xref: /linux/drivers/nvme/host/multipath.c (revision 5afca7e996c42aed1b4a42d4712817601ba42aff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11 
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 	"turn on native support for multiple controllers per subsystem");
16 
17 static const char *nvme_iopolicy_names[] = {
18 	[NVME_IOPOLICY_NUMA]	= "numa",
19 	[NVME_IOPOLICY_RR]	= "round-robin",
20 	[NVME_IOPOLICY_QD]      = "queue-depth",
21 };
22 
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24 
25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 	if (!val)
28 		return -EINVAL;
29 	if (!strncmp(val, "numa", 4))
30 		iopolicy = NVME_IOPOLICY_NUMA;
31 	else if (!strncmp(val, "round-robin", 11))
32 		iopolicy = NVME_IOPOLICY_RR;
33 	else if (!strncmp(val, "queue-depth", 11))
34 		iopolicy = NVME_IOPOLICY_QD;
35 	else
36 		return -EINVAL;
37 
38 	return 0;
39 }
40 
41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 	return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45 
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 	&iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 	"Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50 
51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 	subsys->iopolicy = iopolicy;
54 }
55 
56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 	struct nvme_ns_head *h;
59 
60 	lockdep_assert_held(&subsys->lock);
61 	list_for_each_entry(h, &subsys->nsheads, entry)
62 		if (h->disk)
63 			blk_mq_unfreeze_queue(h->disk->queue);
64 }
65 
66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 	struct nvme_ns_head *h;
69 
70 	lockdep_assert_held(&subsys->lock);
71 	list_for_each_entry(h, &subsys->nsheads, entry)
72 		if (h->disk)
73 			blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75 
76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 	struct nvme_ns_head *h;
79 
80 	lockdep_assert_held(&subsys->lock);
81 	list_for_each_entry(h, &subsys->nsheads, entry)
82 		if (h->disk)
83 			blk_freeze_queue_start(h->disk->queue);
84 }
85 
86 void nvme_failover_req(struct request *req)
87 {
88 	struct nvme_ns *ns = req->q->queuedata;
89 	u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 	unsigned long flags;
91 	struct bio *bio;
92 
93 	nvme_mpath_clear_current_path(ns);
94 
95 	/*
96 	 * If we got back an ANA error, we know the controller is alive but not
97 	 * ready to serve this namespace.  Kick of a re-read of the ANA
98 	 * information page, and just try any other available path for now.
99 	 */
100 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 		queue_work(nvme_wq, &ns->ctrl->ana_work);
103 	}
104 
105 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 	for (bio = req->bio; bio; bio = bio->bi_next) {
107 		bio_set_dev(bio, ns->head->disk->part0);
108 		if (bio->bi_opf & REQ_POLLED) {
109 			bio->bi_opf &= ~REQ_POLLED;
110 			bio->bi_cookie = BLK_QC_T_NONE;
111 		}
112 		/*
113 		 * The alternate request queue that we may end up submitting
114 		 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 		 * will fail the I/O immediately with EAGAIN to the issuer.
116 		 * We are not in the issuer context which cannot block. Clear
117 		 * the flag to avoid spurious EAGAIN I/O failures.
