1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 30 * when connected and a 31 * connection failure. 32 */ 33 34 struct nvme_fc_queue { 35 struct nvme_fc_ctrl *ctrl; 36 struct device *dev; 37 struct blk_mq_hw_ctx *hctx; 38 void *lldd_handle; 39 size_t cmnd_capsule_len; 40 u32 qnum; 41 u32 rqcnt; 42 u32 seqno; 43 44 u64 connection_id; 45 atomic_t csn; 46 47 unsigned long flags; 48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 49 50 enum nvme_fcop_flags { 51 FCOP_FLAGS_TERMIO = (1 << 0), 52 FCOP_FLAGS_AEN = (1 << 1), 53 }; 54 55 struct nvmefc_ls_req_op { 56 struct nvmefc_ls_req ls_req; 57 58 struct nvme_fc_rport *rport; 59 struct nvme_fc_queue *queue; 60 struct request *rq; 61 u32 flags; 62 63 int ls_error; 64 struct completion ls_done; 65 struct list_head lsreq_list; /* rport->ls_req_list */ 66 bool req_queued; 67 }; 68 69 struct nvmefc_ls_rcv_op { 70 struct nvme_fc_rport *rport; 71 struct nvmefc_ls_rsp *lsrsp; 72 union nvmefc_ls_requests *rqstbuf; 73 union nvmefc_ls_responses *rspbuf; 74 u16 rqstdatalen; 75 bool handled; 76 dma_addr_t rspdma; 77 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 79 80 enum nvme_fcpop_state { 81 FCPOP_STATE_UNINIT = 0, 82 FCPOP_STATE_IDLE = 1, 83 FCPOP_STATE_ACTIVE = 2, 84 FCPOP_STATE_ABORTED = 3, 85 FCPOP_STATE_COMPLETE = 4, 86 }; 87 88 struct nvme_fc_fcp_op { 89 struct nvme_request nreq; /* 90 * nvme/host/core.c 91 * requires this to be 92 * the 1st element in the 93 * private structure 94 * associated with the 95 * request. 96 */ 97 struct nvmefc_fcp_req fcp_req; 98 99 struct nvme_fc_ctrl *ctrl; 100 struct nvme_fc_queue *queue; 101 struct request *rq; 102 103 atomic_t state; 104 u32 flags; 105 u32 rqno; 106 u32 nents; 107 108 struct nvme_fc_cmd_iu cmd_iu; 109 struct nvme_fc_ersp_iu rsp_iu; 110 }; 111 112 struct nvme_fcp_op_w_sgl { 113 struct nvme_fc_fcp_op op; 114 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 115 uint8_t priv[]; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 atomic_t act_rport_cnt; 128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 129 130 struct nvme_fc_rport { 131 struct nvme_fc_remote_port remoteport; 132 133 struct list_head endp_list; /* for lport->endp_list */ 134 struct list_head ctrl_list; 135 struct list_head ls_req_list; 136 struct list_head ls_rcv_list; 137 struct list_head disc_list; 138 struct device *dev; /* physical device for dma */ 139 struct nvme_fc_lport *lport; 140 spinlock_t lock; 141 struct kref ref; 142 atomic_t act_ctrl_cnt; 143 unsigned long dev_loss_end; 144 struct work_struct lsrcv_work; 145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 146 147 /* fc_ctrl flags values - specified as bit positions */ 148 #define ASSOC_ACTIVE 0 149 #define ASSOC_FAILED 1 150 #define FCCTRL_TERMIO 2 151 152 struct nvme_fc_ctrl { 153 spinlock_t lock; 154 struct nvme_fc_queue *queues; 155 struct device *dev; 156 struct nvme_fc_lport *lport; 157 struct nvme_fc_rport *rport; 158 u32 cnum; 159 160 bool ioq_live; 161 u64 association_id; 162 struct nvmefc_ls_rcv_op *rcv_disconn; 163 164 struct list_head ctrl_list; /* rport->ctrl_list */ 165 166 struct blk_mq_tag_set admin_tag_set; 167 struct blk_mq_tag_set tag_set; 168 169 struct work_struct ioerr_work; 170 struct delayed_work connect_work; 171 172 struct kref ref; 173 unsigned long flags; 174 u32 iocnt; 175 wait_queue_head_t ioabort_wait; 176 177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 178 179 struct nvme_ctrl ctrl; 180 }; 181 182 static inline struct nvme_fc_ctrl * 183 to_fc_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 186 } 187 188 static inline struct nvme_fc_lport * 189 localport_to_lport(struct nvme_fc_local_port *portptr) 190 { 191 return container_of(portptr, struct nvme_fc_lport, localport); 192 } 193 194 static inline struct nvme_fc_rport * 195 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 196 { 197 return container_of(portptr, struct nvme_fc_rport, remoteport); 198 } 199 200 static inline struct nvmefc_ls_req_op * 201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 202 { 203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 204 } 205 206 static inline struct nvme_fc_fcp_op * 207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 208 { 209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 210 } 211 212 213 214 /* *************************** Globals **************************** */ 215 216 217 static DEFINE_SPINLOCK(nvme_fc_lock); 218 219 static LIST_HEAD(nvme_fc_lport_list); 220 static DEFINE_IDA(nvme_fc_local_port_cnt); 221 static DEFINE_IDA(nvme_fc_ctrl_cnt); 222 223 /* 224 * These items are short-term. They will eventually be moved into 225 * a generic FC class. See comments in module init. 226 */ 227 static struct device *fc_udev_device; 228 229 static void nvme_fc_complete_rq(struct request *rq); 230 231 /* *********************** FC-NVME Port Management ************************ */ 232 233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 234 struct nvme_fc_queue *, unsigned int); 235 236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 237 238 239 static void 240 nvme_fc_free_lport(struct kref *ref) 241 { 242 struct nvme_fc_lport *lport = 243 container_of(ref, struct nvme_fc_lport, ref); 244 unsigned long flags; 245 246 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 247 WARN_ON(!list_empty(&lport->endp_list)); 248 249 /* remove from transport list */ 250 spin_lock_irqsave(&nvme_fc_lock, flags); 251 list_del(&lport->port_list); 252 spin_unlock_irqrestore(&nvme_fc_lock, flags); 253 254 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 255 ida_destroy(&lport->endp_cnt); 256 257 put_device(lport->dev); 258 259 kfree(lport); 260 } 261 262 static void 263 nvme_fc_lport_put(struct nvme_fc_lport *lport) 264 { 265 kref_put(&lport->ref, nvme_fc_free_lport); 266 } 267 268 static int 269 nvme_fc_lport_get(struct nvme_fc_lport *lport) 270 { 271 return kref_get_unless_zero(&lport->ref); 272 } 273 274 275 static struct nvme_fc_lport * 276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 277 struct nvme_fc_port_template *ops, 278 struct device *dev) 279 { 280 struct nvme_fc_lport *lport; 281 unsigned long flags; 282 283 spin_lock_irqsave(&nvme_fc_lock, flags); 284 285 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 286 if (lport->localport.node_name != pinfo->node_name || 287 lport->localport.port_name != pinfo->port_name) 288 continue; 289 290 if (lport->dev != dev) { 291 lport = ERR_PTR(-EXDEV); 292 goto out_done; 293 } 294 295 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 296 lport = ERR_PTR(-EEXIST); 297 goto out_done; 298 } 299 300 if (!nvme_fc_lport_get(lport)) { 301 /* 302 * fails if ref cnt already 0. If so, 303 * act as if lport already deleted 304 */ 305 lport = NULL; 306 goto out_done; 307 } 308 309 /* resume the lport */ 310 311 lport->ops = ops; 312 lport->localport.port_role = pinfo->port_role; 313 lport->localport.port_id = pinfo->port_id; 314 lport->localport.port_state = FC_OBJSTATE_ONLINE; 315 316 spin_unlock_irqrestore(&nvme_fc_lock, flags); 317 318 return lport; 319 } 320 321 lport = NULL; 322 323 out_done: 324 spin_unlock_irqrestore(&nvme_fc_lock, flags); 325 326 return lport; 327 } 328 329 /** 330 * nvme_fc_register_localport - transport entry point called by an 331 * LLDD to register the existence of a NVME 332 * host FC port. 333 * @pinfo: pointer to information about the port to be registered 334 * @template: LLDD entrypoints and operational parameters for the port 335 * @dev: physical hardware device node port corresponds to. Will be 336 * used for DMA mappings 337 * @portptr: pointer to a local port pointer. Upon success, the routine 338 * will allocate a nvme_fc_local_port structure and place its 339 * address in the local port pointer. Upon failure, local port 340 * pointer will be set to 0. 341 * 342 * Returns: 343 * a completion status. Must be 0 upon success; a negative errno 344 * (ex: -ENXIO) upon failure. 345 */ 346 int 347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 348 struct nvme_fc_port_template *template, 349 struct device *dev, 350 struct nvme_fc_local_port **portptr) 351 { 352 struct nvme_fc_lport *newrec; 353 unsigned long flags; 354 int ret, idx; 355 356 if (!template->localport_delete || !template->remoteport_delete || 357 !template->ls_req || !template->fcp_io || 358 !template->ls_abort || !template->fcp_abort || 359 !template->max_hw_queues || !template->max_sgl_segments || 360 !template->max_dif_sgl_segments || !template->dma_boundary) { 361 ret = -EINVAL; 362 goto out_reghost_failed; 363 } 364 365 /* 366 * look to see if there is already a localport that had been 367 * deregistered and in the process of waiting for all the 368 * references to fully be removed. If the references haven't 369 * expired, we can simply re-enable the localport. Remoteports 370 * and controller reconnections should resume naturally. 371 */ 372 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 373 374 /* found an lport, but something about its state is bad */ 375 if (IS_ERR(newrec)) { 376 ret = PTR_ERR(newrec); 377 goto out_reghost_failed; 378 379 /* found existing lport, which was resumed */ 380 } else if (newrec) { 381 *portptr = &newrec->localport; 382 return 0; 383 } 384 385 /* nothing found - allocate a new localport struct */ 386 387 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 388 GFP_KERNEL); 389 if (!newrec) { 390 ret = -ENOMEM; 391 goto out_reghost_failed; 392 } 393 394 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 395 if (idx < 0) { 396 ret = -ENOSPC; 397 goto out_fail_kfree; 398 } 399 400 if (!get_device(dev) && dev) { 401 ret = -ENODEV; 402 goto out_ida_put; 403 } 404 405 INIT_LIST_HEAD(&newrec->port_list); 406 INIT_LIST_HEAD(&newrec->endp_list); 407 kref_init(&newrec->ref); 408 atomic_set(&newrec->act_rport_cnt, 0); 409 newrec->ops = template; 410 newrec->dev = dev; 411 ida_init(&newrec->endp_cnt); 412 if (template->local_priv_sz) 413 newrec->localport.private = &newrec[1]; 414 else 415 newrec->localport.private = NULL; 416 newrec->localport.node_name = pinfo->node_name; 417 newrec->localport.port_name = pinfo->port_name; 418 newrec->localport.port_role = pinfo->port_role; 419 newrec->localport.port_id = pinfo->port_id; 420 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 421 newrec->localport.port_num = idx; 422 423 spin_lock_irqsave(&nvme_fc_lock, flags); 424 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 425 spin_unlock_irqrestore(&nvme_fc_lock, flags); 426 427 if (dev) 428 dma_set_seg_boundary(dev, template->dma_boundary); 429 430 *portptr = &newrec->localport; 431 return 0; 432 433 out_ida_put: 434 ida_free(&nvme_fc_local_port_cnt, idx); 435 out_fail_kfree: 436 kfree(newrec); 437 out_reghost_failed: 438 *portptr = NULL; 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 443 444 /** 445 * nvme_fc_unregister_localport - transport entry point called by an 446 * LLDD to deregister/remove a previously 447 * registered a NVME host FC port. 448 * @portptr: pointer to the (registered) local port that is to be deregistered. 449 * 450 * Returns: 451 * a completion status. Must be 0 upon success; a negative errno 452 * (ex: -ENXIO) upon failure. 453 */ 454 int 455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 456 { 457 struct nvme_fc_lport *lport = localport_to_lport(portptr); 458 unsigned long flags; 459 460 if (!portptr) 461 return -EINVAL; 462 463 spin_lock_irqsave(&nvme_fc_lock, flags); 464 465 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 466 spin_unlock_irqrestore(&nvme_fc_lock, flags); 467 return -EINVAL; 468 } 469 portptr->port_state = FC_OBJSTATE_DELETED; 470 471 spin_unlock_irqrestore(&nvme_fc_lock, flags); 472 473 if (atomic_read(&lport->act_rport_cnt) == 0) 474 lport->ops->localport_delete(&lport->localport); 475 476 nvme_fc_lport_put(lport); 477 478 return 0; 479 } 480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 481 482 /* 483 * TRADDR strings, per FC-NVME are fixed format: 484 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 485 * udev event will only differ by prefix of what field is 486 * being specified: 487 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 488 * 19 + 43 + null_fudge = 64 characters 489 */ 490 #define FCNVME_TRADDR_LENGTH 64 491 492 static void 493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 494 struct nvme_fc_rport *rport) 495 { 496 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 497 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 498 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 499 500 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 501 return; 502 503 snprintf(hostaddr, sizeof(hostaddr), 504 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 505 lport->localport.node_name, lport->localport.port_name); 506 snprintf(tgtaddr, sizeof(tgtaddr), 507 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 508 rport->remoteport.node_name, rport->remoteport.port_name); 509 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 510 } 511 512 static void 513 nvme_fc_free_rport(struct kref *ref) 514 { 515 struct nvme_fc_rport *rport = 516 container_of(ref, struct nvme_fc_rport, ref); 517 struct nvme_fc_lport *lport = 518 localport_to_lport(rport->remoteport.localport); 519 unsigned long flags; 520 521 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 522 WARN_ON(!list_empty(&rport->ctrl_list)); 523 WARN_ON(!list_empty(&rport->ls_req_list)); 524 WARN_ON(!list_empty(&rport->ls_rcv_list)); 525 526 /* remove from lport list */ 527 spin_lock_irqsave(&nvme_fc_lock, flags); 528 list_del(&rport->endp_list); 529 spin_unlock_irqrestore(&nvme_fc_lock, flags); 530 531 WARN_ON(!list_empty(&rport->disc_list)); 532 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 533 534 kfree(rport); 535 536 nvme_fc_lport_put(lport); 537 } 538 539 static void 540 nvme_fc_rport_put(struct nvme_fc_rport *rport) 541 { 542 kref_put(&rport->ref, nvme_fc_free_rport); 543 } 544 545 static int 546 nvme_fc_rport_get(struct nvme_fc_rport *rport) 547 { 548 return kref_get_unless_zero(&rport->ref); 549 } 550 551 static void 552 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 553 { 554 switch (nvme_ctrl_state(&ctrl->ctrl)) { 555 case NVME_CTRL_NEW: 556 case NVME_CTRL_CONNECTING: 557 /* 558 * As all reconnects were suppressed, schedule a 559 * connect. 560 */ 561 dev_info(ctrl->ctrl.device, 562 "NVME-FC{%d}: connectivity re-established. " 563 "Attempting reconnect\n", ctrl->cnum); 564 565 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 566 break; 567 568 case NVME_CTRL_RESETTING: 569 /* 570 * Controller is already in the process of terminating the 571 * association. No need to do anything further. The reconnect 572 * step will naturally occur after the reset completes. 