1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 enum nvme_fc_queue_flags { 34 NVME_FC_Q_CONNECTED = 0, 35 NVME_FC_Q_LIVE, 36 }; 37 38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 39 40 struct nvme_fc_queue { 41 struct nvme_fc_ctrl *ctrl; 42 struct device *dev; 43 struct blk_mq_hw_ctx *hctx; 44 void *lldd_handle; 45 size_t cmnd_capsule_len; 46 u32 qnum; 47 u32 rqcnt; 48 u32 seqno; 49 50 u64 connection_id; 51 atomic_t csn; 52 53 unsigned long flags; 54 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 55 56 enum nvme_fcop_flags { 57 FCOP_FLAGS_TERMIO = (1 << 0), 58 FCOP_FLAGS_AEN = (1 << 1), 59 }; 60 61 struct nvmefc_ls_req_op { 62 struct nvmefc_ls_req ls_req; 63 64 struct nvme_fc_rport *rport; 65 struct nvme_fc_queue *queue; 66 struct request *rq; 67 u32 flags; 68 69 int ls_error; 70 struct completion ls_done; 71 struct list_head lsreq_list; /* rport->ls_req_list */ 72 bool req_queued; 73 }; 74 75 enum nvme_fcpop_state { 76 FCPOP_STATE_UNINIT = 0, 77 FCPOP_STATE_IDLE = 1, 78 FCPOP_STATE_ACTIVE = 2, 79 FCPOP_STATE_ABORTED = 3, 80 FCPOP_STATE_COMPLETE = 4, 81 }; 82 83 struct nvme_fc_fcp_op { 84 struct nvme_request nreq; /* 85 * nvme/host/core.c 86 * requires this to be 87 * the 1st element in the 88 * private structure 89 * associated with the 90 * request. 91 */ 92 struct nvmefc_fcp_req fcp_req; 93 94 struct nvme_fc_ctrl *ctrl; 95 struct nvme_fc_queue *queue; 96 struct request *rq; 97 98 atomic_t state; 99 u32 flags; 100 u32 rqno; 101 u32 nents; 102 103 struct nvme_fc_cmd_iu cmd_iu; 104 struct nvme_fc_ersp_iu rsp_iu; 105 }; 106 107 struct nvme_fc_lport { 108 struct nvme_fc_local_port localport; 109 110 struct ida endp_cnt; 111 struct list_head port_list; /* nvme_fc_port_list */ 112 struct list_head endp_list; 113 struct device *dev; /* physical device for dma */ 114 struct nvme_fc_port_template *ops; 115 struct kref ref; 116 atomic_t act_rport_cnt; 117 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 118 119 struct nvme_fc_rport { 120 struct nvme_fc_remote_port remoteport; 121 122 struct list_head endp_list; /* for lport->endp_list */ 123 struct list_head ctrl_list; 124 struct list_head ls_req_list; 125 struct device *dev; /* physical device for dma */ 126 struct nvme_fc_lport *lport; 127 spinlock_t lock; 128 struct kref ref; 129 atomic_t act_ctrl_cnt; 130 unsigned long dev_loss_end; 131 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 132 133 enum nvme_fcctrl_flags { 134 FCCTRL_TERMIO = (1 << 0), 135 }; 136 137 struct nvme_fc_ctrl { 138 spinlock_t lock; 139 struct nvme_fc_queue *queues; 140 struct device *dev; 141 struct nvme_fc_lport *lport; 142 struct nvme_fc_rport *rport; 143 u32 cnum; 144 145 bool ioq_live; 146 bool assoc_active; 147 u64 association_id; 148 149 struct list_head ctrl_list; /* rport->ctrl_list */ 150 151 struct blk_mq_tag_set admin_tag_set; 152 struct blk_mq_tag_set tag_set; 153 154 struct delayed_work connect_work; 155 156 struct kref ref; 157 u32 flags; 158 u32 iocnt; 159 wait_queue_head_t ioabort_wait; 160 161 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 162 163 struct nvme_ctrl ctrl; 164 }; 165 166 static inline struct nvme_fc_ctrl * 167 to_fc_ctrl(struct nvme_ctrl *ctrl) 168 { 169 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 170 } 171 172 static inline struct nvme_fc_lport * 173 localport_to_lport(struct nvme_fc_local_port *portptr) 174 { 175 return container_of(portptr, struct nvme_fc_lport, localport); 176 } 177 178 static inline struct nvme_fc_rport * 179 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 180 { 181 return container_of(portptr, struct nvme_fc_rport, remoteport); 182 } 183 184 static inline struct nvmefc_ls_req_op * 185 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 186 { 187 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 188 } 189 190 static inline struct nvme_fc_fcp_op * 191 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 192 { 193 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 194 } 195 196 197 198 /* *************************** Globals **************************** */ 199 200 201 static DEFINE_SPINLOCK(nvme_fc_lock); 202 203 static LIST_HEAD(nvme_fc_lport_list); 204 static DEFINE_IDA(nvme_fc_local_port_cnt); 205 static DEFINE_IDA(nvme_fc_ctrl_cnt); 206 207 208 209 /* 210 * These items are short-term. They will eventually be moved into 211 * a generic FC class. See comments in module init. 212 */ 213 static struct class *fc_class; 214 static struct device *fc_udev_device; 215 216 217 /* *********************** FC-NVME Port Management ************************ */ 218 219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 220 struct nvme_fc_queue *, unsigned int); 221 222 static void 223 nvme_fc_free_lport(struct kref *ref) 224 { 225 struct nvme_fc_lport *lport = 226 container_of(ref, struct nvme_fc_lport, ref); 227 unsigned long flags; 228 229 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 230 WARN_ON(!list_empty(&lport->endp_list)); 231 232 /* remove from transport list */ 233 spin_lock_irqsave(&nvme_fc_lock, flags); 234 list_del(&lport->port_list); 235 spin_unlock_irqrestore(&nvme_fc_lock, flags); 236 237 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 238 ida_destroy(&lport->endp_cnt); 239 240 put_device(lport->dev); 241 242 kfree(lport); 243 } 244 245 static void 246 nvme_fc_lport_put(struct nvme_fc_lport *lport) 247 { 248 kref_put(&lport->ref, nvme_fc_free_lport); 249 } 250 251 static int 252 nvme_fc_lport_get(struct nvme_fc_lport *lport) 253 { 254 return kref_get_unless_zero(&lport->ref); 255 } 256 257 258 static struct nvme_fc_lport * 259 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 260 struct nvme_fc_port_template *ops, 261 struct device *dev) 262 { 263 struct nvme_fc_lport *lport; 264 unsigned long flags; 265 266 spin_lock_irqsave(&nvme_fc_lock, flags); 267 268 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 269 if (lport->localport.node_name != pinfo->node_name || 270 lport->localport.port_name != pinfo->port_name) 271 continue; 272 273 if (lport->dev != dev) { 274 lport = ERR_PTR(-EXDEV); 275 goto out_done; 276 } 277 278 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 279 lport = ERR_PTR(-EEXIST); 280 goto out_done; 281 } 282 283 if (!nvme_fc_lport_get(lport)) { 284 /* 285 * fails if ref cnt already 0. If so, 286 * act as if lport already deleted 287 */ 288 lport = NULL; 289 goto out_done; 290 } 291 292 /* resume the lport */ 293 294 lport->ops = ops; 295 lport->localport.port_role = pinfo->port_role; 296 lport->localport.port_id = pinfo->port_id; 297 lport->localport.port_state = FC_OBJSTATE_ONLINE; 298 299 spin_unlock_irqrestore(&nvme_fc_lock, flags); 300 301 return lport; 302 } 303 304 lport = NULL; 305 306 out_done: 307 spin_unlock_irqrestore(&nvme_fc_lock, flags); 308 309 return lport; 310 } 311 312 /** 313 * nvme_fc_register_localport - transport entry point called by an 314 * LLDD to register the existence of a NVME 315 * host FC port. 316 * @pinfo: pointer to information about the port to be registered 317 * @template: LLDD entrypoints and operational parameters for the port 318 * @dev: physical hardware device node port corresponds to. Will be 319 * used for DMA mappings 320 * @lport_p: pointer to a local port pointer. Upon success, the routine 321 * will allocate a nvme_fc_local_port structure and place its 322 * address in the local port pointer. Upon failure, local port 323 * pointer will be set to 0. 324 * 325 * Returns: 326 * a completion status. Must be 0 upon success; a negative errno 327 * (ex: -ENXIO) upon failure. 328 */ 329 int 330 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 331 struct nvme_fc_port_template *template, 332 struct device *dev, 333 struct nvme_fc_local_port **portptr) 334 { 335 struct nvme_fc_lport *newrec; 336 unsigned long flags; 337 int ret, idx; 338 339 if (!template->localport_delete || !template->remoteport_delete || 340 !template->ls_req || !template->fcp_io || 341 !template->ls_abort || !template->fcp_abort || 342 !template->max_hw_queues || !template->max_sgl_segments || 343 !template->max_dif_sgl_segments || !template->dma_boundary) { 344 ret = -EINVAL; 345 goto out_reghost_failed; 346 } 347 348 /* 349 * look to see if there is already a localport that had been 350 * deregistered and in the process of waiting for all the 351 * references to fully be removed. If the references haven't 352 * expired, we can simply re-enable the localport. Remoteports 353 * and controller reconnections should resume naturally. 354 */ 355 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 356 357 /* found an lport, but something about its state is bad */ 358 if (IS_ERR(newrec)) { 359 ret = PTR_ERR(newrec); 360 goto out_reghost_failed; 361 362 /* found existing lport, which was resumed */ 363 } else if (newrec) { 364 *portptr = &newrec->localport; 365 return 0; 366 } 367 368 /* nothing found - allocate a new localport struct */ 369 370 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 371 GFP_KERNEL); 372 if (!newrec) { 373 ret = -ENOMEM; 374 goto out_reghost_failed; 375 } 376 377 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 378 if (idx < 0) { 379 ret = -ENOSPC; 380 goto out_fail_kfree; 381 } 382 383 if (!get_device(dev) && dev) { 384 ret = -ENODEV; 385 goto out_ida_put; 386 } 387 388 INIT_LIST_HEAD(&newrec->port_list); 389 INIT_LIST_HEAD(&newrec->endp_list); 390 kref_init(&newrec->ref); 391 atomic_set(&newrec->act_rport_cnt, 0); 392 newrec->ops = template; 393 newrec->dev = dev; 394 ida_init(&newrec->endp_cnt); 395 newrec->localport.private = &newrec[1]; 396 newrec->localport.node_name = pinfo->node_name; 397 newrec->localport.port_name = pinfo->port_name; 398 newrec->localport.port_role = pinfo->port_role; 399 newrec->localport.port_id = pinfo->port_id; 400 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 401 newrec->localport.port_num = idx; 402 403 spin_lock_irqsave(&nvme_fc_lock, flags); 404 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 405 spin_unlock_irqrestore(&nvme_fc_lock, flags); 406 407 if (dev) 408 dma_set_seg_boundary(dev, template->dma_boundary); 409 410 *portptr = &newrec->localport; 411 return 0; 412 413 out_ida_put: 414 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 415 out_fail_kfree: 416 kfree(newrec); 417 out_reghost_failed: 418 *portptr = NULL; 419 420 return ret; 421 } 422 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 423 424 /** 425 * nvme_fc_unregister_localport - transport entry point called by an 426 * LLDD to deregister/remove a previously 427 * registered a NVME host FC port. 428 * @localport: pointer to the (registered) local port that is to be 429 * deregistered. 430 * 431 * Returns: 432 * a completion status. Must be 0 upon success; a negative errno 433 * (ex: -ENXIO) upon failure. 434 */ 435 int 436 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 437 { 438 struct nvme_fc_lport *lport = localport_to_lport(portptr); 439 unsigned long flags; 440 441 if (!portptr) 442 return -EINVAL; 443 444 spin_lock_irqsave(&nvme_fc_lock, flags); 445 446 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 447 spin_unlock_irqrestore(&nvme_fc_lock, flags); 448 return -EINVAL; 449 } 450 portptr->port_state = FC_OBJSTATE_DELETED; 451 452 spin_unlock_irqrestore(&nvme_fc_lock, flags); 453 454 if (atomic_read(&lport->act_rport_cnt) == 0) 455 lport->ops->localport_delete(&lport->localport); 456 457 nvme_fc_lport_put(lport); 458 459 return 0; 460 } 461 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 462 463 /* 464 * TRADDR strings, per FC-NVME are fixed format: 465 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 466 * udev event will only differ by prefix of what field is 467 * being specified: 468 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 469 * 19 + 43 + null_fudge = 64 characters 470 */ 471 #define FCNVME_TRADDR_LENGTH 64 472 473 static void 474 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 475 struct nvme_fc_rport *rport) 476 { 477 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 478 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 479 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 480 481 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 482 return; 483 484 snprintf(hostaddr, sizeof(hostaddr), 485 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 486 lport->localport.node_name, lport->localport.port_name); 487 snprintf(tgtaddr, sizeof(tgtaddr), 488 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 489 rport->remoteport.node_name, rport->remoteport.port_name); 490 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 491 } 492 493 static void 494 nvme_fc_free_rport(struct kref *ref) 495 { 496 struct nvme_fc_rport *rport = 497 container_of(ref, struct nvme_fc_rport, ref); 498 struct nvme_fc_lport *lport = 499 localport_to_lport(rport->remoteport.localport); 500 unsigned long flags; 501 502 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 503 WARN_ON(!list_empty(&rport->ctrl_list)); 504 505 /* remove from lport list */ 506 spin_lock_irqsave(&nvme_fc_lock, flags); 507 list_del(&rport->endp_list); 508 spin_unlock_irqrestore(&nvme_fc_lock, flags); 509 510 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 511 512 kfree(rport); 513 514 nvme_fc_lport_put(lport); 515 } 516 517 static void 518 nvme_fc_rport_put(struct nvme_fc_rport *rport) 519 { 520 kref_put(&rport->ref, nvme_fc_free_rport); 521 } 522 523 static int 524 nvme_fc_rport_get(struct nvme_fc_rport *rport) 525 { 526 return kref_get_unless_zero(&rport->ref); 527 } 528 529 static void 530 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 531 { 532 switch (ctrl->ctrl.state) { 533 case NVME_CTRL_NEW: 534 case NVME_CTRL_CONNECTING: 535 /* 536 * As all reconnects were suppressed, schedule a 537 * connect. 