1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 #include <linux/blk-mq-pci.h> 20 21 /* *************************** Data Structures/Defines ****************** */ 22 23 24 enum nvme_fc_queue_flags { 25 NVME_FC_Q_CONNECTED = 0, 26 NVME_FC_Q_LIVE, 27 }; 28 29 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 30 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 31 * when connected and a 32 * connection failure. 33 */ 34 35 struct nvme_fc_queue { 36 struct nvme_fc_ctrl *ctrl; 37 struct device *dev; 38 struct blk_mq_hw_ctx *hctx; 39 void *lldd_handle; 40 size_t cmnd_capsule_len; 41 u32 qnum; 42 u32 rqcnt; 43 u32 seqno; 44 45 u64 connection_id; 46 atomic_t csn; 47 48 unsigned long flags; 49 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 50 51 enum nvme_fcop_flags { 52 FCOP_FLAGS_TERMIO = (1 << 0), 53 FCOP_FLAGS_AEN = (1 << 1), 54 }; 55 56 struct nvmefc_ls_req_op { 57 struct nvmefc_ls_req ls_req; 58 59 struct nvme_fc_rport *rport; 60 struct nvme_fc_queue *queue; 61 struct request *rq; 62 u32 flags; 63 64 int ls_error; 65 struct completion ls_done; 66 struct list_head lsreq_list; /* rport->ls_req_list */ 67 bool req_queued; 68 }; 69 70 struct nvmefc_ls_rcv_op { 71 struct nvme_fc_rport *rport; 72 struct nvmefc_ls_rsp *lsrsp; 73 union nvmefc_ls_requests *rqstbuf; 74 union nvmefc_ls_responses *rspbuf; 75 u16 rqstdatalen; 76 bool handled; 77 dma_addr_t rspdma; 78 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 79 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 80 81 enum nvme_fcpop_state { 82 FCPOP_STATE_UNINIT = 0, 83 FCPOP_STATE_IDLE = 1, 84 FCPOP_STATE_ACTIVE = 2, 85 FCPOP_STATE_ABORTED = 3, 86 FCPOP_STATE_COMPLETE = 4, 87 }; 88 89 struct nvme_fc_fcp_op { 90 struct nvme_request nreq; /* 91 * nvme/host/core.c 92 * requires this to be 93 * the 1st element in the 94 * private structure 95 * associated with the 96 * request. 97 */ 98 struct nvmefc_fcp_req fcp_req; 99 100 struct nvme_fc_ctrl *ctrl; 101 struct nvme_fc_queue *queue; 102 struct request *rq; 103 104 atomic_t state; 105 u32 flags; 106 u32 rqno; 107 u32 nents; 108 109 struct nvme_fc_cmd_iu cmd_iu; 110 struct nvme_fc_ersp_iu rsp_iu; 111 }; 112 113 struct nvme_fcp_op_w_sgl { 114 struct nvme_fc_fcp_op op; 115 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 116 uint8_t priv[]; 117 }; 118 119 struct nvme_fc_lport { 120 struct nvme_fc_local_port localport; 121 122 struct ida endp_cnt; 123 struct list_head port_list; /* nvme_fc_port_list */ 124 struct list_head endp_list; 125 struct device *dev; /* physical device for dma */ 126 struct nvme_fc_port_template *ops; 127 struct kref ref; 128 atomic_t act_rport_cnt; 129 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 130 131 struct nvme_fc_rport { 132 struct nvme_fc_remote_port remoteport; 133 134 struct list_head endp_list; /* for lport->endp_list */ 135 struct list_head ctrl_list; 136 struct list_head ls_req_list; 137 struct list_head ls_rcv_list; 138 struct list_head disc_list; 139 struct device *dev; /* physical device for dma */ 140 struct nvme_fc_lport *lport; 141 spinlock_t lock; 142 struct kref ref; 143 atomic_t act_ctrl_cnt; 144 unsigned long dev_loss_end; 145 struct work_struct lsrcv_work; 146 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 147 148 /* fc_ctrl flags values - specified as bit positions */ 149 #define ASSOC_ACTIVE 0 150 #define ASSOC_FAILED 1 151 #define FCCTRL_TERMIO 2 152 153 struct nvme_fc_ctrl { 154 spinlock_t lock; 155 struct nvme_fc_queue *queues; 156 struct device *dev; 157 struct nvme_fc_lport *lport; 158 struct nvme_fc_rport *rport; 159 u32 cnum; 160 161 bool ioq_live; 162 u64 association_id; 163 struct nvmefc_ls_rcv_op *rcv_disconn; 164 165 struct list_head ctrl_list; /* rport->ctrl_list */ 166 167 struct blk_mq_tag_set admin_tag_set; 168 struct blk_mq_tag_set tag_set; 169 170 struct work_struct ioerr_work; 171 struct delayed_work connect_work; 172 173 struct kref ref; 174 unsigned long flags; 175 u32 iocnt; 176 wait_queue_head_t ioabort_wait; 177 178 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 179 180 struct nvme_ctrl ctrl; 181 }; 182 183 static inline struct nvme_fc_ctrl * 184 to_fc_ctrl(struct nvme_ctrl *ctrl) 185 { 186 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 187 } 188 189 static inline struct nvme_fc_lport * 190 localport_to_lport(struct nvme_fc_local_port *portptr) 191 { 192 return container_of(portptr, struct nvme_fc_lport, localport); 193 } 194 195 static inline struct nvme_fc_rport * 196 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 197 { 198 return container_of(portptr, struct nvme_fc_rport, remoteport); 199 } 200 201 static inline struct nvmefc_ls_req_op * 202 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 203 { 204 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 205 } 206 207 static inline struct nvme_fc_fcp_op * 208 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 209 { 210 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 211 } 212 213 214 215 /* *************************** Globals **************************** */ 216 217 218 static DEFINE_SPINLOCK(nvme_fc_lock); 219 220 static LIST_HEAD(nvme_fc_lport_list); 221 static DEFINE_IDA(nvme_fc_local_port_cnt); 222 static DEFINE_IDA(nvme_fc_ctrl_cnt); 223 224 /* 225 * These items are short-term. They will eventually be moved into 226 * a generic FC class. See comments in module init. 227 */ 228 static struct device *fc_udev_device; 229 230 static void nvme_fc_complete_rq(struct request *rq); 231 232 /* *********************** FC-NVME Port Management ************************ */ 233 234 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 235 struct nvme_fc_queue *, unsigned int); 236 237 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 238 239 240 static void 241 nvme_fc_free_lport(struct kref *ref) 242 { 243 struct nvme_fc_lport *lport = 244 container_of(ref, struct nvme_fc_lport, ref); 245 unsigned long flags; 246 247 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 248 WARN_ON(!list_empty(&lport->endp_list)); 249 250 /* remove from transport list */ 251 spin_lock_irqsave(&nvme_fc_lock, flags); 252 list_del(&lport->port_list); 253 spin_unlock_irqrestore(&nvme_fc_lock, flags); 254 255 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 256 ida_destroy(&lport->endp_cnt); 257 258 put_device(lport->dev); 259 260 kfree(lport); 261 } 262 263 static void 264 nvme_fc_lport_put(struct nvme_fc_lport *lport) 265 { 266 kref_put(&lport->ref, nvme_fc_free_lport); 267 } 268 269 static int 270 nvme_fc_lport_get(struct nvme_fc_lport *lport) 271 { 272 return kref_get_unless_zero(&lport->ref); 273 } 274 275 276 static struct nvme_fc_lport * 277 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 278 struct nvme_fc_port_template *ops, 279 struct device *dev) 280 { 281 struct nvme_fc_lport *lport; 282 unsigned long flags; 283 284 spin_lock_irqsave(&nvme_fc_lock, flags); 285 286 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 287 if (lport->localport.node_name != pinfo->node_name || 288 lport->localport.port_name != pinfo->port_name) 289 continue; 290 291 if (lport->dev != dev) { 292 lport = ERR_PTR(-EXDEV); 293 goto out_done; 294 } 295 296 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 297 lport = ERR_PTR(-EEXIST); 298 goto out_done; 299 } 300 301 if (!nvme_fc_lport_get(lport)) { 302 /* 303 * fails if ref cnt already 0. If so, 304 * act as if lport already deleted 305 */ 306 lport = NULL; 307 goto out_done; 308 } 309 310 /* resume the lport */ 311 312 lport->ops = ops; 313 lport->localport.port_role = pinfo->port_role; 314 lport->localport.port_id = pinfo->port_id; 315 lport->localport.port_state = FC_OBJSTATE_ONLINE; 316 317 spin_unlock_irqrestore(&nvme_fc_lock, flags); 318 319 return lport; 320 } 321 322 lport = NULL; 323 324 out_done: 325 spin_unlock_irqrestore(&nvme_fc_lock, flags); 326 327 return lport; 328 } 329 330 /** 331 * nvme_fc_register_localport - transport entry point called by an 332 * LLDD to register the existence of a NVME 333 * host FC port. 334 * @pinfo: pointer to information about the port to be registered 335 * @template: LLDD entrypoints and operational parameters for the port 336 * @dev: physical hardware device node port corresponds to. Will be 337 * used for DMA mappings 338 * @portptr: pointer to a local port pointer. Upon success, the routine 339 * will allocate a nvme_fc_local_port structure and place its 340 * address in the local port pointer. Upon failure, local port 341 * pointer will be set to 0. 342 * 343 * Returns: 344 * a completion status. Must be 0 upon success; a negative errno 345 * (ex: -ENXIO) upon failure. 346 */ 347 int 348 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 349 struct nvme_fc_port_template *template, 350 struct device *dev, 351 struct nvme_fc_local_port **portptr) 352 { 353 struct nvme_fc_lport *newrec; 354 unsigned long flags; 355 int ret, idx; 356 357 if (!template->localport_delete || !template->remoteport_delete || 358 !template->ls_req || !template->fcp_io || 359 !template->ls_abort || !template->fcp_abort || 360 !template->max_hw_queues || !template->max_sgl_segments || 361 !template->max_dif_sgl_segments || !template->dma_boundary) { 362 ret = -EINVAL; 363 goto out_reghost_failed; 364 } 365 366 /* 367 * look to see if there is already a localport that had been 368 * deregistered and in the process of waiting for all the 369 * references to fully be removed. If the references haven't 370 * expired, we can simply re-enable the localport. Remoteports 371 * and controller reconnections should resume naturally. 372 */ 373 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 374 375 /* found an lport, but something about its state is bad */ 376 if (IS_ERR(newrec)) { 377 ret = PTR_ERR(newrec); 378 goto out_reghost_failed; 379 380 /* found existing lport, which was resumed */ 381 } else if (newrec) { 382 *portptr = &newrec->localport; 383 return 0; 384 } 385 386 /* nothing found - allocate a new localport struct */ 387 388 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 389 GFP_KERNEL); 390 if (!newrec) { 391 ret = -ENOMEM; 392 goto out_reghost_failed; 393 } 394 395 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 396 if (idx < 0) { 397 ret = -ENOSPC; 398 goto out_fail_kfree; 399 } 400 401 if (!get_device(dev) && dev) { 402 ret = -ENODEV; 403 goto out_ida_put; 404 } 405 406 INIT_LIST_HEAD(&newrec->port_list); 407 INIT_LIST_HEAD(&newrec->endp_list); 408 kref_init(&newrec->ref); 409 atomic_set(&newrec->act_rport_cnt, 0); 410 newrec->ops = template; 411 newrec->dev = dev; 412 ida_init(&newrec->endp_cnt); 413 if (template->local_priv_sz) 414 newrec->localport.private = &newrec[1]; 415 else 416 newrec->localport.private = NULL; 417 newrec->localport.node_name = pinfo->node_name; 418 newrec->localport.port_name = pinfo->port_name; 419 newrec->localport.port_role = pinfo->port_role; 420 newrec->localport.port_id = pinfo->port_id; 421 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 422 newrec->localport.port_num = idx; 423 424 spin_lock_irqsave(&nvme_fc_lock, flags); 425 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 426 spin_unlock_irqrestore(&nvme_fc_lock, flags); 427 428 if (dev) 429 dma_set_seg_boundary(dev, template->dma_boundary); 430 431 *portptr = &newrec->localport; 432 return 0; 433 434 out_ida_put: 435 ida_free(&nvme_fc_local_port_cnt, idx); 436 out_fail_kfree: 437 kfree(newrec); 438 out_reghost_failed: 439 *portptr = NULL; 440 441 return ret; 442 } 443 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 444 445 /** 446 * nvme_fc_unregister_localport - transport entry point called by an 447 * LLDD to deregister/remove a previously 448 * registered a NVME host FC port. 449 * @portptr: pointer to the (registered) local port that is to be deregistered. 450 * 451 * Returns: 452 * a completion status. Must be 0 upon success; a negative errno 453 * (ex: -ENXIO) upon failure. 454 */ 455 int 456 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 457 { 458 struct nvme_fc_lport *lport = localport_to_lport(portptr); 459 unsigned long flags; 460 461 if (!portptr) 462 return -EINVAL; 463 464 spin_lock_irqsave(&nvme_fc_lock, flags); 465 466 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 467 spin_unlock_irqrestore(&nvme_fc_lock, flags); 468 return -EINVAL; 469 } 470 portptr->port_state = FC_OBJSTATE_DELETED; 471 472 spin_unlock_irqrestore(&nvme_fc_lock, flags); 473 474 if (atomic_read(&lport->act_rport_cnt) == 0) 475 lport->ops->localport_delete(&lport->localport); 476 477 nvme_fc_lport_put(lport); 478 479 return 0; 480 } 481 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 482 483 /* 484 * TRADDR strings, per FC-NVME are fixed format: 485 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 486 * udev event will only differ by prefix of what field is 487 * being specified: 488 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 489 * 19 + 43 + null_fudge = 64 characters 490 */ 491 #define FCNVME_TRADDR_LENGTH 64 492 493 static void 494 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 495 struct nvme_fc_rport *rport) 496 { 497 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 498 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 499 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 500 501 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 502 return; 503 504 snprintf(hostaddr, sizeof(hostaddr), 505 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 506 lport->localport.node_name, lport->localport.port_name); 507 snprintf(tgtaddr, sizeof(tgtaddr), 508 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 509 rport->remoteport.node_name, rport->remoteport.port_name); 510 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 511 } 512 513 static void 514 nvme_fc_free_rport(struct kref *ref) 515 { 516 struct nvme_fc_rport *rport = 517 container_of(ref, struct nvme_fc_rport, ref); 518 struct nvme_fc_lport *lport = 519 localport_to_lport(rport->remoteport.localport); 520 unsigned long flags; 521 522 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 523 WARN_ON(!list_empty(&rport->ctrl_list)); 524 525 /* remove from lport list */ 526 spin_lock_irqsave(&nvme_fc_lock, flags); 527 list_del(&rport->endp_list); 528 spin_unlock_irqrestore(&nvme_fc_lock, flags); 529 530 WARN_ON(!list_empty(&rport->disc_list)); 531 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 532 533 kfree(rport); 534 535 nvme_fc_lport_put(lport); 536 } 537 538 static void 539 nvme_fc_rport_put(struct nvme_fc_rport *rport) 540 { 541 kref_put(&rport->ref, nvme_fc_free_rport); 542 } 543 544 static int 545 nvme_fc_rport_get(struct nvme_fc_rport *rport) 546 { 547 return kref_get_unless_zero(&rport->ref); 548 } 549 550 static void 551 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 552 { 553 switch (nvme_ctrl_state(&ctrl->ctrl)) { 554 case NVME_CTRL_NEW: 555 case NVME_CTRL_CONNECTING: 556 /* 557 * As all reconnects were suppressed, schedule a 558 * connect. 