xref: /linux/drivers/nvme/host/fc.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include <scsi/scsi_transport_fc.h>
18 
19 /* *************************** Data Structures/Defines ****************** */
20 
21 
22 enum nvme_fc_queue_flags {
23 	NVME_FC_Q_CONNECTED = 0,
24 	NVME_FC_Q_LIVE,
25 };
26 
27 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
28 
29 struct nvme_fc_queue {
30 	struct nvme_fc_ctrl	*ctrl;
31 	struct device		*dev;
32 	struct blk_mq_hw_ctx	*hctx;
33 	void			*lldd_handle;
34 	size_t			cmnd_capsule_len;
35 	u32			qnum;
36 	u32			rqcnt;
37 	u32			seqno;
38 
39 	u64			connection_id;
40 	atomic_t		csn;
41 
42 	unsigned long		flags;
43 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
44 
45 enum nvme_fcop_flags {
46 	FCOP_FLAGS_TERMIO	= (1 << 0),
47 	FCOP_FLAGS_AEN		= (1 << 1),
48 };
49 
50 struct nvmefc_ls_req_op {
51 	struct nvmefc_ls_req	ls_req;
52 
53 	struct nvme_fc_rport	*rport;
54 	struct nvme_fc_queue	*queue;
55 	struct request		*rq;
56 	u32			flags;
57 
58 	int			ls_error;
59 	struct completion	ls_done;
60 	struct list_head	lsreq_list;	/* rport->ls_req_list */
61 	bool			req_queued;
62 };
63 
64 enum nvme_fcpop_state {
65 	FCPOP_STATE_UNINIT	= 0,
66 	FCPOP_STATE_IDLE	= 1,
67 	FCPOP_STATE_ACTIVE	= 2,
68 	FCPOP_STATE_ABORTED	= 3,
69 	FCPOP_STATE_COMPLETE	= 4,
70 };
71 
72 struct nvme_fc_fcp_op {
73 	struct nvme_request	nreq;		/*
74 						 * nvme/host/core.c
75 						 * requires this to be
76 						 * the 1st element in the
77 						 * private structure
78 						 * associated with the
79 						 * request.
80 						 */
81 	struct nvmefc_fcp_req	fcp_req;
82 
83 	struct nvme_fc_ctrl	*ctrl;
84 	struct nvme_fc_queue	*queue;
85 	struct request		*rq;
86 
87 	atomic_t		state;
88 	u32			flags;
89 	u32			rqno;
90 	u32			nents;
91 
92 	struct nvme_fc_cmd_iu	cmd_iu;
93 	struct nvme_fc_ersp_iu	rsp_iu;
94 };
95 
96 struct nvme_fcp_op_w_sgl {
97 	struct nvme_fc_fcp_op	op;
98 	struct scatterlist	sgl[SG_CHUNK_SIZE];
99 	uint8_t			priv[0];
100 };
101 
102 struct nvme_fc_lport {
103 	struct nvme_fc_local_port	localport;
104 
105 	struct ida			endp_cnt;
106 	struct list_head		port_list;	/* nvme_fc_port_list */
107 	struct list_head		endp_list;
108 	struct device			*dev;	/* physical device for dma */
109 	struct nvme_fc_port_template	*ops;
110 	struct kref			ref;
111 	atomic_t                        act_rport_cnt;
112 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
113 
114 struct nvme_fc_rport {
115 	struct nvme_fc_remote_port	remoteport;
116 
117 	struct list_head		endp_list; /* for lport->endp_list */
118 	struct list_head		ctrl_list;
119 	struct list_head		ls_req_list;
120 	struct list_head		disc_list;
121 	struct device			*dev;	/* physical device for dma */
122 	struct nvme_fc_lport		*lport;
123 	spinlock_t			lock;
124 	struct kref			ref;
125 	atomic_t                        act_ctrl_cnt;
126 	unsigned long			dev_loss_end;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 enum nvme_fcctrl_flags {
130 	FCCTRL_TERMIO		= (1 << 0),
131 };
132 
133 struct nvme_fc_ctrl {
134 	spinlock_t		lock;
135 	struct nvme_fc_queue	*queues;
136 	struct device		*dev;
137 	struct nvme_fc_lport	*lport;
138 	struct nvme_fc_rport	*rport;
139 	u32			cnum;
140 
141 	bool			ioq_live;
142 	bool			assoc_active;
143 	atomic_t		err_work_active;
144 	u64			association_id;
145 
146 	struct list_head	ctrl_list;	/* rport->ctrl_list */
147 
148 	struct blk_mq_tag_set	admin_tag_set;
149 	struct blk_mq_tag_set	tag_set;
150 
151 	struct delayed_work	connect_work;
152 	struct work_struct	err_work;
153 
154 	struct kref		ref;
155 	u32			flags;
156 	u32			iocnt;
157 	wait_queue_head_t	ioabort_wait;
158 
159 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
160 
161 	struct nvme_ctrl	ctrl;
162 };
163 
164 static inline struct nvme_fc_ctrl *
165 to_fc_ctrl(struct nvme_ctrl *ctrl)
166 {
167 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
168 }
169 
170 static inline struct nvme_fc_lport *
171 localport_to_lport(struct nvme_fc_local_port *portptr)
172 {
173 	return container_of(portptr, struct nvme_fc_lport, localport);
174 }
175 
176 static inline struct nvme_fc_rport *
177 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
178 {
179 	return container_of(portptr, struct nvme_fc_rport, remoteport);
180 }
181 
182 static inline struct nvmefc_ls_req_op *
183 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
184 {
185 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
186 }
187 
188 static inline struct nvme_fc_fcp_op *
189 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
190 {
191 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
192 }
193 
194 
195 
196 /* *************************** Globals **************************** */
197 
198 
199 static DEFINE_SPINLOCK(nvme_fc_lock);
200 
201 static LIST_HEAD(nvme_fc_lport_list);
202 static DEFINE_IDA(nvme_fc_local_port_cnt);
203 static DEFINE_IDA(nvme_fc_ctrl_cnt);
204 
205 static struct workqueue_struct *nvme_fc_wq;
206 
207 static bool nvme_fc_waiting_to_unload;
208 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
209 
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct device *fc_udev_device;
215 
216 
217 /* *********************** FC-NVME Port Management ************************ */
218 
219 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
220 			struct nvme_fc_queue *, unsigned int);
221 
222 static void
223 nvme_fc_free_lport(struct kref *ref)
224 {
225 	struct nvme_fc_lport *lport =
226 		container_of(ref, struct nvme_fc_lport, ref);
227 	unsigned long flags;
228 
229 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
230 	WARN_ON(!list_empty(&lport->endp_list));
231 
232 	/* remove from transport list */
233 	spin_lock_irqsave(&nvme_fc_lock, flags);
234 	list_del(&lport->port_list);
235 	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
236 		complete(&nvme_fc_unload_proceed);
237 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
238 
239 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
240 	ida_destroy(&lport->endp_cnt);
241 
242 	put_device(lport->dev);
243 
244 	kfree(lport);
245 }
246 
247 static void
248 nvme_fc_lport_put(struct nvme_fc_lport *lport)
249 {
250 	kref_put(&lport->ref, nvme_fc_free_lport);
251 }
252 
253 static int
254 nvme_fc_lport_get(struct nvme_fc_lport *lport)
255 {
256 	return kref_get_unless_zero(&lport->ref);
257 }
258 
259 
260 static struct nvme_fc_lport *
261 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
262 			struct nvme_fc_port_template *ops,
263 			struct device *dev)
264 {
265 	struct nvme_fc_lport *lport;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&nvme_fc_lock, flags);
269 
270 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
271 		if (lport->localport.node_name != pinfo->node_name ||
272 		    lport->localport.port_name != pinfo->port_name)
273 			continue;
274 
275 		if (lport->dev != dev) {
276 			lport = ERR_PTR(-EXDEV);
277 			goto out_done;
278 		}
279 
280 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
281 			lport = ERR_PTR(-EEXIST);
282 			goto out_done;
283 		}
284 
285 		if (!nvme_fc_lport_get(lport)) {
286 			/*
287 			 * fails if ref cnt already 0. If so,
288 			 * act as if lport already deleted
289 			 */
290 			lport = NULL;
291 			goto out_done;
292 		}
293 
294 		/* resume the lport */
295 
296 		lport->ops = ops;
297 		lport->localport.port_role = pinfo->port_role;
298 		lport->localport.port_id = pinfo->port_id;
299 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
300 
301 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
302 
303 		return lport;
304 	}
305 
306 	lport = NULL;
307 
308 out_done:
309 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
310 
311 	return lport;
312 }
313 
314 /**
315  * nvme_fc_register_localport - transport entry point called by an
316  *                              LLDD to register the existence of a NVME
317  *                              host FC port.
318  * @pinfo:     pointer to information about the port to be registered
319  * @template:  LLDD entrypoints and operational parameters for the port
320  * @dev:       physical hardware device node port corresponds to. Will be
321  *             used for DMA mappings
322  * @portptr:   pointer to a local port pointer. Upon success, the routine
323  *             will allocate a nvme_fc_local_port structure and place its
324  *             address in the local port pointer. Upon failure, local port
325  *             pointer will be set to 0.
326  *
327  * Returns:
328  * a completion status. Must be 0 upon success; a negative errno
329  * (ex: -ENXIO) upon failure.
330  */
331 int
332 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
333 			struct nvme_fc_port_template *template,
334 			struct device *dev,
335 			struct nvme_fc_local_port **portptr)
336 {
337 	struct nvme_fc_lport *newrec;
338 	unsigned long flags;
339 	int ret, idx;
340 
341 	if (!template->localport_delete || !template->remoteport_delete ||
342 	    !template->ls_req || !template->fcp_io ||
343 	    !template->ls_abort || !template->fcp_abort ||
344 	    !template->max_hw_queues || !template->max_sgl_segments ||
345 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
346 		ret = -EINVAL;
347 		goto out_reghost_failed;
348 	}
349 
350 	/*
351 	 * look to see if there is already a localport that had been
352 	 * deregistered and in the process of waiting for all the
353 	 * references to fully be removed.  If the references haven't
354 	 * expired, we can simply re-enable the localport. Remoteports
355 	 * and controller reconnections should resume naturally.
