1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 30 * when connected and a 31 * connection failure. 32 */ 33 34 struct nvme_fc_queue { 35 struct nvme_fc_ctrl *ctrl; 36 struct device *dev; 37 struct blk_mq_hw_ctx *hctx; 38 void *lldd_handle; 39 size_t cmnd_capsule_len; 40 u32 qnum; 41 u32 rqcnt; 42 u32 seqno; 43 44 u64 connection_id; 45 atomic_t csn; 46 47 unsigned long flags; 48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 49 50 enum nvme_fcop_flags { 51 FCOP_FLAGS_TERMIO = (1 << 0), 52 FCOP_FLAGS_AEN = (1 << 1), 53 }; 54 55 struct nvmefc_ls_req_op { 56 struct nvmefc_ls_req ls_req; 57 58 struct nvme_fc_rport *rport; 59 struct nvme_fc_queue *queue; 60 struct request *rq; 61 u32 flags; 62 63 int ls_error; 64 struct completion ls_done; 65 struct list_head lsreq_list; /* rport->ls_req_list */ 66 bool req_queued; 67 }; 68 69 struct nvmefc_ls_rcv_op { 70 struct nvme_fc_rport *rport; 71 struct nvmefc_ls_rsp *lsrsp; 72 union nvmefc_ls_requests *rqstbuf; 73 union nvmefc_ls_responses *rspbuf; 74 u16 rqstdatalen; 75 bool handled; 76 dma_addr_t rspdma; 77 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 79 80 enum nvme_fcpop_state { 81 FCPOP_STATE_UNINIT = 0, 82 FCPOP_STATE_IDLE = 1, 83 FCPOP_STATE_ACTIVE = 2, 84 FCPOP_STATE_ABORTED = 3, 85 FCPOP_STATE_COMPLETE = 4, 86 }; 87 88 struct nvme_fc_fcp_op { 89 struct nvme_request nreq; /* 90 * nvme/host/core.c 91 * requires this to be 92 * the 1st element in the 93 * private structure 94 * associated with the 95 * request. 96 */ 97 struct nvmefc_fcp_req fcp_req; 98 99 struct nvme_fc_ctrl *ctrl; 100 struct nvme_fc_queue *queue; 101 struct request *rq; 102 103 atomic_t state; 104 u32 flags; 105 u32 rqno; 106 u32 nents; 107 108 struct nvme_fc_cmd_iu cmd_iu; 109 struct nvme_fc_ersp_iu rsp_iu; 110 }; 111 112 struct nvme_fcp_op_w_sgl { 113 struct nvme_fc_fcp_op op; 114 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 115 uint8_t priv[]; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 atomic_t act_rport_cnt; 128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 129 130 struct nvme_fc_rport { 131 struct nvme_fc_remote_port remoteport; 132 133 struct list_head endp_list; /* for lport->endp_list */ 134 struct list_head ctrl_list; 135 struct list_head ls_req_list; 136 struct list_head ls_rcv_list; 137 struct list_head disc_list; 138 struct device *dev; /* physical device for dma */ 139 struct nvme_fc_lport *lport; 140 spinlock_t lock; 141 struct kref ref; 142 atomic_t act_ctrl_cnt; 143 unsigned long dev_loss_end; 144 struct work_struct lsrcv_work; 145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 146 147 /* fc_ctrl flags values - specified as bit positions */ 148 #define ASSOC_ACTIVE 0 149 #define ASSOC_FAILED 1 150 #define FCCTRL_TERMIO 2 151 152 struct nvme_fc_ctrl { 153 spinlock_t lock; 154 struct nvme_fc_queue *queues; 155 struct device *dev; 156 struct nvme_fc_lport *lport; 157 struct nvme_fc_rport *rport; 158 u32 cnum; 159 160 bool ioq_live; 161 u64 association_id; 162 struct nvmefc_ls_rcv_op *rcv_disconn; 163 164 struct list_head ctrl_list; /* rport->ctrl_list */ 165 166 struct blk_mq_tag_set admin_tag_set; 167 struct blk_mq_tag_set tag_set; 168 169 struct work_struct ioerr_work; 170 struct delayed_work connect_work; 171 172 struct kref ref; 173 unsigned long flags; 174 u32 iocnt; 175 wait_queue_head_t ioabort_wait; 176 177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 178 179 struct nvme_ctrl ctrl; 180 }; 181 182 static inline struct nvme_fc_ctrl * 183 to_fc_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 186 } 187 188 static inline struct nvme_fc_lport * 189 localport_to_lport(struct nvme_fc_local_port *portptr) 190 { 191 return container_of(portptr, struct nvme_fc_lport, localport); 192 } 193 194 static inline struct nvme_fc_rport * 195 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 196 { 197 return container_of(portptr, struct nvme_fc_rport, remoteport); 198 } 199 200 static inline struct nvmefc_ls_req_op * 201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 202 { 203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 204 } 205 206 static inline struct nvme_fc_fcp_op * 207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 208 { 209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 210 } 211 212 213 214 /* *************************** Globals **************************** */ 215 216 217 static DEFINE_SPINLOCK(nvme_fc_lock); 218 219 static LIST_HEAD(nvme_fc_lport_list); 220 static DEFINE_IDA(nvme_fc_local_port_cnt); 221 static DEFINE_IDA(nvme_fc_ctrl_cnt); 222 223 /* 224 * These items are short-term. They will eventually be moved into 225 * a generic FC class. See comments in module init. 226 */ 227 static struct device *fc_udev_device; 228 229 static void nvme_fc_complete_rq(struct request *rq); 230 231 /* *********************** FC-NVME Port Management ************************ */ 232 233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 234 struct nvme_fc_queue *, unsigned int); 235 236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 237 238 239 static void 240 nvme_fc_free_lport(struct kref *ref) 241 { 242 struct nvme_fc_lport *lport = 243 container_of(ref, struct nvme_fc_lport, ref); 244 unsigned long flags; 245 246 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 247 WARN_ON(!list_empty(&lport->endp_list)); 248 249 /* remove from transport list */ 250 spin_lock_irqsave(&nvme_fc_lock, flags); 251 list_del(&lport->port_list); 252 spin_unlock_irqrestore(&nvme_fc_lock, flags); 253 254 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 255 ida_destroy(&lport->endp_cnt); 256 257 put_device(lport->dev); 258 259 kfree(lport); 260 } 261 262 static void 263 nvme_fc_lport_put(struct nvme_fc_lport *lport) 264 { 265 kref_put(&lport->ref, nvme_fc_free_lport); 266 } 267 268 static int 269 nvme_fc_lport_get(struct nvme_fc_lport *lport) 270 { 271 return kref_get_unless_zero(&lport->ref); 272 } 273 274 275 static struct nvme_fc_lport * 276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 277 struct nvme_fc_port_template *ops, 278 struct device *dev) 279 { 280 struct nvme_fc_lport *lport; 281 unsigned long flags; 282 283 spin_lock_irqsave(&nvme_fc_lock, flags); 284 285 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 286 if (lport->localport.node_name != pinfo->node_name || 287 lport->localport.port_name != pinfo->port_name) 288 continue; 289 290 if (lport->dev != dev) { 291 lport = ERR_PTR(-EXDEV); 292 goto out_done; 293 } 294 295 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 296 lport = ERR_PTR(-EEXIST); 297 goto out_done; 298 } 299 300 if (!nvme_fc_lport_get(lport)) { 301 /* 302 * fails if ref cnt already 0. If so, 303 * act as if lport already deleted 304 */ 305 lport = NULL; 306 goto out_done; 307 } 308 309 /* resume the lport */ 310 311 lport->ops = ops; 312 lport->localport.port_role = pinfo->port_role; 313 lport->localport.port_id = pinfo->port_id; 314 lport->localport.port_state = FC_OBJSTATE_ONLINE; 315 316 spin_unlock_irqrestore(&nvme_fc_lock, flags); 317 318 return lport; 319 } 320 321 lport = NULL; 322 323 out_done: 324 spin_unlock_irqrestore(&nvme_fc_lock, flags); 325 326 return lport; 327 } 328 329 /** 330 * nvme_fc_register_localport - transport entry point called by an 331 * LLDD to register the existence of a NVME 332 * host FC port. 333 * @pinfo: pointer to information about the port to be registered 334 * @template: LLDD entrypoints and operational parameters for the port 335 * @dev: physical hardware device node port corresponds to. Will be 336 * used for DMA mappings 337 * @portptr: pointer to a local port pointer. Upon success, the routine 338 * will allocate a nvme_fc_local_port structure and place its 339 * address in the local port pointer. Upon failure, local port 340 * pointer will be set to 0. 341 * 342 * Returns: 343 * a completion status. Must be 0 upon success; a negative errno 344 * (ex: -ENXIO) upon failure. 345 */ 346 int 347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 348 struct nvme_fc_port_template *template, 349 struct device *dev, 350 struct nvme_fc_local_port **portptr) 351 { 352 struct nvme_fc_lport *newrec; 353 unsigned long flags; 354 int ret, idx; 355 356 if (!template->localport_delete || !template->remoteport_delete || 357 !template->ls_req || !template->fcp_io || 358 !template->ls_abort || !template->fcp_abort || 359 !template->max_hw_queues || !template->max_sgl_segments || 360 !template->max_dif_sgl_segments || !template->dma_boundary) { 361 ret = -EINVAL; 362 goto out_reghost_failed; 363 } 364 365 /* 366 * look to see if there is already a localport that had been 367 * deregistered and in the process of waiting for all the 368 * references to fully be removed. If the references haven't 369 * expired, we can simply re-enable the localport. Remoteports 370 * and controller reconnections should resume naturally. 371 */ 372 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 373 374 /* found an lport, but something about its state is bad */ 375 if (IS_ERR(newrec)) { 376 ret = PTR_ERR(newrec); 377 goto out_reghost_failed; 378 379 /* found existing lport, which was resumed */ 380 } else if (newrec) { 381 *portptr = &newrec->localport; 382 return 0; 383 } 384 385 /* nothing found - allocate a new localport struct */ 386 387 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 388 GFP_KERNEL); 389 if (!newrec) { 390 ret = -ENOMEM; 391 goto out_reghost_failed; 392 } 393 394 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 395 if (idx < 0) { 396 ret = -ENOSPC; 397 goto out_fail_kfree; 398 } 399 400 if (!get_device(dev) && dev) { 401 ret = -ENODEV; 402 goto out_ida_put; 403 } 404 405 INIT_LIST_HEAD(&newrec->port_list); 406 INIT_LIST_HEAD(&newrec->endp_list); 407 kref_init(&newrec->ref); 408 atomic_set(&newrec->act_rport_cnt, 0); 409 newrec->ops = template; 410 newrec->dev = dev; 411 ida_init(&newrec->endp_cnt); 412 if (template->local_priv_sz) 413 newrec->localport.private = &newrec[1]; 414 else 415 newrec->localport.private = NULL; 416 newrec->localport.node_name = pinfo->node_name; 417 newrec->localport.port_name = pinfo->port_name; 418 newrec->localport.port_role = pinfo->port_role; 419 newrec->localport.port_id = pinfo->port_id; 420 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 421 newrec->localport.port_num = idx; 422 423 spin_lock_irqsave(&nvme_fc_lock, flags); 424 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 425 spin_unlock_irqrestore(&nvme_fc_lock, flags); 426 427 if (dev) 428 dma_set_seg_boundary(dev, template->dma_boundary); 429 430 *portptr = &newrec->localport; 431 return 0; 432 433 out_ida_put: 434 ida_free(&nvme_fc_local_port_cnt, idx); 435 out_fail_kfree: 436 kfree(newrec); 437 out_reghost_failed: 438 *portptr = NULL; 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 443 444 /** 445 * nvme_fc_unregister_localport - transport entry point called by an 446 * LLDD to deregister/remove a previously 447 * registered a NVME host FC port. 448 * @portptr: pointer to the (registered) local port that is to be deregistered. 449 * 450 * Returns: 451 * a completion status. Must be 0 upon success; a negative errno 452 * (ex: -ENXIO) upon failure. 453 */ 454 int 455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 456 { 457 struct nvme_fc_lport *lport = localport_to_lport(portptr); 458 unsigned long flags; 459 460 if (!portptr) 461 return -EINVAL; 462 463 spin_lock_irqsave(&nvme_fc_lock, flags); 464 465 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 466 spin_unlock_irqrestore(&nvme_fc_lock, flags); 467 return -EINVAL; 468 } 469 portptr->port_state = FC_OBJSTATE_DELETED; 470 471 spin_unlock_irqrestore(&nvme_fc_lock, flags); 472 473 if (atomic_read(&lport->act_rport_cnt) == 0) 474 lport->ops->localport_delete(&lport->localport); 475 476 nvme_fc_lport_put(lport); 477 478 return 0; 479 } 480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 481 482 /* 483 * TRADDR strings, per FC-NVME are fixed format: 484 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 485 * udev event will only differ by prefix of what field is 486 * being specified: 487 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 488 * 19 + 43 + null_fudge = 64 characters 489 */ 490 #define FCNVME_TRADDR_LENGTH 64 491 492 static void 493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 494 struct nvme_fc_rport *rport) 495 { 496 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 497 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 498 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 499 500 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 501 return; 502 503 snprintf(hostaddr, sizeof(hostaddr), 504 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 505 lport->localport.node_name, lport->localport.port_name); 506 snprintf(tgtaddr, sizeof(tgtaddr), 507 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 508 rport->remoteport.node_name, rport->remoteport.port_name); 509 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 510 } 511 512 static void 513 nvme_fc_free_rport(struct kref *ref) 514 { 515 struct nvme_fc_rport *rport = 516 container_of(ref, struct nvme_fc_rport, ref); 517 struct nvme_fc_lport *lport = 518 localport_to_lport(rport->remoteport.localport); 519 unsigned long flags; 520 521 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 522 WARN_ON(!list_empty(&rport->ctrl_list)); 523 524 /* remove from lport list */ 525 spin_lock_irqsave(&nvme_fc_lock, flags); 526 list_del(&rport->endp_list); 527 spin_unlock_irqrestore(&nvme_fc_lock, flags); 528 529 WARN_ON(!list_empty(&rport->disc_list)); 530 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 531 532 kfree(rport); 533 534 nvme_fc_lport_put(lport); 535 } 536 537 static void 538 nvme_fc_rport_put(struct nvme_fc_rport *rport) 539 { 540 kref_put(&rport->ref, nvme_fc_free_rport); 541 } 542 543 static int 544 nvme_fc_rport_get(struct nvme_fc_rport *rport) 545 { 546 return kref_get_unless_zero(&rport->ref); 547 } 548 549 static void 550 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 551 { 552 switch (nvme_ctrl_state(&ctrl->ctrl)) { 553 case NVME_CTRL_NEW: 554 case NVME_CTRL_CONNECTING: 555 /* 556 * As all reconnects were suppressed, schedule a 557 * connect. 558 */ 559 dev_info(ctrl->ctrl.device, 560 "NVME-FC{%d}: connectivity re-established. " 561 "Attempting reconnect\n", ctrl->cnum); 562 563 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 564 break; 565 566 case NVME_CTRL_RESETTING: 567 /* 568 * Controller is already in the process of terminating the 569 * association. No need to do anything further. The reconnect 570 * step will naturally occur after the reset completes. 