538 */ 539 dev_info(ctrl->ctrl.device, 540 "NVME-FC{%d}: connectivity re-established. " 541 "Attempting reconnect\n", ctrl->cnum); 542 543 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 544 break; 545 546 case NVME_CTRL_RESETTING: 547 /* 548 * Controller is already in the process of terminating the 549 * association. No need to do anything further. The reconnect 550 * step will naturally occur after the reset completes. 551 */ 552 break; 553 554 default: 555 /* no action to take - let it delete */ 556 break; 557 } 558 } 559 560 static struct nvme_fc_rport * 561 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 562 struct nvme_fc_port_info *pinfo) 563 { 564 struct nvme_fc_rport *rport; 565 struct nvme_fc_ctrl *ctrl; 566 unsigned long flags; 567 568 spin_lock_irqsave(&nvme_fc_lock, flags); 569 570 list_for_each_entry(rport, &lport->endp_list, endp_list) { 571 if (rport->remoteport.node_name != pinfo->node_name || 572 rport->remoteport.port_name != pinfo->port_name) 573 continue; 574 575 if (!nvme_fc_rport_get(rport)) { 576 rport = ERR_PTR(-ENOLCK); 577 goto out_done; 578 } 579 580 spin_unlock_irqrestore(&nvme_fc_lock, flags); 581 582 spin_lock_irqsave(&rport->lock, flags); 583 584 /* has it been unregistered */ 585 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 586 /* means lldd called us twice */ 587 spin_unlock_irqrestore(&rport->lock, flags); 588 nvme_fc_rport_put(rport); 589 return ERR_PTR(-ESTALE); 590 } 591 592 rport->remoteport.port_role = pinfo->port_role; 593 rport->remoteport.port_id = pinfo->port_id; 594 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 595 rport->dev_loss_end = 0; 596 597 /* 598 * kick off a reconnect attempt on all associations to the 599 * remote port. A successful reconnects will resume i/o. 600 */ 601 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 602 nvme_fc_resume_controller(ctrl); 603 604 spin_unlock_irqrestore(&rport->lock, flags); 605 606 return rport; 607 } 608 609 rport = NULL; 610 611 out_done: 612 spin_unlock_irqrestore(&nvme_fc_lock, flags); 613 614 return rport; 615 } 616 617 static inline void 618 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 619 struct nvme_fc_port_info *pinfo) 620 { 621 if (pinfo->dev_loss_tmo) 622 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 623 else 624 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 625 } 626 627 /** 628 * nvme_fc_register_remoteport - transport entry point called by an 629 * LLDD to register the existence of a NVME 630 * subsystem FC port on its fabric. 631 * @localport: pointer to the (registered) local port that the remote 632 * subsystem port is connected to. 633 * @pinfo: pointer to information about the port to be registered 634 * @rport_p: pointer to a remote port pointer. Upon success, the routine 635 * will allocate a nvme_fc_remote_port structure and place its 636 * address in the remote port pointer. Upon failure, remote port 637 * pointer will be set to 0. 638 * 639 * Returns: 640 * a completion status. Must be 0 upon success; a negative errno 641 * (ex: -ENXIO) upon failure. 642 */ 643 int 644 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 645 struct nvme_fc_port_info *pinfo, 646 struct nvme_fc_remote_port **portptr) 647 { 648 struct nvme_fc_lport *lport = localport_to_lport(localport); 649 struct nvme_fc_rport *newrec; 650 unsigned long flags; 651 int ret, idx; 652 653 if (!nvme_fc_lport_get(lport)) { 654 ret = -ESHUTDOWN; 655 goto out_reghost_failed; 656 } 657 658 /* 659 * look to see if there is already a remoteport that is waiting 660 * for a reconnect (within dev_loss_tmo) with the same WWN's. 661 * If so, transition to it and reconnect. 662 */ 663 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 664 665 /* found an rport, but something about its state is bad */ 666 if (IS_ERR(newrec)) { 667 ret = PTR_ERR(newrec); 668 goto out_lport_put; 669 670 /* found existing rport, which was resumed */ 671 } else if (newrec) { 672 nvme_fc_lport_put(lport); 673 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 674 nvme_fc_signal_discovery_scan(lport, newrec); 675 *portptr = &newrec->remoteport; 676 return 0; 677 } 678 679 /* nothing found - allocate a new remoteport struct */ 680 681 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 682 GFP_KERNEL); 683 if (!newrec) { 684 ret = -ENOMEM; 685 goto out_lport_put; 686 } 687 688 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 689 if (idx < 0) { 690 ret = -ENOSPC; 691 goto out_kfree_rport; 692 } 693 694 INIT_LIST_HEAD(&newrec->endp_list); 695 INIT_LIST_HEAD(&newrec->ctrl_list); 696 INIT_LIST_HEAD(&newrec->ls_req_list); 697 kref_init(&newrec->ref); 698 atomic_set(&newrec->act_ctrl_cnt, 0); 699 spin_lock_init(&newrec->lock); 700 newrec->remoteport.localport = &lport->localport; 701 newrec->dev = lport->dev; 702 newrec->lport = lport; 703 newrec->remoteport.private = &newrec[1]; 704 newrec->remoteport.port_role = pinfo->port_role; 705 newrec->remoteport.node_name = pinfo->node_name; 706 newrec->remoteport.port_name = pinfo->port_name; 707 newrec->remoteport.port_id = pinfo->port_id; 708 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 709 newrec->remoteport.port_num = idx; 710 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 711 712 spin_lock_irqsave(&nvme_fc_lock, flags); 713 list_add_tail(&newrec->endp_list, &lport->endp_list); 714 spin_unlock_irqrestore(&nvme_fc_lock, flags); 715 716 nvme_fc_signal_discovery_scan(lport, newrec); 717 718 *portptr = &newrec->remoteport; 719 return 0; 720 721 out_kfree_rport: 722 kfree(newrec); 723 out_lport_put: 724 nvme_fc_lport_put(lport); 725 out_reghost_failed: 726 *portptr = NULL; 727 return ret; 728 } 729 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 730 731 static int 732 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 733 { 734 struct nvmefc_ls_req_op *lsop; 735 unsigned long flags; 736 737 restart: 738 spin_lock_irqsave(&rport->lock, flags); 739 740 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 741 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 742 lsop->flags |= FCOP_FLAGS_TERMIO; 743 spin_unlock_irqrestore(&rport->lock, flags); 744 rport->lport->ops->ls_abort(&rport->lport->localport, 745 &rport->remoteport, 746 &lsop->ls_req); 747 goto restart; 748 } 749 } 750 spin_unlock_irqrestore(&rport->lock, flags); 751 752 return 0; 753 } 754 755 static void 756 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 757 { 758 dev_info(ctrl->ctrl.device, 759 "NVME-FC{%d}: controller connectivity lost. Awaiting " 760 "Reconnect", ctrl->cnum); 761 762 switch (ctrl->ctrl.state) { 763 case NVME_CTRL_NEW: 764 case NVME_CTRL_LIVE: 765 /* 766 * Schedule a controller reset. The reset will terminate the 767 * association and schedule the reconnect timer. Reconnects 768 * will be attempted until either the ctlr_loss_tmo 769 * (max_retries * connect_delay) expires or the remoteport's 770 * dev_loss_tmo expires. 771 */ 772 if (nvme_reset_ctrl(&ctrl->ctrl)) { 773 dev_warn(ctrl->ctrl.device, 774 "NVME-FC{%d}: Couldn't schedule reset.\n", 775 ctrl->cnum); 776 nvme_delete_ctrl(&ctrl->ctrl); 777 } 778 break; 779 780 case NVME_CTRL_CONNECTING: 781 /* 782 * The association has already been terminated and the 783 * controller is attempting reconnects. No need to do anything 784 * futher. Reconnects will be attempted until either the 785 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 786 * remoteport's dev_loss_tmo expires. 787 */ 788 break; 789 790 case NVME_CTRL_RESETTING: 791 /* 792 * Controller is already in the process of terminating the 793 * association. No need to do anything further. The reconnect 794 * step will kick in naturally after the association is 795 * terminated. 796 */ 797 break; 798 799 case NVME_CTRL_DELETING: 800 default: 801 /* no action to take - let it delete */ 802 break; 803 } 804 } 805 806 /** 807 * nvme_fc_unregister_remoteport - transport entry point called by an 808 * LLDD to deregister/remove a previously 809 * registered a NVME subsystem FC port. 810 * @remoteport: pointer to the (registered) remote port that is to be 811 * deregistered. 812 * 813 * Returns: 814 * a completion status. Must be 0 upon success; a negative errno 815 * (ex: -ENXIO) upon failure. 816 */ 817 int 818 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 819 { 820 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 821 struct nvme_fc_ctrl *ctrl; 822 unsigned long flags; 823 824 if (!portptr) 825 return -EINVAL; 826 827 spin_lock_irqsave(&rport->lock, flags); 828 829 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 830 spin_unlock_irqrestore(&rport->lock, flags); 831 return -EINVAL; 832 } 833 portptr->port_state = FC_OBJSTATE_DELETED; 834 835 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 836 837 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 838 /* if dev_loss_tmo==0, dev loss is immediate */ 839 if (!portptr->dev_loss_tmo) { 840 dev_warn(ctrl->ctrl.device, 841 "NVME-FC{%d}: controller connectivity lost.\n", 842 ctrl->cnum); 843 nvme_delete_ctrl(&ctrl->ctrl); 844 } else 845 nvme_fc_ctrl_connectivity_loss(ctrl); 846 } 847 848 spin_unlock_irqrestore(&rport->lock, flags); 849 850 nvme_fc_abort_lsops(rport); 851 852 if (atomic_read(&rport->act_ctrl_cnt) == 0) 853 rport->lport->ops->remoteport_delete(portptr); 854 855 /* 856 * release the reference, which will allow, if all controllers 857 * go away, which should only occur after dev_loss_tmo occurs, 858 * for the rport to be torn down. 859 */ 860 nvme_fc_rport_put(rport); 861 862 return 0; 863 } 864 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 865 866 /** 867 * nvme_fc_rescan_remoteport - transport entry point called by an 868 * LLDD to request a nvme device rescan. 869 * @remoteport: pointer to the (registered) remote port that is to be 870 * rescanned. 871 * 872 * Returns: N/A 873 */ 874 void 875 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 876 { 877 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 878 879 nvme_fc_signal_discovery_scan(rport->lport, rport); 880 } 881 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 882 883 int 884 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 885 u32 dev_loss_tmo) 886 { 887 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 888 unsigned long flags; 889 890 spin_lock_irqsave(&rport->lock, flags); 891 892 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 893 spin_unlock_irqrestore(&rport->lock, flags); 894 return -EINVAL; 895 } 896 897 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 898 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 899 900 spin_unlock_irqrestore(&rport->lock, flags); 901 902 return 0; 903 } 904 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 905 906 907 /* *********************** FC-NVME DMA Handling **************************** */ 908 909 /* 910 * The fcloop device passes in a NULL device pointer. Real LLD's will 911 * pass in a valid device pointer. If NULL is passed to the dma mapping 912 * routines, depending on the platform, it may or may not succeed, and 913 * may crash. 