xref: /linux/drivers/nvme/host/fc.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 enum nvme_fc_queue_flags {
23 	NVME_FC_Q_CONNECTED = 0,
24 	NVME_FC_Q_LIVE,
25 };
26 
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
28 
29 struct nvme_fc_queue {
30 	struct nvme_fc_ctrl	*ctrl;
31 	struct device		*dev;
32 	struct blk_mq_hw_ctx	*hctx;
33 	void			*lldd_handle;
34 	size_t			cmnd_capsule_len;
35 	u32			qnum;
36 	u32			rqcnt;
37 	u32			seqno;
38 
39 	u64			connection_id;
40 	atomic_t		csn;
41 
42 	unsigned long		flags;
43 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
44 
45 enum nvme_fcop_flags {
46 	FCOP_FLAGS_TERMIO	= (1 << 0),
47 	FCOP_FLAGS_AEN		= (1 << 1),
48 };
49 
50 struct nvmefc_ls_req_op {
51 	struct nvmefc_ls_req	ls_req;
52 
53 	struct nvme_fc_rport	*rport;
54 	struct nvme_fc_queue	*queue;
55 	struct request		*rq;
56 	u32			flags;
57 
58 	int			ls_error;
59 	struct completion	ls_done;
60 	struct list_head	lsreq_list;	/* rport->ls_req_list */
61 	bool			req_queued;
62 };
63 
64 enum nvme_fcpop_state {
65 	FCPOP_STATE_UNINIT	= 0,
66 	FCPOP_STATE_IDLE	= 1,
67 	FCPOP_STATE_ACTIVE	= 2,
68 	FCPOP_STATE_ABORTED	= 3,
69 	FCPOP_STATE_COMPLETE	= 4,
70 };
71 
72 struct nvme_fc_fcp_op {
73 	struct nvme_request	nreq;		/*
74 						 * nvme/host/core.c
75 						 * requires this to be
76 						 * the 1st element in the
77 						 * private structure
78 						 * associated with the
79 						 * request.
80 						 */
81 	struct nvmefc_fcp_req	fcp_req;
82 
83 	struct nvme_fc_ctrl	*ctrl;
84 	struct nvme_fc_queue	*queue;
85 	struct request		*rq;
86 
87 	atomic_t		state;
88 	u32			flags;
89 	u32			rqno;
90 	u32			nents;
91 
92 	struct nvme_fc_cmd_iu	cmd_iu;
93 	struct nvme_fc_ersp_iu	rsp_iu;
94 };
95 
96 struct nvme_fcp_op_w_sgl {
97 	struct nvme_fc_fcp_op	op;
98 	struct scatterlist	sgl[SG_CHUNK_SIZE];
99 	uint8_t			priv[0];
100 };
101 
102 struct nvme_fc_lport {
103 	struct nvme_fc_local_port	localport;
104 
105 	struct ida			endp_cnt;
106 	struct list_head		port_list;	/* nvme_fc_port_list */
107 	struct list_head		endp_list;
108 	struct device			*dev;	/* physical device for dma */
109 	struct nvme_fc_port_template	*ops;
110 	struct kref			ref;
111 	atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
113 
114 struct nvme_fc_rport {
115 	struct nvme_fc_remote_port	remoteport;
116 
117 	struct list_head		endp_list; /* for lport->endp_list */
118 	struct list_head		ctrl_list;
119 	struct list_head		ls_req_list;
120 	struct list_head		disc_list;
121 	struct device			*dev;	/* physical device for dma */
122 	struct nvme_fc_lport		*lport;
123 	spinlock_t			lock;
124 	struct kref			ref;
125 	atomic_t                        act_ctrl_cnt;
126 	unsigned long			dev_loss_end;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 enum nvme_fcctrl_flags {
130 	FCCTRL_TERMIO		= (1 << 0),
131 };
132 
133 struct nvme_fc_ctrl {
134 	spinlock_t		lock;
135 	struct nvme_fc_queue	*queues;
136 	struct device		*dev;
137 	struct nvme_fc_lport	*lport;
138 	struct nvme_fc_rport	*rport;
139 	u32			cnum;
140 
141 	bool			ioq_live;
142 	bool			assoc_active;
143 	atomic_t		err_work_active;
144 	u64			association_id;
145 
146 	struct list_head	ctrl_list;	/* rport->ctrl_list */
147 
148 	struct blk_mq_tag_set	admin_tag_set;
149 	struct blk_mq_tag_set	tag_set;
150 
151 	struct delayed_work	connect_work;
152 	struct work_struct	err_work;
153 
154 	struct kref		ref;
155 	u32			flags;
156 	u32			iocnt;
157 	wait_queue_head_t	ioabort_wait;
158 
159 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
160 
161 	struct nvme_ctrl	ctrl;
162 };
163 
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169 
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173 	return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175 
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179 	return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181 
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187 
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193 
194 
195 
196 /* *************************** Globals **************************** */
197 
198 
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200 
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204 
205 
206 
207 /*
208  * These items are short-term. They will eventually be moved into
209  * a generic FC class. See comments in module init.
210  */
211 static struct device *fc_udev_device;
212 
213 
214 /* *********************** FC-NVME Port Management ************************ */
215 
216 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
217 			struct nvme_fc_queue *, unsigned int);
218 
219 static void
220 nvme_fc_free_lport(struct kref *ref)
221 {
222 	struct nvme_fc_lport *lport =
223 		container_of(ref, struct nvme_fc_lport, ref);
224 	unsigned long flags;
225 
226 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
227 	WARN_ON(!list_empty(&lport->endp_list));
228 
229 	/* remove from transport list */
230 	spin_lock_irqsave(&nvme_fc_lock, flags);
231 	list_del(&lport->port_list);
232 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
233 
234 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
235 	ida_destroy(&lport->endp_cnt);
236 
237 	put_device(lport->dev);
238 
239 	kfree(lport);
240 }
241 
242 static void
243 nvme_fc_lport_put(struct nvme_fc_lport *lport)
244 {
245 	kref_put(&lport->ref, nvme_fc_free_lport);
246 }
247 
248 static int
249 nvme_fc_lport_get(struct nvme_fc_lport *lport)
250 {
251 	return kref_get_unless_zero(&lport->ref);
252 }
253 
254 
255 static struct nvme_fc_lport *
256 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
257 			struct nvme_fc_port_template *ops,
258 			struct device *dev)
259 {
260 	struct nvme_fc_lport *lport;
261 	unsigned long flags;
262 
263 	spin_lock_irqsave(&nvme_fc_lock, flags);
264 
265 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
266 		if (lport->localport.node_name != pinfo->node_name ||
267 		    lport->localport.port_name != pinfo->port_name)
268 			continue;
269 
270 		if (lport->dev != dev) {
271 			lport = ERR_PTR(-EXDEV);
272 			goto out_done;
273 		}
274 
275 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
276 			lport = ERR_PTR(-EEXIST);
277 			goto out_done;
278 		}
279 
280 		if (!nvme_fc_lport_get(lport)) {
281 			/*
282 			 * fails if ref cnt already 0. If so,
283 			 * act as if lport already deleted
284 			 */
285 			lport = NULL;
286 			goto out_done;
287 		}
288 
289 		/* resume the lport */
290 
291 		lport->ops = ops;
292 		lport->localport.port_role = pinfo->port_role;
293 		lport->localport.port_id = pinfo->port_id;
294 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
295 
296 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
297 
298 		return lport;
299 	}
300 
301 	lport = NULL;
302 
303 out_done:
304 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
305 
306 	return lport;
307 }
308 
309 /**
310  * nvme_fc_register_localport - transport entry point called by an
311  *                              LLDD to register the existence of a NVME
312  *                              host FC port.
313  * @pinfo:     pointer to information about the port to be registered
314  * @template:  LLDD entrypoints and operational parameters for the port
315  * @dev:       physical hardware device node port corresponds to. Will be
316  *             used for DMA mappings
317  * @portptr:   pointer to a local port pointer. Upon success, the routine
318  *             will allocate a nvme_fc_local_port structure and place its
319  *             address in the local port pointer. Upon failure, local port
320  *             pointer will be set to 0.
321  *
322  * Returns:
323  * a completion status. Must be 0 upon success; a negative errno
324  * (ex: -ENXIO) upon failure.
325  */
326 int
327 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
328 			struct nvme_fc_port_template *template,
329 			struct device *dev,
330 			struct nvme_fc_local_port **portptr)
331 {
332 	struct nvme_fc_lport *newrec;
333 	unsigned long flags;
334 	int ret, idx;
335 
336 	if (!template->localport_delete || !template->remoteport_delete ||
337 	    !template->ls_req || !template->fcp_io ||
338 	    !template->ls_abort || !template->fcp_abort ||
339 	    !template->max_hw_queues || !template->max_sgl_segments ||
340 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
341 		ret = -EINVAL;
342 		goto out_reghost_failed;
343 	}
344 
345 	/*
346 	 * look to see if there is already a localport that had been
347 	 * deregistered and in the process of waiting for all the
348 	 * references to fully be removed.  If the references haven't
349 	 * expired, we can simply re-enable the localport. Remoteports
350 	 * and controller reconnections should resume naturally.
351 	 */
352 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
353 
354 	/* found an lport, but something about its state is bad */
355 	if (IS_ERR(newrec)) {
356 		ret = PTR_ERR(newrec);
357 		goto out_reghost_failed;
358 
359 	/* found existing lport, which was resumed */
360 	} else if (newrec) {
361 		*portptr = &newrec->localport;
362 		return 0;
363 	}
364 
365 	/* nothing found - allocate a new localport struct */
366 
367 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
368 			 GFP_KERNEL);
369 	if (!newrec) {
370 		ret = -ENOMEM;
371 		goto out_reghost_failed;
372 	}
373 
374 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
375 	if (idx < 0) {
376 		ret = -ENOSPC;
377 		goto out_fail_kfree;
378 	}
379 
380 	if (!get_device(dev) && dev) {
381 		ret = -ENODEV;
382 		goto out_ida_put;
383 	}
384 
385 	INIT_LIST_HEAD(&newrec->port_list);
386 	INIT_LIST_HEAD(&newrec->endp_list);
387 	kref_init(&newrec->ref);
388 	atomic_set(&newrec->act_rport_cnt, 0);
389 	newrec->ops = template;
390 	newrec->dev = dev;
391 	ida_init(&newrec->endp_cnt);
392 	newrec->localport.private = &newrec[1];
393 	newrec->localport.node_name = pinfo->node_name;
394 	newrec->localport.port_name = pinfo->port_name;
395 	newrec->localport.port_role = pinfo->port_role;
396 	newrec->localport.port_id = pinfo->port_id;
397 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
398 	newrec->localport.port_num = idx;
399 
400 	spin_lock_irqsave(&nvme_fc_lock, flags);
401 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
402 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
403 
404 	if (dev)
405 		dma_set_seg_boundary(dev, template->dma_boundary);
406 
407 	*portptr = &newrec->localport;
408 	return 0;
409 
410 out_ida_put:
411 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
412 out_fail_kfree:
413 	kfree(newrec);
414 out_reghost_failed:
415 	*portptr = NULL;
416 
417 	return ret;
418 }
419 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
420 
421 /**
422  * nvme_fc_unregister_localport - transport entry point called by an
423  *                              LLDD to deregister/remove a previously
424  *                              registered a NVME host FC port.
425  * @portptr: pointer to the (registered) local port that is to be deregistered.
426  *
427  * Returns:
428  * a completion status. Must be 0 upon success; a negative errno
429  * (ex: -ENXIO) upon failure.
