found_distance = distance; 192 found = ns; 193 } 194 break; 195 case NVME_ANA_NONOPTIMIZED: 196 if (distance < fallback_distance) { 197 fallback_distance = distance; 198 fallback = ns; 199 } 200 break; 201 default: 202 break; 203 } 204 } 205 206 if (!found) 207 found = fallback; 208 if (found) 209 rcu_assign_pointer(head->current_path[node], found); 210 return found; 211 } 212 213 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 214 struct nvme_ns *ns) 215 { 216 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 217 siblings); 218 if (ns) 219 return ns; 220 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 221 } 222 223 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 224 int node, struct nvme_ns *old) 225 { 226 struct nvme_ns *ns, *found, *fallback = NULL; 227 228 if (list_is_singular(&head->list)) { 229 if (nvme_path_is_disabled(old)) 230 return NULL; 231 return old; 232 } 233 234 for (ns = nvme_next_ns(head, old); 235 ns != old; 236 ns = nvme_next_ns(head, ns)) { 237 if (nvme_path_is_disabled(ns)) 238 continue; 239 240 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 241 found = ns; 242 goto out; 243 } 244 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 245 fallback = ns; 246 } 247 248 if (!fallback) 249 return NULL; 250 found = fallback; 251 out: 252 rcu_assign_pointer(head->current_path[node], found); 253 return found; 254 } 255 256 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 257 { 258 return ns->ctrl->state == NVME_CTRL_LIVE && 259 ns->ana_state == NVME_ANA_OPTIMIZED; 260 } 261 262 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 263 { 264 int node = numa_node_id(); 265 struct nvme_ns *ns; 266 267 ns = srcu_dereference(head->current_path[node], &head->srcu); 268 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns) 269 ns = nvme_round_robin_path(head, node, ns); 270 if (unlikely(!ns || !nvme_path_is_optimized(ns))) 271 ns = __nvme_find_path(head, node); 272 return ns; 273 } 274 275 static bool nvme_available_path(struct nvme_ns_head *head) 276 { 277 struct nvme_ns *ns; 278 279 list_for_each_entry_rcu(ns, &head->list, siblings) { 280 switch (ns->ctrl->state) { 281 case NVME_CTRL_LIVE: 282 case NVME_CTRL_RESETTING: 283 case NVME_CTRL_CONNECTING: 284 /* fallthru */ 285 return true; 286 default: 287 break; 288 } 289 } 290 return false; 291 } 292 293 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q, 294 struct bio *bio) 295 { 296 struct nvme_ns_head *head = q->queuedata; 297 struct device *dev = disk_to_dev(head->disk); 298 struct nvme_ns *ns; 299 blk_qc_t ret = BLK_QC_T_NONE; 300 int srcu_idx; 301 302 /* 303 * The namespace might be going away and the bio might 304 * be moved to a different queue via blk_steal_bios(), 305 * so we need to use the bio_split pool from the original 306 * queue to allocate the bvecs from. 307 */ 308 blk_queue_split(q, &bio); 309 310 srcu_idx = srcu_read_lock(&head->srcu); 311 ns = nvme_find_path(head); 312 if (likely(ns)) { 313 bio->bi_disk = ns->disk; 314 bio->bi_opf |= REQ_NVME_MPATH; 315 trace_block_bio_remap(bio->bi_disk->queue, bio, 316 disk_devt(ns->head->disk), 317 bio->bi_iter.bi_sector); 318 ret = direct_make_request(bio); 319 } else if (nvme_available_path(head)) { 320 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 321 322 spin_lock_irq(&head->requeue_lock); 323 bio_list_add(&head->requeue_list, bio); 324 spin_unlock_irq(&head->requeue_lock); 325 } else { 326 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 327 328 bio->bi_status = BLK_STS_IOERR; 329 bio_endio(bio); 330 } 331 332 srcu_read_unlock(&head->srcu, srcu_idx); 333 return ret; 334 } 335 336 static void nvme_requeue_work(struct work_struct *work) 337 { 338 struct nvme_ns_head *head = 339 container_of(work, struct nvme_ns_head, requeue_work); 340 struct bio *bio, *next; 341 342 spin_lock_irq(&head->requeue_lock); 343 next = bio_list_get(&head->requeue_list); 344 spin_unlock_irq(&head->requeue_lock); 345 346 while ((bio = next) != NULL) { 347 next = bio->bi_next; 348 bio->bi_next = NULL; 349 350 /* 351 * Reset disk to the mpath node and resubmit to select a new 352 * path. 353 */ 354 bio->bi_disk = head->disk; 355 generic_make_request(bio); 356 } 357 } 358 359 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 360 { 361 struct request_queue *q; 362 bool vwc = false; 363 364 mutex_init(&head->lock); 365 bio_list_init(&head->requeue_list); 366 spin_lock_init(&head->requeue_lock); 367 INIT_WORK(&head->requeue_work, nvme_requeue_work); 368 369 /* 370 * Add a multipath node if the subsystems supports multiple controllers. 371 * We also do this for private namespaces as the namespace sharing data could 372 * change after a rescan. 