914 * 915 * As such: 916 * Wrapper all the dma routines and check the dev pointer. 917 * 918 * If simple mappings (return just a dma address, we'll noop them, 919 * returning a dma address of 0. 920 * 921 * On more complex mappings (dma_map_sg), a pseudo routine fills 922 * in the scatter list, setting all dma addresses to 0. 923 */ 924 925 static inline dma_addr_t 926 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 927 enum dma_data_direction dir) 928 { 929 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 930 } 931 932 static inline int 933 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 934 { 935 return dev ? dma_mapping_error(dev, dma_addr) : 0; 936 } 937 938 static inline void 939 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 940 enum dma_data_direction dir) 941 { 942 if (dev) 943 dma_unmap_single(dev, addr, size, dir); 944 } 945 946 static inline void 947 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 948 enum dma_data_direction dir) 949 { 950 if (dev) 951 dma_sync_single_for_cpu(dev, addr, size, dir); 952 } 953 954 static inline void 955 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 956 enum dma_data_direction dir) 957 { 958 if (dev) 959 dma_sync_single_for_device(dev, addr, size, dir); 960 } 961 962 /* pseudo dma_map_sg call */ 963 static int 964 fc_map_sg(struct scatterlist *sg, int nents) 965 { 966 struct scatterlist *s; 967 int i; 968 969 WARN_ON(nents == 0 || sg[0].length == 0); 970 971 for_each_sg(sg, s, nents, i) { 972 s->dma_address = 0L; 973 #ifdef CONFIG_NEED_SG_DMA_LENGTH 974 s->dma_length = s->length; 975 #endif 976 } 977 return nents; 978 } 979 980 static inline int 981 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 982 enum dma_data_direction dir) 983 { 984 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 985 } 986 987 static inline void 988 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 989 enum dma_data_direction dir) 990 { 991 if (dev) 992 dma_unmap_sg(dev, sg, nents, dir); 993 } 994 995 /* *********************** FC-NVME LS Handling **************************** */ 996 997 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 998 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 999 1000 1001 static void 1002 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1003 { 1004 struct nvme_fc_rport *rport = lsop->rport; 1005 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1006 unsigned long flags; 1007 1008 spin_lock_irqsave(&rport->lock, flags); 1009 1010 if (!lsop->req_queued) { 1011 spin_unlock_irqrestore(&rport->lock, flags); 1012 return; 1013 } 1014 1015 list_del(&lsop->lsreq_list); 1016 1017 lsop->req_queued = false; 1018 1019 spin_unlock_irqrestore(&rport->lock, flags); 1020 1021 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1022 (lsreq->rqstlen + lsreq->rsplen), 1023 DMA_BIDIRECTIONAL); 1024 1025 nvme_fc_rport_put(rport); 1026 } 1027 1028 static int 1029 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1030 struct nvmefc_ls_req_op *lsop, 1031 void (*done)(struct nvmefc_ls_req *req, int status)) 1032 { 1033 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1034 unsigned long flags; 1035 int ret = 0; 1036 1037 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1038 return -ECONNREFUSED; 1039 1040 if (!nvme_fc_rport_get(rport)) 1041 return -ESHUTDOWN; 1042 1043 lsreq->done = done; 1044 lsop->rport = rport; 1045 lsop->req_queued = false; 1046 INIT_LIST_HEAD(&lsop->lsreq_list); 1047 init_completion(&lsop->ls_done); 1048 1049 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1050 lsreq->rqstlen + lsreq->rsplen, 1051 DMA_BIDIRECTIONAL); 1052 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1053 ret = -EFAULT; 1054 goto out_putrport; 1055 } 1056 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1057 1058 spin_lock_irqsave(&rport->lock, flags); 1059 1060 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1061 1062 lsop->req_queued = true; 1063 1064 spin_unlock_irqrestore(&rport->lock, flags); 1065 1066 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1067 &rport->remoteport, lsreq); 1068 if (ret) 1069 goto out_unlink; 1070 1071 return 0; 1072 1073 out_unlink: 1074 lsop->ls_error = ret; 1075 spin_lock_irqsave(&rport->lock, flags); 1076 lsop->req_queued = false; 1077 list_del(&lsop->lsreq_list); 1078 spin_unlock_irqrestore(&rport->lock, flags); 1079 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1080 (lsreq->rqstlen + lsreq->rsplen), 1081 DMA_BIDIRECTIONAL); 1082 out_putrport: 1083 nvme_fc_rport_put(rport); 1084 1085 return ret; 1086 } 1087 1088 static void 1089 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1090 { 1091 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1092 1093 lsop->ls_error = status; 1094 complete(&lsop->ls_done); 1095 } 1096 1097 static int 1098 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1099 { 1100 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1101 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1102 int ret; 1103 1104 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1105 1106 if (!ret) { 1107 /* 1108 * No timeout/not interruptible as we need the struct 1109 * to exist until the lldd calls us back. Thus mandate 1110 * wait until driver calls back. lldd responsible for 1111 * the timeout action 1112 */ 1113 wait_for_completion(&lsop->ls_done); 1114 1115 __nvme_fc_finish_ls_req(lsop); 1116 1117 ret = lsop->ls_error; 1118 } 1119 1120 if (ret) 1121 return ret; 1122 1123 /* ACC or RJT payload ? */ 1124 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1125 return -ENXIO; 1126 1127 return 0; 1128 } 1129 1130 static int 1131 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1132 struct nvmefc_ls_req_op *lsop, 1133 void (*done)(struct nvmefc_ls_req *req, int status)) 1134 { 1135 /* don't wait for completion */ 1136 1137 return __nvme_fc_send_ls_req(rport, lsop, done); 1138 } 1139 1140 /* Validation Error indexes into the string table below */ 1141 enum { 1142 VERR_NO_ERROR = 0, 1143 VERR_LSACC = 1, 1144 VERR_LSDESC_RQST = 2, 1145 VERR_LSDESC_RQST_LEN = 3, 1146 VERR_ASSOC_ID = 4, 1147 VERR_ASSOC_ID_LEN = 5, 1148 VERR_CONN_ID = 6, 1149 VERR_CONN_ID_LEN = 7, 1150 VERR_CR_ASSOC = 8, 1151 VERR_CR_ASSOC_ACC_LEN = 9, 1152 VERR_CR_CONN = 10, 1153 VERR_CR_CONN_ACC_LEN = 11, 1154 VERR_DISCONN = 12, 1155 VERR_DISCONN_ACC_LEN = 13, 1156 }; 1157 1158 static char *validation_errors[] = { 1159 "OK", 1160 "Not LS_ACC", 1161 "Not LSDESC_RQST", 1162 "Bad LSDESC_RQST Length", 1163 "Not Association ID", 1164 "Bad Association ID Length", 1165 "Not Connection ID", 1166 "Bad Connection ID Length", 1167 "Not CR_ASSOC Rqst", 1168 "Bad CR_ASSOC ACC Length", 1169 "Not CR_CONN Rqst", 1170 "Bad CR_CONN ACC Length", 1171 "Not Disconnect Rqst", 1172 "Bad Disconnect ACC Length", 1173 }; 1174 1175 static int 1176 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1177 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1178 { 1179 struct nvmefc_ls_req_op *lsop; 1180 struct nvmefc_ls_req *lsreq; 1181 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1182 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1183 int ret, fcret = 0; 1184 1185 lsop = kzalloc((sizeof(*lsop) + 1186 ctrl->lport->ops->lsrqst_priv_sz + 1187 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1188 if (!lsop) { 1189 ret = -ENOMEM; 1190 goto out_no_memory; 1191 } 1192 lsreq = &lsop->ls_req; 1193 1194 lsreq->private = (void *)&lsop[1]; 1195 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1196 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1197 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1198 1199 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1200 assoc_rqst->desc_list_len = 1201 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1202 1203 assoc_rqst->assoc_cmd.desc_tag = 1204 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1205 assoc_rqst->assoc_cmd.desc_len = 1206 fcnvme_lsdesc_len( 1207 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1208 1209 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1210 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1211 /* Linux supports only Dynamic controllers */ 1212 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1213 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1214 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1215 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1216 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1217 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1218 1219 lsop->queue = queue; 1220 lsreq->rqstaddr = assoc_rqst; 1221 lsreq->rqstlen = sizeof(*assoc_rqst); 1222 lsreq->rspaddr = assoc_acc; 1223 lsreq->rsplen = sizeof(*assoc_acc); 1224 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1225 1226 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1227 if (ret) 1228 goto out_free_buffer; 1229 1230 /* process connect LS completion */ 1231 1232 /* validate the ACC response */ 1233 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1234 fcret = VERR_LSACC; 1235 else if (assoc_acc->hdr.desc_list_len != 1236 fcnvme_lsdesc_len( 1237 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1238 fcret = VERR_CR_ASSOC_ACC_LEN; 1239 else if (assoc_acc->hdr.rqst.desc_tag != 1240 cpu_to_be32(FCNVME_LSDESC_RQST)) 1241 fcret = VERR_LSDESC_RQST; 1242 else if (assoc_acc->hdr.rqst.desc_len != 1243 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1244 fcret = VERR_LSDESC_RQST_LEN; 1245 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1246 fcret = VERR_CR_ASSOC; 1247 else if (assoc_acc->associd.desc_tag != 1248 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1249 fcret = VERR_ASSOC_ID; 1250 else if (assoc_acc->associd.desc_len != 1251 fcnvme_lsdesc_len( 1252 sizeof(struct fcnvme_lsdesc_assoc_id))) 1253 fcret = VERR_ASSOC_ID_LEN; 1254 else if (assoc_acc->connectid.desc_tag != 1255 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1256 fcret = VERR_CONN_ID; 1257 else if (assoc_acc->connectid.desc_len != 1258 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1259 fcret = VERR_CONN_ID_LEN; 1260 1261 if (fcret) { 1262 ret = -EBADF; 1263 dev_err(ctrl->dev, 1264 "q %d connect failed: %s\n", 1265 queue->qnum, validation_errors[fcret]); 1266 } else { 1267 ctrl->association_id = 1268 be64_to_cpu(assoc_acc->associd.association_id); 1269 queue->connection_id = 1270 be64_to_cpu(assoc_acc->connectid.connection_id); 1271 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1272 } 1273 1274 out_free_buffer: 1275 kfree(lsop); 1276 out_no_memory: 1277 if (ret) 1278 dev_err(ctrl->dev, 1279 "queue %d connect admin queue failed (%d).\n", 1280 queue->qnum, ret); 1281 return ret; 1282 } 1283 1284 static int 1285 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1286 u16 qsize, u16 ersp_ratio) 1287 { 1288 struct nvmefc_ls_req_op *lsop; 1289 struct nvmefc_ls_req *lsreq; 1290 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1291 struct fcnvme_ls_cr_conn_acc *conn_acc; 1292 int ret, fcret = 0; 1293 1294 lsop = kzalloc((sizeof(*lsop) + 1295 ctrl->lport->ops->lsrqst_priv_sz + 1296 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1297 if (!lsop) { 1298 ret = -ENOMEM; 1299 goto out_no_memory; 1300 } 1301 lsreq = &lsop->ls_req; 1302 1303 lsreq->private = (void *)&lsop[1]; 1304 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1305 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1306 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1307 1308 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1309 conn_rqst->desc_list_len = cpu_to_be32( 1310 sizeof(struct fcnvme_lsdesc_assoc_id) + 1311 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1312 1313 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1314 conn_rqst->associd.desc_len = 1315 fcnvme_lsdesc_len( 1316 sizeof(struct fcnvme_lsdesc_assoc_id)); 1317 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1318 conn_rqst->connect_cmd.desc_tag = 1319 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1320 conn_rqst->connect_cmd.desc_len = 1321 fcnvme_lsdesc_len( 1322 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1323 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1324 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1325 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1326 1327 lsop->queue = queue; 1328 lsreq->rqstaddr = conn_rqst; 1329 lsreq->rqstlen = sizeof(*conn_rqst); 1330 lsreq->rspaddr = conn_acc; 1331 lsreq->rsplen = sizeof(*conn_acc); 1332 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1333 1334 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1335 if (ret) 1336 goto out_free_buffer; 1337 1338 /* process connect LS completion */ 1339 1340 /* validate the ACC response */ 1341 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1342 fcret = VERR_LSACC; 1343 else if (conn_acc->hdr.desc_list_len != 1344 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1345 fcret = VERR_CR_CONN_ACC_LEN; 1346 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1347 fcret = VERR_LSDESC_RQST; 1348 else if (conn_acc->hdr.rqst.desc_len != 1349 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1350 fcret = VERR_LSDESC_RQST_LEN; 1351 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1352 fcret = VERR_CR_CONN; 1353 else if (conn_acc->connectid.desc_tag != 1354 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1355 fcret = VERR_CONN_ID; 1356 else if (conn_acc->connectid.desc_len != 1357 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1358 fcret = VERR_CONN_ID_LEN; 1359 1360 if (fcret) { 1361 ret = -EBADF; 1362 dev_err(ctrl->dev, 1363 "q %d connect failed: %s\n", 1364 queue->qnum, validation_errors[fcret]); 1365 } else { 1366 queue->connection_id = 1367 be64_to_cpu(conn_acc->connectid.connection_id); 1368 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1369 } 1370 1371 out_free_buffer: 1372 kfree(lsop); 1373 out_no_memory: 1374 if (ret) 1375 dev_err(ctrl->dev, 1376 "queue %d connect command failed (%d).