571 */ 572 break; 573 574 default: 575 /* no action to take - let it delete */ 576 break; 577 } 578 } 579 580 static struct nvme_fc_rport * 581 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 582 struct nvme_fc_port_info *pinfo) 583 { 584 struct nvme_fc_rport *rport; 585 struct nvme_fc_ctrl *ctrl; 586 unsigned long flags; 587 588 spin_lock_irqsave(&nvme_fc_lock, flags); 589 590 list_for_each_entry(rport, &lport->endp_list, endp_list) { 591 if (rport->remoteport.node_name != pinfo->node_name || 592 rport->remoteport.port_name != pinfo->port_name) 593 continue; 594 595 if (!nvme_fc_rport_get(rport)) { 596 rport = ERR_PTR(-ENOLCK); 597 goto out_done; 598 } 599 600 spin_unlock_irqrestore(&nvme_fc_lock, flags); 601 602 spin_lock_irqsave(&rport->lock, flags); 603 604 /* has it been unregistered */ 605 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 606 /* means lldd called us twice */ 607 spin_unlock_irqrestore(&rport->lock, flags); 608 nvme_fc_rport_put(rport); 609 return ERR_PTR(-ESTALE); 610 } 611 612 rport->remoteport.port_role = pinfo->port_role; 613 rport->remoteport.port_id = pinfo->port_id; 614 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 615 rport->dev_loss_end = 0; 616 617 /* 618 * kick off a reconnect attempt on all associations to the 619 * remote port. A successful reconnects will resume i/o. 620 */ 621 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 622 nvme_fc_resume_controller(ctrl); 623 624 spin_unlock_irqrestore(&rport->lock, flags); 625 626 return rport; 627 } 628 629 rport = NULL; 630 631 out_done: 632 spin_unlock_irqrestore(&nvme_fc_lock, flags); 633 634 return rport; 635 } 636 637 static inline void 638 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 639 struct nvme_fc_port_info *pinfo) 640 { 641 if (pinfo->dev_loss_tmo) 642 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 643 else 644 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 645 } 646 647 /** 648 * nvme_fc_register_remoteport - transport entry point called by an 649 * LLDD to register the existence of a NVME 650 * subsystem FC port on its fabric. 651 * @localport: pointer to the (registered) local port that the remote 652 * subsystem port is connected to. 653 * @pinfo: pointer to information about the port to be registered 654 * @portptr: pointer to a remote port pointer. Upon success, the routine 655 * will allocate a nvme_fc_remote_port structure and place its 656 * address in the remote port pointer. Upon failure, remote port 657 * pointer will be set to 0. 658 * 659 * Returns: 660 * a completion status. Must be 0 upon success; a negative errno 661 * (ex: -ENXIO) upon failure. 662 */ 663 int 664 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 665 struct nvme_fc_port_info *pinfo, 666 struct nvme_fc_remote_port **portptr) 667 { 668 struct nvme_fc_lport *lport = localport_to_lport(localport); 669 struct nvme_fc_rport *newrec; 670 unsigned long flags; 671 int ret, idx; 672 673 if (!nvme_fc_lport_get(lport)) { 674 ret = -ESHUTDOWN; 675 goto out_reghost_failed; 676 } 677 678 /* 679 * look to see if there is already a remoteport that is waiting 680 * for a reconnect (within dev_loss_tmo) with the same WWN's. 681 * If so, transition to it and reconnect. 682 */ 683 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 684 685 /* found an rport, but something about its state is bad */ 686 if (IS_ERR(newrec)) { 687 ret = PTR_ERR(newrec); 688 goto out_lport_put; 689 690 /* found existing rport, which was resumed */ 691 } else if (newrec) { 692 nvme_fc_lport_put(lport); 693 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 694 nvme_fc_signal_discovery_scan(lport, newrec); 695 *portptr = &newrec->remoteport; 696 return 0; 697 } 698 699 /* nothing found - allocate a new remoteport struct */ 700 701 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 702 GFP_KERNEL); 703 if (!newrec) { 704 ret = -ENOMEM; 705 goto out_lport_put; 706 } 707 708 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 709 if (idx < 0) { 710 ret = -ENOSPC; 711 goto out_kfree_rport; 712 } 713 714 INIT_LIST_HEAD(&newrec->endp_list); 715 INIT_LIST_HEAD(&newrec->ctrl_list); 716 INIT_LIST_HEAD(&newrec->ls_req_list); 717 INIT_LIST_HEAD(&newrec->disc_list); 718 kref_init(&newrec->ref); 719 atomic_set(&newrec->act_ctrl_cnt, 0); 720 spin_lock_init(&newrec->lock); 721 newrec->remoteport.localport = &lport->localport; 722 INIT_LIST_HEAD(&newrec->ls_rcv_list); 723 newrec->dev = lport->dev; 724 newrec->lport = lport; 725 if (lport->ops->remote_priv_sz) 726 newrec->remoteport.private = &newrec[1]; 727 else 728 newrec->remoteport.private = NULL; 729 newrec->remoteport.port_role = pinfo->port_role; 730 newrec->remoteport.node_name = pinfo->node_name; 731 newrec->remoteport.port_name = pinfo->port_name; 732 newrec->remoteport.port_id = pinfo->port_id; 733 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 734 newrec->remoteport.port_num = idx; 735 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 736 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 737 738 spin_lock_irqsave(&nvme_fc_lock, flags); 739 list_add_tail(&newrec->endp_list, &lport->endp_list); 740 spin_unlock_irqrestore(&nvme_fc_lock, flags); 741 742 nvme_fc_signal_discovery_scan(lport, newrec); 743 744 *portptr = &newrec->remoteport; 745 return 0; 746 747 out_kfree_rport: 748 kfree(newrec); 749 out_lport_put: 750 nvme_fc_lport_put(lport); 751 out_reghost_failed: 752 *portptr = NULL; 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 756 757 static int 758 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 759 { 760 struct nvmefc_ls_req_op *lsop; 761 unsigned long flags; 762 763 restart: 764 spin_lock_irqsave(&rport->lock, flags); 765 766 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 767 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 768 lsop->flags |= FCOP_FLAGS_TERMIO; 769 spin_unlock_irqrestore(&rport->lock, flags); 770 rport->lport->ops->ls_abort(&rport->lport->localport, 771 &rport->remoteport, 772 &lsop->ls_req); 773 goto restart; 774 } 775 } 776 spin_unlock_irqrestore(&rport->lock, flags); 777 778 return 0; 779 } 780 781 static void 782 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 783 { 784 dev_info(ctrl->ctrl.device, 785 "NVME-FC{%d}: controller connectivity lost. Awaiting " 786 "Reconnect", ctrl->cnum); 787 788 switch (nvme_ctrl_state(&ctrl->ctrl)) { 789 case NVME_CTRL_NEW: 790 case NVME_CTRL_LIVE: 791 /* 792 * Schedule a controller reset. The reset will terminate the 793 * association and schedule the reconnect timer. Reconnects 794 * will be attempted until either the ctlr_loss_tmo 795 * (max_retries * connect_delay) expires or the remoteport's 796 * dev_loss_tmo expires. 797 */ 798 if (nvme_reset_ctrl(&ctrl->ctrl)) { 799 dev_warn(ctrl->ctrl.device, 800 "NVME-FC{%d}: Couldn't schedule reset.\n", 801 ctrl->cnum); 802 nvme_delete_ctrl(&ctrl->ctrl); 803 } 804 break; 805 806 case NVME_CTRL_CONNECTING: 807 /* 808 * The association has already been terminated and the 809 * controller is attempting reconnects. No need to do anything 810 * futher. Reconnects will be attempted until either the 811 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 812 * remoteport's dev_loss_tmo expires. 813 */ 814 break; 815 816 case NVME_CTRL_RESETTING: 817 /* 818 * Controller is already in the process of terminating the 819 * association. No need to do anything further. The reconnect 820 * step will kick in naturally after the association is 821 * terminated. 822 */ 823 break; 824 825 case NVME_CTRL_DELETING: 826 case NVME_CTRL_DELETING_NOIO: 827 default: 828 /* no action to take - let it delete */ 829 break; 830 } 831 } 832 833 /** 834 * nvme_fc_unregister_remoteport - transport entry point called by an 835 * LLDD to deregister/remove a previously 836 * registered a NVME subsystem FC port. 837 * @portptr: pointer to the (registered) remote port that is to be 838 * deregistered. 839 * 840 * Returns: 841 * a completion status. Must be 0 upon success; a negative errno 842 * (ex: -ENXIO) upon failure. 843 */ 844 int 845 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 846 { 847 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 848 struct nvme_fc_ctrl *ctrl; 849 unsigned long flags; 850 851 if (!portptr) 852 return -EINVAL; 853 854 spin_lock_irqsave(&rport->lock, flags); 855 856 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 857 spin_unlock_irqrestore(&rport->lock, flags); 858 return -EINVAL; 859 } 860 portptr->port_state = FC_OBJSTATE_DELETED; 861 862 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 863 864 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 865 /* if dev_loss_tmo==0, dev loss is immediate */ 866 if (!portptr->dev_loss_tmo) { 867 dev_warn(ctrl->ctrl.device, 868 "NVME-FC{%d}: controller connectivity lost.\n", 869 ctrl->cnum); 870 nvme_delete_ctrl(&ctrl->ctrl); 871 } else 872 nvme_fc_ctrl_connectivity_loss(ctrl); 873 } 874 875 spin_unlock_irqrestore(&rport->lock, flags); 876 877 nvme_fc_abort_lsops(rport); 878 879 if (atomic_read(&rport->act_ctrl_cnt) == 0) 880 rport->lport->ops->remoteport_delete(portptr); 881 882 /* 883 * release the reference, which will allow, if all controllers 884 * go away, which should only occur after dev_loss_tmo occurs, 885 * for the rport to be torn down. 886 */ 887 nvme_fc_rport_put(rport); 888 889 return 0; 890 } 891 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 892 893 /** 894 * nvme_fc_rescan_remoteport - transport entry point called by an 895 * LLDD to request a nvme device rescan. 896 * @remoteport: pointer to the (registered) remote port that is to be 897 * rescanned. 898 * 899 * Returns: N/A 900 */ 901 void 902 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 903 { 904 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 905 906 nvme_fc_signal_discovery_scan(rport->lport, rport); 907 } 908 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 909 910 int 911 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 912 u32 dev_loss_tmo) 913 { 914 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 915 unsigned long flags; 916 917 spin_lock_irqsave(&rport->lock, flags); 918 919 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 920 spin_unlock_irqrestore(&rport->lock, flags); 921 return -EINVAL; 922 } 923 924 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 925 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 926 927 spin_unlock_irqrestore(&rport->lock, flags); 928 929 return 0; 930 } 931 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 932 933 934 /* *********************** FC-NVME DMA Handling **************************** */ 935 936 /* 937 * The fcloop device passes in a NULL device pointer. Real LLD's will 938 * pass in a valid device pointer. If NULL is passed to the dma mapping 939 * routines, depending on the platform, it may or may not succeed, and 940 * may crash. 941 * 942 * As such: 943 * Wrapper all the dma routines and check the dev pointer. 944 * 945 * If simple mappings (return just a dma address, we'll noop them, 946 * returning a dma address of 0. 947 * 948 * On more complex mappings (dma_map_sg), a pseudo routine fills 949 * in the scatter list, setting all dma addresses to 0. 950 */ 951 952 static inline dma_addr_t 953 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 954 enum dma_data_direction dir) 955 { 956 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 957 } 958 959 static inline int 960 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 961 { 962 return dev ? dma_mapping_error(dev, dma_addr) : 0; 963 } 964 965 static inline void 966 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 967 enum dma_data_direction dir) 968 { 969 if (dev) 970 dma_unmap_single(dev, addr, size, dir); 971 } 972 973 static inline void 974 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 975 enum dma_data_direction dir) 976 { 977 if (dev) 978 dma_sync_single_for_cpu(dev, addr, size, dir); 979 } 980 981 static inline void 982 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 983 enum dma_data_direction dir) 984 { 985 if (dev) 986 dma_sync_single_for_device(dev, addr, size, dir); 987 } 988 989 /* pseudo dma_map_sg call */ 990 static int 991 fc_map_sg(struct scatterlist *sg, int nents) 992 { 993 struct scatterlist *s; 994 int i; 995 996 WARN_ON(nents == 0 || sg[0].length == 0); 997 998 for_each_sg(sg, s, nents, i) { 999 s->dma_address = 0L; 1000 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1001 s->dma_length = s->length; 1002 #endif 1003 } 1004 return nents; 1005 } 1006 1007 static inline int 1008 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1009 enum dma_data_direction dir) 1010 { 1011 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 1012 } 1013 1014 static inline void 1015 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1016 enum dma_data_direction dir) 1017 { 1018 if (dev) 1019 dma_unmap_sg(dev, sg, nents, dir); 1020 } 1021 1022 /* *********************** FC-NVME LS Handling **************************** */ 1023 1024 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1025 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1026 1027 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1028 1029 static void 1030 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1031 { 1032 struct nvme_fc_rport *rport = lsop->rport; 1033 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1034 unsigned long flags; 1035 1036 spin_lock_irqsave(&rport->lock, flags); 1037 1038 if (!lsop->req_queued) { 1039 spin_unlock_irqrestore(&rport->lock, flags); 1040 return; 1041 } 1042 1043 list_del(&lsop->lsreq_list); 1044 1045 lsop->req_queued = false; 1046 1047 spin_unlock_irqrestore(&rport->lock, flags); 1048 1049 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1050 (lsreq->rqstlen + lsreq->rsplen), 1051 DMA_BIDIRECTIONAL); 1052 1053 nvme_fc_rport_put(rport); 1054 } 1055 1056 static int 1057 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1058 struct nvmefc_ls_req_op *lsop, 1059 void (*done)(struct nvmefc_ls_req *req, int status)) 1060 { 1061 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1062 unsigned long flags; 1063 int ret = 0; 1064 1065 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1066 return -ECONNREFUSED; 1067 1068 if (!nvme_fc_rport_get(rport)) 1069 return -ESHUTDOWN; 1070 1071 lsreq->done = done; 1072 lsop->rport = rport; 1073 lsop->req_queued = false; 1074 INIT_LIST_HEAD(&lsop->lsreq_list); 1075 init_completion(&lsop->ls_done); 1076 1077 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1078 lsreq->rqstlen + lsreq->rsplen, 1079 DMA_BIDIRECTIONAL); 1080 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1081 ret = -EFAULT; 1082 goto out_putrport; 1083 } 1084 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1085 1086 spin_lock_irqsave(&rport->lock, flags); 1087 1088 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1089 1090 lsop->req_queued = true; 1091 1092 spin_unlock_irqrestore(&rport->lock, flags); 1093 1094 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1095 &rport->remoteport, lsreq); 1096 if (ret) 1097 goto out_unlink; 1098 1099 return 0; 1100 1101 out_unlink: 1102 lsop->ls_error = ret; 1103 spin_lock_irqsave(&rport->lock, flags); 1104 lsop->req_queued = false; 1105 list_del(&lsop->lsreq_list); 1106 spin_unlock_irqrestore(&rport->lock, flags); 1107 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1108 (lsreq->rqstlen + lsreq->rsplen), 1109 DMA_BIDIRECTIONAL); 1110 out_putrport: 1111 nvme_fc_rport_put(rport); 1112 1113 return ret; 1114 } 1115 1116 