430  */
431 int
432 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
433 {
434 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
435 	unsigned long flags;
436 
437 	if (!portptr)
438 		return -EINVAL;
439 
440 	spin_lock_irqsave(&nvme_fc_lock, flags);
441 
442 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
443 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
444 		return -EINVAL;
445 	}
446 	portptr->port_state = FC_OBJSTATE_DELETED;
447 
448 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 
450 	if (atomic_read(&lport->act_rport_cnt) == 0)
451 		lport->ops->localport_delete(&lport->localport);
452 
453 	nvme_fc_lport_put(lport);
454 
455 	return 0;
456 }
457 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
458 
459 /*
460  * TRADDR strings, per FC-NVME are fixed format:
461  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
462  * udev event will only differ by prefix of what field is
463  * being specified:
464  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
465  *  19 + 43 + null_fudge = 64 characters
466  */
467 #define FCNVME_TRADDR_LENGTH		64
468 
469 static void
470 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
471 		struct nvme_fc_rport *rport)
472 {
473 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
474 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
475 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
476 
477 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
478 		return;
479 
480 	snprintf(hostaddr, sizeof(hostaddr),
481 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
482 		lport->localport.node_name, lport->localport.port_name);
483 	snprintf(tgtaddr, sizeof(tgtaddr),
484 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
485 		rport->remoteport.node_name, rport->remoteport.port_name);
486 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
487 }
488 
489 static void
490 nvme_fc_free_rport(struct kref *ref)
491 {
492 	struct nvme_fc_rport *rport =
493 		container_of(ref, struct nvme_fc_rport, ref);
494 	struct nvme_fc_lport *lport =
495 			localport_to_lport(rport->remoteport.localport);
496 	unsigned long flags;
497 
498 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
499 	WARN_ON(!list_empty(&rport->ctrl_list));
500 
501 	/* remove from lport list */
502 	spin_lock_irqsave(&nvme_fc_lock, flags);
503 	list_del(&rport->endp_list);
504 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
505 
506 	WARN_ON(!list_empty(&rport->disc_list));
507 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
508 
509 	kfree(rport);
510 
511 	nvme_fc_lport_put(lport);
512 }
513 
514 static void
515 nvme_fc_rport_put(struct nvme_fc_rport *rport)
516 {
517 	kref_put(&rport->ref, nvme_fc_free_rport);
518 }
519 
520 static int
521 nvme_fc_rport_get(struct nvme_fc_rport *rport)
522 {
523 	return kref_get_unless_zero(&rport->ref);
524 }
525 
526 static void
527 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
528 {
529 	switch (ctrl->ctrl.state) {
530 	case NVME_CTRL_NEW:
531 	case NVME_CTRL_CONNECTING:
532 		/*
533 		 * As all reconnects were suppressed, schedule a
534 		 * connect.
535 		 */
536 		dev_info(ctrl->ctrl.device,
537 			"NVME-FC{%d}: connectivity re-established. "
538 			"Attempting reconnect\n", ctrl->cnum);
539 
540 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
541 		break;
542 
543 	case NVME_CTRL_RESETTING:
544 		/*
545 		 * Controller is already in the process of terminating the
546 		 * association. No need to do anything further. The reconnect
547 		 * step will naturally occur after the reset completes.
548 		 */
549 		break;
550 
551 	default:
552 		/* no action to take - let it delete */
553 		break;
554 	}
555 }
556 
557 static struct nvme_fc_rport *
558 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
559 				struct nvme_fc_port_info *pinfo)
560 {
561 	struct nvme_fc_rport *rport;
562 	struct nvme_fc_ctrl *ctrl;
563 	unsigned long flags;
564 
565 	spin_lock_irqsave(&nvme_fc_lock, flags);
566 
567 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
568 		if (rport->remoteport.node_name != pinfo->node_name ||
569 		    rport->remoteport.port_name != pinfo->port_name)
570 			continue;
571 
572 		if (!nvme_fc_rport_get(rport)) {
573 			rport = ERR_PTR(-ENOLCK);
574 			goto out_done;
575 		}
576 
577 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
578 
579 		spin_lock_irqsave(&rport->lock, flags);
580 
581 		/* has it been unregistered */
582 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
583 			/* means lldd called us twice */
584 			spin_unlock_irqrestore(&rport->lock, flags);
585 			nvme_fc_rport_put(rport);
586 			return ERR_PTR(-ESTALE);
587 		}
588 
589 		rport->remoteport.port_role = pinfo->port_role;
590 		rport->remoteport.port_id = pinfo->port_id;
591 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
592 		rport->dev_loss_end = 0;
593 
594 		/*
595 		 * kick off a reconnect attempt on all associations to the
596 		 * remote port. A successful reconnects will resume i/o.
597 		 */
598 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
599 			nvme_fc_resume_controller(ctrl);
600 
601 		spin_unlock_irqrestore(&rport->lock, flags);
602 
603 		return rport;
604 	}
605 
606 	rport = NULL;
607 
608 out_done:
609 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
610 
611 	return rport;
612 }
613 
614 static inline void
615 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
616 			struct nvme_fc_port_info *pinfo)
617 {
618 	if (pinfo->dev_loss_tmo)
619 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
620 	else
621 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
622 }
623 
624 /**
625  * nvme_fc_register_remoteport - transport entry point called by an
626  *                              LLDD to register the existence of a NVME
627  *                              subsystem FC port on its fabric.
628  * @localport: pointer to the (registered) local port that the remote
629  *             subsystem port is connected to.
630  * @pinfo:     pointer to information about the port to be registered
631  * @portptr:   pointer to a remote port pointer. Upon success, the routine
632  *             will allocate a nvme_fc_remote_port structure and place its
633  *             address in the remote port pointer. Upon failure, remote port
634  *             pointer will be set to 0.
635  *
636  * Returns:
637  * a completion status. Must be 0 upon success; a negative errno
638  * (ex: -ENXIO) upon failure.
639  */
640 int
641 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
642 				struct nvme_fc_port_info *pinfo,
643 				struct nvme_fc_remote_port **portptr)
644 {
645 	struct nvme_fc_lport *lport = localport_to_lport(localport);
646 	struct nvme_fc_rport *newrec;
647 	unsigned long flags;
648 	int ret, idx;
649 
650 	if (!nvme_fc_lport_get(lport)) {
651 		ret = -ESHUTDOWN;
652 		goto out_reghost_failed;
653 	}
654 
655 	/*
656 	 * look to see if there is already a remoteport that is waiting
657 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
658 	 * If so, transition to it and reconnect.
659 	 */
660 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
661 
662 	/* found an rport, but something about its state is bad */
663 	if (IS_ERR(newrec)) {
664 		ret = PTR_ERR(newrec);
665 		goto out_lport_put;
666 
667 	/* found existing rport, which was resumed */
668 	} else if (newrec) {
669 		nvme_fc_lport_put(lport);
670 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
671 		nvme_fc_signal_discovery_scan(lport, newrec);
672 		*portptr = &newrec->remoteport;
673 		return 0;
674 	}
675 
676 	/* nothing found - allocate a new remoteport struct */
677 
678 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
679 			 GFP_KERNEL);
680 	if (!newrec) {
681 		ret = -ENOMEM;
682 		goto out_lport_put;
683 	}
684 
685 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
686 	if (idx < 0) {
687 		ret = -ENOSPC;
688 		goto out_kfree_rport;
689 	}
690 
691 	INIT_LIST_HEAD(&newrec->endp_list);
692 	INIT_LIST_HEAD(&newrec->ctrl_list);
693 	INIT_LIST_HEAD(&newrec->ls_req_list);
694 	INIT_LIST_HEAD(&newrec->disc_list);
695 	kref_init(&newrec->ref);
696 	atomic_set(&newrec->act_ctrl_cnt, 0);
697 	spin_lock_init(&newrec->lock);
698 	newrec->remoteport.localport = &lport->localport;
699 	newrec->dev = lport->dev;
700 	newrec->lport = lport;
701 	newrec->remoteport.private = &newrec[1];
702 	newrec->remoteport.port_role = pinfo->port_role;
703 	newrec->remoteport.node_name = pinfo->node_name;
704 	newrec->remoteport.port_name = pinfo->port_name;
705 	newrec->remoteport.port_id = pinfo->port_id;
706 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
707 	newrec->remoteport.port_num = idx;
708 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
709 
710 	spin_lock_irqsave(&nvme_fc_lock, flags);
711 	list_add_tail(&newrec->endp_list, &lport->endp_list);
712 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
713 
714 	nvme_fc_signal_discovery_scan(lport, newrec);
715 
716 	*portptr = &newrec->remoteport;
717 	return 0;
718 
719 out_kfree_rport:
720 	kfree(newrec);
721 out_lport_put:
722 	nvme_fc_lport_put(lport);
723 out_reghost_failed:
724 	*portptr = NULL;
725 	return ret;
726 }
727 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
728 
729 static int
730 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
731 {
732 	struct nvmefc_ls_req_op *lsop;
733 	unsigned long flags;
734 
735 restart:
736 	spin_lock_irqsave(&rport->lock, flags);
737 
738 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
739 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
740 			lsop->flags |= FCOP_FLAGS_TERMIO;
741 			spin_unlock_irqrestore(&rport->lock, flags);
742 			rport->lport->ops->ls_abort(&rport->lport->localport,
743 						&rport->remoteport,
744 						&lsop->ls_req);
745 			goto restart;
746 		}
747 	}
748 	spin_unlock_irqrestore(&rport->lock, flags);
749 
750 	return 0;
751 }
752 
753 static void
754 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
755 {
756 	dev_info(ctrl->ctrl.device,
757 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
758 		"Reconnect", ctrl->cnum);
759 
760 	switch (ctrl->ctrl.state) {
761 	case NVME_CTRL_NEW:
762 	case NVME_CTRL_LIVE:
763 		/*
764 		 * Schedule a controller reset. The reset will terminate the
765 		 * association and schedule the reconnect timer.  Reconnects
766 		 * will be attempted until either the ctlr_loss_tmo
767 		 * (max_retries * connect_delay) expires or the remoteport's
768 		 * dev_loss_tmo expires.
769 		 */
770 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
771 			dev_warn(ctrl->ctrl.device,
772 				"NVME-FC{%d}: Couldn't schedule reset.\n",
773 				ctrl->cnum);
774 			nvme_delete_ctrl(&ctrl->ctrl);
775 		}
776 		break;
777 
778 	case NVME_CTRL_CONNECTING:
779 		/*
780 		 * The association has already been terminated and the
781 		 * controller is attempting reconnects.  No need to do anything
782 		 * futher.  Reconnects will be attempted until either the
783 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
784 		 * remoteport's dev_loss_tmo expires.
785 		 */
786 		break;
787 
788 	case NVME_CTRL_RESETTING:
789 		/*
790 		 * Controller is already in the process of terminating the
791 		 * association.  No need to do anything further. The reconnect
792 		 * step will kick in naturally after the association is
793 		 * terminated.
794 		 */
795 		break;
796 
797 	case NVME_CTRL_DELETING:
798 	default:
799 		/* no action to take - let it delete */
800 		break;
801 	}
802 }
803 
804 /**
805  * nvme_fc_unregister_remoteport - transport entry point called by an
806  *                              LLDD to deregister/remove a previously
807  *                              registered a NVME subsystem FC port.
808  * @portptr: pointer to the (registered) remote port that is to be
809  *           deregistered.
810  *
811  * Returns:
812  * a completion status. Must be 0 upon success; a negative errno
813  * (ex: -ENXIO) upon failure.
814  */
815 int
816 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
817 {
818 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
819 	struct nvme_fc_ctrl *ctrl;
820 	unsigned long flags;
821 
822 	if (!portptr)
823 		return -EINVAL;
824 
825 	spin_lock_irqsave(&rport->lock, flags);
826 
827 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
828 		spin_unlock_irqrestore(&rport->lock, flags);
829 		return -EINVAL;
830 	}
831 	portptr->port_state = FC_OBJSTATE_DELETED;
832 
833 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
834 
835 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
836 		/* if dev_loss_tmo==0, dev loss is immediate */
837 		if (!portptr->dev_loss_tmo) {
838 			dev_warn(ctrl->ctrl.device,
839 				"NVME-FC{%d}: controller connectivity lost.\n",
840 				ctrl->cnum);
841 			nvme_delete_ctrl(&ctrl->ctrl);
842 		} else
843 			nvme_fc_ctrl_connectivity_loss(ctrl);
844 	}
845 
846 	spin_unlock_irqrestore(&rport->lock, flags);
847 
848 	nvme_fc_abort_lsops(rport);
849 
850 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
851 		rport->lport->ops->remoteport_delete(portptr);
852 
853 	/*
854 	 * release the reference, which will allow, if all controllers
855 	 * go away, which should only occur after dev_loss_tmo occurs,
856 	 * for the rport to be torn down.
857 	 */
858 	nvme_fc_rport_put(rport);
859 
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
863 
864 /**
865  * nvme_fc_rescan_remoteport - transport entry point called by an
866  *                              LLDD to request a nvme device rescan.
867  * @remoteport: pointer to the (registered) remote port that is to be
868  *              rescanned.
869  *
870  * Returns: N/A
871  */
872 void
873 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
874 {
875 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
876 
877 	nvme_fc_signal_discovery_scan(rport->lport, rport);
878 }
879 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
880 
881 int
882 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
883 			u32 dev_loss_tmo)
884 {
885 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
886 	unsigned long flags;
887 
888 	spin_lock_irqsave(&rport->lock, flags);
889 
890 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
891 		spin_unlock_irqrestore(&rport->lock, flags);
892 		return -EINVAL;
893 	}
894 
895 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
896 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
897 
898 	spin_unlock_irqrestore(&rport->lock, flags);
899 
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
903 
904 
905 /* *********************** FC-NVME DMA Handling **************************** */
906 
907 /*
908  * The fcloop device passes in a NULL device pointer. Real LLD's will
909  * pass in a valid device pointer. If NULL is passed to the dma mapping
910  * routines, depending on the platform, it may or may not succeed, and
911  * may crash.