\n", 1377 queue->qnum, ret); 1378 return ret; 1379 } 1380 1381 static void 1382 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1383 { 1384 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1385 1386 __nvme_fc_finish_ls_req(lsop); 1387 1388 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1389 1390 kfree(lsop); 1391 } 1392 1393 /* 1394 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1395 * the FC-NVME Association. Terminating the association also 1396 * terminates the FC-NVME connections (per queue, both admin and io 1397 * queues) that are part of the association. E.g. things are torn 1398 * down, and the related FC-NVME Association ID and Connection IDs 1399 * become invalid. 1400 * 1401 * The behavior of the fc-nvme initiator is such that it's 1402 * understanding of the association and connections will implicitly 1403 * be torn down. The action is implicit as it may be due to a loss of 1404 * connectivity with the fc-nvme target, so you may never get a 1405 * response even if you tried. As such, the action of this routine 1406 * is to asynchronously send the LS, ignore any results of the LS, and 1407 * continue on with terminating the association. If the fc-nvme target 1408 * is present and receives the LS, it too can tear down. 1409 */ 1410 static void 1411 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1412 { 1413 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1414 struct fcnvme_ls_disconnect_acc *discon_acc; 1415 struct nvmefc_ls_req_op *lsop; 1416 struct nvmefc_ls_req *lsreq; 1417 int ret; 1418 1419 lsop = kzalloc((sizeof(*lsop) + 1420 ctrl->lport->ops->lsrqst_priv_sz + 1421 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1422 GFP_KERNEL); 1423 if (!lsop) 1424 /* couldn't sent it... too bad */ 1425 return; 1426 1427 lsreq = &lsop->ls_req; 1428 1429 lsreq->private = (void *)&lsop[1]; 1430 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1431 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1432 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1433 1434 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1435 discon_rqst->desc_list_len = cpu_to_be32( 1436 sizeof(struct fcnvme_lsdesc_assoc_id) + 1437 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1438 1439 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1440 discon_rqst->associd.desc_len = 1441 fcnvme_lsdesc_len( 1442 sizeof(struct fcnvme_lsdesc_assoc_id)); 1443 1444 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1445 1446 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1447 FCNVME_LSDESC_DISCONN_CMD); 1448 discon_rqst->discon_cmd.desc_len = 1449 fcnvme_lsdesc_len( 1450 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1451 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1452 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1453 1454 lsreq->rqstaddr = discon_rqst; 1455 lsreq->rqstlen = sizeof(*discon_rqst); 1456 lsreq->rspaddr = discon_acc; 1457 lsreq->rsplen = sizeof(*discon_acc); 1458 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1459 1460 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1461 nvme_fc_disconnect_assoc_done); 1462 if (ret) 1463 kfree(lsop); 1464 1465 /* only meaningful part to terminating the association */ 1466 ctrl->association_id = 0; 1467 } 1468 1469 1470 /* *********************** NVME Ctrl Routines **************************** */ 1471 1472 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1473 1474 static void 1475 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1476 struct nvme_fc_fcp_op *op) 1477 { 1478 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1479 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1480 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1481 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1482 1483 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1484 } 1485 1486 static void 1487 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1488 unsigned int hctx_idx) 1489 { 1490 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1491 1492 return __nvme_fc_exit_request(set->driver_data, op); 1493 } 1494 1495 static int 1496 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1497 { 1498 unsigned long flags; 1499 int opstate; 1500 1501 spin_lock_irqsave(&ctrl->lock, flags); 1502 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1503 if (opstate != FCPOP_STATE_ACTIVE) 1504 atomic_set(&op->state, opstate); 1505 else if (ctrl->flags & FCCTRL_TERMIO) 1506 ctrl->iocnt++; 1507 spin_unlock_irqrestore(&ctrl->lock, flags); 1508 1509 if (opstate != FCPOP_STATE_ACTIVE) 1510 return -ECANCELED; 1511 1512 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1513 &ctrl->rport->remoteport, 1514 op->queue->lldd_handle, 1515 &op->fcp_req); 1516 1517 return 0; 1518 } 1519 1520 static void 1521 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1522 { 1523 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1524 int i; 1525 1526 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1527 __nvme_fc_abort_op(ctrl, aen_op); 1528 } 1529 1530 static inline void 1531 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1532 struct nvme_fc_fcp_op *op, int opstate) 1533 { 1534 unsigned long flags; 1535 1536 if (opstate == FCPOP_STATE_ABORTED) { 1537 spin_lock_irqsave(&ctrl->lock, flags); 1538 if (ctrl->flags & FCCTRL_TERMIO) { 1539 if (!--ctrl->iocnt) 1540 wake_up(&ctrl->ioabort_wait); 1541 } 1542 spin_unlock_irqrestore(&ctrl->lock, flags); 1543 } 1544 } 1545 1546 static void 1547 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1548 { 1549 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1550 struct request *rq = op->rq; 1551 struct nvmefc_fcp_req *freq = &op->fcp_req; 1552 struct nvme_fc_ctrl *ctrl = op->ctrl; 1553 struct nvme_fc_queue *queue = op->queue; 1554 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1555 struct nvme_command *sqe = &op->cmd_iu.sqe; 1556 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1557 union nvme_result result; 1558 bool terminate_assoc = true; 1559 int opstate; 1560 1561 /* 1562 * WARNING: 1563 * The current linux implementation of a nvme controller 1564 * allocates a single tag set for all io queues and sizes 1565 * the io queues to fully hold all possible tags. Thus, the 1566 * implementation does not reference or care about the sqhd 1567 * value as it never needs to use the sqhd/sqtail pointers 1568 * for submission pacing. 1569 * 1570 * This affects the FC-NVME implementation in two ways: 1571 * 1) As the value doesn't matter, we don't need to waste 1572 * cycles extracting it from ERSPs and stamping it in the 1573 * cases where the transport fabricates CQEs on successful 1574 * completions. 1575 * 2) The FC-NVME implementation requires that delivery of 1576 * ERSP completions are to go back to the nvme layer in order 1577 * relative to the rsn, such that the sqhd value will always 1578 * be "in order" for the nvme layer. As the nvme layer in 1579 * linux doesn't care about sqhd, there's no need to return 1580 * them in order. 1581 * 1582 * Additionally: 1583 * As the core nvme layer in linux currently does not look at 1584 * every field in the cqe - in cases where the FC transport must 1585 * fabricate a CQE, the following fields will not be set as they 1586 * are not referenced: 1587 * cqe.sqid, cqe.sqhd, cqe.command_id 1588 * 1589 * Failure or error of an individual i/o, in a transport 1590 * detected fashion unrelated to the nvme completion status, 1591 * potentially cause the initiator and target sides to get out 1592 * of sync on SQ head/tail (aka outstanding io count allowed). 1593 * Per FC-NVME spec, failure of an individual command requires 1594 * the connection to be terminated, which in turn requires the 1595 * association to be terminated. 1596 */ 1597 1598 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1599 1600 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1601 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1602 1603 if (opstate == FCPOP_STATE_ABORTED) 1604 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); 1605 else if (freq->status) 1606 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1607 1608 /* 1609 * For the linux implementation, if we have an unsuccesful 1610 * status, they blk-mq layer can typically be called with the 1611 * non-zero status and the content of the cqe isn't important. 1612 */ 1613 if (status) 1614 goto done; 1615 1616 /* 1617 * command completed successfully relative to the wire 1618 * protocol. However, validate anything received and 1619 * extract the status and result from the cqe (create it 1620 * where necessary). 1621 */ 1622 1623 switch (freq->rcv_rsplen) { 1624 1625 case 0: 1626 case NVME_FC_SIZEOF_ZEROS_RSP: 1627 /* 1628 * No response payload or 12 bytes of payload (which 1629 * should all be zeros) are considered successful and 1630 * no payload in the CQE by the transport. 1631 */ 1632 if (freq->transferred_length != 1633 be32_to_cpu(op->cmd_iu.data_len)) { 1634 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1635 goto done; 1636 } 1637 result.u64 = 0; 1638 break; 1639 1640 case sizeof(struct nvme_fc_ersp_iu): 1641 /* 1642 * The ERSP IU contains a full completion with CQE. 1643 * Validate ERSP IU and look at cqe. 1644 */ 1645 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1646 (freq->rcv_rsplen / 4) || 1647 be32_to_cpu(op->rsp_iu.xfrd_len) != 1648 freq->transferred_length || 1649 op->rsp_iu.status_code || 1650 sqe->common.command_id != cqe->command_id)) { 1651 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1652 goto done; 1653 } 1654 result = cqe->result; 1655 status = cqe->status; 1656 break; 1657 1658 default: 1659 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1660 goto done; 1661 } 1662 1663 terminate_assoc = false; 1664 1665 done: 1666 if (op->flags & FCOP_FLAGS_AEN) { 1667 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1668 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1669 atomic_set(&op->state, FCPOP_STATE_IDLE); 1670 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1671 nvme_fc_ctrl_put(ctrl); 1672 goto check_error; 1673 } 1674 1675 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 1676 nvme_end_request(rq, status, result); 1677 1678 check_error: 1679 if (terminate_assoc) 1680 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1681 } 1682 1683 static int 1684 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1685 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1686 struct request *rq, u32 rqno) 1687 { 1688 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1689 int ret = 0; 1690 1691 memset(op, 0, sizeof(*op)); 1692 op->fcp_req.cmdaddr = &op->cmd_iu; 1693 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1694 op->fcp_req.rspaddr = &op->rsp_iu; 1695 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1696 op->fcp_req.done = nvme_fc_fcpio_done; 1697 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1698 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1699 op->ctrl = ctrl; 1700 op->queue = queue; 1701 op->rq = rq; 1702 op->rqno = rqno; 1703 1704 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1705 cmdiu->fc_id = NVME_CMD_FC_ID; 1706 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1707 1708 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1709 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1710 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1711 dev_err(ctrl->dev, 1712 "FCP Op failed - cmdiu dma mapping failed.