1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include <scsi/scsi_transport_fc.h> 18 19 /* *************************** Data Structures/Defines ****************** */ 20 21 22 enum nvme_fc_queue_flags { 23 NVME_FC_Q_CONNECTED = 0, 24 NVME_FC_Q_LIVE, 25 }; 26 27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 28 29 struct nvme_fc_queue { 30 struct nvme_fc_ctrl *ctrl; 31 struct device *dev; 32 struct blk_mq_hw_ctx *hctx; 33 void *lldd_handle; 34 size_t cmnd_capsule_len; 35 u32 qnum; 36 u32 rqcnt; 37 u32 seqno; 38 39 u64 connection_id; 40 atomic_t csn; 41 42 unsigned long flags; 43 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 44 45 enum nvme_fcop_flags { 46 FCOP_FLAGS_TERMIO = (1 << 0), 47 FCOP_FLAGS_AEN = (1 << 1), 48 }; 49 50 struct nvmefc_ls_req_op { 51 struct nvmefc_ls_req ls_req; 52 53 struct nvme_fc_rport *rport; 54 struct nvme_fc_queue *queue; 55 struct request *rq; 56 u32 flags; 57 58 int ls_error; 59 struct completion ls_done; 60 struct list_head lsreq_list; /* rport->ls_req_list */ 61 bool req_queued; 62 }; 63 64 enum nvme_fcpop_state { 65 FCPOP_STATE_UNINIT = 0, 66 FCPOP_STATE_IDLE = 1, 67 FCPOP_STATE_ACTIVE = 2, 68 FCPOP_STATE_ABORTED = 3, 69 FCPOP_STATE_COMPLETE = 4, 70 }; 71 72 struct nvme_fc_fcp_op { 73 struct nvme_request nreq; /* 74 * nvme/host/core.c 75 * requires this to be 76 * the 1st element in the 77 * private structure 78 * associated with the 79 * request. 80 */ 81 struct nvmefc_fcp_req fcp_req; 82 83 struct nvme_fc_ctrl *ctrl; 84 struct nvme_fc_queue *queue; 85 struct request *rq; 86 87 atomic_t state; 88 u32 flags; 89 u32 rqno; 90 u32 nents; 91 92 struct nvme_fc_cmd_iu cmd_iu; 93 struct nvme_fc_ersp_iu rsp_iu; 94 }; 95 96 struct nvme_fcp_op_w_sgl { 97 struct nvme_fc_fcp_op op; 98 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 99 uint8_t priv[0]; 100 }; 101 102 struct nvme_fc_lport { 103 struct nvme_fc_local_port localport; 104 105 struct ida endp_cnt; 106 struct list_head port_list; /* nvme_fc_port_list */ 107 struct list_head endp_list; 108 struct device *dev; /* physical device for dma */ 109 struct nvme_fc_port_template *ops; 110 struct kref ref; 111 atomic_t act_rport_cnt; 112 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 113 114 struct nvme_fc_rport { 115 struct nvme_fc_remote_port remoteport; 116 117 struct list_head endp_list; /* for lport->endp_list */ 118 struct list_head ctrl_list; 119 struct list_head ls_req_list; 120 struct list_head disc_list; 121 struct device *dev; /* physical device for dma */ 122 struct nvme_fc_lport *lport; 123 spinlock_t lock; 124 struct kref ref; 125 atomic_t act_ctrl_cnt; 126 unsigned long dev_loss_end; 127 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 128 129 enum nvme_fcctrl_flags { 130 FCCTRL_TERMIO = (1 << 0), 131 }; 132 133 struct nvme_fc_ctrl { 134 spinlock_t lock; 135 struct nvme_fc_queue *queues; 136 struct device *dev; 137 struct nvme_fc_lport *lport; 138 struct nvme_fc_rport *rport; 139 u32 cnum; 140 141 bool ioq_live; 142 bool assoc_active; 143 atomic_t err_work_active; 144 u64 association_id; 145 146 struct list_head ctrl_list; /* rport->ctrl_list */ 147 148 struct blk_mq_tag_set admin_tag_set; 149 struct blk_mq_tag_set tag_set; 150 151 struct delayed_work connect_work; 152 struct work_struct err_work; 153 154 struct kref ref; 155 u32 flags; 156 u32 iocnt; 157 wait_queue_head_t ioabort_wait; 158 159 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 160 161 struct nvme_ctrl ctrl; 162 }; 163 164 static inline struct nvme_fc_ctrl * 165 to_fc_ctrl(struct nvme_ctrl *ctrl) 166 { 167 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 168 } 169 170 static inline struct nvme_fc_lport * 171 localport_to_lport(struct nvme_fc_local_port *portptr) 172 { 173 return container_of(portptr, struct nvme_fc_lport, localport); 174 } 175 176 static inline struct nvme_fc_rport * 177 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 178 { 179 return container_of(portptr, struct nvme_fc_rport, remoteport); 180 } 181 182 static inline struct nvmefc_ls_req_op * 183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 184 { 185 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 186 } 187 188 static inline struct nvme_fc_fcp_op * 189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 190 { 191 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 192 } 193 194 195 196 /* *************************** Globals **************************** */ 197 198 199 static DEFINE_SPINLOCK(nvme_fc_lock); 200 201 static LIST_HEAD(nvme_fc_lport_list); 202 static DEFINE_IDA(nvme_fc_local_port_cnt); 203 static DEFINE_IDA(nvme_fc_ctrl_cnt); 204 205 static struct workqueue_struct *nvme_fc_wq; 206 207 static bool nvme_fc_waiting_to_unload; 208 static DECLARE_COMPLETION(nvme_fc_unload_proceed); 209 210 /* 211 * These items are short-term. They will eventually be moved into 212 * a generic FC class. See comments in module init. 213 */ 214 static struct device *fc_udev_device; 215 216 217 /* *********************** FC-NVME Port Management ************************ */ 218 219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 220 struct nvme_fc_queue *, unsigned int); 221 222 static void 223 nvme_fc_free_lport(struct kref *ref) 224 { 225 struct nvme_fc_lport *lport = 226 container_of(ref, struct nvme_fc_lport, ref); 227 unsigned long flags; 228 229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 230 WARN_ON(!list_empty(&lport->endp_list)); 231 232 /* remove from transport list */ 233 spin_lock_irqsave(&nvme_fc_lock, flags); 234 list_del(&lport->port_list); 235 if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list)) 236 complete(&nvme_fc_unload_proceed); 237 spin_unlock_irqrestore(&nvme_fc_lock, flags); 238 239 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 240 ida_destroy(&lport->endp_cnt); 241 242 put_device(lport->dev); 243 244 kfree(lport); 245 } 246 247 static void 248 nvme_fc_lport_put(struct nvme_fc_lport *lport) 249 { 250 kref_put(&lport->ref, nvme_fc_free_lport); 251 } 252 253 static int 254 nvme_fc_lport_get(struct nvme_fc_lport *lport) 255 { 256 return kref_get_unless_zero(&lport->ref); 257 } 258 259 260 static struct nvme_fc_lport * 261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 262 struct nvme_fc_port_template *ops, 263 struct device *dev) 264 { 265 struct nvme_fc_lport *lport; 266 unsigned long flags; 267 268 spin_lock_irqsave(&nvme_fc_lock, flags); 269 270 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 271 if (lport->localport.node_name != pinfo->node_name || 272 lport->localport.port_name != pinfo->port_name) 273 continue; 274 275 if (lport->dev != dev) { 276 lport = ERR_PTR(-EXDEV); 277 goto out_done; 278 } 279 280 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 281 lport = ERR_PTR(-EEXIST); 282 goto out_done; 283 } 284 285 if (!nvme_fc_lport_get(lport)) { 286 /* 287 * fails if ref cnt already 0. If so, 288 * act as if lport already deleted 289 */ 290 lport = NULL; 291 goto out_done; 292 } 293 294 /* resume the lport */ 295 296 lport->ops = ops; 297 lport->localport.port_role = pinfo->port_role; 298 lport->localport.port_id = pinfo->port_id; 299 lport->localport.port_state = FC_OBJSTATE_ONLINE; 300 301 spin_unlock_irqrestore(&nvme_fc_lock, flags); 302 303 return lport; 304 } 305 306 lport = NULL; 307 308 out_done: 309 spin_unlock_irqrestore(&nvme_fc_lock, flags); 310 311 return lport; 312 } 313 314 /** 315 * nvme_fc_register_localport - transport entry point called by an 316 * LLDD to register the existence of a NVME 317 * host FC port. 318 * @pinfo: pointer to information about the port to be registered 319 * @template: LLDD entrypoints and operational parameters for the port 320 * @dev: physical hardware device node port corresponds to. Will be 321 * used for DMA mappings 322 * @portptr: pointer to a local port pointer. Upon success, the routine 323 * will allocate a nvme_fc_local_port structure and place its 324 * address in the local port pointer. Upon failure, local port 325 * pointer will be set to 0. 326 * 327 * Returns: 328 * a completion status. Must be 0 upon success; a negative errno 329 * (ex: -ENXIO) upon failure. 330 */ 331 int 332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 333 struct nvme_fc_port_template *template, 334 struct device *dev, 335 struct nvme_fc_local_port **portptr) 336 { 337 struct nvme_fc_lport *newrec; 338 unsigned long flags; 339 int ret, idx; 340 341 if (!template->localport_delete || !template->remoteport_delete || 342 !template->ls_req || !template->fcp_io || 343 !template->ls_abort || !template->fcp_abort || 344 !template->max_hw_queues || !template->max_sgl_segments || 345 !template->max_dif_sgl_segments || !template->dma_boundary || 346 !template->module) { 347 ret = -EINVAL; 348 goto out_reghost_failed; 349 } 350 351 /* 352 * look to see if there is already a localport that had been 353 * deregistered and in the process of waiting for all the 354 * references to fully be removed. If the references haven't 355 * expired, we can simply re-enable the localport. Remoteports 356 * and controller reconnections should resume naturally. 357 */ 358 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 359 360 /* found an lport, but something about its state is bad */ 361 if (IS_ERR(newrec)) { 362 ret = PTR_ERR(newrec); 363 goto out_reghost_failed; 364 365 /* found existing lport, which was resumed */ 366 } else if (newrec) { 367 *portptr = &newrec->localport; 368 return 0; 369 } 370 371 /* nothing found - allocate a new localport struct */ 372 373 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 374 GFP_KERNEL); 375 if (!newrec) { 376 ret = -ENOMEM; 377 goto out_reghost_failed; 378 } 379 380 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 381 if (idx < 0) { 382 ret = -ENOSPC; 383 goto out_fail_kfree; 384 } 385 386 if (!get_device(dev) && dev) { 387 ret = -ENODEV; 388 goto out_ida_put; 389 } 390 391 INIT_LIST_HEAD(&newrec->port_list); 392 INIT_LIST_HEAD(&newrec->endp_list); 393 kref_init(&newrec->ref); 394 atomic_set(&newrec->act_rport_cnt, 0); 395 newrec->ops = template; 396 newrec->dev = dev; 397 ida_init(&newrec->endp_cnt); 398 newrec->localport.private = &newrec[1]; 399 newrec->localport.node_name = pinfo->node_name; 400 newrec->localport.port_name = pinfo->port_name; 401 newrec->localport.port_role = pinfo->port_role; 402 newrec->localport.port_id = pinfo->port_id; 403 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 404 newrec->localport.port_num = idx; 405 406 spin_lock_irqsave(&nvme_fc_lock, flags); 407 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 408 spin_unlock_irqrestore(&nvme_fc_lock, flags); 409 410 if (dev) 411 dma_set_seg_boundary(dev, template->dma_boundary); 412 413 *portptr = &newrec->localport; 414 return 0; 415 416 out_ida_put: 417 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 418 out_fail_kfree: 419 kfree(newrec); 420 out_reghost_failed: 421 *portptr = NULL; 422 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 426 427 /** 428 * nvme_fc_unregister_localport - transport entry point called by an 429 * LLDD to deregister/remove a previously 430 * registered a NVME host FC port. 431 * @portptr: pointer to the (registered) local port that is to be deregistered. 432 * 433 * Returns: 434 * a completion status. Must be 0 upon success; a negative errno 435 * (ex: -ENXIO) upon failure. 436 */ 437 int 438 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 439 { 440 struct nvme_fc_lport *lport = localport_to_lport(portptr); 441 unsigned long flags; 442 443 if (!portptr) 444 return -EINVAL; 445 446 spin_lock_irqsave(&nvme_fc_lock, flags); 447 448 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 449 spin_unlock_irqrestore(&nvme_fc_lock, flags); 450 return -EINVAL; 451 } 452 portptr->port_state = FC_OBJSTATE_DELETED; 453 454 spin_unlock_irqrestore(&nvme_fc_lock, flags); 455 456 if (atomic_read(&lport->act_rport_cnt) == 0) 457 lport->ops->localport_delete(&lport->localport); 458 459 nvme_fc_lport_put(lport); 460 461 return 0; 462 } 463 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 464 465 /* 466 * TRADDR strings, per FC-NVME are fixed format: 467 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 468 * udev event will only differ by prefix of what field is 469 * being specified: 470 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 471 * 19 + 43 + null_fudge = 64 characters 472 */ 473 #define FCNVME_TRADDR_LENGTH 64 474 475 static void 476 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 477 struct nvme_fc_rport *rport) 478 { 479 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 480 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 481 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 482 483 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 484 return; 485 486 snprintf(hostaddr, sizeof(hostaddr), 487 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 488 lport->localport.node_name, lport->localport.port_name); 489 snprintf(tgtaddr, sizeof(tgtaddr), 490 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 491 rport->remoteport.node_name, rport->remoteport.port_name); 492 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 493 } 494 495 static void 496 nvme_fc_free_rport(struct kref *ref) 497 { 498 struct nvme_fc_rport *rport = 499 container_of(ref, struct nvme_fc_rport, ref); 500 struct nvme_fc_lport *lport = 501 localport_to_lport(rport->remoteport.localport); 502 unsigned long flags; 503 504 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 505 WARN_ON(!list_empty(&rport->ctrl_list)); 506 507 /* remove from lport list */ 508 spin_lock_irqsave(&nvme_fc_lock, flags); 509 list_del(&rport->endp_list); 510 spin_unlock_irqrestore(&nvme_fc_lock, flags); 511 512 WARN_ON(!list_empty(&rport->disc_list)); 513 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 514 515 kfree(rport); 516 517 nvme_fc_lport_put(lport); 518 } 519 520 static void 521 nvme_fc_rport_put(struct nvme_fc_rport *rport) 522 { 523 kref_put(&rport->ref, nvme_fc_free_rport); 524 } 525 526 static int 527 nvme_fc_rport_get(struct nvme_fc_rport *rport) 528 { 529 return kref_get_unless_zero(&rport->ref); 530 } 531 532 static void 533 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 534 { 535 switch (ctrl->ctrl.state) { 536 case NVME_CTRL_NEW: 537 case NVME_CTRL_CONNECTING: 538 /* 539 * As all reconnects were suppressed, schedule a 540 * connect. 