xref: /linux/drivers/nvme/host/ioctl.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011-2014, Intel Corporation.
4  * Copyright (c) 2017-2021 Christoph Hellwig.
5  */
6 #include <linux/blk-integrity.h>
7 #include <linux/ptrace.h>	/* for force_successful_syscall_return */
8 #include <linux/nvme_ioctl.h>
9 #include <linux/io_uring/cmd.h>
10 #include "nvme.h"
11 
12 enum {
13 	NVME_IOCTL_VEC		= (1 << 0),
14 	NVME_IOCTL_PARTITION	= (1 << 1),
15 };
16 
17 static bool nvme_cmd_allowed(struct nvme_ns *ns, struct nvme_command *c,
18 		unsigned int flags, bool open_for_write)
19 {
20 	u32 effects;
21 
22 	/*
23 	 * Do not allow unprivileged passthrough on partitions, as that allows an
24 	 * escape from the containment of the partition.
25 	 */
26 	if (flags & NVME_IOCTL_PARTITION)
27 		goto admin;
28 
29 	/*
30 	 * Do not allow unprivileged processes to send vendor specific or fabrics
31 	 * commands as we can't be sure about their effects.
32 	 */
33 	if (c->common.opcode >= nvme_cmd_vendor_start ||
34 	    c->common.opcode == nvme_fabrics_command)
35 		goto admin;
36 
37 	/*
38 	 * Do not allow unprivileged passthrough of admin commands except
39 	 * for a subset of identify commands that contain information required
40 	 * to form proper I/O commands in userspace and do not expose any
41 	 * potentially sensitive information.
42 	 */
43 	if (!ns) {
44 		if (c->common.opcode == nvme_admin_identify) {
45 			switch (c->identify.cns) {
46 			case NVME_ID_CNS_NS:
47 			case NVME_ID_CNS_CS_NS:
48 			case NVME_ID_CNS_NS_CS_INDEP:
49 			case NVME_ID_CNS_CS_CTRL:
50 			case NVME_ID_CNS_CTRL:
51 				return true;
52 			}
53 		}
54 		goto admin;
55 	}
56 
57 	/*
58 	 * Check if the controller provides a Commands Supported and Effects log
59 	 * and marks this command as supported.  If not reject unprivileged
60 	 * passthrough.
61 	 */
62 	effects = nvme_command_effects(ns->ctrl, ns, c->common.opcode);
63 	if (!(effects & NVME_CMD_EFFECTS_CSUPP))
64 		goto admin;
65 
66 	/*
67 	 * Don't allow passthrough for command that have intrusive (or unknown)
68 	 * effects.
69 	 */
70 	if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
71 			NVME_CMD_EFFECTS_UUID_SEL |
72 			NVME_CMD_EFFECTS_SCOPE_MASK))
73 		goto admin;
74 
75 	/*
76 	 * Only allow I/O commands that transfer data to the controller or that
77 	 * change the logical block contents if the file descriptor is open for
78 	 * writing.
79 	 */
80 	if ((nvme_is_write(c) || (effects & NVME_CMD_EFFECTS_LBCC)) &&
81 	    !open_for_write)
82 		goto admin;
83 
84 	return true;
85 admin:
86 	return capable(CAP_SYS_ADMIN);
87 }
88 
89 /*
90  * Convert integer values from ioctl structures to user pointers, silently
91  * ignoring the upper bits in the compat case to match behaviour of 32-bit
92  * kernels.