\n"); 1713 ret = EFAULT; 1714 goto out_on_error; 1715 } 1716 1717 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1718 &op->rsp_iu, sizeof(op->rsp_iu), 1719 DMA_FROM_DEVICE); 1720 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1721 dev_err(ctrl->dev, 1722 "FCP Op failed - rspiu dma mapping failed.\n"); 1723 ret = EFAULT; 1724 } 1725 1726 atomic_set(&op->state, FCPOP_STATE_IDLE); 1727 out_on_error: 1728 return ret; 1729 } 1730 1731 static int 1732 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1733 unsigned int hctx_idx, unsigned int numa_node) 1734 { 1735 struct nvme_fc_ctrl *ctrl = set->driver_data; 1736 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1737 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1738 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1739 1740 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1741 } 1742 1743 static int 1744 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1745 { 1746 struct nvme_fc_fcp_op *aen_op; 1747 struct nvme_fc_cmd_iu *cmdiu; 1748 struct nvme_command *sqe; 1749 void *private; 1750 int i, ret; 1751 1752 aen_op = ctrl->aen_ops; 1753 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1754 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1755 GFP_KERNEL); 1756 if (!private) 1757 return -ENOMEM; 1758 1759 cmdiu = &aen_op->cmd_iu; 1760 sqe = &cmdiu->sqe; 1761 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1762 aen_op, (struct request *)NULL, 1763 (NVME_AQ_BLK_MQ_DEPTH + i)); 1764 if (ret) { 1765 kfree(private); 1766 return ret; 1767 } 1768 1769 aen_op->flags = FCOP_FLAGS_AEN; 1770 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1771 aen_op->fcp_req.private = private; 1772 1773 memset(sqe, 0, sizeof(*sqe)); 1774 sqe->common.opcode = nvme_admin_async_event; 1775 /* Note: core layer may overwrite the sqe.command_id value */ 1776 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1777 } 1778 return 0; 1779 } 1780 1781 static void 1782 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1783 { 1784 struct nvme_fc_fcp_op *aen_op; 1785 int i; 1786 1787 aen_op = ctrl->aen_ops; 1788 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1789 if (!aen_op->fcp_req.private) 1790 continue; 1791 1792 __nvme_fc_exit_request(ctrl, aen_op); 1793 1794 kfree(aen_op->fcp_req.private); 1795 aen_op->fcp_req.private = NULL; 1796 } 1797 } 1798 1799 static inline void 1800 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1801 unsigned int qidx) 1802 { 1803 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1804 1805 hctx->driver_data = queue; 1806 queue->hctx = hctx; 1807 } 1808 1809 static int 1810 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1811 unsigned int hctx_idx) 1812 { 1813 struct nvme_fc_ctrl *ctrl = data; 1814 1815 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1816 1817 return 0; 1818 } 1819 1820 static int 1821 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1822 unsigned int hctx_idx) 1823 { 1824 struct nvme_fc_ctrl *ctrl = data; 1825 1826 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1827 1828 return 0; 1829 } 1830 1831 static void 1832 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1833 { 1834 struct nvme_fc_queue *queue; 1835 1836 queue = &ctrl->queues[idx]; 1837 memset(queue, 0, sizeof(*queue)); 1838 queue->ctrl = ctrl; 1839 queue->qnum = idx; 1840 atomic_set(&queue->csn, 1); 1841 queue->dev = ctrl->dev; 1842 1843 if (idx > 0) 1844 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1845 else 1846 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1847 1848 /* 1849 * Considered whether we should allocate buffers for all SQEs 1850 * and CQEs and dma map them - mapping their respective entries 1851 * into the request structures (kernel vm addr and dma address) 1852 * thus the driver could use the buffers/mappings directly. 1853 * It only makes sense if the LLDD would use them for its 1854 * messaging api. It's very unlikely most adapter api's would use 1855 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1856 * structures were used instead. 1857 */ 1858 } 1859 1860 /* 1861 * This routine terminates a queue at the transport level. 1862 * The transport has already ensured that all outstanding ios on 1863 * the queue have been terminated. 1864 * The transport will send a Disconnect LS request to terminate 1865 * the queue's connection. Termination of the admin queue will also 1866 * terminate the association at the target. 1867 */ 1868 static void 1869 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1870 { 1871 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1872 return; 1873 1874 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 1875 /* 1876 * Current implementation never disconnects a single queue. 1877 * It always terminates a whole association. So there is never 1878 * a disconnect(queue) LS sent to the target. 1879 */ 1880 1881 queue->connection_id = 0; 1882 atomic_set(&queue->csn, 1); 1883 } 1884 1885 static void 1886 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1887 struct nvme_fc_queue *queue, unsigned int qidx) 1888 { 1889 if (ctrl->lport->ops->delete_queue) 1890 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1891 queue->lldd_handle); 1892 queue->lldd_handle = NULL; 1893 } 1894 1895 static void 1896 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1897 { 1898 int i; 1899 1900 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1901 nvme_fc_free_queue(&ctrl->queues[i]); 1902 } 1903 1904 static int 1905 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1906 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1907 { 1908 int ret = 0; 1909 1910 queue->lldd_handle = NULL; 1911 if (ctrl->lport->ops->create_queue) 1912 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1913 qidx, qsize, &queue->lldd_handle); 1914 1915 return ret; 1916 } 1917 1918 static void 1919 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1920 { 1921 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1922 int i; 1923 1924 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1925 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1926 } 1927 1928 static int 1929 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1930 { 1931 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1932 int i, ret; 1933 1934 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1935 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1936 if (ret) 1937 goto delete_queues; 1938 } 1939 1940 return 0; 1941 1942 delete_queues: 1943 for (; i >= 0; i--) 1944 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1945 return ret; 1946 } 1947 1948 static int 1949 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1950 { 1951 int i, ret = 0; 1952 1953 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 1954 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 1955 (qsize / 5)); 1956 if (ret) 1957 break; 1958 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 1959 if (ret) 1960 break; 1961 1962 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 1963 } 1964 1965 return ret; 1966 } 1967 1968 static void 1969 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 1970 { 1971 int i; 1972 1973 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1974 nvme_fc_init_queue(ctrl, i); 1975 } 1976 1977 static void 1978 nvme_fc_ctrl_free(struct kref *ref) 1979 { 1980 struct nvme_fc_ctrl *ctrl = 1981 container_of(ref, struct nvme_fc_ctrl, ref); 1982 unsigned long flags; 1983 1984 if (ctrl->ctrl.tagset) { 1985 blk_cleanup_queue(ctrl->ctrl.connect_q); 1986 blk_mq_free_tag_set(&ctrl->tag_set); 1987 } 1988 1989 /* remove from rport list */ 1990 spin_lock_irqsave(&ctrl->rport->lock, flags); 1991 list_del(&ctrl->ctrl_list); 1992 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 1993 1994 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 1995 blk_cleanup_queue(ctrl->ctrl.admin_q); 1996 blk_mq_free_tag_set(&ctrl->admin_tag_set); 1997 1998 kfree(ctrl->queues); 1999 2000 put_device(ctrl->dev); 2001 nvme_fc_rport_put(ctrl->rport); 2002 2003 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2004 if (ctrl->ctrl.opts) 2005 nvmf_free_options(ctrl->ctrl.opts); 2006 kfree(ctrl); 2007 } 2008 2009 static void 2010 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2011 { 2012 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2013 } 2014 2015 static int 2016 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2017 { 2018 return kref_get_unless_zero(&ctrl->ref); 2019 } 2020 2021 /* 2022 * All accesses from nvme core layer done - can now free the 2023 * controller. Called after last nvme_put_ctrl() call 2024 */ 2025 static void 2026 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2027 { 2028 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2029 2030 WARN_ON(nctrl != &ctrl->ctrl); 2031 2032 nvme_fc_ctrl_put(ctrl); 2033 } 2034 2035 static void 2036 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2037 { 2038 /* only proceed if in LIVE state - e.g. on first error */ 2039 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2040 return; 2041 2042 dev_warn(ctrl->ctrl.device, 2043 "NVME-FC{%d}: transport association error detected: %s\n", 2044 ctrl->cnum, errmsg); 2045 dev_warn(ctrl->ctrl.device, 2046 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2047 2048 nvme_reset_ctrl(&ctrl->ctrl); 2049 } 2050 2051 static enum blk_eh_timer_return 2052 nvme_fc_timeout(struct request *rq, bool reserved) 2053 { 2054 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2055 struct nvme_fc_ctrl *ctrl = op->ctrl; 2056 2057 /* 2058 * we can't individually ABTS an io without affecting the queue, 2059 * thus killing the queue, and thus the association. 2060 * So resolve by performing a controller reset, which will stop 2061 * the host/io stack, terminate the association on the link, 2062 * and recreate an association on the link. 2063 */ 2064 nvme_fc_error_recovery(ctrl, "io timeout error"); 2065 2066 /* 2067 * the io abort has been initiated. Have the reset timer 2068 * restarted and the abort completion will complete the io 2069 * shortly. Avoids a synchronous wait while the abort finishes. 2070 */ 2071 return BLK_EH_RESET_TIMER; 2072 } 2073 2074 static int 2075 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2076 struct nvme_fc_fcp_op *op) 2077 { 2078 struct nvmefc_fcp_req *freq = &op->fcp_req; 2079 enum dma_data_direction dir; 2080 int ret; 2081 2082 freq->sg_cnt = 0; 2083 2084 if (!blk_rq_payload_bytes(rq)) 2085 return 0; 2086 2087 freq->sg_table.sgl = freq->first_sgl; 2088 ret = sg_alloc_table_chained(&freq->sg_table, 2089 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 2090 if (ret) 2091 return -ENOMEM; 2092 2093 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2094 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2095 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2096 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2097 op->nents, dir); 2098 if (unlikely(freq->sg_cnt <= 0)) { 2099 sg_free_table_chained(&freq->sg_table, true); 2100 freq->sg_cnt = 0; 2101 return -EFAULT; 2102 } 2103 2104 /* 2105 * TODO: blk_integrity_rq(rq) for DIF 2106 */ 2107 return 0; 2108 } 2109 2110 static void 2111 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2112 struct nvme_fc_fcp_op *op) 2113 { 2114 struct nvmefc_fcp_req *freq = &op->fcp_req; 2115 2116 if (!freq->sg_cnt) 2117 return; 2118 2119 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2120 ((rq_data_dir(rq) == WRITE) ? 