541 */ 542 dev_info(ctrl->ctrl.device, 543 "NVME-FC{%d}: connectivity re-established. " 544 "Attempting reconnect\n", ctrl->cnum); 545 546 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 547 break; 548 549 case NVME_CTRL_RESETTING: 550 /* 551 * Controller is already in the process of terminating the 552 * association. No need to do anything further. The reconnect 553 * step will naturally occur after the reset completes. 554 */ 555 break; 556 557 default: 558 /* no action to take - let it delete */ 559 break; 560 } 561 } 562 563 static struct nvme_fc_rport * 564 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 565 struct nvme_fc_port_info *pinfo) 566 { 567 struct nvme_fc_rport *rport; 568 struct nvme_fc_ctrl *ctrl; 569 unsigned long flags; 570 571 spin_lock_irqsave(&nvme_fc_lock, flags); 572 573 list_for_each_entry(rport, &lport->endp_list, endp_list) { 574 if (rport->remoteport.node_name != pinfo->node_name || 575 rport->remoteport.port_name != pinfo->port_name) 576 continue; 577 578 if (!nvme_fc_rport_get(rport)) { 579 rport = ERR_PTR(-ENOLCK); 580 goto out_done; 581 } 582 583 spin_unlock_irqrestore(&nvme_fc_lock, flags); 584 585 spin_lock_irqsave(&rport->lock, flags); 586 587 /* has it been unregistered */ 588 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 589 /* means lldd called us twice */ 590 spin_unlock_irqrestore(&rport->lock, flags); 591 nvme_fc_rport_put(rport); 592 return ERR_PTR(-ESTALE); 593 } 594 595 rport->remoteport.port_role = pinfo->port_role; 596 rport->remoteport.port_id = pinfo->port_id; 597 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 598 rport->dev_loss_end = 0; 599 600 /* 601 * kick off a reconnect attempt on all associations to the 602 * remote port. A successful reconnects will resume i/o. 603 */ 604 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 605 nvme_fc_resume_controller(ctrl); 606 607 spin_unlock_irqrestore(&rport->lock, flags); 608 609 return rport; 610 } 611 612 rport = NULL; 613 614 out_done: 615 spin_unlock_irqrestore(&nvme_fc_lock, flags); 616 617 return rport; 618 } 619 620 static inline void 621 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 622 struct nvme_fc_port_info *pinfo) 623 { 624 if (pinfo->dev_loss_tmo) 625 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 626 else 627 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 628 } 629 630 /** 631 * nvme_fc_register_remoteport - transport entry point called by an 632 * LLDD to register the existence of a NVME 633 * subsystem FC port on its fabric. 634 * @localport: pointer to the (registered) local port that the remote 635 * subsystem port is connected to. 636 * @pinfo: pointer to information about the port to be registered 637 * @portptr: pointer to a remote port pointer. Upon success, the routine 638 * will allocate a nvme_fc_remote_port structure and place its 639 * address in the remote port pointer. Upon failure, remote port 640 * pointer will be set to 0. 641 * 642 * Returns: 643 * a completion status. Must be 0 upon success; a negative errno 644 * (ex: -ENXIO) upon failure. 645 */ 646 int 647 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 648 struct nvme_fc_port_info *pinfo, 649 struct nvme_fc_remote_port **portptr) 650 { 651 struct nvme_fc_lport *lport = localport_to_lport(localport); 652 struct nvme_fc_rport *newrec; 653 unsigned long flags; 654 int ret, idx; 655 656 if (!nvme_fc_lport_get(lport)) { 657 ret = -ESHUTDOWN; 658 goto out_reghost_failed; 659 } 660 661 /* 662 * look to see if there is already a remoteport that is waiting 663 * for a reconnect (within dev_loss_tmo) with the same WWN's. 664 * If so, transition to it and reconnect. 665 */ 666 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 667 668 /* found an rport, but something about its state is bad */ 669 if (IS_ERR(newrec)) { 670 ret = PTR_ERR(newrec); 671 goto out_lport_put; 672 673 /* found existing rport, which was resumed */ 674 } else if (newrec) { 675 nvme_fc_lport_put(lport); 676 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 677 nvme_fc_signal_discovery_scan(lport, newrec); 678 *portptr = &newrec->remoteport; 679 return 0; 680 } 681 682 /* nothing found - allocate a new remoteport struct */ 683 684 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 685 GFP_KERNEL); 686 if (!newrec) { 687 ret = -ENOMEM; 688 goto out_lport_put; 689 } 690 691 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 692 if (idx < 0) { 693 ret = -ENOSPC; 694 goto out_kfree_rport; 695 } 696 697 INIT_LIST_HEAD(&newrec->endp_list); 698 INIT_LIST_HEAD(&newrec->ctrl_list); 699 INIT_LIST_HEAD(&newrec->ls_req_list); 700 INIT_LIST_HEAD(&newrec->disc_list); 701 kref_init(&newrec->ref); 702 atomic_set(&newrec->act_ctrl_cnt, 0); 703 spin_lock_init(&newrec->lock); 704 newrec->remoteport.localport = &lport->localport; 705 newrec->dev = lport->dev; 706 newrec->lport = lport; 707 newrec->remoteport.private = &newrec[1]; 708 newrec->remoteport.port_role = pinfo->port_role; 709 newrec->remoteport.node_name = pinfo->node_name; 710 newrec->remoteport.port_name = pinfo->port_name; 711 newrec->remoteport.port_id = pinfo->port_id; 712 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 713 newrec->remoteport.port_num = idx; 714 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 715 716 spin_lock_irqsave(&nvme_fc_lock, flags); 717 list_add_tail(&newrec->endp_list, &lport->endp_list); 718 spin_unlock_irqrestore(&nvme_fc_lock, flags); 719 720 nvme_fc_signal_discovery_scan(lport, newrec); 721 722 *portptr = &newrec->remoteport; 723 return 0; 724 725 out_kfree_rport: 726 kfree(newrec); 727 out_lport_put: 728 nvme_fc_lport_put(lport); 729 out_reghost_failed: 730 *portptr = NULL; 731 return ret; 732 } 733 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 734 735 static int 736 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 737 { 738 struct nvmefc_ls_req_op *lsop; 739 unsigned long flags; 740 741 restart: 742 spin_lock_irqsave(&rport->lock, flags); 743 744 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 745 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 746 lsop->flags |= FCOP_FLAGS_TERMIO; 747 spin_unlock_irqrestore(&rport->lock, flags); 748 rport->lport->ops->ls_abort(&rport->lport->localport, 749 &rport->remoteport, 750 &lsop->ls_req); 751 goto restart; 752 } 753 } 754 spin_unlock_irqrestore(&rport->lock, flags); 755 756 return 0; 757 } 758 759 static void 760 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 761 { 762 dev_info(ctrl->ctrl.device, 763 "NVME-FC{%d}: controller connectivity lost. Awaiting " 764 "Reconnect", ctrl->cnum); 765 766 switch (ctrl->ctrl.state) { 767 case NVME_CTRL_NEW: 768 case NVME_CTRL_LIVE: 769 /* 770 * Schedule a controller reset. The reset will terminate the 771 * association and schedule the reconnect timer. Reconnects 772 * will be attempted until either the ctlr_loss_tmo 773 * (max_retries * connect_delay) expires or the remoteport's 774 * dev_loss_tmo expires. 775 */ 776 if (nvme_reset_ctrl(&ctrl->ctrl)) { 777 dev_warn(ctrl->ctrl.device, 778 "NVME-FC{%d}: Couldn't schedule reset.\n", 779 ctrl->cnum); 780 nvme_delete_ctrl(&ctrl->ctrl); 781 } 782 break; 783 784 case NVME_CTRL_CONNECTING: 785 /* 786 * The association has already been terminated and the 787 * controller is attempting reconnects. No need to do anything 788 * futher. Reconnects will be attempted until either the 789 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 790 * remoteport's dev_loss_tmo expires. 791 */ 792 break; 793 794 case NVME_CTRL_RESETTING: 795 /* 796 * Controller is already in the process of terminating the 797 * association. No need to do anything further. The reconnect 798 * step will kick in naturally after the association is 799 * terminated. 800 */ 801 break; 802 803 case NVME_CTRL_DELETING: 804 default: 805 /* no action to take - let it delete */ 806 break; 807 } 808 } 809 810 /** 811 * nvme_fc_unregister_remoteport - transport entry point called by an 812 * LLDD to deregister/remove a previously 813 * registered a NVME subsystem FC port. 814 * @portptr: pointer to the (registered) remote port that is to be 815 * deregistered. 816 * 817 * Returns: 818 * a completion status. Must be 0 upon success; a negative errno 819 * (ex: -ENXIO) upon failure. 820 */ 821 int 822 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 823 { 824 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 825 struct nvme_fc_ctrl *ctrl; 826 unsigned long flags; 827 828 if (!portptr) 829 return -EINVAL; 830 831 spin_lock_irqsave(&rport->lock, flags); 832 833 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 834 spin_unlock_irqrestore(&rport->lock, flags); 835 return -EINVAL; 836 } 837 portptr->port_state = FC_OBJSTATE_DELETED; 838 839 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 840 841 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 842 /* if dev_loss_tmo==0, dev loss is immediate */ 843 if (!portptr->dev_loss_tmo) { 844 dev_warn(ctrl->ctrl.device, 845 "NVME-FC{%d}: controller connectivity lost.\n", 846 ctrl->cnum); 847 nvme_delete_ctrl(&ctrl->ctrl); 848 } else 849 nvme_fc_ctrl_connectivity_loss(ctrl); 850 } 851 852 spin_unlock_irqrestore(&rport->lock, flags); 853 854 nvme_fc_abort_lsops(rport); 855 856 if (atomic_read(&rport->act_ctrl_cnt) == 0) 857 rport->lport->ops->remoteport_delete(portptr); 858 859 /* 860 * release the reference, which will allow, if all controllers 861 * go away, which should only occur after dev_loss_tmo occurs, 862 * for the rport to be torn down. 863 */ 864 nvme_fc_rport_put(rport); 865 866 return 0; 867 } 868 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 869 870 /** 871 * nvme_fc_rescan_remoteport - transport entry point called by an 872 * LLDD to request a nvme device rescan. 873 * @remoteport: pointer to the (registered) remote port that is to be 874 * rescanned. 875 * 876 * Returns: N/A 877 */ 878 void 879 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 880 { 881 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 882 883 nvme_fc_signal_discovery_scan(rport->lport, rport); 884 } 885 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 886 887 int 888 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 889 u32 dev_loss_tmo) 890 { 891 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 892 unsigned long flags; 893 894 spin_lock_irqsave(&rport->lock, flags); 895 896 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 897 spin_unlock_irqrestore(&rport->lock, flags); 898 return -EINVAL; 899 } 900 901 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 902 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 903 904 spin_unlock_irqrestore(&rport->lock, flags); 905 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 909 910 911 /* *********************** FC-NVME DMA Handling **************************** */ 912 913 /* 914 * The fcloop device passes in a NULL device pointer. Real LLD's will 915 * pass in a valid device pointer. If NULL is passed to the dma mapping 916 * routines, depending on the platform, it may or may not succeed, and 917 * may crash. 918 * 919 * As such: 920 * Wrapper all the dma routines and check the dev pointer. 921 * 922 * If simple mappings (return just a dma address, we'll noop them, 923 * returning a dma address of 0. 924 * 925 * On more complex mappings (dma_map_sg), a pseudo routine fills 926 * in the scatter list, setting all dma addresses to 0. 