xref: /linux/drivers/nvme/host/multipath.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 	[NVME_IOPOLICY_QD]      = "queue-depth",
21 };
22 
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24 
25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 	if (!val)
28 		return -EINVAL;
29 	if (!strncmp(val, "numa", 4))
30 		iopolicy = NVME_IOPOLICY_NUMA;
31 	else if (!strncmp(val, "round-robin", 11))
32 		iopolicy = NVME_IOPOLICY_RR;
33 	else if (!strncmp(val, "queue-depth", 11))
34 		iopolicy = NVME_IOPOLICY_QD;
35 	else
36 		return -EINVAL;
37 
38 	return 0;
39 }
40 
41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45 
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 	&iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 	"Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50 
51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 	subsys->iopolicy = iopolicy;
54 }
55 
56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 	struct nvme_ns_head *h;
59 
60 	lockdep_assert_held(&subsys->lock);
61 	list_for_each_entry(h, &subsys->nsheads, entry)
62 		if (h->disk)
63 			blk_mq_unfreeze_queue(h->disk->queue);
64 }
65 
66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 	struct nvme_ns_head *h;
69 
70 	lockdep_assert_held(&subsys->lock);
71 	list_for_each_entry(h, &subsys->nsheads, entry)
72 		if (h->disk)
73 			blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75 
76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 	struct nvme_ns_head *h;
79 
80 	lockdep_assert_held(&subsys->lock);
81 	list_for_each_entry(h, &subsys->nsheads, entry)
82 		if (h->disk)
83 			blk_freeze_queue_start(h->disk->queue);
84 }
85 
86 void nvme_failover_req(struct request *req)
87 {
88 	struct nvme_ns *ns = req->q->queuedata;
89 	u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 	unsigned long flags;
91 	struct bio *bio;
92 
93 	nvme_mpath_clear_current_path(ns);
94 
95 	/*
96 	 * If we got back an ANA error, we know the controller is alive but not
97 	 * ready to serve this namespace.  Kick of a re-read of the ANA
98 	 * information page, and just try any other available path for now.
99 	 */
100 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 		queue_work(nvme_wq, &ns->ctrl->ana_work);
103 	}
104 
105 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 	for (bio = req->bio; bio; bio = bio->bi_next) {
107 		bio_set_dev(bio, ns->head->disk->part0);
108 		if (bio->bi_opf & REQ_POLLED) {
109 			bio->bi_opf &= ~REQ_POLLED;
110 			bio->bi_cookie = BLK_QC_T_NONE;
111 		}
112 		/*
113 		 * The alternate request queue that we may end up submitting
114 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 		 * will fail the I/O immediately with EAGAIN to the issuer.
116 		 * We are not in the issuer context which cannot block. Clear
117 		 * the flag to avoid spurious EAGAIN I/O failures.
118 		 */
119 		bio->bi_opf &= ~REQ_NOWAIT;
120 	}
121 	blk_steal_bios(&ns->head->requeue_list, req);
122 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123 
124 	nvme_req(req)->status = 0;
125 	nvme_end_req(req);
126 	kblockd_schedule_work(&ns->head->requeue_work);
127 }
128 
129 void nvme_mpath_start_request(struct request *rq)
130 {
131 	struct nvme_ns *ns = rq->q->queuedata;
132 	struct gendisk *disk = ns->head->disk;
133 
134 	if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 		atomic_inc(&ns->ctrl->nr_active);
136 		nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 	}
138 
139 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 		return;
141 
142 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 						      jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147 
148 void nvme_mpath_end_request(struct request *rq)
149 {
150 	struct nvme_ns *ns = rq->q->queuedata;
151 
152 	if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 		atomic_dec_if_positive(&ns->ctrl->nr_active);
154 
155 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 		return;
157 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 			 nvme_req(rq)->start_time);
160 }
161 
162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 	struct nvme_ns *ns;
165 	int srcu_idx;
166 
167 	srcu_idx = srcu_read_lock(&ctrl->srcu);
168 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
169 		if (!ns->head->disk)
170 			continue;
171 		kblockd_schedule_work(&ns->head->requeue_work);
172 		if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
173 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
174 	}
175 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
176 }
177 
178 static const char *nvme_ana_state_names[] = {
179 	[0]				= "invalid state",