93  */
94 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
95 {
96 	if (in_compat_syscall())
97 		ptrval = (compat_uptr_t)ptrval;
98 	return (void __user *)ptrval;
99 }
100 
101 static struct request *nvme_alloc_user_request(struct request_queue *q,
102 		struct nvme_command *cmd, blk_opf_t rq_flags,
103 		blk_mq_req_flags_t blk_flags)
104 {
105 	struct request *req;
106 
107 	req = blk_mq_alloc_request(q, nvme_req_op(cmd) | rq_flags, blk_flags);
108 	if (IS_ERR(req))
109 		return req;
110 	nvme_init_request(req, cmd);
111 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
112 	return req;
113 }
114 
115 static int nvme_map_user_request(struct request *req, u64 ubuffer,
116 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
117 		struct iov_iter *iter, unsigned int flags)
118 {
119 	struct request_queue *q = req->q;
120 	struct nvme_ns *ns = q->queuedata;
121 	struct block_device *bdev = ns ? ns->disk->part0 : NULL;
122 	bool supports_metadata = bdev && blk_get_integrity(bdev->bd_disk);
123 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
124 	bool has_metadata = meta_buffer && meta_len;
125 	struct bio *bio = NULL;
126 	int ret;
127 
128 	if (!nvme_ctrl_sgl_supported(ctrl))
129 		dev_warn_once(ctrl->device, "using unchecked data buffer\n");
130 	if (has_metadata) {
131 		if (!supports_metadata)
132 			return -EINVAL;
133 
134 		if (!nvme_ctrl_meta_sgl_supported(ctrl))
135 			dev_warn_once(ctrl->device,
136 				      "using unchecked metadata buffer\n");
137 	}
138 
139 	if (iter)
140 		ret = blk_rq_map_user_iov(q, req, NULL, iter, GFP_KERNEL);
141 	else
142 		ret = blk_rq_map_user_io(req, NULL, nvme_to_user_ptr(ubuffer),
143 				bufflen, GFP_KERNEL, flags & NVME_IOCTL_VEC, 0,
144 				0, rq_data_dir(req));
145 	if (ret)
146 		return ret;
147 
148 	if (has_metadata) {
149 		ret = blk_rq_integrity_map_user(req, meta_buffer, meta_len);
150 		if (ret)
151 			goto out_unmap;
152 	}
153 
154 	return ret;
155 
156 out_unmap:
157 	if (bio)
158 		blk_rq_unmap_user(bio);
159 	return ret;
160 }
161 
162 static int nvme_submit_user_cmd(struct request_queue *q,
163 		struct nvme_command *cmd, u64 ubuffer, unsigned bufflen,
164 		void __user *meta_buffer, unsigned meta_len,
165 		u64 *result, unsigned timeout, unsigned int flags)
166 {
167 	struct nvme_ns *ns = q->queuedata;
168 	struct nvme_ctrl *ctrl;
169 	struct request *req;
170 	struct bio *bio;
171 	u32 effects;
172 	int ret;
173 
174 	req = nvme_alloc_user_request(q, cmd, 0, 0);
175 	if (IS_ERR(req))
176 		return PTR_ERR(req);
177 
178 	req->timeout = timeout;
179 	if (ubuffer && bufflen) {
180 		ret = nvme_map_user_request(req, ubuffer, bufflen, meta_buffer,
181 				meta_len, NULL, flags);
182 		if (ret)
183 			goto out_free_req;
184 	}
185 
186 	bio = req->bio;
187 	ctrl = nvme_req(req)->ctrl;
188 
189 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
190 	ret = nvme_execute_rq(req, false);
191 	if (result)
192 		*result = le64_to_cpu(nvme_req(req)->result.u64);
193 	if (bio)
194 		blk_rq_unmap_user(bio);
195 	blk_mq_free_request(req);
196 
197 	if (effects)
198 		nvme_passthru_end(ctrl, ns, effects, cmd, ret);
199 	return ret;
200 
201 out_free_req:
202 	blk_mq_free_request(req);
203 	return ret;
204 }
205 
206 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
207 {
208 	struct nvme_user_io io;
209 	struct nvme_command c;
210 	unsigned length, meta_len;
211 	void __user *metadata;
212 
213 	if (copy_from_user(&io, uio, sizeof(io)))
214 		return -EFAULT;
215 	if (io.flags)
216 		return -EINVAL;
217 
218 	switch (io.opcode) {
219 	case nvme_cmd_write:
220 	case nvme_cmd_read:
221 	case nvme_cmd_compare:
222 		break;
223 	default:
224 		return -EINVAL;
225 	}
226 
227 	length = (io.nblocks + 1) << ns->head->lba_shift;
228 
229 	if ((io.control & NVME_RW_PRINFO_PRACT) &&
230 	    (ns->head->ms == ns->head->pi_size)) {
231 		/*
232 		 * Protection information is stripped/inserted by the
233 		 * controller.
