1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2017-2018 Christoph Hellwig. 4 */ 5 6 #include <linux/backing-dev.h> 7 #include <linux/moduleparam.h> 8 #include <trace/events/block.h> 9 #include "nvme.h" 10 11 static bool multipath = true; 12 module_param(multipath, bool, 0444); 13 MODULE_PARM_DESC(multipath, 14 "turn on native support for multiple controllers per subsystem"); 15 16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) 17 { 18 struct nvme_ns_head *h; 19 20 lockdep_assert_held(&subsys->lock); 21 list_for_each_entry(h, &subsys->nsheads, entry) 22 if (h->disk) 23 blk_mq_unfreeze_queue(h->disk->queue); 24 } 25 26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) 27 { 28 struct nvme_ns_head *h; 29 30 lockdep_assert_held(&subsys->lock); 31 list_for_each_entry(h, &subsys->nsheads, entry) 32 if (h->disk) 33 blk_mq_freeze_queue_wait(h->disk->queue); 34 } 35 36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) 37 { 38 struct nvme_ns_head *h; 39 40 lockdep_assert_held(&subsys->lock); 41 list_for_each_entry(h, &subsys->nsheads, entry) 42 if (h->disk) 43 blk_freeze_queue_start(h->disk->queue); 44 } 45 46 /* 47 * If multipathing is enabled we need to always use the subsystem instance 48 * number for numbering our devices to avoid conflicts between subsystems that 49 * have multiple controllers and thus use the multipath-aware subsystem node 50 * and those that have a single controller and use the controller node 51 * directly. 52 */ 53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns, 54 struct nvme_ctrl *ctrl, int *flags) 55 { 56 if (!multipath) { 57 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance); 58 } else if (ns->head->disk) { 59 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 60 ctrl->instance, ns->head->instance); 61 *flags = GENHD_FL_HIDDEN; 62 } else { 63 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance, 64 ns->head->instance); 65 } 66 } 67 68 bool nvme_failover_req(struct request *req) 69 { 70 struct nvme_ns *ns = req->q->queuedata; 71 u16 status = nvme_req(req)->status; 72 unsigned long flags; 73 74 switch (status & 0x7ff) { 75 case NVME_SC_ANA_TRANSITION: 76 case NVME_SC_ANA_INACCESSIBLE: 77 case NVME_SC_ANA_PERSISTENT_LOSS: 78 /* 79 * If we got back an ANA error we know the controller is alive, 80 * but not ready to serve this namespaces. The spec suggests 81 * we should update our general state here, but due to the fact 82 * that the admin and I/O queues are not serialized that is 83 * fundamentally racy. So instead just clear the current path, 84 * mark the the path as pending and kick of a re-read of the ANA 85 * log page ASAP. 86 */ 87 nvme_mpath_clear_current_path(ns); 88 if (ns->ctrl->ana_log_buf) { 89 set_bit(NVME_NS_ANA_PENDING, &ns->flags); 90 queue_work(nvme_wq, &ns->ctrl->ana_work); 91 } 92 break; 93 case NVME_SC_HOST_PATH_ERROR: 94 case NVME_SC_HOST_ABORTED_CMD: 95 /* 96 * Temporary transport disruption in talking to the controller. 97 * Try to send on a new path. 98 */ 99 nvme_mpath_clear_current_path(ns); 100 break; 101 default: 102 /* This was a non-ANA error so follow the normal error path. */ 103 return false; 104 } 105 106 spin_lock_irqsave(&ns->head->requeue_lock, flags); 107 blk_steal_bios(&ns->head->requeue_list, req); 108 spin_unlock_irqrestore(&ns->head->requeue_lock, flags); 109 blk_mq_end_request(req, 0); 110 111 kblockd_schedule_work(&ns->head->requeue_work); 112 return true; 113 } 114 115 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) 116 { 117 struct nvme_ns *ns; 118 119 down_read(&ctrl->namespaces_rwsem); 120 list_for_each_entry(ns, &ctrl->namespaces, list) { 121 if (ns->head->disk) 122 