573 */ 574 break; 575 576 default: 577 /* no action to take - let it delete */ 578 break; 579 } 580 } 581 582 static struct nvme_fc_rport * 583 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 584 struct nvme_fc_port_info *pinfo) 585 { 586 struct nvme_fc_rport *rport; 587 struct nvme_fc_ctrl *ctrl; 588 unsigned long flags; 589 590 spin_lock_irqsave(&nvme_fc_lock, flags); 591 592 list_for_each_entry(rport, &lport->endp_list, endp_list) { 593 if (rport->remoteport.node_name != pinfo->node_name || 594 rport->remoteport.port_name != pinfo->port_name) 595 continue; 596 597 if (!nvme_fc_rport_get(rport)) { 598 rport = ERR_PTR(-ENOLCK); 599 goto out_done; 600 } 601 602 spin_unlock_irqrestore(&nvme_fc_lock, flags); 603 604 spin_lock_irqsave(&rport->lock, flags); 605 606 /* has it been unregistered */ 607 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 608 /* means lldd called us twice */ 609 spin_unlock_irqrestore(&rport->lock, flags); 610 nvme_fc_rport_put(rport); 611 return ERR_PTR(-ESTALE); 612 } 613 614 rport->remoteport.port_role = pinfo->port_role; 615 rport->remoteport.port_id = pinfo->port_id; 616 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 617 rport->dev_loss_end = 0; 618 619 /* 620 * kick off a reconnect attempt on all associations to the 621 * remote port. A successful reconnects will resume i/o. 622 */ 623 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 624 nvme_fc_resume_controller(ctrl); 625 626 spin_unlock_irqrestore(&rport->lock, flags); 627 628 return rport; 629 } 630 631 rport = NULL; 632 633 out_done: 634 spin_unlock_irqrestore(&nvme_fc_lock, flags); 635 636 return rport; 637 } 638 639 static inline void 640 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 641 struct nvme_fc_port_info *pinfo) 642 { 643 if (pinfo->dev_loss_tmo) 644 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 645 else 646 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 647 } 648 649 /** 650 * nvme_fc_register_remoteport - transport entry point called by an 651 * LLDD to register the existence of a NVME 652 * subsystem FC port on its fabric. 653 * @localport: pointer to the (registered) local port that the remote 654 * subsystem port is connected to. 655 * @pinfo: pointer to information about the port to be registered 656 * @portptr: pointer to a remote port pointer. Upon success, the routine 657 * will allocate a nvme_fc_remote_port structure and place its 658 * address in the remote port pointer. Upon failure, remote port 659 * pointer will be set to 0. 660 * 661 * Returns: 662 * a completion status. Must be 0 upon success; a negative errno 663 * (ex: -ENXIO) upon failure. 664 */ 665 int 666 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 667 struct nvme_fc_port_info *pinfo, 668 struct nvme_fc_remote_port **portptr) 669 { 670 struct nvme_fc_lport *lport = localport_to_lport(localport); 671 struct nvme_fc_rport *newrec; 672 unsigned long flags; 673 int ret, idx; 674 675 if (!nvme_fc_lport_get(lport)) { 676 ret = -ESHUTDOWN; 677 goto out_reghost_failed; 678 } 679 680 /* 681 * look to see if there is already a remoteport that is waiting 682 * for a reconnect (within dev_loss_tmo) with the same WWN's. 683 * If so, transition to it and reconnect. 684 */ 685 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 686 687 /* found an rport, but something about its state is bad */ 688 if (IS_ERR(newrec)) { 689 ret = PTR_ERR(newrec); 690 goto out_lport_put; 691 692 /* found existing rport, which was resumed */ 693 } else if (newrec) { 694 nvme_fc_lport_put(lport); 695 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 696 nvme_fc_signal_discovery_scan(lport, newrec); 697 *portptr = &newrec->remoteport; 698 return 0; 699 } 700 701 /* nothing found - allocate a new remoteport struct */ 702 703 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 704 GFP_KERNEL); 705 if (!newrec) { 706 ret = -ENOMEM; 707 goto out_lport_put; 708 } 709 710 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 711 if (idx < 0) { 712 ret = -ENOSPC; 713 goto out_kfree_rport; 714 } 715 716 INIT_LIST_HEAD(&newrec->endp_list); 717 INIT_LIST_HEAD(&newrec->ctrl_list); 718 INIT_LIST_HEAD(&newrec->ls_req_list); 719 INIT_LIST_HEAD(&newrec->disc_list); 720 kref_init(&newrec->ref); 721 atomic_set(&newrec->act_ctrl_cnt, 0); 722 spin_lock_init(&newrec->lock); 723 newrec->remoteport.localport = &lport->localport; 724 INIT_LIST_HEAD(&newrec->ls_rcv_list); 725 newrec->dev = lport->dev; 726 newrec->lport = lport; 727 if (lport->ops->remote_priv_sz) 728 newrec->remoteport.private = &newrec[1]; 729 else 730 newrec->remoteport.private = NULL; 731 newrec->remoteport.port_role = pinfo->port_role; 732 newrec->remoteport.node_name = pinfo->node_name; 733 newrec->remoteport.port_name = pinfo->port_name; 734 newrec->remoteport.port_id = pinfo->port_id; 735 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 736 newrec->remoteport.port_num = idx; 737 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 738 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 739 740 spin_lock_irqsave(&nvme_fc_lock, flags); 741 list_add_tail(&newrec->endp_list, &lport->endp_list); 742 spin_unlock_irqrestore(&nvme_fc_lock, flags); 743 744 nvme_fc_signal_discovery_scan(lport, newrec); 745 746 *portptr = &newrec->remoteport; 747 return 0; 748 749 out_kfree_rport: 750 kfree(newrec); 751 out_lport_put: 752 nvme_fc_lport_put(lport); 753 out_reghost_failed: 754 *portptr = NULL; 755 return ret; 756 } 757 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 758 759 static int 760 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 761 { 762 struct nvmefc_ls_req_op *lsop; 763 unsigned long flags; 764 765 restart: 766 spin_lock_irqsave(&rport->lock, flags); 767 768 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 769 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 770 lsop->flags |= FCOP_FLAGS_TERMIO; 771 spin_unlock_irqrestore(&rport->lock, flags); 772 rport->lport->ops->ls_abort(&rport->lport->localport, 773 &rport->remoteport, 774 &lsop->ls_req); 775 goto restart; 776 } 777 } 778 spin_unlock_irqrestore(&rport->lock, flags); 779 780 return 0; 781 } 782 783 static void 784 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 785 { 786 dev_info(ctrl->ctrl.device, 787 "NVME-FC{%d}: controller connectivity lost. Awaiting " 788 "Reconnect", ctrl->cnum); 789 790 set_bit(ASSOC_FAILED, &ctrl->flags); 791 nvme_reset_ctrl(&ctrl->ctrl); 792 } 793 794 /** 795 * nvme_fc_unregister_remoteport - transport entry point called by an 796 * LLDD to deregister/remove a previously 797 * registered a NVME subsystem FC port. 798 * @portptr: pointer to the (registered) remote port that is to be 799 * deregistered. 800 * 801 * Returns: 802 * a completion status. Must be 0 upon success; a negative errno 803 * (ex: -ENXIO) upon failure. 804 */ 805 int 806 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 807 { 808 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 809 struct nvme_fc_ctrl *ctrl; 810 unsigned long flags; 811 812 if (!portptr) 813 return -EINVAL; 814 815 spin_lock_irqsave(&rport->lock, flags); 816 817 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 818 spin_unlock_irqrestore(&rport->lock, flags); 819 return -EINVAL; 820 } 821 portptr->port_state = FC_OBJSTATE_DELETED; 822 823 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 824 825 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 826 /* if dev_loss_tmo==0, dev loss is immediate */ 827 if (!portptr->dev_loss_tmo) { 828 dev_warn(ctrl->ctrl.device, 829 "NVME-FC{%d}: controller connectivity lost.\n", 830 ctrl->cnum); 831 nvme_delete_ctrl(&ctrl->ctrl); 832 } else 833 nvme_fc_ctrl_connectivity_loss(ctrl); 834 } 835 836 spin_unlock_irqrestore(&rport->lock, flags); 837 838 nvme_fc_abort_lsops(rport); 839 840 if (atomic_read(&rport->act_ctrl_cnt) == 0) 841 rport->lport->ops->remoteport_delete(portptr); 842 843 /* 844 * release the reference, which will allow, if all controllers 845 * go away, which should only occur after dev_loss_tmo occurs, 846 * for the rport to be torn down. 847 */ 848 nvme_fc_rport_put(rport); 849 850 return 0; 851 } 852 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 853 854 /** 855 * nvme_fc_rescan_remoteport - transport entry point called by an 856 * LLDD to request a nvme device rescan. 857 * @remoteport: pointer to the (registered) remote port that is to be 858 * rescanned. 859 * 860 * Returns: N/A 861 */ 862 void 863 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 864 { 865 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 866 867 nvme_fc_signal_discovery_scan(rport->lport, rport); 868 } 869 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 870 871 int 872 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 873 u32 dev_loss_tmo) 874 { 875 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 876 unsigned long flags; 877 878 spin_lock_irqsave(&rport->lock, flags); 879 880 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 881 spin_unlock_irqrestore(&rport->lock, flags); 882 return -EINVAL; 883 } 884 885 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 886 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 887 888 spin_unlock_irqrestore(&rport->lock, flags); 889 890 return 0; 891 } 892 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 893 894 895 /* *********************** FC-NVME DMA Handling **************************** */ 896 897 /* 898 * The fcloop device passes in a NULL device pointer. Real LLD's will 899 * pass in a valid device pointer. If NULL is passed to the dma mapping 900 * routines, depending on the platform, it may or may not succeed, and 901 * may crash. 902 * 903 * As such: 904 * Wrap all the dma routines and check the dev pointer. 905 * 906 * If simple mappings (return just a dma address, we'll noop them, 907 * returning a dma address of 0. 908 * 909 * On more complex mappings (dma_map_sg), a pseudo routine fills 910 * in the scatter list, setting all dma addresses to 0. 911 */ 912 913 static inline dma_addr_t 914 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 915 enum dma_data_direction dir) 916 { 917 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 918 } 919 920 static inline int 921 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 922 { 923 return dev ? dma_mapping_error(dev, dma_addr) : 0; 924 } 925 926 static inline void 927 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 928 enum dma_data_direction dir) 929 { 930 if (dev) 931 dma_unmap_single(dev, addr, size, dir); 932 } 933 934 static inline void 935 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 936 enum dma_data_direction dir) 937 { 938 if (dev) 939 dma_sync_single_for_cpu(dev, addr, size, dir); 940 } 941 942 static inline void 943 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 944 enum dma_data_direction dir) 945 { 946 if (dev) 947 dma_sync_single_for_device(dev, addr, size, dir); 948 } 949 950 /* pseudo dma_map_sg call */ 951 static int 952 fc_map_sg(struct scatterlist *sg, int nents) 953 { 954 struct scatterlist *s; 955 int i; 956 957 WARN_ON(nents == 0 || sg[0].length == 0); 958 959 for_each_sg(sg, s, nents, i) { 960 s->dma_address = 0L; 961 #ifdef CONFIG_NEED_SG_DMA_LENGTH 962 s->dma_length = s->length; 963 #endif 964 } 965 return nents; 966 } 967 968 static inline int 969 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 970 enum dma_data_direction dir) 971 { 972 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 973 } 974 975 static inline void 976 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 977 enum dma_data_direction dir) 978 { 979 if (dev) 980 dma_unmap_sg(dev, sg, nents, dir); 981 } 982 983 /* *********************** FC-NVME LS Handling **************************** */ 984 985 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 986 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 987 988 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 989 990 static void 991 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 992 { 993 struct nvme_fc_rport *rport = lsop->rport; 994 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 995 unsigned long flags; 996 997 spin_lock_irqsave(&rport->lock, flags); 998 999 if (!lsop->req_queued) { 1000 spin_unlock_irqrestore(&rport->lock, flags); 1001 return; 1002 } 1003 1004 list_del(&lsop->lsreq_list); 1005 1006 lsop->req_queued = false; 1007 1008 spin_unlock_irqrestore(&rport->lock, flags); 1009 1010 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1011 (lsreq->rqstlen + lsreq->rsplen), 1012 DMA_BIDIRECTIONAL); 1013 1014 nvme_fc_rport_put(rport); 1015 } 1016 1017 static int 1018 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1019 struct nvmefc_ls_req_op *lsop, 1020 void (*done)(struct nvmefc_ls_req *req, int status)) 1021 { 1022 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1023 unsigned long flags; 1024 int ret = 0; 1025 1026 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1027 return -ECONNREFUSED; 1028 1029 if (!nvme_fc_rport_get(rport)) 1030 return -ESHUTDOWN; 1031 1032 lsreq->done = done; 1033 lsop->rport = rport; 1034 lsop->req_queued = false; 1035 INIT_LIST_HEAD(&lsop->lsreq_list); 1036 init_completion(&lsop->ls_done); 1037 1038 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1039 lsreq->rqstlen + lsreq->rsplen, 1040 DMA_BIDIRECTIONAL); 1041 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1042 ret = -EFAULT; 1043 goto out_putrport; 1044 } 1045 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1046 1047 spin_lock_irqsave(&rport->lock, flags); 1048 1049 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1050 1051 lsop->req_queued = true; 1052 1053 spin_unlock_irqrestore(&rport->lock, flags); 1054 1055 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1056 &rport->remoteport, lsreq); 1057 if (ret) 1058 goto out_unlink; 1059 1060 return 0; 1061 1062 out_unlink: 1063 lsop->ls_error = ret; 1064 spin_lock_irqsave(&rport->lock, flags); 1065 lsop->req_queued = false; 1066 list_del(&lsop->lsreq_list); 1067 spin_unlock_irqrestore(&rport->lock, flags); 1068 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1069 (lsreq->rqstlen + lsreq->rsplen), 1070 DMA_BIDIRECTIONAL); 1071 out_putrport: 1072 nvme_fc_rport_put(rport); 1073 1074 return ret; 1075 } 1076 1077 static void 1078 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1079 { 1080 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1081 1082 lsop->ls_error = status; 1083 complete(&lsop->ls_done); 1084 } 1085 1086 static int 1087 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1088 { 1089 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1090 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1091 int ret; 1092 1093 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1094 1095 if (!ret) { 1096 /* 1097 * No timeout/not interruptible as we need the struct 1098 * to exist until the lldd calls us back. Thus mandate 1099 * wait until driver calls back. lldd responsible for 1100 * the timeout action 1101 */ 1102 wait_for_completion(&lsop->ls_done); 1103 1104 __nvme_fc_finish_ls_req(lsop); 1105 1106 ret = lsop->ls_error; 1107 } 1108 1109 if (ret) 1110 return ret; 1111 1112 /* ACC or RJT payload ? */ 1113 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1114 return -ENXIO; 1115 