static void 1117 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1118 { 1119 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1120 1121 lsop->ls_error = status; 1122 complete(&lsop->ls_done); 1123 } 1124 1125 static int 1126 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1127 { 1128 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1129 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1130 int ret; 1131 1132 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1133 1134 if (!ret) { 1135 /* 1136 * No timeout/not interruptible as we need the struct 1137 * to exist until the lldd calls us back. Thus mandate 1138 * wait until driver calls back. lldd responsible for 1139 * the timeout action 1140 */ 1141 wait_for_completion(&lsop->ls_done); 1142 1143 __nvme_fc_finish_ls_req(lsop); 1144 1145 ret = lsop->ls_error; 1146 } 1147 1148 if (ret) 1149 return ret; 1150 1151 /* ACC or RJT payload ? */ 1152 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1153 return -ENXIO; 1154 1155 return 0; 1156 } 1157 1158 static int 1159 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1160 struct nvmefc_ls_req_op *lsop, 1161 void (*done)(struct nvmefc_ls_req *req, int status)) 1162 { 1163 /* don't wait for completion */ 1164 1165 return __nvme_fc_send_ls_req(rport, lsop, done); 1166 } 1167 1168 static int 1169 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1170 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1171 { 1172 struct nvmefc_ls_req_op *lsop; 1173 struct nvmefc_ls_req *lsreq; 1174 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1175 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1176 unsigned long flags; 1177 int ret, fcret = 0; 1178 1179 lsop = kzalloc((sizeof(*lsop) + 1180 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1181 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1182 if (!lsop) { 1183 dev_info(ctrl->ctrl.device, 1184 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1185 ctrl->cnum); 1186 ret = -ENOMEM; 1187 goto out_no_memory; 1188 } 1189 1190 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1191 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1192 lsreq = &lsop->ls_req; 1193 if (ctrl->lport->ops->lsrqst_priv_sz) 1194 lsreq->private = &assoc_acc[1]; 1195 else 1196 lsreq->private = NULL; 1197 1198 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1199 assoc_rqst->desc_list_len = 1200 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1201 1202 assoc_rqst->assoc_cmd.desc_tag = 1203 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1204 assoc_rqst->assoc_cmd.desc_len = 1205 fcnvme_lsdesc_len( 1206 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1207 1208 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1209 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1210 /* Linux supports only Dynamic controllers */ 1211 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1212 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1213 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1214 sizeof(assoc_rqst->assoc_cmd.hostnqn)); 1215 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1216 sizeof(assoc_rqst->assoc_cmd.subnqn)); 1217 1218 lsop->queue = queue; 1219 lsreq->rqstaddr = assoc_rqst; 1220 lsreq->rqstlen = sizeof(*assoc_rqst); 1221 lsreq->rspaddr = assoc_acc; 1222 lsreq->rsplen = sizeof(*assoc_acc); 1223 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1224 1225 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1226 if (ret) 1227 goto out_free_buffer; 1228 1229 /* process connect LS completion */ 1230 1231 /* validate the ACC response */ 1232 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1233 fcret = VERR_LSACC; 1234 else if (assoc_acc->hdr.desc_list_len != 1235 fcnvme_lsdesc_len( 1236 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1237 fcret = VERR_CR_ASSOC_ACC_LEN; 1238 else if (assoc_acc->hdr.rqst.desc_tag != 1239 cpu_to_be32(FCNVME_LSDESC_RQST)) 1240 fcret = VERR_LSDESC_RQST; 1241 else if (assoc_acc->hdr.rqst.desc_len != 1242 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1243 fcret = VERR_LSDESC_RQST_LEN; 1244 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1245 fcret = VERR_CR_ASSOC; 1246 else if (assoc_acc->associd.desc_tag != 1247 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1248 fcret = VERR_ASSOC_ID; 1249 else if (assoc_acc->associd.desc_len != 1250 fcnvme_lsdesc_len( 1251 sizeof(struct fcnvme_lsdesc_assoc_id))) 1252 fcret = VERR_ASSOC_ID_LEN; 1253 else if (assoc_acc->connectid.desc_tag != 1254 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1255 fcret = VERR_CONN_ID; 1256 else if (assoc_acc->connectid.desc_len != 1257 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1258 fcret = VERR_CONN_ID_LEN; 1259 1260 if (fcret) { 1261 ret = -EBADF; 1262 dev_err(ctrl->dev, 1263 "q %d Create Association LS failed: %s\n", 1264 queue->qnum, validation_errors[fcret]); 1265 } else { 1266 spin_lock_irqsave(&ctrl->lock, flags); 1267 ctrl->association_id = 1268 be64_to_cpu(assoc_acc->associd.association_id); 1269 queue->connection_id = 1270 be64_to_cpu(assoc_acc->connectid.connection_id); 1271 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1272 spin_unlock_irqrestore(&ctrl->lock, flags); 1273 } 1274 1275 out_free_buffer: 1276 kfree(lsop); 1277 out_no_memory: 1278 if (ret) 1279 dev_err(ctrl->dev, 1280 "queue %d connect admin queue failed (%d).\n", 1281 queue->qnum, ret); 1282 return ret; 1283 } 1284 1285 static int 1286 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1287 u16 qsize, u16 ersp_ratio) 1288 { 1289 struct nvmefc_ls_req_op *lsop; 1290 struct nvmefc_ls_req *lsreq; 1291 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1292 struct fcnvme_ls_cr_conn_acc *conn_acc; 1293 int ret, fcret = 0; 1294 1295 lsop = kzalloc((sizeof(*lsop) + 1296 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1297 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1298 if (!lsop) { 1299 dev_info(ctrl->ctrl.device, 1300 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1301 ctrl->cnum); 1302 ret = -ENOMEM; 1303 goto out_no_memory; 1304 } 1305 1306 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1307 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1308 lsreq = &lsop->ls_req; 1309 if (ctrl->lport->ops->lsrqst_priv_sz) 1310 lsreq->private = (void *)&conn_acc[1]; 1311 else 1312 lsreq->private = NULL; 1313 1314 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1315 conn_rqst->desc_list_len = cpu_to_be32( 1316 sizeof(struct fcnvme_lsdesc_assoc_id) + 1317 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1318 1319 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1320 conn_rqst->associd.desc_len = 1321 fcnvme_lsdesc_len( 1322 sizeof(struct fcnvme_lsdesc_assoc_id)); 1323 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1324 conn_rqst->connect_cmd.desc_tag = 1325 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1326 conn_rqst->connect_cmd.desc_len = 1327 fcnvme_lsdesc_len( 1328 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1329 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1330 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1331 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1332 1333 lsop->queue = queue; 1334 lsreq->rqstaddr = conn_rqst; 1335 lsreq->rqstlen = sizeof(*conn_rqst); 1336 lsreq->rspaddr = conn_acc; 1337 lsreq->rsplen = sizeof(*conn_acc); 1338 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1339 1340 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1341 if (ret) 1342 goto out_free_buffer; 1343 1344 /* process connect LS completion */ 1345 1346 /* validate the ACC response */ 1347 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1348 fcret = VERR_LSACC; 1349 else if (conn_acc->hdr.desc_list_len != 1350 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1351 fcret = VERR_CR_CONN_ACC_LEN; 1352 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1353 fcret = VERR_LSDESC_RQST; 1354 else if (conn_acc->hdr.rqst.desc_len != 1355 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1356 fcret = VERR_LSDESC_RQST_LEN; 1357 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1358 fcret = VERR_CR_CONN; 1359 else if (conn_acc->connectid.desc_tag != 1360 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1361 fcret = VERR_CONN_ID; 1362 else if (conn_acc->connectid.desc_len != 1363 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1364 fcret = VERR_CONN_ID_LEN; 1365 1366 if (fcret) { 1367 ret = -EBADF; 1368 dev_err(ctrl->dev, 1369 "q %d Create I/O Connection LS failed: %s\n", 1370 queue->qnum, validation_errors[fcret]); 1371 } else { 1372 queue->connection_id = 1373 be64_to_cpu(conn_acc->connectid.connection_id); 1374 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1375 } 1376 1377 out_free_buffer: 1378 kfree(lsop); 1379 out_no_memory: 1380 if (ret) 1381 dev_err(ctrl->dev, 1382 "queue %d connect I/O queue failed (%d).\n", 1383 queue->qnum, ret); 1384 return ret; 1385 } 1386 1387 static void 1388 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1389 { 1390 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1391 1392 __nvme_fc_finish_ls_req(lsop); 1393 1394 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1395 1396 kfree(lsop); 1397 } 1398 1399 /* 1400 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1401 * the FC-NVME Association. Terminating the association also 1402 * terminates the FC-NVME connections (per queue, both admin and io 1403 * queues) that are part of the association. E.g. things are torn 1404 * down, and the related FC-NVME Association ID and Connection IDs 1405 * become invalid. 1406 * 1407 * The behavior of the fc-nvme initiator is such that it's 1408 * understanding of the association and connections will implicitly 1409 * be torn down. The action is implicit as it may be due to a loss of 1410 * connectivity with the fc-nvme target, so you may never get a 1411 * response even if you tried. As such, the action of this routine 1412 * is to asynchronously send the LS, ignore any results of the LS, and 1413 * continue on with terminating the association. If the fc-nvme target 1414 * is present and receives the LS, it too can tear down. 1415 */ 1416 static void 1417 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1418 { 1419 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1420 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1421 struct nvmefc_ls_req_op *lsop; 1422 struct nvmefc_ls_req *lsreq; 1423 int ret; 1424 1425 lsop = kzalloc((sizeof(*lsop) + 1426 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1427 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1428 if (!lsop) { 1429 dev_info(ctrl->ctrl.device, 1430 "NVME-FC{%d}: send Disconnect Association " 1431 "failed: ENOMEM\n", 1432 ctrl->cnum); 1433 return; 1434 } 1435 1436 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1437 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1438 lsreq = &lsop->ls_req; 1439 if (ctrl->lport->ops->lsrqst_priv_sz) 1440 lsreq->private = (void *)&discon_acc[1]; 1441 else 1442 lsreq->private = NULL; 1443 1444 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1445 ctrl->association_id); 1446 1447 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1448 nvme_fc_disconnect_assoc_done); 1449 if (ret) 1450 kfree(lsop); 1451 } 1452 1453 static void 1454 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1455 { 1456 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1457 struct nvme_fc_rport *rport = lsop->rport; 1458 struct nvme_fc_lport *lport = rport->lport; 1459 unsigned long flags; 1460 1461 spin_lock_irqsave(&rport->lock, flags); 1462 list_del(&lsop->lsrcv_list); 1463 spin_unlock_irqrestore(&rport->lock, flags); 1464 1465 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1466 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1467 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1468 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1469 1470 kfree(lsop->rspbuf); 1471 kfree(lsop->rqstbuf); 1472 kfree(lsop); 1473 1474 nvme_fc_rport_put(rport); 1475 } 1476 1477 static void 1478 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1479 { 1480 struct nvme_fc_rport *rport = lsop->rport; 1481 struct nvme_fc_lport *lport = rport->lport; 1482 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1483 int ret; 1484 1485 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1486 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1487 1488 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1489 lsop->lsrsp); 1490 if (ret) { 1491 dev_warn(lport->dev, 1492 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1493 w0->ls_cmd, ret); 1494 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1495 return; 1496 } 1497 } 1498 1499 static struct nvme_fc_ctrl * 1500 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1501 struct nvmefc_ls_rcv_op *lsop) 1502 { 1503 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1504 &lsop->rqstbuf->rq_dis_assoc; 1505 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1506 struct nvmefc_ls_rcv_op *oldls = NULL; 1507 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1508 unsigned long flags; 1509 1510 spin_lock_irqsave(&rport->lock, flags); 1511 1512 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1513 if (!nvme_fc_ctrl_get(ctrl)) 1514 continue; 1515 spin_lock(&ctrl->lock); 1516 if (association_id == ctrl->association_id) { 1517 oldls = ctrl->rcv_disconn; 1518 ctrl->rcv_disconn = lsop; 1519 ret = ctrl; 1520 } 1521 spin_unlock(&ctrl->lock); 1522 if (ret) 1523 /* leave the ctrl get reference */ 1524 break; 1525 nvme_fc_ctrl_put(ctrl); 1526 } 1527 1528 spin_unlock_irqrestore(&rport->lock, flags); 1529 1530 /* transmit a response for anything that was pending */ 1531 if (oldls) { 1532 dev_info(rport->lport->dev, 1533 "NVME-FC{%d}: Multiple Disconnect Association " 1534 "LS's received\n", ctrl->cnum); 1535 /* overwrite good response with bogus failure */ 1536 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1537 sizeof(*oldls->rspbuf), 1538 rqst->w0.ls_cmd, 1539 FCNVME_RJT_RC_UNAB, 1540 FCNVME_RJT_EXP_NONE, 0); 1541 nvme_fc_xmt_ls_rsp(oldls); 1542 } 1543 1544 return ret; 1545 } 1546 1547 /* 1548 * returns true to mean LS handled and ls_rsp can be sent 1549 * returns false to defer ls_rsp xmt (will be done as part of 1550 * association termination) 1551 */ 1552 static bool 1553 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1554 { 1555 struct nvme_fc_rport *rport = lsop->rport; 1556 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1557 &lsop->rqstbuf->rq_dis_assoc; 1558 struct fcnvme_ls_disconnect_assoc_acc *acc = 1559 &lsop->rspbuf->rsp_dis_assoc; 1560 struct nvme_fc_ctrl *ctrl = NULL; 1561 int ret = 0; 1562 1563 memset(acc, 0, sizeof(*acc)); 1564 1565 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1566 if (!ret) { 1567 /* match an active association */ 1568 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1569 if (!ctrl) 1570 ret = VERR_NO_ASSOC; 1571 } 1572 1573 if (ret) { 1574 dev_info(rport->lport->dev, 1575 "Disconnect LS failed: %s\n", 1576 validation_errors[ret]); 1577 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1578 sizeof(*acc), rqst->w0.ls_cmd, 1579 (ret == VERR_NO_ASSOC) ? 