118 		 */
119 		bio->bi_opf &= ~REQ_NOWAIT;
120 	}
121 	blk_steal_bios(&ns->head->requeue_list, req);
122 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123 
124 	nvme_req(req)->status = 0;
125 	nvme_end_req(req);
126 	kblockd_schedule_work(&ns->head->requeue_work);
127 }
128 
129 void nvme_mpath_start_request(struct request *rq)
130 {
131 	struct nvme_ns *ns = rq->q->queuedata;
132 	struct gendisk *disk = ns->head->disk;
133 
134 	if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 		atomic_inc(&ns->ctrl->nr_active);
136 		nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 	}
138 
139 	if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 		return;
141 
142 	nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 	nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 						      jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147 
148 void nvme_mpath_end_request(struct request *rq)
149 {
150 	struct nvme_ns *ns = rq->q->queuedata;
151 
152 	if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 		atomic_dec_if_positive(&ns->ctrl->nr_active);
154 
155 	if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 		return;
157 	bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 			 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 			 nvme_req(rq)->start_time);
160 }
161 
162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 	struct nvme_ns *ns;
165 	int srcu_idx;
166 
167 	srcu_idx = srcu_read_lock(&ctrl->srcu);
168 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
169 		if (!ns->head->disk)
170 			continue;
171 		kblockd_schedule_work(&ns->head->requeue_work);
172 		if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
173 			disk_uevent(ns->head->disk, KOBJ_CHANGE);
174 	}
175 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
176 }
177 
178 static const char *nvme_ana_state_names[] = {
179 	[0]				= "invalid state",
180 	[NVME_ANA_OPTIMIZED]		= "optimized",
181 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
182 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
183 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
184 	[NVME_ANA_CHANGE]		= "change",
185 };
186 
187 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
188 {
189 	struct nvme_ns_head *head = ns->head;
190 	bool changed = false;
191 	int node;
192 
193 	if (!head)
194 		goto out;
195 
196 	for_each_node(node) {
197 		if (ns == rcu_access_pointer(head->current_path[node])) {
198 			rcu_assign_pointer(head->current_path[node], NULL);
199 			changed = true;
200 		}
201 	}
202 out:
203 	return changed;
204 }
205 
206 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
207 {
208 	struct nvme_ns *ns;
209 	int srcu_idx;
210 
211 	srcu_idx = srcu_read_lock(&ctrl->srcu);
212 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
213 		nvme_mpath_clear_current_path(ns);
214 		kblockd_schedule_work(&ns->head->requeue_work);
215 	}
216 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
217 }
218 
219 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
220 {
221 	struct nvme_ns_head *head = ns->head;
222 	sector_t capacity = get_capacity(head->disk);
223 	int node;
224 	int srcu_idx;
225 
226 	srcu_idx = srcu_read_lock(&head->srcu);
227 	list_for_each_entry_rcu(ns, &head->list, siblings) {
228 		if (capacity != get_capacity(ns->disk))
229 			clear_bit(NVME_NS_READY, &ns->flags);
230 	}
231 	srcu_read_unlock(&head->srcu, srcu_idx);
232 
233 	for_each_node(node)
234 		rcu_assign_pointer(head->current_path[node], NULL);
235 	kblockd_schedule_work(&head->requeue_work);
236 }
237 
238 static bool nvme_path_is_disabled(struct nvme_ns *ns)
239 {
240 	enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
241 
242 	/*
243 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
244 	 * still be able to complete assuming that the controller is connected.
245 	 * Otherwise it will fail immediately and return to the requeue list.
246 	 */
247 	if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
248 		return true;
249 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
250 	    !test_bit(NVME_NS_READY, &ns->flags))
251 		return true;
252 	return false;
253 }
254 
255 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
256 {
257 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
258 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
259 
260 	list_for_each_entry_rcu(ns, &head->list, siblings) {
261 		if (nvme_path_is_disabled(ns))
262 			continue;
263 
264 		if (ns->ctrl->numa_node != NUMA_NO_NODE &&
265 		    READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
266 			distance = node_distance(node, ns->ctrl->numa_node);
267 		else
268 			distance = LOCAL_DISTANCE;
269 
270 		switch (ns->ana_state) {
271 		case NVME_ANA_OPTIMIZED:
272 			if (distance < found_distance) {
273 				found_distance = distance;
274 				found = ns;
275 			}
276 			break;
277 		case NVME_ANA_NONOPTIMIZED:
278 			if (distance < fallback_distance) {
279 				fallback_distance = distance;
280 				fallback = ns;
281 			}
282 			break;
283 		default:
284 			break;
285 		}
286 	}
287 
288 	if (!found)
289 		found = fallback;
290 	if (found)
291 		rcu_assign_pointer(head->current_path[node], found);
292 	return found;
293 }
294 
295 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
296 		struct nvme_ns *ns)
297 {
298 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
299 			siblings);
300 	if (ns)
301 		return ns;
302 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
303 }
304 
305 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
306 {
307 	struct nvme_ns *ns, *found = NULL;
308 	int node = numa_node_id();
309 	struct nvme_ns *old = srcu_dereference(head->current_path[node],
310 					       &head->srcu);
311 
312 	if (unlikely(!old))
313 		return __nvme_find_path(head, node);
314 
315 	if (list_is_singular(&head->list)) {
316 		if (nvme_path_is_disabled(old))
317 			return NULL;
318 		return old;
319 	}
320 
321 	for (ns = nvme_next_ns(head, old);
322 	     ns && ns != old;
323 	     ns = nvme_next_ns(head, ns)) {
324 		if (nvme_path_is_disabled(ns))
325 			continue;
326 
327 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
328 			found = ns;
329 			goto out;
330 		}
331 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
332 			found = ns;
333 	}
334 
335 	/*
336 	 * The loop above skips the current path for round-robin semantics.