356 	 */
357 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
358 
359 	/* found an lport, but something about its state is bad */
360 	if (IS_ERR(newrec)) {
361 		ret = PTR_ERR(newrec);
362 		goto out_reghost_failed;
363 
364 	/* found existing lport, which was resumed */
365 	} else if (newrec) {
366 		*portptr = &newrec->localport;
367 		return 0;
368 	}
369 
370 	/* nothing found - allocate a new localport struct */
371 
372 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
373 			 GFP_KERNEL);
374 	if (!newrec) {
375 		ret = -ENOMEM;
376 		goto out_reghost_failed;
377 	}
378 
379 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
380 	if (idx < 0) {
381 		ret = -ENOSPC;
382 		goto out_fail_kfree;
383 	}
384 
385 	if (!get_device(dev) && dev) {
386 		ret = -ENODEV;
387 		goto out_ida_put;
388 	}
389 
390 	INIT_LIST_HEAD(&newrec->port_list);
391 	INIT_LIST_HEAD(&newrec->endp_list);
392 	kref_init(&newrec->ref);
393 	atomic_set(&newrec->act_rport_cnt, 0);
394 	newrec->ops = template;
395 	newrec->dev = dev;
396 	ida_init(&newrec->endp_cnt);
397 	newrec->localport.private = &newrec[1];
398 	newrec->localport.node_name = pinfo->node_name;
399 	newrec->localport.port_name = pinfo->port_name;
400 	newrec->localport.port_role = pinfo->port_role;
401 	newrec->localport.port_id = pinfo->port_id;
402 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
403 	newrec->localport.port_num = idx;
404 
405 	spin_lock_irqsave(&nvme_fc_lock, flags);
406 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
407 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
408 
409 	if (dev)
410 		dma_set_seg_boundary(dev, template->dma_boundary);
411 
412 	*portptr = &newrec->localport;
413 	return 0;
414 
415 out_ida_put:
416 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
417 out_fail_kfree:
418 	kfree(newrec);
419 out_reghost_failed:
420 	*portptr = NULL;
421 
422 	return ret;
423 }
424 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
425 
426 /**
427  * nvme_fc_unregister_localport - transport entry point called by an
428  *                              LLDD to deregister/remove a previously
429  *                              registered a NVME host FC port.
430  * @portptr: pointer to the (registered) local port that is to be deregistered.
431  *
432  * Returns:
433  * a completion status. Must be 0 upon success; a negative errno
434  * (ex: -ENXIO) upon failure.
435  */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
440 	unsigned long flags;
441 
442 	if (!portptr)
443 		return -EINVAL;
444 
445 	spin_lock_irqsave(&nvme_fc_lock, flags);
446 
447 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 		return -EINVAL;
450 	}
451 	portptr->port_state = FC_OBJSTATE_DELETED;
452 
453 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 
455 	if (atomic_read(&lport->act_rport_cnt) == 0)
456 		lport->ops->localport_delete(&lport->localport);
457 
458 	nvme_fc_lport_put(lport);
459 
460 	return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463 
464 /*
465  * TRADDR strings, per FC-NVME are fixed format:
466  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467  * udev event will only differ by prefix of what field is
468  * being specified:
469  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470  *  19 + 43 + null_fudge = 64 characters
471  */
472 #define FCNVME_TRADDR_LENGTH		64
473 
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476 		struct nvme_fc_rport *rport)
477 {
478 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
479 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
480 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481 
482 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483 		return;
484 
485 	snprintf(hostaddr, sizeof(hostaddr),
486 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487 		lport->localport.node_name, lport->localport.port_name);
488 	snprintf(tgtaddr, sizeof(tgtaddr),
489 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490 		rport->remoteport.node_name, rport->remoteport.port_name);
491 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493 
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497 	struct nvme_fc_rport *rport =
498 		container_of(ref, struct nvme_fc_rport, ref);
499 	struct nvme_fc_lport *lport =
500 			localport_to_lport(rport->remoteport.localport);
501 	unsigned long flags;
502 
503 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504 	WARN_ON(!list_empty(&rport->ctrl_list));
505 
506 	/* remove from lport list */
507 	spin_lock_irqsave(&nvme_fc_lock, flags);
508 	list_del(&rport->endp_list);
509 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
510 
511 	WARN_ON(!list_empty(&rport->disc_list));
512 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
513 
514 	kfree(rport);
515 
516 	nvme_fc_lport_put(lport);
517 }
518 
519 static void
520 nvme_fc_rport_put(struct nvme_fc_rport *rport)
521 {
522 	kref_put(&rport->ref, nvme_fc_free_rport);
523 }
524 
525 static int
526 nvme_fc_rport_get(struct nvme_fc_rport *rport)
527 {
528 	return kref_get_unless_zero(&rport->ref);
529 }
530 
531 static void
532 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
533 {
534 	switch (ctrl->ctrl.state) {
535 	case NVME_CTRL_NEW:
536 	case NVME_CTRL_CONNECTING:
537 		/*
538 		 * As all reconnects were suppressed, schedule a
539 		 * connect.
540 		 */
541 		dev_info(ctrl->ctrl.device,
542 			"NVME-FC{%d}: connectivity re-established. "
543 			"Attempting reconnect\n", ctrl->cnum);
544 
545 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
546 		break;
547 
548 	case NVME_CTRL_RESETTING:
549 		/*
550 		 * Controller is already in the process of terminating the
551 		 * association. No need to do anything further. The reconnect
552 		 * step will naturally occur after the reset completes.
553 		 */
554 		break;
555 
556 	default:
557 		/* no action to take - let it delete */
558 		break;
559 	}
560 }
561 
562 static struct nvme_fc_rport *
563 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
564 				struct nvme_fc_port_info *pinfo)
565 {
566 	struct nvme_fc_rport *rport;
567 	struct nvme_fc_ctrl *ctrl;
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&nvme_fc_lock, flags);
571 
572 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
573 		if (rport->remoteport.node_name != pinfo->node_name ||
574 		    rport->remoteport.port_name != pinfo->port_name)
575 			continue;
576 
577 		if (!nvme_fc_rport_get(rport)) {
578 			rport = ERR_PTR(-ENOLCK);
579 			goto out_done;
580 		}
581 
582 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
583 
584 		spin_lock_irqsave(&rport->lock, flags);
585 
586 		/* has it been unregistered */
587 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
588 			/* means lldd called us twice */
589 			spin_unlock_irqrestore(&rport->lock, flags);
590 			nvme_fc_rport_put(rport);
591 			return ERR_PTR(-ESTALE);
592 		}
593 
594 		rport->remoteport.port_role = pinfo->port_role;
595 		rport->remoteport.port_id = pinfo->port_id;
596 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
597 		rport->dev_loss_end = 0;
598 
599 		/*
600 		 * kick off a reconnect attempt on all associations to the
601 		 * remote port. A successful reconnects will resume i/o.
602 		 */
603 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
604 			nvme_fc_resume_controller(ctrl);
605 
606 		spin_unlock_irqrestore(&rport->lock, flags);
607 
608 		return rport;
609 	}
610 
611 	rport = NULL;
612 
613 out_done:
614 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
615 
616 	return rport;
617 }
618 
619 static inline void
620 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
621 			struct nvme_fc_port_info *pinfo)
622 {
623 	if (pinfo->dev_loss_tmo)
624 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
625 	else
626 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
627 }
628 
629 /**
630  * nvme_fc_register_remoteport - transport entry point called by an
631  *                              LLDD to register the existence of a NVME
632  *                              subsystem FC port on its fabric.
633  * @localport: pointer to the (registered) local port that the remote
634  *             subsystem port is connected to.
635  * @pinfo:     pointer to information about the port to be registered
636  * @portptr:   pointer to a remote port pointer. Upon success, the routine
637  *             will allocate a nvme_fc_remote_port structure and place its
638  *             address in the remote port pointer. Upon failure, remote port
639  *             pointer will be set to 0.
640  *
641  * Returns:
642  * a completion status. Must be 0 upon success; a negative errno
643  * (ex: -ENXIO) upon failure.
644  */
645 int
646 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
647 				struct nvme_fc_port_info *pinfo,
648 				struct nvme_fc_remote_port **portptr)
649 {
650 	struct nvme_fc_lport *lport = localport_to_lport(localport);
651 	struct nvme_fc_rport *newrec;
652 	unsigned long flags;
653 	int ret, idx;
654 
655 	if (!nvme_fc_lport_get(lport)) {
656 		ret = -ESHUTDOWN;
657 		goto out_reghost_failed;
658 	}
659 
660 	/*
661 	 * look to see if there is already a remoteport that is waiting
662 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
663 	 * If so, transition to it and reconnect.