912  *
913  * As such:
914  * Wrapper all the dma routines and check the dev pointer.
915  *
916  * If simple mappings (return just a dma address, we'll noop them,
917  * returning a dma address of 0.
918  *
919  * On more complex mappings (dma_map_sg), a pseudo routine fills
920  * in the scatter list, setting all dma addresses to 0.
921  */
922 
923 static inline dma_addr_t
924 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
925 		enum dma_data_direction dir)
926 {
927 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
928 }
929 
930 static inline int
931 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
932 {
933 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
934 }
935 
936 static inline void
937 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
938 	enum dma_data_direction dir)
939 {
940 	if (dev)
941 		dma_unmap_single(dev, addr, size, dir);
942 }
943 
944 static inline void
945 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
946 		enum dma_data_direction dir)
947 {
948 	if (dev)
949 		dma_sync_single_for_cpu(dev, addr, size, dir);
950 }
951 
952 static inline void
953 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
954 		enum dma_data_direction dir)
955 {
956 	if (dev)
957 		dma_sync_single_for_device(dev, addr, size, dir);
958 }
959 
960 /* pseudo dma_map_sg call */
961 static int
962 fc_map_sg(struct scatterlist *sg, int nents)
963 {
964 	struct scatterlist *s;
965 	int i;
966 
967 	WARN_ON(nents == 0 || sg[0].length == 0);
968 
969 	for_each_sg(sg, s, nents, i) {
970 		s->dma_address = 0L;
971 #ifdef CONFIG_NEED_SG_DMA_LENGTH
972 		s->dma_length = s->length;
973 #endif
974 	}
975 	return nents;
976 }
977 
978 static inline int
979 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
980 		enum dma_data_direction dir)
981 {
982 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
983 }
984 
985 static inline void
986 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
987 		enum dma_data_direction dir)
988 {
989 	if (dev)
990 		dma_unmap_sg(dev, sg, nents, dir);
991 }
992 
993 /* *********************** FC-NVME LS Handling **************************** */
994 
995 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
996 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
997 
998 
999 static void
1000 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1001 {
1002 	struct nvme_fc_rport *rport = lsop->rport;
1003 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1004 	unsigned long flags;
1005 
1006 	spin_lock_irqsave(&rport->lock, flags);
1007 
1008 	if (!lsop->req_queued) {
1009 		spin_unlock_irqrestore(&rport->lock, flags);
1010 		return;
1011 	}
1012 
1013 	list_del(&lsop->lsreq_list);
1014 
1015 	lsop->req_queued = false;
1016 
1017 	spin_unlock_irqrestore(&rport->lock, flags);
1018 
1019 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1020 				  (lsreq->rqstlen + lsreq->rsplen),
1021 				  DMA_BIDIRECTIONAL);
1022 
1023 	nvme_fc_rport_put(rport);
1024 }
1025 
1026 static int
1027 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1028 		struct nvmefc_ls_req_op *lsop,
1029 		void (*done)(struct nvmefc_ls_req *req, int status))
1030 {
1031 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1032 	unsigned long flags;
1033 	int ret = 0;
1034 
1035 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1036 		return -ECONNREFUSED;
1037 
1038 	if (!nvme_fc_rport_get(rport))
1039 		return -ESHUTDOWN;
1040 
1041 	lsreq->done = done;
1042 	lsop->rport = rport;
1043 	lsop->req_queued = false;
1044 	INIT_LIST_HEAD(&lsop->lsreq_list);
1045 	init_completion(&lsop->ls_done);
1046 
1047 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1048 				  lsreq->rqstlen + lsreq->rsplen,
1049 				  DMA_BIDIRECTIONAL);
1050 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1051 		ret = -EFAULT;
1052 		goto out_putrport;
1053 	}
1054 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1055 
1056 	spin_lock_irqsave(&rport->lock, flags);
1057 
1058 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1059 
1060 	lsop->req_queued = true;
1061 
1062 	spin_unlock_irqrestore(&rport->lock, flags);
1063 
1064 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1065 					&rport->remoteport, lsreq);
1066 	if (ret)
1067 		goto out_unlink;
1068 
1069 	return 0;
1070 
1071 out_unlink:
1072 	lsop->ls_error = ret;
1073 	spin_lock_irqsave(&rport->lock, flags);
1074 	lsop->req_queued = false;
1075 	list_del(&lsop->lsreq_list);
1076 	spin_unlock_irqrestore(&rport->lock, flags);
1077 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1078 				  (lsreq->rqstlen + lsreq->rsplen),
1079 				  DMA_BIDIRECTIONAL);
1080 out_putrport:
1081 	nvme_fc_rport_put(rport);
1082 
1083 	return ret;
1084 }
1085 
1086 static void
1087 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1088 {
1089 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1090 
1091 	lsop->ls_error = status;
1092 	complete(&lsop->ls_done);
1093 }
1094 
1095 static int
1096 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1097 {
1098 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1099 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1100 	int ret;
1101 
1102 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1103 
1104 	if (!ret) {
1105 		/*
1106 		 * No timeout/not interruptible as we need the struct
1107 		 * to exist until the lldd calls us back. Thus mandate
1108 		 * wait until driver calls back. lldd responsible for
1109 		 * the timeout action
1110 		 */
1111 		wait_for_completion(&lsop->ls_done);
1112 
1113 		__nvme_fc_finish_ls_req(lsop);
1114 
1115 		ret = lsop->ls_error;
1116 	}
1117 
1118 	if (ret)
1119 		return ret;
1120 
1121 	/* ACC or RJT payload ? */
1122 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1123 		return -ENXIO;
1124 
1125 	return 0;
1126 }
1127 
1128 static int
1129 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1130 		struct nvmefc_ls_req_op *lsop,
1131 		void (*done)(struct nvmefc_ls_req *req, int status))
1132 {
1133 	/* don't wait for completion */
1134 
1135 	return __nvme_fc_send_ls_req(rport, lsop, done);
1136 }
1137 
1138 /* Validation Error indexes into the string table below */
1139 enum {
1140 	VERR_NO_ERROR		= 0,
1141 	VERR_LSACC		= 1,
1142 	VERR_LSDESC_RQST	= 2,
1143 	VERR_LSDESC_RQST_LEN	= 3,
1144 	VERR_ASSOC_ID		= 4,
1145 	VERR_ASSOC_ID_LEN	= 5,
1146 	VERR_CONN_ID		= 6,
1147 	VERR_CONN_ID_LEN	= 7,
1148 	VERR_CR_ASSOC		= 8,
1149 	VERR_CR_ASSOC_ACC_LEN	= 9,
1150 	VERR_CR_CONN		= 10,
1151 	VERR_CR_CONN_ACC_LEN	= 11,
1152 	VERR_DISCONN		= 12,
1153 	VERR_DISCONN_ACC_LEN	= 13,
1154 };
1155 
1156 static char *validation_errors[] = {
1157 	"OK",
1158 	"Not LS_ACC",
1159 	"Not LSDESC_RQST",
1160 	"Bad LSDESC_RQST Length",
1161 	"Not Association ID",
1162 	"Bad Association ID Length",
1163 	"Not Connection ID",
1164 	"Bad Connection ID Length",
1165 	"Not CR_ASSOC Rqst",
1166 	"Bad CR_ASSOC ACC Length",
1167 	"Not CR_CONN Rqst",
1168 	"Bad CR_CONN ACC Length",
1169 	"Not Disconnect Rqst",
1170 	"Bad Disconnect ACC Length",
1171 };
1172 
1173 static int
1174 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1175 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1176 {
1177 	struct nvmefc_ls_req_op *lsop;
1178 	struct nvmefc_ls_req *lsreq;
1179 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1180 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1181 	int ret, fcret = 0;
1182 
1183 	lsop = kzalloc((sizeof(*lsop) +
1184 			 ctrl->lport->ops->lsrqst_priv_sz +
1185 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1186 	if (!lsop) {
1187 		ret = -ENOMEM;
1188 		goto out_no_memory;
1189 	}
1190 	lsreq = &lsop->ls_req;
1191 
1192 	lsreq->private = (void *)&lsop[1];
1193 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1194 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1195 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1196 
1197 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1198 	assoc_rqst->desc_list_len =
1199 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1200 
1201 	assoc_rqst->assoc_cmd.desc_tag =
1202 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1203 	assoc_rqst->assoc_cmd.desc_len =
1204 			fcnvme_lsdesc_len(
1205 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1206 
1207 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1208 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1209 	/* Linux supports only Dynamic controllers */
1210 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1211 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1212 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1213 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1214 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1215 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1216 
1217 	lsop->queue = queue;
1218 	lsreq->rqstaddr = assoc_rqst;
1219 	lsreq->rqstlen = sizeof(*assoc_rqst);
1220 	lsreq->rspaddr = assoc_acc;
1221 	lsreq->rsplen = sizeof(*assoc_acc);
1222 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1223 
1224 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1225 	if (ret)
1226 		goto out_free_buffer;
1227 
1228 	/* process connect LS completion */
1229 
1230 	/* validate the ACC response */
1231 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1232 		fcret = VERR_LSACC;
1233 	else if (assoc_acc->hdr.desc_list_len !=
1234 			fcnvme_lsdesc_len(
1235 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1236 		fcret = VERR_CR_ASSOC_ACC_LEN;
1237 	else if (assoc_acc->hdr.rqst.desc_tag !=
1238 			cpu_to_be32(FCNVME_LSDESC_RQST))
1239 		fcret = VERR_LSDESC_RQST;
1240 	else if (assoc_acc->hdr.rqst.desc_len !=
1241 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1242 		fcret = VERR_LSDESC_RQST_LEN;
1243 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1244 		fcret = VERR_CR_ASSOC;
1245 	else if (assoc_acc->associd.desc_tag !=
1246 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1247 		fcret = VERR_ASSOC_ID;
1248 	else if (assoc_acc->associd.desc_len !=
1249 			fcnvme_lsdesc_len(
1250 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1251 		fcret = VERR_ASSOC_ID_LEN;
1252 	else if (assoc_acc->connectid.desc_tag !=
1253 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1254 		fcret = VERR_CONN_ID;
1255 	else if (assoc_acc->connectid.desc_len !=
1256 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1257 		fcret = VERR_CONN_ID_LEN;
1258 
1259 	if (fcret) {
1260 		ret = -EBADF;
1261 		dev_err(ctrl->dev,
1262 			"q %d connect failed: %s\n",
1263 			queue->qnum, validation_errors[fcret]);
1264 	} else {
1265 		ctrl->association_id =
1266 			be64_to_cpu(assoc_acc->associd.association_id);
1267 		queue->connection_id =
1268 			be64_to_cpu(assoc_acc->connectid.connection_id);
1269 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1270 	}
1271 
1272 out_free_buffer:
1273 	kfree(lsop);
1274 out_no_memory:
1275 	if (ret)
1276 		dev_err(ctrl->dev,
1277 			"queue %d connect admin queue failed (%d).\n",
1278 			queue->qnum, ret);
1279 	return ret;
1280 }
1281 
1282 static int
1283 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1284 			u16 qsize, u16 ersp_ratio)
1285 {
1286 	struct nvmefc_ls_req_op *lsop;
1287 	struct nvmefc_ls_req *lsreq;
1288 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1289 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1290 	int ret, fcret = 0;
1291 
1292 	lsop = kzalloc((sizeof(*lsop) +
1293 			 ctrl->lport->ops->lsrqst_priv_sz +
1294 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1295 	if (!lsop) {
1296 		ret = -ENOMEM;
1297 		goto out_no_memory;
1298 	}
1299 	lsreq = &lsop->ls_req;
1300 
1301 	lsreq->private = (void *)&lsop[1];
1302 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1303 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1304 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1305 
1306 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1307 	conn_rqst->desc_list_len = cpu_to_be32(
1308 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1309 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1310 
1311 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1312 	conn_rqst->associd.desc_len =
1313 			fcnvme_lsdesc_len(
1314 				sizeof(struct fcnvme_lsdesc_assoc_id));
1315 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1316 	conn_rqst->connect_cmd.desc_tag =
1317 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1318 	conn_rqst->connect_cmd.desc_len =
1319 			fcnvme_lsdesc_len(
1320 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1321 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1322 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1323 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1324 
1325 	lsop->queue = queue;
1326 	lsreq->rqstaddr = conn_rqst;
1327 	lsreq->rqstlen = sizeof(*conn_rqst);
1328 	lsreq->rspaddr = conn_acc;
1329 	lsreq->rsplen = sizeof(*conn_acc);
1330 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1331 
1332 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1333 	if (ret)
1334 		goto out_free_buffer;
1335 
1336 	/* process connect LS completion */
1337 
1338 	/* validate the ACC response */
1339 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1340 		fcret = VERR_LSACC;
1341 	else if (conn_acc->hdr.desc_list_len !=
1342 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1343 		fcret = VERR_CR_CONN_ACC_LEN;
1344 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1345 		fcret = VERR_LSDESC_RQST;
1346 	else if (conn_acc->hdr.rqst.desc_len !=
1347 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1348 		fcret = VERR_LSDESC_RQST_LEN;
1349 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1350 		fcret = VERR_CR_CONN;
1351 	else if (conn_acc->connectid.desc_tag !=
1352 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1353 		fcret = VERR_CONN_ID;
1354 	else if (conn_acc->connectid.desc_len !=
1355 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1356 		fcret = VERR_CONN_ID_LEN;
1357 
1358 	if (fcret) {
1359 		ret = -EBADF;
1360 		dev_err(ctrl->dev,
1361 			"q %d connect failed: %s\n",
1362 			queue->qnum, validation_errors[fcret]);
1363 	} else {
1364 		queue->connection_id =
1365 			be64_to_cpu(conn_acc->connectid.connection_id);
1366 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1367 	}
1368 
1369 out_free_buffer:
1370 	kfree(lsop);
1371 out_no_memory:
1372 	if (ret)
1373 		dev_err(ctrl->dev,
1374 			"queue %d connect command failed (%d).\n",
1375 			queue->qnum, ret);
1376 	return ret;
1377 }
1378 
1379 static void
1380 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1381 {
1382 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1383 
1384 	__nvme_fc_finish_ls_req(lsop);
1385 
1386 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1387 
1388 	kfree(lsop);
1389 }
1390 
1391 /*
1392  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1393  * the FC-NVME Association.  Terminating the association also
1394  * terminates the FC-NVME connections (per queue, both admin and io
1395  * queues) that are part of the association. E.g. things are torn
1396  * down, and the related FC-NVME Association ID and Connection IDs
1397  * become invalid.