927 */ 928 929 static inline dma_addr_t 930 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 931 enum dma_data_direction dir) 932 { 933 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 934 } 935 936 static inline int 937 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 938 { 939 return dev ? dma_mapping_error(dev, dma_addr) : 0; 940 } 941 942 static inline void 943 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 944 enum dma_data_direction dir) 945 { 946 if (dev) 947 dma_unmap_single(dev, addr, size, dir); 948 } 949 950 static inline void 951 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 952 enum dma_data_direction dir) 953 { 954 if (dev) 955 dma_sync_single_for_cpu(dev, addr, size, dir); 956 } 957 958 static inline void 959 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 960 enum dma_data_direction dir) 961 { 962 if (dev) 963 dma_sync_single_for_device(dev, addr, size, dir); 964 } 965 966 /* pseudo dma_map_sg call */ 967 static int 968 fc_map_sg(struct scatterlist *sg, int nents) 969 { 970 struct scatterlist *s; 971 int i; 972 973 WARN_ON(nents == 0 || sg[0].length == 0); 974 975 for_each_sg(sg, s, nents, i) { 976 s->dma_address = 0L; 977 #ifdef CONFIG_NEED_SG_DMA_LENGTH 978 s->dma_length = s->length; 979 #endif 980 } 981 return nents; 982 } 983 984 static inline int 985 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 986 enum dma_data_direction dir) 987 { 988 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 989 } 990 991 static inline void 992 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 993 enum dma_data_direction dir) 994 { 995 if (dev) 996 dma_unmap_sg(dev, sg, nents, dir); 997 } 998 999 /* *********************** FC-NVME LS Handling **************************** */ 1000 1001 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1002 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1003 1004 1005 static void 1006 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1007 { 1008 struct nvme_fc_rport *rport = lsop->rport; 1009 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1010 unsigned long flags; 1011 1012 spin_lock_irqsave(&rport->lock, flags); 1013 1014 if (!lsop->req_queued) { 1015 spin_unlock_irqrestore(&rport->lock, flags); 1016 return; 1017 } 1018 1019 list_del(&lsop->lsreq_list); 1020 1021 lsop->req_queued = false; 1022 1023 spin_unlock_irqrestore(&rport->lock, flags); 1024 1025 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1026 (lsreq->rqstlen + lsreq->rsplen), 1027 DMA_BIDIRECTIONAL); 1028 1029 nvme_fc_rport_put(rport); 1030 } 1031 1032 static int 1033 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1034 struct nvmefc_ls_req_op *lsop, 1035 void (*done)(struct nvmefc_ls_req *req, int status)) 1036 { 1037 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1038 unsigned long flags; 1039 int ret = 0; 1040 1041 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1042 return -ECONNREFUSED; 1043 1044 if (!nvme_fc_rport_get(rport)) 1045 return -ESHUTDOWN; 1046 1047 lsreq->done = done; 1048 lsop->rport = rport; 1049 lsop->req_queued = false; 1050 INIT_LIST_HEAD(&lsop->lsreq_list); 1051 init_completion(&lsop->ls_done); 1052 1053 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1054 lsreq->rqstlen + lsreq->rsplen, 1055 DMA_BIDIRECTIONAL); 1056 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1057 ret = -EFAULT; 1058 goto out_putrport; 1059 } 1060 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1061 1062 spin_lock_irqsave(&rport->lock, flags); 1063 1064 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1065 1066 lsop->req_queued = true; 1067 1068 spin_unlock_irqrestore(&rport->lock, flags); 1069 1070 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1071 &rport->remoteport, lsreq); 1072 if (ret) 1073 goto out_unlink; 1074 1075 return 0; 1076 1077 out_unlink: 1078 lsop->ls_error = ret; 1079 spin_lock_irqsave(&rport->lock, flags); 1080 lsop->req_queued = false; 1081 list_del(&lsop->lsreq_list); 1082 spin_unlock_irqrestore(&rport->lock, flags); 1083 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1084 (lsreq->rqstlen + lsreq->rsplen), 1085 DMA_BIDIRECTIONAL); 1086 out_putrport: 1087 nvme_fc_rport_put(rport); 1088 1089 return ret; 1090 } 1091 1092 static void 1093 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1094 { 1095 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1096 1097 lsop->ls_error = status; 1098 complete(&lsop->ls_done); 1099 } 1100 1101 static int 1102 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1103 { 1104 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1105 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1106 int ret; 1107 1108 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1109 1110 if (!ret) { 1111 /* 1112 * No timeout/not interruptible as we need the struct 1113 * to exist until the lldd calls us back. Thus mandate 1114 * wait until driver calls back. lldd responsible for 1115 * the timeout action 1116 */ 1117 wait_for_completion(&lsop->ls_done); 1118 1119 __nvme_fc_finish_ls_req(lsop); 1120 1121 ret = lsop->ls_error; 1122 } 1123 1124 if (ret) 1125 return ret; 1126 1127 /* ACC or RJT payload ? */ 1128 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1129 return -ENXIO; 1130 1131 return 0; 1132 } 1133 1134 static int 1135 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1136 struct nvmefc_ls_req_op *lsop, 1137 void (*done)(struct nvmefc_ls_req *req, int status)) 1138 { 1139 /* don't wait for completion */ 1140 1141 return __nvme_fc_send_ls_req(rport, lsop, done); 1142 } 1143 1144 /* Validation Error indexes into the string table below */ 1145 enum { 1146 VERR_NO_ERROR = 0, 1147 VERR_LSACC = 1, 1148 VERR_LSDESC_RQST = 2, 1149 VERR_LSDESC_RQST_LEN = 3, 1150 VERR_ASSOC_ID = 4, 1151 VERR_ASSOC_ID_LEN = 5, 1152 VERR_CONN_ID = 6, 1153 VERR_CONN_ID_LEN = 7, 1154 VERR_CR_ASSOC = 8, 1155 VERR_CR_ASSOC_ACC_LEN = 9, 1156 VERR_CR_CONN = 10, 1157 VERR_CR_CONN_ACC_LEN = 11, 1158 VERR_DISCONN = 12, 1159 VERR_DISCONN_ACC_LEN = 13, 1160 }; 1161 1162 static char *validation_errors[] = { 1163 "OK", 1164 "Not LS_ACC", 1165 "Not LSDESC_RQST", 1166 "Bad LSDESC_RQST Length", 1167 "Not Association ID", 1168 "Bad Association ID Length", 1169 "Not Connection ID", 1170 "Bad Connection ID Length", 1171 "Not CR_ASSOC Rqst", 1172 "Bad CR_ASSOC ACC Length", 1173 "Not CR_CONN Rqst", 1174 "Bad CR_CONN ACC Length", 1175 "Not Disconnect Rqst", 1176 "Bad Disconnect ACC Length", 1177 }; 1178 1179 static int 1180 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1181 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1182 { 1183 struct nvmefc_ls_req_op *lsop; 1184 struct nvmefc_ls_req *lsreq; 1185 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1186 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1187 int ret, fcret = 0; 1188 1189 lsop = kzalloc((sizeof(*lsop) + 1190 ctrl->lport->ops->lsrqst_priv_sz + 1191 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1192 if (!lsop) { 1193 ret = -ENOMEM; 1194 goto out_no_memory; 1195 } 1196 lsreq = &lsop->ls_req; 1197 1198 lsreq->private = (void *)&lsop[1]; 1199 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1200 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1201 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1202 1203 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1204 assoc_rqst->desc_list_len = 1205 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1206 1207 assoc_rqst->assoc_cmd.desc_tag = 1208 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1209 assoc_rqst->assoc_cmd.desc_len = 1210 fcnvme_lsdesc_len( 1211 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1212 1213 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1214 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1215 /* Linux supports only Dynamic controllers */ 1216 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1217 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1218 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1219 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1220 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1221 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1222 1223 lsop->queue = queue; 1224 lsreq->rqstaddr = assoc_rqst; 1225 lsreq->rqstlen = sizeof(*assoc_rqst); 1226 lsreq->rspaddr = assoc_acc; 1227 lsreq->rsplen = sizeof(*assoc_acc); 1228 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1229 1230 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1231 if (ret) 1232 goto out_free_buffer; 1233 1234 /* process connect LS completion */ 1235 1236 /* validate the ACC response */ 1237 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1238 fcret = VERR_LSACC; 1239 else if (assoc_acc->hdr.desc_list_len != 1240 fcnvme_lsdesc_len( 1241 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1242 fcret = VERR_CR_ASSOC_ACC_LEN; 1243 else if (assoc_acc->hdr.rqst.desc_tag != 1244 cpu_to_be32(FCNVME_LSDESC_RQST)) 1245 fcret = VERR_LSDESC_RQST; 1246 else if (assoc_acc->hdr.rqst.desc_len != 1247 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1248 fcret = VERR_LSDESC_RQST_LEN; 1249 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1250 fcret = VERR_CR_ASSOC; 1251 else if (assoc_acc->associd.desc_tag != 1252 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1253 fcret = VERR_ASSOC_ID; 1254 else if (assoc_acc->associd.desc_len != 1255 fcnvme_lsdesc_len( 1256 sizeof(struct fcnvme_lsdesc_assoc_id))) 1257 fcret = VERR_ASSOC_ID_LEN; 1258 else if (assoc_acc->connectid.desc_tag != 1259 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1260 fcret = VERR_CONN_ID; 1261 else if (assoc_acc->connectid.desc_len != 1262 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1263 fcret = VERR_CONN_ID_LEN; 1264 1265 if (fcret) { 1266 ret = -EBADF; 1267 dev_err(ctrl->dev, 1268 "q %d Create Association LS failed: %s\n", 1269 queue->qnum, validation_errors[fcret]); 1270 } else { 1271 ctrl->association_id = 1272 be64_to_cpu(assoc_acc->associd.association_id); 1273 queue->connection_id = 1274 be64_to_cpu(assoc_acc->connectid.connection_id); 1275 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1276 } 1277 1278 out_free_buffer: 1279 kfree(lsop); 1280 out_no_memory: 1281 if (ret) 1282 dev_err(ctrl->dev, 1283 "queue %d connect admin queue failed (%d).\n", 1284 queue->qnum, ret); 1285 return ret; 1286 } 1287 1288 static int 1289 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1290 u16 qsize, u16 ersp_ratio) 1291 { 1292 struct nvmefc_ls_req_op *lsop; 1293 struct nvmefc_ls_req *lsreq; 1294 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1295 struct fcnvme_ls_cr_conn_acc *conn_acc; 1296 int ret, fcret = 0; 1297 1298 lsop = kzalloc((sizeof(*lsop) + 1299 ctrl->lport->ops->lsrqst_priv_sz + 1300 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1301 if (!lsop) { 1302 ret = -ENOMEM; 1303 goto out_no_memory; 1304 } 1305 lsreq = &lsop->ls_req; 1306 1307 lsreq->private = (void *)&lsop[1]; 1308 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1309 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1310 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1311 1312 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1313 conn_rqst->desc_list_len = cpu_to_be32( 1314 sizeof(struct fcnvme_lsdesc_assoc_id) + 1315 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1316 1317 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1318 conn_rqst->associd.desc_len = 1319 fcnvme_lsdesc_len( 1320 sizeof(struct fcnvme_lsdesc_assoc_id)); 1321 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1322 conn_rqst->connect_cmd.desc_tag = 1323 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1324 conn_rqst->connect_cmd.desc_len = 1325 fcnvme_lsdesc_len( 1326 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1327 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1328 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1329 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1330 1331 lsop->queue = queue; 1332 lsreq->rqstaddr = conn_rqst; 1333 lsreq->rqstlen = sizeof(*conn_rqst); 1334 lsreq->rspaddr = conn_acc; 1335 lsreq->rsplen = sizeof(*conn_acc); 1336 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1337 1338 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1339 if (ret) 1340 goto out_free_buffer; 1341 1342 /* process connect LS completion */ 1343 1344 /* validate the ACC response */ 1345 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1346 fcret = VERR_LSACC; 1347 else if (conn_acc->hdr.desc_list_len != 1348 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1349 fcret = VERR_CR_CONN_ACC_LEN; 1350 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1351 fcret = VERR_LSDESC_RQST; 1352 else if (conn_acc->hdr.rqst.desc_len != 1353 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1354 fcret = VERR_LSDESC_RQST_LEN; 1355 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1356 fcret = VERR_CR_CONN; 1357 else if (conn_acc->connectid.desc_tag != 1358 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1359 fcret = VERR_CONN_ID; 1360 else if (conn_acc->connectid.desc_len != 1361 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1362 fcret = VERR_CONN_ID_LEN; 1363 1364 if (fcret) { 1365 ret = -EBADF; 1366 dev_err(ctrl->dev, 1367 "q %d Create I/O Connection LS failed: %s\n", 1368 queue->qnum, validation_errors[fcret]); 1369 } else { 1370 queue->connection_id = 1371 be64_to_cpu(conn_acc->connectid.connection_id); 1372 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1373 } 1374 1375 out_free_buffer: 1376 kfree(lsop); 1377 out_no_memory: 1378 if (ret) 1379 dev_err(ctrl->dev, 1380 "queue %d connect I/O queue failed (%d).\n", 1381 queue->qnum, ret); 1382 return ret; 1383 } 1384 1385 static void 1386 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1387 { 1388 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1389 1390 __nvme_fc_finish_ls_req(lsop); 1391 1392 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1393 1394 kfree(lsop); 1395 } 1396 1397 /* 1398 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1399 * the FC-NVME Association. Terminating the association also 1400 * terminates the FC-NVME connections (per queue, both admin and io 1401 * queues) that are part of the association. E.g. things are torn 1402 * down, and the related FC-NVME Association ID and Connection IDs 1403 * become invalid. 