559 */ 560 dev_info(ctrl->ctrl.device, 561 "NVME-FC{%d}: connectivity re-established. " 562 "Attempting reconnect\n", ctrl->cnum); 563 564 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 565 break; 566 567 case NVME_CTRL_RESETTING: 568 /* 569 * Controller is already in the process of terminating the 570 * association. No need to do anything further. The reconnect 571 * step will naturally occur after the reset completes. 572 */ 573 break; 574 575 default: 576 /* no action to take - let it delete */ 577 break; 578 } 579 } 580 581 static struct nvme_fc_rport * 582 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 583 struct nvme_fc_port_info *pinfo) 584 { 585 struct nvme_fc_rport *rport; 586 struct nvme_fc_ctrl *ctrl; 587 unsigned long flags; 588 589 spin_lock_irqsave(&nvme_fc_lock, flags); 590 591 list_for_each_entry(rport, &lport->endp_list, endp_list) { 592 if (rport->remoteport.node_name != pinfo->node_name || 593 rport->remoteport.port_name != pinfo->port_name) 594 continue; 595 596 if (!nvme_fc_rport_get(rport)) { 597 rport = ERR_PTR(-ENOLCK); 598 goto out_done; 599 } 600 601 spin_unlock_irqrestore(&nvme_fc_lock, flags); 602 603 spin_lock_irqsave(&rport->lock, flags); 604 605 /* has it been unregistered */ 606 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 607 /* means lldd called us twice */ 608 spin_unlock_irqrestore(&rport->lock, flags); 609 nvme_fc_rport_put(rport); 610 return ERR_PTR(-ESTALE); 611 } 612 613 rport->remoteport.port_role = pinfo->port_role; 614 rport->remoteport.port_id = pinfo->port_id; 615 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 616 rport->dev_loss_end = 0; 617 618 /* 619 * kick off a reconnect attempt on all associations to the 620 * remote port. A successful reconnects will resume i/o. 621 */ 622 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 623 nvme_fc_resume_controller(ctrl); 624 625 spin_unlock_irqrestore(&rport->lock, flags); 626 627 return rport; 628 } 629 630 rport = NULL; 631 632 out_done: 633 spin_unlock_irqrestore(&nvme_fc_lock, flags); 634 635 return rport; 636 } 637 638 static inline void 639 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 640 struct nvme_fc_port_info *pinfo) 641 { 642 if (pinfo->dev_loss_tmo) 643 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 644 else 645 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 646 } 647 648 /** 649 * nvme_fc_register_remoteport - transport entry point called by an 650 * LLDD to register the existence of a NVME 651 * subsystem FC port on its fabric. 652 * @localport: pointer to the (registered) local port that the remote 653 * subsystem port is connected to. 654 * @pinfo: pointer to information about the port to be registered 655 * @portptr: pointer to a remote port pointer. Upon success, the routine 656 * will allocate a nvme_fc_remote_port structure and place its 657 * address in the remote port pointer. Upon failure, remote port 658 * pointer will be set to 0. 659 * 660 * Returns: 661 * a completion status. Must be 0 upon success; a negative errno 662 * (ex: -ENXIO) upon failure. 663 */ 664 int 665 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 666 struct nvme_fc_port_info *pinfo, 667 struct nvme_fc_remote_port **portptr) 668 { 669 struct nvme_fc_lport *lport = localport_to_lport(localport); 670 struct nvme_fc_rport *newrec; 671 unsigned long flags; 672 int ret, idx; 673 674 if (!nvme_fc_lport_get(lport)) { 675 ret = -ESHUTDOWN; 676 goto out_reghost_failed; 677 } 678 679 /* 680 * look to see if there is already a remoteport that is waiting 681 * for a reconnect (within dev_loss_tmo) with the same WWN's. 682 * If so, transition to it and reconnect. 683 */ 684 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 685 686 /* found an rport, but something about its state is bad */ 687 if (IS_ERR(newrec)) { 688 ret = PTR_ERR(newrec); 689 goto out_lport_put; 690 691 /* found existing rport, which was resumed */ 692 } else if (newrec) { 693 nvme_fc_lport_put(lport); 694 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 695 nvme_fc_signal_discovery_scan(lport, newrec); 696 *portptr = &newrec->remoteport; 697 return 0; 698 } 699 700 /* nothing found - allocate a new remoteport struct */ 701 702 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 703 GFP_KERNEL); 704 if (!newrec) { 705 ret = -ENOMEM; 706 goto out_lport_put; 707 } 708 709 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 710 if (idx < 0) { 711 ret = -ENOSPC; 712 goto out_kfree_rport; 713 } 714 715 INIT_LIST_HEAD(&newrec->endp_list); 716 INIT_LIST_HEAD(&newrec->ctrl_list); 717 INIT_LIST_HEAD(&newrec->ls_req_list); 718 INIT_LIST_HEAD(&newrec->disc_list); 719 kref_init(&newrec->ref); 720 atomic_set(&newrec->act_ctrl_cnt, 0); 721 spin_lock_init(&newrec->lock); 722 newrec->remoteport.localport = &lport->localport; 723 INIT_LIST_HEAD(&newrec->ls_rcv_list); 724 newrec->dev = lport->dev; 725 newrec->lport = lport; 726 if (lport->ops->remote_priv_sz) 727 newrec->remoteport.private = &newrec[1]; 728 else 729 newrec->remoteport.private = NULL; 730 newrec->remoteport.port_role = pinfo->port_role; 731 newrec->remoteport.node_name = pinfo->node_name; 732 newrec->remoteport.port_name = pinfo->port_name; 733 newrec->remoteport.port_id = pinfo->port_id; 734 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 735 newrec->remoteport.port_num = idx; 736 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 737 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 738 739 spin_lock_irqsave(&nvme_fc_lock, flags); 740 list_add_tail(&newrec->endp_list, &lport->endp_list); 741 spin_unlock_irqrestore(&nvme_fc_lock, flags); 742 743 nvme_fc_signal_discovery_scan(lport, newrec); 744 745 *portptr = &newrec->remoteport; 746 return 0; 747 748 out_kfree_rport: 749 kfree(newrec); 750 out_lport_put: 751 nvme_fc_lport_put(lport); 752 out_reghost_failed: 753 *portptr = NULL; 754 return ret; 755 } 756 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 757 758 static int 759 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 760 { 761 struct nvmefc_ls_req_op *lsop; 762 unsigned long flags; 763 764 restart: 765 spin_lock_irqsave(&rport->lock, flags); 766 767 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 768 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 769 lsop->flags |= FCOP_FLAGS_TERMIO; 770 spin_unlock_irqrestore(&rport->lock, flags); 771 rport->lport->ops->ls_abort(&rport->lport->localport, 772 &rport->remoteport, 773 &lsop->ls_req); 774 goto restart; 775 } 776 } 777 spin_unlock_irqrestore(&rport->lock, flags); 778 779 return 0; 780 } 781 782 static void 783 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 784 { 785 dev_info(ctrl->ctrl.device, 786 "NVME-FC{%d}: controller connectivity lost. Awaiting " 787 "Reconnect", ctrl->cnum); 788 789 switch (nvme_ctrl_state(&ctrl->ctrl)) { 790 case NVME_CTRL_NEW: 791 case NVME_CTRL_LIVE: 792 /* 793 * Schedule a controller reset. The reset will terminate the 794 * association and schedule the reconnect timer. Reconnects 795 * will be attempted until either the ctlr_loss_tmo 796 * (max_retries * connect_delay) expires or the remoteport's 797 * dev_loss_tmo expires. 798 */ 799 if (nvme_reset_ctrl(&ctrl->ctrl)) { 800 dev_warn(ctrl->ctrl.device, 801 "NVME-FC{%d}: Couldn't schedule reset.\n", 802 ctrl->cnum); 803 nvme_delete_ctrl(&ctrl->ctrl); 804 } 805 break; 806 807 case NVME_CTRL_CONNECTING: 808 /* 809 * The association has already been terminated and the 810 * controller is attempting reconnects. No need to do anything 811 * futher. Reconnects will be attempted until either the 812 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 813 * remoteport's dev_loss_tmo expires. 814 */ 815 break; 816 817 case NVME_CTRL_RESETTING: 818 /* 819 * Controller is already in the process of terminating the 820 * association. No need to do anything further. The reconnect 821 * step will kick in naturally after the association is 822 * terminated. 823 */ 824 break; 825 826 case NVME_CTRL_DELETING: 827 case NVME_CTRL_DELETING_NOIO: 828 default: 829 /* no action to take - let it delete */ 830 break; 831 } 832 } 833 834 /** 835 * nvme_fc_unregister_remoteport - transport entry point called by an 836 * LLDD to deregister/remove a previously 837 * registered a NVME subsystem FC port. 838 * @portptr: pointer to the (registered) remote port that is to be 839 * deregistered. 840 * 841 * Returns: 842 * a completion status. Must be 0 upon success; a negative errno 843 * (ex: -ENXIO) upon failure. 844 */ 845 int 846 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 847 { 848 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 849 struct nvme_fc_ctrl *ctrl; 850 unsigned long flags; 851 852 if (!portptr) 853 return -EINVAL; 854 855 spin_lock_irqsave(&rport->lock, flags); 856 857 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 858 spin_unlock_irqrestore(&rport->lock, flags); 859 return -EINVAL; 860 } 861 portptr->port_state = FC_OBJSTATE_DELETED; 862 863 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 864 865 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 866 /* if dev_loss_tmo==0, dev loss is immediate */ 867 if (!portptr->dev_loss_tmo) { 868 dev_warn(ctrl->ctrl.device, 869 "NVME-FC{%d}: controller connectivity lost.\n", 870 ctrl->cnum); 871 nvme_delete_ctrl(&ctrl->ctrl); 872 } else 873 nvme_fc_ctrl_connectivity_loss(ctrl); 874 } 875 876 spin_unlock_irqrestore(&rport->lock, flags); 877 878 nvme_fc_abort_lsops(rport); 879 880 if (atomic_read(&rport->act_ctrl_cnt) == 0) 881 rport->lport->ops->remoteport_delete(portptr); 882 883 /* 884 * release the reference, which will allow, if all controllers 885 * go away, which should only occur after dev_loss_tmo occurs, 886 * for the rport to be torn down. 887 */ 888 nvme_fc_rport_put(rport); 889 890 return 0; 891 } 892 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 893 894 /** 895 * nvme_fc_rescan_remoteport - transport entry point called by an 896 * LLDD to request a nvme device rescan. 897 * @remoteport: pointer to the (registered) remote port that is to be 898 * rescanned. 899 * 900 * Returns: N/A 901 */ 902 void 903 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 904 { 905 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 906 907 nvme_fc_signal_discovery_scan(rport->lport, rport); 908 } 909 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 910 911 int 912 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 913 u32 dev_loss_tmo) 914 { 915 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 916 unsigned long flags; 917 918 spin_lock_irqsave(&rport->lock, flags); 919 920 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 921 spin_unlock_irqrestore(&rport->lock, flags); 922 return -EINVAL; 923 } 924 925 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 926 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 927 928 spin_unlock_irqrestore(&rport->lock, flags); 929 930 return 0; 931 } 932 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 933 934 935 /* *********************** FC-NVME DMA Handling **************************** */ 936 937 /* 938 * The fcloop device passes in a NULL device pointer. Real LLD's will 939 * pass in a valid device pointer. If NULL is passed to the dma mapping 940 * routines, depending on the platform, it may or may not succeed, and 941 * may crash. 942 * 943 * As such: 944 * Wrapper all the dma routines and check the dev pointer. 945 * 946 * If simple mappings (return just a dma address, we'll noop them, 947 * returning a dma address of 0. 948 * 949 * On more complex mappings (dma_map_sg), a pseudo routine fills 950 * in the scatter list, setting all dma addresses to 0. 951 */ 952 953 static inline dma_addr_t 954 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 955 enum dma_data_direction dir) 956 { 957 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 958 } 959 960 static inline int 961 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 962 { 963 return dev ? dma_mapping_error(dev, dma_addr) : 0; 964 } 965 966 static inline void 967 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 968 enum dma_data_direction dir) 969 { 970 if (dev) 971 dma_unmap_single(dev, addr, size, dir); 972 } 973 974 static inline void 975 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 976 enum dma_data_direction dir) 977 { 978 if (dev) 979 dma_sync_single_for_cpu(dev, addr, size, dir); 980 } 981 982 static inline void 983 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 984 enum dma_data_direction dir) 985 { 986 if (dev) 987 dma_sync_single_for_device(dev, addr, size, dir); 988 } 989 990 /* pseudo dma_map_sg call */ 991 static int 992 fc_map_sg(struct scatterlist *sg, int nents) 993 { 994 struct scatterlist *s; 995 int i; 996 997 WARN_ON(nents == 0 || sg[0].length == 0); 998 999 for_each_sg(sg, s, nents, i) { 1000 s->dma_address = 0L; 1001 #ifdef CONFIG_NEED_SG_DMA_LENGTH 1002 s->dma_length = s->length; 1003 #endif 1004 } 1005 return nents; 1006 } 1007 1008 static inline int 1009 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 1010 enum dma_data_direction dir) 1011 { 1012 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 1013 } 1014 1015 static inline void 1016 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 1017 enum dma_data_direction dir) 1018 { 1019 if (dev) 1020 dma_unmap_sg(dev, sg, nents, dir); 1021 } 1022 1023 /* *********************** FC-NVME LS Handling **************************** */ 1024 1025 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 1026 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1027 1028 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1029 1030 static void 1031 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1032 { 1033 struct nvme_fc_rport *rport = lsop->rport; 1034 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1035 unsigned long flags; 1036 1037 spin_lock_irqsave(&rport->lock, flags); 1038 1039 if (!lsop->req_queued) { 1040 spin_unlock_irqrestore(&rport->lock, flags); 1041 return; 1042 } 1043 1044 list_del(&lsop->lsreq_list); 1045 1046 lsop->req_queued = false; 1047 1048 spin_unlock_irqrestore(&rport->lock, flags); 1049 1050 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1051 (lsreq->rqstlen + lsreq->rsplen), 1052 DMA_BIDIRECTIONAL); 1053 1054 nvme_fc_rport_put(rport); 1055 } 1056 1057 static int 1058 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1059 struct nvmefc_ls_req_op *lsop, 1060 void (*done)(struct nvmefc_ls_req *req, int status)) 1061 { 1062 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1063 unsigned long flags; 1064 int ret = 0; 1065 1066 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1067 return -ECONNREFUSED; 1068 1069 if (!nvme_fc_rport_get(rport)) 1070 return -ESHUTDOWN; 1071 1072 lsreq->done = done; 1073 lsop->rport = rport; 1074 lsop->req_queued = false; 1075 INIT_LIST_HEAD(&lsop->lsreq_list); 1076 init_completion(&lsop->ls_done); 1077 1078 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1079 lsreq->rqstlen + lsreq->rsplen, 1080 DMA_BIDIRECTIONAL); 1081 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1082 ret = -EFAULT; 1083 goto out_putrport; 1084 } 1085 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1086 1087 spin_lock_irqsave(&rport->lock, flags); 1088 1089 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1090 1091 lsop->req_queued = true; 1092 1093 spin_unlock_irqrestore(&rport->lock, flags); 1094 1095 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1096 &rport->remoteport, lsreq); 1097 if (ret) 1098 goto out_unlink; 1099 1100 return 0; 1101 1102 out_unlink: 1103 lsop->ls_error = ret; 1104 spin_lock_irqsave(&rport->lock, flags); 1105 lsop->req_queued = false; 1106 list_del(&lsop->lsreq_list); 1107 spin_unlock_irqrestore(&rport->lock, flags); 1108 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1109 (lsreq->rqstlen + lsreq->rsplen), 1110 DMA_BIDIRECTIONAL); 1111 out_putrport: 1112 nvme_fc_rport_put(rport); 1113 1114 return ret; 1115 } 1116 1117 static void 1118 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1119 { 1120 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1121 1122 lsop->ls_error = status; 1123 complete(&lsop->ls_done); 1124 } 1125 1126 static int 1127 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1128 { 1129 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1130 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1131 int ret; 1132 1133 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1134 1135 if (!ret) { 1136 /* 1137 * No timeout/not interruptible as we need the struct 1138 * to exist until the lldd calls us back. Thus mandate 1139 * wait until driver calls back. lldd responsible for 1140 * the timeout action 1141 */ 1142 wait_for_completion(&lsop->ls_done); 1143 1144 __nvme_fc_finish_ls_req(lsop); 1145 1146 ret = lsop->ls_error; 1147 } 1148 1149 if (ret) 1150 return ret; 1151 1152 /* ACC or RJT payload ? */ 1153 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1154 return -ENXIO; 1155 1156 return 0; 1157 } 1158 1159 static int 1160 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1161 struct nvmefc_ls_req_op *lsop, 1162 void (*done)(struct nvmefc_ls_req *req, int status)) 1163 { 1164 /* don't wait for completion */ 1165 1166 return __nvme_fc_send_ls_req(rport, lsop, done); 1167 } 1168 1169 static int 1170 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1171 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1172 { 1173 struct nvmefc_ls_req_op *lsop; 1174 struct nvmefc_ls_req *lsreq; 1175 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1176 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1177 unsigned long flags; 1178 int ret, fcret = 0; 1179 1180 lsop = kzalloc((sizeof(*lsop) + 1181 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1182 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1183 if (!lsop) { 1184 dev_info(ctrl->ctrl.device, 1185 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1186 ctrl->cnum); 1187 ret = -ENOMEM; 1188 goto out_no_memory; 1189 } 1190 1191 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1192 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1193 lsreq = &lsop->ls_req; 1194 if (ctrl->lport->ops->lsrqst_priv_sz) 1195 lsreq->private = &assoc_acc[1]; 1196 else 1197 lsreq->private = NULL; 1198 1199 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1200 assoc_rqst->desc_list_len = 1201 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1202 1203 assoc_rqst->assoc_cmd.desc_tag = 1204 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1205 assoc_rqst->assoc_cmd.desc_len = 1206 fcnvme_lsdesc_len( 1207 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1208 1209 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1210 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1211 /* Linux supports only Dynamic controllers */ 1212 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1213 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1214 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1215 sizeof(assoc_rqst->assoc_cmd.hostnqn)); 1216 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1217 sizeof(assoc_rqst->assoc_cmd.subnqn)); 1218 1219 lsop->queue = queue; 1220 lsreq->rqstaddr = assoc_rqst; 1221 lsreq->rqstlen = sizeof(*assoc_rqst); 1222 lsreq->rspaddr = assoc_acc; 1223 lsreq->rsplen = sizeof(*assoc_acc); 1224 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1225 1226 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1227 if (ret) 1228 goto out_free_buffer; 1229 1230 /* process connect LS completion */ 1231 1232 /* validate the ACC response */ 1233 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1234 fcret = VERR_LSACC; 1235 else if (assoc_acc->hdr.desc_list_len != 1236 fcnvme_lsdesc_len( 1237 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1238 fcret = VERR_CR_ASSOC_ACC_LEN; 1239 else if (assoc_acc->hdr.rqst.desc_tag != 1240 cpu_to_be32(FCNVME_LSDESC_RQST)) 1241 fcret = VERR_LSDESC_RQST; 1242 else if (assoc_acc->hdr.rqst.desc_len != 1243 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1244 fcret = VERR_LSDESC_RQST_LEN; 1245 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1246 fcret = VERR_CR_ASSOC; 1247 else if (assoc_acc->associd.desc_tag != 1248 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1249 fcret = VERR_ASSOC_ID; 1250 else if (assoc_acc->associd.desc_len != 1251 fcnvme_lsdesc_len( 1252 sizeof(struct fcnvme_lsdesc_assoc_id))) 1253 fcret = VERR_ASSOC_ID_LEN; 1254 else if (assoc_acc->connectid.desc_tag != 1255 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1256 fcret = VERR_CONN_ID; 1257 else if (assoc_acc->connectid.desc_len != 1258 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1259 fcret = VERR_CONN_ID_LEN; 1260 1261 if (fcret) { 1262 ret = -EBADF; 1263 dev_err(ctrl->dev, 1264 "q %d Create Association LS failed: %s\n", 1265 queue->qnum, validation_errors[fcret]); 1266 } else { 1267 spin_lock_irqsave(&ctrl->lock, flags); 1268 ctrl->association_id = 1269 be64_to_cpu(assoc_acc->associd.association_id); 1270 queue->connection_id = 1271 be64_to_cpu(assoc_acc->connectid.connection_id); 1272 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1273 spin_unlock_irqrestore(&ctrl->lock, flags); 1274 } 1275 1276 out_free_buffer: 1277 kfree(lsop); 1278 out_no_memory: 1279 if (ret) 1280 dev_err(ctrl->dev, 1281 "queue %d connect admin queue failed (%d).\n", 1282 queue->qnum, ret); 1283 return ret; 1284 } 1285 1286 static int 1287 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1288 u16 qsize, u16 ersp_ratio) 1289 { 1290 struct nvmefc_ls_req_op *lsop; 1291 struct nvmefc_ls_req *lsreq; 1292 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1293 struct fcnvme_ls_cr_conn_acc *conn_acc; 1294 int ret, fcret = 0; 1295 1296 lsop = kzalloc((sizeof(*lsop) + 1297 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1298 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1299 if (!lsop) { 1300 dev_info(ctrl->ctrl.device, 1301 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1302 ctrl->cnum); 1303 ret = -ENOMEM; 1304 goto out_no_memory; 1305 } 1306 1307 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1308 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1309 lsreq = &lsop->ls_req; 1310 if (ctrl->lport->ops->lsrqst_priv_sz) 1311 lsreq->private = (void *)&conn_acc[1]; 1312 else 1313 lsreq->private = NULL; 1314 1315 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1316 conn_rqst->desc_list_len = cpu_to_be32( 1317 sizeof(struct fcnvme_lsdesc_assoc_id) + 1318 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1319 1320 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1321 conn_rqst->associd.desc_len = 1322 fcnvme_lsdesc_len( 1323 sizeof(struct fcnvme_lsdesc_assoc_id)); 1324 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1325 conn_rqst->connect_cmd.desc_tag = 1326 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1327 conn_rqst->connect_cmd.desc_len = 1328 fcnvme_lsdesc_len( 1329 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1330 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1331 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1332 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1333 1334 lsop->queue = queue; 1335 lsreq->rqstaddr = conn_rqst; 1336 lsreq->rqstlen = sizeof(*conn_rqst); 1337 lsreq->rspaddr = conn_acc; 1338 lsreq->rsplen = sizeof(*conn_acc); 1339 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1340 1341 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1342 if (ret) 1343 goto out_free_buffer; 1344 1345 /* process connect LS completion */ 1346 1347 /* validate the ACC response */ 1348 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1349 fcret = VERR_LSACC; 1350 else if (conn_acc->hdr.desc_list_len != 1351 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1352 fcret = VERR_CR_CONN_ACC_LEN; 1353 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1354 fcret = VERR_LSDESC_RQST; 1355 else if (conn_acc->hdr.rqst.desc_len != 1356 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1357 fcret = VERR_LSDESC_RQST_LEN; 1358 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1359 fcret = VERR_CR_CONN; 1360 else if (conn_acc->connectid.desc_tag != 1361 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1362 fcret = VERR_CONN_ID; 1363 else if (conn_acc->connectid.desc_len != 1364 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1365 fcret = VERR_CONN_ID_LEN; 1366 1367 if (fcret) { 1368 ret = -EBADF; 1369 dev_err(ctrl->dev, 1370 "q %d Create I/O Connection LS failed: %s\n", 1371 queue->qnum, validation_errors[fcret]); 1372 } else { 1373 queue->connection_id = 1374 be64_to_cpu(conn_acc->connectid.connection_id); 1375 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1376 } 1377 1378 out_free_buffer: 1379 kfree(lsop); 1380 out_no_memory: 1381 if (ret) 1382 dev_err(ctrl->dev, 1383 "queue %d connect I/O queue failed (%d).\n", 1384 queue->qnum, ret); 1385 return ret; 1386 } 1387 1388 static void 1389 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1390 { 1391 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1392 1393 __nvme_fc_finish_ls_req(lsop); 1394 1395 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1396 1397 kfree(lsop); 1398 } 1399 1400 /* 1401 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1402 * the FC-NVME Association. Terminating the association also 1403 * terminates the FC-NVME connections (per queue, both admin and io 1404 * queues) that are part of the association. E.g. things are torn 1405 * down, and the related FC-NVME Association ID and Connection IDs 1406 * become invalid. 1407 * 1408 * The behavior of the fc-nvme initiator is such that it's 1409 * understanding of the association and connections will implicitly 1410 * be torn down. The action is implicit as it may be due to a loss of 1411 * connectivity with the fc-nvme target, so you may never get a 1412 * response even if you tried. As such, the action of this routine 1413 * is to asynchronously send the LS, ignore any results of the LS, and 1414 * continue on with terminating the association. If the fc-nvme target 1415 * is present and receives the LS, it too can tear down. 1416 */ 1417 static void 1418 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1419 { 1420 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1421 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1422 struct nvmefc_ls_req_op *lsop; 1423 struct nvmefc_ls_req *lsreq; 1424 int ret; 1425 1426 lsop = kzalloc((sizeof(*lsop) + 1427 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1428 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1429 if (!lsop) { 1430 dev_info(ctrl->ctrl.device, 1431 "NVME-FC{%d}: send Disconnect Association " 1432 "failed: ENOMEM\n", 1433 ctrl->cnum); 1434 return; 1435 } 1436 1437 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1438 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1439 lsreq = &lsop->ls_req; 1440 if (ctrl->lport->ops->lsrqst_priv_sz) 1441 lsreq->private = (void *)&discon_acc[1]; 1442 else 1443 lsreq->private = NULL; 1444 1445 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1446 ctrl->association_id); 1447 1448 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1449 nvme_fc_disconnect_assoc_done); 1450 if (ret) 1451 kfree(lsop); 1452 } 1453 1454 static void 1455 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1456 { 1457 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1458 struct nvme_fc_rport *rport = lsop->rport; 1459 struct nvme_fc_lport *lport = rport->lport; 1460 unsigned long flags; 1461 1462 spin_lock_irqsave(&rport->lock, flags); 1463 list_del(&lsop->lsrcv_list); 1464 spin_unlock_irqrestore(&rport->lock, flags); 1465 1466 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1467 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1468 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1469 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1470 1471 kfree(lsop->rspbuf); 1472 kfree(lsop->rqstbuf); 1473 kfree(lsop); 1474 1475 nvme_fc_rport_put(rport); 1476 } 1477 1478 static void 1479 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1480 { 1481 struct nvme_fc_rport *rport = lsop->rport; 1482 struct nvme_fc_lport *lport = rport->lport; 1483 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1484 int ret; 1485 1486 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1487 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1488 1489 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1490 lsop->lsrsp); 1491 if (ret) { 1492 dev_warn(lport->dev, 1493 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1494 w0->ls_cmd, ret); 1495 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1496 return; 1497 } 1498 } 1499 1500 static struct nvme_fc_ctrl * 1501 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1502 struct nvmefc_ls_rcv_op *lsop) 1503 { 1504 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1505 &lsop->rqstbuf->rq_dis_assoc; 1506 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1507 struct nvmefc_ls_rcv_op *oldls = NULL; 1508 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1509 unsigned long flags; 1510 1511 spin_lock_irqsave(&rport->lock, flags); 1512 1513 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1514 if (!nvme_fc_ctrl_get(ctrl)) 1515 continue; 1516 spin_lock(&ctrl->lock); 1517 if (association_id == ctrl->association_id) { 1518 oldls = ctrl->rcv_disconn; 1519 ctrl->rcv_disconn = lsop; 1520 ret = ctrl; 1521 } 1522 spin_unlock(&ctrl->lock); 1523 if (ret) 1524 /* leave the ctrl get reference */ 1525 break; 1526 nvme_fc_ctrl_put(ctrl); 1527 } 1528 1529 spin_unlock_irqrestore(&rport->lock, flags); 1530 1531 /* transmit a response for anything that was pending */ 1532 if (oldls) { 1533 dev_info(rport->lport->dev, 1534 "NVME-FC{%d}: Multiple Disconnect Association " 1535 "LS's received\n", ctrl->cnum); 1536 /* overwrite good response with bogus failure */ 1537 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1538 sizeof(*oldls->rspbuf), 1539 rqst->w0.ls_cmd, 1540 FCNVME_RJT_RC_UNAB, 1541 FCNVME_RJT_EXP_NONE, 0); 1542 nvme_fc_xmt_ls_rsp(oldls); 1543 } 1544 1545 return ret; 1546 } 1547 1548 /* 1549 * returns true to mean LS handled and ls_rsp can be sent 1550 * returns false to defer ls_rsp xmt (will be done as part of 1551 * association termination) 1552 */ 1553 static bool 1554 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1555 { 1556 struct nvme_fc_rport *rport = lsop->rport; 1557 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1558 &lsop->rqstbuf->rq_dis_assoc; 1559 struct fcnvme_ls_disconnect_assoc_acc *acc = 1560 &lsop->rspbuf->rsp_dis_assoc; 1561 struct nvme_fc_ctrl *ctrl = NULL; 1562 int ret = 0; 1563 1564 memset(acc, 0, sizeof(*acc)); 1565 1566 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1567 if (!ret) { 1568 /* match an active association */ 1569 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1570 if (!ctrl) 1571 ret = VERR_NO_ASSOC; 1572 } 1573 1574 if (ret) { 1575 dev_info(rport->lport->dev, 1576 "Disconnect LS failed: %s\n", 1577 validation_errors[ret]); 1578 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1579 sizeof(*acc), rqst->w0.ls_cmd, 1580 (ret == VERR_NO_ASSOC) ? 