1398  *
1399  * The behavior of the fc-nvme initiator is such that it's
1400  * understanding of the association and connections will implicitly
1401  * be torn down. The action is implicit as it may be due to a loss of
1402  * connectivity with the fc-nvme target, so you may never get a
1403  * response even if you tried.  As such, the action of this routine
1404  * is to asynchronously send the LS, ignore any results of the LS, and
1405  * continue on with terminating the association. If the fc-nvme target
1406  * is present and receives the LS, it too can tear down.
1407  */
1408 static void
1409 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1410 {
1411 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1412 	struct fcnvme_ls_disconnect_acc *discon_acc;
1413 	struct nvmefc_ls_req_op *lsop;
1414 	struct nvmefc_ls_req *lsreq;
1415 	int ret;
1416 
1417 	lsop = kzalloc((sizeof(*lsop) +
1418 			 ctrl->lport->ops->lsrqst_priv_sz +
1419 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1420 			GFP_KERNEL);
1421 	if (!lsop)
1422 		/* couldn't sent it... too bad */
1423 		return;
1424 
1425 	lsreq = &lsop->ls_req;
1426 
1427 	lsreq->private = (void *)&lsop[1];
1428 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1429 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1430 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1431 
1432 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1433 	discon_rqst->desc_list_len = cpu_to_be32(
1434 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1435 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1436 
1437 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1438 	discon_rqst->associd.desc_len =
1439 			fcnvme_lsdesc_len(
1440 				sizeof(struct fcnvme_lsdesc_assoc_id));
1441 
1442 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1443 
1444 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1445 						FCNVME_LSDESC_DISCONN_CMD);
1446 	discon_rqst->discon_cmd.desc_len =
1447 			fcnvme_lsdesc_len(
1448 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1449 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1450 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1451 
1452 	lsreq->rqstaddr = discon_rqst;
1453 	lsreq->rqstlen = sizeof(*discon_rqst);
1454 	lsreq->rspaddr = discon_acc;
1455 	lsreq->rsplen = sizeof(*discon_acc);
1456 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1457 
1458 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1459 				nvme_fc_disconnect_assoc_done);
1460 	if (ret)
1461 		kfree(lsop);
1462 
1463 	/* only meaningful part to terminating the association */
1464 	ctrl->association_id = 0;
1465 }
1466 
1467 
1468 /* *********************** NVME Ctrl Routines **************************** */
1469 
1470 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1471 
1472 static void
1473 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1474 		struct nvme_fc_fcp_op *op)
1475 {
1476 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1477 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1478 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1479 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1480 
1481 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1482 }
1483 
1484 static void
1485 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1486 		unsigned int hctx_idx)
1487 {
1488 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1489 
1490 	return __nvme_fc_exit_request(set->driver_data, op);
1491 }
1492 
1493 static int
1494 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1495 {
1496 	unsigned long flags;
1497 	int opstate;
1498 
1499 	spin_lock_irqsave(&ctrl->lock, flags);
1500 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1501 	if (opstate != FCPOP_STATE_ACTIVE)
1502 		atomic_set(&op->state, opstate);
1503 	else if (ctrl->flags & FCCTRL_TERMIO)
1504 		ctrl->iocnt++;
1505 	spin_unlock_irqrestore(&ctrl->lock, flags);
1506 
1507 	if (opstate != FCPOP_STATE_ACTIVE)
1508 		return -ECANCELED;
1509 
1510 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1511 					&ctrl->rport->remoteport,
1512 					op->queue->lldd_handle,
1513 					&op->fcp_req);
1514 
1515 	return 0;
1516 }
1517 
1518 static void
1519 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1520 {
1521 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1522 	int i;
1523 
1524 	/* ensure we've initialized the ops once */
1525 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1526 		return;
1527 
1528 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1529 		__nvme_fc_abort_op(ctrl, aen_op);
1530 }
1531 
1532 static inline void
1533 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1534 		struct nvme_fc_fcp_op *op, int opstate)
1535 {
1536 	unsigned long flags;
1537 
1538 	if (opstate == FCPOP_STATE_ABORTED) {
1539 		spin_lock_irqsave(&ctrl->lock, flags);
1540 		if (ctrl->flags & FCCTRL_TERMIO) {
1541 			if (!--ctrl->iocnt)
1542 				wake_up(&ctrl->ioabort_wait);
1543 		}
1544 		spin_unlock_irqrestore(&ctrl->lock, flags);
1545 	}
1546 }
1547 
1548 static void
1549 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1550 {
1551 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1552 	struct request *rq = op->rq;
1553 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1554 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1555 	struct nvme_fc_queue *queue = op->queue;
1556 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1557 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1558 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1559 	union nvme_result result;
1560 	bool terminate_assoc = true;
1561 	int opstate;
1562 
1563 	/*
1564 	 * WARNING:
1565 	 * The current linux implementation of a nvme controller
1566 	 * allocates a single tag set for all io queues and sizes
1567 	 * the io queues to fully hold all possible tags. Thus, the
1568 	 * implementation does not reference or care about the sqhd
1569 	 * value as it never needs to use the sqhd/sqtail pointers
1570 	 * for submission pacing.
1571 	 *
1572 	 * This affects the FC-NVME implementation in two ways:
1573 	 * 1) As the value doesn't matter, we don't need to waste
1574 	 *    cycles extracting it from ERSPs and stamping it in the
1575 	 *    cases where the transport fabricates CQEs on successful
1576 	 *    completions.
1577 	 * 2) The FC-NVME implementation requires that delivery of
1578 	 *    ERSP completions are to go back to the nvme layer in order
1579 	 *    relative to the rsn, such that the sqhd value will always
1580 	 *    be "in order" for the nvme layer. As the nvme layer in
1581 	 *    linux doesn't care about sqhd, there's no need to return
1582 	 *    them in order.
1583 	 *
1584 	 * Additionally:
1585 	 * As the core nvme layer in linux currently does not look at
1586 	 * every field in the cqe - in cases where the FC transport must
1587 	 * fabricate a CQE, the following fields will not be set as they
1588 	 * are not referenced:
1589 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1590 	 *
1591 	 * Failure or error of an individual i/o, in a transport
1592 	 * detected fashion unrelated to the nvme completion status,
1593 	 * potentially cause the initiator and target sides to get out
1594 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1595 	 * Per FC-NVME spec, failure of an individual command requires
1596 	 * the connection to be terminated, which in turn requires the
1597 	 * association to be terminated.
1598 	 */
1599 
1600 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1601 
1602 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1603 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1604 
1605 	if (opstate == FCPOP_STATE_ABORTED)
1606 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1607 	else if (freq->status)
1608 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1609 
1610 	/*
1611 	 * For the linux implementation, if we have an unsuccesful
1612 	 * status, they blk-mq layer can typically be called with the
1613 	 * non-zero status and the content of the cqe isn't important.
1614 	 */
1615 	if (status)
1616 		goto done;
1617 
1618 	/*
1619 	 * command completed successfully relative to the wire
1620 	 * protocol. However, validate anything received and
1621 	 * extract the status and result from the cqe (create it
1622 	 * where necessary).
1623 	 */
1624 
1625 	switch (freq->rcv_rsplen) {
1626 
1627 	case 0:
1628 	case NVME_FC_SIZEOF_ZEROS_RSP:
1629 		/*
1630 		 * No response payload or 12 bytes of payload (which
1631 		 * should all be zeros) are considered successful and
1632 		 * no payload in the CQE by the transport.
1633 		 */
1634 		if (freq->transferred_length !=
1635 			be32_to_cpu(op->cmd_iu.data_len)) {
1636 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1637 			goto done;
1638 		}
1639 		result.u64 = 0;
1640 		break;
1641 
1642 	case sizeof(struct nvme_fc_ersp_iu):
1643 		/*
1644 		 * The ERSP IU contains a full completion with CQE.
1645 		 * Validate ERSP IU and look at cqe.