1404 * 1405 * The behavior of the fc-nvme initiator is such that it's 1406 * understanding of the association and connections will implicitly 1407 * be torn down. The action is implicit as it may be due to a loss of 1408 * connectivity with the fc-nvme target, so you may never get a 1409 * response even if you tried. As such, the action of this routine 1410 * is to asynchronously send the LS, ignore any results of the LS, and 1411 * continue on with terminating the association. If the fc-nvme target 1412 * is present and receives the LS, it too can tear down. 1413 */ 1414 static void 1415 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1416 { 1417 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1418 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1419 struct nvmefc_ls_req_op *lsop; 1420 struct nvmefc_ls_req *lsreq; 1421 int ret; 1422 1423 lsop = kzalloc((sizeof(*lsop) + 1424 ctrl->lport->ops->lsrqst_priv_sz + 1425 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1426 GFP_KERNEL); 1427 if (!lsop) 1428 /* couldn't sent it... too bad */ 1429 return; 1430 1431 lsreq = &lsop->ls_req; 1432 1433 lsreq->private = (void *)&lsop[1]; 1434 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *) 1435 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1436 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1437 1438 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT_ASSOC; 1439 discon_rqst->desc_list_len = cpu_to_be32( 1440 sizeof(struct fcnvme_lsdesc_assoc_id) + 1441 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1442 1443 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1444 discon_rqst->associd.desc_len = 1445 fcnvme_lsdesc_len( 1446 sizeof(struct fcnvme_lsdesc_assoc_id)); 1447 1448 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1449 1450 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1451 FCNVME_LSDESC_DISCONN_CMD); 1452 discon_rqst->discon_cmd.desc_len = 1453 fcnvme_lsdesc_len( 1454 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1455 1456 lsreq->rqstaddr = discon_rqst; 1457 lsreq->rqstlen = sizeof(*discon_rqst); 1458 lsreq->rspaddr = discon_acc; 1459 lsreq->rsplen = sizeof(*discon_acc); 1460 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1461 1462 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1463 nvme_fc_disconnect_assoc_done); 1464 if (ret) 1465 kfree(lsop); 1466 } 1467 1468 1469 /* *********************** NVME Ctrl Routines **************************** */ 1470 1471 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1472 1473 static void 1474 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1475 struct nvme_fc_fcp_op *op) 1476 { 1477 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1478 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1479 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1480 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1481 1482 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1483 } 1484 1485 static void 1486 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1487 unsigned int hctx_idx) 1488 { 1489 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1490 1491 return __nvme_fc_exit_request(set->driver_data, op); 1492 } 1493 1494 static int 1495 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1496 { 1497 unsigned long flags; 1498 int opstate; 1499 1500 spin_lock_irqsave(&ctrl->lock, flags); 1501 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1502 if (opstate != FCPOP_STATE_ACTIVE) 1503 atomic_set(&op->state, opstate); 1504 else if (ctrl->flags & FCCTRL_TERMIO) 1505 ctrl->iocnt++; 1506 spin_unlock_irqrestore(&ctrl->lock, flags); 1507 1508 if (opstate != FCPOP_STATE_ACTIVE) 1509 return -ECANCELED; 1510 1511 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1512 &ctrl->rport->remoteport, 1513 op->queue->lldd_handle, 1514 &op->fcp_req); 1515 1516 return 0; 1517 } 1518 1519 static void 1520 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1521 { 1522 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1523 int i; 1524 1525 /* ensure we've initialized the ops once */ 1526 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1527 return; 1528 1529 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1530 __nvme_fc_abort_op(ctrl, aen_op); 1531 } 1532 1533 static inline void 1534 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1535 struct nvme_fc_fcp_op *op, int opstate) 1536 { 1537 unsigned long flags; 1538 1539 if (opstate == FCPOP_STATE_ABORTED) { 1540 spin_lock_irqsave(&ctrl->lock, flags); 1541 if (ctrl->flags & FCCTRL_TERMIO) { 1542 if (!--ctrl->iocnt) 1543 wake_up(&ctrl->ioabort_wait); 1544 } 1545 spin_unlock_irqrestore(&ctrl->lock, flags); 1546 } 1547 } 1548 1549 static void 1550 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1551 { 1552 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1553 struct request *rq = op->rq; 1554 struct nvmefc_fcp_req *freq = &op->fcp_req; 1555 struct nvme_fc_ctrl *ctrl = op->ctrl; 1556 struct nvme_fc_queue *queue = op->queue; 1557 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1558 struct nvme_command *sqe = &op->cmd_iu.sqe; 1559 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1560 union nvme_result result; 1561 bool terminate_assoc = true; 1562 int opstate; 1563 1564 /* 1565 * WARNING: 1566 * The current linux implementation of a nvme controller 1567 * allocates a single tag set for all io queues and sizes 1568 * the io queues to fully hold all possible tags. Thus, the 1569 * implementation does not reference or care about the sqhd 1570 * value as it never needs to use the sqhd/sqtail pointers 1571 * for submission pacing. 1572 * 1573 * This affects the FC-NVME implementation in two ways: 1574 * 1) As the value doesn't matter, we don't need to waste 1575 * cycles extracting it from ERSPs and stamping it in the 1576 * cases where the transport fabricates CQEs on successful 1577 * completions. 1578 * 2) The FC-NVME implementation requires that delivery of 1579 * ERSP completions are to go back to the nvme layer in order 1580 * relative to the rsn, such that the sqhd value will always 1581 * be "in order" for the nvme layer. As the nvme layer in 1582 * linux doesn't care about sqhd, there's no need to return 1583 * them in order. 1584 * 1585 * Additionally: 1586 * As the core nvme layer in linux currently does not look at 1587 * every field in the cqe - in cases where the FC transport must 1588 * fabricate a CQE, the following fields will not be set as they 1589 * are not referenced: 1590 * cqe.sqid, cqe.sqhd, cqe.command_id 1591 * 1592 * Failure or error of an individual i/o, in a transport 1593 * detected fashion unrelated to the nvme completion status, 1594 * potentially cause the initiator and target sides to get out 1595 * of sync on SQ head/tail (aka outstanding io count allowed). 1596 * Per FC-NVME spec, failure of an individual command requires 1597 * the connection to be terminated, which in turn requires the 1598 * association to be terminated. 1599 */ 1600 1601 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1602 1603 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1604 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1605 1606 if (opstate == FCPOP_STATE_ABORTED) 1607 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1608 else if (freq->status) { 1609 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1610 dev_info(ctrl->ctrl.device, 1611 "NVME-FC{%d}: io failed due to lldd error %d\n", 1612 ctrl->cnum, freq->status); 1613 } 1614 1615 /* 1616 * For the linux implementation, if we have an unsuccesful 1617 * status, they blk-mq layer can typically be called with the 1618 * non-zero status and the content of the cqe isn't important. 1619 */ 1620 if (status) 1621 goto done; 1622 1623 /* 1624 * command completed successfully relative to the wire 1625 * protocol. However, validate anything received and 1626 * extract the status and result from the cqe (create it 1627 * where necessary). 1628 */ 1629 1630 switch (freq->rcv_rsplen) { 1631 1632 case 0: 1633 case NVME_FC_SIZEOF_ZEROS_RSP: 1634 /* 1635 * No response payload or 12 bytes of payload (which 1636 * should all be zeros) are considered successful and 1637 * no payload in the CQE by the transport. 1638 */ 1639 if (freq->transferred_length != 1640 be32_to_cpu(op->cmd_iu.data_len)) { 1641 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1642 dev_info(ctrl->ctrl.device, 1643 "NVME-FC{%d}: io failed due to bad transfer " 1644 "length: %d vs expected %d\n", 1645 ctrl->cnum, freq->transferred_length, 1646 be32_to_cpu(op->cmd_iu.data_len)); 1647 goto done; 1648 } 1649 result.u64 = 0; 1650 break; 1651 1652 case sizeof(struct nvme_fc_ersp_iu): 1653 /* 1654 * The ERSP IU contains a full completion with CQE. 1655 * Validate ERSP IU and look at cqe. 1656 */ 1657 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1658 (freq->rcv_rsplen / 4) || 1659 be32_to_cpu(op->rsp_iu.xfrd_len) != 1660 freq->transferred_length || 1661 op->rsp_iu.ersp_result || 1662 sqe->common.command_id != cqe->command_id)) { 1663 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1664 dev_info(ctrl->ctrl.device, 1665 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 1666 "iu len %d, xfr len %d vs %d, status code " 1667 "%d, cmdid %d vs %d\n", 1668 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 1669 be32_to_cpu(op->rsp_iu.xfrd_len), 1670 freq->transferred_length, 1671 op->rsp_iu.ersp_result, 1672 sqe->common.command_id, 1673 cqe->command_id); 1674 goto done; 1675 } 1676 result = cqe->result; 1677 status = cqe->status; 1678 break; 1679 1680 default: 1681 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1682 dev_info(ctrl->ctrl.device, 1683 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 1684 "len %d\n", 1685 ctrl->cnum, freq->rcv_rsplen); 1686 goto done; 1687 } 1688 1689 terminate_assoc = false; 1690 1691 done: 1692 if (op->flags & FCOP_FLAGS_AEN) { 1693 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1694 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1695 atomic_set(&op->state, FCPOP_STATE_IDLE); 1696 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1697 nvme_fc_ctrl_put(ctrl); 1698 goto check_error; 1699 } 1700 1701 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1702 nvme_end_request(rq, status, result); 1703 1704 check_error: 1705 if (terminate_assoc) 1706 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1707 } 1708 1709 static int 1710 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1711 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1712 struct request *rq, u32 rqno) 1713 { 1714 struct nvme_fcp_op_w_sgl *op_w_sgl = 1715 container_of(op, typeof(*op_w_sgl), op); 1716 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1717 int ret = 0; 1718 1719 memset(op, 0, sizeof(*op)); 1720 op->fcp_req.cmdaddr = &op->cmd_iu; 1721 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1722 op->fcp_req.rspaddr = &op->rsp_iu; 1723 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1724 op->fcp_req.done = nvme_fc_fcpio_done; 1725 op->ctrl = ctrl; 1726 op->queue = queue; 1727 op->rq = rq; 1728 op->rqno = rqno; 1729 1730 cmdiu->format_id = NVME_CMD_FORMAT_ID; 1731 cmdiu->fc_id = NVME_CMD_FC_ID; 1732 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1733 if (queue->qnum) 1734 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 1735 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 1736 else 1737 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 1738 1739 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1740 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1741 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1742 dev_err(ctrl->dev, 1743 "FCP Op failed - cmdiu dma mapping failed.\n"); 1744 ret = EFAULT; 1745 goto out_on_error; 1746 } 1747 1748 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1749 &op->rsp_iu, sizeof(op->rsp_iu), 1750 DMA_FROM_DEVICE); 1751 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1752 dev_err(ctrl->dev, 1753 "FCP Op failed - rspiu dma mapping failed.