2121 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 2122 2123 nvme_cleanup_cmd(rq); 2124 2125 sg_free_table_chained(&freq->sg_table, true); 2126 2127 freq->sg_cnt = 0; 2128 } 2129 2130 /* 2131 * In FC, the queue is a logical thing. At transport connect, the target 2132 * creates its "queue" and returns a handle that is to be given to the 2133 * target whenever it posts something to the corresponding SQ. When an 2134 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2135 * command contained within the SQE, an io, and assigns a FC exchange 2136 * to it. The SQE and the associated SQ handle are sent in the initial 2137 * CMD IU sents on the exchange. All transfers relative to the io occur 2138 * as part of the exchange. The CQE is the last thing for the io, 2139 * which is transferred (explicitly or implicitly) with the RSP IU 2140 * sent on the exchange. After the CQE is received, the FC exchange is 2141 * terminaed and the Exchange may be used on a different io. 2142 * 2143 * The transport to LLDD api has the transport making a request for a 2144 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2145 * resource and transfers the command. The LLDD will then process all 2146 * steps to complete the io. Upon completion, the transport done routine 2147 * is called. 2148 * 2149 * So - while the operation is outstanding to the LLDD, there is a link 2150 * level FC exchange resource that is also outstanding. This must be 2151 * considered in all cleanup operations. 2152 */ 2153 static blk_status_t 2154 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2155 struct nvme_fc_fcp_op *op, u32 data_len, 2156 enum nvmefc_fcp_datadir io_dir) 2157 { 2158 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2159 struct nvme_command *sqe = &cmdiu->sqe; 2160 u32 csn; 2161 int ret, opstate; 2162 2163 /* 2164 * before attempting to send the io, check to see if we believe 2165 * the target device is present 2166 */ 2167 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2168 return BLK_STS_RESOURCE; 2169 2170 if (!nvme_fc_ctrl_get(ctrl)) 2171 return BLK_STS_IOERR; 2172 2173 /* format the FC-NVME CMD IU and fcp_req */ 2174 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2175 csn = atomic_inc_return(&queue->csn); 2176 cmdiu->csn = cpu_to_be32(csn); 2177 cmdiu->data_len = cpu_to_be32(data_len); 2178 switch (io_dir) { 2179 case NVMEFC_FCP_WRITE: 2180 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2181 break; 2182 case NVMEFC_FCP_READ: 2183 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2184 break; 2185 case NVMEFC_FCP_NODATA: 2186 cmdiu->flags = 0; 2187 break; 2188 } 2189 op->fcp_req.payload_length = data_len; 2190 op->fcp_req.io_dir = io_dir; 2191 op->fcp_req.transferred_length = 0; 2192 op->fcp_req.rcv_rsplen = 0; 2193 op->fcp_req.status = NVME_SC_SUCCESS; 2194 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2195 2196 /* 2197 * validate per fabric rules, set fields mandated by fabric spec 2198 * as well as those by FC-NVME spec. 2199 */ 2200 WARN_ON_ONCE(sqe->common.metadata); 2201 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2202 2203 /* 2204 * format SQE DPTR field per FC-NVME rules: 2205 * type=0x5 Transport SGL Data Block Descriptor 2206 * subtype=0xA Transport-specific value 2207 * address=0 2208 * length=length of the data series 2209 */ 2210 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2211 NVME_SGL_FMT_TRANSPORT_A; 2212 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2213 sqe->rw.dptr.sgl.addr = 0; 2214 2215 if (!(op->flags & FCOP_FLAGS_AEN)) { 2216 ret = nvme_fc_map_data(ctrl, op->rq, op); 2217 if (ret < 0) { 2218 nvme_cleanup_cmd(op->rq); 2219 nvme_fc_ctrl_put(ctrl); 2220 if (ret == -ENOMEM || ret == -EAGAIN) 2221 return BLK_STS_RESOURCE; 2222 return BLK_STS_IOERR; 2223 } 2224 } 2225 2226 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2227 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2228 2229 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2230 2231 if (!(op->flags & FCOP_FLAGS_AEN)) 2232 blk_mq_start_request(op->rq); 2233 2234 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2235 &ctrl->rport->remoteport, 2236 queue->lldd_handle, &op->fcp_req); 2237 2238 if (ret) { 2239 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2240 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2241 2242 if (!(op->flags & FCOP_FLAGS_AEN)) 2243 nvme_fc_unmap_data(ctrl, op->rq, op); 2244 2245 nvme_fc_ctrl_put(ctrl); 2246 2247 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2248 ret != -EBUSY) 2249 return BLK_STS_IOERR; 2250 2251 return BLK_STS_RESOURCE; 2252 } 2253 2254 return BLK_STS_OK; 2255 } 2256 2257 static blk_status_t 2258 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2259 const struct blk_mq_queue_data *bd) 2260 { 2261 struct nvme_ns *ns = hctx->queue->queuedata; 2262 struct nvme_fc_queue *queue = hctx->driver_data; 2263 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2264 struct request *rq = bd->rq; 2265 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2266 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2267 struct nvme_command *sqe = &cmdiu->sqe; 2268 enum nvmefc_fcp_datadir io_dir; 2269 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2270 u32 data_len; 2271 blk_status_t ret; 2272 2273 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2274 !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2275 return nvmf_fail_nonready_command(rq); 2276 2277 ret = nvme_setup_cmd(ns, rq, sqe); 2278 if (ret) 2279 return ret; 2280 2281 data_len = blk_rq_payload_bytes(rq); 2282 if (data_len) 2283 io_dir = ((rq_data_dir(rq) == WRITE) ? 2284 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2285 else 2286 io_dir = NVMEFC_FCP_NODATA; 2287 2288 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2289 } 2290 2291 static struct blk_mq_tags * 2292 nvme_fc_tagset(struct nvme_fc_queue *queue) 2293 { 2294 if (queue->qnum == 0) 2295 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2296 2297 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2298 } 2299 2300 static int 2301 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2302 2303 { 2304 struct nvme_fc_queue *queue = hctx->driver_data; 2305 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2306 struct request *req; 2307 struct nvme_fc_fcp_op *op; 2308 2309 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2310 if (!req) 2311 return 0; 2312 2313 op = blk_mq_rq_to_pdu(req); 2314 2315 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2316 (ctrl->lport->ops->poll_queue)) 2317 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2318 queue->lldd_handle); 2319 2320 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2321 } 2322 2323 static void 2324 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2325 { 2326 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2327 struct nvme_fc_fcp_op *aen_op; 2328 unsigned long flags; 2329 bool terminating = false; 2330 blk_status_t ret; 2331 2332 spin_lock_irqsave(&ctrl->lock, flags); 2333 if (ctrl->flags & FCCTRL_TERMIO) 2334 terminating = true; 2335 spin_unlock_irqrestore(&ctrl->lock, flags); 2336 2337 if (terminating) 2338 return; 2339 2340 aen_op = &ctrl->aen_ops[0]; 2341 2342 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2343 NVMEFC_FCP_NODATA); 2344 if (ret) 2345 dev_err(ctrl->ctrl.device, 2346 "failed async event work\n"); 2347 } 2348 2349 static void 2350 nvme_fc_complete_rq(struct request *rq) 2351 { 2352 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2353 struct nvme_fc_ctrl *ctrl = op->ctrl; 2354 2355 atomic_set(&op->state, FCPOP_STATE_IDLE); 2356 2357 nvme_fc_unmap_data(ctrl, rq, op); 2358 nvme_complete_rq(rq); 2359 nvme_fc_ctrl_put(ctrl); 2360 } 2361 2362 /* 2363 * This routine is used by the transport when it needs to find active 2364 * io on a queue that is to be terminated. The transport uses 2365 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2366 * this routine to kill them on a 1 by 1 basis. 2367 * 2368 * As FC allocates FC exchange for each io, the transport must contact 2369 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2370 * After terminating the exchange the LLDD will call the transport's 2371 * normal io done path for the request, but it will have an aborted 2372 * status. The done path will return the io request back to the block 2373 * layer with an error status. 2374 */ 2375 static void 2376 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2377 { 2378 struct nvme_ctrl *nctrl = data; 2379 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2380 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2381 2382 __nvme_fc_abort_op(ctrl, op); 2383 } 2384 2385 2386 static const struct blk_mq_ops nvme_fc_mq_ops = { 2387 .queue_rq = nvme_fc_queue_rq, 2388 .complete = nvme_fc_complete_rq, 2389 .init_request = nvme_fc_init_request, 2390 .exit_request = nvme_fc_exit_request, 2391 .init_hctx = nvme_fc_init_hctx, 2392 .poll = nvme_fc_poll, 2393 .timeout = nvme_fc_timeout, 2394 }; 2395 2396 static int 2397 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2398 { 2399 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2400 unsigned int nr_io_queues; 2401 int ret; 2402 2403 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2404 ctrl->lport->ops->max_hw_queues); 2405 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2406 if (ret) { 2407 dev_info(ctrl->ctrl.device, 2408 "set_queue_count failed: %d\n", ret); 2409 return ret; 2410 } 2411 2412 ctrl->ctrl.queue_count = nr_io_queues + 1; 2413 if (!nr_io_queues) 2414 return 0; 2415 2416 nvme_fc_init_io_queues(ctrl); 2417 2418 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2419 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2420 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2421 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2422 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2423 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2424 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2425 (SG_CHUNK_SIZE * 2426 sizeof(struct scatterlist)) + 2427 ctrl->lport->ops->fcprqst_priv_sz; 2428 ctrl->tag_set.driver_data = ctrl; 2429 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2430 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2431 2432 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2433 if (ret) 2434 return ret; 2435 2436 ctrl->ctrl.tagset = &ctrl->tag_set; 2437 2438 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2439 if (IS_ERR(ctrl->ctrl.connect_q)) { 2440 ret = PTR_ERR(ctrl->ctrl.connect_q); 2441 goto out_free_tag_set; 2442 } 2443 2444 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2445 if (ret) 2446 goto out_cleanup_blk_queue; 2447 2448 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2449 if (ret) 2450 goto out_delete_hw_queues; 2451 2452 ctrl->ioq_live = true; 2453 2454 return 0; 2455 2456 out_delete_hw_queues: 2457 nvme_fc_delete_hw_io_queues(ctrl); 2458 out_cleanup_blk_queue: 2459 blk_cleanup_queue(ctrl->ctrl.connect_q); 2460 out_free_tag_set: 2461 blk_mq_free_tag_set(&ctrl->tag_set); 2462 nvme_fc_free_io_queues(ctrl); 2463 2464 /* force put free routine to ignore io queues */ 2465 ctrl->ctrl.tagset = NULL; 2466 2467 return ret; 2468 } 2469 2470 static int 2471 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2472 { 2473 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2474 unsigned int nr_io_queues; 2475 int ret; 2476 2477 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2478 ctrl->lport->ops->max_hw_queues); 2479 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2480 if (ret) { 2481 dev_info(ctrl->ctrl.device, 2482 "set_queue_count failed: %d\n", ret); 2483 return ret; 2484 } 2485 2486 ctrl->ctrl.queue_count = nr_io_queues + 1; 2487 /* check for io queues existing */ 2488 if (ctrl->ctrl.queue_count == 1) 2489 return 0; 2490 2491 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2492 if (ret) 2493 goto out_free_io_queues; 2494 2495 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2496 if (ret) 2497 goto out_delete_hw_queues; 2498 2499 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2500 2501 return 0; 2502 2503 out_delete_hw_queues: 2504 nvme_fc_delete_hw_io_queues(ctrl); 2505 out_free_io_queues: 2506 nvme_fc_free_io_queues(ctrl); 2507 return ret; 2508 } 2509 2510 static void 2511 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2512 { 2513 struct nvme_fc_lport *lport = rport->lport; 2514 2515 atomic_inc(&lport->act_rport_cnt); 2516 } 2517 2518 static void 2519 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2520 { 2521 struct nvme_fc_lport *lport = rport->lport; 2522 u32 cnt; 2523 2524 cnt = atomic_dec_return(&lport->act_rport_cnt); 2525 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2526 lport->ops->localport_delete(&lport->localport); 2527 } 2528 2529 static int 2530 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2531 { 2532 struct nvme_fc_rport *rport = ctrl->rport; 2533 u32 cnt; 2534 2535 if (ctrl->assoc_active) 2536 return 1; 2537 2538 ctrl->assoc_active = true; 2539 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2540 if (cnt == 1) 2541 nvme_fc_rport_active_on_lport(rport); 2542 2543 return 0; 2544 } 2545 2546 static int 2547 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2548 { 2549 struct nvme_fc_rport *rport = ctrl->rport; 2550 struct nvme_fc_lport *lport = rport->lport; 2551 u32 cnt; 2552 2553 /* ctrl->assoc_active=false will be set independently */ 2554 2555 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2556 if (cnt == 0) { 2557 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2558 lport->ops->remoteport_delete(&rport->remoteport); 2559 nvme_fc_rport_inactive_on_lport(rport); 2560 } 2561 2562 return 0; 2563 } 2564 2565 /* 2566 * This routine restarts the controller on the host side, and 2567 * on the link side, recreates the controller association. 