373 */ 374 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath) 375 return 0; 376 377 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node); 378 if (!q) 379 goto out; 380 q->queuedata = head; 381 blk_queue_make_request(q, nvme_ns_head_make_request); 382 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 383 /* set to a default value for 512 until disk is validated */ 384 blk_queue_logical_block_size(q, 512); 385 blk_set_stacking_limits(&q->limits); 386 387 /* we need to propagate up the VMC settings */ 388 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 389 vwc = true; 390 blk_queue_write_cache(q, vwc, vwc); 391 392 head->disk = alloc_disk(0); 393 if (!head->disk) 394 goto out_cleanup_queue; 395 head->disk->fops = &nvme_ns_head_ops; 396 head->disk->private_data = head; 397 head->disk->queue = q; 398 head->disk->flags = GENHD_FL_EXT_DEVT; 399 sprintf(head->disk->disk_name, "nvme%dn%d", 400 ctrl->subsys->instance, head->instance); 401 return 0; 402 403 out_cleanup_queue: 404 blk_cleanup_queue(q); 405 out: 406 return -ENOMEM; 407 } 408 409 static void nvme_mpath_set_live(struct nvme_ns *ns) 410 { 411 struct nvme_ns_head *head = ns->head; 412 413 lockdep_assert_held(&ns->head->lock); 414 415 if (!head->disk) 416 return; 417 418 if (!(head->disk->flags & GENHD_FL_UP)) 419 device_add_disk(&head->subsys->dev, head->disk, 420 nvme_ns_id_attr_groups); 421 422 if (nvme_path_is_optimized(ns)) { 423 int node, srcu_idx; 424 425 srcu_idx = srcu_read_lock(&head->srcu); 426 for_each_node(node) 427 __nvme_find_path(head, node); 428 srcu_read_unlock(&head->srcu, srcu_idx); 429 } 430 431 synchronize_srcu(&ns->head->srcu); 432 kblockd_schedule_work(&ns->head->requeue_work); 433 } 434 435 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 436 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 437 void *)) 438 { 439 void *base = ctrl->ana_log_buf; 440 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 441 int error, i; 442 443 lockdep_assert_held(&ctrl->ana_lock); 444 445 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 446 struct nvme_ana_group_desc *desc = base + offset; 447 u32 nr_nsids = le32_to_cpu(desc->nnsids); 448 size_t nsid_buf_size = nr_nsids * sizeof(__le32); 449 450 if (WARN_ON_ONCE(desc->grpid == 0)) 451 return -EINVAL; 452 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 453 return -EINVAL; 454 if (WARN_ON_ONCE(desc->state == 0)) 455 return -EINVAL; 456 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 457 return -EINVAL; 458 459 offset += sizeof(*desc); 460 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 461 return -EINVAL; 462 463 error = cb(ctrl, desc, data); 464 if (error) 465 return error; 466 467 offset += nsid_buf_size; 468 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 469 return -EINVAL; 470 } 471 472 return 0; 473 } 474 475 static inline bool nvme_state_is_live(enum nvme_ana_state state) 476 { 477 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 478 } 479 480 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 481 struct nvme_ns *ns) 482 { 483 mutex_lock(&ns->head->lock); 484 ns->ana_grpid = le32_to_cpu(desc->grpid); 485 ns->ana_state = desc->state; 486 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 487 488 if (nvme_state_is_live(ns->ana_state)) 489 nvme_mpath_set_live(ns); 490 mutex_unlock(&ns->head->lock); 491 } 492 493 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 494 struct nvme_ana_group_desc *desc, void *data) 495 { 496 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 497 unsigned *nr_change_groups = data; 498 struct nvme_ns *ns; 499 500 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 501 le32_to_cpu(desc->grpid), 502 nvme_ana_state_names[desc->state]); 503 504 if (desc->state == NVME_ANA_CHANGE) 505 (*nr_change_groups)++; 506 507 if (!nr_nsids) 508 return 0; 509 510 down_write(&ctrl->namespaces_rwsem); 511 list_for_each_entry(ns, &ctrl->namespaces, list) { 512 unsigned nsid = le32_to_cpu(desc->nsids[n]); 513 514 if (ns->head->ns_id < nsid) 515 continue; 516 if (ns->head->ns_id == nsid) 517 nvme_update_ns_ana_state(desc, ns); 518 if (++n == nr_nsids) 519 break; 520 } 521 up_write(&ctrl->namespaces_rwsem); 522 return 0; 523 } 524 525 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 526 { 527 u32 nr_change_groups = 0; 528 int error; 529 530 mutex_lock(&ctrl->ana_lock); 531 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, 532 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 533 if (error) { 534 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 535 goto out_unlock; 536 } 537 538 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 539 nvme_update_ana_state); 540 if (error) 541 goto out_unlock; 542 543 /* 544 * In theory we should have an ANATT timer per group as they might enter 545 * the change state at different times. But that is a lot of overhead 546 * just to protect against a target that keeps entering new changes 547 * states while never finishing previous ones. But we'll still 548 * eventually time out once all groups are in change state, so this 549 * isn't a big deal. 550 * 551 * We also double the ANATT value to provide some slack for transports 552 * or AEN processing overhead. 