1646 		 */
1647 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1648 					(freq->rcv_rsplen / 4) ||
1649 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1650 					freq->transferred_length ||
1651 			     op->rsp_iu.status_code ||
1652 			     sqe->common.command_id != cqe->command_id)) {
1653 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1654 			goto done;
1655 		}
1656 		result = cqe->result;
1657 		status = cqe->status;
1658 		break;
1659 
1660 	default:
1661 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1662 		goto done;
1663 	}
1664 
1665 	terminate_assoc = false;
1666 
1667 done:
1668 	if (op->flags & FCOP_FLAGS_AEN) {
1669 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1670 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1671 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1672 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1673 		nvme_fc_ctrl_put(ctrl);
1674 		goto check_error;
1675 	}
1676 
1677 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1678 	nvme_end_request(rq, status, result);
1679 
1680 check_error:
1681 	if (terminate_assoc)
1682 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1683 }
1684 
1685 static int
1686 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1687 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1688 		struct request *rq, u32 rqno)
1689 {
1690 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1691 		container_of(op, typeof(*op_w_sgl), op);
1692 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1693 	int ret = 0;
1694 
1695 	memset(op, 0, sizeof(*op));
1696 	op->fcp_req.cmdaddr = &op->cmd_iu;
1697 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1698 	op->fcp_req.rspaddr = &op->rsp_iu;
1699 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1700 	op->fcp_req.done = nvme_fc_fcpio_done;
1701 	op->ctrl = ctrl;
1702 	op->queue = queue;
1703 	op->rq = rq;
1704 	op->rqno = rqno;
1705 
1706 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1707 	cmdiu->fc_id = NVME_CMD_FC_ID;
1708 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1709 
1710 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1711 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1712 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1713 		dev_err(ctrl->dev,
1714 			"FCP Op failed - cmdiu dma mapping failed.\n");
1715 		ret = EFAULT;
1716 		goto out_on_error;
1717 	}
1718 
1719 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1720 				&op->rsp_iu, sizeof(op->rsp_iu),
1721 				DMA_FROM_DEVICE);
1722 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1723 		dev_err(ctrl->dev,
1724 			"FCP Op failed - rspiu dma mapping failed.\n");
1725 		ret = EFAULT;
1726 	}
1727 
1728 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1729 out_on_error:
1730 	return ret;
1731 }
1732 
1733 static int
1734 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1735 		unsigned int hctx_idx, unsigned int numa_node)
1736 {
1737 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1738 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1739 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1740 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1741 	int res;
1742 
1743 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1744 	if (res)
1745 		return res;
1746 	op->op.fcp_req.first_sgl = &op->sgl[0];
1747 	op->op.fcp_req.private = &op->priv[0];
1748 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1749 	return res;
1750 }
1751 
1752 static int
1753 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1754 {
1755 	struct nvme_fc_fcp_op *aen_op;
1756 	struct nvme_fc_cmd_iu *cmdiu;
1757 	struct nvme_command *sqe;
1758 	void *private;
1759 	int i, ret;
1760 
1761 	aen_op = ctrl->aen_ops;
1762 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1763 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1764 						GFP_KERNEL);
1765 		if (!private)
1766 			return -ENOMEM;
1767 
1768 		cmdiu = &aen_op->cmd_iu;
1769 		sqe = &cmdiu->sqe;
1770 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1771 				aen_op, (struct request *)NULL,
1772 				(NVME_AQ_BLK_MQ_DEPTH + i));
1773 		if (ret) {
1774 			kfree(private);
1775 			return ret;
1776 		}
1777 
1778 		aen_op->flags = FCOP_FLAGS_AEN;
1779 		aen_op->fcp_req.private = private;
1780 
1781 		memset(sqe, 0, sizeof(*sqe));
1782 		sqe->common.opcode = nvme_admin_async_event;
1783 		/* Note: core layer may overwrite the sqe.command_id value */
1784 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1785 	}
1786 	return 0;
1787 }
1788 
1789 static void
1790 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1791 {
1792 	struct nvme_fc_fcp_op *aen_op;
1793 	int i;
1794 
1795 	aen_op = ctrl->aen_ops;
1796 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1797 		if (!aen_op->fcp_req.private)
1798 			continue;
1799 
1800 		__nvme_fc_exit_request(ctrl, aen_op);
1801 
1802 		kfree(aen_op->fcp_req.private);
1803 		aen_op->fcp_req.private = NULL;
1804 	}
1805 }
1806 
1807 static inline void
1808 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1809 		unsigned int qidx)
1810 {
1811 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1812 
1813 	hctx->driver_data = queue;
1814 	queue->hctx = hctx;
1815 }
1816 
1817 static int
1818 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1819 		unsigned int hctx_idx)
1820 {
1821 	struct nvme_fc_ctrl *ctrl = data;
1822 
1823 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1824 
1825 	return 0;
1826 }
1827 
1828 static int
1829 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1830 		unsigned int hctx_idx)
1831 {
1832 	struct nvme_fc_ctrl *ctrl = data;
1833 
1834 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1835 
1836 	return 0;
1837 }
1838 
1839 static void
1840 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1841 {
1842 	struct nvme_fc_queue *queue;
1843 
1844 	queue = &ctrl->queues[idx];
1845 	memset(queue, 0, sizeof(*queue));
1846 	queue->ctrl = ctrl;
1847 	queue->qnum = idx;
1848 	atomic_set(&queue->csn, 0);
1849 	queue->dev = ctrl->dev;
1850 
1851 	if (idx > 0)
1852 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1853 	else
1854 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1855 
1856 	/*
1857 	 * Considered whether we should allocate buffers for all SQEs
1858 	 * and CQEs and dma map them - mapping their respective entries
1859 	 * into the request structures (kernel vm addr and dma address)
1860 	 * thus the driver could use the buffers/mappings directly.
1861 	 * It only makes sense if the LLDD would use them for its
1862 	 * messaging api. It's very unlikely most adapter api's would use
1863 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1864 	 * structures were used instead.
1865 	 */
1866 }
1867 
1868 /*
1869  * This routine terminates a queue at the transport level.
1870  * The transport has already ensured that all outstanding ios on
1871  * the queue have been terminated.
1872  * The transport will send a Disconnect LS request to terminate
1873  * the queue's connection. Termination of the admin queue will also
1874  * terminate the association at the target.
1875  */
1876 static void
1877 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1878 {
1879 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1880 		return;
1881 
1882 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1883 	/*
1884 	 * Current implementation never disconnects a single queue.
1885 	 * It always terminates a whole association. So there is never
1886 	 * a disconnect(queue) LS sent to the target.
1887 	 */
1888 
1889 	queue->connection_id = 0;
1890 	atomic_set(&queue->csn, 0);
1891 }
1892 
1893 static void
1894 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1895 	struct nvme_fc_queue *queue, unsigned int qidx)
1896 {
1897 	if (ctrl->lport->ops->delete_queue)
1898 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1899 				queue->lldd_handle);
1900 	queue->lldd_handle = NULL;
1901 }
1902 
1903 static void
1904 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1905 {
1906 	int i;
1907 
1908 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1909 		nvme_fc_free_queue(&ctrl->queues[i]);
1910 }
1911 
1912 static int
1913 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1914 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1915 {
1916 	int ret = 0;
1917 
1918 	queue->lldd_handle = NULL;
1919 	if (ctrl->lport->ops->create_queue)
1920 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1921 				qidx, qsize, &queue->lldd_handle);
1922 
1923 	return ret;
1924 }
1925 
1926 static void
1927 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1928 {
1929 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1930 	int i;
1931 
1932 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1933 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1934 }
1935 
1936 static int
1937 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1938 {
1939 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1940 	int i, ret;
1941 
1942 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1943 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1944 		if (ret)
1945 			goto delete_queues;
1946 	}
1947 
1948 	return 0;
1949 
1950 delete_queues:
1951 	for (; i >= 0; i--)
1952 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1953 	return ret;
1954 }
1955 
1956 static int
1957 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1958 {
1959 	int i, ret = 0;
1960 
1961 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1962 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1963 					(qsize / 5));
1964 		if (ret)
1965 			break;
1966 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1967 		if (ret)
1968 			break;
1969 
1970 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1971 	}
1972 
1973 	return ret;
1974 }
1975 
1976 static void
1977 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1978 {
1979 	int i;
1980 
1981 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1982 		nvme_fc_init_queue(ctrl, i);
1983 }
1984 
1985 static void
1986 nvme_fc_ctrl_free(struct kref *ref)
1987 {
1988 	struct nvme_fc_ctrl *ctrl =
1989 		container_of(ref, struct nvme_fc_ctrl, ref);
1990 	unsigned long flags;
1991 
1992 	if (ctrl->ctrl.tagset) {
1993 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1994 		blk_mq_free_tag_set(&ctrl->tag_set);
1995 	}
1996 
1997 	/* remove from rport list */
1998 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1999 	list_del(&ctrl->ctrl_list);
2000 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2001 
2002 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2003 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2004 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2005 
2006 	kfree(ctrl->queues);
2007 
2008 	put_device(ctrl->dev);
2009 	nvme_fc_rport_put(ctrl->rport);
2010 
2011 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2012 	if (ctrl->ctrl.opts)
2013 		nvmf_free_options(ctrl->ctrl.opts);
2014 	kfree(ctrl);
2015 }
2016 
2017 static void
2018 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2019 {
2020 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2021 }
2022 
2023 static int
2024 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2025 {
2026 	return kref_get_unless_zero(&ctrl->ref);
2027 }
2028 
2029 /*
2030  * All accesses from nvme core layer done - can now free the
2031  * controller. Called after last nvme_put_ctrl() call
2032  */
2033 static void
2034 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2035 {
2036 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2037 
2038 	WARN_ON(nctrl != &ctrl->ctrl);
2039 
2040 	nvme_fc_ctrl_put(ctrl);
2041 }
2042 
2043 static void
2044 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2045 {
2046 	int active;
2047 
2048 	/*
2049 	 * if an error (io timeout, etc) while (re)connecting,
2050 	 * it's an error on creating the new association.
2051 	 * Start the error recovery thread if it hasn't already
2052 	 * been started. It is expected there could be multiple
2053 	 * ios hitting this path before things are cleaned up.
2054 	 */
2055 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2056 		active = atomic_xchg(&ctrl->err_work_active, 1);
2057 		if (!active && !schedule_work(&ctrl->err_work)) {
2058 			atomic_set(&ctrl->err_work_active, 0);
2059 			WARN_ON(1);
2060 		}
2061 		return;
2062 	}
2063 
2064 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2065 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2066 		return;
2067 
2068 	dev_warn(ctrl->ctrl.device,
2069 		"NVME-FC{%d}: transport association error detected: %s\n",
2070 		ctrl->cnum, errmsg);
2071 	dev_warn(ctrl->ctrl.device,
2072 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2073 
2074 	nvme_reset_ctrl(&ctrl->ctrl);
2075 }
2076 
2077 static enum blk_eh_timer_return
2078 nvme_fc_timeout(struct request *rq, bool reserved)
2079 {
2080 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2081 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2082 
2083 	/*
2084 	 * we can't individually ABTS an io without affecting the queue,
2085 	 * thus killing the queue, and thus the association.
2086 	 * So resolve by performing a controller reset, which will stop
2087 	 * the host/io stack, terminate the association on the link,
2088 	 * and recreate an association on the link.
2089 	 */
2090 	nvme_fc_error_recovery(ctrl, "io timeout error");
2091 
2092 	/*
2093 	 * the io abort has been initiated. Have the reset timer
2094 	 * restarted and the abort completion will complete the io
2095 	 * shortly. Avoids a synchronous wait while the abort finishes.
2096 	 */
2097 	return BLK_EH_RESET_TIMER;
2098 }
2099 
2100 static int
2101 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2102 		struct nvme_fc_fcp_op *op)
2103 {
2104 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2105 	enum dma_data_direction dir;
2106 	int ret;
2107 
2108 	freq->sg_cnt = 0;
2109 
2110 	if (!blk_rq_nr_phys_segments(rq))
2111 		return 0;
2112 
2113 	freq->sg_table.sgl = freq->first_sgl;
2114 	ret = sg_alloc_table_chained(&freq->sg_table,
2115 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2116 	if (ret)
2117 		return -ENOMEM;
2118 
2119 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2120 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2121 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2122 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2123 				op->nents, dir);
2124 	if (unlikely(freq->sg_cnt <= 0)) {
2125 		sg_free_table_chained(&freq->sg_table, true);
2126 		freq->sg_cnt = 0;
2127 		return -EFAULT;
2128 	}
2129 
2130 	/*
2131 	 * TODO: blk_integrity_rq(rq)  for DIF
2132 	 */
2133 	return 0;
2134 }
2135 
2136 static void
2137 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2138 		struct nvme_fc_fcp_op *op)
2139 {
2140 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2141 
2142 	if (!freq->sg_cnt)
2143 		return;
2144 
2145 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2146 				((rq_data_dir(rq) == WRITE) ?
2147 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2148 
2149 	nvme_cleanup_cmd(rq);
2150 
2151 	sg_free_table_chained(&freq->sg_table, true);
2152 
2153 	freq->sg_cnt = 0;
2154 }
2155 
2156 /*
2157  * In FC, the queue is a logical thing. At transport connect, the target
2158  * creates its "queue" and returns a handle that is to be given to the
2159  * target whenever it posts something to the corresponding SQ.  When an
2160  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2161  * command contained within the SQE, an io, and assigns a FC exchange
2162  * to it. The SQE and the associated SQ handle are sent in the initial
2163  * CMD IU sents on the exchange. All transfers relative to the io occur
2164  * as part of the exchange.  The CQE is the last thing for the io,
2165  * which is transferred (explicitly or implicitly) with the RSP IU
2166  * sent on the exchange. After the CQE is received, the FC exchange is
2167  * terminaed and the Exchange may be used on a different io.
2168  *
2169  * The transport to LLDD api has the transport making a request for a
2170  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2171  * resource and transfers the command. The LLDD will then process all
2172  * steps to complete the io. Upon completion, the transport done routine
2173  * is called.
2174  *
2175  * So - while the operation is outstanding to the LLDD, there is a link
2176  * level FC exchange resource that is also outstanding. This must be
2177  * considered in all cleanup operations.
2178  */
2179 static blk_status_t
2180 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2181 	struct nvme_fc_fcp_op *op, u32 data_len,
2182 	enum nvmefc_fcp_datadir	io_dir)
2183 {
2184 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2185 	struct nvme_command *sqe = &cmdiu->sqe;
2186 	int ret, opstate;
2187 
2188 	/*
2189 	 * before attempting to send the io, check to see if we believe
2190 	 * the target device is present
2191 	 */
2192 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2193 		return BLK_STS_RESOURCE;
2194 
2195 	if (!nvme_fc_ctrl_get(ctrl))
2196 		return BLK_STS_IOERR;
2197 
2198 	/* format the FC-NVME CMD IU and fcp_req */
2199 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2200 	cmdiu->data_len = cpu_to_be32(data_len);
2201 	switch (io_dir) {
2202 	case NVMEFC_FCP_WRITE:
2203 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2204 		break;
2205 	case NVMEFC_FCP_READ:
2206 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2207 		break;
2208 	case NVMEFC_FCP_NODATA:
2209 		cmdiu->flags = 0;
2210 		break;
2211 	}
2212 	op->fcp_req.payload_length = data_len;
2213 	op->fcp_req.io_dir = io_dir;
2214 	op->fcp_req.transferred_length = 0;
2215 	op->fcp_req.rcv_rsplen = 0;
2216 	op->fcp_req.status = NVME_SC_SUCCESS;
2217 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2218 
2219 	/*
2220 	 * validate per fabric rules, set fields mandated by fabric spec
2221 	 * as well as those by FC-NVME spec.
