xref: /linux/drivers/nvme/host/multipath.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 	[NVME_IOPOLICY_QD]      = "queue-depth",
21 };
22 
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24 
25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 	if (!val)
28 		return -EINVAL;
29 	if (!strncmp(val, "numa", 4))
30 		iopolicy = NVME_IOPOLICY_NUMA;
31 	else if (!strncmp(val, "round-robin", 11))
32 		iopolicy = NVME_IOPOLICY_RR;
33 	else if (!strncmp(val, "queue-depth", 11))
34 		iopolicy = NVME_IOPOLICY_QD;
35 	else
36 		return -EINVAL;
37 
38 	return 0;
39 }
40 
41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45 
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 	&iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 	"Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50 
51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 	subsys->iopolicy = iopolicy;
54 }
55 
56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 	struct nvme_ns_head *h;
59 
60 	lockdep_assert_held(&subsys->lock);
61 	list_for_each_entry(h, &subsys->nsheads, entry)
62 		if (h->disk)
63 			blk_mq_unfreeze_queue(h->disk->queue);
64 }
65 
66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 	struct nvme_ns_head *h;
69 
70 	lockdep_assert_held(&subsys->lock);
71 	list_for_each_entry(h, &subsys->nsheads, entry)
72 		if (h->disk)
73 			blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75 
76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 	struct nvme_ns_head *h;
79 
80 	lockdep_assert_held(&subsys->lock);
81 	list_for_each_entry(h, &subsys->nsheads, entry)
82 		if (h->disk)
83 			blk_freeze_queue_start(h->disk->queue);
84 }
85 
86 void nvme_failover_req(struct request *req)
87 {
88 	struct nvme_ns *ns = req->q->queuedata;
89 	u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 	unsigned long flags;
91 	struct bio *bio;
92 
93 	nvme_mpath_clear_current_path(ns);
94 
95 	/*
96 	 * If we got back an ANA error, we know the controller is alive but not
97 	 * ready to serve this namespace.  Kick of a re-read of the ANA
98 	 * information page, and just try any other available path for now.
99 	 */
100 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 		queue_work(nvme_wq, &ns->ctrl->ana_work);
103 	}
104 
105 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 	for (bio = req->bio; bio; bio = bio->bi_next) {
107 		bio_set_dev(bio, ns->head->disk->part0);
108 		if (bio->bi_opf & REQ_POLLED) {
109 			bio->bi_opf &= ~REQ_POLLED;
110 			bio->bi_cookie = BLK_QC_T_NONE;
111 		}
112 		/*
113 		 * The alternate request queue that we may end up submitting
114 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 		 * will fail the I/O immediately with EAGAIN to the issuer.
116 		 * We are not in the issuer context which cannot block. Clear
117 		 * the flag to avoid spurious EAGAIN I/O failures.
118 		 */
119 		bio->bi_opf &= ~REQ_NOWAIT;
120 	}
121 	blk_steal_bios(&ns->head->requeue_list, req);
122 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123 
124 	nvme_req(req)->status = 0;
125 	nvme_end_req(req);
126 	kblockd_schedule_work(&ns->head->requeue_work);
127 }
128 
129 void nvme_mpath_start_request(struct request *rq)
130 {
131 	struct nvme_ns *ns = rq->q->queuedata;
132 	struct gendisk *disk = ns->head->disk;
133 
134 	if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 		atomic_inc(&ns->ctrl->nr_active);
136 		nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 	}
138 
139 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 		return;
141 
142 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 						      jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147 
148 void nvme_mpath_end_request(struct request *rq)
149 {
150 	struct nvme_ns *ns = rq->q->queuedata;
151 
152 	if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 		atomic_dec_if_positive(&ns->ctrl->nr_active);
154 
155 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 		return;
157 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 			 nvme_req(rq)->start_time);
160 }
161 
162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 	struct nvme_ns *ns;
165 	int srcu_idx;
166 
167 	srcu_idx = srcu_read_lock(&ctrl->srcu);
168 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
169 		if (!ns->head->disk)
170 			continue;
171 		kblockd_schedule_work(&ns->head->requeue_work);
172 		if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
173 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
174 	}
175 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
176 }
177 