1116 return 0; 1117 } 1118 1119 static int 1120 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1121 struct nvmefc_ls_req_op *lsop, 1122 void (*done)(struct nvmefc_ls_req *req, int status)) 1123 { 1124 /* don't wait for completion */ 1125 1126 return __nvme_fc_send_ls_req(rport, lsop, done); 1127 } 1128 1129 static int 1130 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1131 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1132 { 1133 struct nvmefc_ls_req_op *lsop; 1134 struct nvmefc_ls_req *lsreq; 1135 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1136 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1137 unsigned long flags; 1138 int ret, fcret = 0; 1139 1140 lsop = kzalloc((sizeof(*lsop) + 1141 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1142 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1143 if (!lsop) { 1144 dev_info(ctrl->ctrl.device, 1145 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1146 ctrl->cnum); 1147 ret = -ENOMEM; 1148 goto out_no_memory; 1149 } 1150 1151 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1152 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1153 lsreq = &lsop->ls_req; 1154 if (ctrl->lport->ops->lsrqst_priv_sz) 1155 lsreq->private = &assoc_acc[1]; 1156 else 1157 lsreq->private = NULL; 1158 1159 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1160 assoc_rqst->desc_list_len = 1161 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1162 1163 assoc_rqst->assoc_cmd.desc_tag = 1164 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1165 assoc_rqst->assoc_cmd.desc_len = 1166 fcnvme_lsdesc_len( 1167 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1168 1169 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1170 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1171 /* Linux supports only Dynamic controllers */ 1172 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1173 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1174 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1175 sizeof(assoc_rqst->assoc_cmd.hostnqn)); 1176 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1177 sizeof(assoc_rqst->assoc_cmd.subnqn)); 1178 1179 lsop->queue = queue; 1180 lsreq->rqstaddr = assoc_rqst; 1181 lsreq->rqstlen = sizeof(*assoc_rqst); 1182 lsreq->rspaddr = assoc_acc; 1183 lsreq->rsplen = sizeof(*assoc_acc); 1184 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1185 1186 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1187 if (ret) 1188 goto out_free_buffer; 1189 1190 /* process connect LS completion */ 1191 1192 /* validate the ACC response */ 1193 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1194 fcret = VERR_LSACC; 1195 else if (assoc_acc->hdr.desc_list_len != 1196 fcnvme_lsdesc_len( 1197 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1198 fcret = VERR_CR_ASSOC_ACC_LEN; 1199 else if (assoc_acc->hdr.rqst.desc_tag != 1200 cpu_to_be32(FCNVME_LSDESC_RQST)) 1201 fcret = VERR_LSDESC_RQST; 1202 else if (assoc_acc->hdr.rqst.desc_len != 1203 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1204 fcret = VERR_LSDESC_RQST_LEN; 1205 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1206 fcret = VERR_CR_ASSOC; 1207 else if (assoc_acc->associd.desc_tag != 1208 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1209 fcret = VERR_ASSOC_ID; 1210 else if (assoc_acc->associd.desc_len != 1211 fcnvme_lsdesc_len( 1212 sizeof(struct fcnvme_lsdesc_assoc_id))) 1213 fcret = VERR_ASSOC_ID_LEN; 1214 else if (assoc_acc->connectid.desc_tag != 1215 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1216 fcret = VERR_CONN_ID; 1217 else if (assoc_acc->connectid.desc_len != 1218 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1219 fcret = VERR_CONN_ID_LEN; 1220 1221 if (fcret) { 1222 ret = -EBADF; 1223 dev_err(ctrl->dev, 1224 "q %d Create Association LS failed: %s\n", 1225 queue->qnum, validation_errors[fcret]); 1226 } else { 1227 spin_lock_irqsave(&ctrl->lock, flags); 1228 ctrl->association_id = 1229 be64_to_cpu(assoc_acc->associd.association_id); 1230 queue->connection_id = 1231 be64_to_cpu(assoc_acc->connectid.connection_id); 1232 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1233 spin_unlock_irqrestore(&ctrl->lock, flags); 1234 } 1235 1236 out_free_buffer: 1237 kfree(lsop); 1238 out_no_memory: 1239 if (ret) 1240 dev_err(ctrl->dev, 1241 "queue %d connect admin queue failed (%d).\n", 1242 queue->qnum, ret); 1243 return ret; 1244 } 1245 1246 static int 1247 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1248 u16 qsize, u16 ersp_ratio) 1249 { 1250 struct nvmefc_ls_req_op *lsop; 1251 struct nvmefc_ls_req *lsreq; 1252 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1253 struct fcnvme_ls_cr_conn_acc *conn_acc; 1254 int ret, fcret = 0; 1255 1256 lsop = kzalloc((sizeof(*lsop) + 1257 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1258 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1259 if (!lsop) { 1260 dev_info(ctrl->ctrl.device, 1261 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1262 ctrl->cnum); 1263 ret = -ENOMEM; 1264 goto out_no_memory; 1265 } 1266 1267 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1268 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1269 lsreq = &lsop->ls_req; 1270 if (ctrl->lport->ops->lsrqst_priv_sz) 1271 lsreq->private = (void *)&conn_acc[1]; 1272 else 1273 lsreq->private = NULL; 1274 1275 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1276 conn_rqst->desc_list_len = cpu_to_be32( 1277 sizeof(struct fcnvme_lsdesc_assoc_id) + 1278 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1279 1280 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1281 conn_rqst->associd.desc_len = 1282 fcnvme_lsdesc_len( 1283 sizeof(struct fcnvme_lsdesc_assoc_id)); 1284 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1285 conn_rqst->connect_cmd.desc_tag = 1286 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1287 conn_rqst->connect_cmd.desc_len = 1288 fcnvme_lsdesc_len( 1289 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1290 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1291 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1292 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1293 1294 lsop->queue = queue; 1295 lsreq->rqstaddr = conn_rqst; 1296 lsreq->rqstlen = sizeof(*conn_rqst); 1297 lsreq->rspaddr = conn_acc; 1298 lsreq->rsplen = sizeof(*conn_acc); 1299 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1300 1301 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1302 if (ret) 1303 goto out_free_buffer; 1304 1305 /* process connect LS completion */ 1306 1307 /* validate the ACC response */ 1308 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1309 fcret = VERR_LSACC; 1310 else if (conn_acc->hdr.desc_list_len != 1311 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1312 fcret = VERR_CR_CONN_ACC_LEN; 1313 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1314 fcret = VERR_LSDESC_RQST; 1315 else if (conn_acc->hdr.rqst.desc_len != 1316 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1317 fcret = VERR_LSDESC_RQST_LEN; 1318 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1319 fcret = VERR_CR_CONN; 1320 else if (conn_acc->connectid.desc_tag != 1321 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1322 fcret = VERR_CONN_ID; 1323 else if (conn_acc->connectid.desc_len != 1324 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1325 fcret = VERR_CONN_ID_LEN; 1326 1327 if (fcret) { 1328 ret = -EBADF; 1329 dev_err(ctrl->dev, 1330 "q %d Create I/O Connection LS failed: %s\n", 1331 queue->qnum, validation_errors[fcret]); 1332 } else { 1333 queue->connection_id = 1334 be64_to_cpu(conn_acc->connectid.connection_id); 1335 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1336 } 1337 1338 out_free_buffer: 1339 kfree(lsop); 1340 out_no_memory: 1341 if (ret) 1342 dev_err(ctrl->dev, 1343 "queue %d connect I/O queue failed (%d).\n", 1344 queue->qnum, ret); 1345 return ret; 1346 } 1347 1348 static void 1349 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1350 { 1351 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1352 1353 __nvme_fc_finish_ls_req(lsop); 1354 1355 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1356 1357 kfree(lsop); 1358 } 1359 1360 /* 1361 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1362 * the FC-NVME Association. Terminating the association also 1363 * terminates the FC-NVME connections (per queue, both admin and io 1364 * queues) that are part of the association. E.g. things are torn 1365 * down, and the related FC-NVME Association ID and Connection IDs 1366 * become invalid. 1367 * 1368 * The behavior of the fc-nvme initiator is such that its 1369 * understanding of the association and connections will implicitly 1370 * be torn down. The action is implicit as it may be due to a loss of 1371 * connectivity with the fc-nvme target, so you may never get a 1372 * response even if you tried. As such, the action of this routine 1373 * is to asynchronously send the LS, ignore any results of the LS, and 1374 * continue on with terminating the association. If the fc-nvme target 1375 * is present and receives the LS, it too can tear down. 1376 */ 1377 static void 1378 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1379 { 1380 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1381 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1382 struct nvmefc_ls_req_op *lsop; 1383 struct nvmefc_ls_req *lsreq; 1384 int ret; 1385 1386 lsop = kzalloc((sizeof(*lsop) + 1387 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1388 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1389 if (!lsop) { 1390 dev_info(ctrl->ctrl.device, 1391 "NVME-FC{%d}: send Disconnect Association " 1392 "failed: ENOMEM\n", 1393 ctrl->cnum); 1394 return; 1395 } 1396 1397 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1398 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1399 lsreq = &lsop->ls_req; 1400 if (ctrl->lport->ops->lsrqst_priv_sz) 1401 lsreq->private = (void *)&discon_acc[1]; 1402 else 1403 lsreq->private = NULL; 1404 1405 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1406 ctrl->association_id); 1407 1408 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1409 nvme_fc_disconnect_assoc_done); 1410 if (ret) 1411 kfree(lsop); 1412 } 1413 1414 static void 1415 nvme_fc_xmt_ls_rsp_free(struct nvmefc_ls_rcv_op *lsop) 1416 { 1417 struct nvme_fc_rport *rport = lsop->rport; 1418 struct nvme_fc_lport *lport = rport->lport; 1419 unsigned long flags; 1420 1421 spin_lock_irqsave(&rport->lock, flags); 1422 list_del(&lsop->lsrcv_list); 1423 spin_unlock_irqrestore(&rport->lock, flags); 1424 1425 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1426 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1427 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1428 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1429 1430 kfree(lsop->rspbuf); 1431 kfree(lsop->rqstbuf); 1432 kfree(lsop); 1433 1434 nvme_fc_rport_put(rport); 1435 } 1436 1437 static void 1438 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1439 { 1440 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1441 1442 nvme_fc_xmt_ls_rsp_free(lsop); 1443 } 1444 1445 static void 1446 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1447 { 1448 struct nvme_fc_rport *rport = lsop->rport; 1449 struct nvme_fc_lport *lport = rport->lport; 1450 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1451 int ret; 1452 1453 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1454 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1455 1456 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1457 lsop->lsrsp); 1458 if (ret) { 1459 dev_warn(lport->dev, 1460 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1461 w0->ls_cmd, ret); 1462 nvme_fc_xmt_ls_rsp_free(lsop); 1463 return; 1464 } 1465 } 1466 1467 static struct nvme_fc_ctrl * 1468 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1469 struct nvmefc_ls_rcv_op *lsop) 1470 { 1471 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1472 &lsop->rqstbuf->rq_dis_assoc; 1473 struct nvme_fc_ctrl *ctrl, *tmp, *ret = NULL; 1474 struct nvmefc_ls_rcv_op *oldls = NULL; 1475 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1476 unsigned long flags; 1477 1478 spin_lock_irqsave(&rport->lock, flags); 1479 1480 list_for_each_entry_safe(ctrl, tmp, &rport->ctrl_list, ctrl_list) { 1481 if (!nvme_fc_ctrl_get(ctrl)) 1482 continue; 1483 spin_lock(&ctrl->lock); 1484 if (association_id == ctrl->association_id) { 1485 oldls = ctrl->rcv_disconn; 1486 ctrl->rcv_disconn = lsop; 1487 ret = ctrl; 1488 } 1489 spin_unlock(&ctrl->lock); 1490 if (ret) 1491 /* leave the ctrl get reference */ 1492 break; 1493 spin_unlock_irqrestore(&rport->lock, flags); 1494 nvme_fc_ctrl_put(ctrl); 1495 spin_lock_irqsave(&rport->lock, flags); 1496 } 1497 1498 spin_unlock_irqrestore(&rport->lock, flags); 1499 1500 /* transmit a response for anything that was pending */ 1501 if (oldls) { 1502 dev_info(rport->lport->dev, 1503 "NVME-FC{%d}: Multiple Disconnect Association " 1504 "LS's received\n", ctrl->cnum); 1505 /* overwrite good response with bogus failure */ 1506 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1507 sizeof(*oldls->rspbuf), 1508 rqst->w0.ls_cmd, 1509 FCNVME_RJT_RC_UNAB, 1510 FCNVME_RJT_EXP_NONE, 0); 1511 nvme_fc_xmt_ls_rsp(oldls); 1512 } 1513 1514 return ret; 1515 } 1516 1517 /* 1518 * returns true to mean LS handled and ls_rsp can be sent 1519 * returns false to defer ls_rsp xmt (will be done as part of 1520 * association termination) 1521 */ 1522 static bool 1523 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1524 { 1525 struct nvme_fc_rport *rport = lsop->rport; 1526 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1527 &lsop->rqstbuf->rq_dis_assoc; 1528 struct fcnvme_ls_disconnect_assoc_acc *acc = 1529 &lsop->rspbuf->rsp_dis_assoc; 1530 struct nvme_fc_ctrl *ctrl = NULL; 1531 int ret = 0; 1532 1533 memset(acc, 0, sizeof(*acc)); 1534 1535 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1536 if (!ret) { 1537 /* match an active association */ 1538 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1539 if (!ctrl) 1540 ret = VERR_NO_ASSOC; 1541 } 1542 1543 if (ret) { 1544 dev_info(rport->lport->dev, 1545 "Disconnect LS failed: %s\n", 1546 validation_errors[ret]); 1547 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1548 sizeof(*acc), rqst->w0.ls_cmd, 1549 (ret == VERR_NO_ASSOC) ? 1550 FCNVME_RJT_RC_INV_ASSOC : 1551 FCNVME_RJT_RC_LOGIC, 1552 FCNVME_RJT_EXP_NONE, 0); 1553 return true; 1554 } 1555 1556 /* format an ACCept response */ 1557 1558 lsop->lsrsp->rsplen = sizeof(*acc); 1559 1560 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1561 fcnvme_lsdesc_len( 1562 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1563 FCNVME_LS_DISCONNECT_ASSOC); 1564 1565 /* 1566 * the transmit of the response will occur after the exchanges 1567 * for the association have been ABTS'd by 1568 * nvme_fc_delete_association(). 