1581 FCNVME_RJT_RC_INV_ASSOC : 1582 FCNVME_RJT_RC_LOGIC, 1583 FCNVME_RJT_EXP_NONE, 0); 1584 return true; 1585 } 1586 1587 /* format an ACCept response */ 1588 1589 lsop->lsrsp->rsplen = sizeof(*acc); 1590 1591 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1592 fcnvme_lsdesc_len( 1593 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1594 FCNVME_LS_DISCONNECT_ASSOC); 1595 1596 /* 1597 * the transmit of the response will occur after the exchanges 1598 * for the association have been ABTS'd by 1599 * nvme_fc_delete_association(). 1600 */ 1601 1602 /* fail the association */ 1603 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1604 1605 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1606 nvme_fc_ctrl_put(ctrl); 1607 1608 return false; 1609 } 1610 1611 /* 1612 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1613 * returns true if a response should be sent afterward, false if rsp will 1614 * be sent asynchronously. 1615 */ 1616 static bool 1617 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1618 { 1619 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1620 bool ret = true; 1621 1622 lsop->lsrsp->nvme_fc_private = lsop; 1623 lsop->lsrsp->rspbuf = lsop->rspbuf; 1624 lsop->lsrsp->rspdma = lsop->rspdma; 1625 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1626 /* Be preventative. handlers will later set to valid length */ 1627 lsop->lsrsp->rsplen = 0; 1628 1629 /* 1630 * handlers: 1631 * parse request input, execute the request, and format the 1632 * LS response 1633 */ 1634 switch (w0->ls_cmd) { 1635 case FCNVME_LS_DISCONNECT_ASSOC: 1636 ret = nvme_fc_ls_disconnect_assoc(lsop); 1637 break; 1638 case FCNVME_LS_DISCONNECT_CONN: 1639 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1640 sizeof(*lsop->rspbuf), w0->ls_cmd, 1641 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1642 break; 1643 case FCNVME_LS_CREATE_ASSOCIATION: 1644 case FCNVME_LS_CREATE_CONNECTION: 1645 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1646 sizeof(*lsop->rspbuf), w0->ls_cmd, 1647 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1648 break; 1649 default: 1650 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1651 sizeof(*lsop->rspbuf), w0->ls_cmd, 1652 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1653 break; 1654 } 1655 1656 return(ret); 1657 } 1658 1659 static void 1660 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1661 { 1662 struct nvme_fc_rport *rport = 1663 container_of(work, struct nvme_fc_rport, lsrcv_work); 1664 struct fcnvme_ls_rqst_w0 *w0; 1665 struct nvmefc_ls_rcv_op *lsop; 1666 unsigned long flags; 1667 bool sendrsp; 1668 1669 restart: 1670 sendrsp = true; 1671 spin_lock_irqsave(&rport->lock, flags); 1672 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1673 if (lsop->handled) 1674 continue; 1675 1676 lsop->handled = true; 1677 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1678 spin_unlock_irqrestore(&rport->lock, flags); 1679 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1680 } else { 1681 spin_unlock_irqrestore(&rport->lock, flags); 1682 w0 = &lsop->rqstbuf->w0; 1683 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1684 lsop->rspbuf, 1685 sizeof(*lsop->rspbuf), 1686 w0->ls_cmd, 1687 FCNVME_RJT_RC_UNAB, 1688 FCNVME_RJT_EXP_NONE, 0); 1689 } 1690 if (sendrsp) 1691 nvme_fc_xmt_ls_rsp(lsop); 1692 goto restart; 1693 } 1694 spin_unlock_irqrestore(&rport->lock, flags); 1695 } 1696 1697 static 1698 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport, 1699 struct fcnvme_ls_rqst_w0 *w0) 1700 { 1701 dev_info(lport->dev, "RCV %s LS failed: No memory\n", 1702 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1703 nvmefc_ls_names[w0->ls_cmd] : ""); 1704 } 1705 1706 /** 1707 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1708 * upon the reception of a NVME LS request. 1709 * 1710 * The nvme-fc layer will copy payload to an internal structure for 1711 * processing. As such, upon completion of the routine, the LLDD may 1712 * immediately free/reuse the LS request buffer passed in the call. 1713 * 1714 * If this routine returns error, the LLDD should abort the exchange. 1715 * 1716 * @portptr: pointer to the (registered) remote port that the LS 1717 * was received from. The remoteport is associated with 1718 * a specific localport. 1719 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1720 * used to reference the exchange corresponding to the LS 1721 * when issuing an ls response. 1722 * @lsreqbuf: pointer to the buffer containing the LS Request 1723 * @lsreqbuf_len: length, in bytes, of the received LS request 1724 */ 1725 int 1726 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1727 struct nvmefc_ls_rsp *lsrsp, 1728 void *lsreqbuf, u32 lsreqbuf_len) 1729 { 1730 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1731 struct nvme_fc_lport *lport = rport->lport; 1732 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1733 struct nvmefc_ls_rcv_op *lsop; 1734 unsigned long flags; 1735 int ret; 1736 1737 nvme_fc_rport_get(rport); 1738 1739 /* validate there's a routine to transmit a response */ 1740 if (!lport->ops->xmt_ls_rsp) { 1741 dev_info(lport->dev, 1742 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1743 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1744 nvmefc_ls_names[w0->ls_cmd] : ""); 1745 ret = -EINVAL; 1746 goto out_put; 1747 } 1748 1749 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1750 dev_info(lport->dev, 1751 "RCV %s LS failed: payload too large\n", 1752 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1753 nvmefc_ls_names[w0->ls_cmd] : ""); 1754 ret = -E2BIG; 1755 goto out_put; 1756 } 1757 1758 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL); 1759 if (!lsop) { 1760 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1761 ret = -ENOMEM; 1762 goto out_put; 1763 } 1764 1765 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL); 1766 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL); 1767 if (!lsop->rqstbuf || !lsop->rspbuf) { 1768 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1769 ret = -ENOMEM; 1770 goto out_free; 1771 } 1772 1773 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1774 sizeof(*lsop->rspbuf), 1775 DMA_TO_DEVICE); 1776 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1777 dev_info(lport->dev, 1778 "RCV %s LS failed: DMA mapping failure\n", 1779 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1780 nvmefc_ls_names[w0->ls_cmd] : ""); 1781 ret = -EFAULT; 1782 goto out_free; 1783 } 1784 1785 lsop->rport = rport; 1786 lsop->lsrsp = lsrsp; 1787 1788 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1789 lsop->rqstdatalen = lsreqbuf_len; 1790 1791 spin_lock_irqsave(&rport->lock, flags); 1792 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1793 spin_unlock_irqrestore(&rport->lock, flags); 1794 ret = -ENOTCONN; 1795 goto out_unmap; 1796 } 1797 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1798 spin_unlock_irqrestore(&rport->lock, flags); 1799 1800 schedule_work(&rport->lsrcv_work); 1801 1802 return 0; 1803 1804 out_unmap: 1805 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1806 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1807 out_free: 1808 kfree(lsop->rspbuf); 1809 kfree(lsop->rqstbuf); 1810 kfree(lsop); 1811 out_put: 1812 nvme_fc_rport_put(rport); 1813 return ret; 1814 } 1815 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1816 1817 1818 /* *********************** NVME Ctrl Routines **************************** */ 1819 1820 static void 1821 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1822 struct nvme_fc_fcp_op *op) 1823 { 1824 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1825 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1826 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1827 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1828 1829 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1830 } 1831 1832 static void 1833 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1834 unsigned int hctx_idx) 1835 { 1836 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1837 1838 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op); 1839 } 1840 1841 static int 1842 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1843 { 1844 unsigned long flags; 1845 int opstate; 1846 1847 spin_lock_irqsave(&ctrl->lock, flags); 1848 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1849 if (opstate != FCPOP_STATE_ACTIVE) 1850 atomic_set(&op->state, opstate); 1851 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1852 op->flags |= FCOP_FLAGS_TERMIO; 1853 ctrl->iocnt++; 1854 } 1855 spin_unlock_irqrestore(&ctrl->lock, flags); 1856 1857 if (opstate != FCPOP_STATE_ACTIVE) 1858 return -ECANCELED; 1859 1860 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1861 &ctrl->rport->remoteport, 1862 op->queue->lldd_handle, 1863 &op->fcp_req); 1864 1865 return 0; 1866 } 1867 1868 static void 1869 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1870 { 1871 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1872 int i; 1873 1874 /* ensure we've initialized the ops once */ 1875 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1876 return; 1877 1878 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1879 __nvme_fc_abort_op(ctrl, aen_op); 1880 } 1881 1882 static inline void 1883 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1884 struct nvme_fc_fcp_op *op, int opstate) 1885 { 1886 unsigned long flags; 1887 1888 if (opstate == FCPOP_STATE_ABORTED) { 1889 spin_lock_irqsave(&ctrl->lock, flags); 1890 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1891 op->flags & FCOP_FLAGS_TERMIO) { 1892 if (!--ctrl->iocnt) 1893 wake_up(&ctrl->ioabort_wait); 1894 } 1895 spin_unlock_irqrestore(&ctrl->lock, flags); 1896 } 1897 } 1898 1899 static void 1900 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1901 { 1902 struct nvme_fc_ctrl *ctrl = 1903 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1904 1905 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1906 } 1907 1908 /* 1909 * nvme_fc_io_getuuid - Routine called to get the appid field 1910 * associated with request by the lldd 1911 * @req:IO request from nvme fc to driver 1912 * Returns: UUID if there is an appid associated with VM or 1913 * NULL if the user/libvirt has not set the appid to VM 1914 */ 1915 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1916 { 1917 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1918 struct request *rq = op->rq; 1919 1920 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio) 1921 return NULL; 1922 return blkcg_get_fc_appid(rq->bio); 1923 } 1924 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1925 1926 static void 1927 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1928 { 1929 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1930 struct request *rq = op->rq; 1931 struct nvmefc_fcp_req *freq = &op->fcp_req; 1932 struct nvme_fc_ctrl *ctrl = op->ctrl; 1933 struct nvme_fc_queue *queue = op->queue; 1934 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1935 struct nvme_command *sqe = &op->cmd_iu.sqe; 1936 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1937 union nvme_result result; 1938 bool terminate_assoc = true; 1939 int opstate; 1940 1941 /* 1942 * WARNING: 1943 * The current linux implementation of a nvme controller 1944 * allocates a single tag set for all io queues and sizes 1945 * the io queues to fully hold all possible tags. Thus, the 1946 * implementation does not reference or care about the sqhd 1947 * value as it never needs to use the sqhd/sqtail pointers 1948 * for submission pacing. 1949 * 1950 * This affects the FC-NVME implementation in two ways: 1951 * 1) As the value doesn't matter, we don't need to waste 1952 * cycles extracting it from ERSPs and stamping it in the 1953 * cases where the transport fabricates CQEs on successful 1954 * completions. 1955 * 2) The FC-NVME implementation requires that delivery of 1956 * ERSP completions are to go back to the nvme layer in order 1957 * relative to the rsn, such that the sqhd value will always 1958 * be "in order" for the nvme layer. As the nvme layer in 1959 * linux doesn't care about sqhd, there's no need to return 1960 * them in order. 1961 * 1962 * Additionally: 1963 * As the core nvme layer in linux currently does not look at 1964 * every field in the cqe - in cases where the FC transport must 1965 * fabricate a CQE, the following fields will not be set as they 1966 * are not referenced: 1967 * cqe.sqid, cqe.sqhd, cqe.command_id 1968 * 1969 * Failure or error of an individual i/o, in a transport 1970 * detected fashion unrelated to the nvme completion status, 1971 * potentially cause the initiator and target sides to get out 1972 * of sync on SQ head/tail (aka outstanding io count allowed). 1973 * Per FC-NVME spec, failure of an individual command requires 1974 * the connection to be terminated, which in turn requires the 1975 * association to be terminated. 1976 */ 1977 1978 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1979 1980 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1981 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1982 1983 if (opstate == FCPOP_STATE_ABORTED) 1984 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1985 else if (freq->status) { 1986 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1987 dev_info(ctrl->ctrl.device, 1988 "NVME-FC{%d}: io failed due to lldd error %d\n", 1989 ctrl->cnum, freq->status); 1990 } 1991 1992 /* 1993 * For the linux implementation, if we have an unsuccesful 1994 * status, they blk-mq layer can typically be called with the 1995 * non-zero status and the content of the cqe isn't important. 1996 */ 1997 if (status) 1998 goto done; 1999 2000 /* 2001 * command completed successfully relative to the wire 2002 * protocol. However, validate anything received and 2003 * extract the status and result from the cqe (create it 2004 * where necessary). 2005 */ 2006 2007 switch (freq->rcv_rsplen) { 2008 2009 case 0: 2010 case NVME_FC_SIZEOF_ZEROS_RSP: 2011 /* 2012 * No response payload or 12 bytes of payload (which 2013 * should all be zeros) are considered successful and 2014 * no payload in the CQE by the transport. 