178 static const char *nvme_ana_state_names[] = {
179 	[0]				= "invalid state",
180 	[NVME_ANA_OPTIMIZED]		= "optimized",
181 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
182 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
183 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
184 	[NVME_ANA_CHANGE]		= "change",
185 };
186 
187 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
188 {
189 	struct nvme_ns_head *head = ns->head;
190 	bool changed = false;
191 	int node;
192 
193 	if (!head)
194 		goto out;
195 
196 	for_each_node(node) {
197 		if (ns == rcu_access_pointer(head->current_path[node])) {
198 			rcu_assign_pointer(head->current_path[node], NULL);
199 			changed = true;
200 		}
201 	}
202 out:
203 	return changed;
204 }
205 
206 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
207 {
208 	struct nvme_ns *ns;
209 	int srcu_idx;
210 
211 	srcu_idx = srcu_read_lock(&ctrl->srcu);
212 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
213 		nvme_mpath_clear_current_path(ns);
214 		kblockd_schedule_work(&ns->head->requeue_work);
215 	}
216 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
217 }
218 
219 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
220 {
221 	struct nvme_ns_head *head = ns->head;
222 	sector_t capacity = get_capacity(head->disk);
223 	int node;
224 	int srcu_idx;
225 
226 	srcu_idx = srcu_read_lock(&head->srcu);
227 	list_for_each_entry_rcu(ns, &head->list, siblings) {
228 		if (capacity != get_capacity(ns->disk))
229 			clear_bit(NVME_NS_READY, &ns->flags);
230 	}
231 	srcu_read_unlock(&head->srcu, srcu_idx);
232 
233 	for_each_node(node)
234 		rcu_assign_pointer(head->current_path[node], NULL);
235 	kblockd_schedule_work(&head->requeue_work);
236 }
237 
238 static bool nvme_path_is_disabled(struct nvme_ns *ns)
239 {
240 	enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
241 
242 	/*
243 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
244 	 * still be able to complete assuming that the controller is connected.
245 	 * Otherwise it will fail immediately and return to the requeue list.
246 	 */
247 	if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
248 		return true;
249 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
250 	    !test_bit(NVME_NS_READY, &ns->flags))
251 		return true;
252 	return false;
253 }
254 
255 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
256 {
257 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
258 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
259 
260 	list_for_each_entry_rcu(ns, &head->list, siblings) {
261 		if (nvme_path_is_disabled(ns))
262 			continue;
263 
264 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
265 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
266 			distance = node_distance(node, ns->ctrl->numa_node);
267 		else
268 			distance = LOCAL_DISTANCE;
269 
270 		switch (ns->ana_state) {
271 		case NVME_ANA_OPTIMIZED:
272 			if (distance < found_distance) {
273 				found_distance = distance;
274 				found = ns;
275 			}
276 			break;
277 		case NVME_ANA_NONOPTIMIZED:
278 			if (distance < fallback_distance) {
279 				fallback_distance = distance;
280 				fallback = ns;
281 			}
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 
288 	if (!found)
289 		found = fallback;
290 	if (found)
291 		rcu_assign_pointer(head->current_path[node], found);
292 	return found;
293 }
294 
295 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
296 		struct nvme_ns *ns)
297 {
298 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
299 			siblings);
300 	if (ns)
301 		return ns;
302 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
303 }
304 
305 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
306 {
307 	struct nvme_ns *ns, *found = NULL;
308 	int node = numa_node_id();
309 	struct nvme_ns *old = srcu_dereference(head->current_path[node],
310 					       &head->srcu);
311 
312 	if (unlikely(!old))
313 		return __nvme_find_path(head, node);
314 
315 	if (list_is_singular(&head->list)) {
316 		if (nvme_path_is_disabled(old))
317 			return NULL;
318 		return old;
319 	}
320 
321 	for (ns = nvme_next_ns(head, old);
322 	     ns && ns != old;
323 	     ns = nvme_next_ns(head, ns)) {
324 		if (nvme_path_is_disabled(ns))
325 			continue;
326 
327 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
328 			found = ns;
329 			goto out;
330 		}
331 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
332 			found = ns;
333 	}
334 
335 	/*
336 	 * The loop above skips the current path for round-robin semantics.