2222 	 */
2223 	WARN_ON_ONCE(sqe->common.metadata);
2224 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2225 
2226 	/*
2227 	 * format SQE DPTR field per FC-NVME rules:
2228 	 *    type=0x5     Transport SGL Data Block Descriptor
2229 	 *    subtype=0xA  Transport-specific value
2230 	 *    address=0
2231 	 *    length=length of the data series
2232 	 */
2233 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2234 					NVME_SGL_FMT_TRANSPORT_A;
2235 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2236 	sqe->rw.dptr.sgl.addr = 0;
2237 
2238 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2239 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2240 		if (ret < 0) {
2241 			nvme_cleanup_cmd(op->rq);
2242 			nvme_fc_ctrl_put(ctrl);
2243 			if (ret == -ENOMEM || ret == -EAGAIN)
2244 				return BLK_STS_RESOURCE;
2245 			return BLK_STS_IOERR;
2246 		}
2247 	}
2248 
2249 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2250 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2251 
2252 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2253 
2254 	if (!(op->flags & FCOP_FLAGS_AEN))
2255 		blk_mq_start_request(op->rq);
2256 
2257 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2258 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2259 					&ctrl->rport->remoteport,
2260 					queue->lldd_handle, &op->fcp_req);
2261 
2262 	if (ret) {
2263 		/*
2264 		 * If the lld fails to send the command is there an issue with
2265 		 * the csn value?  If the command that fails is the Connect,
2266 		 * no - as the connection won't be live.  If it is a command
2267 		 * post-connect, it's possible a gap in csn may be created.
2268 		 * Does this matter?  As Linux initiators don't send fused
2269 		 * commands, no.  The gap would exist, but as there's nothing
2270 		 * that depends on csn order to be delivered on the target
2271 		 * side, it shouldn't hurt.  It would be difficult for a
2272 		 * target to even detect the csn gap as it has no idea when the
2273 		 * cmd with the csn was supposed to arrive.
2274 		 */
2275 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2276 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2277 
2278 		if (!(op->flags & FCOP_FLAGS_AEN))
2279 			nvme_fc_unmap_data(ctrl, op->rq, op);
2280 
2281 		nvme_fc_ctrl_put(ctrl);
2282 
2283 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2284 				ret != -EBUSY)
2285 			return BLK_STS_IOERR;
2286 
2287 		return BLK_STS_RESOURCE;
2288 	}
2289 
2290 	return BLK_STS_OK;
2291 }
2292 
2293 static blk_status_t
2294 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2295 			const struct blk_mq_queue_data *bd)
2296 {
2297 	struct nvme_ns *ns = hctx->queue->queuedata;
2298 	struct nvme_fc_queue *queue = hctx->driver_data;
2299 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2300 	struct request *rq = bd->rq;
2301 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2302 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2303 	struct nvme_command *sqe = &cmdiu->sqe;
2304 	enum nvmefc_fcp_datadir	io_dir;
2305 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2306 	u32 data_len;
2307 	blk_status_t ret;
2308 
2309 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2310 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2311 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2312 
2313 	ret = nvme_setup_cmd(ns, rq, sqe);
2314 	if (ret)
2315 		return ret;
2316 
2317 	/*
2318 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2319 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2320 	 * there is no actual payload to be transferred.
2321 	 * To get it right, key data transmission on there being 1 or
2322 	 * more physical segments in the sg list. If there is no
2323 	 * physical segments, there is no payload.
2324 	 */
2325 	if (blk_rq_nr_phys_segments(rq)) {
2326 		data_len = blk_rq_payload_bytes(rq);
2327 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2328 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2329 	} else {
2330 		data_len = 0;
2331 		io_dir = NVMEFC_FCP_NODATA;
2332 	}
2333 
2334 
2335 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2336 }
2337 
2338 static void
2339 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2340 {
2341 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2342 	struct nvme_fc_fcp_op *aen_op;
2343 	unsigned long flags;
2344 	bool terminating = false;
2345 	blk_status_t ret;
2346 
2347 	spin_lock_irqsave(&ctrl->lock, flags);
2348 	if (ctrl->flags & FCCTRL_TERMIO)
2349 		terminating = true;
2350 	spin_unlock_irqrestore(&ctrl->lock, flags);
2351 
2352 	if (terminating)
2353 		return;
2354 
2355 	aen_op = &ctrl->aen_ops[0];
2356 
2357 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2358 					NVMEFC_FCP_NODATA);
2359 	if (ret)
2360 		dev_err(ctrl->ctrl.device,
2361 			"failed async event work\n");
2362 }
2363 
2364 static void
2365 nvme_fc_complete_rq(struct request *rq)
2366 {
2367 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2368 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2369 
2370 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2371 
2372 	nvme_fc_unmap_data(ctrl, rq, op);
2373 	nvme_complete_rq(rq);
2374 	nvme_fc_ctrl_put(ctrl);
2375 }
2376 
2377 /*
2378  * This routine is used by the transport when it needs to find active
2379  * io on a queue that is to be terminated. The transport uses
2380  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2381  * this routine to kill them on a 1 by 1 basis.
2382  *
2383  * As FC allocates FC exchange for each io, the transport must contact
2384  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2385  * After terminating the exchange the LLDD will call the transport's
2386  * normal io done path for the request, but it will have an aborted
2387  * status. The done path will return the io request back to the block
2388  * layer with an error status.
2389  */
2390 static bool
2391 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2392 {
2393 	struct nvme_ctrl *nctrl = data;
2394 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2395 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2396 
2397 	__nvme_fc_abort_op(ctrl, op);
2398 	return true;
2399 }
2400 
2401 
2402 static const struct blk_mq_ops nvme_fc_mq_ops = {
2403 	.queue_rq	= nvme_fc_queue_rq,
2404 	.complete	= nvme_fc_complete_rq,
2405 	.init_request	= nvme_fc_init_request,
2406 	.exit_request	= nvme_fc_exit_request,
2407 	.init_hctx	= nvme_fc_init_hctx,
2408 	.timeout	= nvme_fc_timeout,
2409 };
2410 
2411 static int
2412 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2413 {
2414 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2415 	unsigned int nr_io_queues;
2416 	int ret;
2417 
2418 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2419 				ctrl->lport->ops->max_hw_queues);
2420 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2421 	if (ret) {
2422 		dev_info(ctrl->ctrl.device,
2423 			"set_queue_count failed: %d\n", ret);
2424 		return ret;
2425 	}
2426 
2427 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2428 	if (!nr_io_queues)
2429 		return 0;
2430 
2431 	nvme_fc_init_io_queues(ctrl);
2432 
2433 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2434 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2435 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2436 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2437 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2438 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2439 	ctrl->tag_set.cmd_size =
2440 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2441 			    ctrl->lport->ops->fcprqst_priv_sz);
2442 	ctrl->tag_set.driver_data = ctrl;
2443 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2444 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2445 
2446 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2447 	if (ret)
2448 		return ret;
2449 
2450 	ctrl->ctrl.tagset = &ctrl->tag_set;
2451 
2452 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2453 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2454 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2455 		goto out_free_tag_set;
2456 	}
2457 
2458 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2459 	if (ret)
2460 		goto out_cleanup_blk_queue;
2461 
2462 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2463 	if (ret)
2464 		goto out_delete_hw_queues;
2465 
2466 	ctrl->ioq_live = true;
2467 
2468 	return 0;
2469 
2470 out_delete_hw_queues:
2471 	nvme_fc_delete_hw_io_queues(ctrl);
2472 out_cleanup_blk_queue:
2473 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2474 out_free_tag_set:
2475 	blk_mq_free_tag_set(&ctrl->tag_set);
2476 	nvme_fc_free_io_queues(ctrl);
2477 
2478 	/* force put free routine to ignore io queues */
2479 	ctrl->ctrl.tagset = NULL;
2480 
2481 	return ret;
2482 }
2483 
2484 static int
2485 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2486 {
2487 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2488 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2489 	unsigned int nr_io_queues;
2490 	int ret;
2491 
2492 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2493 				ctrl->lport->ops->max_hw_queues);
2494 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2495 	if (ret) {
2496 		dev_info(ctrl->ctrl.device,
2497 			"set_queue_count failed: %d\n", ret);
2498 		return ret;
2499 	}
2500 
2501 	if (!nr_io_queues && prior_ioq_cnt) {
2502 		dev_info(ctrl->ctrl.device,
2503 			"Fail Reconnect: At least 1 io queue "
2504 			"required (was %d)\n", prior_ioq_cnt);
2505 		return -ENOSPC;
2506 	}
2507 
2508 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2509 	/* check for io queues existing */
2510 	if (ctrl->ctrl.queue_count == 1)
2511 		return 0;
2512 
2513 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2514 	if (ret)
2515 		goto out_free_io_queues;
2516 
2517 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2518 	if (ret)
2519 		goto out_delete_hw_queues;
2520 
2521 	if (prior_ioq_cnt != nr_io_queues)
2522 		dev_info(ctrl->ctrl.device,
2523 			"reconnect: revising io queue count from %d to %d\n",
2524 			prior_ioq_cnt, nr_io_queues);
2525 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2526 
2527 	return 0;
2528 
2529 out_delete_hw_queues:
2530 	nvme_fc_delete_hw_io_queues(ctrl);
2531 out_free_io_queues:
2532 	nvme_fc_free_io_queues(ctrl);
2533 	return ret;
2534 }
2535 
2536 static void
2537 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2538 {
2539 	struct nvme_fc_lport *lport = rport->lport;
2540 
2541 	atomic_inc(&lport->act_rport_cnt);
2542 }
2543 
2544 static void
2545 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2546 {
2547 	struct nvme_fc_lport *lport = rport->lport;
2548 	u32 cnt;
2549 
2550 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2551 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2552 		lport->ops->localport_delete(&lport->localport);
2553 }
2554 
2555 static int
2556 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2557 {
2558 	struct nvme_fc_rport *rport = ctrl->rport;
2559 	u32 cnt;
2560 
2561 	if (ctrl->assoc_active)
2562 		return 1;
2563 
2564 	ctrl->assoc_active = true;
2565 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2566 	if (cnt == 1)
2567 		nvme_fc_rport_active_on_lport(rport);
2568 
2569 	return 0;
2570 }
2571 
2572 static int
2573 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2574 {
2575 	struct nvme_fc_rport *rport = ctrl->rport;
2576 	struct nvme_fc_lport *lport = rport->lport;
2577 	u32 cnt;
2578 
2579 	/* ctrl->assoc_active=false will be set independently */
2580 
2581 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2582 	if (cnt == 0) {
2583 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2584 			lport->ops->remoteport_delete(&rport->remoteport);
2585 		nvme_fc_rport_inactive_on_lport(rport);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /*
2592  * This routine restarts the controller on the host side, and
2593  * on the link side, recreates the controller association.