2015 */ 2016 if (freq->transferred_length != 2017 be32_to_cpu(op->cmd_iu.data_len)) { 2018 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2019 dev_info(ctrl->ctrl.device, 2020 "NVME-FC{%d}: io failed due to bad transfer " 2021 "length: %d vs expected %d\n", 2022 ctrl->cnum, freq->transferred_length, 2023 be32_to_cpu(op->cmd_iu.data_len)); 2024 goto done; 2025 } 2026 result.u64 = 0; 2027 break; 2028 2029 case sizeof(struct nvme_fc_ersp_iu): 2030 /* 2031 * The ERSP IU contains a full completion with CQE. 2032 * Validate ERSP IU and look at cqe. 2033 */ 2034 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 2035 (freq->rcv_rsplen / 4) || 2036 be32_to_cpu(op->rsp_iu.xfrd_len) != 2037 freq->transferred_length || 2038 op->rsp_iu.ersp_result || 2039 sqe->common.command_id != cqe->command_id)) { 2040 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2041 dev_info(ctrl->ctrl.device, 2042 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2043 "iu len %d, xfr len %d vs %d, status code " 2044 "%d, cmdid %d vs %d\n", 2045 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2046 be32_to_cpu(op->rsp_iu.xfrd_len), 2047 freq->transferred_length, 2048 op->rsp_iu.ersp_result, 2049 sqe->common.command_id, 2050 cqe->command_id); 2051 goto done; 2052 } 2053 result = cqe->result; 2054 status = cqe->status; 2055 break; 2056 2057 default: 2058 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2059 dev_info(ctrl->ctrl.device, 2060 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2061 "len %d\n", 2062 ctrl->cnum, freq->rcv_rsplen); 2063 goto done; 2064 } 2065 2066 terminate_assoc = false; 2067 2068 done: 2069 if (op->flags & FCOP_FLAGS_AEN) { 2070 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2071 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2072 atomic_set(&op->state, FCPOP_STATE_IDLE); 2073 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2074 nvme_fc_ctrl_put(ctrl); 2075 goto check_error; 2076 } 2077 2078 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2079 if (!nvme_try_complete_req(rq, status, result)) 2080 nvme_fc_complete_rq(rq); 2081 2082 check_error: 2083 if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING) 2084 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2085 } 2086 2087 static int 2088 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2089 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2090 struct request *rq, u32 rqno) 2091 { 2092 struct nvme_fcp_op_w_sgl *op_w_sgl = 2093 container_of(op, typeof(*op_w_sgl), op); 2094 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2095 int ret = 0; 2096 2097 memset(op, 0, sizeof(*op)); 2098 op->fcp_req.cmdaddr = &op->cmd_iu; 2099 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2100 op->fcp_req.rspaddr = &op->rsp_iu; 2101 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2102 op->fcp_req.done = nvme_fc_fcpio_done; 2103 op->ctrl = ctrl; 2104 op->queue = queue; 2105 op->rq = rq; 2106 op->rqno = rqno; 2107 2108 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2109 cmdiu->fc_id = NVME_CMD_FC_ID; 2110 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2111 if (queue->qnum) 2112 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2113 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2114 else 2115 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2116 2117 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2118 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2119 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2120 dev_err(ctrl->dev, 2121 "FCP Op failed - cmdiu dma mapping failed.\n"); 2122 ret = -EFAULT; 2123 goto out_on_error; 2124 } 2125 2126 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2127 &op->rsp_iu, sizeof(op->rsp_iu), 2128 DMA_FROM_DEVICE); 2129 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2130 dev_err(ctrl->dev, 2131 "FCP Op failed - rspiu dma mapping failed.\n"); 2132 ret = -EFAULT; 2133 } 2134 2135 atomic_set(&op->state, FCPOP_STATE_IDLE); 2136 out_on_error: 2137 return ret; 2138 } 2139 2140 static int 2141 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2142 unsigned int hctx_idx, unsigned int numa_node) 2143 { 2144 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2145 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2146 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2147 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2148 int res; 2149 2150 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2151 if (res) 2152 return res; 2153 op->op.fcp_req.first_sgl = op->sgl; 2154 op->op.fcp_req.private = &op->priv[0]; 2155 nvme_req(rq)->ctrl = &ctrl->ctrl; 2156 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2157 return res; 2158 } 2159 2160 static int 2161 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2162 { 2163 struct nvme_fc_fcp_op *aen_op; 2164 struct nvme_fc_cmd_iu *cmdiu; 2165 struct nvme_command *sqe; 2166 void *private = NULL; 2167 int i, ret; 2168 2169 aen_op = ctrl->aen_ops; 2170 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2171 if (ctrl->lport->ops->fcprqst_priv_sz) { 2172 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2173 GFP_KERNEL); 2174 if (!private) 2175 return -ENOMEM; 2176 } 2177 2178 cmdiu = &aen_op->cmd_iu; 2179 sqe = &cmdiu->sqe; 2180 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2181 aen_op, (struct request *)NULL, 2182 (NVME_AQ_BLK_MQ_DEPTH + i)); 2183 if (ret) { 2184 kfree(private); 2185 return ret; 2186 } 2187 2188 aen_op->flags = FCOP_FLAGS_AEN; 2189 aen_op->fcp_req.private = private; 2190 2191 memset(sqe, 0, sizeof(*sqe)); 2192 sqe->common.opcode = nvme_admin_async_event; 2193 /* Note: core layer may overwrite the sqe.command_id value */ 2194 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2195 } 2196 return 0; 2197 } 2198 2199 static void 2200 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2201 { 2202 struct nvme_fc_fcp_op *aen_op; 2203 int i; 2204 2205 cancel_work_sync(&ctrl->ctrl.async_event_work); 2206 aen_op = ctrl->aen_ops; 2207 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2208 __nvme_fc_exit_request(ctrl, aen_op); 2209 2210 kfree(aen_op->fcp_req.private); 2211 aen_op->fcp_req.private = NULL; 2212 } 2213 } 2214 2215 static inline int 2216 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx) 2217 { 2218 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data); 2219 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2220 2221 hctx->driver_data = queue; 2222 queue->hctx = hctx; 2223 return 0; 2224 } 2225 2226 static int 2227 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) 2228 { 2229 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1); 2230 } 2231 2232 static int 2233 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2234 unsigned int hctx_idx) 2235 { 2236 return __nvme_fc_init_hctx(hctx, data, hctx_idx); 2237 } 2238 2239 static void 2240 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2241 { 2242 struct nvme_fc_queue *queue; 2243 2244 queue = &ctrl->queues[idx]; 2245 memset(queue, 0, sizeof(*queue)); 2246 queue->ctrl = ctrl; 2247 queue->qnum = idx; 2248 atomic_set(&queue->csn, 0); 2249 queue->dev = ctrl->dev; 2250 2251 if (idx > 0) 2252 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2253 else 2254 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2255 2256 /* 2257 * Considered whether we should allocate buffers for all SQEs 2258 * and CQEs and dma map them - mapping their respective entries 2259 * into the request structures (kernel vm addr and dma address) 2260 * thus the driver could use the buffers/mappings directly. 2261 * It only makes sense if the LLDD would use them for its 2262 * messaging api. It's very unlikely most adapter api's would use 2263 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2264 * structures were used instead. 2265 */ 2266 } 2267 2268 /* 2269 * This routine terminates a queue at the transport level. 2270 * The transport has already ensured that all outstanding ios on 2271 * the queue have been terminated. 2272 * The transport will send a Disconnect LS request to terminate 2273 * the queue's connection. Termination of the admin queue will also 2274 * terminate the association at the target. 2275 */ 2276 static void 2277 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2278 { 2279 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2280 return; 2281 2282 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2283 /* 2284 * Current implementation never disconnects a single queue. 2285 * It always terminates a whole association. So there is never 2286 * a disconnect(queue) LS sent to the target. 2287 */ 2288 2289 queue->connection_id = 0; 2290 atomic_set(&queue->csn, 0); 2291 } 2292 2293 static void 2294 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2295 struct nvme_fc_queue *queue, unsigned int qidx) 2296 { 2297 if (ctrl->lport->ops->delete_queue) 2298 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2299 queue->lldd_handle); 2300 queue->lldd_handle = NULL; 2301 } 2302 2303 static void 2304 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2305 { 2306 int i; 2307 2308 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2309 nvme_fc_free_queue(&ctrl->queues[i]); 2310 } 2311 2312 static int 2313 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2314 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2315 { 2316 int ret = 0; 2317 2318 queue->lldd_handle = NULL; 2319 if (ctrl->lport->ops->create_queue) 2320 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2321 qidx, qsize, &queue->lldd_handle); 2322 2323 return ret; 2324 } 2325 2326 static void 2327 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2328 { 2329 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2330 int i; 2331 2332 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2333 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2334 } 2335 2336 static int 2337 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2338 { 2339 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2340 int i, ret; 2341 2342 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2343 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2344 if (ret) 2345 goto delete_queues; 2346 } 2347 2348 return 0; 2349 2350 delete_queues: 2351 for (; i > 0; i--) 2352 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2353 return ret; 2354 } 2355 2356 static int 2357 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2358 { 2359 int i, ret = 0; 2360 2361 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2362 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2363 (qsize / 5)); 2364 if (ret) 2365 break; 2366 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2367 if (ret) 2368 break; 2369 2370 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2371 } 2372 2373 return ret; 2374 } 2375 2376 static void 2377 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2378 { 2379 int i; 2380 2381 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2382 nvme_fc_init_queue(ctrl, i); 2383 } 2384 2385 static void 2386 nvme_fc_ctrl_free(struct kref *ref) 2387 { 2388 struct nvme_fc_ctrl *ctrl = 2389 container_of(ref, struct nvme_fc_ctrl, ref); 2390 unsigned long flags; 2391 2392 if (ctrl->ctrl.tagset) 2393 nvme_remove_io_tag_set(&ctrl->ctrl); 2394 2395 /* remove from rport list */ 2396 spin_lock_irqsave(&ctrl->rport->lock, flags); 2397 list_del(&ctrl->ctrl_list); 2398 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2399 2400 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2401 nvme_remove_admin_tag_set(&ctrl->ctrl); 2402 2403 kfree(ctrl->queues); 2404 2405 put_device(ctrl->dev); 2406 nvme_fc_rport_put(ctrl->rport); 2407 2408 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2409 if (ctrl->ctrl.opts) 2410 nvmf_free_options(ctrl->ctrl.opts); 2411 kfree(ctrl); 2412 } 2413 2414 static void 2415 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2416 { 2417 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2418 } 2419 2420 static int 2421 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2422 { 2423 return kref_get_unless_zero(&ctrl->ref); 2424 } 2425 2426 /* 2427 * All accesses from nvme core layer done - can now free the 2428 * controller. Called after last nvme_put_ctrl() call 2429 */ 2430 static void 2431 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2432 { 2433 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2434 2435 WARN_ON(nctrl != &ctrl->ctrl); 2436 2437 nvme_fc_ctrl_put(ctrl); 2438 } 2439 2440 /* 2441 * This routine is used by the transport when it needs to find active 2442 * io on a queue that is to be terminated. The transport uses 2443 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2444 * this routine to kill them on a 1 by 1 basis. 2445 * 2446 * As FC allocates FC exchange for each io, the transport must contact 2447 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2448 * After terminating the exchange the LLDD will call the transport's 2449 * normal io done path for the request, but it will have an aborted 2450 * status. The done path will return the io request back to the block 2451 * layer with an error status. 2452 */ 2453 static bool nvme_fc_terminate_exchange(struct request *req, void *data) 2454 { 2455 struct nvme_ctrl *nctrl = data; 2456 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2457 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2458 2459 op->nreq.flags |= NVME_REQ_CANCELLED; 2460 __nvme_fc_abort_op(ctrl, op); 2461 return true; 2462 } 2463 2464 /* 2465 * This routine runs through all outstanding commands on the association 2466 * and aborts them. This routine is typically be called by the 2467 * delete_association routine. It is also called due to an error during 2468 * reconnect. In that scenario, it is most likely a command that initializes 2469 * the controller, including fabric Connect commands on io queues, that 2470 * may have timed out or failed thus the io must be killed for the connect 2471 * thread to see the error. 2472 */ 2473 static void 2474 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2475 { 2476 int q; 2477 2478 /* 2479 * if aborting io, the queues are no longer good, mark them 2480 * all as not live. 2481 */ 2482 if (ctrl->ctrl.queue_count > 1) { 2483 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2484 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2485 } 2486 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2487 2488 /* 2489 * If io queues are present, stop them and terminate all outstanding 2490 * ios on them. As FC allocates FC exchange for each io, the 2491 * transport must contact the LLDD to terminate the exchange, 2492 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2493 * to tell us what io's are busy and invoke a transport routine 2494 * to kill them with the LLDD. After terminating the exchange 2495 * the LLDD will call the transport's normal io done path, but it 2496 * will have an aborted status. The done path will return the 2497 * io requests back to the block layer as part of normal completions 2498 * (but with error status). 