664 	 */
665 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
666 
667 	/* found an rport, but something about its state is bad */
668 	if (IS_ERR(newrec)) {
669 		ret = PTR_ERR(newrec);
670 		goto out_lport_put;
671 
672 	/* found existing rport, which was resumed */
673 	} else if (newrec) {
674 		nvme_fc_lport_put(lport);
675 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
676 		nvme_fc_signal_discovery_scan(lport, newrec);
677 		*portptr = &newrec->remoteport;
678 		return 0;
679 	}
680 
681 	/* nothing found - allocate a new remoteport struct */
682 
683 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
684 			 GFP_KERNEL);
685 	if (!newrec) {
686 		ret = -ENOMEM;
687 		goto out_lport_put;
688 	}
689 
690 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
691 	if (idx < 0) {
692 		ret = -ENOSPC;
693 		goto out_kfree_rport;
694 	}
695 
696 	INIT_LIST_HEAD(&newrec->endp_list);
697 	INIT_LIST_HEAD(&newrec->ctrl_list);
698 	INIT_LIST_HEAD(&newrec->ls_req_list);
699 	INIT_LIST_HEAD(&newrec->disc_list);
700 	kref_init(&newrec->ref);
701 	atomic_set(&newrec->act_ctrl_cnt, 0);
702 	spin_lock_init(&newrec->lock);
703 	newrec->remoteport.localport = &lport->localport;
704 	newrec->dev = lport->dev;
705 	newrec->lport = lport;
706 	newrec->remoteport.private = &newrec[1];
707 	newrec->remoteport.port_role = pinfo->port_role;
708 	newrec->remoteport.node_name = pinfo->node_name;
709 	newrec->remoteport.port_name = pinfo->port_name;
710 	newrec->remoteport.port_id = pinfo->port_id;
711 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
712 	newrec->remoteport.port_num = idx;
713 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
714 
715 	spin_lock_irqsave(&nvme_fc_lock, flags);
716 	list_add_tail(&newrec->endp_list, &lport->endp_list);
717 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
718 
719 	nvme_fc_signal_discovery_scan(lport, newrec);
720 
721 	*portptr = &newrec->remoteport;
722 	return 0;
723 
724 out_kfree_rport:
725 	kfree(newrec);
726 out_lport_put:
727 	nvme_fc_lport_put(lport);
728 out_reghost_failed:
729 	*portptr = NULL;
730 	return ret;
731 }
732 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
733 
734 static int
735 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
736 {
737 	struct nvmefc_ls_req_op *lsop;
738 	unsigned long flags;
739 
740 restart:
741 	spin_lock_irqsave(&rport->lock, flags);
742 
743 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
744 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
745 			lsop->flags |= FCOP_FLAGS_TERMIO;
746 			spin_unlock_irqrestore(&rport->lock, flags);
747 			rport->lport->ops->ls_abort(&rport->lport->localport,
748 						&rport->remoteport,
749 						&lsop->ls_req);
750 			goto restart;
751 		}
752 	}
753 	spin_unlock_irqrestore(&rport->lock, flags);
754 
755 	return 0;
756 }
757 
758 static void
759 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
760 {
761 	dev_info(ctrl->ctrl.device,
762 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
763 		"Reconnect", ctrl->cnum);
764 
765 	switch (ctrl->ctrl.state) {
766 	case NVME_CTRL_NEW:
767 	case NVME_CTRL_LIVE:
768 		/*
769 		 * Schedule a controller reset. The reset will terminate the
770 		 * association and schedule the reconnect timer.  Reconnects
771 		 * will be attempted until either the ctlr_loss_tmo
772 		 * (max_retries * connect_delay) expires or the remoteport's
773 		 * dev_loss_tmo expires.
774 		 */
775 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
776 			dev_warn(ctrl->ctrl.device,
777 				"NVME-FC{%d}: Couldn't schedule reset.\n",
778 				ctrl->cnum);
779 			nvme_delete_ctrl(&ctrl->ctrl);
780 		}
781 		break;
782 
783 	case NVME_CTRL_CONNECTING:
784 		/*
785 		 * The association has already been terminated and the
786 		 * controller is attempting reconnects.  No need to do anything
787 		 * futher.  Reconnects will be attempted until either the
788 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
789 		 * remoteport's dev_loss_tmo expires.
790 		 */
791 		break;
792 
793 	case NVME_CTRL_RESETTING:
794 		/*
795 		 * Controller is already in the process of terminating the
796 		 * association.  No need to do anything further. The reconnect
797 		 * step will kick in naturally after the association is
798 		 * terminated.
799 		 */
800 		break;
801 
802 	case NVME_CTRL_DELETING:
803 	default:
804 		/* no action to take - let it delete */
805 		break;
806 	}
807 }
808 
809 /**
810  * nvme_fc_unregister_remoteport - transport entry point called by an
811  *                              LLDD to deregister/remove a previously
812  *                              registered a NVME subsystem FC port.
813  * @portptr: pointer to the (registered) remote port that is to be
814  *           deregistered.
815  *
816  * Returns:
817  * a completion status. Must be 0 upon success; a negative errno
818  * (ex: -ENXIO) upon failure.
819  */
820 int
821 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
822 {
823 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
824 	struct nvme_fc_ctrl *ctrl;
825 	unsigned long flags;
826 
827 	if (!portptr)
828 		return -EINVAL;
829 
830 	spin_lock_irqsave(&rport->lock, flags);
831 
832 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
833 		spin_unlock_irqrestore(&rport->lock, flags);
834 		return -EINVAL;
835 	}
836 	portptr->port_state = FC_OBJSTATE_DELETED;
837 
838 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
839 
840 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
841 		/* if dev_loss_tmo==0, dev loss is immediate */
842 		if (!portptr->dev_loss_tmo) {
843 			dev_warn(ctrl->ctrl.device,
844 				"NVME-FC{%d}: controller connectivity lost.\n",
845 				ctrl->cnum);
846 			nvme_delete_ctrl(&ctrl->ctrl);
847 		} else
848 			nvme_fc_ctrl_connectivity_loss(ctrl);
849 	}
850 
851 	spin_unlock_irqrestore(&rport->lock, flags);
852 
853 	nvme_fc_abort_lsops(rport);
854 
855 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
856 		rport->lport->ops->remoteport_delete(portptr);
857 
858 	/*
859 	 * release the reference, which will allow, if all controllers
860 	 * go away, which should only occur after dev_loss_tmo occurs,
861 	 * for the rport to be torn down.
862 	 */
863 	nvme_fc_rport_put(rport);
864 
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
868 
869 /**
870  * nvme_fc_rescan_remoteport - transport entry point called by an
871  *                              LLDD to request a nvme device rescan.
872  * @remoteport: pointer to the (registered) remote port that is to be
873  *              rescanned.
874  *
875  * Returns: N/A
876  */
877 void
878 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
879 {
880 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
881 
882 	nvme_fc_signal_discovery_scan(rport->lport, rport);
883 }
884 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
885 
886 int
887 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
888 			u32 dev_loss_tmo)
889 {
890 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
891 	unsigned long flags;
892 
893 	spin_lock_irqsave(&rport->lock, flags);
894 
895 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
896 		spin_unlock_irqrestore(&rport->lock, flags);
897 		return -EINVAL;
898 	}
899 
900 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
901 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
902 
903 	spin_unlock_irqrestore(&rport->lock, flags);
904 
905 	return 0;
906 }
907 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
908 
909 
910 /* *********************** FC-NVME DMA Handling **************************** */
911 
912 /*
913  * The fcloop device passes in a NULL device pointer. Real LLD's will
914  * pass in a valid device pointer. If NULL is passed to the dma mapping
915  * routines, depending on the platform, it may or may not succeed, and
916  * may crash.
917  *
918  * As such:
919  * Wrapper all the dma routines and check the dev pointer.
920  *
921  * If simple mappings (return just a dma address, we'll noop them,
922  * returning a dma address of 0.
923  *
924  * On more complex mappings (dma_map_sg), a pseudo routine fills
925  * in the scatter list, setting all dma addresses to 0.
926  */
927 
928 static inline dma_addr_t
929 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
930 		enum dma_data_direction dir)
931 {
932 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
933 }
934 
935 static inline int
936 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
937 {
938 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
939 }
940 
941 static inline void
942 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
943 	enum dma_data_direction dir)
944 {
945 	if (dev)
946 		dma_unmap_single(dev, addr, size, dir);
947 }
948 
949 static inline void
950 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
951 		enum dma_data_direction dir)
952 {
953 	if (dev)
954 		dma_sync_single_for_cpu(dev, addr, size, dir);
955 }
956 
957 static inline void
958 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
959 		enum dma_data_direction dir)
960 {
961 	if (dev)
962 		dma_sync_single_for_device(dev, addr, size, dir);
963 }
964 
965 /* pseudo dma_map_sg call */
966 static int
967 fc_map_sg(struct scatterlist *sg, int nents)
968 {
969 	struct scatterlist *s;
970 	int i;
971 
972 	WARN_ON(nents == 0 || sg[0].length == 0);
973 
974 	for_each_sg(sg, s, nents, i) {
975 		s->dma_address = 0L;
976 #ifdef CONFIG_NEED_SG_DMA_LENGTH
977 		s->dma_length = s->length;
978 #endif
979 	}
980 	return nents;
981 }
982 
983 static inline int
984 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
985 		enum dma_data_direction dir)
986 {
987 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
988 }
989 
990 static inline void
991 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
992 		enum dma_data_direction dir)
993 {
994 	if (dev)
995 		dma_unmap_sg(dev, sg, nents, dir);
996 }
997 
998 /* *********************** FC-NVME LS Handling **************************** */
999 
1000 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002 
1003 
1004 static void
1005 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006 {
1007 	struct nvme_fc_rport *rport = lsop->rport;
1008 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&rport->lock, flags);
1012 
1013 	if (!lsop->req_queued) {
1014 		spin_unlock_irqrestore(&rport->lock, flags);
1015 		return;
1016 	}
1017 
1018 	list_del(&lsop->lsreq_list);
1019 
1020 	lsop->req_queued = false;
1021 
1022 	spin_unlock_irqrestore(&rport->lock, flags);
1023 
1024 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025 				  (lsreq->rqstlen + lsreq->rsplen),
1026 				  DMA_BIDIRECTIONAL);
1027 
1028 	nvme_fc_rport_put(rport);
1029 }
1030 
1031 static int
1032 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033 		struct nvmefc_ls_req_op *lsop,
1034 		void (*done)(struct nvmefc_ls_req *req, int status))
1035 {