\n"); 1754 ret = EFAULT; 1755 } 1756 1757 atomic_set(&op->state, FCPOP_STATE_IDLE); 1758 out_on_error: 1759 return ret; 1760 } 1761 1762 static int 1763 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1764 unsigned int hctx_idx, unsigned int numa_node) 1765 { 1766 struct nvme_fc_ctrl *ctrl = set->driver_data; 1767 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 1768 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1769 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1770 int res; 1771 1772 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 1773 if (res) 1774 return res; 1775 op->op.fcp_req.first_sgl = &op->sgl[0]; 1776 op->op.fcp_req.private = &op->priv[0]; 1777 nvme_req(rq)->ctrl = &ctrl->ctrl; 1778 return res; 1779 } 1780 1781 static int 1782 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1783 { 1784 struct nvme_fc_fcp_op *aen_op; 1785 struct nvme_fc_cmd_iu *cmdiu; 1786 struct nvme_command *sqe; 1787 void *private; 1788 int i, ret; 1789 1790 aen_op = ctrl->aen_ops; 1791 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1792 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1793 GFP_KERNEL); 1794 if (!private) 1795 return -ENOMEM; 1796 1797 cmdiu = &aen_op->cmd_iu; 1798 sqe = &cmdiu->sqe; 1799 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1800 aen_op, (struct request *)NULL, 1801 (NVME_AQ_BLK_MQ_DEPTH + i)); 1802 if (ret) { 1803 kfree(private); 1804 return ret; 1805 } 1806 1807 aen_op->flags = FCOP_FLAGS_AEN; 1808 aen_op->fcp_req.private = private; 1809 1810 memset(sqe, 0, sizeof(*sqe)); 1811 sqe->common.opcode = nvme_admin_async_event; 1812 /* Note: core layer may overwrite the sqe.command_id value */ 1813 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1814 } 1815 return 0; 1816 } 1817 1818 static void 1819 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1820 { 1821 struct nvme_fc_fcp_op *aen_op; 1822 int i; 1823 1824 aen_op = ctrl->aen_ops; 1825 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1826 if (!aen_op->fcp_req.private) 1827 continue; 1828 1829 __nvme_fc_exit_request(ctrl, aen_op); 1830 1831 kfree(aen_op->fcp_req.private); 1832 aen_op->fcp_req.private = NULL; 1833 } 1834 } 1835 1836 static inline void 1837 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1838 unsigned int qidx) 1839 { 1840 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1841 1842 hctx->driver_data = queue; 1843 queue->hctx = hctx; 1844 } 1845 1846 static int 1847 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1848 unsigned int hctx_idx) 1849 { 1850 struct nvme_fc_ctrl *ctrl = data; 1851 1852 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1853 1854 return 0; 1855 } 1856 1857 static int 1858 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1859 unsigned int hctx_idx) 1860 { 1861 struct nvme_fc_ctrl *ctrl = data; 1862 1863 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1864 1865 return 0; 1866 } 1867 1868 static void 1869 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1870 { 1871 struct nvme_fc_queue *queue; 1872 1873 queue = &ctrl->queues[idx]; 1874 memset(queue, 0, sizeof(*queue)); 1875 queue->ctrl = ctrl; 1876 queue->qnum = idx; 1877 atomic_set(&queue->csn, 0); 1878 queue->dev = ctrl->dev; 1879 1880 if (idx > 0) 1881 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1882 else 1883 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1884 1885 /* 1886 * Considered whether we should allocate buffers for all SQEs 1887 * and CQEs and dma map them - mapping their respective entries 1888 * into the request structures (kernel vm addr and dma address) 1889 * thus the driver could use the buffers/mappings directly. 1890 * It only makes sense if the LLDD would use them for its 1891 * messaging api. It's very unlikely most adapter api's would use 1892 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1893 * structures were used instead. 1894 */ 1895 } 1896 1897 /* 1898 * This routine terminates a queue at the transport level. 1899 * The transport has already ensured that all outstanding ios on 1900 * the queue have been terminated. 1901 * The transport will send a Disconnect LS request to terminate 1902 * the queue's connection. Termination of the admin queue will also 1903 * terminate the association at the target. 1904 */ 1905 static void 1906 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1907 { 1908 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1909 return; 1910 1911 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 1912 /* 1913 * Current implementation never disconnects a single queue. 1914 * It always terminates a whole association. So there is never 1915 * a disconnect(queue) LS sent to the target. 1916 */ 1917 1918 queue->connection_id = 0; 1919 atomic_set(&queue->csn, 0); 1920 } 1921 1922 static void 1923 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1924 struct nvme_fc_queue *queue, unsigned int qidx) 1925 { 1926 if (ctrl->lport->ops->delete_queue) 1927 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1928 queue->lldd_handle); 1929 queue->lldd_handle = NULL; 1930 } 1931 1932 static void 1933 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1934 { 1935 int i; 1936 1937 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1938 nvme_fc_free_queue(&ctrl->queues[i]); 1939 } 1940 1941 static int 1942 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1943 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1944 { 1945 int ret = 0; 1946 1947 queue->lldd_handle = NULL; 1948 if (ctrl->lport->ops->create_queue) 1949 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1950 qidx, qsize, &queue->lldd_handle); 1951 1952 return ret; 1953 } 1954 1955 static void 1956 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1957 { 1958 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1959 int i; 1960 1961 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1962 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1963 } 1964 1965 static int 1966 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1967 { 1968 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1969 int i, ret; 1970 1971 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1972 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1973 if (ret) 1974 goto delete_queues; 1975 } 1976 1977 return 0; 1978 1979 delete_queues: 1980 for (; i >= 0; i--) 1981 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1982 return ret; 1983 } 1984 1985 static int 1986 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1987 { 1988 int i, ret = 0; 1989 1990 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 1991 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 1992 (qsize / 5)); 1993 if (ret) 1994 break; 1995 ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false); 1996 if (ret) 1997 break; 1998 1999 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2000 } 2001 2002 return ret; 2003 } 2004 2005 static void 2006 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2007 { 2008 int i; 2009 2010 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2011 nvme_fc_init_queue(ctrl, i); 2012 } 2013 2014 static void 2015 nvme_fc_ctrl_free(struct kref *ref) 2016 { 2017 struct nvme_fc_ctrl *ctrl = 2018 container_of(ref, struct nvme_fc_ctrl, ref); 2019 struct nvme_fc_lport *lport = ctrl->lport; 2020 unsigned long flags; 2021 2022 if (ctrl->ctrl.tagset) { 2023 blk_cleanup_queue(ctrl->ctrl.connect_q); 2024 blk_mq_free_tag_set(&ctrl->tag_set); 2025 } 2026 2027 /* remove from rport list */ 2028 spin_lock_irqsave(&ctrl->rport->lock, flags); 2029 list_del(&ctrl->ctrl_list); 2030 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2031 2032 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2033 blk_cleanup_queue(ctrl->ctrl.admin_q); 2034 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 2035 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2036 2037 kfree(ctrl->queues); 2038 2039 put_device(ctrl->dev); 2040 nvme_fc_rport_put(ctrl->rport); 2041 2042 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2043 if (ctrl->ctrl.opts) 2044 nvmf_free_options(ctrl->ctrl.opts); 2045 kfree(ctrl); 2046 module_put(lport->ops->module); 2047 } 2048 2049 static void 2050 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2051 { 2052 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2053 } 2054 2055 static int 2056 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2057 { 2058 return kref_get_unless_zero(&ctrl->ref); 2059 } 2060 2061 /* 2062 * All accesses from nvme core layer done - can now free the 2063 * controller. Called after last nvme_put_ctrl() call 2064 */ 2065 static void 2066 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2067 { 2068 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2069 2070 WARN_ON(nctrl != &ctrl->ctrl); 2071 2072 nvme_fc_ctrl_put(ctrl); 2073 } 2074 2075 static void 2076 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2077 { 2078 int active; 2079 2080 /* 2081 * if an error (io timeout, etc) while (re)connecting, 2082 * it's an error on creating the new association. 2083 * Start the error recovery thread if it hasn't already 2084 * been started. It is expected there could be multiple 2085 * ios hitting this path before things are cleaned up. 2086 */ 2087 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2088 active = atomic_xchg(&ctrl->err_work_active, 1); 2089 if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) { 2090 atomic_set(&ctrl->err_work_active, 0); 2091 WARN_ON(1); 2092 } 2093 return; 2094 } 2095 2096 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2097 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2098 return; 2099 2100 dev_warn(ctrl->ctrl.device, 2101 "NVME-FC{%d}: transport association error detected: %s\n", 2102 ctrl->cnum, errmsg); 2103 dev_warn(ctrl->ctrl.device, 2104 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2105 2106 nvme_reset_ctrl(&ctrl->ctrl); 2107 } 2108 2109 static enum blk_eh_timer_return 2110 nvme_fc_timeout(struct request *rq, bool reserved) 2111 { 2112 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2113 struct nvme_fc_ctrl *ctrl = op->ctrl; 2114 2115 /* 2116 * we can't individually ABTS an io without affecting the queue, 2117 * thus killing the queue, and thus the association. 2118 * So resolve by performing a controller reset, which will stop 2119 * the host/io stack, terminate the association on the link, 2120 * and recreate an association on the link. 2121 */ 2122 nvme_fc_error_recovery(ctrl, "io timeout error"); 2123 2124 /* 2125 * the io abort has been initiated. Have the reset timer 2126 * restarted and the abort completion will complete the io 2127 * shortly. Avoids a synchronous wait while the abort finishes. 2128 */ 2129 return BLK_EH_RESET_TIMER; 2130 } 2131 2132 static int 2133 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2134 struct nvme_fc_fcp_op *op) 2135 { 2136 struct nvmefc_fcp_req *freq = &op->fcp_req; 2137 int ret; 2138 2139 freq->sg_cnt = 0; 2140 2141 if (!blk_rq_nr_phys_segments(rq)) 2142 return 0; 2143 2144 freq->sg_table.sgl = freq->first_sgl; 2145 ret = sg_alloc_table_chained(&freq->sg_table, 2146 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2147 NVME_INLINE_SG_CNT); 2148 if (ret) 2149 return -ENOMEM; 2150 2151 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2152 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2153 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2154 op->nents, rq_dma_dir(rq)); 2155 if (unlikely(freq->sg_cnt <= 0)) { 2156 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2157 freq->sg_cnt = 0; 2158 return -EFAULT; 2159 } 2160 2161 /* 2162 * TODO: blk_integrity_rq(rq) for DIF 2163 */ 2164 return 0; 2165 } 2166 2167 static void 2168 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2169 struct nvme_fc_fcp_op *op) 2170 { 2171 struct nvmefc_fcp_req *freq = &op->fcp_req; 2172 2173 if (!freq->sg_cnt) 2174 return; 2175 2176 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2177 rq_dma_dir(rq)); 2178 2179 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2180 2181 freq->sg_cnt = 0; 2182 } 2183 2184 /* 2185 * In FC, the queue is a logical thing. At transport connect, the target 2186 * creates its "queue" and returns a handle that is to be given to the 2187 * target whenever it posts something to the corresponding SQ. When an 2188 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2189 * command contained within the SQE, an io, and assigns a FC exchange 2190 * to it. The SQE and the associated SQ handle are sent in the initial 2191 * CMD IU sents on the exchange. All transfers relative to the io occur 2192 * as part of the exchange. The CQE is the last thing for the io, 2193 * which is transferred (explicitly or implicitly) with the RSP IU 2194 * sent on the exchange. After the CQE is received, the FC exchange is 2195 * terminaed and the Exchange may be used on a different io. 2196 * 2197 * The transport to LLDD api has the transport making a request for a 2198 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2199 * resource and transfers the command. The LLDD will then process all 2200 * steps to complete the io. Upon completion, the transport done routine 2201 * is called. 2202 * 2203 * So - while the operation is outstanding to the LLDD, there is a link 2204 * level FC exchange resource that is also outstanding. This must be 2205 * considered in all cleanup operations. 2206 */ 2207 static blk_status_t 2208 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2209 struct nvme_fc_fcp_op *op, u32 data_len, 2210 enum nvmefc_fcp_datadir io_dir) 2211 { 2212 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2213 struct nvme_command *sqe = &cmdiu->sqe; 2214 int ret, opstate; 2215 2216 /* 2217 * before attempting to send the io, check to see if we believe 2218 * the target device is present 2219 */ 2220 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2221 return BLK_STS_RESOURCE; 2222 2223 if (!nvme_fc_ctrl_get(ctrl)) 2224 return BLK_STS_IOERR; 2225 2226 /* format the FC-NVME CMD IU and fcp_req */ 2227 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2228 cmdiu->data_len = cpu_to_be32(data_len); 2229 switch (io_dir) { 2230 case NVMEFC_FCP_WRITE: 2231 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2232 break; 2233 case NVMEFC_FCP_READ: 2234 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2235 break; 2236 case NVMEFC_FCP_NODATA: 2237 cmdiu->flags = 0; 2238 break; 2239 } 2240 op->fcp_req.payload_length = data_len; 2241 op->fcp_req.io_dir = io_dir; 2242 op->fcp_req.transferred_length = 0; 2243 op->fcp_req.rcv_rsplen = 0; 2244 op->fcp_req.status = NVME_SC_SUCCESS; 2245 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2246 2247 /* 2248 * validate per fabric rules, set fields mandated by fabric spec 2249 * as well as those by FC-NVME spec. 2250 */ 2251 WARN_ON_ONCE(sqe->common.metadata); 2252 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2253 2254 /* 2255 * format SQE DPTR field per FC-NVME rules: 2256 * type=0x5 Transport SGL Data Block Descriptor 2257 * subtype=0xA Transport-specific value 2258 * address=0 2259 * length=length of the data series 2260 */ 2261 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2262 NVME_SGL_FMT_TRANSPORT_A; 2263 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2264 sqe->rw.dptr.sgl.addr = 0; 2265 2266 if (!