2499 */ 2500 if (ctrl->ctrl.queue_count > 1) { 2501 nvme_quiesce_io_queues(&ctrl->ctrl); 2502 nvme_sync_io_queues(&ctrl->ctrl); 2503 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2504 nvme_fc_terminate_exchange, &ctrl->ctrl); 2505 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2506 if (start_queues) 2507 nvme_unquiesce_io_queues(&ctrl->ctrl); 2508 } 2509 2510 /* 2511 * Other transports, which don't have link-level contexts bound 2512 * to sqe's, would try to gracefully shutdown the controller by 2513 * writing the registers for shutdown and polling (call 2514 * nvme_disable_ctrl()). Given a bunch of i/o was potentially 2515 * just aborted and we will wait on those contexts, and given 2516 * there was no indication of how live the controlelr is on the 2517 * link, don't send more io to create more contexts for the 2518 * shutdown. Let the controller fail via keepalive failure if 2519 * its still present. 2520 */ 2521 2522 /* 2523 * clean up the admin queue. Same thing as above. 2524 */ 2525 nvme_quiesce_admin_queue(&ctrl->ctrl); 2526 blk_sync_queue(ctrl->ctrl.admin_q); 2527 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2528 nvme_fc_terminate_exchange, &ctrl->ctrl); 2529 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2530 if (start_queues) 2531 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2532 } 2533 2534 static void 2535 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2536 { 2537 /* 2538 * if an error (io timeout, etc) while (re)connecting, the remote 2539 * port requested terminating of the association (disconnect_ls) 2540 * or an error (timeout or abort) occurred on an io while creating 2541 * the controller. Abort any ios on the association and let the 2542 * create_association error path resolve things. 2543 */ 2544 if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) { 2545 __nvme_fc_abort_outstanding_ios(ctrl, true); 2546 set_bit(ASSOC_FAILED, &ctrl->flags); 2547 dev_warn(ctrl->ctrl.device, 2548 "NVME-FC{%d}: transport error during (re)connect\n", 2549 ctrl->cnum); 2550 return; 2551 } 2552 2553 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2554 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2555 return; 2556 2557 dev_warn(ctrl->ctrl.device, 2558 "NVME-FC{%d}: transport association event: %s\n", 2559 ctrl->cnum, errmsg); 2560 dev_warn(ctrl->ctrl.device, 2561 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2562 2563 nvme_reset_ctrl(&ctrl->ctrl); 2564 } 2565 2566 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq) 2567 { 2568 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2569 struct nvme_fc_ctrl *ctrl = op->ctrl; 2570 u16 qnum = op->queue->qnum; 2571 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2572 struct nvme_command *sqe = &cmdiu->sqe; 2573 2574 /* 2575 * Attempt to abort the offending command. Command completion 2576 * will detect the aborted io and will fail the connection. 2577 */ 2578 dev_info(ctrl->ctrl.device, 2579 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: " 2580 "x%08x/x%08x\n", 2581 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype, 2582 nvme_fabrics_opcode_str(qnum, sqe), 2583 sqe->common.cdw10, sqe->common.cdw11); 2584 if (__nvme_fc_abort_op(ctrl, op)) 2585 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2586 2587 /* 2588 * the io abort has been initiated. Have the reset timer 2589 * restarted and the abort completion will complete the io 2590 * shortly. Avoids a synchronous wait while the abort finishes. 2591 */ 2592 return BLK_EH_RESET_TIMER; 2593 } 2594 2595 static int 2596 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2597 struct nvme_fc_fcp_op *op) 2598 { 2599 struct nvmefc_fcp_req *freq = &op->fcp_req; 2600 int ret; 2601 2602 freq->sg_cnt = 0; 2603 2604 if (!blk_rq_nr_phys_segments(rq)) 2605 return 0; 2606 2607 freq->sg_table.sgl = freq->first_sgl; 2608 ret = sg_alloc_table_chained(&freq->sg_table, 2609 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2610 NVME_INLINE_SG_CNT); 2611 if (ret) 2612 return -ENOMEM; 2613 2614 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2615 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2616 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2617 op->nents, rq_dma_dir(rq)); 2618 if (unlikely(freq->sg_cnt <= 0)) { 2619 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2620 freq->sg_cnt = 0; 2621 return -EFAULT; 2622 } 2623 2624 /* 2625 * TODO: blk_integrity_rq(rq) for DIF 2626 */ 2627 return 0; 2628 } 2629 2630 static void 2631 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2632 struct nvme_fc_fcp_op *op) 2633 { 2634 struct nvmefc_fcp_req *freq = &op->fcp_req; 2635 2636 if (!freq->sg_cnt) 2637 return; 2638 2639 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2640 rq_dma_dir(rq)); 2641 2642 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2643 2644 freq->sg_cnt = 0; 2645 } 2646 2647 /* 2648 * In FC, the queue is a logical thing. At transport connect, the target 2649 * creates its "queue" and returns a handle that is to be given to the 2650 * target whenever it posts something to the corresponding SQ. When an 2651 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2652 * command contained within the SQE, an io, and assigns a FC exchange 2653 * to it. The SQE and the associated SQ handle are sent in the initial 2654 * CMD IU sents on the exchange. All transfers relative to the io occur 2655 * as part of the exchange. The CQE is the last thing for the io, 2656 * which is transferred (explicitly or implicitly) with the RSP IU 2657 * sent on the exchange. After the CQE is received, the FC exchange is 2658 * terminaed and the Exchange may be used on a different io. 2659 * 2660 * The transport to LLDD api has the transport making a request for a 2661 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2662 * resource and transfers the command. The LLDD will then process all 2663 * steps to complete the io. Upon completion, the transport done routine 2664 * is called. 2665 * 2666 * So - while the operation is outstanding to the LLDD, there is a link 2667 * level FC exchange resource that is also outstanding. This must be 2668 * considered in all cleanup operations. 2669 */ 2670 static blk_status_t 2671 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2672 struct nvme_fc_fcp_op *op, u32 data_len, 2673 enum nvmefc_fcp_datadir io_dir) 2674 { 2675 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2676 struct nvme_command *sqe = &cmdiu->sqe; 2677 int ret, opstate; 2678 2679 /* 2680 * before attempting to send the io, check to see if we believe 2681 * the target device is present 2682 */ 2683 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2684 return BLK_STS_RESOURCE; 2685 2686 if (!nvme_fc_ctrl_get(ctrl)) 2687 return BLK_STS_IOERR; 2688 2689 /* format the FC-NVME CMD IU and fcp_req */ 2690 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2691 cmdiu->data_len = cpu_to_be32(data_len); 2692 switch (io_dir) { 2693 case NVMEFC_FCP_WRITE: 2694 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2695 break; 2696 case NVMEFC_FCP_READ: 2697 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2698 break; 2699 case NVMEFC_FCP_NODATA: 2700 cmdiu->flags = 0; 2701 break; 2702 } 2703 op->fcp_req.payload_length = data_len; 2704 op->fcp_req.io_dir = io_dir; 2705 op->fcp_req.transferred_length = 0; 2706 op->fcp_req.rcv_rsplen = 0; 2707 op->fcp_req.status = NVME_SC_SUCCESS; 2708 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2709 2710 /* 2711 * validate per fabric rules, set fields mandated by fabric spec 2712 * as well as those by FC-NVME spec. 2713 */ 2714 WARN_ON_ONCE(sqe->common.metadata); 2715 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2716 2717 /* 2718 * format SQE DPTR field per FC-NVME rules: 2719 * type=0x5 Transport SGL Data Block Descriptor 2720 * subtype=0xA Transport-specific value 2721 * address=0 2722 * length=length of the data series 2723 */ 2724 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2725 NVME_SGL_FMT_TRANSPORT_A; 2726 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2727 sqe->rw.dptr.sgl.addr = 0; 2728 2729 if (!(op->flags & FCOP_FLAGS_AEN)) { 2730 ret = nvme_fc_map_data(ctrl, op->rq, op); 2731 if (ret < 0) { 2732 nvme_cleanup_cmd(op->rq); 2733 nvme_fc_ctrl_put(ctrl); 2734 if (ret == -ENOMEM || ret == -EAGAIN) 2735 return BLK_STS_RESOURCE; 2736 return BLK_STS_IOERR; 2737 } 2738 } 2739 2740 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2741 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2742 2743 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2744 2745 if (!(op->flags & FCOP_FLAGS_AEN)) 2746 nvme_start_request(op->rq); 2747 2748 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2749 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2750 &ctrl->rport->remoteport, 2751 queue->lldd_handle, &op->fcp_req); 2752 2753 if (ret) { 2754 /* 2755 * If the lld fails to send the command is there an issue with 2756 * the csn value? If the command that fails is the Connect, 2757 * no - as the connection won't be live. If it is a command 2758 * post-connect, it's possible a gap in csn may be created. 2759 * Does this matter? As Linux initiators don't send fused 2760 * commands, no. The gap would exist, but as there's nothing 2761 * that depends on csn order to be delivered on the target 2762 * side, it shouldn't hurt. It would be difficult for a 2763 * target to even detect the csn gap as it has no idea when the 2764 * cmd with the csn was supposed to arrive. 2765 */ 2766 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2767 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2768 2769 if (!(op->flags & FCOP_FLAGS_AEN)) { 2770 nvme_fc_unmap_data(ctrl, op->rq, op); 2771 nvme_cleanup_cmd(op->rq); 2772 } 2773 2774 nvme_fc_ctrl_put(ctrl); 2775 2776 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2777 ret != -EBUSY) 2778 return BLK_STS_IOERR; 2779 2780 return BLK_STS_RESOURCE; 2781 } 2782 2783 return BLK_STS_OK; 2784 } 2785 2786 static blk_status_t 2787 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2788 const struct blk_mq_queue_data *bd) 2789 { 2790 struct nvme_ns *ns = hctx->queue->queuedata; 2791 struct nvme_fc_queue *queue = hctx->driver_data; 2792 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2793 struct request *rq = bd->rq; 2794 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2795 enum nvmefc_fcp_datadir io_dir; 2796 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2797 u32 data_len; 2798 blk_status_t ret; 2799 2800 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2801 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2802 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2803 2804 ret = nvme_setup_cmd(ns, rq); 2805 if (ret) 2806 return ret; 2807 2808 /* 2809 * nvme core doesn't quite treat the rq opaquely. Commands such 2810 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2811 * there is no actual payload to be transferred. 2812 * To get it right, key data transmission on there being 1 or 2813 * more physical segments in the sg list. If there is no 2814 * physical segments, there is no payload. 2815 */ 2816 if (blk_rq_nr_phys_segments(rq)) { 2817 data_len = blk_rq_payload_bytes(rq); 2818 io_dir = ((rq_data_dir(rq) == WRITE) ? 2819 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2820 } else { 2821 data_len = 0; 2822 io_dir = NVMEFC_FCP_NODATA; 2823 } 2824 2825 2826 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2827 } 2828 2829 static void 2830 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2831 { 2832 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2833 struct nvme_fc_fcp_op *aen_op; 2834 blk_status_t ret; 2835 2836 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2837 return; 2838 2839 aen_op = &ctrl->aen_ops[0]; 2840 2841 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2842 NVMEFC_FCP_NODATA); 2843 if (ret) 2844 dev_err(ctrl->ctrl.device, 2845 "failed async event work\n"); 2846 } 2847 2848 static void 2849 nvme_fc_complete_rq(struct request *rq) 2850 { 2851 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2852 struct nvme_fc_ctrl *ctrl = op->ctrl; 2853 2854 atomic_set(&op->state, FCPOP_STATE_IDLE); 2855 op->flags &= ~FCOP_FLAGS_TERMIO; 2856 2857 nvme_fc_unmap_data(ctrl, rq, op); 2858 nvme_complete_rq(rq); 2859 nvme_fc_ctrl_put(ctrl); 2860 } 2861 2862 static void nvme_fc_map_queues(struct blk_mq_tag_set *set) 2863 { 2864 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2865 int i; 2866 2867 for (i = 0; i < set->nr_maps; i++) { 2868 struct blk_mq_queue_map *map = &set->map[i]; 2869 2870 if (!map->nr_queues) { 2871 WARN_ON(i == HCTX_TYPE_DEFAULT); 2872 continue; 2873 } 2874 2875 /* Call LLDD map queue functionality if defined */ 2876 if (ctrl->lport->ops->map_queues) 2877 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2878 map); 2879 else 2880 blk_mq_map_queues(map); 2881 } 2882 } 2883 2884 static const struct blk_mq_ops nvme_fc_mq_ops = { 2885 .queue_rq = nvme_fc_queue_rq, 2886 .complete = nvme_fc_complete_rq, 2887 .init_request = nvme_fc_init_request, 2888 .exit_request = nvme_fc_exit_request, 2889 .init_hctx = nvme_fc_init_hctx, 2890 .timeout = nvme_fc_timeout, 2891 .map_queues = nvme_fc_map_queues, 2892 }; 2893 2894 static int 2895 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2896 { 2897 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2898 unsigned int nr_io_queues; 2899 int ret; 2900 2901 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2902 ctrl->lport->ops->max_hw_queues); 2903 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2904 if (ret) { 2905 dev_info(ctrl->ctrl.device, 2906 "set_queue_count failed: %d\n", ret); 2907 return ret; 2908 } 2909 2910 ctrl->ctrl.queue_count = nr_io_queues + 1; 2911 if (!nr_io_queues) 2912 return 0; 2913 2914 nvme_fc_init_io_queues(ctrl); 2915 2916 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set, 2917 &nvme_fc_mq_ops, 1, 2918 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 2919 ctrl->lport->ops->fcprqst_priv_sz)); 2920 if (ret) 2921 return ret; 2922 2923 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2924 if (ret) 2925 goto out_cleanup_tagset; 2926 2927 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2928 if (ret) 2929 goto out_delete_hw_queues; 2930 2931 ctrl->ioq_live = true; 2932 2933 return 0; 2934 2935 out_delete_hw_queues: 2936 nvme_fc_delete_hw_io_queues(ctrl); 2937 out_cleanup_tagset: 2938 nvme_remove_io_tag_set(&ctrl->ctrl); 2939 nvme_fc_free_io_queues(ctrl); 2940 2941 /* force put free routine to ignore io queues */ 2942 ctrl->ctrl.tagset = NULL; 2943 2944 return ret; 2945 } 2946 2947 static int 2948 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2949 { 2950 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2951 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2952 unsigned int nr_io_queues; 2953 int ret; 2954 2955 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2956 ctrl->lport->ops->max_hw_queues); 2957 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2958 if (ret) { 2959 dev_info(ctrl->ctrl.device, 2960 "set_queue_count failed: %d\n", ret); 2961 return ret; 2962 } 2963 2964 if (!nr_io_queues && prior_ioq_cnt) { 2965 dev_info(ctrl->ctrl.device, 2966 "Fail Reconnect: At least 1 io queue " 2967 "required (was %d)\n", prior_ioq_cnt); 2968 return -ENOSPC; 2969 } 2970 2971 ctrl->ctrl.queue_count = nr_io_queues + 1; 2972 /* check for io queues existing */ 2973 if (ctrl->ctrl.queue_count == 1) 2974 return 0; 2975 2976 if (prior_ioq_cnt != nr_io_queues) { 2977 dev_info(ctrl->ctrl.device, 2978 "reconnect: revising io queue count from %d to %d\n", 2979 prior_ioq_cnt, nr_io_queues); 2980 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2981 } 2982 2983 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2984 if (ret) 2985 goto out_free_io_queues; 2986 2987 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2988 if (ret) 2989 goto out_delete_hw_queues; 2990 2991 return 0; 2992 2993 out_delete_hw_queues: 2994 nvme_fc_delete_hw_io_queues(ctrl); 2995 out_free_io_queues: 2996 nvme_fc_free_io_queues(ctrl); 2997 return ret; 2998 } 2999 3000 static void 3001 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 3002 { 3003 struct nvme_fc_lport *lport = rport->lport; 3004 3005 atomic_inc(&lport->act_rport_cnt); 3006 } 3007 3008 static void 3009 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 3010 { 3011 struct nvme_fc_lport *lport = rport->lport; 3012 u32 cnt; 3013 3014 cnt = atomic_dec_return(&lport->act_rport_cnt); 3015 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 3016 lport->ops->localport_delete(&lport->localport); 3017 } 3018 3019 static int 3020 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 3021 { 3022 struct nvme_fc_rport *rport = ctrl->rport; 3023 u32 cnt; 3024 3025 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 3026 return 1; 3027 3028 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 3029 if (cnt == 1) 3030 nvme_fc_rport_active_on_lport(rport); 3031 3032 return 0; 3033 } 3034 3035 static int 3036 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 3037 { 3038 struct nvme_fc_rport *rport = ctrl->rport; 3039 struct nvme_fc_lport *lport = rport->lport; 3040 u32 cnt; 3041 3042 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3043 3044 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3045 if (cnt == 0) { 3046 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3047 lport->ops->remoteport_delete(&rport->remoteport); 3048 nvme_fc_rport_inactive_on_lport(rport); 3049 } 3050 3051 return 0; 3052 } 3053 3054 /* 3055 * This routine restarts the controller on the host side, and 3056 * on the link side, recreates the controller association. 