337 	 * Fall back to the current path if either:
338 	 *  - no other optimized path found and current is optimized,
339 	 *  - no other usable path found and current is usable.
340 	 */
341 	if (!nvme_path_is_disabled(old) &&
342 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
343 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
344 		return old;
345 
346 	if (!found)
347 		return NULL;
348 out:
349 	rcu_assign_pointer(head->current_path[node], found);
350 	return found;
351 }
352 
353 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
354 {
355 	struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
356 	unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
357 	unsigned int depth;
358 
359 	list_for_each_entry_rcu(ns, &head->list, siblings) {
360 		if (nvme_path_is_disabled(ns))
361 			continue;
362 
363 		depth = atomic_read(&ns->ctrl->nr_active);
364 
365 		switch (ns->ana_state) {
366 		case NVME_ANA_OPTIMIZED:
367 			if (depth < min_depth_opt) {
368 				min_depth_opt = depth;
369 				best_opt = ns;
370 			}
371 			break;
372 		case NVME_ANA_NONOPTIMIZED:
373 			if (depth < min_depth_nonopt) {
374 				min_depth_nonopt = depth;
375 				best_nonopt = ns;
376 			}
377 			break;
378 		default:
379 			break;
380 		}
381 
382 		if (min_depth_opt == 0)
383 			return best_opt;
384 	}
385 
386 	return best_opt ? best_opt : best_nonopt;
387 }
388 
389 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
390 {
391 	return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
392 		ns->ana_state == NVME_ANA_OPTIMIZED;
393 }
394 
395 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
396 {
397 	int node = numa_node_id();
398 	struct nvme_ns *ns;
399 
400 	ns = srcu_dereference(head->current_path[node], &head->srcu);
401 	if (unlikely(!ns))
402 		return __nvme_find_path(head, node);
403 	if (unlikely(!nvme_path_is_optimized(ns)))
404 		return __nvme_find_path(head, node);
405 	return ns;
406 }
407 
408 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
409 {
410 	switch (READ_ONCE(head->subsys->iopolicy)) {
411 	case NVME_IOPOLICY_QD:
412 		return nvme_queue_depth_path(head);
413 	case NVME_IOPOLICY_RR:
414 		return nvme_round_robin_path(head);
415 	default:
416 		return nvme_numa_path(head);
417 	}
418 }
419 
420 static bool nvme_available_path(struct nvme_ns_head *head)
421 {
422 	struct nvme_ns *ns;
423 
424 	list_for_each_entry_rcu(ns, &head->list, siblings) {
425 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
426 			continue;
427 		switch (nvme_ctrl_state(ns->ctrl)) {
428 		case NVME_CTRL_LIVE:
429 		case NVME_CTRL_RESETTING:
430 		case NVME_CTRL_CONNECTING:
431 			/* fallthru */
432 			return true;
433 		default:
434 			break;
435 		}
436 	}
437 	return false;
438 }
439 
440 static void nvme_ns_head_submit_bio(struct bio *bio)
441 {
442 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
443 	struct device *dev = disk_to_dev(head->disk);
444 	struct nvme_ns *ns;
445 	int srcu_idx;
446 
447 	/*
448 	 * The namespace might be going away and the bio might be moved to a
449 	 * different queue via blk_steal_bios(), so we need to use the bio_split
450 	 * pool from the original queue to allocate the bvecs from.