kblockd_schedule_work(&ns->head->requeue_work); 123 } 124 up_read(&ctrl->namespaces_rwsem); 125 } 126 127 static const char *nvme_ana_state_names[] = { 128 [0] = "invalid state", 129 [NVME_ANA_OPTIMIZED] = "optimized", 130 [NVME_ANA_NONOPTIMIZED] = "non-optimized", 131 [NVME_ANA_INACCESSIBLE] = "inaccessible", 132 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", 133 [NVME_ANA_CHANGE] = "change", 134 }; 135 136 bool nvme_mpath_clear_current_path(struct nvme_ns *ns) 137 { 138 struct nvme_ns_head *head = ns->head; 139 bool changed = false; 140 int node; 141 142 if (!head) 143 goto out; 144 145 for_each_node(node) { 146 if (ns == rcu_access_pointer(head->current_path[node])) { 147 rcu_assign_pointer(head->current_path[node], NULL); 148 changed = true; 149 } 150 } 151 out: 152 return changed; 153 } 154 155 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) 156 { 157 struct nvme_ns *ns; 158 159 mutex_lock(&ctrl->scan_lock); 160 down_read(&ctrl->namespaces_rwsem); 161 list_for_each_entry(ns, &ctrl->namespaces, list) 162 if (nvme_mpath_clear_current_path(ns)) 163 kblockd_schedule_work(&ns->head->requeue_work); 164 up_read(&ctrl->namespaces_rwsem); 165 mutex_unlock(&ctrl->scan_lock); 166 } 167 168 static bool nvme_path_is_disabled(struct nvme_ns *ns) 169 { 170 /* 171 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should 172 * still be able to complete assuming that the controller is connected. 173 * Otherwise it will fail immediately and return to the requeue list. 174 */ 175 if (ns->ctrl->state != NVME_CTRL_LIVE && 176 ns->ctrl->state != NVME_CTRL_DELETING) 177 return true; 178 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || 179 test_bit(NVME_NS_REMOVING, &ns->flags)) 180 return true; 181 return false; 182 } 183 184 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) 185 { 186 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; 187 struct nvme_ns *found = NULL, *fallback = NULL, *ns; 188 189 list_for_each_entry_rcu(ns, &head->list, siblings) { 190 if (nvme_path_is_disabled(ns)) 191 continue; 192 193 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) 194 distance = node_distance(node, ns->ctrl->numa_node); 195 else 196 distance = LOCAL_DISTANCE; 197 198 switch (ns->ana_state) { 199 case NVME_ANA_OPTIMIZED: 200 if (distance < found_distance) { 201 found_distance = distance; 202 found = ns; 203 } 204 break; 205 case NVME_ANA_NONOPTIMIZED: 206 if (distance < fallback_distance) { 207 fallback_distance = distance; 208 fallback = ns; 209 } 210 break; 211 default: 212 break; 213 } 214 } 215 216 if (!found) 217 found = fallback; 218 if (found) 219 rcu_assign_pointer(head->current_path[node], found); 220 return found; 221 } 222 223 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, 224 struct nvme_ns *ns) 225 { 226 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, 227 siblings); 228 if (ns) 229 return ns; 230 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); 231 } 232 233 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head, 234 int node, struct nvme_ns *old) 235 { 236 struct nvme_ns *ns, *found = NULL; 237 238 if (list_is_singular(&head->list)) { 239 if (nvme_path_is_disabled(old)) 240 return NULL; 241 return old; 242 } 243 244 for (ns = nvme_next_ns(head, old); 245 ns != old; 246 ns = nvme_next_ns(head, ns)) { 247 if (nvme_path_is_disabled(ns)) 248 continue; 249 250 if (ns->ana_state == NVME_ANA_OPTIMIZED) { 251 found = ns; 252 goto out; 253 } 254 if (ns->ana_state == NVME_ANA_NONOPTIMIZED) 255 found = ns; 256 } 257 258 /* 259 * The loop above skips the current path for round-robin semantics. 