1036 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037 	unsigned long flags;
1038 	int ret = 0;
1039 
1040 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041 		return -ECONNREFUSED;
1042 
1043 	if (!nvme_fc_rport_get(rport))
1044 		return -ESHUTDOWN;
1045 
1046 	lsreq->done = done;
1047 	lsop->rport = rport;
1048 	lsop->req_queued = false;
1049 	INIT_LIST_HEAD(&lsop->lsreq_list);
1050 	init_completion(&lsop->ls_done);
1051 
1052 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053 				  lsreq->rqstlen + lsreq->rsplen,
1054 				  DMA_BIDIRECTIONAL);
1055 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056 		ret = -EFAULT;
1057 		goto out_putrport;
1058 	}
1059 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060 
1061 	spin_lock_irqsave(&rport->lock, flags);
1062 
1063 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064 
1065 	lsop->req_queued = true;
1066 
1067 	spin_unlock_irqrestore(&rport->lock, flags);
1068 
1069 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070 					&rport->remoteport, lsreq);
1071 	if (ret)
1072 		goto out_unlink;
1073 
1074 	return 0;
1075 
1076 out_unlink:
1077 	lsop->ls_error = ret;
1078 	spin_lock_irqsave(&rport->lock, flags);
1079 	lsop->req_queued = false;
1080 	list_del(&lsop->lsreq_list);
1081 	spin_unlock_irqrestore(&rport->lock, flags);
1082 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083 				  (lsreq->rqstlen + lsreq->rsplen),
1084 				  DMA_BIDIRECTIONAL);
1085 out_putrport:
1086 	nvme_fc_rport_put(rport);
1087 
1088 	return ret;
1089 }
1090 
1091 static void
1092 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093 {
1094 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095 
1096 	lsop->ls_error = status;
1097 	complete(&lsop->ls_done);
1098 }
1099 
1100 static int
1101 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102 {
1103 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105 	int ret;
1106 
1107 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108 
1109 	if (!ret) {
1110 		/*
1111 		 * No timeout/not interruptible as we need the struct
1112 		 * to exist until the lldd calls us back. Thus mandate
1113 		 * wait until driver calls back. lldd responsible for
1114 		 * the timeout action
1115 		 */
1116 		wait_for_completion(&lsop->ls_done);
1117 
1118 		__nvme_fc_finish_ls_req(lsop);
1119 
1120 		ret = lsop->ls_error;
1121 	}
1122 
1123 	if (ret)
1124 		return ret;
1125 
1126 	/* ACC or RJT payload ? */
1127 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128 		return -ENXIO;
1129 
1130 	return 0;
1131 }
1132 
1133 static int
1134 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135 		struct nvmefc_ls_req_op *lsop,
1136 		void (*done)(struct nvmefc_ls_req *req, int status))
1137 {
1138 	/* don't wait for completion */
1139 
1140 	return __nvme_fc_send_ls_req(rport, lsop, done);
1141 }
1142 
1143 /* Validation Error indexes into the string table below */
1144 enum {
1145 	VERR_NO_ERROR		= 0,
1146 	VERR_LSACC		= 1,
1147 	VERR_LSDESC_RQST	= 2,
1148 	VERR_LSDESC_RQST_LEN	= 3,
1149 	VERR_ASSOC_ID		= 4,
1150 	VERR_ASSOC_ID_LEN	= 5,
1151 	VERR_CONN_ID		= 6,
1152 	VERR_CONN_ID_LEN	= 7,
1153 	VERR_CR_ASSOC		= 8,
1154 	VERR_CR_ASSOC_ACC_LEN	= 9,
1155 	VERR_CR_CONN		= 10,
1156 	VERR_CR_CONN_ACC_LEN	= 11,
1157 	VERR_DISCONN		= 12,
1158 	VERR_DISCONN_ACC_LEN	= 13,
1159 };
1160 
1161 static char *validation_errors[] = {
1162 	"OK",
1163 	"Not LS_ACC",
1164 	"Not LSDESC_RQST",
1165 	"Bad LSDESC_RQST Length",
1166 	"Not Association ID",
1167 	"Bad Association ID Length",
1168 	"Not Connection ID",
1169 	"Bad Connection ID Length",
1170 	"Not CR_ASSOC Rqst",
1171 	"Bad CR_ASSOC ACC Length",
1172 	"Not CR_CONN Rqst",
1173 	"Bad CR_CONN ACC Length",
1174 	"Not Disconnect Rqst",
1175 	"Bad Disconnect ACC Length",
1176 };
1177 
1178 static int
1179 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181 {
1182 	struct nvmefc_ls_req_op *lsop;
1183 	struct nvmefc_ls_req *lsreq;
1184 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186 	int ret, fcret = 0;
1187 
1188 	lsop = kzalloc((sizeof(*lsop) +
1189 			 ctrl->lport->ops->lsrqst_priv_sz +
1190 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191 	if (!lsop) {
1192 		ret = -ENOMEM;
1193 		goto out_no_memory;
1194 	}
1195 	lsreq = &lsop->ls_req;
1196 
1197 	lsreq->private = (void *)&lsop[1];
1198 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201 
1202 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203 	assoc_rqst->desc_list_len =
1204 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205 
1206 	assoc_rqst->assoc_cmd.desc_tag =
1207 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208 	assoc_rqst->assoc_cmd.desc_len =
1209 			fcnvme_lsdesc_len(
1210 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211 
1212 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1214 	/* Linux supports only Dynamic controllers */
1215 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221 
1222 	lsop->queue = queue;
1223 	lsreq->rqstaddr = assoc_rqst;
1224 	lsreq->rqstlen = sizeof(*assoc_rqst);
1225 	lsreq->rspaddr = assoc_acc;
1226 	lsreq->rsplen = sizeof(*assoc_acc);
1227 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228 
1229 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230 	if (ret)
1231 		goto out_free_buffer;
1232 
1233 	/* process connect LS completion */
1234 
1235 	/* validate the ACC response */
1236 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237 		fcret = VERR_LSACC;
1238 	else if (assoc_acc->hdr.desc_list_len !=
1239 			fcnvme_lsdesc_len(
1240 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241 		fcret = VERR_CR_ASSOC_ACC_LEN;
1242 	else if (assoc_acc->hdr.rqst.desc_tag !=
1243 			cpu_to_be32(FCNVME_LSDESC_RQST))
1244 		fcret = VERR_LSDESC_RQST;
1245 	else if (assoc_acc->hdr.rqst.desc_len !=
1246 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247 		fcret = VERR_LSDESC_RQST_LEN;
1248 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249 		fcret = VERR_CR_ASSOC;
1250 	else if (assoc_acc->associd.desc_tag !=
1251 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252 		fcret = VERR_ASSOC_ID;
1253 	else if (assoc_acc->associd.desc_len !=
1254 			fcnvme_lsdesc_len(
1255 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1256 		fcret = VERR_ASSOC_ID_LEN;
1257 	else if (assoc_acc->connectid.desc_tag !=
1258 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259 		fcret = VERR_CONN_ID;
1260 	else if (assoc_acc->connectid.desc_len !=
1261 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262 		fcret = VERR_CONN_ID_LEN;
1263 
1264 	if (fcret) {
1265 		ret = -EBADF;
1266 		dev_err(ctrl->dev,
1267 			"q %d connect failed: %s\n",
1268 			queue->qnum, validation_errors[fcret]);
1269 	} else {
1270 		ctrl->association_id =
1271 			be64_to_cpu(assoc_acc->associd.association_id);
1272 		queue->connection_id =
1273 			be64_to_cpu(assoc_acc->connectid.connection_id);
1274 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275 	}
1276 
1277 out_free_buffer:
1278 	kfree(lsop);
1279 out_no_memory:
1280 	if (ret)
1281 		dev_err(ctrl->dev,
1282 			"queue %d connect admin queue failed (%d).\n",
1283 			queue->qnum, ret);
1284 	return ret;
1285 }
1286 
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289 			u16 qsize, u16 ersp_ratio)
1290 {
1291 	struct nvmefc_ls_req_op *lsop;
1292 	struct nvmefc_ls_req *lsreq;
1293 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1295 	int ret, fcret = 0;
1296 
1297 	lsop = kzalloc((sizeof(*lsop) +
1298 			 ctrl->lport->ops->lsrqst_priv_sz +
1299 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300 	if (!lsop) {
1301 		ret = -ENOMEM;
1302 		goto out_no_memory;
1303 	}
1304 	lsreq = &lsop->ls_req;
1305 
1306 	lsreq->private = (void *)&lsop[1];
1307 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310 
1311 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312 	conn_rqst->desc_list_len = cpu_to_be32(
1313 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1314 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315 
1316 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317 	conn_rqst->associd.desc_len =
1318 			fcnvme_lsdesc_len(
1319 				sizeof(struct fcnvme_lsdesc_assoc_id));
1320 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321 	conn_rqst->connect_cmd.desc_tag =
1322 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323 	conn_rqst->connect_cmd.desc_len =
1324 			fcnvme_lsdesc_len(
1325 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1329 
1330 	lsop->queue = queue;
1331 	lsreq->rqstaddr = conn_rqst;
1332 	lsreq->rqstlen = sizeof(*conn_rqst);
1333 	lsreq->rspaddr = conn_acc;
1334 	lsreq->rsplen = sizeof(*conn_acc);
1335 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336 
1337 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338 	if (ret)
1339 		goto out_free_buffer;
1340 
1341 	/* process connect LS completion */
1342 
1343 	/* validate the ACC response */
1344 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345 		fcret = VERR_LSACC;
1346 	else if (conn_acc->hdr.desc_list_len !=
1347 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348 		fcret = VERR_CR_CONN_ACC_LEN;
1349 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350 		fcret = VERR_LSDESC_RQST;
1351 	else if (conn_acc->hdr.rqst.desc_len !=
1352 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353 		fcret = VERR_LSDESC_RQST_LEN;
1354 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355 		fcret = VERR_CR_CONN;
1356 	else if (conn_acc->connectid.desc_tag !=
1357 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358 		fcret = VERR_CONN_ID;
1359 	else if (conn_acc->connectid.desc_len !=
1360 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361 		fcret = VERR_CONN_ID_LEN;
1362 
1363 	if (fcret) {
1364 		ret = -EBADF;
1365 		dev_err(ctrl->dev,
1366 			"q %d connect failed: %s\n",
1367 			queue->qnum, validation_errors[fcret]);
1368 	} else {
1369 		queue->connection_id =
1370 			be64_to_cpu(conn_acc->connectid.connection_id);
1371 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372 	}
1373 
1374 out_free_buffer:
1375 	kfree(lsop);
1376 out_no_memory:
1377 	if (ret)
1378 		dev_err(ctrl->dev,
1379 			"queue %d connect command failed (%d).\n",
1380 			queue->qnum, ret);
1381 	return ret;
1382 }
1383 
1384 static void
1385 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386 {
1387 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388 
1389 	__nvme_fc_finish_ls_req(lsop);
1390 
1391 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1392 
1393 	kfree(lsop);
1394 }
1395 
1396 /*
1397  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398  * the FC-NVME Association.  Terminating the association also
1399  * terminates the FC-NVME connections (per queue, both admin and io
1400  * queues) that are part of the association. E.g. things are torn
1401  * down, and the related FC-NVME Association ID and Connection IDs
1402  * become invalid.