337 	 * Fall back to the current path if either:
338 	 *  - no other optimized path found and current is optimized,
339 	 *  - no other usable path found and current is usable.
340 	 */
341 	if (!nvme_path_is_disabled(old) &&
342 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
343 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
344 		return old;
345 
346 	if (!found)
347 		return NULL;
348 out:
349 	rcu_assign_pointer(head->current_path[node], found);
350 	return found;
351 }
352 
353 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
354 {
355 	struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
356 	unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
357 	unsigned int depth;
358 
359 	list_for_each_entry_rcu(ns, &head->list, siblings) {
360 		if (nvme_path_is_disabled(ns))
361 			continue;
362 
363 		depth = atomic_read(&ns->ctrl->nr_active);
364 
365 		switch (ns->ana_state) {
366 		case NVME_ANA_OPTIMIZED:
367 			if (depth < min_depth_opt) {
368 				min_depth_opt = depth;
369 				best_opt = ns;
370 			}
371 			break;
372 		case NVME_ANA_NONOPTIMIZED:
373 			if (depth < min_depth_nonopt) {
374 				min_depth_nonopt = depth;
375 				best_nonopt = ns;
376 			}
377 			break;
378 		default:
379 			break;
380 		}
381 
382 		if (min_depth_opt == 0)
383 			return best_opt;
384 	}
385 
386 	return best_opt ? best_opt : best_nonopt;
387 }
388 
389 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
390 {
391 	return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
392 		ns->ana_state == NVME_ANA_OPTIMIZED;
393 }
394 
395 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
396 {
397 	int node = numa_node_id();
398 	struct nvme_ns *ns;
399 
400 	ns = srcu_dereference(head->current_path[node], &head->srcu);
401 	if (unlikely(!ns))
402 		return __nvme_find_path(head, node);
403 	if (unlikely(!nvme_path_is_optimized(ns)))
404 		return __nvme_find_path(head, node);
405 	return ns;
406 }
407 
408 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
409 {
410 	switch (READ_ONCE(head->subsys->iopolicy)) {
411 	case NVME_IOPOLICY_QD:
412 		return nvme_queue_depth_path(head);
413 	case NVME_IOPOLICY_RR:
414 		return nvme_round_robin_path(head);
415 	default:
416 		return nvme_numa_path(head);
417 	}
418 }
419 
420 static bool nvme_available_path(struct nvme_ns_head *head)
421 {
422 	struct nvme_ns *ns;
423 
424 	if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
425 		return NULL;
426 
427 	list_for_each_entry_rcu(ns, &head->list, siblings) {
428 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
429 			continue;
430 		switch (nvme_ctrl_state(ns->ctrl)) {
431 		case NVME_CTRL_LIVE:
432 		case NVME_CTRL_RESETTING:
433 		case NVME_CTRL_CONNECTING:
434 			/* fallthru */
435 			return true;
436 		default:
437 			break;
438 		}
439 	}
440 	return false;
441 }
442 
443 static void nvme_ns_head_submit_bio(struct bio *bio)
444 {
445 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
446 	struct device *dev = disk_to_dev(head->disk);
447 	struct nvme_ns *ns;
448 	int srcu_idx;
449 
450 	/*
451 	 * The namespace might be going away and the bio might be moved to a
452 	 * different queue via blk_steal_bios(), so we need to use the bio_split
453 	 * pool from the original queue to allocate the bvecs from.