(op->flags & FCOP_FLAGS_AEN)) { 2267 ret = nvme_fc_map_data(ctrl, op->rq, op); 2268 if (ret < 0) { 2269 nvme_cleanup_cmd(op->rq); 2270 nvme_fc_ctrl_put(ctrl); 2271 if (ret == -ENOMEM || ret == -EAGAIN) 2272 return BLK_STS_RESOURCE; 2273 return BLK_STS_IOERR; 2274 } 2275 } 2276 2277 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2278 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2279 2280 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2281 2282 if (!(op->flags & FCOP_FLAGS_AEN)) 2283 blk_mq_start_request(op->rq); 2284 2285 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2286 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2287 &ctrl->rport->remoteport, 2288 queue->lldd_handle, &op->fcp_req); 2289 2290 if (ret) { 2291 /* 2292 * If the lld fails to send the command is there an issue with 2293 * the csn value? If the command that fails is the Connect, 2294 * no - as the connection won't be live. If it is a command 2295 * post-connect, it's possible a gap in csn may be created. 2296 * Does this matter? As Linux initiators don't send fused 2297 * commands, no. The gap would exist, but as there's nothing 2298 * that depends on csn order to be delivered on the target 2299 * side, it shouldn't hurt. It would be difficult for a 2300 * target to even detect the csn gap as it has no idea when the 2301 * cmd with the csn was supposed to arrive. 2302 */ 2303 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2304 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2305 2306 if (!(op->flags & FCOP_FLAGS_AEN)) 2307 nvme_fc_unmap_data(ctrl, op->rq, op); 2308 2309 nvme_cleanup_cmd(op->rq); 2310 nvme_fc_ctrl_put(ctrl); 2311 2312 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2313 ret != -EBUSY) 2314 return BLK_STS_IOERR; 2315 2316 return BLK_STS_RESOURCE; 2317 } 2318 2319 return BLK_STS_OK; 2320 } 2321 2322 static blk_status_t 2323 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2324 const struct blk_mq_queue_data *bd) 2325 { 2326 struct nvme_ns *ns = hctx->queue->queuedata; 2327 struct nvme_fc_queue *queue = hctx->driver_data; 2328 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2329 struct request *rq = bd->rq; 2330 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2331 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2332 struct nvme_command *sqe = &cmdiu->sqe; 2333 enum nvmefc_fcp_datadir io_dir; 2334 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2335 u32 data_len; 2336 blk_status_t ret; 2337 2338 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2339 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2340 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); 2341 2342 ret = nvme_setup_cmd(ns, rq, sqe); 2343 if (ret) 2344 return ret; 2345 2346 /* 2347 * nvme core doesn't quite treat the rq opaquely. Commands such 2348 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2349 * there is no actual payload to be transferred. 2350 * To get it right, key data transmission on there being 1 or 2351 * more physical segments in the sg list. If there is no 2352 * physical segments, there is no payload. 2353 */ 2354 if (blk_rq_nr_phys_segments(rq)) { 2355 data_len = blk_rq_payload_bytes(rq); 2356 io_dir = ((rq_data_dir(rq) == WRITE) ? 2357 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2358 } else { 2359 data_len = 0; 2360 io_dir = NVMEFC_FCP_NODATA; 2361 } 2362 2363 2364 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2365 } 2366 2367 static void 2368 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2369 { 2370 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2371 struct nvme_fc_fcp_op *aen_op; 2372 unsigned long flags; 2373 bool terminating = false; 2374 blk_status_t ret; 2375 2376 spin_lock_irqsave(&ctrl->lock, flags); 2377 if (ctrl->flags & FCCTRL_TERMIO) 2378 terminating = true; 2379 spin_unlock_irqrestore(&ctrl->lock, flags); 2380 2381 if (terminating) 2382 return; 2383 2384 aen_op = &ctrl->aen_ops[0]; 2385 2386 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2387 NVMEFC_FCP_NODATA); 2388 if (ret) 2389 dev_err(ctrl->ctrl.device, 2390 "failed async event work\n"); 2391 } 2392 2393 static void 2394 nvme_fc_complete_rq(struct request *rq) 2395 { 2396 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2397 struct nvme_fc_ctrl *ctrl = op->ctrl; 2398 2399 atomic_set(&op->state, FCPOP_STATE_IDLE); 2400 2401 nvme_fc_unmap_data(ctrl, rq, op); 2402 nvme_complete_rq(rq); 2403 nvme_fc_ctrl_put(ctrl); 2404 } 2405 2406 /* 2407 * This routine is used by the transport when it needs to find active 2408 * io on a queue that is to be terminated. The transport uses 2409 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2410 * this routine to kill them on a 1 by 1 basis. 2411 * 2412 * As FC allocates FC exchange for each io, the transport must contact 2413 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2414 * After terminating the exchange the LLDD will call the transport's 2415 * normal io done path for the request, but it will have an aborted 2416 * status. The done path will return the io request back to the block 2417 * layer with an error status. 2418 */ 2419 static bool 2420 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2421 { 2422 struct nvme_ctrl *nctrl = data; 2423 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2424 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2425 2426 __nvme_fc_abort_op(ctrl, op); 2427 return true; 2428 } 2429 2430 2431 static const struct blk_mq_ops nvme_fc_mq_ops = { 2432 .queue_rq = nvme_fc_queue_rq, 2433 .complete = nvme_fc_complete_rq, 2434 .init_request = nvme_fc_init_request, 2435 .exit_request = nvme_fc_exit_request, 2436 .init_hctx = nvme_fc_init_hctx, 2437 .timeout = nvme_fc_timeout, 2438 }; 2439 2440 static int 2441 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2442 { 2443 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2444 unsigned int nr_io_queues; 2445 int ret; 2446 2447 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2448 ctrl->lport->ops->max_hw_queues); 2449 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2450 if (ret) { 2451 dev_info(ctrl->ctrl.device, 2452 "set_queue_count failed: %d\n", ret); 2453 return ret; 2454 } 2455 2456 ctrl->ctrl.queue_count = nr_io_queues + 1; 2457 if (!nr_io_queues) 2458 return 0; 2459 2460 nvme_fc_init_io_queues(ctrl); 2461 2462 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2463 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2464 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2465 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2466 ctrl->tag_set.numa_node = ctrl->ctrl.numa_node; 2467 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2468 ctrl->tag_set.cmd_size = 2469 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 2470 ctrl->lport->ops->fcprqst_priv_sz); 2471 ctrl->tag_set.driver_data = ctrl; 2472 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2473 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2474 2475 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2476 if (ret) 2477 return ret; 2478 2479 ctrl->ctrl.tagset = &ctrl->tag_set; 2480 2481 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2482 if (IS_ERR(ctrl->ctrl.connect_q)) { 2483 ret = PTR_ERR(ctrl->ctrl.connect_q); 2484 goto out_free_tag_set; 2485 } 2486 2487 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2488 if (ret) 2489 goto out_cleanup_blk_queue; 2490 2491 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2492 if (ret) 2493 goto out_delete_hw_queues; 2494 2495 ctrl->ioq_live = true; 2496 2497 return 0; 2498 2499 out_delete_hw_queues: 2500 nvme_fc_delete_hw_io_queues(ctrl); 2501 out_cleanup_blk_queue: 2502 blk_cleanup_queue(ctrl->ctrl.connect_q); 2503 out_free_tag_set: 2504 blk_mq_free_tag_set(&ctrl->tag_set); 2505 nvme_fc_free_io_queues(ctrl); 2506 2507 /* force put free routine to ignore io queues */ 2508 ctrl->ctrl.tagset = NULL; 2509 2510 return ret; 2511 } 2512 2513 static int 2514 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2515 { 2516 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2517 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2518 unsigned int nr_io_queues; 2519 int ret; 2520 2521 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2522 ctrl->lport->ops->max_hw_queues); 2523 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2524 if (ret) { 2525 dev_info(ctrl->ctrl.device, 2526 "set_queue_count failed: %d\n", ret); 2527 return ret; 2528 } 2529 2530 if (!nr_io_queues && prior_ioq_cnt) { 2531 dev_info(ctrl->ctrl.device, 2532 "Fail Reconnect: At least 1 io queue " 2533 "required (was %d)\n", prior_ioq_cnt); 2534 return -ENOSPC; 2535 } 2536 2537 ctrl->ctrl.queue_count = nr_io_queues + 1; 2538 /* check for io queues existing */ 2539 if (ctrl->ctrl.queue_count == 1) 2540 return 0; 2541 2542 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2543 if (ret) 2544 goto out_free_io_queues; 2545 2546 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2547 if (ret) 2548 goto out_delete_hw_queues; 2549 2550 if (prior_ioq_cnt != nr_io_queues) 2551 dev_info(ctrl->ctrl.device, 2552 "reconnect: revising io queue count from %d to %d\n", 2553 prior_ioq_cnt, nr_io_queues); 2554 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2555 2556 return 0; 2557 2558 out_delete_hw_queues: 2559 nvme_fc_delete_hw_io_queues(ctrl); 2560 out_free_io_queues: 2561 nvme_fc_free_io_queues(ctrl); 2562 return ret; 2563 } 2564 2565 static void 2566 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2567 { 2568 struct nvme_fc_lport *lport = rport->lport; 2569 2570 atomic_inc(&lport->act_rport_cnt); 2571 } 2572 2573 static void 2574 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2575 { 2576 struct nvme_fc_lport *lport = rport->lport; 2577 u32 cnt; 2578 2579 cnt = atomic_dec_return(&lport->act_rport_cnt); 2580 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2581 lport->ops->localport_delete(&lport->localport); 2582 } 2583 2584 static int 2585 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2586 { 2587 struct nvme_fc_rport *rport = ctrl->rport; 2588 u32 cnt; 2589 2590 if (ctrl->assoc_active) 2591 return 1; 2592 2593 ctrl->assoc_active = true; 2594 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2595 if (cnt == 1) 2596 nvme_fc_rport_active_on_lport(rport); 2597 2598 return 0; 2599 } 2600 2601 static int 2602 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2603 { 2604 struct nvme_fc_rport *rport = ctrl->rport; 2605 struct nvme_fc_lport *lport = rport->lport; 2606 u32 cnt; 2607 2608 /* ctrl->assoc_active=false will be set independently */ 2609 2610 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2611 if (cnt == 0) { 2612 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2613 lport->ops->remoteport_delete(&rport->remoteport); 2614 nvme_fc_rport_inactive_on_lport(rport); 2615 } 2616 2617 return 0; 2618 } 2619 2620 /* 2621 * This routine restarts the controller on the host side, and 2622 * on the link side, recreates the controller association. 2623 */ 2624 static int 2625 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2626 { 2627 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2628 int ret; 2629 bool changed; 2630 2631 ++ctrl->ctrl.nr_reconnects; 2632 2633 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2634 return -ENODEV; 2635 2636 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2637 return -ENOTUNIQ; 2638 2639 dev_info(ctrl->ctrl.device, 2640 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 2641 " rport wwpn 0x%016llx: NQN \"%s\"\n", 2642 ctrl->cnum, ctrl->lport->localport.port_name, 2643 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 2644 2645 /* 2646 * Create the admin queue 2647 */ 2648 2649 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2650 NVME_AQ_DEPTH); 2651 if (ret) 2652 goto out_free_queue; 2653 2654 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2655 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 2656 if (ret) 2657 goto out_delete_hw_queue; 2658 2659 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2660 if (ret) 2661 goto out_disconnect_admin_queue; 2662 2663 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2664 2665 /* 2666 * Check controller capabilities 2667 * 2668 * todo:- add code to check if ctrl attributes changed from 2669 * prior connection values 2670 */ 2671 2672 ret = nvme_enable_ctrl(&ctrl->ctrl); 2673 if (ret) 2674 goto out_disconnect_admin_queue; 2675 2676 ctrl->ctrl.max_hw_sectors = 2677 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2678 2679 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2680 2681 ret = nvme_init_identify(&ctrl->ctrl); 2682 if (ret) 2683 goto out_disconnect_admin_queue; 2684 2685 /* sanity checks */ 2686 2687 /* FC-NVME does not have other data in the capsule */ 2688 if (ctrl->ctrl.icdoff) { 2689 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2690 ctrl->ctrl.icdoff); 2691 goto out_disconnect_admin_queue; 2692 } 2693 2694 /* FC-NVME supports normal SGL Data Block Descriptors */ 2695 2696 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2697 /* warn if maxcmd is lower than queue_size */ 2698 dev_warn(ctrl->ctrl.device, 2699 "queue_size %zu > ctrl maxcmd %u, reducing " 2700 "to maxcmd\n", 2701 opts->queue_size, ctrl->ctrl.maxcmd); 2702 opts->queue_size = ctrl->ctrl.maxcmd; 2703 } 2704 2705 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 2706 /* warn if sqsize is lower than queue_size */ 2707 dev_warn(ctrl->ctrl.device, 2708 "queue_size %zu > ctrl sqsize %u, reducing " 2709 "to sqsize\n", 2710 opts->queue_size, ctrl->ctrl.sqsize + 1); 2711 opts->queue_size = ctrl->ctrl.sqsize + 1; 2712 } 2713 2714 ret = nvme_fc_init_aen_ops(ctrl); 2715 if (ret) 2716 goto out_term_aen_ops; 2717 2718 /* 2719 * Create the io queues 2720 */ 2721 2722 if (ctrl->ctrl.queue_count > 1) { 2723 if (!ctrl->ioq_live) 2724 ret = nvme_fc_create_io_queues(ctrl); 2725 else 2726 ret = nvme_fc_recreate_io_queues(ctrl); 2727 if (ret) 2728 goto out_term_aen_ops; 2729 } 2730 2731 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2732 2733 ctrl->ctrl.nr_reconnects = 0; 2734 2735 if (changed) 2736 nvme_start_ctrl(&ctrl->ctrl); 2737 2738 return 0; /* Success */ 2739 2740 out_term_aen_ops: 2741 nvme_fc_term_aen_ops(ctrl); 2742 out_disconnect_admin_queue: 2743 /* send a Disconnect(association) LS to fc-nvme target */ 2744 nvme_fc_xmt_disconnect_assoc(ctrl); 2745 ctrl->association_id = 0; 2746 out_delete_hw_queue: 2747 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2748 out_free_queue: 2749 nvme_fc_free_queue(&ctrl->queues[0]); 2750 ctrl->assoc_active = false; 2751 nvme_fc_ctlr_inactive_on_rport(ctrl); 2752 2753 return ret; 2754 } 2755 2756 /* 2757 * This routine stops operation of the controller on the host side. 2758 * On the host os stack side: Admin and IO queues are stopped, 2759 * outstanding ios on them terminated via FC ABTS. 2760 * On the link side: the association is terminated. 