1403  *
1404  * The behavior of the fc-nvme initiator is such that it's
1405  * understanding of the association and connections will implicitly
1406  * be torn down. The action is implicit as it may be due to a loss of
1407  * connectivity with the fc-nvme target, so you may never get a
1408  * response even if you tried.  As such, the action of this routine
1409  * is to asynchronously send the LS, ignore any results of the LS, and
1410  * continue on with terminating the association. If the fc-nvme target
1411  * is present and receives the LS, it too can tear down.
1412  */
1413 static void
1414 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415 {
1416 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417 	struct fcnvme_ls_disconnect_acc *discon_acc;
1418 	struct nvmefc_ls_req_op *lsop;
1419 	struct nvmefc_ls_req *lsreq;
1420 	int ret;
1421 
1422 	lsop = kzalloc((sizeof(*lsop) +
1423 			 ctrl->lport->ops->lsrqst_priv_sz +
1424 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425 			GFP_KERNEL);
1426 	if (!lsop)
1427 		/* couldn't sent it... too bad */
1428 		return;
1429 
1430 	lsreq = &lsop->ls_req;
1431 
1432 	lsreq->private = (void *)&lsop[1];
1433 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436 
1437 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438 	discon_rqst->desc_list_len = cpu_to_be32(
1439 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1440 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441 
1442 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443 	discon_rqst->associd.desc_len =
1444 			fcnvme_lsdesc_len(
1445 				sizeof(struct fcnvme_lsdesc_assoc_id));
1446 
1447 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448 
1449 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450 						FCNVME_LSDESC_DISCONN_CMD);
1451 	discon_rqst->discon_cmd.desc_len =
1452 			fcnvme_lsdesc_len(
1453 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456 
1457 	lsreq->rqstaddr = discon_rqst;
1458 	lsreq->rqstlen = sizeof(*discon_rqst);
1459 	lsreq->rspaddr = discon_acc;
1460 	lsreq->rsplen = sizeof(*discon_acc);
1461 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462 
1463 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464 				nvme_fc_disconnect_assoc_done);
1465 	if (ret)
1466 		kfree(lsop);
1467 
1468 	/* only meaningful part to terminating the association */
1469 	ctrl->association_id = 0;
1470 }
1471 
1472 
1473 /* *********************** NVME Ctrl Routines **************************** */
1474 
1475 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1476 
1477 static void
1478 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1479 		struct nvme_fc_fcp_op *op)
1480 {
1481 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1482 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1483 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1484 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1485 
1486 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1487 }
1488 
1489 static void
1490 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1491 		unsigned int hctx_idx)
1492 {
1493 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1494 
1495 	return __nvme_fc_exit_request(set->driver_data, op);
1496 }
1497 
1498 static int
1499 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1500 {
1501 	unsigned long flags;
1502 	int opstate;
1503 
1504 	spin_lock_irqsave(&ctrl->lock, flags);
1505 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1506 	if (opstate != FCPOP_STATE_ACTIVE)
1507 		atomic_set(&op->state, opstate);
1508 	else if (ctrl->flags & FCCTRL_TERMIO)
1509 		ctrl->iocnt++;
1510 	spin_unlock_irqrestore(&ctrl->lock, flags);
1511 
1512 	if (opstate != FCPOP_STATE_ACTIVE)
1513 		return -ECANCELED;
1514 
1515 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1516 					&ctrl->rport->remoteport,
1517 					op->queue->lldd_handle,
1518 					&op->fcp_req);
1519 
1520 	return 0;
1521 }
1522 
1523 static void
1524 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1525 {
1526 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1527 	int i;
1528 
1529 	/* ensure we've initialized the ops once */
1530 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1531 		return;
1532 
1533 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1534 		__nvme_fc_abort_op(ctrl, aen_op);
1535 }
1536 
1537 static inline void
1538 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1539 		struct nvme_fc_fcp_op *op, int opstate)
1540 {
1541 	unsigned long flags;
1542 
1543 	if (opstate == FCPOP_STATE_ABORTED) {
1544 		spin_lock_irqsave(&ctrl->lock, flags);
1545 		if (ctrl->flags & FCCTRL_TERMIO) {
1546 			if (!--ctrl->iocnt)
1547 				wake_up(&ctrl->ioabort_wait);
1548 		}
1549 		spin_unlock_irqrestore(&ctrl->lock, flags);
1550 	}
1551 }
1552 
1553 static void
1554 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1555 {
1556 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1557 	struct request *rq = op->rq;
1558 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1559 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1560 	struct nvme_fc_queue *queue = op->queue;
1561 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1562 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1563 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1564 	union nvme_result result;
1565 	bool terminate_assoc = true;
1566 	int opstate;
1567 
1568 	/*
1569 	 * WARNING:
1570 	 * The current linux implementation of a nvme controller
1571 	 * allocates a single tag set for all io queues and sizes
1572 	 * the io queues to fully hold all possible tags. Thus, the
1573 	 * implementation does not reference or care about the sqhd
1574 	 * value as it never needs to use the sqhd/sqtail pointers
1575 	 * for submission pacing.
1576 	 *
1577 	 * This affects the FC-NVME implementation in two ways:
1578 	 * 1) As the value doesn't matter, we don't need to waste
1579 	 *    cycles extracting it from ERSPs and stamping it in the
1580 	 *    cases where the transport fabricates CQEs on successful
1581 	 *    completions.
1582 	 * 2) The FC-NVME implementation requires that delivery of
1583 	 *    ERSP completions are to go back to the nvme layer in order
1584 	 *    relative to the rsn, such that the sqhd value will always
1585 	 *    be "in order" for the nvme layer. As the nvme layer in
1586 	 *    linux doesn't care about sqhd, there's no need to return
1587 	 *    them in order.
1588 	 *
1589 	 * Additionally:
1590 	 * As the core nvme layer in linux currently does not look at
1591 	 * every field in the cqe - in cases where the FC transport must
1592 	 * fabricate a CQE, the following fields will not be set as they
1593 	 * are not referenced:
1594 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1595 	 *
1596 	 * Failure or error of an individual i/o, in a transport
1597 	 * detected fashion unrelated to the nvme completion status,
1598 	 * potentially cause the initiator and target sides to get out
1599 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1600 	 * Per FC-NVME spec, failure of an individual command requires
1601 	 * the connection to be terminated, which in turn requires the
1602 	 * association to be terminated.
1603 	 */
1604 
1605 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1606 
1607 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1608 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1609 
1610 	if (opstate == FCPOP_STATE_ABORTED)
1611 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1612 	else if (freq->status) {
1613 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1614 		dev_info(ctrl->ctrl.device,
1615 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1616 			ctrl->cnum, freq->status);
1617 	}
1618 
1619 	/*
1620 	 * For the linux implementation, if we have an unsuccesful
1621 	 * status, they blk-mq layer can typically be called with the
1622 	 * non-zero status and the content of the cqe isn't important.
1623 	 */
1624 	if (status)
1625 		goto done;
1626 
1627 	/*
1628 	 * command completed successfully relative to the wire
1629 	 * protocol. However, validate anything received and
1630 	 * extract the status and result from the cqe (create it
1631 	 * where necessary).
1632 	 */
1633 
1634 	switch (freq->rcv_rsplen) {
1635 
1636 	case 0:
1637 	case NVME_FC_SIZEOF_ZEROS_RSP:
1638 		/*
1639 		 * No response payload or 12 bytes of payload (which
1640 		 * should all be zeros) are considered successful and
1641 		 * no payload in the CQE by the transport.
1642 		 */
1643 		if (freq->transferred_length !=
1644 		    be32_to_cpu(op->cmd_iu.data_len)) {
1645 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1646 			dev_info(ctrl->ctrl.device,
1647 				"NVME-FC{%d}: io failed due to bad transfer "
1648 				"length: %d vs expected %d\n",
1649 				ctrl->cnum, freq->transferred_length,
1650 				be32_to_cpu(op->cmd_iu.data_len));
1651 			goto done;
1652 		}
1653 		result.u64 = 0;
1654 		break;
1655 
1656 	case sizeof(struct nvme_fc_ersp_iu):
1657 		/*
1658 		 * The ERSP IU contains a full completion with CQE.
1659 		 * Validate ERSP IU and look at cqe.