1580 FCNVME_RJT_RC_INV_ASSOC : 1581 FCNVME_RJT_RC_LOGIC, 1582 FCNVME_RJT_EXP_NONE, 0); 1583 return true; 1584 } 1585 1586 /* format an ACCept response */ 1587 1588 lsop->lsrsp->rsplen = sizeof(*acc); 1589 1590 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1591 fcnvme_lsdesc_len( 1592 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1593 FCNVME_LS_DISCONNECT_ASSOC); 1594 1595 /* 1596 * the transmit of the response will occur after the exchanges 1597 * for the association have been ABTS'd by 1598 * nvme_fc_delete_association(). 1599 */ 1600 1601 /* fail the association */ 1602 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1603 1604 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1605 nvme_fc_ctrl_put(ctrl); 1606 1607 return false; 1608 } 1609 1610 /* 1611 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1612 * returns true if a response should be sent afterward, false if rsp will 1613 * be sent asynchronously. 1614 */ 1615 static bool 1616 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1617 { 1618 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1619 bool ret = true; 1620 1621 lsop->lsrsp->nvme_fc_private = lsop; 1622 lsop->lsrsp->rspbuf = lsop->rspbuf; 1623 lsop->lsrsp->rspdma = lsop->rspdma; 1624 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1625 /* Be preventative. handlers will later set to valid length */ 1626 lsop->lsrsp->rsplen = 0; 1627 1628 /* 1629 * handlers: 1630 * parse request input, execute the request, and format the 1631 * LS response 1632 */ 1633 switch (w0->ls_cmd) { 1634 case FCNVME_LS_DISCONNECT_ASSOC: 1635 ret = nvme_fc_ls_disconnect_assoc(lsop); 1636 break; 1637 case FCNVME_LS_DISCONNECT_CONN: 1638 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1639 sizeof(*lsop->rspbuf), w0->ls_cmd, 1640 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1641 break; 1642 case FCNVME_LS_CREATE_ASSOCIATION: 1643 case FCNVME_LS_CREATE_CONNECTION: 1644 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1645 sizeof(*lsop->rspbuf), w0->ls_cmd, 1646 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1647 break; 1648 default: 1649 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1650 sizeof(*lsop->rspbuf), w0->ls_cmd, 1651 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1652 break; 1653 } 1654 1655 return(ret); 1656 } 1657 1658 static void 1659 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1660 { 1661 struct nvme_fc_rport *rport = 1662 container_of(work, struct nvme_fc_rport, lsrcv_work); 1663 struct fcnvme_ls_rqst_w0 *w0; 1664 struct nvmefc_ls_rcv_op *lsop; 1665 unsigned long flags; 1666 bool sendrsp; 1667 1668 restart: 1669 sendrsp = true; 1670 spin_lock_irqsave(&rport->lock, flags); 1671 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1672 if (lsop->handled) 1673 continue; 1674 1675 lsop->handled = true; 1676 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1677 spin_unlock_irqrestore(&rport->lock, flags); 1678 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1679 } else { 1680 spin_unlock_irqrestore(&rport->lock, flags); 1681 w0 = &lsop->rqstbuf->w0; 1682 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1683 lsop->rspbuf, 1684 sizeof(*lsop->rspbuf), 1685 w0->ls_cmd, 1686 FCNVME_RJT_RC_UNAB, 1687 FCNVME_RJT_EXP_NONE, 0); 1688 } 1689 if (sendrsp) 1690 nvme_fc_xmt_ls_rsp(lsop); 1691 goto restart; 1692 } 1693 spin_unlock_irqrestore(&rport->lock, flags); 1694 } 1695 1696 static 1697 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport, 1698 struct fcnvme_ls_rqst_w0 *w0) 1699 { 1700 dev_info(lport->dev, "RCV %s LS failed: No memory\n", 1701 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1702 nvmefc_ls_names[w0->ls_cmd] : ""); 1703 } 1704 1705 /** 1706 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1707 * upon the reception of a NVME LS request. 1708 * 1709 * The nvme-fc layer will copy payload to an internal structure for 1710 * processing. As such, upon completion of the routine, the LLDD may 1711 * immediately free/reuse the LS request buffer passed in the call. 1712 * 1713 * If this routine returns error, the LLDD should abort the exchange. 1714 * 1715 * @portptr: pointer to the (registered) remote port that the LS 1716 * was received from. The remoteport is associated with 1717 * a specific localport. 1718 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1719 * used to reference the exchange corresponding to the LS 1720 * when issuing an ls response. 1721 * @lsreqbuf: pointer to the buffer containing the LS Request 1722 * @lsreqbuf_len: length, in bytes, of the received LS request 1723 */ 1724 int 1725 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1726 struct nvmefc_ls_rsp *lsrsp, 1727 void *lsreqbuf, u32 lsreqbuf_len) 1728 { 1729 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1730 struct nvme_fc_lport *lport = rport->lport; 1731 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1732 struct nvmefc_ls_rcv_op *lsop; 1733 unsigned long flags; 1734 int ret; 1735 1736 nvme_fc_rport_get(rport); 1737 1738 /* validate there's a routine to transmit a response */ 1739 if (!lport->ops->xmt_ls_rsp) { 1740 dev_info(lport->dev, 1741 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1742 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1743 nvmefc_ls_names[w0->ls_cmd] : ""); 1744 ret = -EINVAL; 1745 goto out_put; 1746 } 1747 1748 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1749 dev_info(lport->dev, 1750 "RCV %s LS failed: payload too large\n", 1751 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1752 nvmefc_ls_names[w0->ls_cmd] : ""); 1753 ret = -E2BIG; 1754 goto out_put; 1755 } 1756 1757 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL); 1758 if (!lsop) { 1759 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1760 ret = -ENOMEM; 1761 goto out_put; 1762 } 1763 1764 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL); 1765 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL); 1766 if (!lsop->rqstbuf || !lsop->rspbuf) { 1767 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1768 ret = -ENOMEM; 1769 goto out_free; 1770 } 1771 1772 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1773 sizeof(*lsop->rspbuf), 1774 DMA_TO_DEVICE); 1775 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1776 dev_info(lport->dev, 1777 "RCV %s LS failed: DMA mapping failure\n", 1778 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1779 nvmefc_ls_names[w0->ls_cmd] : ""); 1780 ret = -EFAULT; 1781 goto out_free; 1782 } 1783 1784 lsop->rport = rport; 1785 lsop->lsrsp = lsrsp; 1786 1787 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1788 lsop->rqstdatalen = lsreqbuf_len; 1789 1790 spin_lock_irqsave(&rport->lock, flags); 1791 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1792 spin_unlock_irqrestore(&rport->lock, flags); 1793 ret = -ENOTCONN; 1794 goto out_unmap; 1795 } 1796 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1797 spin_unlock_irqrestore(&rport->lock, flags); 1798 1799 schedule_work(&rport->lsrcv_work); 1800 1801 return 0; 1802 1803 out_unmap: 1804 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1805 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1806 out_free: 1807 kfree(lsop->rspbuf); 1808 kfree(lsop->rqstbuf); 1809 kfree(lsop); 1810 out_put: 1811 nvme_fc_rport_put(rport); 1812 return ret; 1813 } 1814 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1815 1816 1817 /* *********************** NVME Ctrl Routines **************************** */ 1818 1819 static void 1820 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1821 struct nvme_fc_fcp_op *op) 1822 { 1823 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1824 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1825 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1826 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1827 1828 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1829 } 1830 1831 static void 1832 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1833 unsigned int hctx_idx) 1834 { 1835 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1836 1837 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op); 1838 } 1839 1840 static int 1841 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1842 { 1843 unsigned long flags; 1844 int opstate; 1845 1846 spin_lock_irqsave(&ctrl->lock, flags); 1847 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1848 if (opstate != FCPOP_STATE_ACTIVE) 1849 atomic_set(&op->state, opstate); 1850 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1851 op->flags |= FCOP_FLAGS_TERMIO; 1852 ctrl->iocnt++; 1853 } 1854 spin_unlock_irqrestore(&ctrl->lock, flags); 1855 1856 if (opstate != FCPOP_STATE_ACTIVE) 1857 return -ECANCELED; 1858 1859 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1860 &ctrl->rport->remoteport, 1861 op->queue->lldd_handle, 1862 &op->fcp_req); 1863 1864 return 0; 1865 } 1866 1867 static void 1868 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1869 { 1870 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1871 int i; 1872 1873 /* ensure we've initialized the ops once */ 1874 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1875 return; 1876 1877 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1878 __nvme_fc_abort_op(ctrl, aen_op); 1879 } 1880 1881 static inline void 1882 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1883 struct nvme_fc_fcp_op *op, int opstate) 1884 { 1885 unsigned long flags; 1886 1887 if (opstate == FCPOP_STATE_ABORTED) { 1888 spin_lock_irqsave(&ctrl->lock, flags); 1889 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1890 op->flags & FCOP_FLAGS_TERMIO) { 1891 if (!--ctrl->iocnt) 1892 wake_up(&ctrl->ioabort_wait); 1893 } 1894 spin_unlock_irqrestore(&ctrl->lock, flags); 1895 } 1896 } 1897 1898 static void 1899 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1900 { 1901 struct nvme_fc_ctrl *ctrl = 1902 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1903 1904 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1905 } 1906 1907 /* 1908 * nvme_fc_io_getuuid - Routine called to get the appid field 1909 * associated with request by the lldd 1910 * @req:IO request from nvme fc to driver 1911 * Returns: UUID if there is an appid associated with VM or 1912 * NULL if the user/libvirt has not set the appid to VM 1913 */ 1914 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1915 { 1916 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1917 struct request *rq = op->rq; 1918 1919 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio) 1920 return NULL; 1921 return blkcg_get_fc_appid(rq->bio); 1922 } 1923 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1924 1925 static void 1926 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1927 { 1928 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1929 struct request *rq = op->rq; 1930 struct nvmefc_fcp_req *freq = &op->fcp_req; 1931 struct nvme_fc_ctrl *ctrl = op->ctrl; 1932 struct nvme_fc_queue *queue = op->queue; 1933 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1934 struct nvme_command *sqe = &op->cmd_iu.sqe; 1935 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1936 union nvme_result result; 1937 bool terminate_assoc = true; 1938 int opstate; 1939 1940 /* 1941 * WARNING: 1942 * The current linux implementation of a nvme controller 1943 * allocates a single tag set for all io queues and sizes 1944 * the io queues to fully hold all possible tags. Thus, the 1945 * implementation does not reference or care about the sqhd 1946 * value as it never needs to use the sqhd/sqtail pointers 1947 * for submission pacing. 1948 * 1949 * This affects the FC-NVME implementation in two ways: 1950 * 1) As the value doesn't matter, we don't need to waste 1951 * cycles extracting it from ERSPs and stamping it in the 1952 * cases where the transport fabricates CQEs on successful 1953 * completions. 1954 * 2) The FC-NVME implementation requires that delivery of 1955 * ERSP completions are to go back to the nvme layer in order 1956 * relative to the rsn, such that the sqhd value will always 1957 * be "in order" for the nvme layer. As the nvme layer in 1958 * linux doesn't care about sqhd, there's no need to return 1959 * them in order. 1960 * 1961 * Additionally: 1962 * As the core nvme layer in linux currently does not look at 1963 * every field in the cqe - in cases where the FC transport must 1964 * fabricate a CQE, the following fields will not be set as they 1965 * are not referenced: 1966 * cqe.sqid, cqe.sqhd, cqe.command_id 1967 * 1968 * Failure or error of an individual i/o, in a transport 1969 * detected fashion unrelated to the nvme completion status, 1970 * potentially cause the initiator and target sides to get out 1971 * of sync on SQ head/tail (aka outstanding io count allowed). 1972 * Per FC-NVME spec, failure of an individual command requires 1973 * the connection to be terminated, which in turn requires the 1974 * association to be terminated. 1975 */ 1976 1977 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1978 1979 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1980 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1981 1982 if (opstate == FCPOP_STATE_ABORTED) 1983 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1984 else if (freq->status) { 1985 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1986 dev_info(ctrl->ctrl.device, 1987 "NVME-FC{%d}: io failed due to lldd error %d\n", 1988 ctrl->cnum, freq->status); 1989 } 1990 1991 /* 1992 * For the linux implementation, if we have an unsuccesful 1993 * status, they blk-mq layer can typically be called with the 1994 * non-zero status and the content of the cqe isn't important. 1995 */ 1996 if (status) 1997 goto done; 1998 1999 /* 2000 * command completed successfully relative to the wire 2001 * protocol. However, validate anything received and 2002 * extract the status and result from the cqe (create it 2003 * where necessary). 2004 */ 2005 2006 switch (freq->rcv_rsplen) { 2007 2008 case 0: 2009 case NVME_FC_SIZEOF_ZEROS_RSP: 2010 /* 2011 * No response payload or 12 bytes of payload (which 2012 * should all be zeros) are considered successful and 2013 * no payload in the CQE by the transport. 