2761 */ 2762 static void 2763 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2764 { 2765 unsigned long flags; 2766 2767 if (!ctrl->assoc_active) 2768 return; 2769 ctrl->assoc_active = false; 2770 2771 spin_lock_irqsave(&ctrl->lock, flags); 2772 ctrl->flags |= FCCTRL_TERMIO; 2773 ctrl->iocnt = 0; 2774 spin_unlock_irqrestore(&ctrl->lock, flags); 2775 2776 /* 2777 * If io queues are present, stop them and terminate all outstanding 2778 * ios on them. As FC allocates FC exchange for each io, the 2779 * transport must contact the LLDD to terminate the exchange, 2780 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2781 * to tell us what io's are busy and invoke a transport routine 2782 * to kill them with the LLDD. After terminating the exchange 2783 * the LLDD will call the transport's normal io done path, but it 2784 * will have an aborted status. The done path will return the 2785 * io requests back to the block layer as part of normal completions 2786 * (but with error status). 2787 */ 2788 if (ctrl->ctrl.queue_count > 1) { 2789 nvme_stop_queues(&ctrl->ctrl); 2790 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2791 nvme_fc_terminate_exchange, &ctrl->ctrl); 2792 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2793 } 2794 2795 /* 2796 * Other transports, which don't have link-level contexts bound 2797 * to sqe's, would try to gracefully shutdown the controller by 2798 * writing the registers for shutdown and polling (call 2799 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2800 * just aborted and we will wait on those contexts, and given 2801 * there was no indication of how live the controlelr is on the 2802 * link, don't send more io to create more contexts for the 2803 * shutdown. Let the controller fail via keepalive failure if 2804 * its still present. 2805 */ 2806 2807 /* 2808 * clean up the admin queue. Same thing as above. 2809 * use blk_mq_tagset_busy_itr() and the transport routine to 2810 * terminate the exchanges. 2811 */ 2812 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2813 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2814 nvme_fc_terminate_exchange, &ctrl->ctrl); 2815 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2816 2817 /* kill the aens as they are a separate path */ 2818 nvme_fc_abort_aen_ops(ctrl); 2819 2820 /* wait for all io that had to be aborted */ 2821 spin_lock_irq(&ctrl->lock); 2822 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2823 ctrl->flags &= ~FCCTRL_TERMIO; 2824 spin_unlock_irq(&ctrl->lock); 2825 2826 nvme_fc_term_aen_ops(ctrl); 2827 2828 /* 2829 * send a Disconnect(association) LS to fc-nvme target 2830 * Note: could have been sent at top of process, but 2831 * cleaner on link traffic if after the aborts complete. 2832 * Note: if association doesn't exist, association_id will be 0 2833 */ 2834 if (ctrl->association_id) 2835 nvme_fc_xmt_disconnect_assoc(ctrl); 2836 2837 ctrl->association_id = 0; 2838 2839 if (ctrl->ctrl.tagset) { 2840 nvme_fc_delete_hw_io_queues(ctrl); 2841 nvme_fc_free_io_queues(ctrl); 2842 } 2843 2844 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2845 nvme_fc_free_queue(&ctrl->queues[0]); 2846 2847 /* re-enable the admin_q so anything new can fast fail */ 2848 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2849 2850 /* resume the io queues so that things will fast fail */ 2851 nvme_start_queues(&ctrl->ctrl); 2852 2853 nvme_fc_ctlr_inactive_on_rport(ctrl); 2854 } 2855 2856 static void 2857 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2858 { 2859 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2860 2861 cancel_work_sync(&ctrl->err_work); 2862 cancel_delayed_work_sync(&ctrl->connect_work); 2863 /* 2864 * kill the association on the link side. this will block 2865 * waiting for io to terminate 2866 */ 2867 nvme_fc_delete_association(ctrl); 2868 } 2869 2870 static void 2871 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2872 { 2873 struct nvme_fc_rport *rport = ctrl->rport; 2874 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2875 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2876 bool recon = true; 2877 2878 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 2879 return; 2880 2881 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2882 dev_info(ctrl->ctrl.device, 2883 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2884 ctrl->cnum, status); 2885 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2886 recon = false; 2887 2888 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2889 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2890 dev_info(ctrl->ctrl.device, 2891 "NVME-FC{%d}: Reconnect attempt in %ld " 2892 "seconds\n", 2893 ctrl->cnum, recon_delay / HZ); 2894 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2895 recon_delay = rport->dev_loss_end - jiffies; 2896 2897 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2898 } else { 2899 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2900 dev_warn(ctrl->ctrl.device, 2901 "NVME-FC{%d}: Max reconnect attempts (%d) " 2902 "reached.\n", 2903 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2904 else 2905 dev_warn(ctrl->ctrl.device, 2906 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2907 "while waiting for remoteport connectivity.\n", 2908 ctrl->cnum, portptr->dev_loss_tmo); 2909 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2910 } 2911 } 2912 2913 static void 2914 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl) 2915 { 2916 /* 2917 * if state is connecting - the error occurred as part of a 2918 * reconnect attempt. The create_association error paths will 2919 * clean up any outstanding io. 2920 * 2921 * if it's a different state - ensure all pending io is 2922 * terminated. Given this can delay while waiting for the 2923 * aborted io to return, we recheck adapter state below 2924 * before changing state. 2925 */ 2926 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { 2927 nvme_stop_keep_alive(&ctrl->ctrl); 2928 2929 /* will block will waiting for io to terminate */ 2930 nvme_fc_delete_association(ctrl); 2931 } 2932 2933 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING && 2934 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 2935 dev_err(ctrl->ctrl.device, 2936 "NVME-FC{%d}: error_recovery: Couldn't change state " 2937 "to CONNECTING\n", ctrl->cnum); 2938 } 2939 2940 static void 2941 nvme_fc_reset_ctrl_work(struct work_struct *work) 2942 { 2943 struct nvme_fc_ctrl *ctrl = 2944 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2945 int ret; 2946 2947 __nvme_fc_terminate_io(ctrl); 2948 2949 nvme_stop_ctrl(&ctrl->ctrl); 2950 2951 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 2952 ret = nvme_fc_create_association(ctrl); 2953 else 2954 ret = -ENOTCONN; 2955 2956 if (ret) 2957 nvme_fc_reconnect_or_delete(ctrl, ret); 2958 else 2959 dev_info(ctrl->ctrl.device, 2960 "NVME-FC{%d}: controller reset complete\n", 2961 ctrl->cnum); 2962 } 2963 2964 static void 2965 nvme_fc_connect_err_work(struct work_struct *work) 2966 { 2967 struct nvme_fc_ctrl *ctrl = 2968 container_of(work, struct nvme_fc_ctrl, err_work); 2969 2970 __nvme_fc_terminate_io(ctrl); 2971 2972 atomic_set(&ctrl->err_work_active, 0); 2973 2974 /* 2975 * Rescheduling the connection after recovering 2976 * from the io error is left to the reconnect work 2977 * item, which is what should have stalled waiting on 2978 * the io that had the error that scheduled this work. 2979 */ 2980 } 2981 2982 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 2983 .name = "fc", 2984 .module = THIS_MODULE, 2985 .flags = NVME_F_FABRICS, 2986 .reg_read32 = nvmf_reg_read32, 2987 .reg_read64 = nvmf_reg_read64, 2988 .reg_write32 = nvmf_reg_write32, 2989 .free_ctrl = nvme_fc_nvme_ctrl_freed, 2990 .submit_async_event = nvme_fc_submit_async_event, 2991 .delete_ctrl = nvme_fc_delete_ctrl, 2992 .get_address = nvmf_get_address, 2993 }; 2994 2995 static void 2996 nvme_fc_connect_ctrl_work(struct work_struct *work) 2997 { 2998 int ret; 2999 3000 struct nvme_fc_ctrl *ctrl = 3001 container_of(to_delayed_work(work), 3002 struct nvme_fc_ctrl, connect_work); 3003 3004 ret = nvme_fc_create_association(ctrl); 3005 if (ret) 3006 nvme_fc_reconnect_or_delete(ctrl, ret); 3007 else 3008 dev_info(ctrl->ctrl.device, 3009 "NVME-FC{%d}: controller connect complete\n", 3010 ctrl->cnum); 3011 } 3012 3013 3014 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3015 .queue_rq = nvme_fc_queue_rq, 3016 .complete = nvme_fc_complete_rq, 3017 .init_request = nvme_fc_init_request, 3018 .exit_request = nvme_fc_exit_request, 3019 .init_hctx = nvme_fc_init_admin_hctx, 3020 .timeout = nvme_fc_timeout, 3021 }; 3022 3023 3024 /* 3025 * Fails a controller request if it matches an existing controller 3026 * (association) with the same tuple: 3027 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3028 * 3029 * The ports don't need to be compared as they are intrinsically 3030 * already matched by the port pointers supplied. 3031 */ 3032 static bool 3033 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3034 struct nvmf_ctrl_options *opts) 3035 { 3036 struct nvme_fc_ctrl *ctrl; 3037 unsigned long flags; 3038 bool found = false; 3039 3040 spin_lock_irqsave(&rport->lock, flags); 3041 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3042 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3043 if (found) 3044 break; 3045 } 3046 spin_unlock_irqrestore(&rport->lock, flags); 3047 3048 return found; 3049 } 3050 3051 static struct nvme_ctrl * 3052 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3053 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3054 { 3055 struct nvme_fc_ctrl *ctrl; 3056 unsigned long flags; 3057 int ret, idx; 3058 3059 if (!(rport->remoteport.port_role & 3060 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3061 ret = -EBADR; 3062 goto out_fail; 3063 } 3064 3065 if (!opts->duplicate_connect && 3066 nvme_fc_existing_controller(rport, opts)) { 3067 ret = -EALREADY; 3068 goto out_fail; 3069 } 3070 3071 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3072 if (!ctrl) { 3073 ret = -ENOMEM; 3074 goto out_fail; 3075 } 3076 3077 if (!try_module_get(lport->ops->module)) { 3078 ret = -EUNATCH; 3079 goto out_free_ctrl; 3080 } 3081 3082 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3083 if (idx < 0) { 3084 ret = -ENOSPC; 3085 goto out_mod_put; 3086 } 3087 3088 ctrl->ctrl.opts = opts; 3089 ctrl->ctrl.nr_reconnects = 0; 3090 if (lport->dev) 3091 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3092 else 3093 ctrl->ctrl.numa_node = NUMA_NO_NODE; 3094 INIT_LIST_HEAD(&ctrl->ctrl_list); 3095 ctrl->lport = lport; 3096 ctrl->rport = rport; 3097 ctrl->dev = lport->dev; 3098 ctrl->cnum = idx; 3099 ctrl->ioq_live = false; 3100 ctrl->assoc_active = false; 3101 atomic_set(&ctrl->err_work_active, 0); 3102 init_waitqueue_head(&ctrl->ioabort_wait); 3103 3104 get_device(ctrl->dev); 3105 kref_init(&ctrl->ref); 3106 3107 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3108 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3109 INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work); 3110 spin_lock_init(&ctrl->lock); 3111 3112 /* io queue count */ 3113 ctrl->ctrl.queue_count = min_t(unsigned int, 3114 opts->nr_io_queues, 3115 lport->ops->max_hw_queues); 3116 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3117 3118 ctrl->ctrl.sqsize = opts->queue_size - 1; 3119 ctrl->ctrl.kato = opts->kato; 3120 ctrl->ctrl.cntlid = 0xffff; 3121 3122 ret = -ENOMEM; 3123 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3124 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3125 if (!ctrl->queues) 3126 goto out_free_ida; 3127 3128 nvme_fc_init_queue(ctrl, 0); 3129 3130 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3131 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3132 