1569 */ 1570 1571 /* fail the association */ 1572 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1573 1574 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1575 nvme_fc_ctrl_put(ctrl); 1576 1577 return false; 1578 } 1579 1580 /* 1581 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1582 * returns true if a response should be sent afterward, false if rsp will 1583 * be sent asynchronously. 1584 */ 1585 static bool 1586 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1587 { 1588 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1589 bool ret = true; 1590 1591 lsop->lsrsp->nvme_fc_private = lsop; 1592 lsop->lsrsp->rspbuf = lsop->rspbuf; 1593 lsop->lsrsp->rspdma = lsop->rspdma; 1594 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1595 /* Be preventative. handlers will later set to valid length */ 1596 lsop->lsrsp->rsplen = 0; 1597 1598 /* 1599 * handlers: 1600 * parse request input, execute the request, and format the 1601 * LS response 1602 */ 1603 switch (w0->ls_cmd) { 1604 case FCNVME_LS_DISCONNECT_ASSOC: 1605 ret = nvme_fc_ls_disconnect_assoc(lsop); 1606 break; 1607 case FCNVME_LS_DISCONNECT_CONN: 1608 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1609 sizeof(*lsop->rspbuf), w0->ls_cmd, 1610 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1611 break; 1612 case FCNVME_LS_CREATE_ASSOCIATION: 1613 case FCNVME_LS_CREATE_CONNECTION: 1614 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1615 sizeof(*lsop->rspbuf), w0->ls_cmd, 1616 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1617 break; 1618 default: 1619 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1620 sizeof(*lsop->rspbuf), w0->ls_cmd, 1621 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1622 break; 1623 } 1624 1625 return(ret); 1626 } 1627 1628 static void 1629 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1630 { 1631 struct nvme_fc_rport *rport = 1632 container_of(work, struct nvme_fc_rport, lsrcv_work); 1633 struct fcnvme_ls_rqst_w0 *w0; 1634 struct nvmefc_ls_rcv_op *lsop; 1635 unsigned long flags; 1636 bool sendrsp; 1637 1638 restart: 1639 sendrsp = true; 1640 spin_lock_irqsave(&rport->lock, flags); 1641 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1642 if (lsop->handled) 1643 continue; 1644 1645 lsop->handled = true; 1646 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1647 spin_unlock_irqrestore(&rport->lock, flags); 1648 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1649 } else { 1650 spin_unlock_irqrestore(&rport->lock, flags); 1651 w0 = &lsop->rqstbuf->w0; 1652 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1653 lsop->rspbuf, 1654 sizeof(*lsop->rspbuf), 1655 w0->ls_cmd, 1656 FCNVME_RJT_RC_UNAB, 1657 FCNVME_RJT_EXP_NONE, 0); 1658 } 1659 if (sendrsp) 1660 nvme_fc_xmt_ls_rsp(lsop); 1661 goto restart; 1662 } 1663 spin_unlock_irqrestore(&rport->lock, flags); 1664 } 1665 1666 static 1667 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport, 1668 struct fcnvme_ls_rqst_w0 *w0) 1669 { 1670 dev_info(lport->dev, "RCV %s LS failed: No memory\n", 1671 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1672 nvmefc_ls_names[w0->ls_cmd] : ""); 1673 } 1674 1675 /** 1676 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1677 * upon the reception of a NVME LS request. 1678 * 1679 * The nvme-fc layer will copy payload to an internal structure for 1680 * processing. As such, upon completion of the routine, the LLDD may 1681 * immediately free/reuse the LS request buffer passed in the call. 1682 * 1683 * If this routine returns error, the LLDD should abort the exchange. 1684 * 1685 * @portptr: pointer to the (registered) remote port that the LS 1686 * was received from. The remoteport is associated with 1687 * a specific localport. 1688 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1689 * used to reference the exchange corresponding to the LS 1690 * when issuing an ls response. 1691 * @lsreqbuf: pointer to the buffer containing the LS Request 1692 * @lsreqbuf_len: length, in bytes, of the received LS request 1693 */ 1694 int 1695 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1696 struct nvmefc_ls_rsp *lsrsp, 1697 void *lsreqbuf, u32 lsreqbuf_len) 1698 { 1699 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1700 struct nvme_fc_lport *lport = rport->lport; 1701 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1702 struct nvmefc_ls_rcv_op *lsop; 1703 unsigned long flags; 1704 int ret; 1705 1706 nvme_fc_rport_get(rport); 1707 1708 /* validate there's a routine to transmit a response */ 1709 if (!lport->ops->xmt_ls_rsp) { 1710 dev_info(lport->dev, 1711 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1712 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1713 nvmefc_ls_names[w0->ls_cmd] : ""); 1714 ret = -EINVAL; 1715 goto out_put; 1716 } 1717 1718 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1719 dev_info(lport->dev, 1720 "RCV %s LS failed: payload too large\n", 1721 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1722 nvmefc_ls_names[w0->ls_cmd] : ""); 1723 ret = -E2BIG; 1724 goto out_put; 1725 } 1726 1727 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL); 1728 if (!lsop) { 1729 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1730 ret = -ENOMEM; 1731 goto out_put; 1732 } 1733 1734 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL); 1735 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL); 1736 if (!lsop->rqstbuf || !lsop->rspbuf) { 1737 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1738 ret = -ENOMEM; 1739 goto out_free; 1740 } 1741 1742 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1743 sizeof(*lsop->rspbuf), 1744 DMA_TO_DEVICE); 1745 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1746 dev_info(lport->dev, 1747 "RCV %s LS failed: DMA mapping failure\n", 1748 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1749 nvmefc_ls_names[w0->ls_cmd] : ""); 1750 ret = -EFAULT; 1751 goto out_free; 1752 } 1753 1754 lsop->rport = rport; 1755 lsop->lsrsp = lsrsp; 1756 1757 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1758 lsop->rqstdatalen = lsreqbuf_len; 1759 1760 spin_lock_irqsave(&rport->lock, flags); 1761 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1762 spin_unlock_irqrestore(&rport->lock, flags); 1763 ret = -ENOTCONN; 1764 goto out_unmap; 1765 } 1766 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1767 spin_unlock_irqrestore(&rport->lock, flags); 1768 1769 schedule_work(&rport->lsrcv_work); 1770 1771 return 0; 1772 1773 out_unmap: 1774 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1775 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1776 out_free: 1777 kfree(lsop->rspbuf); 1778 kfree(lsop->rqstbuf); 1779 kfree(lsop); 1780 out_put: 1781 nvme_fc_rport_put(rport); 1782 return ret; 1783 } 1784 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1785 1786 1787 /* *********************** NVME Ctrl Routines **************************** */ 1788 1789 static void 1790 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1791 struct nvme_fc_fcp_op *op) 1792 { 1793 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1794 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1795 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1796 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1797 1798 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1799 } 1800 1801 static void 1802 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1803 unsigned int hctx_idx) 1804 { 1805 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1806 1807 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op); 1808 } 1809 1810 static int 1811 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1812 { 1813 unsigned long flags; 1814 int opstate; 1815 1816 spin_lock_irqsave(&ctrl->lock, flags); 1817 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1818 if (opstate != FCPOP_STATE_ACTIVE) 1819 atomic_set(&op->state, opstate); 1820 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1821 op->flags |= FCOP_FLAGS_TERMIO; 1822 ctrl->iocnt++; 1823 } 1824 spin_unlock_irqrestore(&ctrl->lock, flags); 1825 1826 if (opstate != FCPOP_STATE_ACTIVE) 1827 return -ECANCELED; 1828 1829 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1830 &ctrl->rport->remoteport, 1831 op->queue->lldd_handle, 1832 &op->fcp_req); 1833 1834 return 0; 1835 } 1836 1837 static void 1838 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1839 { 1840 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1841 int i; 1842 1843 /* ensure we've initialized the ops once */ 1844 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1845 return; 1846 1847 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1848 __nvme_fc_abort_op(ctrl, aen_op); 1849 } 1850 1851 static inline void 1852 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1853 struct nvme_fc_fcp_op *op, int opstate) 1854 { 1855 unsigned long flags; 1856 1857 if (opstate == FCPOP_STATE_ABORTED) { 1858 spin_lock_irqsave(&ctrl->lock, flags); 1859 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1860 op->flags & FCOP_FLAGS_TERMIO) { 1861 if (!--ctrl->iocnt) 1862 wake_up(&ctrl->ioabort_wait); 1863 } 1864 spin_unlock_irqrestore(&ctrl->lock, flags); 1865 } 1866 } 1867 1868 static void 1869 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1870 { 1871 struct nvme_fc_ctrl *ctrl = 1872 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1873 1874 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1875 } 1876 1877 /* 1878 * nvme_fc_io_getuuid - Routine called to get the appid field 1879 * associated with request by the lldd 1880 * @req:IO request from nvme fc to driver 1881 * Returns: UUID if there is an appid associated with VM or 1882 * NULL if the user/libvirt has not set the appid to VM 1883 */ 1884 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1885 { 1886 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1887 struct request *rq = op->rq; 1888 1889 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio) 1890 return NULL; 1891 return blkcg_get_fc_appid(rq->bio); 1892 } 1893 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1894 1895 static void 1896 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1897 { 1898 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1899 struct request *rq = op->rq; 1900 struct nvmefc_fcp_req *freq = &op->fcp_req; 1901 struct nvme_fc_ctrl *ctrl = op->ctrl; 1902 struct nvme_fc_queue *queue = op->queue; 1903 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1904 struct nvme_command *sqe = &op->cmd_iu.sqe; 1905 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1906 union nvme_result result; 1907 bool terminate_assoc = true; 1908 int opstate; 1909 1910 /* 1911 * WARNING: 1912 * The current linux implementation of a nvme controller 1913 * allocates a single tag set for all io queues and sizes 1914 * the io queues to fully hold all possible tags. Thus, the 1915 * implementation does not reference or care about the sqhd 1916 * value as it never needs to use the sqhd/sqtail pointers 1917 * for submission pacing. 1918 * 1919 * This affects the FC-NVME implementation in two ways: 1920 * 1) As the value doesn't matter, we don't need to waste 1921 * cycles extracting it from ERSPs and stamping it in the 1922 * cases where the transport fabricates CQEs on successful 1923 * completions. 1924 * 2) The FC-NVME implementation requires that delivery of 1925 * ERSP completions are to go back to the nvme layer in order 1926 * relative to the rsn, such that the sqhd value will always 1927 * be "in order" for the nvme layer. As the nvme layer in 1928 * linux doesn't care about sqhd, there's no need to return 1929 * them in order. 1930 * 1931 * Additionally: 1932 * As the core nvme layer in linux currently does not look at 1933 * every field in the cqe - in cases where the FC transport must 1934 * fabricate a CQE, the following fields will not be set as they 1935 * are not referenced: 1936 * cqe.sqid, cqe.sqhd, cqe.command_id 1937 * 1938 * Failure or error of an individual i/o, in a transport 1939 * detected fashion unrelated to the nvme completion status, 1940 * potentially cause the initiator and target sides to get out 1941 * of sync on SQ head/tail (aka outstanding io count allowed). 1942 * Per FC-NVME spec, failure of an individual command requires 1943 * the connection to be terminated, which in turn requires the 1944 * association to be terminated. 1945 */ 1946 1947 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1948 1949 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1950 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1951 1952 if (opstate == FCPOP_STATE_ABORTED) 1953 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1954 else if (freq->status) { 1955 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1956 dev_info(ctrl->ctrl.device, 1957 "NVME-FC{%d}: io failed due to lldd error %d\n", 1958 ctrl->cnum, freq->status); 1959 } 1960 1961 /* 1962 * For the linux implementation, if we have an unsuccessful 1963 * status, the blk-mq layer can typically be called with the 1964 * non-zero status and the content of the cqe isn't important. 1965 */ 1966 if (status) 1967 goto done; 1968 1969 /* 1970 * command completed successfully relative to the wire 1971 * protocol. However, validate anything received and 1972 * extract the status and result from the cqe (create it 1973 * where necessary). 1974 */ 1975 1976 switch (freq->rcv_rsplen) { 1977 1978 case 0: 1979 case NVME_FC_SIZEOF_ZEROS_RSP: 1980 /* 1981 * No response payload or 12 bytes of payload (which 1982 * should all be zeros) are considered successful and 1983 * no payload in the CQE by the transport. 