234 		 */
235 		if (nvme_to_user_ptr(io.metadata))
236 			return -EINVAL;
237 		meta_len = 0;
238 		metadata = NULL;
239 	} else {
240 		meta_len = (io.nblocks + 1) * ns->head->ms;
241 		metadata = nvme_to_user_ptr(io.metadata);
242 	}
243 
244 	if (ns->head->features & NVME_NS_EXT_LBAS) {
245 		length += meta_len;
246 		meta_len = 0;
247 	} else if (meta_len) {
248 		if ((io.metadata & 3) || !io.metadata)
249 			return -EINVAL;
250 	}
251 
252 	memset(&c, 0, sizeof(c));
253 	c.rw.opcode = io.opcode;
254 	c.rw.flags = io.flags;
255 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
256 	c.rw.slba = cpu_to_le64(io.slba);
257 	c.rw.length = cpu_to_le16(io.nblocks);
258 	c.rw.control = cpu_to_le16(io.control);
259 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
260 	c.rw.reftag = cpu_to_le32(io.reftag);
261 	c.rw.lbat = cpu_to_le16(io.apptag);
262 	c.rw.lbatm = cpu_to_le16(io.appmask);
263 
264 	return nvme_submit_user_cmd(ns->queue, &c, io.addr, length, metadata,
265 			meta_len, NULL, 0, 0);
266 }
267 
268 static bool nvme_validate_passthru_nsid(struct nvme_ctrl *ctrl,
269 					struct nvme_ns *ns, __u32 nsid)
270 {
271 	if (ns && nsid != ns->head->ns_id) {
272 		dev_err(ctrl->device,
273 			"%s: nsid (%u) in cmd does not match nsid (%u) of namespace\n",
274 			current->comm, nsid, ns->head->ns_id);
275 		return false;
276 	}
277 
278 	return true;
279 }
280 
281 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
282 		struct nvme_passthru_cmd __user *ucmd, unsigned int flags,
283 		bool open_for_write)
284 {
285 	struct nvme_passthru_cmd cmd;
286 	struct nvme_command c;
287 	unsigned timeout = 0;
288 	u64 result;
289 	int status;
290 
291 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
292 		return -EFAULT;
293 	if (cmd.flags)
294 		return -EINVAL;
295 	if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
296 		return -EINVAL;
297 
298 	memset(&c, 0, sizeof(c));
299 	c.common.opcode = cmd.opcode;
300 	c.common.flags = cmd.flags;
301 	c.common.nsid = cpu_to_le32(cmd.nsid);
302 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
303 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
304 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
305 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
306 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
307 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
308 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
309 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
310 
311 	if (!nvme_cmd_allowed(ns, &c, 0, open_for_write))
312 		return -EACCES;
313 
314 	if (cmd.timeout_ms)
315 		timeout = msecs_to_jiffies(cmd.timeout_ms);
316 
317 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
318 			cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
319 			cmd.metadata_len, &result, timeout, 0);
320 
321 	if (status >= 0) {
322 		if (put_user(result, &ucmd->result))
323 			return -EFAULT;
324 	}
325 
326 	return status;
327 }
328 
329 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
330 		struct nvme_passthru_cmd64 __user *ucmd, unsigned int flags,
331 		bool open_for_write)
332 {
333 	struct nvme_passthru_cmd64 cmd;
334 	struct nvme_command c;
335 	unsigned timeout = 0;
336 	int status;
337 
338 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
339 		return -EFAULT;
340 	if (cmd.flags)
341 		return -EINVAL;
342 	if (!nvme_validate_passthru_nsid(ctrl, ns, cmd.nsid))
343 		return -EINVAL;
344 
345 	memset(&c, 0, sizeof(c));
346 	c.common.opcode = cmd.opcode;
347 	c.common.flags = cmd.flags;
348 	c.common.nsid = cpu_to_le32(cmd.nsid);
349 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
350 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
351 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
352 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
353 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
354 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
355 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
356 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
357 
358 	if (!nvme_cmd_allowed(ns, &c, flags, open_for_write))
359 		return -EACCES;
360 
361 	if (cmd.timeout_ms)
362 		timeout = msecs_to_jiffies(cmd.timeout_ms);
363 
364 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
365 			cmd.addr, cmd.data_len, nvme_to_user_ptr(cmd.metadata),
366 			cmd.metadata_len, &cmd.result, timeout, flags);
367 
368 	if (status >= 0) {
369 		if (put_user(cmd.result, &ucmd->result))
370 			return -EFAULT;
371 	}
372 
373 	return status;
374 }
375 
376 struct nvme_uring_data {
377 	__u64	metadata;
378 	__u64	addr;
379 	__u32	data_len;
380 	__u32	metadata_len;
381 	__u32	timeout_ms;
382 };
383 
384 /*
385  * This overlays struct io_uring_cmd pdu.