451 	 */
452 	bio = bio_split_to_limits(bio);
453 	if (!bio)
454 		return;
455 
456 	srcu_idx = srcu_read_lock(&head->srcu);
457 	ns = nvme_find_path(head);
458 	if (likely(ns)) {
459 		bio_set_dev(bio, ns->disk->part0);
460 		bio->bi_opf |= REQ_NVME_MPATH;
461 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
462 				      bio->bi_iter.bi_sector);
463 		submit_bio_noacct(bio);
464 	} else if (nvme_available_path(head)) {
465 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
466 
467 		spin_lock_irq(&head->requeue_lock);
468 		bio_list_add(&head->requeue_list, bio);
469 		spin_unlock_irq(&head->requeue_lock);
470 	} else {
471 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
472 
473 		bio_io_error(bio);
474 	}
475 
476 	srcu_read_unlock(&head->srcu, srcu_idx);
477 }
478 
479 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
480 {
481 	if (!nvme_tryget_ns_head(disk->private_data))
482 		return -ENXIO;
483 	return 0;
484 }
485 
486 static void nvme_ns_head_release(struct gendisk *disk)
487 {
488 	nvme_put_ns_head(disk->private_data);
489 }
490 
491 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
492 		enum blk_unique_id type)
493 {
494 	struct nvme_ns_head *head = disk->private_data;
495 	struct nvme_ns *ns;
496 	int srcu_idx, ret = -EWOULDBLOCK;
497 
498 	srcu_idx = srcu_read_lock(&head->srcu);
499 	ns = nvme_find_path(head);
500 	if (ns)
501 		ret = nvme_ns_get_unique_id(ns, id, type);
502 	srcu_read_unlock(&head->srcu, srcu_idx);
503 	return ret;
504 }
505 
506 #ifdef CONFIG_BLK_DEV_ZONED
507 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
508 		unsigned int nr_zones, report_zones_cb cb, void *data)
509 {
510 	struct nvme_ns_head *head = disk->private_data;
511 	struct nvme_ns *ns;
512 	int srcu_idx, ret = -EWOULDBLOCK;
513 
514 	srcu_idx = srcu_read_lock(&head->srcu);
515 	ns = nvme_find_path(head);
516 	if (ns)
517 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
518 	srcu_read_unlock(&head->srcu, srcu_idx);
519 	return ret;
520 }
521 #else
522 #define nvme_ns_head_report_zones	NULL
523 #endif /* CONFIG_BLK_DEV_ZONED */
524 
525 const struct block_device_operations nvme_ns_head_ops = {
526 	.owner		= THIS_MODULE,
527 	.submit_bio	= nvme_ns_head_submit_bio,
528 	.open		= nvme_ns_head_open,
529 	.release	= nvme_ns_head_release,
530 	.ioctl		= nvme_ns_head_ioctl,
531 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
532 	.getgeo		= nvme_getgeo,
533 	.get_unique_id	= nvme_ns_head_get_unique_id,
534 	.report_zones	= nvme_ns_head_report_zones,
535 	.pr_ops		= &nvme_pr_ops,
536 };
537 
538 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
539 {
540 	return container_of(cdev, struct nvme_ns_head, cdev);
541 }
542 
543 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
544 {
545 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
546 		return -ENXIO;
547 	return 0;
548 }
549 
550 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
551 {
552 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
553 	return 0;
554 }
555 
556 static const struct file_operations nvme_ns_head_chr_fops = {
557 	.owner		= THIS_MODULE,
558 	.open		= nvme_ns_head_chr_open,
559 	.release	= nvme_ns_head_chr_release,
560 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
561 	.compat_ioctl	= compat_ptr_ioctl,
562 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
563 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
564 };
565 
566 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
567 {
568 	int ret;
569 
570 	head->cdev_device.parent = &head->subsys->dev;
571 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
572 			   head->subsys->instance, head->instance);
573 	if (ret)
574 		return ret;
575 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
576 			    &nvme_ns_head_chr_fops, THIS_MODULE);
577 	return ret;
578 }
579 
580 static void nvme_requeue_work(struct work_struct *work)
581 {
582 	struct nvme_ns_head *head =
583 		container_of(work, struct nvme_ns_head, requeue_work);
584 	struct bio *bio, *next;
585 
586 	spin_lock_irq(&head->requeue_lock);
587 	next = bio_list_get(&head->requeue_list);
588 	spin_unlock_irq(&head->requeue_lock);
589 
590 	while ((bio = next) != NULL) {
591 		next = bio->bi_next;
592 		bio->bi_next = NULL;
593 
594 		submit_bio_noacct(bio);
595 	}
596 }
597 
598 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
599 {
600 	struct queue_limits lim;
601 
602 	mutex_init(&head->lock);
603 	bio_list_init(&head->requeue_list);
604 	spin_lock_init(&head->requeue_lock);
605 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
606 
607 	/*
608 	 * Add a multipath node if the subsystems supports multiple controllers.
609 	 * We also do this for private namespaces as the namespace sharing flag
610 	 * could change after a rescan.