1984 */ 1985 if (freq->transferred_length != 1986 be32_to_cpu(op->cmd_iu.data_len)) { 1987 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1988 dev_info(ctrl->ctrl.device, 1989 "NVME-FC{%d}: io failed due to bad transfer " 1990 "length: %d vs expected %d\n", 1991 ctrl->cnum, freq->transferred_length, 1992 be32_to_cpu(op->cmd_iu.data_len)); 1993 goto done; 1994 } 1995 result.u64 = 0; 1996 break; 1997 1998 case sizeof(struct nvme_fc_ersp_iu): 1999 /* 2000 * The ERSP IU contains a full completion with CQE. 2001 * Validate ERSP IU and look at cqe. 2002 */ 2003 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2004 (freq->rcv_rsplen / 4) || 2005 be32_to_cpu(op->rsp_iu.xfrd_len) != 2006 freq->transferred_length || 2007 op->rsp_iu.ersp_result || 2008 sqe->common.command_id != cqe->command_id)) { 2009 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2010 dev_info(ctrl->ctrl.device, 2011 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2012 "iu len %d, xfr len %d vs %d, status code " 2013 "%d, cmdid %d vs %d\n", 2014 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2015 be32_to_cpu(op->rsp_iu.xfrd_len), 2016 freq->transferred_length, 2017 op->rsp_iu.ersp_result, 2018 sqe->common.command_id, 2019 cqe->command_id); 2020 goto done; 2021 } 2022 result = cqe->result; 2023 status = cqe->status; 2024 break; 2025 2026 default: 2027 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2028 dev_info(ctrl->ctrl.device, 2029 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2030 "len %d\n", 2031 ctrl->cnum, freq->rcv_rsplen); 2032 goto done; 2033 } 2034 2035 terminate_assoc = false; 2036 2037 done: 2038 if (op->flags & FCOP_FLAGS_AEN) { 2039 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2040 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2041 atomic_set(&op->state, FCPOP_STATE_IDLE); 2042 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2043 nvme_fc_ctrl_put(ctrl); 2044 goto check_error; 2045 } 2046 2047 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2048 if (!nvme_try_complete_req(rq, status, result)) 2049 nvme_fc_complete_rq(rq); 2050 2051 check_error: 2052 if (terminate_assoc && 2053 nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING) 2054 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2055 } 2056 2057 static int 2058 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2059 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2060 struct request *rq, u32 rqno) 2061 { 2062 struct nvme_fcp_op_w_sgl *op_w_sgl = 2063 container_of(op, typeof(*op_w_sgl), op); 2064 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2065 int ret = 0; 2066 2067 memset(op, 0, sizeof(*op)); 2068 op->fcp_req.cmdaddr = &op->cmd_iu; 2069 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2070 op->fcp_req.rspaddr = &op->rsp_iu; 2071 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2072 op->fcp_req.done = nvme_fc_fcpio_done; 2073 op->ctrl = ctrl; 2074 op->queue = queue; 2075 op->rq = rq; 2076 op->rqno = rqno; 2077 2078 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2079 cmdiu->fc_id = NVME_CMD_FC_ID; 2080 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2081 if (queue->qnum) 2082 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2083 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2084 else 2085 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2086 2087 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2088 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2089 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2090 dev_err(ctrl->dev, 2091 "FCP Op failed - cmdiu dma mapping failed.\n"); 2092 ret = -EFAULT; 2093 goto out_on_error; 2094 } 2095 2096 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2097 &op->rsp_iu, sizeof(op->rsp_iu), 2098 DMA_FROM_DEVICE); 2099 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2100 dev_err(ctrl->dev, 2101 "FCP Op failed - rspiu dma mapping failed.\n"); 2102 ret = -EFAULT; 2103 } 2104 2105 atomic_set(&op->state, FCPOP_STATE_IDLE); 2106 out_on_error: 2107 return ret; 2108 } 2109 2110 static int 2111 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2112 unsigned int hctx_idx, unsigned int numa_node) 2113 { 2114 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2115 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2116 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2117 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2118 int res; 2119 2120 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2121 if (res) 2122 return res; 2123 op->op.fcp_req.first_sgl = op->sgl; 2124 op->op.fcp_req.private = &op->priv[0]; 2125 nvme_req(rq)->ctrl = &ctrl->ctrl; 2126 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2127 return res; 2128 } 2129 2130 static int 2131 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2132 { 2133 struct nvme_fc_fcp_op *aen_op; 2134 struct nvme_fc_cmd_iu *cmdiu; 2135 struct nvme_command *sqe; 2136 void *private = NULL; 2137 int i, ret; 2138 2139 aen_op = ctrl->aen_ops; 2140 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2141 if (ctrl->lport->ops->fcprqst_priv_sz) { 2142 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2143 GFP_KERNEL); 2144 if (!private) 2145 return -ENOMEM; 2146 } 2147 2148 cmdiu = &aen_op->cmd_iu; 2149 sqe = &cmdiu->sqe; 2150 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2151 aen_op, (struct request *)NULL, 2152 (NVME_AQ_BLK_MQ_DEPTH + i)); 2153 if (ret) { 2154 kfree(private); 2155 return ret; 2156 } 2157 2158 aen_op->flags = FCOP_FLAGS_AEN; 2159 aen_op->fcp_req.private = private; 2160 2161 memset(sqe, 0, sizeof(*sqe)); 2162 sqe->common.opcode = nvme_admin_async_event; 2163 /* Note: core layer may overwrite the sqe.command_id value */ 2164 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2165 } 2166 return 0; 2167 } 2168 2169 static void 2170 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2171 { 2172 struct nvme_fc_fcp_op *aen_op; 2173 int i; 2174 2175 cancel_work_sync(&ctrl->ctrl.async_event_work); 2176 aen_op = ctrl->aen_ops; 2177 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2178 __nvme_fc_exit_request(ctrl, aen_op); 2179 2180 kfree(aen_op->fcp_req.private); 2181 aen_op->fcp_req.private = NULL; 2182 } 2183 } 2184 2185 static inline int 2186 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx) 2187 { 2188 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data); 2189 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2190 2191 hctx->driver_data = queue; 2192 queue->hctx = hctx; 2193 return 0; 2194 } 2195 2196 static int 2197 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) 2198 { 2199 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1); 2200 } 2201 2202 static int 2203 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2204 unsigned int hctx_idx) 2205 { 2206 return __nvme_fc_init_hctx(hctx, data, hctx_idx); 2207 } 2208 2209 static void 2210 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2211 { 2212 struct nvme_fc_queue *queue; 2213 2214 queue = &ctrl->queues[idx]; 2215 memset(queue, 0, sizeof(*queue)); 2216 queue->ctrl = ctrl; 2217 queue->qnum = idx; 2218 atomic_set(&queue->csn, 0); 2219 queue->dev = ctrl->dev; 2220 2221 if (idx > 0) 2222 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2223 else 2224 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2225 2226 /* 2227 * Considered whether we should allocate buffers for all SQEs 2228 * and CQEs and dma map them - mapping their respective entries 2229 * into the request structures (kernel vm addr and dma address) 2230 * thus the driver could use the buffers/mappings directly. 2231 * It only makes sense if the LLDD would use them for its 2232 * messaging api. It's very unlikely most adapter api's would use 2233 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2234 * structures were used instead. 2235 */ 2236 } 2237 2238 /* 2239 * This routine terminates a queue at the transport level. 2240 * The transport has already ensured that all outstanding ios on 2241 * the queue have been terminated. 2242 * The transport will send a Disconnect LS request to terminate 2243 * the queue's connection. Termination of the admin queue will also 2244 * terminate the association at the target. 2245 */ 2246 static void 2247 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2248 { 2249 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2250 return; 2251 2252 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2253 /* 2254 * Current implementation never disconnects a single queue. 2255 * It always terminates a whole association. So there is never 2256 * a disconnect(queue) LS sent to the target. 2257 */ 2258 2259 queue->connection_id = 0; 2260 atomic_set(&queue->csn, 0); 2261 } 2262 2263 static void 2264 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2265 struct nvme_fc_queue *queue, unsigned int qidx) 2266 { 2267 if (ctrl->lport->ops->delete_queue) 2268 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2269 queue->lldd_handle); 2270 queue->lldd_handle = NULL; 2271 } 2272 2273 static void 2274 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2275 { 2276 int i; 2277 2278 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2279 nvme_fc_free_queue(&ctrl->queues[i]); 2280 } 2281 2282 static int 2283 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2284 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2285 { 2286 int ret = 0; 2287 2288 queue->lldd_handle = NULL; 2289 if (ctrl->lport->ops->create_queue) 2290 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2291 qidx, qsize, &queue->lldd_handle); 2292 2293 return ret; 2294 } 2295 2296 static void 2297 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2298 { 2299 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2300 int i; 2301 2302 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2303 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2304 } 2305 2306 static int 2307 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2308 { 2309 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2310 int i, ret; 2311 2312 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2313 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2314 if (ret) 2315 goto delete_queues; 2316 } 2317 2318 return 0; 2319 2320 delete_queues: 2321 for (; i > 0; i--) 2322 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2323 return ret; 2324 } 2325 2326 static int 2327 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2328 { 2329 int i, ret = 0; 2330 2331 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2332 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2333 (qsize / 5)); 2334 if (ret) 2335 break; 2336 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2337 if (ret) 2338 break; 2339 2340 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2341 } 2342 2343 return ret; 2344 } 2345 2346 static void 2347 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2348 { 2349 int i; 2350 2351 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2352 nvme_fc_init_queue(ctrl, i); 2353 } 2354 2355 static void 2356 nvme_fc_ctrl_free(struct kref *ref) 2357 { 2358 struct nvme_fc_ctrl *ctrl = 2359 container_of(ref, struct nvme_fc_ctrl, ref); 2360 unsigned long flags; 2361 2362 /* remove from rport list */ 2363 spin_lock_irqsave(&ctrl->rport->lock, flags); 2364 list_del(&ctrl->ctrl_list); 2365 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2366 2367 kfree(ctrl->queues); 2368 2369 put_device(ctrl->dev); 2370 nvme_fc_rport_put(ctrl->rport); 2371 2372 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2373 if (ctrl->ctrl.opts) 2374 nvmf_free_options(ctrl->ctrl.opts); 2375 kfree(ctrl); 2376 } 2377 2378 static void 2379 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2380 { 2381 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2382 } 2383 2384 static int 2385 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2386 { 2387 return kref_get_unless_zero(&ctrl->ref); 2388 } 2389 2390 /* 2391 * All accesses from nvme core layer done - can now free the 2392 * controller. Called after last nvme_put_ctrl() call 2393 */ 2394 static void 2395 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl) 2396 { 2397 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2398 2399 WARN_ON(nctrl != &ctrl->ctrl); 2400 2401 nvme_fc_ctrl_put(ctrl); 2402 } 2403 2404 /* 2405 * This routine is used by the transport when it needs to find active 2406 * io on a queue that is to be terminated. The transport uses 2407 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2408 * this routine to kill them on a 1 by 1 basis. 2409 * 2410 * As FC allocates FC exchange for each io, the transport must contact 2411 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2412 * After terminating the exchange the LLDD will call the transport's 2413 * normal io done path for the request, but it will have an aborted 2414 * status. The done path will return the io request back to the block 2415 * layer with an error status. 2416 */ 2417 static bool nvme_fc_terminate_exchange(struct request *req, void *data) 2418 { 2419 struct nvme_ctrl *nctrl = data; 2420 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2421 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2422 2423 op->nreq.flags |= NVME_REQ_CANCELLED; 2424 __nvme_fc_abort_op(ctrl, op); 2425 return true; 2426 } 2427 2428 /* 2429 * This routine runs through all outstanding commands on the association 2430 * and aborts them. This routine is typically called by the 2431 * delete_association routine. It is also called due to an error during 2432 * reconnect. In that scenario, it is most likely a command that initializes 2433 * the controller, including fabric Connect commands on io queues, that 2434 * may have timed out or failed thus the io must be killed for the connect 2435 * thread to see the error. 2436 */ 2437 static void 2438 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2439 { 2440 int q; 2441 2442 /* 2443 * if aborting io, the queues are no longer good, mark them 2444 * all as not live. 2445 */ 2446 if (ctrl->ctrl.queue_count > 1) { 2447 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2448 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2449 } 2450 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2451 2452 /* 2453 * If io queues are present, stop them and terminate all outstanding 2454 * ios on them. As FC allocates FC exchange for each io, the 2455 * transport must contact the LLDD to terminate the exchange, 2456 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2457 * to tell us what io's are busy and invoke a transport routine 2458 * to kill them with the LLDD. After terminating the exchange 2459 * the LLDD will call the transport's normal io done path, but it 2460 * will have an aborted status. The done path will return the 2461 * io requests back to the block layer as part of normal completions 2462 * (but with error status). 2463 */ 2464 if (ctrl->ctrl.queue_count > 1) { 2465 nvme_quiesce_io_queues(&ctrl->ctrl); 2466 nvme_sync_io_queues(&ctrl->ctrl); 2467 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2468 nvme_fc_terminate_exchange, &ctrl->ctrl); 2469 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2470 if (start_queues) 2471 nvme_unquiesce_io_queues(&ctrl->ctrl); 2472 } 2473 2474 /* 2475 * Other transports, which don't have link-level contexts bound 2476 * to sqe's, would try to gracefully shutdown the controller by 2477 * writing the registers for shutdown and polling (call 2478 * nvme_disable_ctrl()). Given a bunch of i/o was potentially 2479 * just aborted and we will wait on those contexts, and given 2480 * there was no indication of how live the controller is on the 2481 * link, don't send more io to create more contexts for the 2482 * shutdown. Let the controller fail via keepalive failure if 2483 * its still present. 2484 */ 2485 2486 /* 2487 * clean up the admin queue. Same thing as above. 2488 */ 2489 nvme_quiesce_admin_queue(&ctrl->ctrl); 2490 blk_sync_queue(ctrl->ctrl.admin_q); 2491 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2492 nvme_fc_terminate_exchange, &ctrl->ctrl); 2493 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2494 if (start_queues) 2495 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2496 } 2497 2498 static void 2499 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2500 { 2501 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); 2502 2503 /* 2504 * if an error (io timeout, etc) while (re)connecting, the remote 2505 * port requested terminating of the association (disconnect_ls) 2506 * or an error (timeout or abort) occurred on an io while creating 2507 * the controller. Abort any ios on the association and let the 2508 * create_association error path resolve things. 