2594  */
2595 static int
2596 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2597 {
2598 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2599 	int ret;
2600 	bool changed;
2601 
2602 	++ctrl->ctrl.nr_reconnects;
2603 
2604 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2605 		return -ENODEV;
2606 
2607 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2608 		return -ENOTUNIQ;
2609 
2610 	/*
2611 	 * Create the admin queue
2612 	 */
2613 
2614 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2615 				NVME_AQ_DEPTH);
2616 	if (ret)
2617 		goto out_free_queue;
2618 
2619 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2620 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2621 	if (ret)
2622 		goto out_delete_hw_queue;
2623 
2624 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2625 
2626 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2627 	if (ret)
2628 		goto out_disconnect_admin_queue;
2629 
2630 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2631 
2632 	/*
2633 	 * Check controller capabilities
2634 	 *
2635 	 * todo:- add code to check if ctrl attributes changed from
2636 	 * prior connection values
2637 	 */
2638 
2639 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2640 	if (ret) {
2641 		dev_err(ctrl->ctrl.device,
2642 			"prop_get NVME_REG_CAP failed\n");
2643 		goto out_disconnect_admin_queue;
2644 	}
2645 
2646 	ctrl->ctrl.sqsize =
2647 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
2648 
2649 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2650 	if (ret)
2651 		goto out_disconnect_admin_queue;
2652 
2653 	ctrl->ctrl.max_hw_sectors =
2654 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2655 
2656 	ret = nvme_init_identify(&ctrl->ctrl);
2657 	if (ret)
2658 		goto out_disconnect_admin_queue;
2659 
2660 	/* sanity checks */
2661 
2662 	/* FC-NVME does not have other data in the capsule */
2663 	if (ctrl->ctrl.icdoff) {
2664 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2665 				ctrl->ctrl.icdoff);
2666 		goto out_disconnect_admin_queue;
2667 	}
2668 
2669 	/* FC-NVME supports normal SGL Data Block Descriptors */
2670 
2671 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2672 		/* warn if maxcmd is lower than queue_size */
2673 		dev_warn(ctrl->ctrl.device,
2674 			"queue_size %zu > ctrl maxcmd %u, reducing "
2675 			"to queue_size\n",
2676 			opts->queue_size, ctrl->ctrl.maxcmd);
2677 		opts->queue_size = ctrl->ctrl.maxcmd;
2678 	}
2679 
2680 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2681 		/* warn if sqsize is lower than queue_size */
2682 		dev_warn(ctrl->ctrl.device,
2683 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2684 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2685 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2686 	}
2687 
2688 	ret = nvme_fc_init_aen_ops(ctrl);
2689 	if (ret)
2690 		goto out_term_aen_ops;
2691 
2692 	/*
2693 	 * Create the io queues
2694 	 */
2695 
2696 	if (ctrl->ctrl.queue_count > 1) {
2697 		if (!ctrl->ioq_live)
2698 			ret = nvme_fc_create_io_queues(ctrl);
2699 		else
2700 			ret = nvme_fc_recreate_io_queues(ctrl);
2701 		if (ret)
2702 			goto out_term_aen_ops;
2703 	}
2704 
2705 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2706 
2707 	ctrl->ctrl.nr_reconnects = 0;
2708 
2709 	if (changed)
2710 		nvme_start_ctrl(&ctrl->ctrl);
2711 
2712 	return 0;	/* Success */
2713 
2714 out_term_aen_ops:
2715 	nvme_fc_term_aen_ops(ctrl);
2716 out_disconnect_admin_queue:
2717 	/* send a Disconnect(association) LS to fc-nvme target */
2718 	nvme_fc_xmt_disconnect_assoc(ctrl);
2719 out_delete_hw_queue:
2720 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2721 out_free_queue:
2722 	nvme_fc_free_queue(&ctrl->queues[0]);
2723 	ctrl->assoc_active = false;
2724 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2725 
2726 	return ret;
2727 }
2728 
2729 /*
2730  * This routine stops operation of the controller on the host side.
2731  * On the host os stack side: Admin and IO queues are stopped,
2732  *   outstanding ios on them terminated via FC ABTS.
2733  * On the link side: the association is terminated.
2734  */
2735 static void
2736 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2737 {
2738 	unsigned long flags;
2739 
2740 	if (!ctrl->assoc_active)
2741 		return;
2742 	ctrl->assoc_active = false;
2743 
2744 	spin_lock_irqsave(&ctrl->lock, flags);
2745 	ctrl->flags |= FCCTRL_TERMIO;
2746 	ctrl->iocnt = 0;
2747 	spin_unlock_irqrestore(&ctrl->lock, flags);
2748 
2749 	/*
2750 	 * If io queues are present, stop them and terminate all outstanding
2751 	 * ios on them. As FC allocates FC exchange for each io, the
2752 	 * transport must contact the LLDD to terminate the exchange,
2753 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2754 	 * to tell us what io's are busy and invoke a transport routine
2755 	 * to kill them with the LLDD.  After terminating the exchange
2756 	 * the LLDD will call the transport's normal io done path, but it
2757 	 * will have an aborted status. The done path will return the
2758 	 * io requests back to the block layer as part of normal completions
2759 	 * (but with error status).
2760 	 */
2761 	if (ctrl->ctrl.queue_count > 1) {
2762 		nvme_stop_queues(&ctrl->ctrl);
2763 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2764 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2765 	}
2766 
2767 	/*
2768 	 * Other transports, which don't have link-level contexts bound
2769 	 * to sqe's, would try to gracefully shutdown the controller by
2770 	 * writing the registers for shutdown and polling (call
2771 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2772 	 * just aborted and we will wait on those contexts, and given
2773 	 * there was no indication of how live the controlelr is on the
2774 	 * link, don't send more io to create more contexts for the
2775 	 * shutdown. Let the controller fail via keepalive failure if
2776 	 * its still present.
2777 	 */
2778 
2779 	/*
2780 	 * clean up the admin queue. Same thing as above.
2781 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2782 	 * terminate the exchanges.
2783 	 */
2784 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2785 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2786 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2787 
2788 	/* kill the aens as they are a separate path */
2789 	nvme_fc_abort_aen_ops(ctrl);
2790 
2791 	/* wait for all io that had to be aborted */
2792 	spin_lock_irq(&ctrl->lock);
2793 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2794 	ctrl->flags &= ~FCCTRL_TERMIO;
2795 	spin_unlock_irq(&ctrl->lock);
2796 
2797 	nvme_fc_term_aen_ops(ctrl);
2798 
2799 	/*
2800 	 * send a Disconnect(association) LS to fc-nvme target
2801 	 * Note: could have been sent at top of process, but
2802 	 * cleaner on link traffic if after the aborts complete.
2803 	 * Note: if association doesn't exist, association_id will be 0
2804 	 */
2805 	if (ctrl->association_id)
2806 		nvme_fc_xmt_disconnect_assoc(ctrl);
2807 
2808 	if (ctrl->ctrl.tagset) {
2809 		nvme_fc_delete_hw_io_queues(ctrl);
2810 		nvme_fc_free_io_queues(ctrl);
2811 	}
2812 
2813 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2814 	nvme_fc_free_queue(&ctrl->queues[0]);
2815 
2816 	/* re-enable the admin_q so anything new can fast fail */
2817 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2818 
2819 	/* resume the io queues so that things will fast fail */
2820 	nvme_start_queues(&ctrl->ctrl);
2821 
2822 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2823 }
2824 
2825 static void
2826 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2827 {
2828 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2829 
2830 	cancel_work_sync(&ctrl->err_work);
2831 	cancel_delayed_work_sync(&ctrl->connect_work);
2832 	/*
2833 	 * kill the association on the link side.  this will block
2834 	 * waiting for io to terminate
2835 	 */
2836 	nvme_fc_delete_association(ctrl);
2837 }
2838 
2839 static void
2840 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2841 {
2842 	struct nvme_fc_rport *rport = ctrl->rport;
2843 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2844 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2845 	bool recon = true;
2846 
2847 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2848 		return;
2849 
2850 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2851 		dev_info(ctrl->ctrl.device,
2852 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2853 			ctrl->cnum, status);
2854 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2855 		recon = false;
2856 
2857 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2858 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2859 			dev_info(ctrl->ctrl.device,
2860 				"NVME-FC{%d}: Reconnect attempt in %ld "
2861 				"seconds\n",
2862 				ctrl->cnum, recon_delay / HZ);
2863 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2864 			recon_delay = rport->dev_loss_end - jiffies;
2865 
2866 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2867 	} else {
2868 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2869 			dev_warn(ctrl->ctrl.device,
2870 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2871 				"reached.\n",
2872 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2873 		else
2874 			dev_warn(ctrl->ctrl.device,
2875 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2876 				"while waiting for remoteport connectivity.\n",
2877 				ctrl->cnum, portptr->dev_loss_tmo);
2878 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2879 	}
2880 }
2881 
2882 static void
2883 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2884 {
2885 	nvme_stop_keep_alive(&ctrl->ctrl);
2886 
2887 	/* will block will waiting for io to terminate */
2888 	nvme_fc_delete_association(ctrl);
2889 
2890 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2891 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2892 		dev_err(ctrl->ctrl.device,
2893 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2894 			"to CONNECTING\n", ctrl->cnum);
2895 }
2896 
2897 static void
2898 nvme_fc_reset_ctrl_work(struct work_struct *work)
2899 {
2900 	struct nvme_fc_ctrl *ctrl =
2901 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2902 	int ret;
2903 
2904 	__nvme_fc_terminate_io(ctrl);
2905 
2906 	nvme_stop_ctrl(&ctrl->ctrl);
2907 
2908 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2909 		ret = nvme_fc_create_association(ctrl);
2910 	else
2911 		ret = -ENOTCONN;
2912 
2913 	if (ret)
2914 		nvme_fc_reconnect_or_delete(ctrl, ret);
2915 	else
2916 		dev_info(ctrl->ctrl.device,
2917 			"NVME-FC{%d}: controller reset complete\n",
2918 			ctrl->cnum);
2919 }
2920 
2921 static void
2922 nvme_fc_connect_err_work(struct work_struct *work)
2923 {
2924 	struct nvme_fc_ctrl *ctrl =
2925 			container_of(work, struct nvme_fc_ctrl, err_work);
2926 
2927 	__nvme_fc_terminate_io(ctrl);
2928 
2929 	atomic_set(&ctrl->err_work_active, 0);
2930 
2931 	/*
2932 	 * Rescheduling the connection after recovering
2933 	 * from the io error is left to the reconnect work
2934 	 * item, which is what should have stalled waiting on
2935 	 * the io that had the error that scheduled this work.
2936 	 */
2937 }
2938 
2939 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2940 	.name			= "fc",
2941 	.module			= THIS_MODULE,
2942 	.flags			= NVME_F_FABRICS,
2943 	.reg_read32		= nvmf_reg_read32,
2944 	.reg_read64		= nvmf_reg_read64,
2945 	.reg_write32		= nvmf_reg_write32,
2946 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2947 	.submit_async_event	= nvme_fc_submit_async_event,
2948 	.delete_ctrl		= nvme_fc_delete_ctrl,
2949 	.get_address		= nvmf_get_address,
2950 };
2951 
2952 static void
2953 nvme_fc_connect_ctrl_work(struct work_struct *work)
2954 {
2955 	int ret;
2956 
2957 	struct nvme_fc_ctrl *ctrl =
2958 			container_of(to_delayed_work(work),
2959 				struct nvme_fc_ctrl, connect_work);
2960 
2961 	ret = nvme_fc_create_association(ctrl);
2962 	if (ret)
2963 		nvme_fc_reconnect_or_delete(ctrl, ret);
2964 	else
2965 		dev_info(ctrl->ctrl.device,
2966 			"NVME-FC{%d}: controller connect complete\n",
2967 			ctrl->cnum);
2968 }
2969 
2970 
2971 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2972 	.queue_rq	= nvme_fc_queue_rq,
2973 	.complete	= nvme_fc_complete_rq,
2974 	.init_request	= nvme_fc_init_request,
2975 	.exit_request	= nvme_fc_exit_request,
2976 	.init_hctx	= nvme_fc_init_admin_hctx,
2977 	.timeout	= nvme_fc_timeout,
2978 };
2979 
2980 
2981 /*
2982  * Fails a controller request if it matches an existing controller
2983  * (association) with the same tuple:
2984  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
2985  *
2986  * The ports don't need to be compared as they are intrinsically
2987  * already matched by the port pointers supplied.
2988  */
2989 static bool
2990 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
2991 		struct nvmf_ctrl_options *opts)
2992 {
2993 	struct nvme_fc_ctrl *ctrl;
2994 	unsigned long flags;
2995 	bool found = false;
2996 
2997 	spin_lock_irqsave(&rport->lock, flags);
2998 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
2999 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3000 		if (found)
3001 			break;
3002 	}
3003 	spin_unlock_irqrestore(&rport->lock, flags);
3004 
3005 	return found;
3006 }
3007 
3008 static struct nvme_ctrl *
3009 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3010 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3011 {
3012 	struct nvme_fc_ctrl *ctrl;
3013 	unsigned long flags;
3014 	int ret, idx;
3015 
3016 	if (!(rport->remoteport.port_role &
3017 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3018 		ret = -EBADR;
3019 		goto out_fail;
3020 	}
3021 
3022 	if (!opts->duplicate_connect &&
3023 	    nvme_fc_existing_controller(rport, opts)) {
3024 		ret = -EALREADY;
3025 		goto out_fail;
3026 	}
3027 
3028 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3029 	if (!ctrl) {
3030 		ret = -ENOMEM;
3031 		goto out_fail;
3032 	}
3033 
3034 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3035 	if (idx < 0) {
3036 		ret = -ENOSPC;
3037 		goto out_free_ctrl;
3038 	}
3039 
3040 	ctrl->ctrl.opts = opts;
3041 	ctrl->ctrl.nr_reconnects = 0;
3042 	if (lport->dev)
3043 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3044 	else
3045 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3046 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3047 	ctrl->lport = lport;
3048 	ctrl->rport = rport;
3049 	ctrl->dev = lport->dev;
3050 	ctrl->cnum = idx;
3051 	ctrl->ioq_live = false;
3052 	ctrl->assoc_active = false;
3053 	atomic_set(&ctrl->err_work_active, 0);
3054 	init_waitqueue_head(&ctrl->ioabort_wait);
3055 
3056 	get_device(ctrl->dev);
3057 	kref_init(&ctrl->ref);
3058 
3059 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3060 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3061 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3062 	spin_lock_init(&ctrl->lock);
3063 
3064 	/* io queue count */
3065 	ctrl->ctrl.queue_count = min_t(unsigned int,
3066 				opts->nr_io_queues,
3067 				lport->ops->max_hw_queues);
3068 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3069 
3070 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3071 	ctrl->ctrl.kato = opts->kato;
3072 	ctrl->ctrl.cntlid = 0xffff;
3073 
3074 	ret = -ENOMEM;
3075 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3076 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3077 	if (!ctrl->queues)
3078 		goto out_free_ida;
3079 
3080 	nvme_fc_init_queue(ctrl, 0);
3081 
3082 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3083 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3084 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3085 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3086 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3087 	ctrl->admin_tag_set.cmd_size =
3088 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3089 			    ctrl->lport->ops->fcprqst_priv_sz);
3090 	ctrl->admin_tag_set.driver_data = ctrl;
3091 	ctrl->admin_tag_set.nr_hw_queues = 1;
3092 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3093 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3094 
3095 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3096 	if (ret)
3097 		goto out_free_queues;
3098 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3099 
3100 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3101 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3102 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3103 		goto out_free_admin_tag_set;
3104 	}
3105 
3106 	/*
3107 	 * Would have been nice to init io queues tag set as well.