2568 */ 2569 static int 2570 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2571 { 2572 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2573 int ret; 2574 bool changed; 2575 2576 ++ctrl->ctrl.nr_reconnects; 2577 2578 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2579 return -ENODEV; 2580 2581 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2582 return -ENOTUNIQ; 2583 2584 /* 2585 * Create the admin queue 2586 */ 2587 2588 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2589 NVME_AQ_DEPTH); 2590 if (ret) 2591 goto out_free_queue; 2592 2593 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2594 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 2595 if (ret) 2596 goto out_delete_hw_queue; 2597 2598 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2599 2600 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2601 if (ret) 2602 goto out_disconnect_admin_queue; 2603 2604 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2605 2606 /* 2607 * Check controller capabilities 2608 * 2609 * todo:- add code to check if ctrl attributes changed from 2610 * prior connection values 2611 */ 2612 2613 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 2614 if (ret) { 2615 dev_err(ctrl->ctrl.device, 2616 "prop_get NVME_REG_CAP failed\n"); 2617 goto out_disconnect_admin_queue; 2618 } 2619 2620 ctrl->ctrl.sqsize = 2621 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); 2622 2623 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 2624 if (ret) 2625 goto out_disconnect_admin_queue; 2626 2627 ctrl->ctrl.max_hw_sectors = 2628 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2629 2630 ret = nvme_init_identify(&ctrl->ctrl); 2631 if (ret) 2632 goto out_disconnect_admin_queue; 2633 2634 /* sanity checks */ 2635 2636 /* FC-NVME does not have other data in the capsule */ 2637 if (ctrl->ctrl.icdoff) { 2638 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2639 ctrl->ctrl.icdoff); 2640 goto out_disconnect_admin_queue; 2641 } 2642 2643 /* FC-NVME supports normal SGL Data Block Descriptors */ 2644 2645 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2646 /* warn if maxcmd is lower than queue_size */ 2647 dev_warn(ctrl->ctrl.device, 2648 "queue_size %zu > ctrl maxcmd %u, reducing " 2649 "to queue_size\n", 2650 opts->queue_size, ctrl->ctrl.maxcmd); 2651 opts->queue_size = ctrl->ctrl.maxcmd; 2652 } 2653 2654 if (opts->queue_size > ctrl->ctrl.sqsize + 1) { 2655 /* warn if sqsize is lower than queue_size */ 2656 dev_warn(ctrl->ctrl.device, 2657 "queue_size %zu > ctrl sqsize %u, clamping down\n", 2658 opts->queue_size, ctrl->ctrl.sqsize + 1); 2659 opts->queue_size = ctrl->ctrl.sqsize + 1; 2660 } 2661 2662 ret = nvme_fc_init_aen_ops(ctrl); 2663 if (ret) 2664 goto out_term_aen_ops; 2665 2666 /* 2667 * Create the io queues 2668 */ 2669 2670 if (ctrl->ctrl.queue_count > 1) { 2671 if (!ctrl->ioq_live) 2672 ret = nvme_fc_create_io_queues(ctrl); 2673 else 2674 ret = nvme_fc_recreate_io_queues(ctrl); 2675 if (ret) 2676 goto out_term_aen_ops; 2677 } 2678 2679 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2680 2681 ctrl->ctrl.nr_reconnects = 0; 2682 2683 if (changed) 2684 nvme_start_ctrl(&ctrl->ctrl); 2685 2686 return 0; /* Success */ 2687 2688 out_term_aen_ops: 2689 nvme_fc_term_aen_ops(ctrl); 2690 out_disconnect_admin_queue: 2691 /* send a Disconnect(association) LS to fc-nvme target */ 2692 nvme_fc_xmt_disconnect_assoc(ctrl); 2693 out_delete_hw_queue: 2694 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2695 out_free_queue: 2696 nvme_fc_free_queue(&ctrl->queues[0]); 2697 ctrl->assoc_active = false; 2698 nvme_fc_ctlr_inactive_on_rport(ctrl); 2699 2700 return ret; 2701 } 2702 2703 /* 2704 * This routine stops operation of the controller on the host side. 2705 * On the host os stack side: Admin and IO queues are stopped, 2706 * outstanding ios on them terminated via FC ABTS. 2707 * On the link side: the association is terminated. 2708 */ 2709 static void 2710 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2711 { 2712 unsigned long flags; 2713 2714 if (!ctrl->assoc_active) 2715 return; 2716 ctrl->assoc_active = false; 2717 2718 spin_lock_irqsave(&ctrl->lock, flags); 2719 ctrl->flags |= FCCTRL_TERMIO; 2720 ctrl->iocnt = 0; 2721 spin_unlock_irqrestore(&ctrl->lock, flags); 2722 2723 /* 2724 * If io queues are present, stop them and terminate all outstanding 2725 * ios on them. As FC allocates FC exchange for each io, the 2726 * transport must contact the LLDD to terminate the exchange, 2727 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2728 * to tell us what io's are busy and invoke a transport routine 2729 * to kill them with the LLDD. After terminating the exchange 2730 * the LLDD will call the transport's normal io done path, but it 2731 * will have an aborted status. The done path will return the 2732 * io requests back to the block layer as part of normal completions 2733 * (but with error status). 2734 */ 2735 if (ctrl->ctrl.queue_count > 1) { 2736 nvme_stop_queues(&ctrl->ctrl); 2737 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2738 nvme_fc_terminate_exchange, &ctrl->ctrl); 2739 } 2740 2741 /* 2742 * Other transports, which don't have link-level contexts bound 2743 * to sqe's, would try to gracefully shutdown the controller by 2744 * writing the registers for shutdown and polling (call 2745 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2746 * just aborted and we will wait on those contexts, and given 2747 * there was no indication of how live the controlelr is on the 2748 * link, don't send more io to create more contexts for the 2749 * shutdown. Let the controller fail via keepalive failure if 2750 * its still present. 2751 */ 2752 2753 /* 2754 * clean up the admin queue. Same thing as above. 2755 * use blk_mq_tagset_busy_itr() and the transport routine to 2756 * terminate the exchanges. 2757 */ 2758 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2759 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2760 nvme_fc_terminate_exchange, &ctrl->ctrl); 2761 2762 /* kill the aens as they are a separate path */ 2763 nvme_fc_abort_aen_ops(ctrl); 2764 2765 /* wait for all io that had to be aborted */ 2766 spin_lock_irq(&ctrl->lock); 2767 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2768 ctrl->flags &= ~FCCTRL_TERMIO; 2769 spin_unlock_irq(&ctrl->lock); 2770 2771 nvme_fc_term_aen_ops(ctrl); 2772 2773 /* 2774 * send a Disconnect(association) LS to fc-nvme target 2775 * Note: could have been sent at top of process, but 2776 * cleaner on link traffic if after the aborts complete. 2777 * Note: if association doesn't exist, association_id will be 0 2778 */ 2779 if (ctrl->association_id) 2780 nvme_fc_xmt_disconnect_assoc(ctrl); 2781 2782 if (ctrl->ctrl.tagset) { 2783 nvme_fc_delete_hw_io_queues(ctrl); 2784 nvme_fc_free_io_queues(ctrl); 2785 } 2786 2787 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2788 nvme_fc_free_queue(&ctrl->queues[0]); 2789 2790 /* re-enable the admin_q so anything new can fast fail */ 2791 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2792 2793 /* resume the io queues so that things will fast fail */ 2794 nvme_start_queues(&ctrl->ctrl); 2795 2796 nvme_fc_ctlr_inactive_on_rport(ctrl); 2797 } 2798 2799 static void 2800 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2801 { 2802 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2803 2804 cancel_delayed_work_sync(&ctrl->connect_work); 2805 /* 2806 * kill the association on the link side. this will block 2807 * waiting for io to terminate 2808 */ 2809 nvme_fc_delete_association(ctrl); 2810 } 2811 2812 static void 2813 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2814 { 2815 struct nvme_fc_rport *rport = ctrl->rport; 2816 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2817 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2818 bool recon = true; 2819 2820 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) 2821 return; 2822 2823 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2824 dev_info(ctrl->ctrl.device, 2825 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2826 ctrl->cnum, status); 2827 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2828 recon = false; 2829 2830 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2831 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2832 dev_info(ctrl->ctrl.device, 2833 "NVME-FC{%d}: Reconnect attempt in %ld " 2834 "seconds\n", 2835 ctrl->cnum, recon_delay / HZ); 2836 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2837 recon_delay = rport->dev_loss_end - jiffies; 2838 2839 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2840 } else { 2841 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2842 dev_warn(ctrl->ctrl.device, 2843 "NVME-FC{%d}: Max reconnect attempts (%d) " 2844 "reached.\n", 2845 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2846 else 2847 dev_warn(ctrl->ctrl.device, 2848 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2849 "while waiting for remoteport connectivity.\n", 2850 ctrl->cnum, portptr->dev_loss_tmo); 2851 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2852 } 2853 } 2854 2855 static void 2856 nvme_fc_reset_ctrl_work(struct work_struct *work) 2857 { 2858 struct nvme_fc_ctrl *ctrl = 2859 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2860 int ret; 2861 2862 nvme_stop_ctrl(&ctrl->ctrl); 2863 2864 /* will block will waiting for io to terminate */ 2865 nvme_fc_delete_association(ctrl); 2866 2867 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 2868 dev_err(ctrl->ctrl.device, 2869 "NVME-FC{%d}: error_recovery: Couldn't change state " 2870 "to CONNECTING\n", ctrl->cnum); 2871 return; 2872 } 2873 2874 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 2875 ret = nvme_fc_create_association(ctrl); 2876 else 2877 ret = -ENOTCONN; 2878 2879 if (ret) 2880 nvme_fc_reconnect_or_delete(ctrl, ret); 2881 else 2882 dev_info(ctrl->ctrl.device, 2883 "NVME-FC{%d}: controller reset complete\n", 2884 ctrl->cnum); 2885 } 2886 2887 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 2888 .name = "fc", 2889 .module = THIS_MODULE, 2890 .flags = NVME_F_FABRICS, 2891 .reg_read32 = nvmf_reg_read32, 2892 .reg_read64 = nvmf_reg_read64, 2893 .reg_write32 = nvmf_reg_write32, 2894 .free_ctrl = nvme_fc_nvme_ctrl_freed, 2895 .submit_async_event = nvme_fc_submit_async_event, 2896 .delete_ctrl = nvme_fc_delete_ctrl, 2897 .get_address = nvmf_get_address, 2898 }; 2899 2900 static void 2901 nvme_fc_connect_ctrl_work(struct work_struct *work) 2902 { 2903 int ret; 2904 2905 struct nvme_fc_ctrl *ctrl = 2906 container_of(to_delayed_work(work), 2907 struct nvme_fc_ctrl, connect_work); 2908 2909 ret = nvme_fc_create_association(ctrl); 2910 if (ret) 2911 nvme_fc_reconnect_or_delete(ctrl, ret); 2912 else 2913 dev_info(ctrl->ctrl.device, 2914 "NVME-FC{%d}: controller connect complete\n", 2915 ctrl->cnum); 2916 } 2917 2918 2919 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 2920 .queue_rq = nvme_fc_queue_rq, 2921 .complete = nvme_fc_complete_rq, 2922 .init_request = nvme_fc_init_request, 2923 .exit_request = nvme_fc_exit_request, 2924 .init_hctx = nvme_fc_init_admin_hctx, 2925 .timeout = nvme_fc_timeout, 2926 }; 2927 2928 2929 /* 2930 * Fails a controller request if it matches an existing controller 2931 * (association) with the same tuple: 2932 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 2933 * 2934 * The ports don't need to be compared as they are intrinsically 2935 * already matched by the port pointers supplied. 