2509 */ 2510 if (state == NVME_CTRL_CONNECTING) { 2511 __nvme_fc_abort_outstanding_ios(ctrl, true); 2512 dev_warn(ctrl->ctrl.device, 2513 "NVME-FC{%d}: transport error during (re)connect\n", 2514 ctrl->cnum); 2515 return; 2516 } 2517 2518 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2519 if (state != NVME_CTRL_LIVE) 2520 return; 2521 2522 dev_warn(ctrl->ctrl.device, 2523 "NVME-FC{%d}: transport association event: %s\n", 2524 ctrl->cnum, errmsg); 2525 dev_warn(ctrl->ctrl.device, 2526 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2527 2528 nvme_reset_ctrl(&ctrl->ctrl); 2529 } 2530 2531 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq) 2532 { 2533 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2534 struct nvme_fc_ctrl *ctrl = op->ctrl; 2535 u16 qnum = op->queue->qnum; 2536 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2537 struct nvme_command *sqe = &cmdiu->sqe; 2538 2539 /* 2540 * Attempt to abort the offending command. Command completion 2541 * will detect the aborted io and will fail the connection. 2542 */ 2543 dev_info(ctrl->ctrl.device, 2544 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: " 2545 "x%08x/x%08x\n", 2546 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype, 2547 nvme_fabrics_opcode_str(qnum, sqe), 2548 sqe->common.cdw10, sqe->common.cdw11); 2549 if (__nvme_fc_abort_op(ctrl, op)) 2550 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2551 2552 /* 2553 * the io abort has been initiated. Have the reset timer 2554 * restarted and the abort completion will complete the io 2555 * shortly. Avoids a synchronous wait while the abort finishes. 2556 */ 2557 return BLK_EH_RESET_TIMER; 2558 } 2559 2560 static int 2561 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2562 struct nvme_fc_fcp_op *op) 2563 { 2564 struct nvmefc_fcp_req *freq = &op->fcp_req; 2565 int ret; 2566 2567 freq->sg_cnt = 0; 2568 2569 if (!blk_rq_nr_phys_segments(rq)) 2570 return 0; 2571 2572 freq->sg_table.sgl = freq->first_sgl; 2573 ret = sg_alloc_table_chained(&freq->sg_table, 2574 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2575 NVME_INLINE_SG_CNT); 2576 if (ret) 2577 return -ENOMEM; 2578 2579 op->nents = blk_rq_map_sg(rq, freq->sg_table.sgl); 2580 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2581 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2582 op->nents, rq_dma_dir(rq)); 2583 if (unlikely(freq->sg_cnt <= 0)) { 2584 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2585 freq->sg_cnt = 0; 2586 return -EFAULT; 2587 } 2588 2589 /* 2590 * TODO: blk_integrity_rq(rq) for DIF 2591 */ 2592 return 0; 2593 } 2594 2595 static void 2596 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2597 struct nvme_fc_fcp_op *op) 2598 { 2599 struct nvmefc_fcp_req *freq = &op->fcp_req; 2600 2601 if (!freq->sg_cnt) 2602 return; 2603 2604 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2605 rq_dma_dir(rq)); 2606 2607 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2608 2609 freq->sg_cnt = 0; 2610 } 2611 2612 /* 2613 * In FC, the queue is a logical thing. At transport connect, the target 2614 * creates its "queue" and returns a handle that is to be given to the 2615 * target whenever it posts something to the corresponding SQ. When an 2616 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2617 * command contained within the SQE, an io, and assigns a FC exchange 2618 * to it. The SQE and the associated SQ handle are sent in the initial 2619 * CMD IU sents on the exchange. All transfers relative to the io occur 2620 * as part of the exchange. The CQE is the last thing for the io, 2621 * which is transferred (explicitly or implicitly) with the RSP IU 2622 * sent on the exchange. After the CQE is received, the FC exchange is 2623 * terminated and the Exchange may be used on a different io. 2624 * 2625 * The transport to LLDD api has the transport making a request for a 2626 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2627 * resource and transfers the command. The LLDD will then process all 2628 * steps to complete the io. Upon completion, the transport done routine 2629 * is called. 2630 * 2631 * So - while the operation is outstanding to the LLDD, there is a link 2632 * level FC exchange resource that is also outstanding. This must be 2633 * considered in all cleanup operations. 2634 */ 2635 static blk_status_t 2636 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2637 struct nvme_fc_fcp_op *op, u32 data_len, 2638 enum nvmefc_fcp_datadir io_dir) 2639 { 2640 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2641 struct nvme_command *sqe = &cmdiu->sqe; 2642 int ret, opstate; 2643 2644 /* 2645 * before attempting to send the io, check to see if we believe 2646 * the target device is present 2647 */ 2648 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2649 return BLK_STS_RESOURCE; 2650 2651 if (!nvme_fc_ctrl_get(ctrl)) 2652 return BLK_STS_IOERR; 2653 2654 /* format the FC-NVME CMD IU and fcp_req */ 2655 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2656 cmdiu->data_len = cpu_to_be32(data_len); 2657 switch (io_dir) { 2658 case NVMEFC_FCP_WRITE: 2659 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2660 break; 2661 case NVMEFC_FCP_READ: 2662 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2663 break; 2664 case NVMEFC_FCP_NODATA: 2665 cmdiu->flags = 0; 2666 break; 2667 } 2668 op->fcp_req.payload_length = data_len; 2669 op->fcp_req.io_dir = io_dir; 2670 op->fcp_req.transferred_length = 0; 2671 op->fcp_req.rcv_rsplen = 0; 2672 op->fcp_req.status = NVME_SC_SUCCESS; 2673 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2674 2675 /* 2676 * validate per fabric rules, set fields mandated by fabric spec 2677 * as well as those by FC-NVME spec. 2678 */ 2679 WARN_ON_ONCE(sqe->common.metadata); 2680 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2681 2682 /* 2683 * format SQE DPTR field per FC-NVME rules: 2684 * type=0x5 Transport SGL Data Block Descriptor 2685 * subtype=0xA Transport-specific value 2686 * address=0 2687 * length=length of the data series 2688 */ 2689 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2690 NVME_SGL_FMT_TRANSPORT_A; 2691 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2692 sqe->rw.dptr.sgl.addr = 0; 2693 2694 if (!(op->flags & FCOP_FLAGS_AEN)) { 2695 ret = nvme_fc_map_data(ctrl, op->rq, op); 2696 if (ret < 0) { 2697 nvme_cleanup_cmd(op->rq); 2698 nvme_fc_ctrl_put(ctrl); 2699 if (ret == -ENOMEM || ret == -EAGAIN) 2700 return BLK_STS_RESOURCE; 2701 return BLK_STS_IOERR; 2702 } 2703 } 2704 2705 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2706 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2707 2708 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2709 2710 if (!(op->flags & FCOP_FLAGS_AEN)) 2711 nvme_start_request(op->rq); 2712 2713 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2714 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2715 &ctrl->rport->remoteport, 2716 queue->lldd_handle, &op->fcp_req); 2717 2718 if (ret) { 2719 /* 2720 * If the lld fails to send the command is there an issue with 2721 * the csn value? If the command that fails is the Connect, 2722 * no - as the connection won't be live. If it is a command 2723 * post-connect, it's possible a gap in csn may be created. 2724 * Does this matter? As Linux initiators don't send fused 2725 * commands, no. The gap would exist, but as there's nothing 2726 * that depends on csn order to be delivered on the target 2727 * side, it shouldn't hurt. It would be difficult for a 2728 * target to even detect the csn gap as it has no idea when the 2729 * cmd with the csn was supposed to arrive. 2730 */ 2731 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2732 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2733 2734 if (!(op->flags & FCOP_FLAGS_AEN)) { 2735 nvme_fc_unmap_data(ctrl, op->rq, op); 2736 nvme_cleanup_cmd(op->rq); 2737 } 2738 2739 nvme_fc_ctrl_put(ctrl); 2740 2741 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2742 ret != -EBUSY) 2743 return BLK_STS_IOERR; 2744 2745 return BLK_STS_RESOURCE; 2746 } 2747 2748 return BLK_STS_OK; 2749 } 2750 2751 static blk_status_t 2752 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2753 const struct blk_mq_queue_data *bd) 2754 { 2755 struct nvme_ns *ns = hctx->queue->queuedata; 2756 struct nvme_fc_queue *queue = hctx->driver_data; 2757 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2758 struct request *rq = bd->rq; 2759 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2760 enum nvmefc_fcp_datadir io_dir; 2761 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2762 u32 data_len; 2763 blk_status_t ret; 2764 2765 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2766 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2767 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2768 2769 ret = nvme_setup_cmd(ns, rq); 2770 if (ret) 2771 return ret; 2772 2773 /* 2774 * nvme core doesn't quite treat the rq opaquely. Commands such 2775 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2776 * there is no actual payload to be transferred. 2777 * To get it right, key data transmission on there being 1 or 2778 * more physical segments in the sg list. If there are no 2779 * physical segments, there is no payload. 2780 */ 2781 if (blk_rq_nr_phys_segments(rq)) { 2782 data_len = blk_rq_payload_bytes(rq); 2783 io_dir = ((rq_data_dir(rq) == WRITE) ? 2784 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2785 } else { 2786 data_len = 0; 2787 io_dir = NVMEFC_FCP_NODATA; 2788 } 2789 2790 2791 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2792 } 2793 2794 static void 2795 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2796 { 2797 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2798 struct nvme_fc_fcp_op *aen_op; 2799 blk_status_t ret; 2800 2801 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2802 return; 2803 2804 aen_op = &ctrl->aen_ops[0]; 2805 2806 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2807 NVMEFC_FCP_NODATA); 2808 if (ret) 2809 dev_err(ctrl->ctrl.device, 2810 "failed async event work\n"); 2811 } 2812 2813 static void 2814 nvme_fc_complete_rq(struct request *rq) 2815 { 2816 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2817 struct nvme_fc_ctrl *ctrl = op->ctrl; 2818 2819 atomic_set(&op->state, FCPOP_STATE_IDLE); 2820 op->flags &= ~FCOP_FLAGS_TERMIO; 2821 2822 nvme_fc_unmap_data(ctrl, rq, op); 2823 nvme_complete_rq(rq); 2824 nvme_fc_ctrl_put(ctrl); 2825 } 2826 2827 static void nvme_fc_map_queues(struct blk_mq_tag_set *set) 2828 { 2829 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2830 int i; 2831 2832 for (i = 0; i < set->nr_maps; i++) { 2833 struct blk_mq_queue_map *map = &set->map[i]; 2834 2835 if (!map->nr_queues) { 2836 WARN_ON(i == HCTX_TYPE_DEFAULT); 2837 continue; 2838 } 2839 2840 /* Call LLDD map queue functionality if defined */ 2841 if (ctrl->lport->ops->map_queues) 2842 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2843 map); 2844 else 2845 blk_mq_map_queues(map); 2846 } 2847 } 2848 2849 static const struct blk_mq_ops nvme_fc_mq_ops = { 2850 .queue_rq = nvme_fc_queue_rq, 2851 .complete = nvme_fc_complete_rq, 2852 .init_request = nvme_fc_init_request, 2853 .exit_request = nvme_fc_exit_request, 2854 .init_hctx = nvme_fc_init_hctx, 2855 .timeout = nvme_fc_timeout, 2856 .map_queues = nvme_fc_map_queues, 2857 }; 2858 2859 static int 2860 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2861 { 2862 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2863 unsigned int nr_io_queues; 2864 int ret; 2865 2866 nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(), 2867 ctrl->lport->ops->max_hw_queues); 2868 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2869 if (ret) { 2870 dev_info(ctrl->ctrl.device, 2871 "set_queue_count failed: %d\n", ret); 2872 return ret; 2873 } 2874 2875 ctrl->ctrl.queue_count = nr_io_queues + 1; 2876 if (!nr_io_queues) 2877 return 0; 2878 2879 nvme_fc_init_io_queues(ctrl); 2880 2881 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set, 2882 &nvme_fc_mq_ops, 1, 2883 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 2884 ctrl->lport->ops->fcprqst_priv_sz)); 2885 if (ret) 2886 return ret; 2887 2888 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2889 if (ret) 2890 goto out_cleanup_tagset; 2891 2892 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2893 if (ret) 2894 goto out_delete_hw_queues; 2895 2896 ctrl->ioq_live = true; 2897 2898 return 0; 2899 2900 out_delete_hw_queues: 2901 nvme_fc_delete_hw_io_queues(ctrl); 2902 out_cleanup_tagset: 2903 nvme_remove_io_tag_set(&ctrl->ctrl); 2904 nvme_fc_free_io_queues(ctrl); 2905 2906 /* force put free routine to ignore io queues */ 2907 ctrl->ctrl.tagset = NULL; 2908 2909 return ret; 2910 } 2911 2912 static int 2913 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2914 { 2915 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2916 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2917 unsigned int nr_io_queues; 2918 int ret; 2919 2920 nr_io_queues = min3(opts->nr_io_queues, num_online_cpus(), 2921 ctrl->lport->ops->max_hw_queues); 2922 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2923 if (ret) { 2924 dev_info(ctrl->ctrl.device, 2925 "set_queue_count failed: %d\n", ret); 2926 return ret; 2927 } 2928 2929 if (!nr_io_queues && prior_ioq_cnt) { 2930 dev_info(ctrl->ctrl.device, 2931 "Fail Reconnect: At least 1 io queue " 2932 "required (was %d)\n", prior_ioq_cnt); 2933 return -ENOSPC; 2934 } 2935 2936 ctrl->ctrl.queue_count = nr_io_queues + 1; 2937 /* check for io queues existing */ 2938 if (ctrl->ctrl.queue_count == 1) 2939 return 0; 2940 2941 if (prior_ioq_cnt != nr_io_queues) { 2942 dev_info(ctrl->ctrl.device, 2943 "reconnect: revising io queue count from %d to %d\n", 2944 prior_ioq_cnt, nr_io_queues); 2945 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2946 } 2947 2948 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2949 if (ret) 2950 goto out_free_io_queues; 2951 2952 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2953 if (ret) 2954 goto out_delete_hw_queues; 2955 2956 return 0; 2957 2958 out_delete_hw_queues: 2959 nvme_fc_delete_hw_io_queues(ctrl); 2960 out_free_io_queues: 2961 nvme_fc_free_io_queues(ctrl); 2962 return ret; 2963 } 2964 2965 static void 2966 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2967 { 2968 struct nvme_fc_lport *lport = rport->lport; 2969 2970 atomic_inc(&lport->act_rport_cnt); 2971 } 2972 2973 static void 2974 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2975 { 2976 struct nvme_fc_lport *lport = rport->lport; 2977 u32 cnt; 2978 2979 cnt = atomic_dec_return(&lport->act_rport_cnt); 2980 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2981 lport->ops->localport_delete(&lport->localport); 2982 } 2983 2984 static int 2985 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2986 { 2987 struct nvme_fc_rport *rport = ctrl->rport; 2988 u32 cnt; 2989 2990 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 2991 return 1; 2992 2993 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2994 if (cnt == 1) 2995 nvme_fc_rport_active_on_lport(rport); 2996 2997 return 0; 2998 } 2999 3000 static int 3001 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3002 { 3003 struct nvme_fc_rport *rport = ctrl->rport; 3004 struct nvme_fc_lport *lport = rport->lport; 3005 u32 cnt; 3006 3007 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3008 3009 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3010 if (cnt == 0) { 3011 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3012 lport->ops->remoteport_delete(&rport->remoteport); 3013 nvme_fc_rport_inactive_on_lport(rport); 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* 3020 * This routine restarts the controller on the host side, and 3021 * on the link side, recreates the controller association. 