180 	[NVME_ANA_OPTIMIZED]		= "optimized",
181 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
182 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
183 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
184 	[NVME_ANA_CHANGE]		= "change",
185 };
186 
187 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
188 {
189 	struct nvme_ns_head *head = ns->head;
190 	bool changed = false;
191 	int node;
192 
193 	if (!head)
194 		goto out;
195 
196 	for_each_node(node) {
197 		if (ns == rcu_access_pointer(head->current_path[node])) {
198 			rcu_assign_pointer(head->current_path[node], NULL);
199 			changed = true;
200 		}
201 	}
202 out:
203 	return changed;
204 }
205 
206 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
207 {
208 	struct nvme_ns *ns;
209 	int srcu_idx;
210 
211 	srcu_idx = srcu_read_lock(&ctrl->srcu);
212 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
213 		nvme_mpath_clear_current_path(ns);
214 		kblockd_schedule_work(&ns->head->requeue_work);
215 	}
216 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
217 }
218 
219 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
220 {
221 	struct nvme_ns_head *head = ns->head;
222 	sector_t capacity = get_capacity(head->disk);
223 	int node;
224 	int srcu_idx;
225 
226 	srcu_idx = srcu_read_lock(&head->srcu);
227 	list_for_each_entry_rcu(ns, &head->list, siblings) {
228 		if (capacity != get_capacity(ns->disk))
229 			clear_bit(NVME_NS_READY, &ns->flags);
230 	}
231 	srcu_read_unlock(&head->srcu, srcu_idx);
232 
233 	for_each_node(node)
234 		rcu_assign_pointer(head->current_path[node], NULL);
235 	kblockd_schedule_work(&head->requeue_work);
236 }
237 
238 static bool nvme_path_is_disabled(struct nvme_ns *ns)
239 {
240 	enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
241 
242 	/*
243 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
244 	 * still be able to complete assuming that the controller is connected.
245 	 * Otherwise it will fail immediately and return to the requeue list.
246 	 */
247 	if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
248 		return true;
249 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
250 	    !test_bit(NVME_NS_READY, &ns->flags))
251 		return true;
252 	return false;
253 }
254 
255 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
256 {
257 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
258 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
259 
260 	list_for_each_entry_rcu(ns, &head->list, siblings) {
261 		if (nvme_path_is_disabled(ns))
262 			continue;
263 
264 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
265 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
266 			distance = node_distance(node, ns->ctrl->numa_node);
267 		else
268 			distance = LOCAL_DISTANCE;
269 
270 		switch (ns->ana_state) {
271 		case NVME_ANA_OPTIMIZED:
272 			if (distance < found_distance) {
273 				found_distance = distance;
274 				found = ns;
275 			}
276 			break;
277 		case NVME_ANA_NONOPTIMIZED:
278 			if (distance < fallback_distance) {
279 				fallback_distance = distance;
280 				fallback = ns;
281 			}
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 
288 	if (!found)
289 		found = fallback;
290 	if (found)
291 		rcu_assign_pointer(head->current_path[node], found);
292 	return found;
293 }
294 
295 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
296 		struct nvme_ns *ns)
297 {
298 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
299 			siblings);
300 	if (ns)
301 		return ns;
302 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
303 }
304 
305 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
306 {
307 	struct nvme_ns *ns, *found = NULL;
308 	int node = numa_node_id();
309 	struct nvme_ns *old = srcu_dereference(head->current_path[node],
310 					       &head->srcu);
311 
312 	if (unlikely(!old))
313 		return __nvme_find_path(head, node);
314 
315 	if (list_is_singular(&head->list)) {
316 		if (nvme_path_is_disabled(old))
317 			return NULL;
318 		return old;
319 	}
320 
321 	for (ns = nvme_next_ns(head, old);
322 	     ns && ns != old;
323 	     ns = nvme_next_ns(head, ns)) {
324 		if (nvme_path_is_disabled(ns))
325 			continue;
326 
327 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
328 			found = ns;
329 			goto out;
330 		}
331 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
332 			found = ns;
333 	}
334 
335 	/*
336 	 * The loop above skips the current path for round-robin semantics.
337 	 * Fall back to the current path if either:
338 	 *  - no other optimized path found and current is optimized,
339 	 *  - no other usable path found and current is usable.