611 	 */
612 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
613 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
614 		return 0;
615 
616 	blk_set_stacking_limits(&lim);
617 	lim.dma_alignment = 3;
618 	lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
619 	if (head->ids.csi != NVME_CSI_ZNS)
620 		lim.max_zone_append_sectors = 0;
621 
622 	head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
623 	if (IS_ERR(head->disk))
624 		return PTR_ERR(head->disk);
625 	head->disk->fops = &nvme_ns_head_ops;
626 	head->disk->private_data = head;
627 	sprintf(head->disk->disk_name, "nvme%dn%d",
628 			ctrl->subsys->instance, head->instance);
629 	return 0;
630 }
631 
632 static void nvme_mpath_set_live(struct nvme_ns *ns)
633 {
634 	struct nvme_ns_head *head = ns->head;
635 	int rc;
636 
637 	if (!head->disk)
638 		return;
639 
640 	/*
641 	 * test_and_set_bit() is used because it is protecting against two nvme
642 	 * paths simultaneously calling device_add_disk() on the same namespace
643 	 * head.
644 	 */
645 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
646 		rc = device_add_disk(&head->subsys->dev, head->disk,
647 				     nvme_ns_attr_groups);
648 		if (rc) {
649 			clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
650 			return;
651 		}
652 		nvme_add_ns_head_cdev(head);
653 	}
654 
655 	mutex_lock(&head->lock);
656 	if (nvme_path_is_optimized(ns)) {
657 		int node, srcu_idx;
658 
659 		srcu_idx = srcu_read_lock(&head->srcu);
660 		for_each_online_node(node)
661 			__nvme_find_path(head, node);
662 		srcu_read_unlock(&head->srcu, srcu_idx);
663 	}
664 	mutex_unlock(&head->lock);
665 
666 	synchronize_srcu(&head->srcu);
667 	kblockd_schedule_work(&head->requeue_work);
668 }
669 
670 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
671 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
672 			void *))
673 {
674 	void *base = ctrl->ana_log_buf;
675 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
676 	int error, i;
677 
678 	lockdep_assert_held(&ctrl->ana_lock);
679 
680 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
681 		struct nvme_ana_group_desc *desc = base + offset;
682 		u32 nr_nsids;
683 		size_t nsid_buf_size;
684 
685 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
686 			return -EINVAL;
687 
688 		nr_nsids = le32_to_cpu(desc->nnsids);
689 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
690 
691 		if (WARN_ON_ONCE(desc->grpid == 0))
692 			return -EINVAL;
693 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
694 			return -EINVAL;
695 		if (WARN_ON_ONCE(desc->state == 0))
696 			return -EINVAL;
697 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
698 			return -EINVAL;
699 
700 		offset += sizeof(*desc);
701 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
702 			return -EINVAL;
703 
704 		error = cb(ctrl, desc, data);
705 		if (error)
706 			return error;
707 
708 		offset += nsid_buf_size;
709 	}
710 
711 	return 0;
712 }
713 
714 static inline bool nvme_state_is_live(enum nvme_ana_state state)
715 {
716 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
717 }
718 
719 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
720 		struct nvme_ns *ns)
721 {
722 	ns->ana_grpid = le32_to_cpu(desc->grpid);
723 	ns->ana_state = desc->state;
724 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
725 	/*
726 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
727 	 * and in turn to this path device.  However we cannot accept this I/O
728 	 * if the controller is not live.  This may deadlock if called from
729 	 * nvme_mpath_init_identify() and the ctrl will never complete
730 	 * initialization, preventing I/O from completing.  For this case we
731 	 * will reprocess the ANA log page in nvme_mpath_update() once the
732 	 * controller is ready.