386  * Expect build errors if this grows larger than that.
387  */
388 struct nvme_uring_cmd_pdu {
389 	struct request *req;
390 	struct bio *bio;
391 	u64 result;
392 	int status;
393 };
394 
395 static inline struct nvme_uring_cmd_pdu *nvme_uring_cmd_pdu(
396 		struct io_uring_cmd *ioucmd)
397 {
398 	return io_uring_cmd_to_pdu(ioucmd, struct nvme_uring_cmd_pdu);
399 }
400 
401 static void nvme_uring_task_cb(struct io_uring_cmd *ioucmd,
402 			       unsigned issue_flags)
403 {
404 	struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
405 
406 	if (pdu->bio)
407 		blk_rq_unmap_user(pdu->bio);
408 	io_uring_cmd_done32(ioucmd, pdu->status, pdu->result, issue_flags);
409 }
410 
411 static enum rq_end_io_ret nvme_uring_cmd_end_io(struct request *req,
412 						blk_status_t err)
413 {
414 	struct io_uring_cmd *ioucmd = req->end_io_data;
415 	struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
416 
417 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED) {
418 		pdu->status = -EINTR;
419 	} else {
420 		pdu->status = nvme_req(req)->status;
421 		if (!pdu->status)
422 			pdu->status = blk_status_to_errno(err);
423 	}
424 	pdu->result = le64_to_cpu(nvme_req(req)->result.u64);
425 
426 	/*
427 	 * IOPOLL could potentially complete this request directly, but
428 	 * if multiple rings are polling on the same queue, then it's possible
429 	 * for one ring to find completions for another ring. Punting the
430 	 * completion via task_work will always direct it to the right
431 	 * location, rather than potentially complete requests for ringA
432 	 * under iopoll invocations from ringB.
433 	 */
434 	io_uring_cmd_do_in_task_lazy(ioucmd, nvme_uring_task_cb);
435 	return RQ_END_IO_FREE;
436 }
437 
438 static int nvme_uring_cmd_io(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
439 		struct io_uring_cmd *ioucmd, unsigned int issue_flags, bool vec)
440 {
441 	struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
442 	const struct nvme_uring_cmd *cmd = io_uring_sqe_cmd(ioucmd->sqe);
443 	struct request_queue *q = ns ? ns->queue : ctrl->admin_q;
444 	struct nvme_uring_data d;
445 	struct nvme_command c;
446 	struct iov_iter iter;
447 	struct iov_iter *map_iter = NULL;
448 	struct request *req;
449 	blk_opf_t rq_flags = REQ_ALLOC_CACHE;
450 	blk_mq_req_flags_t blk_flags = 0;
451 	int ret;
452 
453 	c.common.opcode = READ_ONCE(cmd->opcode);
454 	c.common.flags = READ_ONCE(cmd->flags);
455 	if (c.common.flags)
456 		return -EINVAL;
457 
458 	c.common.command_id = 0;
459 	c.common.nsid = cpu_to_le32(cmd->nsid);
460 	if (!nvme_validate_passthru_nsid(ctrl, ns, le32_to_cpu(c.common.nsid)))
461 		return -EINVAL;
462 
463 	c.common.cdw2[0] = cpu_to_le32(READ_ONCE(cmd->cdw2));
464 	c.common.cdw2[1] = cpu_to_le32(READ_ONCE(cmd->cdw3));
465 	c.common.metadata = 0;
466 	c.common.dptr.prp1 = c.common.dptr.prp2 = 0;
467 	c.common.cdw10 = cpu_to_le32(READ_ONCE(cmd->cdw10));
468 	c.common.cdw11 = cpu_to_le32(READ_ONCE(cmd->cdw11));
469 	c.common.cdw12 = cpu_to_le32(READ_ONCE(cmd->cdw12));