3108 	 * However, we require interaction from the controller
3109 	 * for max io queue count before we can do so.
3110 	 * Defer this to the connect path.
3111 	 */
3112 
3113 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3114 	if (ret)
3115 		goto out_cleanup_admin_q;
3116 
3117 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3118 
3119 	spin_lock_irqsave(&rport->lock, flags);
3120 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3121 	spin_unlock_irqrestore(&rport->lock, flags);
3122 
3123 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3124 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3125 		dev_err(ctrl->ctrl.device,
3126 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3127 		goto fail_ctrl;
3128 	}
3129 
3130 	nvme_get_ctrl(&ctrl->ctrl);
3131 
3132 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3133 		nvme_put_ctrl(&ctrl->ctrl);
3134 		dev_err(ctrl->ctrl.device,
3135 			"NVME-FC{%d}: failed to schedule initial connect\n",
3136 			ctrl->cnum);
3137 		goto fail_ctrl;
3138 	}
3139 
3140 	flush_delayed_work(&ctrl->connect_work);
3141 
3142 	dev_info(ctrl->ctrl.device,
3143 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3144 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3145 
3146 	return &ctrl->ctrl;
3147 
3148 fail_ctrl:
3149 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3150 	cancel_work_sync(&ctrl->ctrl.reset_work);
3151 	cancel_work_sync(&ctrl->err_work);
3152 	cancel_delayed_work_sync(&ctrl->connect_work);
3153 
3154 	ctrl->ctrl.opts = NULL;
3155 
3156 	/* initiate nvme ctrl ref counting teardown */
3157 	nvme_uninit_ctrl(&ctrl->ctrl);
3158 
3159 	/* Remove core ctrl ref. */
3160 	nvme_put_ctrl(&ctrl->ctrl);
3161 
3162 	/* as we're past the point where we transition to the ref
3163 	 * counting teardown path, if we return a bad pointer here,
3164 	 * the calling routine, thinking it's prior to the
3165 	 * transition, will do an rport put. Since the teardown
3166 	 * path also does a rport put, we do an extra get here to
3167 	 * so proper order/teardown happens.
3168 	 */
3169 	nvme_fc_rport_get(rport);
3170 
3171 	return ERR_PTR(-EIO);
3172 
3173 out_cleanup_admin_q:
3174 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3175 out_free_admin_tag_set:
3176 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3177 out_free_queues:
3178 	kfree(ctrl->queues);
3179 out_free_ida:
3180 	put_device(ctrl->dev);
3181 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3182 out_free_ctrl:
3183 	kfree(ctrl);
3184 out_fail:
3185 	/* exit via here doesn't follow ctlr ref points */
3186 	return ERR_PTR(ret);
3187 }
3188 
3189 
3190 struct nvmet_fc_traddr {
3191 	u64	nn;
3192 	u64	pn;
3193 };
3194 
3195 static int
3196 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3197 {
3198 	u64 token64;
3199 
3200 	if (match_u64(sstr, &token64))
3201 		return -EINVAL;
3202 	*val = token64;
3203 
3204 	return 0;
3205 }
3206 
3207 /*
3208  * This routine validates and extracts the WWN's from the TRADDR string.
3209  * As kernel parsers need the 0x to determine number base, universally
3210  * build string to parse with 0x prefix before parsing name strings.
3211  */
3212 static int
3213 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3214 {
3215 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3216 	substring_t wwn = { name, &name[sizeof(name)-1] };
3217 	int nnoffset, pnoffset;
3218 
3219 	/* validate if string is one of the 2 allowed formats */
3220 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3221 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3222 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3223 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3224 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3225 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3226 						NVME_FC_TRADDR_OXNNLEN;
3227 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3228 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3229 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3230 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3231 		nnoffset = NVME_FC_TRADDR_NNLEN;
3232 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3233 	} else
3234 		goto out_einval;
3235 
3236 	name[0] = '0';
3237 	name[1] = 'x';
3238 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3239 
3240 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3241 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3242 		goto out_einval;
3243 
3244 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3245 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3246 		goto out_einval;
3247 
3248 	return 0;
3249 
3250 out_einval:
3251 	pr_warn("%s: bad traddr string\n", __func__);
3252 	return -EINVAL;
3253 }
3254 
3255 static struct nvme_ctrl *
3256 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3257 {
3258 	struct nvme_fc_lport *lport;
3259 	struct nvme_fc_rport *rport;
3260 	struct nvme_ctrl *ctrl;
3261 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3262 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3263 	unsigned long flags;
3264 	int ret;
3265 
3266 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3267 	if (ret || !raddr.nn || !raddr.pn)
3268 		return ERR_PTR(-EINVAL);
3269 
3270 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3271 	if (ret || !laddr.nn || !laddr.pn)
3272 		return ERR_PTR(-EINVAL);
3273 
3274 	/* find the host and remote ports to connect together */
3275 	spin_lock_irqsave(&nvme_fc_lock, flags);
3276 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3277 		if (lport->localport.node_name != laddr.nn ||
3278 		    lport->localport.port_name != laddr.pn)
3279 			continue;
3280 
3281 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3282 			if (rport->remoteport.node_name != raddr.nn ||
3283 			    rport->remoteport.port_name != raddr.pn)
3284 				continue;
3285 
3286 			/* if fail to get reference fall through. Will error */
3287 			if (!nvme_fc_rport_get(rport))
3288 				break;
3289 
3290 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3291 
3292 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3293 			if (IS_ERR(ctrl))
3294 				nvme_fc_rport_put(rport);
3295 			return ctrl;
3296 		}
3297 	}
3298 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3299 
3300 	pr_warn("%s: %s - %s combination not found\n",
3301 		__func__, opts->traddr, opts->host_traddr);
3302 	return ERR_PTR(-ENOENT);
3303 }
3304 
3305 
3306 static struct nvmf_transport_ops nvme_fc_transport = {
3307 	.name		= "fc",
3308 	.module		= THIS_MODULE,
3309 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3310 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3311 	.create_ctrl	= nvme_fc_create_ctrl,
3312 };
3313 
3314 /* Arbitrary successive failures max. With lots of subsystems could be high */
3315 #define DISCOVERY_MAX_FAIL	20
3316 
3317 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3318 		struct device_attribute *attr, const char *buf, size_t count)
3319 {
3320 	unsigned long flags;
3321 	LIST_HEAD(local_disc_list);
3322 	struct nvme_fc_lport *lport;
3323 	struct nvme_fc_rport *rport;
3324 	int failcnt = 0;
3325 
3326 	spin_lock_irqsave(&nvme_fc_lock, flags);
3327 restart:
3328 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3329 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3330 			if (!nvme_fc_lport_get(lport))
3331 				continue;
3332 			if (!nvme_fc_rport_get(rport)) {
3333 				/*
3334 				 * This is a temporary condition. Upon restart
3335 				 * this rport will be gone from the list.
3336 				 *
3337 				 * Revert the lport put and retry.  Anything
3338 				 * added to the list already will be skipped (as
3339 				 * they are no longer list_empty).  Loops should
3340 				 * resume at rports that were not yet seen.
3341 				 */
3342 				nvme_fc_lport_put(lport);
3343 
3344 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3345 					goto restart;
3346 
3347 				pr_err("nvme_discovery: too many reference "
3348 				       "failures\n");
3349 				goto process_local_list;
3350 			}
3351 			if (list_empty(&rport->disc_list))
3352 				list_add_tail(&rport->disc_list,
3353 					      &local_disc_list);
3354 		}
3355 	}
3356 
3357 process_local_list:
3358 	while (!list_empty(&local_disc_list)) {
3359 		rport = list_first_entry(&local_disc_list,
3360 					 struct nvme_fc_rport, disc_list);
3361 		list_del_init(&rport->disc_list);
3362 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3363 
3364 		lport = rport->lport;
3365 		/* signal discovery. Won't hurt if it repeats */
3366 		nvme_fc_signal_discovery_scan(lport, rport);
3367 		nvme_fc_rport_put(rport);
3368 		nvme_fc_lport_put(lport);
3369 
3370 		spin_lock_irqsave(&nvme_fc_lock, flags);
3371 	}
3372 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3373 
3374 	return count;
3375 }
3376 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3377 
3378 static struct attribute *nvme_fc_attrs[] = {
3379 	&dev_attr_nvme_discovery.attr,
3380 	NULL
3381 };
3382 
3383 static struct attribute_group nvme_fc_attr_group = {
3384 	.attrs = nvme_fc_attrs,
3385 };
3386 
3387 static const struct attribute_group *nvme_fc_attr_groups[] = {
3388 	&nvme_fc_attr_group,
3389 	NULL
3390 };
3391 
3392 static struct class fc_class = {
3393 	.name = "fc",
3394 	.dev_groups = nvme_fc_attr_groups,
3395 	.owner = THIS_MODULE,
3396 };
3397 
3398 static int __init nvme_fc_init_module(void)
3399 {
3400 	int ret;
3401 
3402 	/*
3403 	 * NOTE:
3404 	 * It is expected that in the future the kernel will combine
3405 	 * the FC-isms that are currently under scsi and now being
3406 	 * added to by NVME into a new standalone FC class. The SCSI
3407 	 * and NVME protocols and their devices would be under this
3408 	 * new FC class.
3409 	 *
3410 	 * As we need something to post FC-specific udev events to,
3411 	 * specifically for nvme probe events, start by creating the
3412 	 * new device class.  When the new standalone FC class is
3413 	 * put in place, this code will move to a more generic
3414 	 * location for the class.
3415 	 */
3416 	ret = class_register(&fc_class);
3417 	if (ret) {
3418 		pr_err("couldn't register class fc\n");
3419 		return ret;
3420 	}
3421 
3422 	/*
3423 	 * Create a device for the FC-centric udev events
3424 	 */
3425 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3426 				"fc_udev_device");
3427 	if (IS_ERR(fc_udev_device)) {
3428 		pr_err("couldn't create fc_udev device!\n");
3429 		ret = PTR_ERR(fc_udev_device);
3430 		goto out_destroy_class;
3431 	}
3432 
3433 	ret = nvmf_register_transport(&nvme_fc_transport);
3434 	if (ret)
3435 		goto out_destroy_device;
3436 
3437 	return 0;
3438 
3439 out_destroy_device:
3440 	device_destroy(&fc_class, MKDEV(0, 0));
3441 out_destroy_class:
3442 	class_unregister(&fc_class);
3443 	return ret;
3444 }
3445 
3446 static void __exit nvme_fc_exit_module(void)
3447 {
3448 	/* sanity check - all lports should be removed */
3449 	if (!list_empty(&nvme_fc_lport_list))
3450 		pr_warn("%s: localport list not empty\n", __func__);
3451 
3452 	nvmf_unregister_transport(&nvme_fc_transport);
3453 
3454 	ida_destroy(&nvme_fc_local_port_cnt);
3455 	ida_destroy(&nvme_fc_ctrl_cnt);
3456 
3457 	device_destroy(&fc_class, MKDEV(0, 0));
3458 	class_unregister(&fc_class);
3459 }
3460 
3461 module_init(nvme_fc_init_module);
3462 module_exit(nvme_fc_exit_module);
3463 
3464 MODULE_LICENSE("GPL v2");
3465