3022 */ 3023 static int 3024 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3025 { 3026 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3027 struct nvmefc_ls_rcv_op *disls = NULL; 3028 unsigned long flags; 3029 int ret; 3030 3031 ++ctrl->ctrl.nr_reconnects; 3032 3033 spin_lock_irqsave(&ctrl->rport->lock, flags); 3034 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 3035 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 3036 return -ENODEV; 3037 } 3038 3039 if (nvme_fc_ctlr_active_on_rport(ctrl)) { 3040 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 3041 return -ENOTUNIQ; 3042 } 3043 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 3044 3045 dev_info(ctrl->ctrl.device, 3046 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3047 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3048 ctrl->cnum, ctrl->lport->localport.port_name, 3049 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3050 3051 clear_bit(ASSOC_FAILED, &ctrl->flags); 3052 3053 /* 3054 * Create the admin queue 3055 */ 3056 3057 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3058 NVME_AQ_DEPTH); 3059 if (ret) 3060 goto out_free_queue; 3061 3062 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3063 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3064 if (ret) 3065 goto out_delete_hw_queue; 3066 3067 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3068 if (ret) 3069 goto out_disconnect_admin_queue; 3070 3071 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3072 3073 /* 3074 * Check controller capabilities 3075 * 3076 * todo:- add code to check if ctrl attributes changed from 3077 * prior connection values 3078 */ 3079 3080 ret = nvme_enable_ctrl(&ctrl->ctrl); 3081 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3082 ret = -EIO; 3083 if (ret) 3084 goto out_disconnect_admin_queue; 3085 3086 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3087 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3088 (ilog2(SZ_4K) - 9); 3089 3090 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3091 3092 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false); 3093 if (ret) 3094 goto out_disconnect_admin_queue; 3095 if (test_bit(ASSOC_FAILED, &ctrl->flags)) { 3096 ret = -EIO; 3097 goto out_stop_keep_alive; 3098 } 3099 /* sanity checks */ 3100 3101 /* FC-NVME does not have other data in the capsule */ 3102 if (ctrl->ctrl.icdoff) { 3103 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3104 ctrl->ctrl.icdoff); 3105 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3106 goto out_stop_keep_alive; 3107 } 3108 3109 /* FC-NVME supports normal SGL Data Block Descriptors */ 3110 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3111 dev_err(ctrl->ctrl.device, 3112 "Mandatory sgls are not supported!\n"); 3113 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3114 goto out_stop_keep_alive; 3115 } 3116 3117 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3118 /* warn if maxcmd is lower than queue_size */ 3119 dev_warn(ctrl->ctrl.device, 3120 "queue_size %zu > ctrl maxcmd %u, reducing " 3121 "to maxcmd\n", 3122 opts->queue_size, ctrl->ctrl.maxcmd); 3123 opts->queue_size = ctrl->ctrl.maxcmd; 3124 ctrl->ctrl.sqsize = opts->queue_size - 1; 3125 } 3126 3127 ret = nvme_fc_init_aen_ops(ctrl); 3128 if (ret) 3129 goto out_term_aen_ops; 3130 3131 /* 3132 * Create the io queues 3133 */ 3134 3135 if (ctrl->ctrl.queue_count > 1) { 3136 if (!ctrl->ioq_live) 3137 ret = nvme_fc_create_io_queues(ctrl); 3138 else 3139 ret = nvme_fc_recreate_io_queues(ctrl); 3140 } 3141 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3142 ret = -EIO; 3143 if (ret) 3144 goto out_term_aen_ops; 3145 3146 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) { 3147 ret = -EIO; 3148 goto out_term_aen_ops; 3149 } 3150 3151 ctrl->ctrl.nr_reconnects = 0; 3152 nvme_start_ctrl(&ctrl->ctrl); 3153 3154 return 0; /* Success */ 3155 3156 out_term_aen_ops: 3157 nvme_fc_term_aen_ops(ctrl); 3158 out_stop_keep_alive: 3159 nvme_stop_keep_alive(&ctrl->ctrl); 3160 out_disconnect_admin_queue: 3161 dev_warn(ctrl->ctrl.device, 3162 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n", 3163 ctrl->cnum, ctrl->association_id, ret); 3164 /* send a Disconnect(association) LS to fc-nvme target */ 3165 nvme_fc_xmt_disconnect_assoc(ctrl); 3166 spin_lock_irqsave(&ctrl->lock, flags); 3167 ctrl->association_id = 0; 3168 disls = ctrl->rcv_disconn; 3169 ctrl->rcv_disconn = NULL; 3170 spin_unlock_irqrestore(&ctrl->lock, flags); 3171 if (disls) 3172 nvme_fc_xmt_ls_rsp(disls); 3173 out_delete_hw_queue: 3174 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3175 out_free_queue: 3176 nvme_fc_free_queue(&ctrl->queues[0]); 3177 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3178 nvme_fc_ctlr_inactive_on_rport(ctrl); 3179 3180 return ret; 3181 } 3182 3183 3184 /* 3185 * This routine stops operation of the controller on the host side. 3186 * On the host os stack side: Admin and IO queues are stopped, 3187 * outstanding ios on them terminated via FC ABTS. 3188 * On the link side: the association is terminated. 3189 */ 3190 static void 3191 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3192 { 3193 struct nvmefc_ls_rcv_op *disls = NULL; 3194 unsigned long flags; 3195 3196 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3197 return; 3198 3199 spin_lock_irqsave(&ctrl->lock, flags); 3200 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3201 ctrl->iocnt = 0; 3202 spin_unlock_irqrestore(&ctrl->lock, flags); 3203 3204 __nvme_fc_abort_outstanding_ios(ctrl, false); 3205 3206 /* kill the aens as they are a separate path */ 3207 nvme_fc_abort_aen_ops(ctrl); 3208 3209 /* wait for all io that had to be aborted */ 3210 spin_lock_irq(&ctrl->lock); 3211 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3212 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3213 spin_unlock_irq(&ctrl->lock); 3214 3215 nvme_fc_term_aen_ops(ctrl); 3216 3217 /* 3218 * send a Disconnect(association) LS to fc-nvme target 3219 * Note: could have been sent at top of process, but 3220 * cleaner on link traffic if after the aborts complete. 3221 * Note: if association doesn't exist, association_id will be 0 3222 */ 3223 if (ctrl->association_id) 3224 nvme_fc_xmt_disconnect_assoc(ctrl); 3225 3226 spin_lock_irqsave(&ctrl->lock, flags); 3227 ctrl->association_id = 0; 3228 disls = ctrl->rcv_disconn; 3229 ctrl->rcv_disconn = NULL; 3230 spin_unlock_irqrestore(&ctrl->lock, flags); 3231 if (disls) 3232 /* 3233 * if a Disconnect Request was waiting for a response, send 3234 * now that all ABTS's have been issued (and are complete). 3235 */ 3236 nvme_fc_xmt_ls_rsp(disls); 3237 3238 if (ctrl->ctrl.tagset) { 3239 nvme_fc_delete_hw_io_queues(ctrl); 3240 nvme_fc_free_io_queues(ctrl); 3241 } 3242 3243 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3244 nvme_fc_free_queue(&ctrl->queues[0]); 3245 3246 /* re-enable the admin_q so anything new can fast fail */ 3247 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3248 3249 /* resume the io queues so that things will fast fail */ 3250 nvme_unquiesce_io_queues(&ctrl->ctrl); 3251 3252 nvme_fc_ctlr_inactive_on_rport(ctrl); 3253 } 3254 3255 static void 3256 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3257 { 3258 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3259 3260 cancel_delayed_work_sync(&ctrl->connect_work); 3261 3262 /* 3263 * kill the association on the link side. this will block 3264 * waiting for io to terminate 3265 */ 3266 nvme_fc_delete_association(ctrl); 3267 cancel_work_sync(&ctrl->ioerr_work); 3268 3269 if (ctrl->ctrl.tagset) 3270 nvme_remove_io_tag_set(&ctrl->ctrl); 3271 3272 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3273 nvme_remove_admin_tag_set(&ctrl->ctrl); 3274 } 3275 3276 static void 3277 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3278 { 3279 struct nvme_fc_rport *rport = ctrl->rport; 3280 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3281 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3282 bool recon = true; 3283 3284 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING) 3285 return; 3286 3287 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3288 dev_info(ctrl->ctrl.device, 3289 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3290 ctrl->cnum, status); 3291 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3292 recon = false; 3293 3294 if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) { 3295 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3296 dev_info(ctrl->ctrl.device, 3297 "NVME-FC{%d}: Reconnect attempt in %ld " 3298 "seconds\n", 3299 ctrl->cnum, recon_delay / HZ); 3300 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3301 recon_delay = rport->dev_loss_end - jiffies; 3302 3303 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3304 } else { 3305 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3306 if (status > 0 && (status & NVME_STATUS_DNR)) 3307 dev_warn(ctrl->ctrl.device, 3308 "NVME-FC{%d}: reconnect failure\n", 3309 ctrl->cnum); 3310 else 3311 dev_warn(ctrl->ctrl.device, 3312 "NVME-FC{%d}: Max reconnect attempts " 3313 "(%d) reached.\n", 3314 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3315 } else 3316 dev_warn(ctrl->ctrl.device, 3317 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3318 "while waiting for remoteport connectivity.\n", 3319 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3320 (ctrl->ctrl.opts->max_reconnects * 3321 ctrl->ctrl.opts->reconnect_delay))); 3322 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3323 } 3324 } 3325 3326 static void 3327 nvme_fc_reset_ctrl_work(struct work_struct *work) 3328 { 3329 struct nvme_fc_ctrl *ctrl = 3330 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3331 3332 nvme_stop_ctrl(&ctrl->ctrl); 3333 3334 /* will block will waiting for io to terminate */ 3335 nvme_fc_delete_association(ctrl); 3336 3337 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3338 dev_err(ctrl->ctrl.device, 3339 "NVME-FC{%d}: error_recovery: Couldn't change state " 3340 "to CONNECTING\n", ctrl->cnum); 3341 3342 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3343 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3344 dev_err(ctrl->ctrl.device, 3345 "NVME-FC{%d}: failed to schedule connect " 3346 "after reset\n", ctrl->cnum); 3347 } else { 3348 flush_delayed_work(&ctrl->connect_work); 3349 } 3350 } else { 3351 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3352 } 3353 } 3354 3355 3356 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3357 .name = "fc", 3358 .module = THIS_MODULE, 3359 .flags = NVME_F_FABRICS, 3360 .reg_read32 = nvmf_reg_read32, 3361 .reg_read64 = nvmf_reg_read64, 3362 .reg_write32 = nvmf_reg_write32, 3363 .subsystem_reset = nvmf_subsystem_reset, 3364 .free_ctrl = nvme_fc_free_ctrl, 3365 .submit_async_event = nvme_fc_submit_async_event, 3366 .delete_ctrl = nvme_fc_delete_ctrl, 3367 .get_address = nvmf_get_address, 3368 .get_virt_boundary = nvmf_get_virt_boundary, 3369 }; 3370 3371 static void 3372 nvme_fc_connect_ctrl_work(struct work_struct *work) 3373 { 3374 int ret; 3375 3376 struct nvme_fc_ctrl *ctrl = 3377 container_of(to_delayed_work(work), 3378 struct nvme_fc_ctrl, connect_work); 3379 3380 ret = nvme_fc_create_association(ctrl); 3381 if (ret) 3382 nvme_fc_reconnect_or_delete(ctrl, ret); 3383 else 3384 dev_info(ctrl->ctrl.device, 3385 "NVME-FC{%d}: controller connect complete\n", 3386 ctrl->cnum); 3387 } 3388 3389 3390 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3391 .queue_rq = nvme_fc_queue_rq, 3392 .complete = nvme_fc_complete_rq, 3393 .init_request = nvme_fc_init_request, 3394 .exit_request = nvme_fc_exit_request, 3395 .init_hctx = nvme_fc_init_admin_hctx, 3396 .timeout = nvme_fc_timeout, 3397 }; 3398 3399 3400 /* 3401 * Fails a controller request if it matches an existing controller 3402 * (association) with the same tuple: 3403 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3404 * 3405 * The ports don't need to be compared as they are intrinsically 3406 * already matched by the port pointers supplied. 3407 */ 3408 static bool 3409 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3410 struct nvmf_ctrl_options *opts) 3411 { 3412 struct nvme_fc_ctrl *ctrl; 3413 unsigned long flags; 3414 bool found = false; 3415 3416 spin_lock_irqsave(&rport->lock, flags); 3417 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3418 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3419 if (found) 3420 break; 3421 } 3422 spin_unlock_irqrestore(&rport->lock, flags); 3423 3424 return found; 3425 } 3426 3427 static struct nvme_fc_ctrl * 3428 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3429 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3430 { 3431 struct nvme_fc_ctrl *ctrl; 3432 int ret, idx, ctrl_loss_tmo; 3433 3434 if (!