470 	c.common.cdw13 = cpu_to_le32(READ_ONCE(cmd->cdw13));
471 	c.common.cdw14 = cpu_to_le32(READ_ONCE(cmd->cdw14));
472 	c.common.cdw15 = cpu_to_le32(READ_ONCE(cmd->cdw15));
473 
474 	if (!nvme_cmd_allowed(ns, &c, 0, ioucmd->file->f_mode & FMODE_WRITE))
475 		return -EACCES;
476 
477 	d.metadata = READ_ONCE(cmd->metadata);
478 	d.addr = READ_ONCE(cmd->addr);
479 	d.data_len = READ_ONCE(cmd->data_len);
480 	d.metadata_len = READ_ONCE(cmd->metadata_len);
481 	d.timeout_ms = READ_ONCE(cmd->timeout_ms);
482 
483 	if (d.data_len && (ioucmd->flags & IORING_URING_CMD_FIXED)) {
484 		int ddir = nvme_is_write(&c) ? WRITE : READ;
485 
486 		if (vec)
487 			ret = io_uring_cmd_import_fixed_vec(ioucmd,
488 					u64_to_user_ptr(d.addr), d.data_len,
489 					ddir, &iter, issue_flags);
490 		else
491 			ret = io_uring_cmd_import_fixed(d.addr, d.data_len,
492 					ddir, &iter, ioucmd, issue_flags);
493 		if (ret < 0)
494 			return ret;
495 
496 		map_iter = &iter;
497 	}
498 
499 	if (issue_flags & IO_URING_F_NONBLOCK) {
500 		rq_flags |= REQ_NOWAIT;
501 		blk_flags = BLK_MQ_REQ_NOWAIT;
502 	}
503 	if (issue_flags & IO_URING_F_IOPOLL)
504 		rq_flags |= REQ_POLLED;
505 
506 	req = nvme_alloc_user_request(q, &c, rq_flags, blk_flags);
507 	if (IS_ERR(req))
508 		return PTR_ERR(req);
509 	req->timeout = d.timeout_ms ? msecs_to_jiffies(d.timeout_ms) : 0;
510 
511 	if (d.data_len) {
512 		ret = nvme_map_user_request(req, d.addr, d.data_len,
513 			nvme_to_user_ptr(d.metadata), d.metadata_len,
514 			map_iter, vec ? NVME_IOCTL_VEC : 0);
515 		if (ret)
516 			goto out_free_req;
517 	}
518 
519 	/* to free bio on completion, as req->bio will be null at that time */
520 	pdu->bio = req->bio;
521 	pdu->req = req;
522 	req->end_io_data = ioucmd;
523 	req->end_io = nvme_uring_cmd_end_io;
524 	blk_execute_rq_nowait(req, false);
525 	return -EIOCBQUEUED;
526 
527 out_free_req:
528 	blk_mq_free_request(req);
529 	return ret;
530 }
531 
532 static bool is_ctrl_ioctl(unsigned int cmd)
533 {
534 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
535 		return true;
536 	if (is_sed_ioctl(cmd))
537 		return true;
538 	return false;
539 }
540 
541 static int nvme_ctrl_ioctl(struct nvme_ctrl *ctrl, unsigned int cmd,
542 		void __user *argp, bool open_for_write)
543 {
544 	switch (cmd) {
545 	case NVME_IOCTL_ADMIN_CMD:
546 		return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
547 	case NVME_IOCTL_ADMIN64_CMD:
548 		return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
549 	default:
550 		return sed_ioctl(ctrl->opal_dev, cmd, argp);
551 	}
552 }
553 
554 #ifdef COMPAT_FOR_U64_ALIGNMENT
555 struct nvme_user_io32 {
556 	__u8	opcode;
557 	__u8	flags;
558 	__u16	control;
559 	__u16	nblocks;
560 	__u16	rsvd;
561 	__u64	metadata;
562 	__u64	addr;
563 	__u64	slba;
564 	__u32	dsmgmt;
565 	__u32	reftag;
566 	__u16	apptag;
567 	__u16	appmask;
568 } __attribute__((__packed__));
569 #define NVME_IOCTL_SUBMIT_IO32	_IOW('N', 0x42, struct nvme_user_io32)
570 #endif /* COMPAT_FOR_U64_ALIGNMENT */
571 