733 	 */
734 	if (nvme_state_is_live(ns->ana_state) &&
735 	    nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
736 		nvme_mpath_set_live(ns);
737 }
738 
739 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
740 		struct nvme_ana_group_desc *desc, void *data)
741 {
742 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
743 	unsigned *nr_change_groups = data;
744 	struct nvme_ns *ns;
745 	int srcu_idx;
746 
747 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
748 			le32_to_cpu(desc->grpid),
749 			nvme_ana_state_names[desc->state]);
750 
751 	if (desc->state == NVME_ANA_CHANGE)
752 		(*nr_change_groups)++;
753 
754 	if (!nr_nsids)
755 		return 0;
756 
757 	srcu_idx = srcu_read_lock(&ctrl->srcu);
758 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
759 		unsigned nsid;
760 again:
761 		nsid = le32_to_cpu(desc->nsids[n]);
762 		if (ns->head->ns_id < nsid)
763 			continue;
764 		if (ns->head->ns_id == nsid)
765 			nvme_update_ns_ana_state(desc, ns);
766 		if (++n == nr_nsids)
767 			break;
768 		if (ns->head->ns_id > nsid)
769 			goto again;
770 	}
771 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
772 	return 0;
773 }
774 
775 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
776 {
777 	u32 nr_change_groups = 0;
778 	int error;
779 
780 	mutex_lock(&ctrl->ana_lock);
781 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
782 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
783 	if (error) {
784 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
785 		goto out_unlock;
786 	}
787 
788 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
789 			nvme_update_ana_state);
790 	if (error)
791 		goto out_unlock;
792 
793 	/*
794 	 * In theory we should have an ANATT timer per group as they might enter
795 	 * the change state at different times.  But that is a lot of overhead
796 	 * just to protect against a target that keeps entering new changes
797 	 * states while never finishing previous ones.  But we'll still
798 	 * eventually time out once all groups are in change state, so this
799 	 * isn't a big deal.
800 	 *
801 	 * We also double the ANATT value to provide some slack for transports
802 	 * or AEN processing overhead.
803 	 */
804 	if (nr_change_groups)
805 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
806 	else
807 		del_timer_sync(&ctrl->anatt_timer);
808 out_unlock:
809 	mutex_unlock(&ctrl->ana_lock);
810 	return error;
811 }
812 
813 static void nvme_ana_work(struct work_struct *work)
814 {
815 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
816 
817 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
818 		return;
819 
820 	nvme_read_ana_log(ctrl);
821 }
822 
823 void nvme_mpath_update(struct nvme_ctrl *ctrl)
824 {
825 	u32 nr_change_groups = 0;
826 
827 	if (!ctrl->ana_log_buf)
828 		return;
829 
830 	mutex_lock(&ctrl->ana_lock);
831 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
832 	mutex_unlock(&ctrl->ana_lock);
833 }
834 
835 static void nvme_anatt_timeout(struct timer_list *t)
836 {
837 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
838 
839 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
840 	nvme_reset_ctrl(ctrl);
841 }
842 
843 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
844 {
845 	if (!nvme_ctrl_use_ana(ctrl))
846 		return;
847 	del_timer_sync(&ctrl->anatt_timer);
848 	cancel_work_sync(&ctrl->ana_work);
849 }
850 
851 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
852 	struct device_attribute subsys_attr_##_name =	\
853 		__ATTR(_name, _mode, _show, _store)
854 
855 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
856 		struct device_attribute *attr, char *buf)
857 {
858 	struct nvme_subsystem *subsys =
859 		container_of(dev, struct nvme_subsystem, dev);
860 
861 	return sysfs_emit(buf, "%s\n",
862 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
863 }
864 
865 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
866 		int iopolicy)
867 {
868 	struct nvme_ctrl *ctrl;
869 	int old_iopolicy = READ_ONCE(subsys->iopolicy);
870 
871 	if (old_iopolicy == iopolicy)
872 		return;
873 
874 	WRITE_ONCE(subsys->iopolicy, iopolicy);
875 
876 	/* iopolicy changes clear the mpath by design */
877 	mutex_lock(&nvme_subsystems_lock);
878 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
879 		nvme_mpath_clear_ctrl_paths(ctrl);
880 	mutex_unlock(&nvme_subsystems_lock);
881 
882 	pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
883 			subsys->subnqn,
884 			nvme_iopolicy_names[old_iopolicy],
885 			nvme_iopolicy_names[iopolicy]);
886 }
887 
888 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
889 		struct device_attribute *attr, const char *buf, size_t count)
890 {
891 	struct nvme_subsystem *subsys =
892 		container_of(dev, struct nvme_subsystem, dev);
893 	int i;
894 