2014 */ 2015 if (freq->transferred_length != 2016 be32_to_cpu(op->cmd_iu.data_len)) { 2017 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2018 dev_info(ctrl->ctrl.device, 2019 "NVME-FC{%d}: io failed due to bad transfer " 2020 "length: %d vs expected %d\n", 2021 ctrl->cnum, freq->transferred_length, 2022 be32_to_cpu(op->cmd_iu.data_len)); 2023 goto done; 2024 } 2025 result.u64 = 0; 2026 break; 2027 2028 case sizeof(struct nvme_fc_ersp_iu): 2029 /* 2030 * The ERSP IU contains a full completion with CQE. 2031 * Validate ERSP IU and look at cqe. 2032 */ 2033 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2034 (freq->rcv_rsplen / 4) || 2035 be32_to_cpu(op->rsp_iu.xfrd_len) != 2036 freq->transferred_length || 2037 op->rsp_iu.ersp_result || 2038 sqe->common.command_id != cqe->command_id)) { 2039 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2040 dev_info(ctrl->ctrl.device, 2041 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2042 "iu len %d, xfr len %d vs %d, status code " 2043 "%d, cmdid %d vs %d\n", 2044 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2045 be32_to_cpu(op->rsp_iu.xfrd_len), 2046 freq->transferred_length, 2047 op->rsp_iu.ersp_result, 2048 sqe->common.command_id, 2049 cqe->command_id); 2050 goto done; 2051 } 2052 result = cqe->result; 2053 status = cqe->status; 2054 break; 2055 2056 default: 2057 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2058 dev_info(ctrl->ctrl.device, 2059 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2060 "len %d\n", 2061 ctrl->cnum, freq->rcv_rsplen); 2062 goto done; 2063 } 2064 2065 terminate_assoc = false; 2066 2067 done: 2068 if (op->flags & FCOP_FLAGS_AEN) { 2069 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2070 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2071 atomic_set(&op->state, FCPOP_STATE_IDLE); 2072 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2073 nvme_fc_ctrl_put(ctrl); 2074 goto check_error; 2075 } 2076 2077 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2078 if (!nvme_try_complete_req(rq, status, result)) 2079 nvme_fc_complete_rq(rq); 2080 2081 check_error: 2082 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING) 2083 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2084 } 2085 2086 static int 2087 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2088 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2089 struct request *rq, u32 rqno) 2090 { 2091 struct nvme_fcp_op_w_sgl *op_w_sgl = 2092 container_of(op, typeof(*op_w_sgl), op); 2093 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2094 int ret = 0; 2095 2096 memset(op, 0, sizeof(*op)); 2097 op->fcp_req.cmdaddr = &op->cmd_iu; 2098 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2099 op->fcp_req.rspaddr = &op->rsp_iu; 2100 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2101 op->fcp_req.done = nvme_fc_fcpio_done; 2102 op->ctrl = ctrl; 2103 op->queue = queue; 2104 op->rq = rq; 2105 op->rqno = rqno; 2106 2107 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2108 cmdiu->fc_id = NVME_CMD_FC_ID; 2109 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2110 if (queue->qnum) 2111 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2112 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2113 else 2114 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2115 2116 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2117 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2118 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2119 dev_err(ctrl->dev, 2120 "FCP Op failed - cmdiu dma mapping failed.\n"); 2121 ret = -EFAULT; 2122 goto out_on_error; 2123 } 2124 2125 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2126 &op->rsp_iu, sizeof(op->rsp_iu), 2127 DMA_FROM_DEVICE); 2128 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2129 dev_err(ctrl->dev, 2130 "FCP Op failed - rspiu dma mapping failed.\n"); 2131 ret = -EFAULT; 2132 } 2133 2134 atomic_set(&op->state, FCPOP_STATE_IDLE); 2135 out_on_error: 2136 return ret; 2137 } 2138 2139 static int 2140 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2141 unsigned int hctx_idx, unsigned int numa_node) 2142 { 2143 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2144 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2145 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2146 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2147 int res; 2148 2149 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2150 if (res) 2151 return res; 2152 op->op.fcp_req.first_sgl = op->sgl; 2153 op->op.fcp_req.private = &op->priv[0]; 2154 nvme_req(rq)->ctrl = &ctrl->ctrl; 2155 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2156 return res; 2157 } 2158 2159 static int 2160 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2161 { 2162 struct nvme_fc_fcp_op *aen_op; 2163 struct nvme_fc_cmd_iu *cmdiu; 2164 struct nvme_command *sqe; 2165 void *private = NULL; 2166 int i, ret; 2167 2168 aen_op = ctrl->aen_ops; 2169 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2170 if (ctrl->lport->ops->fcprqst_priv_sz) { 2171 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2172 GFP_KERNEL); 2173 if (!private) 2174 return -ENOMEM; 2175 } 2176 2177 cmdiu = &aen_op->cmd_iu; 2178 sqe = &cmdiu->sqe; 2179 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2180 aen_op, (struct request *)NULL, 2181 (NVME_AQ_BLK_MQ_DEPTH + i)); 2182 if (ret) { 2183 kfree(private); 2184 return ret; 2185 } 2186 2187 aen_op->flags = FCOP_FLAGS_AEN; 2188 aen_op->fcp_req.private = private; 2189 2190 memset(sqe, 0, sizeof(*sqe)); 2191 sqe->common.opcode = nvme_admin_async_event; 2192 /* Note: core layer may overwrite the sqe.command_id value */ 2193 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2194 } 2195 return 0; 2196 } 2197 2198 static void 2199 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2200 { 2201 struct nvme_fc_fcp_op *aen_op; 2202 int i; 2203 2204 cancel_work_sync(&ctrl->ctrl.async_event_work); 2205 aen_op = ctrl->aen_ops; 2206 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2207 __nvme_fc_exit_request(ctrl, aen_op); 2208 2209 kfree(aen_op->fcp_req.private); 2210 aen_op->fcp_req.private = NULL; 2211 } 2212 } 2213 2214 static inline int 2215 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx) 2216 { 2217 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data); 2218 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2219 2220 hctx->driver_data = queue; 2221 queue->hctx = hctx; 2222 return 0; 2223 } 2224 2225 static int 2226 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) 2227 { 2228 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1); 2229 } 2230 2231 static int 2232 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2233 unsigned int hctx_idx) 2234 { 2235 return __nvme_fc_init_hctx(hctx, data, hctx_idx); 2236 } 2237 2238 static void 2239 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2240 { 2241 struct nvme_fc_queue *queue; 2242 2243 queue = &ctrl->queues[idx]; 2244 memset(queue, 0, sizeof(*queue)); 2245 queue->ctrl = ctrl; 2246 queue->qnum = idx; 2247 atomic_set(&queue->csn, 0); 2248 queue->dev = ctrl->dev; 2249 2250 if (idx > 0) 2251 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2252 else 2253 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2254 2255 /* 2256 * Considered whether we should allocate buffers for all SQEs 2257 * and CQEs and dma map them - mapping their respective entries 2258 * into the request structures (kernel vm addr and dma address) 2259 * thus the driver could use the buffers/mappings directly. 2260 * It only makes sense if the LLDD would use them for its 2261 * messaging api. It's very unlikely most adapter api's would use 2262 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2263 * structures were used instead. 2264 */ 2265 } 2266 2267 /* 2268 * This routine terminates a queue at the transport level. 2269 * The transport has already ensured that all outstanding ios on 2270 * the queue have been terminated. 2271 * The transport will send a Disconnect LS request to terminate 2272 * the queue's connection. Termination of the admin queue will also 2273 * terminate the association at the target. 2274 */ 2275 static void 2276 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2277 { 2278 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2279 return; 2280 2281 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2282 /* 2283 * Current implementation never disconnects a single queue. 2284 * It always terminates a whole association. So there is never 2285 * a disconnect(queue) LS sent to the target. 2286 */ 2287 2288 queue->connection_id = 0; 2289 atomic_set(&queue->csn, 0); 2290 } 2291 2292 static void 2293 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2294 struct nvme_fc_queue *queue, unsigned int qidx) 2295 { 2296 if (ctrl->lport->ops->delete_queue) 2297 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2298 queue->lldd_handle); 2299 queue->lldd_handle = NULL; 2300 } 2301 2302 static void 2303 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2304 { 2305 int i; 2306 2307 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2308 nvme_fc_free_queue(&ctrl->queues[i]); 2309 } 2310 2311 static int 2312 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2313 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2314 { 2315 int ret = 0; 2316 2317 queue->lldd_handle = NULL; 2318 if (ctrl->lport->ops->create_queue) 2319 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2320 qidx, qsize, &queue->lldd_handle); 2321 2322 return ret; 2323 } 2324 2325 static void 2326 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2327 { 2328 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2329 int i; 2330 2331 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2332 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2333 } 2334 2335 static int 2336 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2337 { 2338 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2339 int i, ret; 2340 2341 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2342 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2343 if (ret) 2344 goto delete_queues; 2345 } 2346 2347 return 0; 2348 2349 delete_queues: 2350 for (; i > 0; i--) 2351 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2352 return ret; 2353 } 2354 2355 static int 2356 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2357 { 2358 int i, ret = 0; 2359 2360 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2361 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2362 (qsize / 5)); 2363 if (ret) 2364 break; 2365 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2366 if (ret) 2367 break; 2368 2369 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2370 } 2371 2372 return ret; 2373 } 2374 2375 static void 2376 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2377 { 2378 int i; 2379 2380 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2381 nvme_fc_init_queue(ctrl, i); 2382 } 2383 2384 static void 2385 nvme_fc_ctrl_free(struct kref *ref) 2386 { 2387 struct nvme_fc_ctrl *ctrl = 2388 container_of(ref, struct nvme_fc_ctrl, ref); 2389 unsigned long flags; 2390 2391 if (ctrl->ctrl.tagset) 2392 nvme_remove_io_tag_set(&ctrl->ctrl); 2393 2394 /* remove from rport list */ 2395 spin_lock_irqsave(&ctrl->rport->lock, flags); 2396 list_del(&ctrl->ctrl_list); 2397 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2398 2399 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2400 nvme_remove_admin_tag_set(&ctrl->ctrl); 2401 2402 kfree(ctrl->queues); 2403 2404 put_device(ctrl->dev); 2405 nvme_fc_rport_put(ctrl->rport); 2406 2407 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2408 if (ctrl->ctrl.opts) 2409 nvmf_free_options(ctrl->ctrl.opts); 2410 kfree(ctrl); 2411 } 2412 2413 static void 2414 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2415 { 2416 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2417 } 2418 2419 static int 2420 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2421 { 2422 return kref_get_unless_zero(&ctrl->ref); 2423 } 2424 2425 /* 2426 * All accesses from nvme core layer done - can now free the 2427 * controller. Called after last nvme_put_ctrl() call 2428 */ 2429 static void 2430 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl) 2431 { 2432 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2433 2434 WARN_ON(nctrl != &ctrl->ctrl); 2435 2436 nvme_fc_ctrl_put(ctrl); 2437 } 2438 2439 /* 2440 * This routine is used by the transport when it needs to find active 2441 * io on a queue that is to be terminated. The transport uses 2442 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2443 * this routine to kill them on a 1 by 1 basis. 2444 * 2445 * As FC allocates FC exchange for each io, the transport must contact 2446 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2447 * After terminating the exchange the LLDD will call the transport's 2448 * normal io done path for the request, but it will have an aborted 2449 * status. The done path will return the io request back to the block 2450 * layer with an error status. 2451 */ 2452 static bool nvme_fc_terminate_exchange(struct request *req, void *data) 2453 { 2454 struct nvme_ctrl *nctrl = data; 2455 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2456 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2457 2458 op->nreq.flags |= NVME_REQ_CANCELLED; 2459 __nvme_fc_abort_op(ctrl, op); 2460 return true; 2461 } 2462 2463 /* 2464 * This routine runs through all outstanding commands on the association 2465 * and aborts them. This routine is typically be called by the 2466 * delete_association routine. It is also called due to an error during 2467 * reconnect. In that scenario, it is most likely a command that initializes 2468 * the controller, including fabric Connect commands on io queues, that 2469 * may have timed out or failed thus the io must be killed for the connect 2470 * thread to see the error. 2471 */ 2472 static void 2473 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2474 { 2475 int q; 2476 2477 /* 2478 * if aborting io, the queues are no longer good, mark them 2479 * all as not live. 2480 */ 2481 if (ctrl->ctrl.queue_count > 1) { 2482 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2483 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2484 } 2485 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2486 2487 /* 2488 * If io queues are present, stop them and terminate all outstanding 2489 * ios on them. As FC allocates FC exchange for each io, the 2490 * transport must contact the LLDD to terminate the exchange, 2491 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2492 * to tell us what io's are busy and invoke a transport routine 2493 * to kill them with the LLDD. After terminating the exchange 2494 * the LLDD will call the transport's normal io done path, but it 2495 * will have an aborted status. The done path will return the 2496 * io requests back to the block layer as part of normal completions 2497 * (but with error status). 2498 */ 2499 if (ctrl->ctrl.queue_count > 1) { 2500 nvme_quiesce_io_queues(&ctrl->ctrl); 2501 nvme_sync_io_queues(&ctrl->ctrl); 2502 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2503 nvme_fc_terminate_exchange, &ctrl->ctrl); 2504 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2505 if (start_queues) 2506 nvme_unquiesce_io_queues(&ctrl->ctrl); 2507 } 2508 2509 /* 2510 * Other transports, which don't have link-level contexts bound 2511 * to sqe's, would try to gracefully shutdown the controller by 2512 * writing the registers for shutdown and polling (call 2513 * nvme_disable_ctrl()). Given a bunch of i/o was potentially 2514 * just aborted and we will wait on those contexts, and given 2515 * there was no indication of how live the controlelr is on the 2516 * link, don't send more io to create more contexts for the 2517 * shutdown. Let the controller fail via keepalive failure if 2518 * its still present. 