454 	 */
455 	bio = bio_split_to_limits(bio);
456 	if (!bio)
457 		return;
458 
459 	srcu_idx = srcu_read_lock(&head->srcu);
460 	ns = nvme_find_path(head);
461 	if (likely(ns)) {
462 		bio_set_dev(bio, ns->disk->part0);
463 		bio->bi_opf |= REQ_NVME_MPATH;
464 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
465 				      bio->bi_iter.bi_sector);
466 		submit_bio_noacct(bio);
467 	} else if (nvme_available_path(head)) {
468 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
469 
470 		spin_lock_irq(&head->requeue_lock);
471 		bio_list_add(&head->requeue_list, bio);
472 		spin_unlock_irq(&head->requeue_lock);
473 	} else {
474 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
475 
476 		bio_io_error(bio);
477 	}
478 
479 	srcu_read_unlock(&head->srcu, srcu_idx);
480 }
481 
482 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
483 {
484 	if (!nvme_tryget_ns_head(disk->private_data))
485 		return -ENXIO;
486 	return 0;
487 }
488 
489 static void nvme_ns_head_release(struct gendisk *disk)
490 {
491 	nvme_put_ns_head(disk->private_data);
492 }
493 
494 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
495 		enum blk_unique_id type)
496 {
497 	struct nvme_ns_head *head = disk->private_data;
498 	struct nvme_ns *ns;
499 	int srcu_idx, ret = -EWOULDBLOCK;
500 
501 	srcu_idx = srcu_read_lock(&head->srcu);
502 	ns = nvme_find_path(head);
503 	if (ns)
504 		ret = nvme_ns_get_unique_id(ns, id, type);
505 	srcu_read_unlock(&head->srcu, srcu_idx);
506 	return ret;
507 }
508 
509 #ifdef CONFIG_BLK_DEV_ZONED
510 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
511 		unsigned int nr_zones, report_zones_cb cb, void *data)
512 {
513 	struct nvme_ns_head *head = disk->private_data;
514 	struct nvme_ns *ns;
515 	int srcu_idx, ret = -EWOULDBLOCK;
516 
517 	srcu_idx = srcu_read_lock(&head->srcu);
518 	ns = nvme_find_path(head);
519 	if (ns)
520 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
521 	srcu_read_unlock(&head->srcu, srcu_idx);
522 	return ret;
523 }
524 #else
525 #define nvme_ns_head_report_zones	NULL
526 #endif /* CONFIG_BLK_DEV_ZONED */
527 
528 const struct block_device_operations nvme_ns_head_ops = {
529 	.owner		= THIS_MODULE,
530 	.submit_bio	= nvme_ns_head_submit_bio,
531 	.open		= nvme_ns_head_open,
532 	.release	= nvme_ns_head_release,
533 	.ioctl		= nvme_ns_head_ioctl,
534 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
535 	.getgeo		= nvme_getgeo,
536 	.get_unique_id	= nvme_ns_head_get_unique_id,
537 	.report_zones	= nvme_ns_head_report_zones,
538 	.pr_ops		= &nvme_pr_ops,
539 };
540 
541 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
542 {
543 	return container_of(cdev, struct nvme_ns_head, cdev);
544 }
545 
546 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
547 {
548 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
549 		return -ENXIO;
550 	return 0;
551 }
552 
553 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
554 {
555 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
556 	return 0;
557 }
558 
559 static const struct file_operations nvme_ns_head_chr_fops = {
560 	.owner		= THIS_MODULE,
561 	.open		= nvme_ns_head_chr_open,
562 	.release	= nvme_ns_head_chr_release,
563 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
564 	.compat_ioctl	= compat_ptr_ioctl,
565 	.uring_cmd	= nvme_ns_head_chr_uring_cmd,
566 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
567 };
568 
569 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
570 {
571 	int ret;
572 
573 	head->cdev_device.parent = &head->subsys->dev;
574 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
575 			   head->subsys->instance, head->instance);
576 	if (ret)
577 		return ret;
578 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
579 			    &nvme_ns_head_chr_fops, THIS_MODULE);
580 	return ret;
581 }
582 
583 static void nvme_requeue_work(struct work_struct *work)
584 {
585 	struct nvme_ns_head *head =
586 		container_of(work, struct nvme_ns_head, requeue_work);
587 	struct bio *bio, *next;
588 
589 	spin_lock_irq(&head->requeue_lock);
590 	next = bio_list_get(&head->requeue_list);
591 	spin_unlock_irq(&head->requeue_lock);
592 
593 	while ((bio = next) != NULL) {
594 		next = bio->bi_next;
595 		bio->bi_next = NULL;
596 
597 		submit_bio_noacct(bio);
598 	}
599 }
600 
601 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
602 {
603 	struct queue_limits lim;
604 
605 	mutex_init(&head->lock);
606 	bio_list_init(&head->requeue_list);
607 	spin_lock_init(&head->requeue_lock);
608 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
609 
610 	/*
611 	 * Add a multipath node if the subsystems supports multiple controllers.
612 	 * We also do this for private namespaces as the namespace sharing flag
613 	 * could change after a rescan.