1660 		 */
1661 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1662 					(freq->rcv_rsplen / 4) ||
1663 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1664 					freq->transferred_length ||
1665 			     op->rsp_iu.status_code ||
1666 			     sqe->common.command_id != cqe->command_id)) {
1667 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1668 			dev_info(ctrl->ctrl.device,
1669 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
1670 				"iu len %d, xfr len %d vs %d, status code "
1671 				"%d, cmdid %d vs %d\n",
1672 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
1673 				be32_to_cpu(op->rsp_iu.xfrd_len),
1674 				freq->transferred_length,
1675 				op->rsp_iu.status_code,
1676 				sqe->common.command_id,
1677 				cqe->command_id);
1678 			goto done;
1679 		}
1680 		result = cqe->result;
1681 		status = cqe->status;
1682 		break;
1683 
1684 	default:
1685 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1686 		dev_info(ctrl->ctrl.device,
1687 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
1688 			"len %d\n",
1689 			ctrl->cnum, freq->rcv_rsplen);
1690 		goto done;
1691 	}
1692 
1693 	terminate_assoc = false;
1694 
1695 done:
1696 	if (op->flags & FCOP_FLAGS_AEN) {
1697 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1698 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1699 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1700 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1701 		nvme_fc_ctrl_put(ctrl);
1702 		goto check_error;
1703 	}
1704 
1705 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
1706 	nvme_end_request(rq, status, result);
1707 
1708 check_error:
1709 	if (terminate_assoc)
1710 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1711 }
1712 
1713 static int
1714 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1715 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1716 		struct request *rq, u32 rqno)
1717 {
1718 	struct nvme_fcp_op_w_sgl *op_w_sgl =
1719 		container_of(op, typeof(*op_w_sgl), op);
1720 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1721 	int ret = 0;
1722 
1723 	memset(op, 0, sizeof(*op));
1724 	op->fcp_req.cmdaddr = &op->cmd_iu;
1725 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1726 	op->fcp_req.rspaddr = &op->rsp_iu;
1727 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1728 	op->fcp_req.done = nvme_fc_fcpio_done;
1729 	op->ctrl = ctrl;
1730 	op->queue = queue;
1731 	op->rq = rq;
1732 	op->rqno = rqno;
1733 
1734 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1735 	cmdiu->fc_id = NVME_CMD_FC_ID;
1736 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1737 
1738 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1739 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1740 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1741 		dev_err(ctrl->dev,
1742 			"FCP Op failed - cmdiu dma mapping failed.\n");
1743 		ret = EFAULT;
1744 		goto out_on_error;
1745 	}
1746 
1747 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1748 				&op->rsp_iu, sizeof(op->rsp_iu),
1749 				DMA_FROM_DEVICE);
1750 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1751 		dev_err(ctrl->dev,
1752 			"FCP Op failed - rspiu dma mapping failed.\n");
1753 		ret = EFAULT;
1754 	}
1755 
1756 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1757 out_on_error:
1758 	return ret;
1759 }
1760 
1761 static int
1762 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1763 		unsigned int hctx_idx, unsigned int numa_node)
1764 {
1765 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1766 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
1767 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1768 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1769 	int res;
1770 
1771 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
1772 	if (res)
1773 		return res;
1774 	op->op.fcp_req.first_sgl = &op->sgl[0];
1775 	op->op.fcp_req.private = &op->priv[0];
1776 	nvme_req(rq)->ctrl = &ctrl->ctrl;
1777 	return res;
1778 }
1779 
1780 static int
1781 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1782 {
1783 	struct nvme_fc_fcp_op *aen_op;
1784 	struct nvme_fc_cmd_iu *cmdiu;
1785 	struct nvme_command *sqe;
1786 	void *private;
1787 	int i, ret;
1788 
1789 	aen_op = ctrl->aen_ops;
1790 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1791 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1792 						GFP_KERNEL);
1793 		if (!private)
1794 			return -ENOMEM;
1795 
1796 		cmdiu = &aen_op->cmd_iu;
1797 		sqe = &cmdiu->sqe;
1798 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1799 				aen_op, (struct request *)NULL,
1800 				(NVME_AQ_BLK_MQ_DEPTH + i));
1801 		if (ret) {
1802 			kfree(private);
1803 			return ret;
1804 		}
1805 
1806 		aen_op->flags = FCOP_FLAGS_AEN;
1807 		aen_op->fcp_req.private = private;
1808 
1809 		memset(sqe, 0, sizeof(*sqe));
1810 		sqe->common.opcode = nvme_admin_async_event;
1811 		/* Note: core layer may overwrite the sqe.command_id value */
1812 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1813 	}
1814 	return 0;
1815 }
1816 
1817 static void
1818 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1819 {
1820 	struct nvme_fc_fcp_op *aen_op;
1821 	int i;
1822 
1823 	aen_op = ctrl->aen_ops;
1824 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1825 		if (!aen_op->fcp_req.private)
1826 			continue;
1827 
1828 		__nvme_fc_exit_request(ctrl, aen_op);
1829 
1830 		kfree(aen_op->fcp_req.private);
1831 		aen_op->fcp_req.private = NULL;
1832 	}
1833 }
1834 
1835 static inline void
1836 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1837 		unsigned int qidx)
1838 {
1839 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1840 
1841 	hctx->driver_data = queue;
1842 	queue->hctx = hctx;
1843 }
1844 
1845 static int
1846 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1847 		unsigned int hctx_idx)
1848 {
1849 	struct nvme_fc_ctrl *ctrl = data;
1850 
1851 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1852 
1853 	return 0;
1854 }
1855 
1856 static int
1857 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858 		unsigned int hctx_idx)
1859 {
1860 	struct nvme_fc_ctrl *ctrl = data;
1861 
1862 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1863 
1864 	return 0;
1865 }
1866 
1867 static void
1868 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1869 {
1870 	struct nvme_fc_queue *queue;
1871 
1872 	queue = &ctrl->queues[idx];
1873 	memset(queue, 0, sizeof(*queue));
1874 	queue->ctrl = ctrl;
1875 	queue->qnum = idx;
1876 	atomic_set(&queue->csn, 0);
1877 	queue->dev = ctrl->dev;
1878 
1879 	if (idx > 0)
1880 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1881 	else
1882 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1883 
1884 	/*
1885 	 * Considered whether we should allocate buffers for all SQEs
1886 	 * and CQEs and dma map them - mapping their respective entries
1887 	 * into the request structures (kernel vm addr and dma address)
1888 	 * thus the driver could use the buffers/mappings directly.
1889 	 * It only makes sense if the LLDD would use them for its
1890 	 * messaging api. It's very unlikely most adapter api's would use
1891 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1892 	 * structures were used instead.
1893 	 */
1894 }
1895 
1896 /*
1897  * This routine terminates a queue at the transport level.
1898  * The transport has already ensured that all outstanding ios on
1899  * the queue have been terminated.
1900  * The transport will send a Disconnect LS request to terminate
1901  * the queue's connection. Termination of the admin queue will also
1902  * terminate the association at the target.
1903  */
1904 static void
1905 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1906 {
1907 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1908 		return;
1909 
1910 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1911 	/*
1912 	 * Current implementation never disconnects a single queue.
1913 	 * It always terminates a whole association. So there is never
1914 	 * a disconnect(queue) LS sent to the target.
1915 	 */
1916 
1917 	queue->connection_id = 0;
1918 	atomic_set(&queue->csn, 0);
1919 }
1920 
1921 static void
1922 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1923 	struct nvme_fc_queue *queue, unsigned int qidx)
1924 {
1925 	if (ctrl->lport->ops->delete_queue)
1926 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1927 				queue->lldd_handle);
1928 	queue->lldd_handle = NULL;
1929 }
1930 
1931 static void
1932 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1933 {
1934 	int i;
1935 
1936 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1937 		nvme_fc_free_queue(&ctrl->queues[i]);
1938 }
1939 
1940 static int
1941 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1942 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1943 {
1944 	int ret = 0;
1945 
1946 	queue->lldd_handle = NULL;
1947 	if (ctrl->lport->ops->create_queue)
1948 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1949 				qidx, qsize, &queue->lldd_handle);
1950 
1951 	return ret;
1952 }
1953 
1954 static void
1955 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1956 {
1957 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1958 	int i;
1959 
1960 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1961 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1962 }
1963 
1964 static int
1965 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1966 {
1967 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1968 	int i, ret;
1969 
1970 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1971 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1972 		if (ret)
1973 			goto delete_queues;
1974 	}
1975 
1976 	return 0;
1977 
1978 delete_queues:
1979 	for (; i >= 0; i--)
1980 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1981 	return ret;
1982 }
1983 
1984 static int
1985 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1986 {
1987 	int i, ret = 0;
1988 
1989 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
1990 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1991 					(qsize / 5));
1992 		if (ret)
1993 			break;
1994 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
1995 		if (ret)
1996 			break;
1997 
1998 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 static void
2005 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2006 {
2007 	int i;
2008 
2009 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2010 		nvme_fc_init_queue(ctrl, i);
2011 }
2012 
2013 static void
2014 nvme_fc_ctrl_free(struct kref *ref)
2015 {
2016 	struct nvme_fc_ctrl *ctrl =
2017 		container_of(ref, struct nvme_fc_ctrl, ref);
2018 	unsigned long flags;
2019 
2020 	if (ctrl->ctrl.tagset) {
2021 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2022 		blk_mq_free_tag_set(&ctrl->tag_set);
2023 	}
2024 
2025 	/* remove from rport list */
2026 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2027 	list_del(&ctrl->ctrl_list);
2028 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2029 
2030 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2031 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2032 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2033 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2034 
2035 	kfree(ctrl->queues);
2036 
2037 	put_device(ctrl->dev);
2038 	nvme_fc_rport_put(ctrl->rport);
2039 
2040 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2041 	if (ctrl->ctrl.opts)
2042 		nvmf_free_options(ctrl->ctrl.opts);
2043 	kfree(ctrl);
2044 }
2045 
2046 static void
2047 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2048 {
2049 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2050 }
2051 
2052 static int
2053 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2054 {
2055 	return kref_get_unless_zero(&ctrl->ref);
2056 }
2057 
2058 /*
2059  * All accesses from nvme core layer done - can now free the
2060  * controller. Called after last nvme_put_ctrl() call
2061  */
2062 static void
2063 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2064 {
2065 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2066 
2067 	WARN_ON(nctrl != &ctrl->ctrl);
2068 
2069 	nvme_fc_ctrl_put(ctrl);
2070 }
2071 
2072 static void
2073 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2074 {
2075 	int active;
2076 
2077 	/*
2078 	 * if an error (io timeout, etc) while (re)connecting,
2079 	 * it's an error on creating the new association.
2080 	 * Start the error recovery thread if it hasn't already
2081 	 * been started. It is expected there could be multiple
2082 	 * ios hitting this path before things are cleaned up.
2083 	 */
2084 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2085 		active = atomic_xchg(&ctrl->err_work_active, 1);
2086 		if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2087 			atomic_set(&ctrl->err_work_active, 0);
2088 			WARN_ON(1);
2089 		}
2090 		return;
2091 	}
2092 
2093 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2094 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2095 		return;
2096 
2097 	dev_warn(ctrl->ctrl.device,
2098 		"NVME-FC{%d}: transport association error detected: %s\n",
2099 		ctrl->cnum, errmsg);
2100 	dev_warn(ctrl->ctrl.device,
2101 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2102 
2103 	nvme_reset_ctrl(&ctrl->ctrl);
2104 }
2105 
2106 static enum blk_eh_timer_return
2107 nvme_fc_timeout(struct request *rq, bool reserved)
2108 {
2109 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2110 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2111 
2112 	/*
2113 	 * we can't individually ABTS an io without affecting the queue,
2114 	 * thus killing the queue, and thus the association.
2115 	 * So resolve by performing a controller reset, which will stop
2116 	 * the host/io stack, terminate the association on the link,
2117 	 * and recreate an association on the link.