2519 */ 2520 2521 /* 2522 * clean up the admin queue. Same thing as above. 2523 */ 2524 nvme_quiesce_admin_queue(&ctrl->ctrl); 2525 blk_sync_queue(ctrl->ctrl.admin_q); 2526 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2527 nvme_fc_terminate_exchange, &ctrl->ctrl); 2528 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2529 if (start_queues) 2530 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2531 } 2532 2533 static void 2534 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2535 { 2536 /* 2537 * if an error (io timeout, etc) while (re)connecting, the remote 2538 * port requested terminating of the association (disconnect_ls) 2539 * or an error (timeout or abort) occurred on an io while creating 2540 * the controller. Abort any ios on the association and let the 2541 * create_association error path resolve things. 2542 */ 2543 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2544 __nvme_fc_abort_outstanding_ios(ctrl, true); 2545 set_bit(ASSOC_FAILED, &ctrl->flags); 2546 dev_warn(ctrl->ctrl.device, 2547 "NVME-FC{%d}: transport error during (re)connect\n", 2548 ctrl->cnum); 2549 return; 2550 } 2551 2552 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2553 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2554 return; 2555 2556 dev_warn(ctrl->ctrl.device, 2557 "NVME-FC{%d}: transport association event: %s\n", 2558 ctrl->cnum, errmsg); 2559 dev_warn(ctrl->ctrl.device, 2560 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2561 2562 nvme_reset_ctrl(&ctrl->ctrl); 2563 } 2564 2565 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq) 2566 { 2567 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2568 struct nvme_fc_ctrl *ctrl = op->ctrl; 2569 u16 qnum = op->queue->qnum; 2570 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2571 struct nvme_command *sqe = &cmdiu->sqe; 2572 2573 /* 2574 * Attempt to abort the offending command. Command completion 2575 * will detect the aborted io and will fail the connection. 2576 */ 2577 dev_info(ctrl->ctrl.device, 2578 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: " 2579 "x%08x/x%08x\n", 2580 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype, 2581 nvme_fabrics_opcode_str(qnum, sqe), 2582 sqe->common.cdw10, sqe->common.cdw11); 2583 if (__nvme_fc_abort_op(ctrl, op)) 2584 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2585 2586 /* 2587 * the io abort has been initiated. Have the reset timer 2588 * restarted and the abort completion will complete the io 2589 * shortly. Avoids a synchronous wait while the abort finishes. 2590 */ 2591 return BLK_EH_RESET_TIMER; 2592 } 2593 2594 static int 2595 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2596 struct nvme_fc_fcp_op *op) 2597 { 2598 struct nvmefc_fcp_req *freq = &op->fcp_req; 2599 int ret; 2600 2601 freq->sg_cnt = 0; 2602 2603 if (!blk_rq_nr_phys_segments(rq)) 2604 return 0; 2605 2606 freq->sg_table.sgl = freq->first_sgl; 2607 ret = sg_alloc_table_chained(&freq->sg_table, 2608 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2609 NVME_INLINE_SG_CNT); 2610 if (ret) 2611 return -ENOMEM; 2612 2613 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2614 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2615 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2616 op->nents, rq_dma_dir(rq)); 2617 if (unlikely(freq->sg_cnt <= 0)) { 2618 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2619 freq->sg_cnt = 0; 2620 return -EFAULT; 2621 } 2622 2623 /* 2624 * TODO: blk_integrity_rq(rq) for DIF 2625 */ 2626 return 0; 2627 } 2628 2629 static void 2630 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2631 struct nvme_fc_fcp_op *op) 2632 { 2633 struct nvmefc_fcp_req *freq = &op->fcp_req; 2634 2635 if (!freq->sg_cnt) 2636 return; 2637 2638 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2639 rq_dma_dir(rq)); 2640 2641 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2642 2643 freq->sg_cnt = 0; 2644 } 2645 2646 /* 2647 * In FC, the queue is a logical thing. At transport connect, the target 2648 * creates its "queue" and returns a handle that is to be given to the 2649 * target whenever it posts something to the corresponding SQ. When an 2650 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2651 * command contained within the SQE, an io, and assigns a FC exchange 2652 * to it. The SQE and the associated SQ handle are sent in the initial 2653 * CMD IU sents on the exchange. All transfers relative to the io occur 2654 * as part of the exchange. The CQE is the last thing for the io, 2655 * which is transferred (explicitly or implicitly) with the RSP IU 2656 * sent on the exchange. After the CQE is received, the FC exchange is 2657 * terminaed and the Exchange may be used on a different io. 2658 * 2659 * The transport to LLDD api has the transport making a request for a 2660 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2661 * resource and transfers the command. The LLDD will then process all 2662 * steps to complete the io. Upon completion, the transport done routine 2663 * is called. 2664 * 2665 * So - while the operation is outstanding to the LLDD, there is a link 2666 * level FC exchange resource that is also outstanding. This must be 2667 * considered in all cleanup operations. 2668 */ 2669 static blk_status_t 2670 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2671 struct nvme_fc_fcp_op *op, u32 data_len, 2672 enum nvmefc_fcp_datadir io_dir) 2673 { 2674 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2675 struct nvme_command *sqe = &cmdiu->sqe; 2676 int ret, opstate; 2677 2678 /* 2679 * before attempting to send the io, check to see if we believe 2680 * the target device is present 2681 */ 2682 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2683 return BLK_STS_RESOURCE; 2684 2685 if (!nvme_fc_ctrl_get(ctrl)) 2686 return BLK_STS_IOERR; 2687 2688 /* format the FC-NVME CMD IU and fcp_req */ 2689 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2690 cmdiu->data_len = cpu_to_be32(data_len); 2691 switch (io_dir) { 2692 case NVMEFC_FCP_WRITE: 2693 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2694 break; 2695 case NVMEFC_FCP_READ: 2696 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2697 break; 2698 case NVMEFC_FCP_NODATA: 2699 cmdiu->flags = 0; 2700 break; 2701 } 2702 op->fcp_req.payload_length = data_len; 2703 op->fcp_req.io_dir = io_dir; 2704 op->fcp_req.transferred_length = 0; 2705 op->fcp_req.rcv_rsplen = 0; 2706 op->fcp_req.status = NVME_SC_SUCCESS; 2707 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2708 2709 /* 2710 * validate per fabric rules, set fields mandated by fabric spec 2711 * as well as those by FC-NVME spec. 2712 */ 2713 WARN_ON_ONCE(sqe->common.metadata); 2714 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2715 2716 /* 2717 * format SQE DPTR field per FC-NVME rules: 2718 * type=0x5 Transport SGL Data Block Descriptor 2719 * subtype=0xA Transport-specific value 2720 * address=0 2721 * length=length of the data series 2722 */ 2723 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2724 NVME_SGL_FMT_TRANSPORT_A; 2725 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2726 sqe->rw.dptr.sgl.addr = 0; 2727 2728 if (!(op->flags & FCOP_FLAGS_AEN)) { 2729 ret = nvme_fc_map_data(ctrl, op->rq, op); 2730 if (ret < 0) { 2731 nvme_cleanup_cmd(op->rq); 2732 nvme_fc_ctrl_put(ctrl); 2733 if (ret == -ENOMEM || ret == -EAGAIN) 2734 return BLK_STS_RESOURCE; 2735 return BLK_STS_IOERR; 2736 } 2737 } 2738 2739 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2740 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2741 2742 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2743 2744 if (!(op->flags & FCOP_FLAGS_AEN)) 2745 nvme_start_request(op->rq); 2746 2747 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2748 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2749 &ctrl->rport->remoteport, 2750 queue->lldd_handle, &op->fcp_req); 2751 2752 if (ret) { 2753 /* 2754 * If the lld fails to send the command is there an issue with 2755 * the csn value? If the command that fails is the Connect, 2756 * no - as the connection won't be live. If it is a command 2757 * post-connect, it's possible a gap in csn may be created. 2758 * Does this matter? As Linux initiators don't send fused 2759 * commands, no. The gap would exist, but as there's nothing 2760 * that depends on csn order to be delivered on the target 2761 * side, it shouldn't hurt. It would be difficult for a 2762 * target to even detect the csn gap as it has no idea when the 2763 * cmd with the csn was supposed to arrive. 2764 */ 2765 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2766 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2767 2768 if (!(op->flags & FCOP_FLAGS_AEN)) { 2769 nvme_fc_unmap_data(ctrl, op->rq, op); 2770 nvme_cleanup_cmd(op->rq); 2771 } 2772 2773 nvme_fc_ctrl_put(ctrl); 2774 2775 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2776 ret != -EBUSY) 2777 return BLK_STS_IOERR; 2778 2779 return BLK_STS_RESOURCE; 2780 } 2781 2782 return BLK_STS_OK; 2783 } 2784 2785 static blk_status_t 2786 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2787 const struct blk_mq_queue_data *bd) 2788 { 2789 struct nvme_ns *ns = hctx->queue->queuedata; 2790 struct nvme_fc_queue *queue = hctx->driver_data; 2791 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2792 struct request *rq = bd->rq; 2793 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2794 enum nvmefc_fcp_datadir io_dir; 2795 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2796 u32 data_len; 2797 blk_status_t ret; 2798 2799 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2800 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2801 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2802 2803 ret = nvme_setup_cmd(ns, rq); 2804 if (ret) 2805 return ret; 2806 2807 /* 2808 * nvme core doesn't quite treat the rq opaquely. Commands such 2809 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2810 * there is no actual payload to be transferred. 2811 * To get it right, key data transmission on there being 1 or 2812 * more physical segments in the sg list. If there is no 2813 * physical segments, there is no payload. 2814 */ 2815 if (blk_rq_nr_phys_segments(rq)) { 2816 data_len = blk_rq_payload_bytes(rq); 2817 io_dir = ((rq_data_dir(rq) == WRITE) ? 2818 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2819 } else { 2820 data_len = 0; 2821 io_dir = NVMEFC_FCP_NODATA; 2822 } 2823 2824 2825 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2826 } 2827 2828 static void 2829 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2830 { 2831 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2832 struct nvme_fc_fcp_op *aen_op; 2833 blk_status_t ret; 2834 2835 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2836 return; 2837 2838 aen_op = &ctrl->aen_ops[0]; 2839 2840 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2841 NVMEFC_FCP_NODATA); 2842 if (ret) 2843 dev_err(ctrl->ctrl.device, 2844 "failed async event work\n"); 2845 } 2846 2847 static void 2848 nvme_fc_complete_rq(struct request *rq) 2849 { 2850 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2851 struct nvme_fc_ctrl *ctrl = op->ctrl; 2852 2853 atomic_set(&op->state, FCPOP_STATE_IDLE); 2854 op->flags &= ~FCOP_FLAGS_TERMIO; 2855 2856 nvme_fc_unmap_data(ctrl, rq, op); 2857 nvme_complete_rq(rq); 2858 nvme_fc_ctrl_put(ctrl); 2859 } 2860 2861 static void nvme_fc_map_queues(struct blk_mq_tag_set *set) 2862 { 2863 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2864 int i; 2865 2866 for (i = 0; i < set->nr_maps; i++) { 2867 struct blk_mq_queue_map *map = &set->map[i]; 2868 2869 if (!map->nr_queues) { 2870 WARN_ON(i == HCTX_TYPE_DEFAULT); 2871 continue; 2872 } 2873 2874 /* Call LLDD map queue functionality if defined */ 2875 if (ctrl->lport->ops->map_queues) 2876 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2877 map); 2878 else 2879 blk_mq_map_queues(map); 2880 } 2881 } 2882 2883 static const struct blk_mq_ops nvme_fc_mq_ops = { 2884 .queue_rq = nvme_fc_queue_rq, 2885 .complete = nvme_fc_complete_rq, 2886 .init_request = nvme_fc_init_request, 2887 .exit_request = nvme_fc_exit_request, 2888 .init_hctx = nvme_fc_init_hctx, 2889 .timeout = nvme_fc_timeout, 2890 .map_queues = nvme_fc_map_queues, 2891 }; 2892 2893 static int 2894 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2895 { 2896 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2897 unsigned int nr_io_queues; 2898 int ret; 2899 2900 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2901 ctrl->lport->ops->max_hw_queues); 2902 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2903 if (ret) { 2904 dev_info(ctrl->ctrl.device, 2905 "set_queue_count failed: %d\n", ret); 2906 return ret; 2907 } 2908 2909 ctrl->ctrl.queue_count = nr_io_queues + 1; 2910 if (!nr_io_queues) 2911 return 0; 2912 2913 nvme_fc_init_io_queues(ctrl); 2914 2915 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set, 2916 &nvme_fc_mq_ops, 1, 2917 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 2918 ctrl->lport->ops->fcprqst_priv_sz)); 2919 if (ret) 2920 return ret; 2921 2922 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2923 if (ret) 2924 goto out_cleanup_tagset; 2925 2926 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2927 if (ret) 2928 goto out_delete_hw_queues; 2929 2930 ctrl->ioq_live = true; 2931 2932 return 0; 2933 2934 out_delete_hw_queues: 2935 nvme_fc_delete_hw_io_queues(ctrl); 2936 out_cleanup_tagset: 2937 nvme_remove_io_tag_set(&ctrl->ctrl); 2938 nvme_fc_free_io_queues(ctrl); 2939 2940 /* force put free routine to ignore io queues */ 2941 ctrl->ctrl.tagset = NULL; 2942 2943 return ret; 2944 } 2945 2946 static int 2947 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2948 { 2949 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2950 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2951 unsigned int nr_io_queues; 2952 int ret; 2953 2954 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2955 ctrl->lport->ops->max_hw_queues); 2956 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2957 if (ret) { 2958 dev_info(ctrl->ctrl.device, 2959 "set_queue_count failed: %d\n", ret); 2960 return ret; 2961 } 2962 2963 if (!nr_io_queues && prior_ioq_cnt) { 2964 dev_info(ctrl->ctrl.device, 2965 "Fail Reconnect: At least 1 io queue " 2966 "required (was %d)\n", prior_ioq_cnt); 2967 return -ENOSPC; 2968 } 2969 2970 ctrl->ctrl.queue_count = nr_io_queues + 1; 2971 /* check for io queues existing */ 2972 if (ctrl->ctrl.queue_count == 1) 2973 return 0; 2974 2975 if (prior_ioq_cnt != nr_io_queues) { 2976 dev_info(ctrl->ctrl.device, 2977 "reconnect: revising io queue count from %d to %d\n", 2978 prior_ioq_cnt, nr_io_queues); 2979 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2980 } 2981 2982 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2983 if (ret) 2984 goto out_free_io_queues; 2985 2986 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2987 if (ret) 2988 goto out_delete_hw_queues; 2989 2990 return 0; 2991 2992 out_delete_hw_queues: 2993 nvme_fc_delete_hw_io_queues(ctrl); 2994 out_free_io_queues: 2995 nvme_fc_free_io_queues(ctrl); 2996 return ret; 2997 } 2998 2999 static void 3000 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 3001 { 3002 struct nvme_fc_lport *lport = rport->lport; 3003 3004 atomic_inc(&lport->act_rport_cnt); 3005 } 3006 3007 static void 3008 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 3009 { 3010 struct nvme_fc_lport *lport = rport->lport; 3011 u32 cnt; 3012 3013 cnt = atomic_dec_return(&lport->act_rport_cnt); 3014 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 3015 lport->ops->localport_delete(&lport->localport); 3016 } 3017 3018 static int 3019 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 3020 { 3021 struct nvme_fc_rport *rport = ctrl->rport; 3022 u32 cnt; 3023 3024 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 3025 return 1; 3026 3027 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 3028 if (cnt == 1) 3029 nvme_fc_rport_active_on_lport(rport); 3030 3031 return 0; 3032 } 3033 3034 static int 3035 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3036 { 3037 struct nvme_fc_rport *rport = ctrl->rport; 3038 struct nvme_fc_lport *lport = rport->lport; 3039 u32 cnt; 3040 3041 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3042 3043 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3044 if (cnt == 0) { 3045 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3046 lport->ops->remoteport_delete(&rport->remoteport); 3047 nvme_fc_rport_inactive_on_lport(rport); 3048 } 3049 3050 return 0; 3051 } 3052 3053 /* 3054 * This routine restarts the controller on the host side, and 3055 * on the link side, recreates the controller association. 