3057 */ 3058 static int 3059 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3060 { 3061 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3062 struct nvmefc_ls_rcv_op *disls = NULL; 3063 unsigned long flags; 3064 int ret; 3065 bool changed; 3066 3067 ++ctrl->ctrl.nr_reconnects; 3068 3069 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3070 return -ENODEV; 3071 3072 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3073 return -ENOTUNIQ; 3074 3075 dev_info(ctrl->ctrl.device, 3076 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3077 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3078 ctrl->cnum, ctrl->lport->localport.port_name, 3079 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3080 3081 clear_bit(ASSOC_FAILED, &ctrl->flags); 3082 3083 /* 3084 * Create the admin queue 3085 */ 3086 3087 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3088 NVME_AQ_DEPTH); 3089 if (ret) 3090 goto out_free_queue; 3091 3092 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3093 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3094 if (ret) 3095 goto out_delete_hw_queue; 3096 3097 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3098 if (ret) 3099 goto out_disconnect_admin_queue; 3100 3101 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3102 3103 /* 3104 * Check controller capabilities 3105 * 3106 * todo:- add code to check if ctrl attributes changed from 3107 * prior connection values 3108 */ 3109 3110 ret = nvme_enable_ctrl(&ctrl->ctrl); 3111 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3112 ret = -EIO; 3113 if (ret) 3114 goto out_disconnect_admin_queue; 3115 3116 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3117 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3118 (ilog2(SZ_4K) - 9); 3119 3120 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3121 3122 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false); 3123 if (ret) 3124 goto out_disconnect_admin_queue; 3125 if (test_bit(ASSOC_FAILED, &ctrl->flags)) { 3126 ret = -EIO; 3127 goto out_stop_keep_alive; 3128 } 3129 /* sanity checks */ 3130 3131 /* FC-NVME does not have other data in the capsule */ 3132 if (ctrl->ctrl.icdoff) { 3133 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3134 ctrl->ctrl.icdoff); 3135 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3136 goto out_stop_keep_alive; 3137 } 3138 3139 /* FC-NVME supports normal SGL Data Block Descriptors */ 3140 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3141 dev_err(ctrl->ctrl.device, 3142 "Mandatory sgls are not supported!\n"); 3143 ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR; 3144 goto out_stop_keep_alive; 3145 } 3146 3147 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3148 /* warn if maxcmd is lower than queue_size */ 3149 dev_warn(ctrl->ctrl.device, 3150 "queue_size %zu > ctrl maxcmd %u, reducing " 3151 "to maxcmd\n", 3152 opts->queue_size, ctrl->ctrl.maxcmd); 3153 opts->queue_size = ctrl->ctrl.maxcmd; 3154 ctrl->ctrl.sqsize = opts->queue_size - 1; 3155 } 3156 3157 ret = nvme_fc_init_aen_ops(ctrl); 3158 if (ret) 3159 goto out_term_aen_ops; 3160 3161 /* 3162 * Create the io queues 3163 */ 3164 3165 if (ctrl->ctrl.queue_count > 1) { 3166 if (!ctrl->ioq_live) 3167 ret = nvme_fc_create_io_queues(ctrl); 3168 else 3169 ret = nvme_fc_recreate_io_queues(ctrl); 3170 } 3171 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3172 ret = -EIO; 3173 if (ret) 3174 goto out_term_aen_ops; 3175 3176 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 3177 3178 ctrl->ctrl.nr_reconnects = 0; 3179 3180 if (changed) 3181 nvme_start_ctrl(&ctrl->ctrl); 3182 3183 return 0; /* Success */ 3184 3185 out_term_aen_ops: 3186 nvme_fc_term_aen_ops(ctrl); 3187 out_stop_keep_alive: 3188 nvme_stop_keep_alive(&ctrl->ctrl); 3189 out_disconnect_admin_queue: 3190 dev_warn(ctrl->ctrl.device, 3191 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n", 3192 ctrl->cnum, ctrl->association_id, ret); 3193 /* send a Disconnect(association) LS to fc-nvme target */ 3194 nvme_fc_xmt_disconnect_assoc(ctrl); 3195 spin_lock_irqsave(&ctrl->lock, flags); 3196 ctrl->association_id = 0; 3197 disls = ctrl->rcv_disconn; 3198 ctrl->rcv_disconn = NULL; 3199 spin_unlock_irqrestore(&ctrl->lock, flags); 3200 if (disls) 3201 nvme_fc_xmt_ls_rsp(disls); 3202 out_delete_hw_queue: 3203 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3204 out_free_queue: 3205 nvme_fc_free_queue(&ctrl->queues[0]); 3206 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3207 nvme_fc_ctlr_inactive_on_rport(ctrl); 3208 3209 return ret; 3210 } 3211 3212 3213 /* 3214 * This routine stops operation of the controller on the host side. 3215 * On the host os stack side: Admin and IO queues are stopped, 3216 * outstanding ios on them terminated via FC ABTS. 3217 * On the link side: the association is terminated. 3218 */ 3219 static void 3220 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3221 { 3222 struct nvmefc_ls_rcv_op *disls = NULL; 3223 unsigned long flags; 3224 3225 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3226 return; 3227 3228 spin_lock_irqsave(&ctrl->lock, flags); 3229 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3230 ctrl->iocnt = 0; 3231 spin_unlock_irqrestore(&ctrl->lock, flags); 3232 3233 __nvme_fc_abort_outstanding_ios(ctrl, false); 3234 3235 /* kill the aens as they are a separate path */ 3236 nvme_fc_abort_aen_ops(ctrl); 3237 3238 /* wait for all io that had to be aborted */ 3239 spin_lock_irq(&ctrl->lock); 3240 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3241 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3242 spin_unlock_irq(&ctrl->lock); 3243 3244 nvme_fc_term_aen_ops(ctrl); 3245 3246 /* 3247 * send a Disconnect(association) LS to fc-nvme target 3248 * Note: could have been sent at top of process, but 3249 * cleaner on link traffic if after the aborts complete. 3250 * Note: if association doesn't exist, association_id will be 0 3251 */ 3252 if (ctrl->association_id) 3253 nvme_fc_xmt_disconnect_assoc(ctrl); 3254 3255 spin_lock_irqsave(&ctrl->lock, flags); 3256 ctrl->association_id = 0; 3257 disls = ctrl->rcv_disconn; 3258 ctrl->rcv_disconn = NULL; 3259 spin_unlock_irqrestore(&ctrl->lock, flags); 3260 if (disls) 3261 /* 3262 * if a Disconnect Request was waiting for a response, send 3263 * now that all ABTS's have been issued (and are complete). 3264 */ 3265 nvme_fc_xmt_ls_rsp(disls); 3266 3267 if (ctrl->ctrl.tagset) { 3268 nvme_fc_delete_hw_io_queues(ctrl); 3269 nvme_fc_free_io_queues(ctrl); 3270 } 3271 3272 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3273 nvme_fc_free_queue(&ctrl->queues[0]); 3274 3275 /* re-enable the admin_q so anything new can fast fail */ 3276 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3277 3278 /* resume the io queues so that things will fast fail */ 3279 nvme_unquiesce_io_queues(&ctrl->ctrl); 3280 3281 nvme_fc_ctlr_inactive_on_rport(ctrl); 3282 } 3283 3284 static void 3285 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3286 { 3287 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3288 3289 cancel_work_sync(&ctrl->ioerr_work); 3290 cancel_delayed_work_sync(&ctrl->connect_work); 3291 /* 3292 * kill the association on the link side. this will block 3293 * waiting for io to terminate 3294 */ 3295 nvme_fc_delete_association(ctrl); 3296 } 3297 3298 static void 3299 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3300 { 3301 struct nvme_fc_rport *rport = ctrl->rport; 3302 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3303 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3304 bool recon = true; 3305 3306 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING) 3307 return; 3308 3309 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3310 dev_info(ctrl->ctrl.device, 3311 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3312 ctrl->cnum, status); 3313 if (status > 0 && (status & NVME_SC_DNR)) 3314 recon = false; 3315 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3316 recon = false; 3317 3318 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 3319 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3320 dev_info(ctrl->ctrl.device, 3321 "NVME-FC{%d}: Reconnect attempt in %ld " 3322 "seconds\n", 3323 ctrl->cnum, recon_delay / HZ); 3324 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3325 recon_delay = rport->dev_loss_end - jiffies; 3326 3327 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3328 } else { 3329 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3330 if (status > 0 && (status & NVME_SC_DNR)) 3331 dev_warn(ctrl->ctrl.device, 3332 "NVME-FC{%d}: reconnect failure\n", 3333 ctrl->cnum); 3334 else 3335 dev_warn(ctrl->ctrl.device, 3336 "NVME-FC{%d}: Max reconnect attempts " 3337 "(%d) reached.\n", 3338 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3339 } else 3340 dev_warn(ctrl->ctrl.device, 3341 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3342 "while waiting for remoteport connectivity.\n", 3343 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3344 (ctrl->ctrl.opts->max_reconnects * 3345 ctrl->ctrl.opts->reconnect_delay))); 3346 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3347 } 3348 } 3349 3350 static void 3351 nvme_fc_reset_ctrl_work(struct work_struct *work) 3352 { 3353 struct nvme_fc_ctrl *ctrl = 3354 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3355 3356 nvme_stop_ctrl(&ctrl->ctrl); 3357 3358 /* will block will waiting for io to terminate */ 3359 nvme_fc_delete_association(ctrl); 3360 3361 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3362 dev_err(ctrl->ctrl.device, 3363 "NVME-FC{%d}: error_recovery: Couldn't change state " 3364 "to CONNECTING\n", ctrl->cnum); 3365 3366 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3367 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3368 dev_err(ctrl->ctrl.device, 3369 "NVME-FC{%d}: failed to schedule connect " 3370 "after reset\n", ctrl->cnum); 3371 } else { 3372 flush_delayed_work(&ctrl->connect_work); 3373 } 3374 } else { 3375 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3376 } 3377 } 3378 3379 3380 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3381 .name = "fc", 3382 .module = THIS_MODULE, 3383 .flags = NVME_F_FABRICS, 3384 .reg_read32 = nvmf_reg_read32, 3385 .reg_read64 = nvmf_reg_read64, 3386 .reg_write32 = nvmf_reg_write32, 3387 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3388 .submit_async_event = nvme_fc_submit_async_event, 3389 .delete_ctrl = nvme_fc_delete_ctrl, 3390 .get_address = nvmf_get_address, 3391 }; 3392 3393 static void 3394 nvme_fc_connect_ctrl_work(struct work_struct *work) 3395 { 3396 int ret; 3397 3398 struct nvme_fc_ctrl *ctrl = 3399 container_of(to_delayed_work(work), 3400 struct nvme_fc_ctrl, connect_work); 3401 3402 ret = nvme_fc_create_association(ctrl); 3403 if (ret) 3404 nvme_fc_reconnect_or_delete(ctrl, ret); 3405 else 3406 dev_info(ctrl->ctrl.device, 3407 "NVME-FC{%d}: controller connect complete\n", 3408 ctrl->cnum); 3409 } 3410 3411 3412 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3413 .queue_rq = nvme_fc_queue_rq, 3414 .complete = nvme_fc_complete_rq, 3415 .init_request = nvme_fc_init_request, 3416 .exit_request = nvme_fc_exit_request, 3417 .init_hctx = nvme_fc_init_admin_hctx, 3418 .timeout = nvme_fc_timeout, 3419 }; 3420 3421 3422 /* 3423 * Fails a controller request if it matches an existing controller 3424 * (association) with the same tuple: 3425 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3426 * 3427 * The ports don't need to be compared as they are intrinsically 3428 * already matched by the port pointers supplied. 3429 */ 3430 static bool 3431 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3432 struct nvmf_ctrl_options *opts) 3433 { 3434 struct nvme_fc_ctrl *ctrl; 3435 unsigned long flags; 3436 bool found = false; 3437 3438 spin_lock_irqsave(&rport->lock, flags); 3439 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3440 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3441 if (found) 3442 break; 3443 } 3444 spin_unlock_irqrestore(&rport->lock, flags); 3445 3446 return found; 3447 } 3448 3449 static struct nvme_ctrl * 3450 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3451 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3452 { 3453 struct nvme_fc_ctrl *ctrl; 3454 unsigned long flags; 3455 int ret, idx, ctrl_loss_tmo; 3456 3457 if (!