340 	 */
341 	if (!nvme_path_is_disabled(old) &&
342 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
343 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
344 		return old;
345 
346 	if (!found)
347 		return NULL;
348 out:
349 	rcu_assign_pointer(head->current_path[node], found);
350 	return found;
351 }
352 
353 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
354 {
355 	struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
356 	unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
357 	unsigned int depth;
358 
359 	list_for_each_entry_rcu(ns, &head->list, siblings) {
360 		if (nvme_path_is_disabled(ns))
361 			continue;
362 
363 		depth = atomic_read(&ns->ctrl->nr_active);
364 
365 		switch (ns->ana_state) {
366 		case NVME_ANA_OPTIMIZED:
367 			if (depth < min_depth_opt) {
368 				min_depth_opt = depth;
369 				best_opt = ns;
370 			}
371 			break;
372 		case NVME_ANA_NONOPTIMIZED:
373 			if (depth < min_depth_nonopt) {
374 				min_depth_nonopt = depth;
375 				best_nonopt = ns;
376 			}
377 			break;
378 		default:
379 			break;
380 		}
381 
382 		if (min_depth_opt == 0)
383 			return best_opt;
384 	}
385 
386 	return best_opt ? best_opt : best_nonopt;
387 }
388 
389 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
390 {
391 	return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
392 		ns->ana_state == NVME_ANA_OPTIMIZED;
393 }
394 
395 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
396 {
397 	int node = numa_node_id();
398 	struct nvme_ns *ns;
399 
400 	ns = srcu_dereference(head->current_path[node], &head->srcu);
401 	if (unlikely(!ns))
402 		return __nvme_find_path(head, node);
403 	if (unlikely(!nvme_path_is_optimized(ns)))
404 		return __nvme_find_path(head, node);
405 	return ns;
406 }
407 
408 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
409 {
410 	switch (READ_ONCE(head->subsys->iopolicy)) {
411 	case NVME_IOPOLICY_QD:
412 		return nvme_queue_depth_path(head);
413 	case NVME_IOPOLICY_RR:
414 		return nvme_round_robin_path(head);
415 	default:
416 		return nvme_numa_path(head);
417 	}
418 }
419 
420 static bool nvme_available_path(struct nvme_ns_head *head)
421 {
422 	struct nvme_ns *ns;
423 
424 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
425 		return NULL;
426 
427 	list_for_each_entry_rcu(ns, &head->list, siblings) {
428 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
429 			continue;
430 		switch (nvme_ctrl_state(ns->ctrl)) {
431 		case NVME_CTRL_LIVE:
432 		case NVME_CTRL_RESETTING:
433 		case NVME_CTRL_CONNECTING:
434 			return true;
435 		default:
436 			break;
437 		}
438 	}
439 	return false;
440 }
441 
442 static void nvme_ns_head_submit_bio(struct bio *bio)
443 {
444 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
445 	struct device *dev = disk_to_dev(head->disk);
446 	struct nvme_ns *ns;
447 	int srcu_idx;
448 
449 	/*
450 	 * The namespace might be going away and the bio might be moved to a
451 	 * different queue via blk_steal_bios(), so we need to use the bio_split
452 	 * pool from the original queue to allocate the bvecs from.
453 	 */
454 	bio = bio_split_to_limits(bio);
455 	if (!bio)
456 		return;
457 
458 	srcu_idx = srcu_read_lock(&head->srcu);
459 	ns = nvme_find_path(head);
460 	if (likely(ns)) {
461 		bio_set_dev(bio, ns->disk->part0);
462 		bio->bi_opf |= REQ_NVME_MPATH;
463 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
464 				      bio->bi_iter.bi_sector);
465 		submit_bio_noacct(bio);
466 	} else if (nvme_available_path(head)) {
467 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
468 
469 		spin_lock_irq(&head->requeue_lock);
470 		bio_list_add(&head->requeue_list, bio);
471 		spin_unlock_irq(&head->requeue_lock);
472 	} else {
473 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
474 
475 		bio_io_error(bio);
476 	}
477 
478 	srcu_read_unlock(&head->srcu, srcu_idx);
479 }
480 
481 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
482 {
483 	if (!nvme_tryget_ns_head(disk->private_data))
484 		return -ENXIO;
485 	return 0;
486 }
487 
488 static void nvme_ns_head_release(struct gendisk *disk)
489 {
490 	nvme_put_ns_head(disk->private_data);
491 }
492 