260 * Fall back to the current path if either: 261 * - no other optimized path found and current is optimized, 262 * - no other usable path found and current is usable. 263 */ 264 if (!nvme_path_is_disabled(old) && 265 (old->ana_state == NVME_ANA_OPTIMIZED || 266 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) 267 return old; 268 269 if (!found) 270 return NULL; 271 out: 272 rcu_assign_pointer(head->current_path[node], found); 273 return found; 274 } 275 276 static inline bool nvme_path_is_optimized(struct nvme_ns *ns) 277 { 278 return ns->ctrl->state == NVME_CTRL_LIVE && 279 ns->ana_state == NVME_ANA_OPTIMIZED; 280 } 281 282 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) 283 { 284 int node = numa_node_id(); 285 struct nvme_ns *ns; 286 287 ns = srcu_dereference(head->current_path[node], &head->srcu); 288 if (unlikely(!ns)) 289 return __nvme_find_path(head, node); 290 291 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR) 292 return nvme_round_robin_path(head, node, ns); 293 if (unlikely(!nvme_path_is_optimized(ns))) 294 return __nvme_find_path(head, node); 295 return ns; 296 } 297 298 static bool nvme_available_path(struct nvme_ns_head *head) 299 { 300 struct nvme_ns *ns; 301 302 list_for_each_entry_rcu(ns, &head->list, siblings) { 303 switch (ns->ctrl->state) { 304 case NVME_CTRL_LIVE: 305 case NVME_CTRL_RESETTING: 306 case NVME_CTRL_CONNECTING: 307 /* fallthru */ 308 return true; 309 default: 310 break; 311 } 312 } 313 return false; 314 } 315 316 blk_qc_t nvme_ns_head_submit_bio(struct bio *bio) 317 { 318 struct nvme_ns_head *head = bio->bi_disk->private_data; 319 struct device *dev = disk_to_dev(head->disk); 320 struct nvme_ns *ns; 321 blk_qc_t ret = BLK_QC_T_NONE; 322 int srcu_idx; 323 324 /* 325 * The namespace might be going away and the bio might be moved to a 326 * different queue via blk_steal_bios(), so we need to use the bio_split 327 * pool from the original queue to allocate the bvecs from. 328 */ 329 blk_queue_split(&bio); 330 331 srcu_idx = srcu_read_lock(&head->srcu); 332 ns = nvme_find_path(head); 333 if (likely(ns)) { 334 bio->bi_disk = ns->disk; 335 bio->bi_opf |= REQ_NVME_MPATH; 336 trace_block_bio_remap(bio->bi_disk->queue, bio, 337 disk_devt(ns->head->disk), 338 bio->bi_iter.bi_sector); 339 ret = submit_bio_noacct(bio); 340 } else if (nvme_available_path(head)) { 341 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); 342 343 spin_lock_irq(&head->requeue_lock); 344 bio_list_add(&head->requeue_list, bio); 345 spin_unlock_irq(&head->requeue_lock); 346 } else { 347 dev_warn_ratelimited(dev, "no available path - failing I/O\n"); 348 349 bio->bi_status = BLK_STS_IOERR; 350 bio_endio(bio); 351 } 352 353 srcu_read_unlock(&head->srcu, srcu_idx); 354 return ret; 355 } 356 357 static void nvme_requeue_work(struct work_struct *work) 358 { 359 struct nvme_ns_head *head = 360 container_of(work, struct nvme_ns_head, requeue_work); 361 struct bio *bio, *next; 362 363 spin_lock_irq(&head->requeue_lock); 364 next = bio_list_get(&head->requeue_list); 365 spin_unlock_irq(&head->requeue_lock); 366 367 while ((bio = next) != NULL) { 368 next = bio->bi_next; 369 bio->bi_next = NULL; 370 371 /* 372 * Reset disk to the mpath node and resubmit to select a new 373 * path. 374 */ 375 bio->bi_disk = head->disk; 376 submit_bio_noacct(bio); 377 } 378 } 379 380 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) 381 { 382 struct request_queue *q; 383 bool vwc = false; 384 385 mutex_init(&head->lock); 386 bio_list_init(&head->requeue_list); 387 spin_lock_init(&head->requeue_lock); 388 INIT_WORK(&head->requeue_work, nvme_requeue_work); 389 390 /* 391 * Add a multipath node if the subsystems supports multiple controllers. 