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3133 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3134 ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node; 3135 ctrl->admin_tag_set.cmd_size = 3136 struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv, 3137 ctrl->lport->ops->fcprqst_priv_sz); 3138 ctrl->admin_tag_set.driver_data = ctrl; 3139 ctrl->admin_tag_set.nr_hw_queues = 1; 3140 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3141 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3142 3143 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3144 if (ret) 3145 goto out_free_queues; 3146 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3147 3148 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3149 if (IS_ERR(ctrl->ctrl.fabrics_q)) { 3150 ret = PTR_ERR(ctrl->ctrl.fabrics_q); 3151 goto out_free_admin_tag_set; 3152 } 3153 3154 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3155 if (IS_ERR(ctrl->ctrl.admin_q)) { 3156 ret = PTR_ERR(ctrl->ctrl.admin_q); 3157 goto out_cleanup_fabrics_q; 3158 } 3159 3160 /* 3161 * Would have been nice to init io queues tag set as well. 3162 * However, we require interaction from the controller 3163 * for max io queue count before we can do so. 3164 * Defer this to the connect path. 3165 */ 3166 3167 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3168 if (ret) 3169 goto out_cleanup_admin_q; 3170 3171 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3172 3173 spin_lock_irqsave(&rport->lock, flags); 3174 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3175 spin_unlock_irqrestore(&rport->lock, flags); 3176 3177 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3178 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3179 dev_err(ctrl->ctrl.device, 3180 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3181 goto fail_ctrl; 3182 } 3183 3184 nvme_get_ctrl(&ctrl->ctrl); 3185 3186 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3187 nvme_put_ctrl(&ctrl->ctrl); 3188 dev_err(ctrl->ctrl.device, 3189 "NVME-FC{%d}: failed to schedule initial connect\n", 3190 ctrl->cnum); 3191 goto fail_ctrl; 3192 } 3193 3194 flush_delayed_work(&ctrl->connect_work); 3195 3196 dev_info(ctrl->ctrl.device, 3197 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3198 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3199 3200 return &ctrl->ctrl; 3201 3202 fail_ctrl: 3203 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3204 cancel_work_sync(&ctrl->ctrl.reset_work); 3205 cancel_work_sync(&ctrl->err_work); 3206 cancel_delayed_work_sync(&ctrl->connect_work); 3207 3208 ctrl->ctrl.opts = NULL; 3209 3210 /* initiate nvme ctrl ref counting teardown */ 3211 nvme_uninit_ctrl(&ctrl->ctrl); 3212 3213 /* Remove core ctrl ref. */ 3214 nvme_put_ctrl(&ctrl->ctrl); 3215 3216 /* as we're past the point where we transition to the ref 3217 * counting teardown path, if we return a bad pointer here, 3218 * the calling routine, thinking it's prior to the 3219 * transition, will do an rport put. Since the teardown 3220 * path also does a rport put, we do an extra get here to 3221 * so proper order/teardown happens. 3222 */ 3223 nvme_fc_rport_get(rport); 3224 3225 return ERR_PTR(-EIO); 3226 3227 out_cleanup_admin_q: 3228 blk_cleanup_queue(ctrl->ctrl.admin_q); 3229 out_cleanup_fabrics_q: 3230 blk_cleanup_queue(ctrl->ctrl.fabrics_q); 3231 out_free_admin_tag_set: 3232 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3233 out_free_queues: 3234 kfree(ctrl->queues); 3235 out_free_ida: 3236 put_device(ctrl->dev); 3237 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3238 out_mod_put: 3239 module_put(lport->ops->module); 3240 out_free_ctrl: 3241 kfree(ctrl); 3242 out_fail: 3243 /* exit via here doesn't follow ctlr ref points */ 3244 return ERR_PTR(ret); 3245 } 3246 3247 3248 struct nvmet_fc_traddr { 3249 u64 nn; 3250 u64 pn; 3251 }; 3252 3253 static int 3254 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3255 { 3256 u64 token64; 3257 3258 if (match_u64(sstr, &token64)) 3259 return -EINVAL; 3260 *val = token64; 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * This routine validates and extracts the WWN's from the TRADDR string. 3267 * As kernel parsers need the 0x to determine number base, universally 3268 * build string to parse with 0x prefix before parsing name strings. 3269 */ 3270 static int 3271 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3272 { 3273 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3274 substring_t wwn = { name, &name[sizeof(name)-1] }; 3275 int nnoffset, pnoffset; 3276 3277 /* validate if string is one of the 2 allowed formats */ 3278 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3279 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3280 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3281 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3282 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3283 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3284 NVME_FC_TRADDR_OXNNLEN; 3285 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3286 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3287 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3288 "pn-", NVME_FC_TRADDR_NNLEN))) { 3289 nnoffset = NVME_FC_TRADDR_NNLEN; 3290 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3291 } else 3292 goto out_einval; 3293 3294 name[0] = '0'; 3295 name[1] = 'x'; 3296 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3297 3298 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3299 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3300 goto out_einval; 3301 3302 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3303 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3304 goto out_einval; 3305 3306 return 0; 3307 3308 out_einval: 3309 pr_warn("%s: bad traddr string\n", __func__); 3310 return -EINVAL; 3311 } 3312 3313 static struct nvme_ctrl * 3314 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3315 { 3316 struct nvme_fc_lport *lport; 3317 struct nvme_fc_rport *rport; 3318 struct nvme_ctrl *ctrl; 3319 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3320 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3321 unsigned long flags; 3322 int ret; 3323 3324 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3325 if (ret || !raddr.nn || !raddr.pn) 3326 return ERR_PTR(-EINVAL); 3327 3328 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3329 if (ret || !laddr.nn || !laddr.pn) 3330 return ERR_PTR(-EINVAL); 3331 3332 /* find the host and remote ports to connect together */ 3333 spin_lock_irqsave(&nvme_fc_lock, flags); 3334 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3335 if (lport->localport.node_name != laddr.nn || 3336 lport->localport.port_name != laddr.pn) 3337 continue; 3338 3339 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3340 if (rport->remoteport.node_name != raddr.nn || 3341 rport->remoteport.port_name != raddr.pn) 3342 continue; 3343 3344 /* if fail to get reference fall through. Will error */ 3345 if (!nvme_fc_rport_get(rport)) 3346 break; 3347 3348 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3349 3350 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3351 if (IS_ERR(ctrl)) 3352 nvme_fc_rport_put(rport); 3353 return ctrl; 3354 } 3355 } 3356 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3357 3358 pr_warn("%s: %s - %s combination not found\n", 3359 __func__, opts->traddr, opts->host_traddr); 3360 return ERR_PTR(-ENOENT); 3361 } 3362 3363 3364 static struct nvmf_transport_ops nvme_fc_transport = { 3365 .name = "fc", 3366 .module = THIS_MODULE, 3367 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3368 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3369 .create_ctrl = nvme_fc_create_ctrl, 3370 }; 3371 3372 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3373 #define DISCOVERY_MAX_FAIL 20 3374 3375 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3376 struct device_attribute *attr, const char *buf, size_t count) 3377 { 3378 unsigned long flags; 3379 LIST_HEAD(local_disc_list); 3380 struct nvme_fc_lport *lport; 3381 struct nvme_fc_rport *rport; 3382 int failcnt = 0; 3383 3384 spin_lock_irqsave(&nvme_fc_lock, flags); 3385 restart: 3386 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3387 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3388 if (!nvme_fc_lport_get(lport)) 3389 continue; 3390 if (!nvme_fc_rport_get(rport)) { 3391 /* 3392 * This is a temporary condition. Upon restart 3393 * this rport will be gone from the list. 3394 * 3395 * Revert the lport put and retry. Anything 3396 * added to the list already will be skipped (as 3397 * they are no longer list_empty). Loops should 3398 * resume at rports that were not yet seen. 3399 */ 3400 nvme_fc_lport_put(lport); 3401 3402 if (failcnt++ < DISCOVERY_MAX_FAIL) 3403 goto restart; 3404 3405 pr_err("nvme_discovery: too many reference " 3406 "failures\n"); 3407 goto process_local_list; 3408 } 3409 if (list_empty(&rport->disc_list)) 3410 list_add_tail(&rport->disc_list, 3411 &local_disc_list); 3412 } 3413 } 3414 3415 process_local_list: 3416 while (!list_empty(&local_disc_list)) { 3417 rport = list_first_entry(&local_disc_list, 3418 struct nvme_fc_rport, disc_list); 3419 list_del_init(&rport->disc_list); 3420 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3421 3422 lport = rport->lport; 3423 /* signal discovery. Won't hurt if it repeats */ 3424 nvme_fc_signal_discovery_scan(lport, rport); 3425 nvme_fc_rport_put(rport); 3426 nvme_fc_lport_put(lport); 3427 3428 spin_lock_irqsave(&nvme_fc_lock, flags); 3429 } 3430 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3431 3432 return count; 3433 } 3434 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3435 3436 static struct attribute *nvme_fc_attrs[] = { 3437 &dev_attr_nvme_discovery.attr, 3438 NULL 3439 }; 3440 3441 static struct attribute_group nvme_fc_attr_group = { 3442 .attrs = nvme_fc_attrs, 3443 }; 3444 3445 static const struct attribute_group *nvme_fc_attr_groups[] = { 3446 &nvme_fc_attr_group, 3447 NULL 3448 }; 3449 3450 static struct class fc_class = { 3451 .name = "fc", 3452 .dev_groups = nvme_fc_attr_groups, 3453 .owner = THIS_MODULE, 3454 }; 3455 3456 static int __init nvme_fc_init_module(void) 3457 { 3458 int ret; 3459 3460 nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0); 3461 if (!nvme_fc_wq) 3462 return -ENOMEM; 3463 3464 /* 3465 * NOTE: 3466 * It is expected that in the future the kernel will combine 3467 * the FC-isms that are currently under scsi and now being 3468 * added to by NVME into a new standalone FC class. The SCSI 3469 * and NVME protocols and their devices would be under this 3470 * new FC class. 3471 * 3472 * As we need something to post FC-specific udev events to, 3473 * specifically for nvme probe events, start by creating the 3474 * new device class. When the new standalone FC class is 3475 * put in place, this code will move to a more generic 3476 * location for the class. 3477 */ 3478 ret = class_register(&fc_class); 3479 if (ret) { 3480 pr_err("couldn't register class fc\n"); 3481 goto out_destroy_wq; 3482 } 3483 3484 /* 3485 * Create a device for the FC-centric udev events 3486 */ 3487 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3488 "fc_udev_device"); 3489 if (IS_ERR(fc_udev_device)) { 3490 pr_err("couldn't create fc_udev device!\n"); 3491 ret = PTR_ERR(fc_udev_device); 3492 goto out_destroy_class; 3493 } 3494 3495 ret = nvmf_register_transport(&nvme_fc_transport); 3496 if (ret) 3497 goto out_destroy_device; 3498 3499 return 0; 3500 3501 out_destroy_device: 3502 device_destroy(&fc_class, MKDEV(0, 0)); 3503 out_destroy_class: 3504 class_unregister(&fc_class); 3505 out_destroy_wq: 3506 destroy_workqueue(nvme_fc_wq); 3507 3508 return ret; 3509 } 3510 3511 static void 3512 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3513 { 3514 struct nvme_fc_ctrl *ctrl; 3515 3516 spin_lock(&rport->lock); 3517 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3518 dev_warn(ctrl->ctrl.device, 3519 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3520 ctrl->cnum); 3521 nvme_delete_ctrl(&ctrl->ctrl); 3522 } 3523 spin_unlock(&rport->lock); 3524 } 3525 3526 static void 3527 nvme_fc_cleanup_for_unload(void) 3528 { 3529 struct nvme_fc_lport *lport; 3530 struct nvme_fc_rport *rport; 3531 3532 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3533 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3534 nvme_fc_delete_controllers(rport); 3535 } 3536 } 3537 } 3538 3539 static void __exit nvme_fc_exit_module(void) 3540 { 3541 unsigned long flags; 3542 bool need_cleanup = false; 3543 3544 spin_lock_irqsave(&nvme_fc_lock, flags); 3545 nvme_fc_waiting_to_unload = true; 3546 if (!list_empty(&nvme_fc_lport_list)) { 3547 need_cleanup = true; 3548 nvme_fc_cleanup_for_unload(); 3549 } 3550 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3551 if (need_cleanup) { 3552 pr_info("%s: waiting for ctlr deletes\n", __func__); 3553 wait_for_completion(&nvme_fc_unload_proceed); 3554 pr_info("%s: ctrl deletes complete\n", __func__); 3555 } 3556 3557 nvmf_unregister_transport(&nvme_fc_transport); 3558 3559 ida_destroy(&nvme_fc_local_port_cnt); 3560 ida_destroy(&nvme_fc_ctrl_cnt); 3561 3562 device_destroy(&fc_class, MKDEV(0, 0)); 3563 class_unregister(&fc_class); 3564 destroy_workqueue(nvme_fc_wq); 3565 } 3566 3567 module_init(nvme_fc_init_module); 3568 module_exit(nvme_fc_exit_module); 3569 3570 MODULE_LICENSE("GPL v2"); 3571