493 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
494 		enum blk_unique_id type)
495 {
496 	struct nvme_ns_head *head = disk->private_data;
497 	struct nvme_ns *ns;
498 	int srcu_idx, ret = -EWOULDBLOCK;
499 
500 	srcu_idx = srcu_read_lock(&head->srcu);
501 	ns = nvme_find_path(head);
502 	if (ns)
503 		ret = nvme_ns_get_unique_id(ns, id, type);
504 	srcu_read_unlock(&head->srcu, srcu_idx);
505 	return ret;
506 }
507 
508 #ifdef CONFIG_BLK_DEV_ZONED
509 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
510 		unsigned int nr_zones, report_zones_cb cb, void *data)
511 {
512 	struct nvme_ns_head *head = disk->private_data;
513 	struct nvme_ns *ns;
514 	int srcu_idx, ret = -EWOULDBLOCK;
515 
516 	srcu_idx = srcu_read_lock(&head->srcu);
517 	ns = nvme_find_path(head);
518 	if (ns)
519 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
520 	srcu_read_unlock(&head->srcu, srcu_idx);
521 	return ret;
522 }
523 #else
524 #define nvme_ns_head_report_zones	NULL
525 #endif /* CONFIG_BLK_DEV_ZONED */
526 
527 const struct block_device_operations nvme_ns_head_ops = {
528 	.owner		= THIS_MODULE,
529 	.submit_bio	= nvme_ns_head_submit_bio,
530 	.open		= nvme_ns_head_open,
531 	.release	= nvme_ns_head_release,
532 	.ioctl		= nvme_ns_head_ioctl,
533 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
534 	.getgeo		= nvme_getgeo,
535 	.get_unique_id	= nvme_ns_head_get_unique_id,
536 	.report_zones	= nvme_ns_head_report_zones,
537 	.pr_ops		= &nvme_pr_ops,
538 };
539 
540 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
541 {
542 	return container_of(cdev, struct nvme_ns_head, cdev);
543 }
544 
545 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
546 {
547 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
548 		return -ENXIO;
549 	return 0;
550 }
551 
552 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
553 {
554 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
555 	return 0;
556 }
557 
558 static const struct file_operations nvme_ns_head_chr_fops = {
559 	.owner		= THIS_MODULE,
560 	.open		= nvme_ns_head_chr_open,
561 	.release	= nvme_ns_head_chr_release,
562 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
563 	.compat_ioctl	= compat_ptr_ioctl,
564 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
565 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
566 };
567 
568 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
569 {
570 	int ret;
571 
572 	head->cdev_device.parent = &head->subsys->dev;
573 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
574 			   head->subsys->instance, head->instance);
575 	if (ret)
576 		return ret;
577 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
578 			    &nvme_ns_head_chr_fops, THIS_MODULE);
579 	return ret;
580 }
581 
582 static void nvme_partition_scan_work(struct work_struct *work)
583 {
584 	struct nvme_ns_head *head =
585 		container_of(work, struct nvme_ns_head, partition_scan_work);
586 
587 	if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
588 					     &head->disk->state)))
589 		return;
590 
591 	mutex_lock(&head->disk->open_mutex);
592 	bdev_disk_changed(head->disk, false);
593 	mutex_unlock(&head->disk->open_mutex);
594 }
595 
596 static void nvme_requeue_work(struct work_struct *work)
597 {
598 	struct nvme_ns_head *head =
599 		container_of(work, struct nvme_ns_head, requeue_work);
600 	struct bio *bio, *next;
601 
602 	spin_lock_irq(&head->requeue_lock);
603 	next = bio_list_get(&head->requeue_list);
604 	spin_unlock_irq(&head->requeue_lock);
605 
606 	while ((bio = next) != NULL) {
607 		next = bio->bi_next;
608 		bio->bi_next = NULL;
609 
610 		submit_bio_noacct(bio);
611 	}
612 }
613 
614 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
615 {
616 	struct queue_limits lim;
617 
618 	mutex_init(&head->lock);
619 	bio_list_init(&head->requeue_list);
620 	spin_lock_init(&head->requeue_lock);
621 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
622 	INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
623 
624 	/*
625 	 * Add a multipath node if the subsystems supports multiple controllers.
626 	 * We also do this for private namespaces as the namespace sharing flag
627 	 * could change after a rescan.