614 	 */
615 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
616 	    !nvme_is_unique_nsid(ctrl, head) || !multipath)
617 		return 0;
618 
619 	blk_set_stacking_limits(&lim);
620 	lim.dma_alignment = 3;
621 	lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
622 	if (head->ids.csi == NVME_CSI_ZNS)
623 		lim.features |= BLK_FEAT_ZONED;
624 	else
625 		lim.max_zone_append_sectors = 0;
626 
627 	head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
628 	if (IS_ERR(head->disk))
629 		return PTR_ERR(head->disk);
630 	head->disk->fops = &nvme_ns_head_ops;
631 	head->disk->private_data = head;
632 	sprintf(head->disk->disk_name, "nvme%dn%d",
633 			ctrl->subsys->instance, head->instance);
634 	return 0;
635 }
636 
637 static void nvme_mpath_set_live(struct nvme_ns *ns)
638 {
639 	struct nvme_ns_head *head = ns->head;
640 	int rc;
641 
642 	if (!head->disk)
643 		return;
644 
645 	/*
646 	 * test_and_set_bit() is used because it is protecting against two nvme
647 	 * paths simultaneously calling device_add_disk() on the same namespace
648 	 * head.
649 	 */
650 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
651 		rc = device_add_disk(&head->subsys->dev, head->disk,
652 				     nvme_ns_attr_groups);
653 		if (rc) {
654 			clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
655 			return;
656 		}
657 		nvme_add_ns_head_cdev(head);
658 	}
659 
660 	mutex_lock(&head->lock);
661 	if (nvme_path_is_optimized(ns)) {
662 		int node, srcu_idx;
663 
664 		srcu_idx = srcu_read_lock(&head->srcu);
665 		for_each_online_node(node)
666 			__nvme_find_path(head, node);
667 		srcu_read_unlock(&head->srcu, srcu_idx);
668 	}
669 	mutex_unlock(&head->lock);
670 
671 	synchronize_srcu(&head->srcu);
672 	kblockd_schedule_work(&head->requeue_work);
673 }
674 
675 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
676 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
677 			void *))
678 {
679 	void *base = ctrl->ana_log_buf;
680 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
681 	int error, i;
682 
683 	lockdep_assert_held(&ctrl->ana_lock);
684 
685 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
686 		struct nvme_ana_group_desc *desc = base + offset;
687 		u32 nr_nsids;
688 		size_t nsid_buf_size;
689 
690 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
691 			return -EINVAL;
692 
693 		nr_nsids = le32_to_cpu(desc->nnsids);
694 		nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
695 
696 		if (WARN_ON_ONCE(desc->grpid == 0))
697 			return -EINVAL;
698 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
699 			return -EINVAL;
700 		if (WARN_ON_ONCE(desc->state == 0))
701 			return -EINVAL;
702 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
703 			return -EINVAL;
704 
705 		offset += sizeof(*desc);
706 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
707 			return -EINVAL;
708 
709 		error = cb(ctrl, desc, data);
710 		if (error)
711 			return error;
712 
713 		offset += nsid_buf_size;
714 	}
715 
716 	return 0;
717 }
718 
719 static inline bool nvme_state_is_live(enum nvme_ana_state state)
720 {
721 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
722 }
723 
724 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
725 		struct nvme_ns *ns)
726 {
727 	ns->ana_grpid = le32_to_cpu(desc->grpid);
728 	ns->ana_state = desc->state;
729 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
730 	/*
731 	 * nvme_mpath_set_live() will trigger I/O to the multipath path device
732 	 * and in turn to this path device.  However we cannot accept this I/O
733 	 * if the controller is not live.  This may deadlock if called from
734 	 * nvme_mpath_init_identify() and the ctrl will never complete
735 	 * initialization, preventing I/O from completing.  For this case we
736 	 * will reprocess the ANA log page in nvme_mpath_update() once the
737 	 * controller is ready.