2118 	 */
2119 	nvme_fc_error_recovery(ctrl, "io timeout error");
2120 
2121 	/*
2122 	 * the io abort has been initiated. Have the reset timer
2123 	 * restarted and the abort completion will complete the io
2124 	 * shortly. Avoids a synchronous wait while the abort finishes.
2125 	 */
2126 	return BLK_EH_RESET_TIMER;
2127 }
2128 
2129 static int
2130 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2131 		struct nvme_fc_fcp_op *op)
2132 {
2133 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2134 	int ret;
2135 
2136 	freq->sg_cnt = 0;
2137 
2138 	if (!blk_rq_nr_phys_segments(rq))
2139 		return 0;
2140 
2141 	freq->sg_table.sgl = freq->first_sgl;
2142 	ret = sg_alloc_table_chained(&freq->sg_table,
2143 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2144 			SG_CHUNK_SIZE);
2145 	if (ret)
2146 		return -ENOMEM;
2147 
2148 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2149 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2150 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2151 				op->nents, rq_dma_dir(rq));
2152 	if (unlikely(freq->sg_cnt <= 0)) {
2153 		sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2154 		freq->sg_cnt = 0;
2155 		return -EFAULT;
2156 	}
2157 
2158 	/*
2159 	 * TODO: blk_integrity_rq(rq)  for DIF
2160 	 */
2161 	return 0;
2162 }
2163 
2164 static void
2165 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2166 		struct nvme_fc_fcp_op *op)
2167 {
2168 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2169 
2170 	if (!freq->sg_cnt)
2171 		return;
2172 
2173 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2174 			rq_dma_dir(rq));
2175 
2176 	nvme_cleanup_cmd(rq);
2177 
2178 	sg_free_table_chained(&freq->sg_table, SG_CHUNK_SIZE);
2179 
2180 	freq->sg_cnt = 0;
2181 }
2182 
2183 /*
2184  * In FC, the queue is a logical thing. At transport connect, the target
2185  * creates its "queue" and returns a handle that is to be given to the
2186  * target whenever it posts something to the corresponding SQ.  When an
2187  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2188  * command contained within the SQE, an io, and assigns a FC exchange
2189  * to it. The SQE and the associated SQ handle are sent in the initial
2190  * CMD IU sents on the exchange. All transfers relative to the io occur
2191  * as part of the exchange.  The CQE is the last thing for the io,
2192  * which is transferred (explicitly or implicitly) with the RSP IU
2193  * sent on the exchange. After the CQE is received, the FC exchange is
2194  * terminaed and the Exchange may be used on a different io.
2195  *
2196  * The transport to LLDD api has the transport making a request for a
2197  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2198  * resource and transfers the command. The LLDD will then process all
2199  * steps to complete the io. Upon completion, the transport done routine
2200  * is called.
2201  *
2202  * So - while the operation is outstanding to the LLDD, there is a link
2203  * level FC exchange resource that is also outstanding. This must be
2204  * considered in all cleanup operations.
2205  */
2206 static blk_status_t
2207 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2208 	struct nvme_fc_fcp_op *op, u32 data_len,
2209 	enum nvmefc_fcp_datadir	io_dir)
2210 {
2211 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2212 	struct nvme_command *sqe = &cmdiu->sqe;
2213 	int ret, opstate;
2214 
2215 	/*
2216 	 * before attempting to send the io, check to see if we believe
2217 	 * the target device is present
2218 	 */
2219 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2220 		return BLK_STS_RESOURCE;
2221 
2222 	if (!nvme_fc_ctrl_get(ctrl))
2223 		return BLK_STS_IOERR;
2224 
2225 	/* format the FC-NVME CMD IU and fcp_req */
2226 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2227 	cmdiu->data_len = cpu_to_be32(data_len);
2228 	switch (io_dir) {
2229 	case NVMEFC_FCP_WRITE:
2230 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2231 		break;
2232 	case NVMEFC_FCP_READ:
2233 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2234 		break;
2235 	case NVMEFC_FCP_NODATA:
2236 		cmdiu->flags = 0;
2237 		break;
2238 	}
2239 	op->fcp_req.payload_length = data_len;
2240 	op->fcp_req.io_dir = io_dir;
2241 	op->fcp_req.transferred_length = 0;
2242 	op->fcp_req.rcv_rsplen = 0;
2243 	op->fcp_req.status = NVME_SC_SUCCESS;
2244 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2245 
2246 	/*
2247 	 * validate per fabric rules, set fields mandated by fabric spec
2248 	 * as well as those by FC-NVME spec.
2249 	 */
2250 	WARN_ON_ONCE(sqe->common.metadata);
2251 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2252 
2253 	/*
2254 	 * format SQE DPTR field per FC-NVME rules:
2255 	 *    type=0x5     Transport SGL Data Block Descriptor
2256 	 *    subtype=0xA  Transport-specific value
2257 	 *    address=0
2258 	 *    length=length of the data series
2259 	 */
2260 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2261 					NVME_SGL_FMT_TRANSPORT_A;
2262 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2263 	sqe->rw.dptr.sgl.addr = 0;
2264 
2265 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2266 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2267 		if (ret < 0) {
2268 			nvme_cleanup_cmd(op->rq);
2269 			nvme_fc_ctrl_put(ctrl);
2270 			if (ret == -ENOMEM || ret == -EAGAIN)
2271 				return BLK_STS_RESOURCE;
2272 			return BLK_STS_IOERR;
2273 		}
2274 	}
2275 
2276 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2277 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2278 
2279 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2280 
2281 	if (!(op->flags & FCOP_FLAGS_AEN))
2282 		blk_mq_start_request(op->rq);
2283 
2284 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2285 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2286 					&ctrl->rport->remoteport,
2287 					queue->lldd_handle, &op->fcp_req);
2288 
2289 	if (ret) {
2290 		/*
2291 		 * If the lld fails to send the command is there an issue with
2292 		 * the csn value?  If the command that fails is the Connect,
2293 		 * no - as the connection won't be live.  If it is a command
2294 		 * post-connect, it's possible a gap in csn may be created.
2295 		 * Does this matter?  As Linux initiators don't send fused
2296 		 * commands, no.  The gap would exist, but as there's nothing
2297 		 * that depends on csn order to be delivered on the target
2298 		 * side, it shouldn't hurt.  It would be difficult for a
2299 		 * target to even detect the csn gap as it has no idea when the
2300 		 * cmd with the csn was supposed to arrive.
2301 		 */
2302 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2303 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2304 
2305 		if (!(op->flags & FCOP_FLAGS_AEN))
2306 			nvme_fc_unmap_data(ctrl, op->rq, op);
2307 
2308 		nvme_fc_ctrl_put(ctrl);
2309 
2310 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2311 				ret != -EBUSY)
2312 			return BLK_STS_IOERR;
2313 
2314 		return BLK_STS_RESOURCE;
2315 	}
2316 
2317 	return BLK_STS_OK;
2318 }
2319 
2320 static blk_status_t
2321 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2322 			const struct blk_mq_queue_data *bd)
2323 {
2324 	struct nvme_ns *ns = hctx->queue->queuedata;
2325 	struct nvme_fc_queue *queue = hctx->driver_data;
2326 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2327 	struct request *rq = bd->rq;
2328 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2329 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2330 	struct nvme_command *sqe = &cmdiu->sqe;
2331 	enum nvmefc_fcp_datadir	io_dir;
2332 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2333 	u32 data_len;
2334 	blk_status_t ret;
2335 
2336 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2337 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2338 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2339 
2340 	ret = nvme_setup_cmd(ns, rq, sqe);
2341 	if (ret)
2342 		return ret;
2343 
2344 	/*
2345 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2346 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2347 	 * there is no actual payload to be transferred.
2348 	 * To get it right, key data transmission on there being 1 or
2349 	 * more physical segments in the sg list. If there is no
2350 	 * physical segments, there is no payload.
2351 	 */
2352 	if (blk_rq_nr_phys_segments(rq)) {
2353 		data_len = blk_rq_payload_bytes(rq);
2354 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2355 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2356 	} else {
2357 		data_len = 0;
2358 		io_dir = NVMEFC_FCP_NODATA;
2359 	}
2360 
2361 
2362 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2363 }
2364 
2365 static void
2366 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2367 {
2368 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2369 	struct nvme_fc_fcp_op *aen_op;
2370 	unsigned long flags;
2371 	bool terminating = false;
2372 	blk_status_t ret;
2373 
2374 	spin_lock_irqsave(&ctrl->lock, flags);
2375 	if (ctrl->flags & FCCTRL_TERMIO)
2376 		terminating = true;
2377 	spin_unlock_irqrestore(&ctrl->lock, flags);
2378 
2379 	if (terminating)
2380 		return;
2381 
2382 	aen_op = &ctrl->aen_ops[0];
2383 
2384 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2385 					NVMEFC_FCP_NODATA);
2386 	if (ret)
2387 		dev_err(ctrl->ctrl.device,
2388 			"failed async event work\n");
2389 }
2390 
2391 static void
2392 nvme_fc_complete_rq(struct request *rq)
2393 {
2394 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2395 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2396 
2397 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2398 
2399 	nvme_fc_unmap_data(ctrl, rq, op);
2400 	nvme_complete_rq(rq);
2401 	nvme_fc_ctrl_put(ctrl);
2402 }
2403 
2404 /*
2405  * This routine is used by the transport when it needs to find active
2406  * io on a queue that is to be terminated. The transport uses
2407  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2408  * this routine to kill them on a 1 by 1 basis.
2409  *
2410  * As FC allocates FC exchange for each io, the transport must contact
2411  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2412  * After terminating the exchange the LLDD will call the transport's
2413  * normal io done path for the request, but it will have an aborted
2414  * status. The done path will return the io request back to the block
2415  * layer with an error status.