628 	 */
629 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
630 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
631 		return 0;
632 
633 	blk_set_stacking_limits(&lim);
634 	lim.dma_alignment = 3;
635 	lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
636 	if (head->ids.csi == NVME_CSI_ZNS)
637 		lim.features |= BLK_FEAT_ZONED;
638 
639 	head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
640 	if (IS_ERR(head->disk))
641 		return PTR_ERR(head->disk);
642 	head->disk->fops = &nvme_ns_head_ops;
643 	head->disk->private_data = head;
644 
645 	/*
646 	 * We need to suppress the partition scan from occuring within the
647 	 * controller's scan_work context. If a path error occurs here, the IO
648 	 * will wait until a path becomes available or all paths are torn down,
649 	 * but that action also occurs within scan_work, so it would deadlock.
650 	 * Defer the partion scan to a different context that does not block
651 	 * scan_work.
652 	 */
653 	set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
654 	sprintf(head->disk->disk_name, "nvme%dn%d",
655 			ctrl->subsys->instance, head->instance);
656 	return 0;
657 }
658 
659 static void nvme_mpath_set_live(struct nvme_ns *ns)
660 {
661 	struct nvme_ns_head *head = ns->head;
662 	int rc;
663 
664 	if (!head->disk)
665 		return;
666 
667 	/*
668 	 * test_and_set_bit() is used because it is protecting against two nvme
669 	 * paths simultaneously calling device_add_disk() on the same namespace
670 	 * head.
671 	 */
672 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
673 		rc = device_add_disk(&head->subsys->dev, head->disk,
674 				     nvme_ns_attr_groups);
675 		if (rc) {
676 			clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
677 			return;
678 		}
679 		nvme_add_ns_head_cdev(head);
680 		kblockd_schedule_work(&head->partition_scan_work);
681 	}
682 
683 	mutex_lock(&head->lock);
684 	if (nvme_path_is_optimized(ns)) {
685 		int node, srcu_idx;
686 
687 		srcu_idx = srcu_read_lock(&head->srcu);
688 		for_each_online_node(node)
689 			__nvme_find_path(head, node);
690 		srcu_read_unlock(&head->srcu, srcu_idx);
691 	}
692 	mutex_unlock(&head->lock);
693 
694 	synchronize_srcu(&head->srcu);
695 	kblockd_schedule_work(&head->requeue_work);
696 }
697 
698 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
699 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
700 			void *))
701 {
702 	void *base = ctrl->ana_log_buf;
703 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
704 	int error, i;
705 
706 	lockdep_assert_held(&ctrl->ana_lock);
707 
708 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
709 		struct nvme_ana_group_desc *desc = base + offset;
710 		u32 nr_nsids;
711 		size_t nsid_buf_size;
712 
713 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
714 			return -EINVAL;
715 
716 		nr_nsids = le32_to_cpu(desc->nnsids);
717 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
718 
719 		if (WARN_ON_ONCE(desc->grpid == 0))
720 			return -EINVAL;
721 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
722 			return -EINVAL;
723 		if (WARN_ON_ONCE(desc->state == 0))
724 			return -EINVAL;
725 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
726 			return -EINVAL;
727 
728 		offset += sizeof(*desc);
729 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
730 			return -EINVAL;
731 
732 		error = cb(ctrl, desc, data);
733 		if (error)
734 			return error;
735 
736 		offset += nsid_buf_size;
737 	}
738 
739 	return 0;
740 }
741 
742 static inline bool nvme_state_is_live(enum nvme_ana_state state)
743 {
744 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
745 }
746 
747 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
748 		struct nvme_ns *ns)
749 {
750 	ns->ana_grpid = le32_to_cpu(desc->grpid);
751 	ns->ana_state = desc->state;
752 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
753 	/*
754 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
755 	 * and in turn to this path device.  However we cannot accept this I/O
756 	 * if the controller is not live.  This may deadlock if called from
757 	 * nvme_mpath_init_identify() and the ctrl will never complete
758 	 * initialization, preventing I/O from completing.  For this case we
759 	 * will reprocess the ANA log page in nvme_mpath_update() once the
760 	 * controller is ready.