738 	 */
739 	if (nvme_state_is_live(ns->ana_state) &&
740 	    nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
741 		nvme_mpath_set_live(ns);
742 }
743 
744 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
745 		struct nvme_ana_group_desc *desc, void *data)
746 {
747 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
748 	unsigned *nr_change_groups = data;
749 	struct nvme_ns *ns;
750 	int srcu_idx;
751 
752 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
753 			le32_to_cpu(desc->grpid),
754 			nvme_ana_state_names[desc->state]);
755 
756 	if (desc->state == NVME_ANA_CHANGE)
757 		(*nr_change_groups)++;
758 
759 	if (!nr_nsids)
760 		return 0;
761 
762 	srcu_idx = srcu_read_lock(&ctrl->srcu);
763 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
764 		unsigned nsid;
765 again:
766 		nsid = le32_to_cpu(desc->nsids[n]);
767 		if (ns->head->ns_id < nsid)
768 			continue;
769 		if (ns->head->ns_id == nsid)
770 			nvme_update_ns_ana_state(desc, ns);
771 		if (++n == nr_nsids)
772 			break;
773 		if (ns->head->ns_id > nsid)
774 			goto again;
775 	}
776 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
777 	return 0;
778 }
779 
780 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
781 {
782 	u32 nr_change_groups = 0;
783 	int error;
784 
785 	mutex_lock(&ctrl->ana_lock);
786 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
787 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
788 	if (error) {
789 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
790 		goto out_unlock;
791 	}
792 
793 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
794 			nvme_update_ana_state);
795 	if (error)
796 		goto out_unlock;
797 
798 	/*
799 	 * In theory we should have an ANATT timer per group as they might enter
800 	 * the change state at different times.  But that is a lot of overhead
801 	 * just to protect against a target that keeps entering new changes
802 	 * states while never finishing previous ones.  But we'll still
803 	 * eventually time out once all groups are in change state, so this
804 	 * isn't a big deal.
805 	 *
806 	 * We also double the ANATT value to provide some slack for transports
807 	 * or AEN processing overhead.
808 	 */
809 	if (nr_change_groups)
810 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
811 	else
812 		del_timer_sync(&ctrl->anatt_timer);
813 out_unlock:
814 	mutex_unlock(&ctrl->ana_lock);
815 	return error;
816 }
817 
818 static void nvme_ana_work(struct work_struct *work)
819 {
820 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
821 
822 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
823 		return;
824 
825 	nvme_read_ana_log(ctrl);
826 }
827 
828 void nvme_mpath_update(struct nvme_ctrl *ctrl)
829 {
830 	u32 nr_change_groups = 0;
831 
832 	if (!ctrl->ana_log_buf)
833 		return;
834 
835 	mutex_lock(&ctrl->ana_lock);
836 	nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
837 	mutex_unlock(&ctrl->ana_lock);
838 }
839 
840 static void nvme_anatt_timeout(struct timer_list *t)
841 {
842 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
843 
844 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
845 	nvme_reset_ctrl(ctrl);
846 }
847 
848 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
849 {
850 	if (!nvme_ctrl_use_ana(ctrl))
851 		return;
852 	del_timer_sync(&ctrl->anatt_timer);
853 	cancel_work_sync(&ctrl->ana_work);
854 }
855 
856 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
857 	struct device_attribute subsys_attr_##_name =	\
858 		__ATTR(_name, _mode, _show, _store)
859 
860 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
861 		struct device_attribute *attr, char *buf)
862 {
863 	struct nvme_subsystem *subsys =
864 		container_of(dev, struct nvme_subsystem, dev);
865 
866 	return sysfs_emit(buf, "%s\n",
867 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
868 }
869 
870 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
871 		int iopolicy)
872 {
873 	struct nvme_ctrl *ctrl;
874 	int old_iopolicy = READ_ONCE(subsys->iopolicy);
875 
876 	if (old_iopolicy == iopolicy)
877 		return;
878 
879 	WRITE_ONCE(subsys->iopolicy, iopolicy);
880 
881 	/* iopolicy changes clear the mpath by design */
882 	mutex_lock(&nvme_subsystems_lock);
883 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
884 		nvme_mpath_clear_ctrl_paths(ctrl);
885 	mutex_unlock(&nvme_subsystems_lock);
886 
887 	pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
888 			subsys->subnqn,
889 			nvme_iopolicy_names[old_iopolicy],
890 			nvme_iopolicy_names[iopolicy]);
891 }
892 
893 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
894 		struct device_attribute *attr, const char *buf, size_t count)
895 {
896 	struct nvme_subsystem *subsys =
897 		container_of(dev, struct nvme_subsystem, dev);
898 	int i;
899 
900 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