(rport->remoteport.port_role & 3435 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3436 ret = -EBADR; 3437 goto out_fail; 3438 } 3439 3440 if (!opts->duplicate_connect && 3441 nvme_fc_existing_controller(rport, opts)) { 3442 ret = -EALREADY; 3443 goto out_fail; 3444 } 3445 3446 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3447 if (!ctrl) { 3448 ret = -ENOMEM; 3449 goto out_fail; 3450 } 3451 3452 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3453 if (idx < 0) { 3454 ret = -ENOSPC; 3455 goto out_free_ctrl; 3456 } 3457 3458 /* 3459 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3460 * is being used, change to a shorter reconnect delay for FC. 3461 */ 3462 if (opts->max_reconnects != -1 && 3463 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3464 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3465 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3466 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3467 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3468 opts->reconnect_delay); 3469 } 3470 3471 ctrl->ctrl.opts = opts; 3472 ctrl->ctrl.nr_reconnects = 0; 3473 INIT_LIST_HEAD(&ctrl->ctrl_list); 3474 ctrl->lport = lport; 3475 ctrl->rport = rport; 3476 ctrl->dev = lport->dev; 3477 ctrl->cnum = idx; 3478 ctrl->ioq_live = false; 3479 init_waitqueue_head(&ctrl->ioabort_wait); 3480 3481 get_device(ctrl->dev); 3482 kref_init(&ctrl->ref); 3483 3484 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3485 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3486 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3487 spin_lock_init(&ctrl->lock); 3488 3489 /* io queue count */ 3490 ctrl->ctrl.queue_count = min_t(unsigned int, 3491 opts->nr_io_queues, 3492 lport->ops->max_hw_queues); 3493 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3494 3495 ctrl->ctrl.sqsize = opts->queue_size - 1; 3496 ctrl->ctrl.kato = opts->kato; 3497 ctrl->ctrl.cntlid = 0xffff; 3498 3499 ret = -ENOMEM; 3500 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3501 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3502 if (!ctrl->queues) 3503 goto out_free_ida; 3504 3505 nvme_fc_init_queue(ctrl, 0); 3506 3507 /* 3508 * Would have been nice to init io queues tag set as well. 3509 * However, we require interaction from the controller 3510 * for max io queue count before we can do so. 3511 * Defer this to the connect path. 3512 */ 3513 3514 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3515 if (ret) 3516 goto out_free_queues; 3517 if (lport->dev) 3518 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3519 3520 return ctrl; 3521 3522 out_free_queues: 3523 kfree(ctrl->queues); 3524 out_free_ida: 3525 put_device(ctrl->dev); 3526 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3527 out_free_ctrl: 3528 kfree(ctrl); 3529 out_fail: 3530 /* exit via here doesn't follow ctlr ref points */ 3531 return ERR_PTR(ret); 3532 } 3533 3534 static struct nvme_ctrl * 3535 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3536 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3537 { 3538 struct nvme_fc_ctrl *ctrl; 3539 unsigned long flags; 3540 int ret; 3541 3542 ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport); 3543 if (IS_ERR(ctrl)) 3544 return ERR_CAST(ctrl); 3545 3546 ret = nvme_add_ctrl(&ctrl->ctrl); 3547 if (ret) 3548 goto out_put_ctrl; 3549 3550 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, 3551 &nvme_fc_admin_mq_ops, 3552 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 3553 ctrl->lport->ops->fcprqst_priv_sz)); 3554 if (ret) 3555 goto fail_ctrl; 3556 3557 spin_lock_irqsave(&rport->lock, flags); 3558 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3559 spin_unlock_irqrestore(&rport->lock, flags); 3560 3561 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3562 dev_err(ctrl->ctrl.device, 3563 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3564 goto fail_ctrl; 3565 } 3566 3567 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3568 dev_err(ctrl->ctrl.device, 3569 "NVME-FC{%d}: failed to schedule initial connect\n", 3570 ctrl->cnum); 3571 goto fail_ctrl; 3572 } 3573 3574 flush_delayed_work(&ctrl->connect_work); 3575 3576 dev_info(ctrl->ctrl.device, 3577 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n", 3578 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn); 3579 3580 return &ctrl->ctrl; 3581 3582 fail_ctrl: 3583 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3584 cancel_work_sync(&ctrl->ioerr_work); 3585 cancel_work_sync(&ctrl->ctrl.reset_work); 3586 cancel_delayed_work_sync(&ctrl->connect_work); 3587 3588 ctrl->ctrl.opts = NULL; 3589 3590 /* initiate nvme ctrl ref counting teardown */ 3591 nvme_uninit_ctrl(&ctrl->ctrl); 3592 3593 out_put_ctrl: 3594 /* Remove core ctrl ref. */ 3595 nvme_put_ctrl(&ctrl->ctrl); 3596 3597 /* as we're past the point where we transition to the ref 3598 * counting teardown path, if we return a bad pointer here, 3599 * the calling routine, thinking it's prior to the 3600 * transition, will do an rport put. Since the teardown 3601 * path also does a rport put, we do an extra get here to 3602 * so proper order/teardown happens. 3603 */ 3604 nvme_fc_rport_get(rport); 3605 3606 return ERR_PTR(-EIO); 3607 } 3608 3609 struct nvmet_fc_traddr { 3610 u64 nn; 3611 u64 pn; 3612 }; 3613 3614 static int 3615 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3616 { 3617 u64 token64; 3618 3619 if (match_u64(sstr, &token64)) 3620 return -EINVAL; 3621 *val = token64; 3622 3623 return 0; 3624 } 3625 3626 /* 3627 * This routine validates and extracts the WWN's from the TRADDR string. 3628 * As kernel parsers need the 0x to determine number base, universally 3629 * build string to parse with 0x prefix before parsing name strings. 3630 */ 3631 static int 3632 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3633 { 3634 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3635 substring_t wwn = { name, &name[sizeof(name)-1] }; 3636 int nnoffset, pnoffset; 3637 3638 /* validate if string is one of the 2 allowed formats */ 3639 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3640 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3641 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3642 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3643 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3644 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3645 NVME_FC_TRADDR_OXNNLEN; 3646 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3647 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3648 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3649 "pn-", NVME_FC_TRADDR_NNLEN))) { 3650 nnoffset = NVME_FC_TRADDR_NNLEN; 3651 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3652 } else 3653 goto out_einval; 3654 3655 name[0] = '0'; 3656 name[1] = 'x'; 3657 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3658 3659 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3660 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3661 goto out_einval; 3662 3663 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3664 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3665 goto out_einval; 3666 3667 return 0; 3668 3669 out_einval: 3670 pr_warn("%s: bad traddr string\n", __func__); 3671 return -EINVAL; 3672 } 3673 3674 static struct nvme_ctrl * 3675 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3676 { 3677 struct nvme_fc_lport *lport; 3678 struct nvme_fc_rport *rport; 3679 struct nvme_ctrl *ctrl; 3680 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3681 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3682 unsigned long flags; 3683 int ret; 3684 3685 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3686 if (ret || !raddr.nn || !raddr.pn) 3687 return ERR_PTR(-EINVAL); 3688 3689 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3690 if (ret || !laddr.nn || !laddr.pn) 3691 return ERR_PTR(-EINVAL); 3692 3693 /* find the host and remote ports to connect together */ 3694 spin_lock_irqsave(&nvme_fc_lock, flags); 3695 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3696 if (lport->localport.node_name != laddr.nn || 3697 lport->localport.port_name != laddr.pn || 3698 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3699 continue; 3700 3701 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3702 if (rport->remoteport.node_name != raddr.nn || 3703 rport->remoteport.port_name != raddr.pn || 3704 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3705 continue; 3706 3707 /* if fail to get reference fall through. Will error */ 3708 if (!nvme_fc_rport_get(rport)) 3709 break; 3710 3711 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3712 3713 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3714 if (IS_ERR(ctrl)) 3715 nvme_fc_rport_put(rport); 3716 return ctrl; 3717 } 3718 } 3719 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3720 3721 pr_warn("%s: %s - %s combination not found\n", 3722 __func__, opts->traddr, opts->host_traddr); 3723 return ERR_PTR(-ENOENT); 3724 } 3725 3726 3727 static struct nvmf_transport_ops nvme_fc_transport = { 3728 .name = "fc", 3729 .module = THIS_MODULE, 3730 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3731 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3732 .create_ctrl = nvme_fc_create_ctrl, 3733 }; 3734 3735 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3736 #define DISCOVERY_MAX_FAIL 20 3737 3738 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3739 struct device_attribute *attr, const char *buf, size_t count) 3740 { 3741 unsigned long flags; 3742 LIST_HEAD(local_disc_list); 3743 struct nvme_fc_lport *lport; 3744 struct nvme_fc_rport *rport; 3745 int failcnt = 0; 3746 3747 spin_lock_irqsave(&nvme_fc_lock, flags); 3748 restart: 3749 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3750 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3751 if (!nvme_fc_lport_get(lport)) 3752 continue; 3753 if (!nvme_fc_rport_get(rport)) { 3754 /* 3755 * This is a temporary condition. Upon restart 3756 * this rport will be gone from the list. 3757 * 3758 * Revert the lport put and retry. Anything 3759 * added to the list already will be skipped (as 3760 * they are no longer list_empty). Loops should 3761 * resume at rports that were not yet seen. 3762 */ 3763 nvme_fc_lport_put(lport); 3764 3765 if (failcnt++ < DISCOVERY_MAX_FAIL) 3766 goto restart; 3767 3768 pr_err("nvme_discovery: too many reference " 3769 "failures\n"); 3770 goto process_local_list; 3771 } 3772 if (list_empty(&rport->disc_list)) 3773 list_add_tail(&rport->disc_list, 3774 &local_disc_list); 3775 } 3776 } 3777 3778 process_local_list: 3779 while (!list_empty(&local_disc_list)) { 3780 rport = list_first_entry(&local_disc_list, 3781 struct nvme_fc_rport, disc_list); 3782 list_del_init(&rport->disc_list); 3783 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3784 3785 lport = rport->lport; 3786 /* signal discovery. Won't hurt if it repeats */ 3787 nvme_fc_signal_discovery_scan(lport, rport); 3788 nvme_fc_rport_put(rport); 3789 nvme_fc_lport_put(lport); 3790 3791 spin_lock_irqsave(&nvme_fc_lock, flags); 3792 } 3793 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3794 3795 return count; 3796 } 3797 3798 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3799 3800 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3801 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3802 static int fc_parse_cgrpid(const char *buf, u64 *id) 3803 { 3804 char cgrp_id[16+1]; 3805 int cgrpid_len, j; 3806 3807 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3808 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3809 if (buf[cgrpid_len] != ':') 3810 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3811 else { 3812 j = 1; 3813 break; 3814 } 3815 } 3816 if (!j) 3817 return -EINVAL; 3818 if (kstrtou64(cgrp_id, 16, id) < 0) 3819 return -EINVAL; 3820 return cgrpid_len; 3821 } 3822 3823 /* 3824 * Parse and update the appid in the blkcg associated with the cgroupid. 3825 */ 3826 static ssize_t fc_appid_store(struct device *dev, 3827 struct device_attribute *attr, const char *buf, size_t count) 3828 { 3829 size_t orig_count = count; 3830 u64 cgrp_id; 3831 int appid_len = 0; 3832 int cgrpid_len = 0; 3833 char app_id[FC_APPID_LEN]; 3834 int ret = 0; 3835 3836 if (buf[count-1] == '\n') 3837 count--; 3838 3839 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3840 return -EINVAL; 3841 3842 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3843 if (cgrpid_len < 0) 3844 return -EINVAL; 3845 appid_len = count - cgrpid_len - 1; 3846 if (appid_len > FC_APPID_LEN) 3847 return -EINVAL; 3848 3849 memset(app_id, 0x0, sizeof(app_id)); 3850 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3851 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3852 if (ret < 0) 3853 return ret; 3854 return orig_count; 3855 } 3856 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3857 #endif /* CONFIG_BLK_CGROUP_FC_APPID */ 3858 3859 static struct attribute *nvme_fc_attrs[] = { 3860 &dev_attr_nvme_discovery.attr, 3861 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3862 &dev_attr_appid_store.attr, 3863 #endif 3864 NULL 3865 }; 3866 3867 static const struct attribute_group nvme_fc_attr_group = { 3868 .attrs = nvme_fc_attrs, 3869 }; 3870 3871 static const struct attribute_group *nvme_fc_attr_groups[] = { 3872 &nvme_fc_attr_group, 3873 NULL 3874 }; 3875 3876 static struct class fc_class = { 3877 .name = "fc", 3878 .dev_groups = nvme_fc_attr_groups, 3879 }; 3880 3881 static int __init nvme_fc_init_module(void) 3882 { 3883 int ret; 3884 3885 /* 3886 * NOTE: 3887 * It is expected that in the future the kernel will combine 3888 * the FC-isms that are currently under scsi and now being 3889 * added to by NVME into a new standalone FC class. The SCSI 3890 * and NVME protocols and their devices would be under this 3891 * new FC class. 3892 * 3893 * As we need something to post FC-specific udev events to, 3894 * specifically for nvme probe events, start by creating the 3895 * new device class. When the new standalone FC class is 3896 * put in place, this code will move to a more generic 3897 * location for the class. 3898 */ 3899 ret = class_register(&fc_class); 3900 if (ret) { 3901 pr_err("couldn't register class fc\n"); 3902 return ret; 3903 } 3904 3905 /* 3906 * Create a device for the FC-centric udev events 3907 */ 3908 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3909 "fc_udev_device"); 3910 if (IS_ERR(fc_udev_device)) { 3911 pr_err("couldn't create fc_udev device!\n"); 3912 ret = PTR_ERR(fc_udev_device); 3913 goto out_destroy_class; 3914 } 3915 3916 ret = nvmf_register_transport(&nvme_fc_transport); 3917 if (ret) 3918 goto out_destroy_device; 3919 3920 return 0; 3921 3922 out_destroy_device: 3923 device_destroy(&fc_class, MKDEV(0, 0)); 3924 out_destroy_class: 3925 class_unregister(&fc_class); 3926 3927 return ret; 3928 } 3929 3930 static void 3931 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3932 { 3933 struct nvme_fc_ctrl *ctrl; 3934 3935 spin_lock(&rport->lock); 3936 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3937 dev_warn(ctrl->ctrl.device, 3938 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3939 ctrl->cnum); 3940 nvme_delete_ctrl(&ctrl->ctrl); 3941 } 3942 spin_unlock(&rport->lock); 3943 } 3944 3945 static void __exit nvme_fc_exit_module(void) 3946 { 3947 struct nvme_fc_lport *lport; 3948 struct nvme_fc_rport *rport; 3949 unsigned long flags; 3950 3951 spin_lock_irqsave(&nvme_fc_lock, flags); 3952 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) 3953 list_for_each_entry(rport, &lport->endp_list, endp_list) 3954 nvme_fc_delete_controllers(rport); 3955 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3956 flush_workqueue(nvme_delete_wq); 3957 3958 nvmf_unregister_transport(&nvme_fc_transport); 3959 3960 device_destroy(&fc_class, MKDEV(0, 0)); 3961 class_unregister(&fc_class); 3962 } 3963 3964 module_init(nvme_fc_init_module); 3965 module_exit(nvme_fc_exit_module); 3966 3967 MODULE_DESCRIPTION("NVMe host FC transport driver"); 3968 MODULE_LICENSE("GPL v2"); 3969