761 	 */
762 	if (nvme_state_is_live(ns->ana_state) &&
763 	    nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
764 		nvme_mpath_set_live(ns);
765 }
766 
767 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
768 		struct nvme_ana_group_desc *desc, void *data)
769 {
770 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
771 	unsigned *nr_change_groups = data;
772 	struct nvme_ns *ns;
773 	int srcu_idx;
774 
775 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
776 			le32_to_cpu(desc->grpid),
777 			nvme_ana_state_names[desc->state]);
778 
779 	if (desc->state == NVME_ANA_CHANGE)
780 		(*nr_change_groups)++;
781 
782 	if (!nr_nsids)
783 		return 0;
784 
785 	srcu_idx = srcu_read_lock(&ctrl->srcu);
786 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
787 		unsigned nsid;
788 again:
789 		nsid = le32_to_cpu(desc->nsids[n]);
790 		if (ns->head->ns_id < nsid)
791 			continue;
792 		if (ns->head->ns_id == nsid)
793 			nvme_update_ns_ana_state(desc, ns);
794 		if (++n == nr_nsids)
795 			break;
796 		if (ns->head->ns_id > nsid)
797 			goto again;
798 	}
799 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
800 	return 0;
801 }
802 
803 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
804 {
805 	u32 nr_change_groups = 0;
806 	int error;
807 
808 	mutex_lock(&ctrl->ana_lock);
809 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
810 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
811 	if (error) {
812 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
813 		goto out_unlock;
814 	}
815 
816 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
817 			nvme_update_ana_state);
818 	if (error)
819 		goto out_unlock;
820 
821 	/*
822 	 * In theory we should have an ANATT timer per group as they might enter
823 	 * the change state at different times.  But that is a lot of overhead
824 	 * just to protect against a target that keeps entering new changes
825 	 * states while never finishing previous ones.  But we'll still
826 	 * eventually time out once all groups are in change state, so this
827 	 * isn't a big deal.
828 	 *
829 	 * We also double the ANATT value to provide some slack for transports
830 	 * or AEN processing overhead.
831 	 */
832 	if (nr_change_groups)
833 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
834 	else
835 		del_timer_sync(&ctrl->anatt_timer);
836 out_unlock:
837 	mutex_unlock(&ctrl->ana_lock);
838 	return error;
839 }
840 
841 static void nvme_ana_work(struct work_struct *work)
842 {
843 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
844 
845 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
846 		return;
847 
848 	nvme_read_ana_log(ctrl);
849 }
850 
851 void nvme_mpath_update(struct nvme_ctrl *ctrl)
852 {
853 	u32 nr_change_groups = 0;
854 
855 	if (!ctrl->ana_log_buf)
856 		return;
857 
858 	mutex_lock(&ctrl->ana_lock);
859 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
860 	mutex_unlock(&ctrl->ana_lock);
861 }
862 
863 static void nvme_anatt_timeout(struct timer_list *t)
864 {
865 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
866 
867 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
868 	nvme_reset_ctrl(ctrl);
869 }
870 
871 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
872 {
873 	if (!nvme_ctrl_use_ana(ctrl))
874 		return;
875 	del_timer_sync(&ctrl->anatt_timer);
876 	cancel_work_sync(&ctrl->ana_work);
877 }
878 
879 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
880 	struct device_attribute subsys_attr_##_name =	\
881 		__ATTR(_name, _mode, _show, _store)
882 
883 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
884 		struct device_attribute *attr, char *buf)
885 {
886 	struct nvme_subsystem *subsys =
887 		container_of(dev, struct nvme_subsystem, dev);
888 
889 	return sysfs_emit(buf, "%s\n",
890 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
891 }
892 
893 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
894 		int iopolicy)
895 {
896 	struct nvme_ctrl *ctrl;
897 	int old_iopolicy = READ_ONCE(subsys->iopolicy);
898 
899 	if (old_iopolicy == iopolicy)
900 		return;
901 
902 	WRITE_ONCE(subsys->iopolicy, iopolicy);
903 
904 	/* iopolicy changes clear the mpath by design */
905 	mutex_lock(&nvme_subsystems_lock);
906 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
907 		nvme_mpath_clear_ctrl_paths(ctrl);
908 	mutex_unlock(&nvme_subsystems_lock);
909 
910 	pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
911 			subsys->subnqn,
912 			nvme_iopolicy_names[old_iopolicy],
913 			nvme_iopolicy_names[iopolicy]);
914 }
915 
916 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
917 		struct device_attribute *attr, const char *buf, size_t count)
918 {
919 	struct nvme_subsystem *subsys =
920 		container_of(dev, struct nvme_subsystem, dev);
921 	int i;
922 
923 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
924 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