2936 */ 2937 static bool 2938 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 2939 struct nvmf_ctrl_options *opts) 2940 { 2941 struct nvme_fc_ctrl *ctrl; 2942 unsigned long flags; 2943 bool found = false; 2944 2945 spin_lock_irqsave(&rport->lock, flags); 2946 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 2947 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 2948 if (found) 2949 break; 2950 } 2951 spin_unlock_irqrestore(&rport->lock, flags); 2952 2953 return found; 2954 } 2955 2956 static struct nvme_ctrl * 2957 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 2958 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 2959 { 2960 struct nvme_fc_ctrl *ctrl; 2961 unsigned long flags; 2962 int ret, idx; 2963 2964 if (!(rport->remoteport.port_role & 2965 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 2966 ret = -EBADR; 2967 goto out_fail; 2968 } 2969 2970 if (!opts->duplicate_connect && 2971 nvme_fc_existing_controller(rport, opts)) { 2972 ret = -EALREADY; 2973 goto out_fail; 2974 } 2975 2976 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 2977 if (!ctrl) { 2978 ret = -ENOMEM; 2979 goto out_fail; 2980 } 2981 2982 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 2983 if (idx < 0) { 2984 ret = -ENOSPC; 2985 goto out_free_ctrl; 2986 } 2987 2988 ctrl->ctrl.opts = opts; 2989 ctrl->ctrl.nr_reconnects = 0; 2990 INIT_LIST_HEAD(&ctrl->ctrl_list); 2991 ctrl->lport = lport; 2992 ctrl->rport = rport; 2993 ctrl->dev = lport->dev; 2994 ctrl->cnum = idx; 2995 ctrl->ioq_live = false; 2996 ctrl->assoc_active = false; 2997 init_waitqueue_head(&ctrl->ioabort_wait); 2998 2999 get_device(ctrl->dev); 3000 kref_init(&ctrl->ref); 3001 3002 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3003 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3004 spin_lock_init(&ctrl->lock); 3005 3006 /* io queue count */ 3007 ctrl->ctrl.queue_count = min_t(unsigned int, 3008 opts->nr_io_queues, 3009 lport->ops->max_hw_queues); 3010 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3011 3012 ctrl->ctrl.sqsize = opts->queue_size - 1; 3013 ctrl->ctrl.kato = opts->kato; 3014 ctrl->ctrl.cntlid = 0xffff; 3015 3016 ret = -ENOMEM; 3017 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3018 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3019 if (!ctrl->queues) 3020 goto out_free_ida; 3021 3022 nvme_fc_init_queue(ctrl, 0); 3023 3024 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3025 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3026 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3027 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3028 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 3029 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 3030 (SG_CHUNK_SIZE * 3031 sizeof(struct scatterlist)) + 3032 ctrl->lport->ops->fcprqst_priv_sz; 3033 ctrl->admin_tag_set.driver_data = ctrl; 3034 ctrl->admin_tag_set.nr_hw_queues = 1; 3035 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3036 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3037 3038 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3039 if (ret) 3040 goto out_free_queues; 3041 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3042 3043 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3044 if (IS_ERR(ctrl->ctrl.admin_q)) { 3045 ret = PTR_ERR(ctrl->ctrl.admin_q); 3046 goto out_free_admin_tag_set; 3047 } 3048 3049 /* 3050 * Would have been nice to init io queues tag set as well. 3051 * However, we require interaction from the controller 3052 * for max io queue count before we can do so. 3053 * Defer this to the connect path. 3054 */ 3055 3056 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3057 if (ret) 3058 goto out_cleanup_admin_q; 3059 3060 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3061 3062 spin_lock_irqsave(&rport->lock, flags); 3063 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3064 spin_unlock_irqrestore(&rport->lock, flags); 3065 3066 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3067 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3068 dev_err(ctrl->ctrl.device, 3069 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3070 goto fail_ctrl; 3071 } 3072 3073 nvme_get_ctrl(&ctrl->ctrl); 3074 3075 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3076 nvme_put_ctrl(&ctrl->ctrl); 3077 dev_err(ctrl->ctrl.device, 3078 "NVME-FC{%d}: failed to schedule initial connect\n", 3079 ctrl->cnum); 3080 goto fail_ctrl; 3081 } 3082 3083 flush_delayed_work(&ctrl->connect_work); 3084 3085 dev_info(ctrl->ctrl.device, 3086 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3087 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3088 3089 return &ctrl->ctrl; 3090 3091 fail_ctrl: 3092 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3093 cancel_work_sync(&ctrl->ctrl.reset_work); 3094 cancel_delayed_work_sync(&ctrl->connect_work); 3095 3096 ctrl->ctrl.opts = NULL; 3097 3098 /* initiate nvme ctrl ref counting teardown */ 3099 nvme_uninit_ctrl(&ctrl->ctrl); 3100 3101 /* Remove core ctrl ref. */ 3102 nvme_put_ctrl(&ctrl->ctrl); 3103 3104 /* as we're past the point where we transition to the ref 3105 * counting teardown path, if we return a bad pointer here, 3106 * the calling routine, thinking it's prior to the 3107 * transition, will do an rport put. Since the teardown 3108 * path also does a rport put, we do an extra get here to 3109 * so proper order/teardown happens. 3110 */ 3111 nvme_fc_rport_get(rport); 3112 3113 return ERR_PTR(-EIO); 3114 3115 out_cleanup_admin_q: 3116 blk_cleanup_queue(ctrl->ctrl.admin_q); 3117 out_free_admin_tag_set: 3118 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3119 out_free_queues: 3120 kfree(ctrl->queues); 3121 out_free_ida: 3122 put_device(ctrl->dev); 3123 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3124 out_free_ctrl: 3125 kfree(ctrl); 3126 out_fail: 3127 /* exit via here doesn't follow ctlr ref points */ 3128 return ERR_PTR(ret); 3129 } 3130 3131 3132 struct nvmet_fc_traddr { 3133 u64 nn; 3134 u64 pn; 3135 }; 3136 3137 static int 3138 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3139 { 3140 u64 token64; 3141 3142 if (match_u64(sstr, &token64)) 3143 return -EINVAL; 3144 *val = token64; 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * This routine validates and extracts the WWN's from the TRADDR string. 3151 * As kernel parsers need the 0x to determine number base, universally 3152 * build string to parse with 0x prefix before parsing name strings. 3153 */ 3154 static int 3155 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3156 { 3157 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3158 substring_t wwn = { name, &name[sizeof(name)-1] }; 3159 int nnoffset, pnoffset; 3160 3161 /* validate it string one of the 2 allowed formats */ 3162 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3163 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3164 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3165 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3166 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3167 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3168 NVME_FC_TRADDR_OXNNLEN; 3169 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3170 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3171 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3172 "pn-", NVME_FC_TRADDR_NNLEN))) { 3173 nnoffset = NVME_FC_TRADDR_NNLEN; 3174 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3175 } else 3176 goto out_einval; 3177 3178 name[0] = '0'; 3179 name[1] = 'x'; 3180 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3181 3182 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3183 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3184 goto out_einval; 3185 3186 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3187 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3188 goto out_einval; 3189 3190 return 0; 3191 3192 out_einval: 3193 pr_warn("%s: bad traddr string\n", __func__); 3194 return -EINVAL; 3195 } 3196 3197 static struct nvme_ctrl * 3198 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3199 { 3200 struct nvme_fc_lport *lport; 3201 struct nvme_fc_rport *rport; 3202 struct nvme_ctrl *ctrl; 3203 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3204 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3205 unsigned long flags; 3206 int ret; 3207 3208 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3209 if (ret || !raddr.nn || !raddr.pn) 3210 return ERR_PTR(-EINVAL); 3211 3212 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3213 if (ret || !laddr.nn || !laddr.pn) 3214 return ERR_PTR(-EINVAL); 3215 3216 /* find the host and remote ports to connect together */ 3217 spin_lock_irqsave(&nvme_fc_lock, flags); 3218 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3219 if (lport->localport.node_name != laddr.nn || 3220 lport->localport.port_name != laddr.pn) 3221 continue; 3222 3223 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3224 if (rport->remoteport.node_name != raddr.nn || 3225 rport->remoteport.port_name != raddr.pn) 3226 continue; 3227 3228 /* if fail to get reference fall through. Will error */ 3229 if (!nvme_fc_rport_get(rport)) 3230 break; 3231 3232 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3233 3234 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3235 if (IS_ERR(ctrl)) 3236 nvme_fc_rport_put(rport); 3237 return ctrl; 3238 } 3239 } 3240 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3241 3242 pr_warn("%s: %s - %s combination not found\n", 3243 __func__, opts->traddr, opts->host_traddr); 3244 return ERR_PTR(-ENOENT); 3245 } 3246 3247 3248 static struct nvmf_transport_ops nvme_fc_transport = { 3249 .name = "fc", 3250 .module = THIS_MODULE, 3251 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3252 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3253 .create_ctrl = nvme_fc_create_ctrl, 3254 }; 3255 3256 static int __init nvme_fc_init_module(void) 3257 { 3258 int ret; 3259 3260 /* 3261 * NOTE: 3262 * It is expected that in the future the kernel will combine 3263 * the FC-isms that are currently under scsi and now being 3264 * added to by NVME into a new standalone FC class. The SCSI 3265 * and NVME protocols and their devices would be under this 3266 * new FC class. 3267 * 3268 * As we need something to post FC-specific udev events to, 3269 * specifically for nvme probe events, start by creating the 3270 * new device class. When the new standalone FC class is 3271 * put in place, this code will move to a more generic 3272 * location for the class. 3273 */ 3274 fc_class = class_create(THIS_MODULE, "fc"); 3275 if (IS_ERR(fc_class)) { 3276 pr_err("couldn't register class fc\n"); 3277 return PTR_ERR(fc_class); 3278 } 3279 3280 /* 3281 * Create a device for the FC-centric udev events 3282 */ 3283 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL, 3284 "fc_udev_device"); 3285 if (IS_ERR(fc_udev_device)) { 3286 pr_err("couldn't create fc_udev device!\n"); 3287 ret = PTR_ERR(fc_udev_device); 3288 goto out_destroy_class; 3289 } 3290 3291 ret = nvmf_register_transport(&nvme_fc_transport); 3292 if (ret) 3293 goto out_destroy_device; 3294 3295 return 0; 3296 3297 out_destroy_device: 3298 device_destroy(fc_class, MKDEV(0, 0)); 3299 out_destroy_class: 3300 class_destroy(fc_class); 3301 return ret; 3302 } 3303 3304 static void __exit nvme_fc_exit_module(void) 3305 { 3306 /* sanity check - all lports should be removed */ 3307 if (!list_empty(&nvme_fc_lport_list)) 3308 pr_warn("%s: localport list not empty\n", __func__); 3309 3310 nvmf_unregister_transport(&nvme_fc_transport); 3311 3312 ida_destroy(&nvme_fc_local_port_cnt); 3313 ida_destroy(&nvme_fc_ctrl_cnt); 3314 3315 device_destroy(fc_class, MKDEV(0, 0)); 3316 class_destroy(fc_class); 3317 } 3318 3319 module_init(nvme_fc_init_module); 3320 module_exit(nvme_fc_exit_module); 3321 3322 MODULE_LICENSE("GPL v2"); 3323