392 * We also do this for private namespaces as the namespace sharing data could 393 * change after a rescan. 394 */ 395 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath) 396 return 0; 397 398 q = blk_alloc_queue(ctrl->numa_node); 399 if (!q) 400 goto out; 401 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 402 /* set to a default value for 512 until disk is validated */ 403 blk_queue_logical_block_size(q, 512); 404 blk_set_stacking_limits(&q->limits); 405 406 /* we need to propagate up the VMC settings */ 407 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 408 vwc = true; 409 blk_queue_write_cache(q, vwc, vwc); 410 411 head->disk = alloc_disk(0); 412 if (!head->disk) 413 goto out_cleanup_queue; 414 head->disk->fops = &nvme_ns_head_ops; 415 head->disk->private_data = head; 416 head->disk->queue = q; 417 head->disk->flags = GENHD_FL_EXT_DEVT; 418 sprintf(head->disk->disk_name, "nvme%dn%d", 419 ctrl->subsys->instance, head->instance); 420 return 0; 421 422 out_cleanup_queue: 423 blk_cleanup_queue(q); 424 out: 425 return -ENOMEM; 426 } 427 428 static void nvme_mpath_set_live(struct nvme_ns *ns) 429 { 430 struct nvme_ns_head *head = ns->head; 431 432 if (!head->disk) 433 return; 434 435 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) 436 device_add_disk(&head->subsys->dev, head->disk, 437 nvme_ns_id_attr_groups); 438 439 mutex_lock(&head->lock); 440 if (nvme_path_is_optimized(ns)) { 441 int node, srcu_idx; 442 443 srcu_idx = srcu_read_lock(&head->srcu); 444 for_each_node(node) 445 __nvme_find_path(head, node); 446 srcu_read_unlock(&head->srcu, srcu_idx); 447 } 448 mutex_unlock(&head->lock); 449 450 synchronize_srcu(&head->srcu); 451 kblockd_schedule_work(&head->requeue_work); 452 } 453 454 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, 455 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, 456 void *)) 457 { 458 void *base = ctrl->ana_log_buf; 459 size_t offset = sizeof(struct nvme_ana_rsp_hdr); 460 int error, i; 461 462 lockdep_assert_held(&ctrl->ana_lock); 463 464 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { 465 struct nvme_ana_group_desc *desc = base + offset; 466 u32 nr_nsids; 467 size_t nsid_buf_size; 468 469 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) 470 return -EINVAL; 471 472 nr_nsids = le32_to_cpu(desc->nnsids); 473 nsid_buf_size = nr_nsids * sizeof(__le32); 474 475 if (WARN_ON_ONCE(desc->grpid == 0)) 476 return -EINVAL; 477 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) 478 return -EINVAL; 479 if (WARN_ON_ONCE(desc->state == 0)) 480 return -EINVAL; 481 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) 482 return -EINVAL; 483 484 offset += sizeof(*desc); 485 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) 486 return -EINVAL; 487 488 error = cb(ctrl, desc, data); 489 if (error) 490 return error; 491 492 offset += nsid_buf_size; 493 } 494 495 return 0; 496 } 497 498 static inline bool nvme_state_is_live(enum nvme_ana_state state) 499 { 500 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; 501 } 502 503 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, 504 struct nvme_ns *ns) 505 { 506 ns->ana_grpid = le32_to_cpu(desc->grpid); 507 ns->ana_state = desc->state; 508 clear_bit(NVME_NS_ANA_PENDING, &ns->flags); 509 510 if (nvme_state_is_live(ns->ana_state)) 511 nvme_mpath_set_live(ns); 512 } 513 514 static int nvme_update_ana_state(struct nvme_ctrl *ctrl, 515 struct nvme_ana_group_desc *desc, void *data) 516 { 517 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; 518 unsigned *nr_change_groups = data; 519 struct nvme_ns *ns; 520 521 dev_dbg(ctrl->device, "ANA group %d: %s.