3056 */ 3057 static int 3058 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3059 { 3060 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3061 struct nvmefc_ls_rcv_op *disls = NULL; 3062 unsigned long flags; 3063 int ret; 3064 bool changed; 3065 3066 ++ctrl->ctrl.nr_reconnects; 3067 3068 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3069 return -ENODEV; 3070 3071 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3072 return -ENOTUNIQ; 3073 3074 dev_info(ctrl->ctrl.device, 3075 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3076 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3077 ctrl->cnum, ctrl->lport->localport.port_name, 3078 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3079 3080 clear_bit(ASSOC_FAILED, &ctrl->flags); 3081 3082 /* 3083 * Create the admin queue 3084 */ 3085 3086 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3087 NVME_AQ_DEPTH); 3088 if (ret) 3089 goto out_free_queue; 3090 3091 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3092 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3093 if (ret) 3094 goto out_delete_hw_queue; 3095 3096 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3097 if (ret) 3098 goto out_disconnect_admin_queue; 3099 3100 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3101 3102 /* 3103 * Check controller capabilities 3104 * 3105 * todo:- add code to check if ctrl attributes changed from 3106 * prior connection values 3107 */ 3108 3109 ret = nvme_enable_ctrl(&ctrl->ctrl); 3110 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3111 ret = -EIO; 3112 if (ret) 3113 goto out_disconnect_admin_queue; 3114 3115 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3116 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3117 (ilog2(SZ_4K) - 9); 3118 3119 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3120 3121 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false); 3122 if (ret) 3123 goto out_disconnect_admin_queue; 3124 if (test_bit(ASSOC_FAILED, &ctrl->flags)) { 3125 ret = -EIO; 3126 goto out_stop_keep_alive; 3127 } 3128 /* sanity checks */ 3129 3130 /* FC-NVME does not have other data in the capsule */ 3131 if (ctrl->ctrl.icdoff) { 3132 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3133 ctrl->ctrl.icdoff); 3134 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3135 goto out_stop_keep_alive; 3136 } 3137 3138 /* FC-NVME supports normal SGL Data Block Descriptors */ 3139 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3140 dev_err(ctrl->ctrl.device, 3141 "Mandatory sgls are not supported!\n"); 3142 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3143 goto out_stop_keep_alive; 3144 } 3145 3146 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3147 /* warn if maxcmd is lower than queue_size */ 3148 dev_warn(ctrl->ctrl.device, 3149 "queue_size %zu > ctrl maxcmd %u, reducing " 3150 "to maxcmd\n", 3151 opts->queue_size, ctrl->ctrl.maxcmd); 3152 opts->queue_size = ctrl->ctrl.maxcmd; 3153 ctrl->ctrl.sqsize = opts->queue_size - 1; 3154 } 3155 3156 ret = nvme_fc_init_aen_ops(ctrl); 3157 if (ret) 3158 goto out_term_aen_ops; 3159 3160 /* 3161 * Create the io queues 3162 */ 3163 3164 if (ctrl->ctrl.queue_count > 1) { 3165 if (!ctrl->ioq_live) 3166 ret = nvme_fc_create_io_queues(ctrl); 3167 else 3168 ret = nvme_fc_recreate_io_queues(ctrl); 3169 } 3170 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3171 ret = -EIO; 3172 if (ret) 3173 goto out_term_aen_ops; 3174 3175 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 3176 3177 ctrl->ctrl.nr_reconnects = 0; 3178 3179 if (changed) 3180 nvme_start_ctrl(&ctrl->ctrl); 3181 3182 return 0; /* Success */ 3183 3184 out_term_aen_ops: 3185 nvme_fc_term_aen_ops(ctrl); 3186 out_stop_keep_alive: 3187 nvme_stop_keep_alive(&ctrl->ctrl); 3188 out_disconnect_admin_queue: 3189 dev_warn(ctrl->ctrl.device, 3190 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n", 3191 ctrl->cnum, ctrl->association_id, ret); 3192 /* send a Disconnect(association) LS to fc-nvme target */ 3193 nvme_fc_xmt_disconnect_assoc(ctrl); 3194 spin_lock_irqsave(&ctrl->lock, flags); 3195 ctrl->association_id = 0; 3196 disls = ctrl->rcv_disconn; 3197 ctrl->rcv_disconn = NULL; 3198 spin_unlock_irqrestore(&ctrl->lock, flags); 3199 if (disls) 3200 nvme_fc_xmt_ls_rsp(disls); 3201 out_delete_hw_queue: 3202 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3203 out_free_queue: 3204 nvme_fc_free_queue(&ctrl->queues[0]); 3205 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3206 nvme_fc_ctlr_inactive_on_rport(ctrl); 3207 3208 return ret; 3209 } 3210 3211 3212 /* 3213 * This routine stops operation of the controller on the host side. 3214 * On the host os stack side: Admin and IO queues are stopped, 3215 * outstanding ios on them terminated via FC ABTS. 3216 * On the link side: the association is terminated. 3217 */ 3218 static void 3219 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3220 { 3221 struct nvmefc_ls_rcv_op *disls = NULL; 3222 unsigned long flags; 3223 3224 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3225 return; 3226 3227 spin_lock_irqsave(&ctrl->lock, flags); 3228 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3229 ctrl->iocnt = 0; 3230 spin_unlock_irqrestore(&ctrl->lock, flags); 3231 3232 __nvme_fc_abort_outstanding_ios(ctrl, false); 3233 3234 /* kill the aens as they are a separate path */ 3235 nvme_fc_abort_aen_ops(ctrl); 3236 3237 /* wait for all io that had to be aborted */ 3238 spin_lock_irq(&ctrl->lock); 3239 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3240 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3241 spin_unlock_irq(&ctrl->lock); 3242 3243 nvme_fc_term_aen_ops(ctrl); 3244 3245 /* 3246 * send a Disconnect(association) LS to fc-nvme target 3247 * Note: could have been sent at top of process, but 3248 * cleaner on link traffic if after the aborts complete. 3249 * Note: if association doesn't exist, association_id will be 0 3250 */ 3251 if (ctrl->association_id) 3252 nvme_fc_xmt_disconnect_assoc(ctrl); 3253 3254 spin_lock_irqsave(&ctrl->lock, flags); 3255 ctrl->association_id = 0; 3256 disls = ctrl->rcv_disconn; 3257 ctrl->rcv_disconn = NULL; 3258 spin_unlock_irqrestore(&ctrl->lock, flags); 3259 if (disls) 3260 /* 3261 * if a Disconnect Request was waiting for a response, send 3262 * now that all ABTS's have been issued (and are complete). 3263 */ 3264 nvme_fc_xmt_ls_rsp(disls); 3265 3266 if (ctrl->ctrl.tagset) { 3267 nvme_fc_delete_hw_io_queues(ctrl); 3268 nvme_fc_free_io_queues(ctrl); 3269 } 3270 3271 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3272 nvme_fc_free_queue(&ctrl->queues[0]); 3273 3274 /* re-enable the admin_q so anything new can fast fail */ 3275 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3276 3277 /* resume the io queues so that things will fast fail */ 3278 nvme_unquiesce_io_queues(&ctrl->ctrl); 3279 3280 nvme_fc_ctlr_inactive_on_rport(ctrl); 3281 } 3282 3283 static void 3284 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3285 { 3286 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3287 3288 cancel_work_sync(&ctrl->ioerr_work); 3289 cancel_delayed_work_sync(&ctrl->connect_work); 3290 /* 3291 * kill the association on the link side. this will block 3292 * waiting for io to terminate 3293 */ 3294 nvme_fc_delete_association(ctrl); 3295 } 3296 3297 static void 3298 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3299 { 3300 struct nvme_fc_rport *rport = ctrl->rport; 3301 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3302 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3303 bool recon = true; 3304 3305 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING) 3306 return; 3307 3308 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3309 dev_info(ctrl->ctrl.device, 3310 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3311 ctrl->cnum, status); 3312 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3313 recon = false; 3314 3315 if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) { 3316 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3317 dev_info(ctrl->ctrl.device, 3318 "NVME-FC{%d}: Reconnect attempt in %ld " 3319 "seconds\n", 3320 ctrl->cnum, recon_delay / HZ); 3321 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3322 recon_delay = rport->dev_loss_end - jiffies; 3323 3324 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3325 } else { 3326 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3327 if (status > 0 && (status & NVME_STATUS_DNR)) 3328 dev_warn(ctrl->ctrl.device, 3329 "NVME-FC{%d}: reconnect failure\n", 3330 ctrl->cnum); 3331 else 3332 dev_warn(ctrl->ctrl.device, 3333 "NVME-FC{%d}: Max reconnect attempts " 3334 "(%d) reached.\n", 3335 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3336 } else 3337 dev_warn(ctrl->ctrl.device, 3338 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3339 "while waiting for remoteport connectivity.\n", 3340 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3341 (ctrl->ctrl.opts->max_reconnects * 3342 ctrl->ctrl.opts->reconnect_delay))); 3343 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3344 } 3345 } 3346 3347 static void 3348 nvme_fc_reset_ctrl_work(struct work_struct *work) 3349 { 3350 struct nvme_fc_ctrl *ctrl = 3351 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3352 3353 nvme_stop_ctrl(&ctrl->ctrl); 3354 3355 /* will block will waiting for io to terminate */ 3356 nvme_fc_delete_association(ctrl); 3357 3358 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3359 dev_err(ctrl->ctrl.device, 3360 "NVME-FC{%d}: error_recovery: Couldn't change state " 3361 "to CONNECTING\n", ctrl->cnum); 3362 3363 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3364 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3365 dev_err(ctrl->ctrl.device, 3366 "NVME-FC{%d}: failed to schedule connect " 3367 "after reset\n", ctrl->cnum); 3368 } else { 3369 flush_delayed_work(&ctrl->connect_work); 3370 } 3371 } else { 3372 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3373 } 3374 } 3375 3376 3377 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3378 .name = "fc", 3379 .module = THIS_MODULE, 3380 .flags = NVME_F_FABRICS, 3381 .reg_read32 = nvmf_reg_read32, 3382 .reg_read64 = nvmf_reg_read64, 3383 .reg_write32 = nvmf_reg_write32, 3384 .subsystem_reset = nvmf_subsystem_reset, 3385 .free_ctrl = nvme_fc_free_ctrl, 3386 .submit_async_event = nvme_fc_submit_async_event, 3387 .delete_ctrl = nvme_fc_delete_ctrl, 3388 .get_address = nvmf_get_address, 3389 }; 3390 3391 static void 3392 nvme_fc_connect_ctrl_work(struct work_struct *work) 3393 { 3394 int ret; 3395 3396 struct nvme_fc_ctrl *ctrl = 3397 container_of(to_delayed_work(work), 3398 struct nvme_fc_ctrl, connect_work); 3399 3400 ret = nvme_fc_create_association(ctrl); 3401 if (ret) 3402 nvme_fc_reconnect_or_delete(ctrl, ret); 3403 else 3404 dev_info(ctrl->ctrl.device, 3405 "NVME-FC{%d}: controller connect complete\n", 3406 ctrl->cnum); 3407 } 3408 3409 3410 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3411 .queue_rq = nvme_fc_queue_rq, 3412 .complete = nvme_fc_complete_rq, 3413 .init_request = nvme_fc_init_request, 3414 .exit_request = nvme_fc_exit_request, 3415 .init_hctx = nvme_fc_init_admin_hctx, 3416 .timeout = nvme_fc_timeout, 3417 }; 3418 3419 3420 /* 3421 * Fails a controller request if it matches an existing controller 3422 * (association) with the same tuple: 3423 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3424 * 3425 * The ports don't need to be compared as they are intrinsically 3426 * already matched by the port pointers supplied. 3427 */ 3428 static bool 3429 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3430 struct nvmf_ctrl_options *opts) 3431 { 3432 struct nvme_fc_ctrl *ctrl; 3433 unsigned long flags; 3434 bool found = false; 3435 3436 spin_lock_irqsave(&rport->lock, flags); 3437 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3438 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3439 if (found) 3440 break; 3441 } 3442 spin_unlock_irqrestore(&rport->lock, flags); 3443 3444 return found; 3445 } 3446 3447 static struct nvme_fc_ctrl * 3448 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3449 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3450 { 3451 struct nvme_fc_ctrl *ctrl; 3452 int ret, idx, ctrl_loss_tmo; 3453 3454 if (!