(rport->remoteport.port_role & 3458 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3459 ret = -EBADR; 3460 goto out_fail; 3461 } 3462 3463 if (!opts->duplicate_connect && 3464 nvme_fc_existing_controller(rport, opts)) { 3465 ret = -EALREADY; 3466 goto out_fail; 3467 } 3468 3469 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3470 if (!ctrl) { 3471 ret = -ENOMEM; 3472 goto out_fail; 3473 } 3474 3475 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3476 if (idx < 0) { 3477 ret = -ENOSPC; 3478 goto out_free_ctrl; 3479 } 3480 3481 /* 3482 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3483 * is being used, change to a shorter reconnect delay for FC. 3484 */ 3485 if (opts->max_reconnects != -1 && 3486 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3487 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3488 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3489 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3490 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3491 opts->reconnect_delay); 3492 } 3493 3494 ctrl->ctrl.opts = opts; 3495 ctrl->ctrl.nr_reconnects = 0; 3496 INIT_LIST_HEAD(&ctrl->ctrl_list); 3497 ctrl->lport = lport; 3498 ctrl->rport = rport; 3499 ctrl->dev = lport->dev; 3500 ctrl->cnum = idx; 3501 ctrl->ioq_live = false; 3502 init_waitqueue_head(&ctrl->ioabort_wait); 3503 3504 get_device(ctrl->dev); 3505 kref_init(&ctrl->ref); 3506 3507 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3508 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3509 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3510 spin_lock_init(&ctrl->lock); 3511 3512 /* io queue count */ 3513 ctrl->ctrl.queue_count = min_t(unsigned int, 3514 opts->nr_io_queues, 3515 lport->ops->max_hw_queues); 3516 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3517 3518 ctrl->ctrl.sqsize = opts->queue_size - 1; 3519 ctrl->ctrl.kato = opts->kato; 3520 ctrl->ctrl.cntlid = 0xffff; 3521 3522 ret = -ENOMEM; 3523 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3524 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3525 if (!ctrl->queues) 3526 goto out_free_ida; 3527 3528 nvme_fc_init_queue(ctrl, 0); 3529 3530 /* 3531 * Would have been nice to init io queues tag set as well. 3532 * However, we require interaction from the controller 3533 * for max io queue count before we can do so. 3534 * Defer this to the connect path. 3535 */ 3536 3537 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3538 if (ret) 3539 goto out_free_queues; 3540 if (lport->dev) 3541 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3542 3543 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3544 3545 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, 3546 &nvme_fc_admin_mq_ops, 3547 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 3548 ctrl->lport->ops->fcprqst_priv_sz)); 3549 if (ret) 3550 goto fail_ctrl; 3551 3552 spin_lock_irqsave(&rport->lock, flags); 3553 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3554 spin_unlock_irqrestore(&rport->lock, flags); 3555 3556 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) || 3557 !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3558 dev_err(ctrl->ctrl.device, 3559 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3560 goto fail_ctrl; 3561 } 3562 3563 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3564 dev_err(ctrl->ctrl.device, 3565 "NVME-FC{%d}: failed to schedule initial connect\n", 3566 ctrl->cnum); 3567 goto fail_ctrl; 3568 } 3569 3570 flush_delayed_work(&ctrl->connect_work); 3571 3572 dev_info(ctrl->ctrl.device, 3573 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n", 3574 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn); 3575 3576 return &ctrl->ctrl; 3577 3578 fail_ctrl: 3579 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3580 cancel_work_sync(&ctrl->ioerr_work); 3581 cancel_work_sync(&ctrl->ctrl.reset_work); 3582 cancel_delayed_work_sync(&ctrl->connect_work); 3583 3584 ctrl->ctrl.opts = NULL; 3585 3586 /* initiate nvme ctrl ref counting teardown */ 3587 nvme_uninit_ctrl(&ctrl->ctrl); 3588 3589 /* Remove core ctrl ref. */ 3590 nvme_put_ctrl(&ctrl->ctrl); 3591 3592 /* as we're past the point where we transition to the ref 3593 * counting teardown path, if we return a bad pointer here, 3594 * the calling routine, thinking it's prior to the 3595 * transition, will do an rport put. Since the teardown 3596 * path also does a rport put, we do an extra get here to 3597 * so proper order/teardown happens. 3598 */ 3599 nvme_fc_rport_get(rport); 3600 3601 return ERR_PTR(-EIO); 3602 3603 out_free_queues: 3604 kfree(ctrl->queues); 3605 out_free_ida: 3606 put_device(ctrl->dev); 3607 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3608 out_free_ctrl: 3609 kfree(ctrl); 3610 out_fail: 3611 /* exit via here doesn't follow ctlr ref points */ 3612 return ERR_PTR(ret); 3613 } 3614 3615 3616 struct nvmet_fc_traddr { 3617 u64 nn; 3618 u64 pn; 3619 }; 3620 3621 static int 3622 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3623 { 3624 u64 token64; 3625 3626 if (match_u64(sstr, &token64)) 3627 return -EINVAL; 3628 *val = token64; 3629 3630 return 0; 3631 } 3632 3633 /* 3634 * This routine validates and extracts the WWN's from the TRADDR string. 3635 * As kernel parsers need the 0x to determine number base, universally 3636 * build string to parse with 0x prefix before parsing name strings. 3637 */ 3638 static int 3639 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3640 { 3641 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3642 substring_t wwn = { name, &name[sizeof(name)-1] }; 3643 int nnoffset, pnoffset; 3644 3645 /* validate if string is one of the 2 allowed formats */ 3646 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3647 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3648 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3649 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3650 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3651 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3652 NVME_FC_TRADDR_OXNNLEN; 3653 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3654 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3655 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3656 "pn-", NVME_FC_TRADDR_NNLEN))) { 3657 nnoffset = NVME_FC_TRADDR_NNLEN; 3658 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3659 } else 3660 goto out_einval; 3661 3662 name[0] = '0'; 3663 name[1] = 'x'; 3664 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3665 3666 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3667 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3668 goto out_einval; 3669 3670 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3671 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3672 goto out_einval; 3673 3674 return 0; 3675 3676 out_einval: 3677 pr_warn("%s: bad traddr string\n", __func__); 3678 return -EINVAL; 3679 } 3680 3681 static struct nvme_ctrl * 3682 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3683 { 3684 struct nvme_fc_lport *lport; 3685 struct nvme_fc_rport *rport; 3686 struct nvme_ctrl *ctrl; 3687 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3688 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3689 unsigned long flags; 3690 int ret; 3691 3692 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3693 if (ret || !raddr.nn || !raddr.pn) 3694 return ERR_PTR(-EINVAL); 3695 3696 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3697 if (ret || !laddr.nn || !laddr.pn) 3698 return ERR_PTR(-EINVAL); 3699 3700 /* find the host and remote ports to connect together */ 3701 spin_lock_irqsave(&nvme_fc_lock, flags); 3702 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3703 if (lport->localport.node_name != laddr.nn || 3704 lport->localport.port_name != laddr.pn || 3705 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3706 continue; 3707 3708 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3709 if (rport->remoteport.node_name != raddr.nn || 3710 rport->remoteport.port_name != raddr.pn || 3711 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3712 continue; 3713 3714 /* if fail to get reference fall through. Will error */ 3715 if (!nvme_fc_rport_get(rport)) 3716 break; 3717 3718 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3719 3720 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3721 if (IS_ERR(ctrl)) 3722 nvme_fc_rport_put(rport); 3723 return ctrl; 3724 } 3725 } 3726 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3727 3728 pr_warn("%s: %s - %s combination not found\n", 3729 __func__, opts->traddr, opts->host_traddr); 3730 return ERR_PTR(-ENOENT); 3731 } 3732 3733 3734 static struct nvmf_transport_ops nvme_fc_transport = { 3735 .name = "fc", 3736 .module = THIS_MODULE, 3737 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3738 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3739 .create_ctrl = nvme_fc_create_ctrl, 3740 }; 3741 3742 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3743 #define DISCOVERY_MAX_FAIL 20 3744 3745 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3746 struct device_attribute *attr, const char *buf, size_t count) 3747 { 3748 unsigned long flags; 3749 LIST_HEAD(local_disc_list); 3750 struct nvme_fc_lport *lport; 3751 struct nvme_fc_rport *rport; 3752 int failcnt = 0; 3753 3754 spin_lock_irqsave(&nvme_fc_lock, flags); 3755 restart: 3756 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3757 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3758 if (!nvme_fc_lport_get(lport)) 3759 continue; 3760 if (!nvme_fc_rport_get(rport)) { 3761 /* 3762 * This is a temporary condition. Upon restart 3763 * this rport will be gone from the list. 3764 * 3765 * Revert the lport put and retry. Anything 3766 * added to the list already will be skipped (as 3767 * they are no longer list_empty). Loops should 3768 * resume at rports that were not yet seen. 3769 */ 3770 nvme_fc_lport_put(lport); 3771 3772 if (failcnt++ < DISCOVERY_MAX_FAIL) 3773 goto restart; 3774 3775 pr_err("nvme_discovery: too many reference " 3776 "failures\n"); 3777 goto process_local_list; 3778 } 3779 if (list_empty(&rport->disc_list)) 3780 list_add_tail(&rport->disc_list, 3781 &local_disc_list); 3782 } 3783 } 3784 3785 process_local_list: 3786 while (!list_empty(&local_disc_list)) { 3787 rport = list_first_entry(&local_disc_list, 3788 struct nvme_fc_rport, disc_list); 3789 list_del_init(&rport->disc_list); 3790 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3791 3792 lport = rport->lport; 3793 /* signal discovery. Won't hurt if it repeats */ 3794 nvme_fc_signal_discovery_scan(lport, rport); 3795 nvme_fc_rport_put(rport); 3796 nvme_fc_lport_put(lport); 3797 3798 spin_lock_irqsave(&nvme_fc_lock, flags); 3799 } 3800 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3801 3802 return count; 3803 } 3804 3805 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3806 3807 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3808 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3809 static int fc_parse_cgrpid(const char *buf, u64 *id) 3810 { 3811 char cgrp_id[16+1]; 3812 int cgrpid_len, j; 3813 3814 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3815 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3816 if (buf[cgrpid_len] != ':') 3817 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3818 else { 3819 j = 1; 3820 break; 3821 } 3822 } 3823 if (!j) 3824 return -EINVAL; 3825 if (kstrtou64(cgrp_id, 16, id) < 0) 3826 return -EINVAL; 3827 return cgrpid_len; 3828 } 3829 3830 /* 3831 * Parse and update the appid in the blkcg associated with the cgroupid. 3832 */ 3833 static ssize_t fc_appid_store(struct device *dev, 3834 struct device_attribute *attr, const char *buf, size_t count) 3835 { 3836 size_t orig_count = count; 3837 u64 cgrp_id; 3838 int appid_len = 0; 3839 int cgrpid_len = 0; 3840 char app_id[FC_APPID_LEN]; 3841 int ret = 0; 3842 3843 if (buf[count-1] == '\n') 3844 count--; 3845 3846 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3847 return -EINVAL; 3848 3849 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3850 if (cgrpid_len < 0) 3851 return -EINVAL; 3852 appid_len = count - cgrpid_len - 1; 3853 if (appid_len > FC_APPID_LEN) 3854 return -EINVAL; 3855 3856 memset(app_id, 0x0, sizeof(app_id)); 3857 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3858 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3859 if (ret < 0) 3860 return ret; 3861 return orig_count; 3862 } 3863 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3864 #endif /* CONFIG_BLK_CGROUP_FC_APPID */ 3865 3866 static struct attribute *nvme_fc_attrs[] = { 3867 &dev_attr_nvme_discovery.attr, 3868 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3869 &dev_attr_appid_store.attr, 3870 #endif 3871 NULL 3872 }; 3873 3874 static const struct attribute_group nvme_fc_attr_group = { 3875 .attrs = nvme_fc_attrs, 3876 }; 3877 3878 static const struct attribute_group *nvme_fc_attr_groups[] = { 3879 &nvme_fc_attr_group, 3880 NULL 3881 }; 3882 3883 static struct class fc_class = { 3884 .name = "fc", 3885 .dev_groups = nvme_fc_attr_groups, 3886 }; 3887 3888 static int __init nvme_fc_init_module(void) 3889 { 3890 int ret; 3891 3892 /* 3893 * NOTE: 3894 * It is expected that in the future the kernel will combine 3895 * the FC-isms that are currently under scsi and now being 3896 * added to by NVME into a new standalone FC class. The SCSI 3897 * and NVME protocols and their devices would be under this 3898 * new FC class. 3899 * 3900 * As we need something to post FC-specific udev events to, 3901 * specifically for nvme probe events, start by creating the 3902 * new device class. When the new standalone FC class is 3903 * put in place, this code will move to a more generic 3904 * location for the class. 3905 */ 3906 ret = class_register(&fc_class); 3907 if (ret) { 3908 pr_err("couldn't register class fc\n"); 3909 return ret; 3910 } 3911 3912 /* 3913 * Create a device for the FC-centric udev events 3914 */ 3915 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3916 "fc_udev_device"); 3917 if (IS_ERR(fc_udev_device)) { 3918 pr_err("couldn't create fc_udev device!\n"); 3919 ret = PTR_ERR(fc_udev_device); 3920 goto out_destroy_class; 3921 } 3922 3923 ret = nvmf_register_transport(&nvme_fc_transport); 3924 if (ret) 3925 goto out_destroy_device; 3926 3927 return 0; 3928 3929 out_destroy_device: 3930 device_destroy(&fc_class, MKDEV(0, 0)); 3931 out_destroy_class: 3932 class_unregister(&fc_class); 3933 3934 return ret; 3935 } 3936 3937 static void 3938 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3939 { 3940 struct nvme_fc_ctrl *ctrl; 3941 3942 spin_lock(&rport->lock); 3943 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3944 dev_warn(ctrl->ctrl.device, 3945 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3946 ctrl->cnum); 3947 nvme_delete_ctrl(&ctrl->ctrl); 3948 } 3949 spin_unlock(&rport->lock); 3950 } 3951 3952 static void __exit nvme_fc_exit_module(void) 3953 { 3954 struct nvme_fc_lport *lport; 3955 struct nvme_fc_rport *rport; 3956 unsigned long flags; 3957 3958 spin_lock_irqsave(&nvme_fc_lock, flags); 3959 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) 3960 list_for_each_entry(rport, &lport->endp_list, endp_list) 3961 nvme_fc_delete_controllers(rport); 3962 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3963 flush_workqueue(nvme_delete_wq); 3964 3965 nvmf_unregister_transport(&nvme_fc_transport); 3966 3967 device_destroy(&fc_class, MKDEV(0, 0)); 3968 class_unregister(&fc_class); 3969 } 3970 3971 module_init(nvme_fc_init_module); 3972 module_exit(nvme_fc_exit_module); 3973 3974 MODULE_DESCRIPTION("NVMe host FC transport driver"); 3975 MODULE_LICENSE("GPL v2"); 3976