572 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned int cmd,
573 		void __user *argp, unsigned int flags, bool open_for_write)
574 {
575 	switch (cmd) {
576 	case NVME_IOCTL_ID:
577 		force_successful_syscall_return();
578 		return ns->head->ns_id;
579 	case NVME_IOCTL_IO_CMD:
580 		return nvme_user_cmd(ns->ctrl, ns, argp, flags, open_for_write);
581 	/*
582 	 * struct nvme_user_io can have different padding on some 32-bit ABIs.
583 	 * Just accept the compat version as all fields that are used are the
584 	 * same size and at the same offset.
585 	 */
586 #ifdef COMPAT_FOR_U64_ALIGNMENT
587 	case NVME_IOCTL_SUBMIT_IO32:
588 #endif
589 	case NVME_IOCTL_SUBMIT_IO:
590 		return nvme_submit_io(ns, argp);
591 	case NVME_IOCTL_IO64_CMD_VEC:
592 		flags |= NVME_IOCTL_VEC;
593 		fallthrough;
594 	case NVME_IOCTL_IO64_CMD:
595 		return nvme_user_cmd64(ns->ctrl, ns, argp, flags,
596 				       open_for_write);
597 	default:
598 		return -ENOTTY;
599 	}
600 }
601 
602 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
603 		unsigned int cmd, unsigned long arg)
604 {
605 	struct nvme_ns *ns = bdev->bd_disk->private_data;
606 	bool open_for_write = mode & BLK_OPEN_WRITE;
607 	void __user *argp = (void __user *)arg;
608 	unsigned int flags = 0;
609 
610 	if (bdev_is_partition(bdev))
611 		flags |= NVME_IOCTL_PARTITION;
612 
613 	if (is_ctrl_ioctl(cmd))
614 		return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
615 	return nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
616 }
617 
618 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
619 {
620 	struct nvme_ns *ns =
621 		container_of(file_inode(file)->i_cdev, struct nvme_ns, cdev);
622 	bool open_for_write = file->f_mode & FMODE_WRITE;
623 	void __user *argp = (void __user *)arg;
624 
625 	if (is_ctrl_ioctl(cmd))
626 		return nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
627 	return nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
628 }
629 
630 static int nvme_uring_cmd_checks(unsigned int issue_flags)
631 {
632 
633 	/* NVMe passthrough requires big SQE/CQE support */
634 	if ((issue_flags & (IO_URING_F_SQE128|IO_URING_F_CQE32)) !=
635 	    (IO_URING_F_SQE128|IO_URING_F_CQE32))
636 		return -EOPNOTSUPP;
637 	return 0;
638 }
639 
640 static int nvme_ns_uring_cmd(struct nvme_ns *ns, struct io_uring_cmd *ioucmd,
641 			     unsigned int issue_flags)
642 {
643 	struct nvme_ctrl *ctrl = ns->ctrl;
644 	int ret;
645 
646 	ret = nvme_uring_cmd_checks(issue_flags);
647 	if (ret)
648 		return ret;
649 
650 	switch (ioucmd->cmd_op) {
651 	case NVME_URING_CMD_IO:
652 		ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, false);
653 		break;
654 	case NVME_URING_CMD_IO_VEC:
655 		ret = nvme_uring_cmd_io(ctrl, ns, ioucmd, issue_flags, true);
656 		break;
657 	default:
658 		ret = -ENOTTY;
659 	}
660 
661 	return ret;
662 }
663 
664 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
665 {
666 	struct nvme_ns *ns = container_of(file_inode(ioucmd->file)->i_cdev,
667 			struct nvme_ns, cdev);
668 