901 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
902 			nvme_subsys_iopolicy_update(subsys, i);
903 			return count;
904 		}
905 	}
906 
907 	return -EINVAL;
908 }
909 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
910 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
911 
912 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
913 		char *buf)
914 {
915 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
916 }
917 DEVICE_ATTR_RO(ana_grpid);
918 
919 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
920 		char *buf)
921 {
922 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
923 
924 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
925 }
926 DEVICE_ATTR_RO(ana_state);
927 
928 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
929 		struct nvme_ana_group_desc *desc, void *data)
930 {
931 	struct nvme_ana_group_desc *dst = data;
932 
933 	if (desc->grpid != dst->grpid)
934 		return 0;
935 
936 	*dst = *desc;
937 	return -ENXIO; /* just break out of the loop */
938 }
939 
940 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
941 {
942 	if (nvme_ctrl_use_ana(ns->ctrl)) {
943 		struct nvme_ana_group_desc desc = {
944 			.grpid = anagrpid,
945 			.state = 0,
946 		};
947 
948 		mutex_lock(&ns->ctrl->ana_lock);
949 		ns->ana_grpid = le32_to_cpu(anagrpid);
950 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
951 		mutex_unlock(&ns->ctrl->ana_lock);
952 		if (desc.state) {
953 			/* found the group desc: update */
954 			nvme_update_ns_ana_state(&desc, ns);
955 		} else {
956 			/* group desc not found: trigger a re-read */
957 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
958 			queue_work(nvme_wq, &ns->ctrl->ana_work);
959 		}
960 	} else {
961 		ns->ana_state = NVME_ANA_OPTIMIZED;
962 		nvme_mpath_set_live(ns);
963 	}
964 
965 #ifdef CONFIG_BLK_DEV_ZONED
966 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
967 		ns->head->disk->nr_zones = ns->disk->nr_zones;
968 #endif
969 }
970 
971 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
972 {
973 	if (!head->disk)
974 		return;
975 	if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
976 		nvme_cdev_del(&head->cdev, &head->cdev_device);
977 		del_gendisk(head->disk);
978 	}
979 	/*
980 	 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
981 	 * to allow multipath to fail all I/O.
982 	 */
983 	synchronize_srcu(&head->srcu);
984 	kblockd_schedule_work(&head->requeue_work);
985 }
986 
987 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
988 {
989 	if (!head->disk)
990 		return;
991 	/* make sure all pending bios are cleaned up */
992 	kblockd_schedule_work(&head->requeue_work);
993 	flush_work(&head->requeue_work);
994 	put_disk(head->disk);
995 }
996 
997 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
998 {
999 	mutex_init(&ctrl->ana_lock);
1000 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1001 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1002 }
1003 
1004 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1005 {
1006 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1007 	size_t ana_log_size;
1008 	int error = 0;
1009 
1010 	/* check if multipath is enabled and we have the capability */
1011 	if (!multipath || !ctrl->subsys ||
1012 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1013 		return 0;
1014 
1015 	/* initialize this in the identify path to cover controller resets */
1016 	atomic_set(&ctrl->nr_active, 0);
1017 
1018 	if (!ctrl->max_namespaces ||
1019 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1020 		dev_err(ctrl->device,
1021 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
1022 		return -EINVAL;
1023 	}
1024 
1025 	ctrl->anacap = id->anacap;
1026 	ctrl->anatt = id->anatt;
1027 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1028 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1029 
1030 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1031 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1032 		ctrl->max_namespaces * sizeof(__le32);
1033 	if (ana_log_size > max_transfer_size) {
1034 		dev_err(ctrl->device,
1035 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
1036 			ana_log_size, max_transfer_size);
1037 		dev_err(ctrl->device, "disabling ANA support.\n");
1038 		goto out_uninit;
1039 	}
1040 	if (ana_log_size > ctrl->ana_log_size) {
1041 		nvme_mpath_stop(ctrl);
1042 		nvme_mpath_uninit(ctrl);
1043 		ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1044 		if (!ctrl->ana_log_buf)
1045 			return -ENOMEM;
1046 	}
1047 	ctrl->ana_log_size = ana_log_size;
1048 	error = nvme_read_ana_log(ctrl);
1049 	if (error)
1050 		goto out_uninit;
1051 	return 0;
1052 
1053 out_uninit:
1054 	nvme_mpath_uninit(ctrl);
1055 	return error;
1056 }
1057 
1058 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1059 {
1060 	kvfree(ctrl->ana_log_buf);
1061 	ctrl->ana_log_buf = NULL;
1062 	ctrl->ana_log_size = 0;
1063 }
1064