\n", 522 le32_to_cpu(desc->grpid), 523 nvme_ana_state_names[desc->state]); 524 525 if (desc->state == NVME_ANA_CHANGE) 526 (*nr_change_groups)++; 527 528 if (!nr_nsids) 529 return 0; 530 531 down_read(&ctrl->namespaces_rwsem); 532 list_for_each_entry(ns, &ctrl->namespaces, list) { 533 unsigned nsid = le32_to_cpu(desc->nsids[n]); 534 535 if (ns->head->ns_id < nsid) 536 continue; 537 if (ns->head->ns_id == nsid) 538 nvme_update_ns_ana_state(desc, ns); 539 if (++n == nr_nsids) 540 break; 541 } 542 up_read(&ctrl->namespaces_rwsem); 543 return 0; 544 } 545 546 static int nvme_read_ana_log(struct nvme_ctrl *ctrl) 547 { 548 u32 nr_change_groups = 0; 549 int error; 550 551 mutex_lock(&ctrl->ana_lock); 552 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, 553 ctrl->ana_log_buf, ctrl->ana_log_size, 0); 554 if (error) { 555 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); 556 goto out_unlock; 557 } 558 559 error = nvme_parse_ana_log(ctrl, &nr_change_groups, 560 nvme_update_ana_state); 561 if (error) 562 goto out_unlock; 563 564 /* 565 * In theory we should have an ANATT timer per group as they might enter 566 * the change state at different times. But that is a lot of overhead 567 * just to protect against a target that keeps entering new changes 568 * states while never finishing previous ones. But we'll still 569 * eventually time out once all groups are in change state, so this 570 * isn't a big deal. 571 * 572 * We also double the ANATT value to provide some slack for transports 573 * or AEN processing overhead. 574 */ 575 if (nr_change_groups) 576 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); 577 else 578 del_timer_sync(&ctrl->anatt_timer); 579 out_unlock: 580 mutex_unlock(&ctrl->ana_lock); 581 return error; 582 } 583 584 static void nvme_ana_work(struct work_struct *work) 585 { 586 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); 587 588 if (ctrl->state != NVME_CTRL_LIVE) 589 return; 590 591 nvme_read_ana_log(ctrl); 592 } 593 594 static void nvme_anatt_timeout(struct timer_list *t) 595 { 596 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); 597 598 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); 599 nvme_reset_ctrl(ctrl); 600 } 601 602 void nvme_mpath_stop(struct nvme_ctrl *ctrl) 603 { 604 if (!nvme_ctrl_use_ana(ctrl)) 605 return; 606 del_timer_sync(&ctrl->anatt_timer); 607 cancel_work_sync(&ctrl->ana_work); 608 } 609 610 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ 611 struct device_attribute subsys_attr_##_name = \ 612 __ATTR(_name, _mode, _show, _store) 613 614 static const char *nvme_iopolicy_names[] = { 615 [NVME_IOPOLICY_NUMA] = "numa", 616 [NVME_IOPOLICY_RR] = "round-robin", 617 }; 618 619 static ssize_t nvme_subsys_iopolicy_show(struct device *dev, 620 struct device_attribute *attr, char *buf) 621 { 622 struct nvme_subsystem *subsys = 623 container_of(dev, struct nvme_subsystem, dev); 624 625 return sprintf(buf, "%s\n", 626 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); 627 } 628 629 static ssize_t nvme_subsys_iopolicy_store(struct device *dev, 630 struct device_attribute *attr, const char *buf, size_t count) 631 { 632 struct nvme_subsystem *subsys = 633 container_of(dev, struct nvme_subsystem, dev); 634 int i; 635 636 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { 637 if (sysfs_streq(buf, nvme_iopolicy_names[i])) { 638 WRITE_ONCE(subsys->iopolicy, i); 639 return count; 640 } 641 } 642 643 return -EINVAL; 644 } 645 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, 646 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); 647 648 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, 649 char *buf) 650 { 651 