925 			nvme_subsys_iopolicy_update(subsys, i);
926 			return count;
927 		}
928 	}
929 
930 	return -EINVAL;
931 }
932 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
933 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
934 
935 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
936 		char *buf)
937 {
938 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
939 }
940 DEVICE_ATTR_RO(ana_grpid);
941 
942 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
943 		char *buf)
944 {
945 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
946 
947 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
948 }
949 DEVICE_ATTR_RO(ana_state);
950 
951 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
952 		struct nvme_ana_group_desc *desc, void *data)
953 {
954 	struct nvme_ana_group_desc *dst = data;
955 
956 	if (desc->grpid != dst->grpid)
957 		return 0;
958 
959 	*dst = *desc;
960 	return -ENXIO; /* just break out of the loop */
961 }
962 
963 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
964 {
965 	if (nvme_ctrl_use_ana(ns->ctrl)) {
966 		struct nvme_ana_group_desc desc = {
967 			.grpid = anagrpid,
968 			.state = 0,
969 		};
970 
971 		mutex_lock(&ns->ctrl->ana_lock);
972 		ns->ana_grpid = le32_to_cpu(anagrpid);
973 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
974 		mutex_unlock(&ns->ctrl->ana_lock);
975 		if (desc.state) {
976 			/* found the group desc: update */
977 			nvme_update_ns_ana_state(&desc, ns);
978 		} else {
979 			/* group desc not found: trigger a re-read */
980 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
981 			queue_work(nvme_wq, &ns->ctrl->ana_work);
982 		}
983 	} else {
984 		ns->ana_state = NVME_ANA_OPTIMIZED;
985 		nvme_mpath_set_live(ns);
986 	}
987 
988 #ifdef CONFIG_BLK_DEV_ZONED
989 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
990 		ns->head->disk->nr_zones = ns->disk->nr_zones;
991 #endif
992 }
993 
994 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
995 {
996 	if (!head->disk)
997 		return;
998 	if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
999 		nvme_cdev_del(&head->cdev, &head->cdev_device);
1000 		/*
1001 		 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1002 		 * to allow multipath to fail all I/O.
1003 		 */
1004 		synchronize_srcu(&head->srcu);
1005 		kblockd_schedule_work(&head->requeue_work);
1006 		del_gendisk(head->disk);
1007 	}
1008 }
1009 
1010 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1011 {
1012 	if (!head->disk)
1013 		return;
1014 	/* make sure all pending bios are cleaned up */
1015 	kblockd_schedule_work(&head->requeue_work);
1016 	flush_work(&head->requeue_work);
1017 	flush_work(&head->partition_scan_work);
1018 	put_disk(head->disk);
1019 }
1020 
1021 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1022 {
1023 	mutex_init(&ctrl->ana_lock);
1024 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1025 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1026 }
1027 
1028 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1029 {
1030 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1031 	size_t ana_log_size;
1032 	int error = 0;
1033 
1034 	/* check if multipath is enabled and we have the capability */
1035 	if (!multipath || !ctrl->subsys ||
1036 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1037 		return 0;
1038 
1039 	/* initialize this in the identify path to cover controller resets */
1040 	atomic_set(&ctrl->nr_active, 0);
1041 
1042 	if (!ctrl->max_namespaces ||
1043 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1044 		dev_err(ctrl->device,
1045 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
1046 		return -EINVAL;
1047 	}
1048 
1049 	ctrl->anacap = id->anacap;
1050 	ctrl->anatt = id->anatt;
1051 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1052 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1053 
1054 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1055 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1056 		ctrl->max_namespaces * sizeof(__le32);
1057 	if (ana_log_size > max_transfer_size) {
1058 		dev_err(ctrl->device,
1059 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
1060 			ana_log_size, max_transfer_size);
1061 		dev_err(ctrl->device, "disabling ANA support.\n");
1062 		goto out_uninit;
1063 	}
1064 	if (ana_log_size > ctrl->ana_log_size) {
1065 		nvme_mpath_stop(ctrl);
1066 		nvme_mpath_uninit(ctrl);
1067 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1068 		if (!ctrl->ana_log_buf)
1069 			return -ENOMEM;
1070 	}
1071 	ctrl->ana_log_size = ana_log_size;
1072 	error = nvme_read_ana_log(ctrl);
1073 	if (error)
1074 		goto out_uninit;
1075 	return 0;
1076 
1077 out_uninit:
1078 	nvme_mpath_uninit(ctrl);
1079 	return error;
1080 }
1081 
1082 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1083 {
1084 	kvfree(ctrl->ana_log_buf);
1085 	ctrl->ana_log_buf = NULL;
1086 	ctrl->ana_log_size = 0;
1087 }
1088