669 	return nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
670 }
671 
672 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
673 				 struct io_comp_batch *iob,
674 				 unsigned int poll_flags)
675 {
676 	struct nvme_uring_cmd_pdu *pdu = nvme_uring_cmd_pdu(ioucmd);
677 	struct request *req = pdu->req;
678 
679 	if (req && blk_rq_is_poll(req))
680 		return blk_rq_poll(req, iob, poll_flags);
681 	return 0;
682 }
683 #ifdef CONFIG_NVME_MULTIPATH
684 static int nvme_ns_head_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
685 		void __user *argp, struct nvme_ns_head *head, int srcu_idx,
686 		bool open_for_write)
687 	__releases(&head->srcu)
688 {
689 	struct nvme_ctrl *ctrl = ns->ctrl;
690 	int ret;
691 
692 	nvme_get_ctrl(ns->ctrl);
693 	srcu_read_unlock(&head->srcu, srcu_idx);
694 	ret = nvme_ctrl_ioctl(ns->ctrl, cmd, argp, open_for_write);
695 
696 	nvme_put_ctrl(ctrl);
697 	return ret;
698 }
699 
700 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
701 		unsigned int cmd, unsigned long arg)
702 {
703 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
704 	bool open_for_write = mode & BLK_OPEN_WRITE;
705 	void __user *argp = (void __user *)arg;
706 	struct nvme_ns *ns;
707 	int srcu_idx, ret = -EWOULDBLOCK;
708 	unsigned int flags = 0;
709 
710 	if (bdev_is_partition(bdev))
711 		flags |= NVME_IOCTL_PARTITION;
712 
713 	srcu_idx = srcu_read_lock(&head->srcu);
714 	ns = nvme_find_path(head);
715 	if (!ns)
716 		goto out_unlock;
717 
718 	/*
719 	 * Handle ioctls that apply to the controller instead of the namespace
720 	 * separately and drop the ns SRCU reference early.  This avoids a
721 	 * deadlock when deleting namespaces using the passthrough interface.
722 	 */
723 	if (is_ctrl_ioctl(cmd))
724 		return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
725 					       open_for_write);
726 
727 	ret = nvme_ns_ioctl(ns, cmd, argp, flags, open_for_write);
728 out_unlock:
729 	srcu_read_unlock(&head->srcu, srcu_idx);
730 	return ret;
731 }
732 
733 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
734 		unsigned long arg)
735 {
736 	bool open_for_write = file->f_mode & FMODE_WRITE;
737 	struct cdev *cdev = file_inode(file)->i_cdev;
738 	struct nvme_ns_head *head =
739 		container_of(cdev, struct nvme_ns_head, cdev);
740 	void __user *argp = (void __user *)arg;
741 	struct nvme_ns *ns;
742 	int srcu_idx, ret = -EWOULDBLOCK;
743 
744 	srcu_idx = srcu_read_lock(&head->srcu);
745 	ns = nvme_find_path(head);
746 	if (!ns)
747 		goto out_unlock;
748 
749 	if (is_ctrl_ioctl(cmd))
750 		return nvme_ns_head_ctrl_ioctl(ns, cmd, argp, head, srcu_idx,
751 				open_for_write);
752 
753 	ret = nvme_ns_ioctl(ns, cmd, argp, 0, open_for_write);
754 out_unlock:
755 	srcu_read_unlock(&head->srcu, srcu_idx);
756 	return ret;
757 }
758 
759 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
760 		unsigned int issue_flags)
761 {
762 	struct cdev *cdev = file_inode(ioucmd->file)->i_cdev;
763 	struct nvme_ns_head *head = container_of(cdev, struct nvme_ns_head, cdev);