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); 652 } 653 DEVICE_ATTR_RO(ana_grpid); 654 655 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, 656 char *buf) 657 { 658 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 659 660 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); 661 } 662 DEVICE_ATTR_RO(ana_state); 663 664 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, 665 struct nvme_ana_group_desc *desc, void *data) 666 { 667 struct nvme_ana_group_desc *dst = data; 668 669 if (desc->grpid != dst->grpid) 670 return 0; 671 672 *dst = *desc; 673 return -ENXIO; /* just break out of the loop */ 674 } 675 676 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id) 677 { 678 if (nvme_ctrl_use_ana(ns->ctrl)) { 679 struct nvme_ana_group_desc desc = { 680 .grpid = id->anagrpid, 681 .state = 0, 682 }; 683 684 mutex_lock(&ns->ctrl->ana_lock); 685 ns->ana_grpid = le32_to_cpu(id->anagrpid); 686 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); 687 mutex_unlock(&ns->ctrl->ana_lock); 688 if (desc.state) { 689 /* found the group desc: update */ 690 nvme_update_ns_ana_state(&desc, ns); 691 } 692 } else { 693 ns->ana_state = NVME_ANA_OPTIMIZED; 694 nvme_mpath_set_live(ns); 695 } 696 697 if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) { 698 struct gendisk *disk = ns->head->disk; 699 700 if (disk) 701 disk->queue->backing_dev_info->capabilities |= 702 BDI_CAP_STABLE_WRITES; 703 } 704 } 705 706 void nvme_mpath_remove_disk(struct nvme_ns_head *head) 707 { 708 if (!head->disk) 709 return; 710 if (head->disk->flags & GENHD_FL_UP) 711 del_gendisk(head->disk); 712 blk_set_queue_dying(head->disk->queue); 713 /* make sure all pending bios are cleaned up */ 714 kblockd_schedule_work(&head->requeue_work); 715 flush_work(&head->requeue_work); 716 blk_cleanup_queue(head->disk->queue); 717 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { 718 /* 719 * if device_add_disk wasn't called, prevent 720 * disk release to put a bogus reference on the 721 * request queue 722 */ 723 head->disk->queue = NULL; 724 } 725 put_disk(head->disk); 726 } 727 728 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 729 { 730 int error; 731 732 /* check if multipath is enabled and we have the capability */ 733 if (!multipath || !ctrl->subsys || 734 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) 735 return 0; 736 737 ctrl->anacap = id->anacap; 738 ctrl->anatt = id->anatt; 739 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); 740 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); 741 742 mutex_init(&ctrl->ana_lock); 743 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); 744 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + 745 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc); 746 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32); 747 748 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) { 749 dev_err(ctrl->device, 750 "ANA log page size (%zd) larger than MDTS (%d).\n", 751 ctrl->ana_log_size, 752 ctrl->max_hw_sectors << SECTOR_SHIFT); 753 dev_err(ctrl->device, "disabling ANA support.\n"); 754 return 0; 755 } 756 757 INIT_WORK(&ctrl->ana_work, nvme_ana_work); 758 kfree(ctrl->ana_log_buf); 759 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL); 760 if (!ctrl->ana_log_buf) { 761 error = -ENOMEM; 762 goto out; 763 } 764 765 error = nvme_read_ana_log(ctrl); 766 if (error) 767 goto out_free_ana_log_buf; 768 return 0; 769 out_free_ana_log_buf: 770 kfree(ctrl->ana_log_buf); 771 ctrl->ana_log_buf = NULL; 772 out: 773 return error; 774 } 775 776 void nvme_mpath_uninit(struct nvme_ctrl *ctrl) 777 { 778 kfree(ctrl->ana_log_buf); 779 ctrl->ana_log_buf = NULL; 780 } 781 782