(rport->remoteport.port_role & 3455 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3456 ret = -EBADR; 3457 goto out_fail; 3458 } 3459 3460 if (!opts->duplicate_connect && 3461 nvme_fc_existing_controller(rport, opts)) { 3462 ret = -EALREADY; 3463 goto out_fail; 3464 } 3465 3466 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3467 if (!ctrl) { 3468 ret = -ENOMEM; 3469 goto out_fail; 3470 } 3471 3472 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3473 if (idx < 0) { 3474 ret = -ENOSPC; 3475 goto out_free_ctrl; 3476 } 3477 3478 /* 3479 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3480 * is being used, change to a shorter reconnect delay for FC. 3481 */ 3482 if (opts->max_reconnects != -1 && 3483 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3484 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3485 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3486 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3487 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3488 opts->reconnect_delay); 3489 } 3490 3491 ctrl->ctrl.opts = opts; 3492 ctrl->ctrl.nr_reconnects = 0; 3493 INIT_LIST_HEAD(&ctrl->ctrl_list); 3494 ctrl->lport = lport; 3495 ctrl->rport = rport; 3496 ctrl->dev = lport->dev; 3497 ctrl->cnum = idx; 3498 ctrl->ioq_live = false; 3499 init_waitqueue_head(&ctrl->ioabort_wait); 3500 3501 get_device(ctrl->dev); 3502 kref_init(&ctrl->ref); 3503 3504 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3505 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3506 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3507 spin_lock_init(&ctrl->lock); 3508 3509 /* io queue count */ 3510 ctrl->ctrl.queue_count = min_t(unsigned int, 3511 opts->nr_io_queues, 3512 lport->ops->max_hw_queues); 3513 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3514 3515 ctrl->ctrl.sqsize = opts->queue_size - 1; 3516 ctrl->ctrl.kato = opts->kato; 3517 ctrl->ctrl.cntlid = 0xffff; 3518 3519 ret = -ENOMEM; 3520 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3521 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3522 if (!ctrl->queues) 3523 goto out_free_ida; 3524 3525 nvme_fc_init_queue(ctrl, 0); 3526 3527 /* 3528 * Would have been nice to init io queues tag set as well. 3529 * However, we require interaction from the controller 3530 * for max io queue count before we can do so. 3531 * Defer this to the connect path. 3532 */ 3533 3534 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3535 if (ret) 3536 goto out_free_queues; 3537 if (lport->dev) 3538 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3539 3540 return ctrl; 3541 3542 out_free_queues: 3543 kfree(ctrl->queues); 3544 out_free_ida: 3545 put_device(ctrl->dev); 3546 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3547 out_free_ctrl: 3548 kfree(ctrl); 3549 out_fail: 3550 /* exit via here doesn't follow ctlr ref points */ 3551 return ERR_PTR(ret); 3552 } 3553 3554 static struct nvme_ctrl * 3555 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3556 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3557 { 3558 struct nvme_fc_ctrl *ctrl; 3559 unsigned long flags; 3560 int ret; 3561 3562 ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport); 3563 if (IS_ERR(ctrl)) 3564 return ERR_CAST(ctrl); 3565 3566 ret = nvme_add_ctrl(&ctrl->ctrl); 3567 if (ret) 3568 goto out_put_ctrl; 3569 3570 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, 3571 &nvme_fc_admin_mq_ops, 3572 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 3573 ctrl->lport->ops->fcprqst_priv_sz)); 3574 if (ret) 3575 goto fail_ctrl; 3576 3577 spin_lock_irqsave(&rport->lock, flags); 3578 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3579 spin_unlock_irqrestore(&rport->lock, flags); 3580 3581 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3582 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3583 dev_err(ctrl->ctrl.device, 3584 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3585 goto fail_ctrl; 3586 } 3587 3588 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3589 dev_err(ctrl->ctrl.device, 3590 "NVME-FC{%d}: failed to schedule initial connect\n", 3591 ctrl->cnum); 3592 goto fail_ctrl; 3593 } 3594 3595 flush_delayed_work(&ctrl->connect_work); 3596 3597 dev_info(ctrl->ctrl.device, 3598 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n", 3599 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn); 3600 3601 return &ctrl->ctrl; 3602 3603 fail_ctrl: 3604 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3605 cancel_work_sync(&ctrl->ioerr_work); 3606 cancel_work_sync(&ctrl->ctrl.reset_work); 3607 cancel_delayed_work_sync(&ctrl->connect_work); 3608 3609 ctrl->ctrl.opts = NULL; 3610 3611 /* initiate nvme ctrl ref counting teardown */ 3612 nvme_uninit_ctrl(&ctrl->ctrl); 3613 3614 out_put_ctrl: 3615 /* Remove core ctrl ref. */ 3616 nvme_put_ctrl(&ctrl->ctrl); 3617 3618 /* as we're past the point where we transition to the ref 3619 * counting teardown path, if we return a bad pointer here, 3620 * the calling routine, thinking it's prior to the 3621 * transition, will do an rport put. Since the teardown 3622 * path also does a rport put, we do an extra get here to 3623 * so proper order/teardown happens. 3624 */ 3625 nvme_fc_rport_get(rport); 3626 3627 return ERR_PTR(-EIO); 3628 } 3629 3630 struct nvmet_fc_traddr { 3631 u64 nn; 3632 u64 pn; 3633 }; 3634 3635 static int 3636 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3637 { 3638 u64 token64; 3639 3640 if (match_u64(sstr, &token64)) 3641 return -EINVAL; 3642 *val = token64; 3643 3644 return 0; 3645 } 3646 3647 /* 3648 * This routine validates and extracts the WWN's from the TRADDR string. 3649 * As kernel parsers need the 0x to determine number base, universally 3650 * build string to parse with 0x prefix before parsing name strings. 3651 */ 3652 static int 3653 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3654 { 3655 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3656 substring_t wwn = { name, &name[sizeof(name)-1] }; 3657 int nnoffset, pnoffset; 3658 3659 /* validate if string is one of the 2 allowed formats */ 3660 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3661 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3662 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3663 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3664 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3665 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3666 NVME_FC_TRADDR_OXNNLEN; 3667 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3668 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3669 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3670 "pn-", NVME_FC_TRADDR_NNLEN))) { 3671 nnoffset = NVME_FC_TRADDR_NNLEN; 3672 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3673 } else 3674 goto out_einval; 3675 3676 name[0] = '0'; 3677 name[1] = 'x'; 3678 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3679 3680 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3681 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3682 goto out_einval; 3683 3684 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3685 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3686 goto out_einval; 3687 3688 return 0; 3689 3690 out_einval: 3691 pr_warn("%s: bad traddr string\n", __func__); 3692 return -EINVAL; 3693 } 3694 3695 static struct nvme_ctrl * 3696 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3697 { 3698 struct nvme_fc_lport *lport; 3699 struct nvme_fc_rport *rport; 3700 struct nvme_ctrl *ctrl; 3701 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3702 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3703 unsigned long flags; 3704 int ret; 3705 3706 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3707 if (ret || !raddr.nn || !raddr.pn) 3708 return ERR_PTR(-EINVAL); 3709 3710 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3711 if (ret || !laddr.nn || !laddr.pn) 3712 return ERR_PTR(-EINVAL); 3713 3714 /* find the host and remote ports to connect together */ 3715 spin_lock_irqsave(&nvme_fc_lock, flags); 3716 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3717 if (lport->localport.node_name != laddr.nn || 3718 lport->localport.port_name != laddr.pn || 3719 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3720 continue; 3721 3722 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3723 if (rport->remoteport.node_name != raddr.nn || 3724 rport->remoteport.port_name != raddr.pn || 3725 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3726 continue; 3727 3728 /* if fail to get reference fall through. Will error */ 3729 if (!nvme_fc_rport_get(rport)) 3730 break; 3731 3732 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3733 3734 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3735 if (IS_ERR(ctrl)) 3736 nvme_fc_rport_put(rport); 3737 return ctrl; 3738 } 3739 } 3740 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3741 3742 pr_warn("%s: %s - %s combination not found\n", 3743 __func__, opts->traddr, opts->host_traddr); 3744 return ERR_PTR(-ENOENT); 3745 } 3746 3747 3748 static struct nvmf_transport_ops nvme_fc_transport = { 3749 .name = "fc", 3750 .module = THIS_MODULE, 3751 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3752 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3753 .create_ctrl = nvme_fc_create_ctrl, 3754 }; 3755 3756 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3757 #define DISCOVERY_MAX_FAIL 20 3758 3759 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3760 struct device_attribute *attr, const char *buf, size_t count) 3761 { 3762 unsigned long flags; 3763 LIST_HEAD(local_disc_list); 3764 struct nvme_fc_lport *lport; 3765 struct nvme_fc_rport *rport; 3766 int failcnt = 0; 3767 3768 spin_lock_irqsave(&nvme_fc_lock, flags); 3769 restart: 3770 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3771 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3772 if (!nvme_fc_lport_get(lport)) 3773 continue; 3774 if (!nvme_fc_rport_get(rport)) { 3775 /* 3776 * This is a temporary condition. Upon restart 3777 * this rport will be gone from the list. 3778 * 3779 * Revert the lport put and retry. Anything 3780 * added to the list already will be skipped (as 3781 * they are no longer list_empty). Loops should 3782 * resume at rports that were not yet seen. 3783 */ 3784 nvme_fc_lport_put(lport); 3785 3786 if (failcnt++ < DISCOVERY_MAX_FAIL) 3787 goto restart; 3788 3789 pr_err("nvme_discovery: too many reference " 3790 "failures\n"); 3791 goto process_local_list; 3792 } 3793 if (list_empty(&rport->disc_list)) 3794 list_add_tail(&rport->disc_list, 3795 &local_disc_list); 3796 } 3797 } 3798 3799 process_local_list: 3800 while (!list_empty(&local_disc_list)) { 3801 rport = list_first_entry(&local_disc_list, 3802 struct nvme_fc_rport, disc_list); 3803 list_del_init(&rport->disc_list); 3804 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3805 3806 lport = rport->lport; 3807 /* signal discovery. Won't hurt if it repeats */ 3808 nvme_fc_signal_discovery_scan(lport, rport); 3809 nvme_fc_rport_put(rport); 3810 nvme_fc_lport_put(lport); 3811 3812 spin_lock_irqsave(&nvme_fc_lock, flags); 3813 } 3814 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3815 3816 return count; 3817 } 3818 3819 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3820 3821 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3822 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3823 static int fc_parse_cgrpid(const char *buf, u64 *id) 3824 { 3825 char cgrp_id[16+1]; 3826 int cgrpid_len, j; 3827 3828 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3829 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3830 if (buf[cgrpid_len] != ':') 3831 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3832 else { 3833 j = 1; 3834 break; 3835 } 3836 } 3837 if (!j) 3838 return -EINVAL; 3839 if (kstrtou64(cgrp_id, 16, id) < 0) 3840 return -EINVAL; 3841 return cgrpid_len; 3842 } 3843 3844 /* 3845 * Parse and update the appid in the blkcg associated with the cgroupid. 3846 */ 3847 static ssize_t fc_appid_store(struct device *dev, 3848 struct device_attribute *attr, const char *buf, size_t count) 3849 { 3850 size_t orig_count = count; 3851 u64 cgrp_id; 3852 int appid_len = 0; 3853 int cgrpid_len = 0; 3854 char app_id[FC_APPID_LEN]; 3855 int ret = 0; 3856 3857 if (buf[count-1] == '\n') 3858 count--; 3859 3860 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3861 return -EINVAL; 3862 3863 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3864 if (cgrpid_len < 0) 3865 return -EINVAL; 3866 appid_len = count - cgrpid_len - 1; 3867 if (appid_len > FC_APPID_LEN) 3868 return -EINVAL; 3869 3870 memset(app_id, 0x0, sizeof(app_id)); 3871 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3872 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3873 if (ret < 0) 3874 return ret; 3875 return orig_count; 3876 } 3877 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3878 #endif /* CONFIG_BLK_CGROUP_FC_APPID */ 3879 3880 static struct attribute *nvme_fc_attrs[] = { 3881 &dev_attr_nvme_discovery.attr, 3882 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3883 &dev_attr_appid_store.attr, 3884 #endif 3885 NULL 3886 }; 3887 3888 static const struct attribute_group nvme_fc_attr_group = { 3889 .attrs = nvme_fc_attrs, 3890 }; 3891 3892 static const struct attribute_group *nvme_fc_attr_groups[] = { 3893 &nvme_fc_attr_group, 3894 NULL 3895 }; 3896 3897 static struct class fc_class = { 3898 .name = "fc", 3899 .dev_groups = nvme_fc_attr_groups, 3900 }; 3901 3902 static int __init nvme_fc_init_module(void) 3903 { 3904 int ret; 3905 3906 /* 3907 * NOTE: 3908 * It is expected that in the future the kernel will combine 3909 * the FC-isms that are currently under scsi and now being 3910 * added to by NVME into a new standalone FC class. The SCSI 3911 * and NVME protocols and their devices would be under this 3912 * new FC class. 3913 * 3914 * As we need something to post FC-specific udev events to, 3915 * specifically for nvme probe events, start by creating the 3916 * new device class. When the new standalone FC class is 3917 * put in place, this code will move to a more generic 3918 * location for the class. 3919 */ 3920 ret = class_register(&fc_class); 3921 if (ret) { 3922 pr_err("couldn't register class fc\n"); 3923 return ret; 3924 } 3925 3926 /* 3927 * Create a device for the FC-centric udev events 3928 */ 3929 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3930 "fc_udev_device"); 3931 if (IS_ERR(fc_udev_device)) { 3932 pr_err("couldn't create fc_udev device!\n"); 3933 ret = PTR_ERR(fc_udev_device); 3934 goto out_destroy_class; 3935 } 3936 3937 ret = nvmf_register_transport(&nvme_fc_transport); 3938 if (ret) 3939 goto out_destroy_device; 3940 3941 return 0; 3942 3943 out_destroy_device: 3944 device_destroy(&fc_class, MKDEV(0, 0)); 3945 out_destroy_class: 3946 class_unregister(&fc_class); 3947 3948 return ret; 3949 } 3950 3951 static void 3952 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3953 { 3954 struct nvme_fc_ctrl *ctrl; 3955 3956 spin_lock(&rport->lock); 3957 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3958 dev_warn(ctrl->ctrl.device, 3959 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3960 ctrl->cnum); 3961 nvme_delete_ctrl(&ctrl->ctrl); 3962 } 3963 spin_unlock(&rport->lock); 3964 } 3965 3966 static void __exit nvme_fc_exit_module(void) 3967 { 3968 struct nvme_fc_lport *lport; 3969 struct nvme_fc_rport *rport; 3970 unsigned long flags; 3971 3972 spin_lock_irqsave(&nvme_fc_lock, flags); 3973 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) 3974 list_for_each_entry(rport, &lport->endp_list, endp_list) 3975 nvme_fc_delete_controllers(rport); 3976 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3977 flush_workqueue(nvme_delete_wq); 3978 3979 nvmf_unregister_transport(&nvme_fc_transport); 3980 3981 device_destroy(&fc_class, MKDEV(0, 0)); 3982 class_unregister(&fc_class); 3983 } 3984 3985 module_init(nvme_fc_init_module); 3986 module_exit(nvme_fc_exit_module); 3987 3988 MODULE_DESCRIPTION("NVMe host FC transport driver"); 3989 MODULE_LICENSE("GPL v2"); 3990