895 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
896 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
897 			nvme_subsys_iopolicy_update(subsys, i);
898 			return count;
899 		}
900 	}
901 
902 	return -EINVAL;
903 }
904 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
905 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
906 
907 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
908 		char *buf)
909 {
910 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
911 }
912 DEVICE_ATTR_RO(ana_grpid);
913 
914 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
915 		char *buf)
916 {
917 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
918 
919 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
920 }
921 DEVICE_ATTR_RO(ana_state);
922 
923 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
924 		struct nvme_ana_group_desc *desc, void *data)
925 {
926 	struct nvme_ana_group_desc *dst = data;
927 
928 	if (desc->grpid != dst->grpid)
929 		return 0;
930 
931 	*dst = *desc;
932 	return -ENXIO; /* just break out of the loop */
933 }
934 
935 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
936 {
937 	if (nvme_ctrl_use_ana(ns->ctrl)) {
938 		struct nvme_ana_group_desc desc = {
939 			.grpid = anagrpid,
940 			.state = 0,
941 		};
942 
943 		mutex_lock(&ns->ctrl->ana_lock);
944 		ns->ana_grpid = le32_to_cpu(anagrpid);
945 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
946 		mutex_unlock(&ns->ctrl->ana_lock);
947 		if (desc.state) {
948 			/* found the group desc: update */
949 			nvme_update_ns_ana_state(&desc, ns);
950 		} else {
951 			/* group desc not found: trigger a re-read */
952 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
953 			queue_work(nvme_wq, &ns->ctrl->ana_work);
954 		}
955 	} else {
956 		ns->ana_state = NVME_ANA_OPTIMIZED;
957 		nvme_mpath_set_live(ns);
958 	}
959 
960 #ifdef CONFIG_BLK_DEV_ZONED
961 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
962 		ns->head->disk->nr_zones = ns->disk->nr_zones;
963 #endif
964 }
965 
966 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
967 {
968 	if (!head->disk)
969 		return;
970 	kblockd_schedule_work(&head->requeue_work);
971 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
972 		nvme_cdev_del(&head->cdev, &head->cdev_device);
973 		del_gendisk(head->disk);
974 	}
975 }
976 
977 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
978 {
979 	if (!head->disk)
980 		return;
981 	/* make sure all pending bios are cleaned up */
982 	kblockd_schedule_work(&head->requeue_work);
983 	flush_work(&head->requeue_work);
984 	put_disk(head->disk);
985 }
986 
987 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
988 {
989 	mutex_init(&ctrl->ana_lock);
990 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
991 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
992 }
993 
994 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
995 {
996 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
997 	size_t ana_log_size;
998 	int error = 0;
999 
1000 	/* check if multipath is enabled and we have the capability */
1001 	if (!multipath || !ctrl->subsys ||
1002 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1003 		return 0;
1004 
1005 	/* initialize this in the identify path to cover controller resets */
1006 	atomic_set(&ctrl->nr_active, 0);
1007 
1008 	if (!ctrl->max_namespaces ||
1009 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1010 		dev_err(ctrl->device,
1011 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
1012 		return -EINVAL;
1013 	}
1014 
1015 	ctrl->anacap = id->anacap;
1016 	ctrl->anatt = id->anatt;
1017 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1018 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1019 
1020 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1021 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1022 		ctrl->max_namespaces * sizeof(__le32);
1023 	if (ana_log_size > max_transfer_size) {
1024 		dev_err(ctrl->device,
1025 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
1026 			ana_log_size, max_transfer_size);
1027 		dev_err(ctrl->device, "disabling ANA support.\n");
1028 		goto out_uninit;
1029 	}
1030 	if (ana_log_size > ctrl->ana_log_size) {
1031 		nvme_mpath_stop(ctrl);
1032 		nvme_mpath_uninit(ctrl);
1033 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1034 		if (!ctrl->ana_log_buf)
1035 			return -ENOMEM;
1036 	}
1037 	ctrl->ana_log_size = ana_log_size;
1038 	error = nvme_read_ana_log(ctrl);
1039 	if (error)
1040 		goto out_uninit;
1041 	return 0;
1042 
1043 out_uninit:
1044 	nvme_mpath_uninit(ctrl);
1045 	return error;
1046 }
1047 
1048 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1049 {
1050 	kvfree(ctrl->ana_log_buf);
1051 	ctrl->ana_log_buf = NULL;
1052 	ctrl->ana_log_size = 0;
1053 }
1054