553 */ 554 if (nr_change_groups) 555 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 556 else 557 del_timer_sync(&ctrl->anatt_timer); 558 out_unlock: 559 mutex_unlock(&ctrl->ana_lock); 560 return error; 561 } 562 563 static void nvme_ana_work(struct work_struct *work) 564 { 565 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 566 567 nvme_read_ana_log(ctrl); 568 } 569 570 static void nvme_anatt_timeout(struct timer_list *t) 571 { 572 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 573 574 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 575 nvme_reset_ctrl(ctrl); 576 } 577 578 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 579 { 580 if (!nvme_ctrl_use_ana(ctrl)) 581 return; 582 del_timer_sync(&ctrl->anatt_timer); 583 cancel_work_sync(&ctrl->ana_work); 584 } 585 586 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 587 struct device_attribute subsys_attr_##_name = \ 588 __ATTR(_name, _mode, _show, _store) 589 590 static const char *nvme_iopolicy_names[] = { 591 [NVME_IOPOLICY_NUMA] = "numa", 592 [NVME_IOPOLICY_RR] = "round-robin", 593 }; 594 595 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 596 struct device_attribute *attr, char *buf) 597 { 598 struct nvme_subsystem *subsys = 599 container_of(dev, struct nvme_subsystem, dev); 600 601 return sprintf(buf, "%s\n", 602 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 603 } 604 605 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 606 struct device_attribute *attr, const char *buf, size_t count) 607 { 608 struct nvme_subsystem *subsys = 609 container_of(dev, struct nvme_subsystem, dev); 610 int i; 611 612 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 613 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 614 WRITE_ONCE(subsys->iopolicy, i); 615 return count; 616 } 617 } 618 619 return -EINVAL; 620 } 621 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 622 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 623 624 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 625 char *buf) 626 { 627 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 628 } 629 DEVICE_ATTR_RO(ana_grpid); 630 631 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 632 char *buf) 633 { 634 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 635 636 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 637 } 638 DEVICE_ATTR_RO(ana_state); 639 640 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl, 641 struct nvme_ana_group_desc *desc, void *data) 642 { 643 struct nvme_ns *ns = data; 644 645 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) { 646 nvme_update_ns_ana_state(desc, ns); 647 return -ENXIO; /* just break out of the loop */ 648 } 649 650 return 0; 651 } 652 653 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 654 { 655 if (nvme_ctrl_use_ana(ns->ctrl)) { 656 mutex_lock(&ns->ctrl->ana_lock); 657 ns->ana_grpid = le32_to_cpu(id->anagrpid); 658 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state); 659 mutex_unlock(&ns->ctrl->ana_lock); 660 } else { 661 mutex_lock(&ns->head->lock); 662 ns->ana_state = NVME_ANA_OPTIMIZED; 663 nvme_mpath_set_live(ns); 664 mutex_unlock(&ns->head->lock); 665 } 666 } 667 668 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 669 { 670 if (!head->disk) 671 return; 672 if (head->disk->flags & GENHD_FL_UP) 673 del_gendisk(head->disk); 674 blk_set_queue_dying(head->disk->queue); 675 /* make sure all pending bios are cleaned up */ 676 kblockd_schedule_work(&head->requeue_work); 677 flush_work(&head->requeue_work); 678 blk_cleanup_queue(head->disk->queue); 679 put_disk(head->disk); 680 } 681 682 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 683 { 684 int error; 685 686 /* check if multipath is enabled and we have the capability */ 687 if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3))) 688 return 0; 689 690 ctrl->anacap = id->anacap; 691 ctrl->anatt = id->anatt; 692 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 693 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 694 695 mutex_init(&ctrl->ana_lock); 696 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 697 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 698 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 699 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 700 701 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 702 dev_err(ctrl->device, 703 "ANA log page size (%zd) larger than MDTS (%d).\n", 704 ctrl->ana_log_size, 705 ctrl->max_hw_sectors << SECTOR_SHIFT); 706 dev_err(ctrl->device, "disabling ANA support.\n"); 707 return 0; 708 } 709 710 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 711 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 712 if (!ctrl->ana_log_buf) { 713 error = -ENOMEM; 714 goto out; 715 } 716 717 error = nvme_read_ana_log(ctrl); 718 if (error) 719 goto out_free_ana_log_buf; 720 return 0; 721 out_free_ana_log_buf: 722 kfree(ctrl->ana_log_buf); 723 ctrl->ana_log_buf = NULL; 724 out: 725 return error; 726 } 727 728 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 729 { 730 kfree(ctrl->ana_log_buf); 731 ctrl->ana_log_buf = NULL; 732 } 733 734