764 	int srcu_idx = srcu_read_lock(&head->srcu);
765 	struct nvme_ns *ns = nvme_find_path(head);
766 	int ret = -EINVAL;
767 
768 	if (ns)
769 		ret = nvme_ns_uring_cmd(ns, ioucmd, issue_flags);
770 	srcu_read_unlock(&head->srcu, srcu_idx);
771 	return ret;
772 }
773 #endif /* CONFIG_NVME_MULTIPATH */
774 
775 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags)
776 {
777 	struct nvme_ctrl *ctrl = ioucmd->file->private_data;
778 	int ret;
779 
780 	/* IOPOLL not supported yet */
781 	if (issue_flags & IO_URING_F_IOPOLL)
782 		return -EOPNOTSUPP;
783 
784 	ret = nvme_uring_cmd_checks(issue_flags);
785 	if (ret)
786 		return ret;
787 
788 	switch (ioucmd->cmd_op) {
789 	case NVME_URING_CMD_ADMIN:
790 		ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, false);
791 		break;
792 	case NVME_URING_CMD_ADMIN_VEC:
793 		ret = nvme_uring_cmd_io(ctrl, NULL, ioucmd, issue_flags, true);
794 		break;
795 	default:
796 		ret = -ENOTTY;
797 	}
798 
799 	return ret;
800 }
801 
802 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp,
803 		bool open_for_write)
804 {
805 	struct nvme_ns *ns;
806 	int ret, srcu_idx;
807 
808 	srcu_idx = srcu_read_lock(&ctrl->srcu);
809 	if (list_empty(&ctrl->namespaces)) {
810 		ret = -ENOTTY;
811 		goto out_unlock;
812 	}
813 
814 	ns = list_first_or_null_rcu(&ctrl->namespaces, struct nvme_ns, list);
815 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
816 		dev_warn(ctrl->device,
817 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
818 		ret = -EINVAL;
819 		goto out_unlock;
820 	}
821 
822 	dev_warn(ctrl->device,
823 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
824 	if (!nvme_get_ns(ns)) {
825 		ret = -ENXIO;
826 		goto out_unlock;
827 	}
828 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
829 
830 	ret = nvme_user_cmd(ctrl, ns, argp, 0, open_for_write);
831 	nvme_put_ns(ns);
832 	return ret;
833 
834 out_unlock:
835 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
836 	return ret;
837 }
838 
839 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
840 		unsigned long arg)
841 {
842 	bool open_for_write = file->f_mode & FMODE_WRITE;
843 	struct nvme_ctrl *ctrl = file->private_data;
844 	void __user *argp = (void __user *)arg;
845 
846 	switch (cmd) {
847 	case NVME_IOCTL_ADMIN_CMD:
848 		return nvme_user_cmd(ctrl, NULL, argp, 0, open_for_write);
849 	case NVME_IOCTL_ADMIN64_CMD:
850 		return nvme_user_cmd64(ctrl, NULL, argp, 0, open_for_write);
851 	case NVME_IOCTL_IO_CMD:
852 		return nvme_dev_user_cmd(ctrl, argp, open_for_write);
853 	case NVME_IOCTL_RESET:
854 		if (!capable(CAP_SYS_ADMIN))
855 			return -EACCES;
856 		dev_warn(ctrl->device, "resetting controller\n");
857 		return nvme_reset_ctrl_sync(ctrl);
858 	case NVME_IOCTL_SUBSYS_RESET:
859 		if (!capable(CAP_SYS_ADMIN))
860 			return -EACCES;
861 		return nvme_reset_subsystem(ctrl);
862 	case NVME_IOCTL_RESCAN:
863 		if (!capable(CAP_SYS_ADMIN))
864 			return -EACCES;
865 		nvme_queue_scan(ctrl);
866 		return 0;
867 	default:
868 		return -ENOTTY;
869 	}
870 }
871