2416  */
2417 static bool
2418 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2419 {
2420 	struct nvme_ctrl *nctrl = data;
2421 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2422 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2423 
2424 	__nvme_fc_abort_op(ctrl, op);
2425 	return true;
2426 }
2427 
2428 
2429 static const struct blk_mq_ops nvme_fc_mq_ops = {
2430 	.queue_rq	= nvme_fc_queue_rq,
2431 	.complete	= nvme_fc_complete_rq,
2432 	.init_request	= nvme_fc_init_request,
2433 	.exit_request	= nvme_fc_exit_request,
2434 	.init_hctx	= nvme_fc_init_hctx,
2435 	.timeout	= nvme_fc_timeout,
2436 };
2437 
2438 static int
2439 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2440 {
2441 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2442 	unsigned int nr_io_queues;
2443 	int ret;
2444 
2445 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2446 				ctrl->lport->ops->max_hw_queues);
2447 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2448 	if (ret) {
2449 		dev_info(ctrl->ctrl.device,
2450 			"set_queue_count failed: %d\n", ret);
2451 		return ret;
2452 	}
2453 
2454 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2455 	if (!nr_io_queues)
2456 		return 0;
2457 
2458 	nvme_fc_init_io_queues(ctrl);
2459 
2460 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2461 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2462 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2463 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2464 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2465 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2466 	ctrl->tag_set.cmd_size =
2467 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2468 			    ctrl->lport->ops->fcprqst_priv_sz);
2469 	ctrl->tag_set.driver_data = ctrl;
2470 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2471 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2472 
2473 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2474 	if (ret)
2475 		return ret;
2476 
2477 	ctrl->ctrl.tagset = &ctrl->tag_set;
2478 
2479 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2480 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2481 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2482 		goto out_free_tag_set;
2483 	}
2484 
2485 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2486 	if (ret)
2487 		goto out_cleanup_blk_queue;
2488 
2489 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2490 	if (ret)
2491 		goto out_delete_hw_queues;
2492 
2493 	ctrl->ioq_live = true;
2494 
2495 	return 0;
2496 
2497 out_delete_hw_queues:
2498 	nvme_fc_delete_hw_io_queues(ctrl);
2499 out_cleanup_blk_queue:
2500 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2501 out_free_tag_set:
2502 	blk_mq_free_tag_set(&ctrl->tag_set);
2503 	nvme_fc_free_io_queues(ctrl);
2504 
2505 	/* force put free routine to ignore io queues */
2506 	ctrl->ctrl.tagset = NULL;
2507 
2508 	return ret;
2509 }
2510 
2511 static int
2512 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2513 {
2514 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2515 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2516 	unsigned int nr_io_queues;
2517 	int ret;
2518 
2519 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2520 				ctrl->lport->ops->max_hw_queues);
2521 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2522 	if (ret) {
2523 		dev_info(ctrl->ctrl.device,
2524 			"set_queue_count failed: %d\n", ret);
2525 		return ret;
2526 	}
2527 
2528 	if (!nr_io_queues && prior_ioq_cnt) {
2529 		dev_info(ctrl->ctrl.device,
2530 			"Fail Reconnect: At least 1 io queue "
2531 			"required (was %d)\n", prior_ioq_cnt);
2532 		return -ENOSPC;
2533 	}
2534 
2535 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2536 	/* check for io queues existing */
2537 	if (ctrl->ctrl.queue_count == 1)
2538 		return 0;
2539 
2540 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2541 	if (ret)
2542 		goto out_free_io_queues;
2543 
2544 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2545 	if (ret)
2546 		goto out_delete_hw_queues;
2547 
2548 	if (prior_ioq_cnt != nr_io_queues)
2549 		dev_info(ctrl->ctrl.device,
2550 			"reconnect: revising io queue count from %d to %d\n",
2551 			prior_ioq_cnt, nr_io_queues);
2552 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2553 
2554 	return 0;
2555 
2556 out_delete_hw_queues:
2557 	nvme_fc_delete_hw_io_queues(ctrl);
2558 out_free_io_queues:
2559 	nvme_fc_free_io_queues(ctrl);
2560 	return ret;
2561 }
2562 
2563 static void
2564 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2565 {
2566 	struct nvme_fc_lport *lport = rport->lport;
2567 
2568 	atomic_inc(&lport->act_rport_cnt);
2569 }
2570 
2571 static void
2572 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2573 {
2574 	struct nvme_fc_lport *lport = rport->lport;
2575 	u32 cnt;
2576 
2577 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2578 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2579 		lport->ops->localport_delete(&lport->localport);
2580 }
2581 
2582 static int
2583 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2584 {
2585 	struct nvme_fc_rport *rport = ctrl->rport;
2586 	u32 cnt;
2587 
2588 	if (ctrl->assoc_active)
2589 		return 1;
2590 
2591 	ctrl->assoc_active = true;
2592 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2593 	if (cnt == 1)
2594 		nvme_fc_rport_active_on_lport(rport);
2595 
2596 	return 0;
2597 }
2598 
2599 static int
2600 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2601 {
2602 	struct nvme_fc_rport *rport = ctrl->rport;
2603 	struct nvme_fc_lport *lport = rport->lport;
2604 	u32 cnt;
2605 
2606 	/* ctrl->assoc_active=false will be set independently */
2607 
2608 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2609 	if (cnt == 0) {
2610 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2611 			lport->ops->remoteport_delete(&rport->remoteport);
2612 		nvme_fc_rport_inactive_on_lport(rport);
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 /*
2619  * This routine restarts the controller on the host side, and
2620  * on the link side, recreates the controller association.
2621  */
2622 static int
2623 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2624 {
2625 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2626 	int ret;
2627 	bool changed;
2628 
2629 	++ctrl->ctrl.nr_reconnects;
2630 
2631 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2632 		return -ENODEV;
2633 
2634 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2635 		return -ENOTUNIQ;
2636 
2637 	dev_info(ctrl->ctrl.device,
2638 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
2639 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
2640 		ctrl->cnum, ctrl->lport->localport.port_name,
2641 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2642 
2643 	/*
2644 	 * Create the admin queue
2645 	 */
2646 
2647 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2648 				NVME_AQ_DEPTH);
2649 	if (ret)
2650 		goto out_free_queue;
2651 
2652 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2653 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2654 	if (ret)
2655 		goto out_delete_hw_queue;
2656 
2657 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2658 	if (ret)
2659 		goto out_disconnect_admin_queue;
2660 
2661 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2662 
2663 	/*
2664 	 * Check controller capabilities
2665 	 *
2666 	 * todo:- add code to check if ctrl attributes changed from
2667 	 * prior connection values
2668 	 */
2669 
2670 	ret = nvme_enable_ctrl(&ctrl->ctrl);
2671 	if (ret)
2672 		goto out_disconnect_admin_queue;
2673 
2674 	ctrl->ctrl.max_hw_sectors =
2675 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2676 
2677 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2678 
2679 	ret = nvme_init_identify(&ctrl->ctrl);
2680 	if (ret)
2681 		goto out_disconnect_admin_queue;
2682 
2683 	/* sanity checks */
2684 
2685 	/* FC-NVME does not have other data in the capsule */
2686 	if (ctrl->ctrl.icdoff) {
2687 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2688 				ctrl->ctrl.icdoff);
2689 		goto out_disconnect_admin_queue;
2690 	}
2691 
2692 	/* FC-NVME supports normal SGL Data Block Descriptors */
2693 
2694 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2695 		/* warn if maxcmd is lower than queue_size */
2696 		dev_warn(ctrl->ctrl.device,
2697 			"queue_size %zu > ctrl maxcmd %u, reducing "
2698 			"to queue_size\n",
2699 			opts->queue_size, ctrl->ctrl.maxcmd);
2700 		opts->queue_size = ctrl->ctrl.maxcmd;
2701 	}
2702 
2703 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
2704 		/* warn if sqsize is lower than queue_size */
2705 		dev_warn(ctrl->ctrl.device,
2706 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
2707 			opts->queue_size, ctrl->ctrl.sqsize + 1);
2708 		opts->queue_size = ctrl->ctrl.sqsize + 1;
2709 	}
2710 
2711 	ret = nvme_fc_init_aen_ops(ctrl);
2712 	if (ret)
2713 		goto out_term_aen_ops;
2714 
2715 	/*
2716 	 * Create the io queues
2717 	 */
2718 
2719 	if (ctrl->ctrl.queue_count > 1) {
2720 		if (!ctrl->ioq_live)
2721 			ret = nvme_fc_create_io_queues(ctrl);
2722 		else
2723 			ret = nvme_fc_recreate_io_queues(ctrl);
2724 		if (ret)
2725 			goto out_term_aen_ops;
2726 	}
2727 
2728 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2729 
2730 	ctrl->ctrl.nr_reconnects = 0;
2731 
2732 	if (changed)
2733 		nvme_start_ctrl(&ctrl->ctrl);
2734 
2735 	return 0;	/* Success */
2736 
2737 out_term_aen_ops:
2738 	nvme_fc_term_aen_ops(ctrl);
2739 out_disconnect_admin_queue:
2740 	/* send a Disconnect(association) LS to fc-nvme target */
2741 	nvme_fc_xmt_disconnect_assoc(ctrl);
2742 out_delete_hw_queue:
2743 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2744 out_free_queue:
2745 	nvme_fc_free_queue(&ctrl->queues[0]);
2746 	ctrl->assoc_active = false;
2747 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2748 
2749 	return ret;
2750 }
2751 
2752 /*
2753  * This routine stops operation of the controller on the host side.
2754  * On the host os stack side: Admin and IO queues are stopped,
2755  *   outstanding ios on them terminated via FC ABTS.
2756  * On the link side: the association is terminated.
2757  */
2758 static void
2759 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2760 {
2761 	unsigned long flags;
2762 
2763 	if (!ctrl->assoc_active)
2764 		return;
2765 	ctrl->assoc_active = false;
2766 
2767 	spin_lock_irqsave(&ctrl->lock, flags);
2768 	ctrl->flags |= FCCTRL_TERMIO;
2769 	ctrl->iocnt = 0;
2770 	spin_unlock_irqrestore(&ctrl->lock, flags);
2771 
2772 	/*
2773 	 * If io queues are present, stop them and terminate all outstanding
2774 	 * ios on them. As FC allocates FC exchange for each io, the
2775 	 * transport must contact the LLDD to terminate the exchange,
2776 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2777 	 * to tell us what io's are busy and invoke a transport routine
2778 	 * to kill them with the LLDD.  After terminating the exchange
2779 	 * the LLDD will call the transport's normal io done path, but it
2780 	 * will have an aborted status. The done path will return the
2781 	 * io requests back to the block layer as part of normal completions
2782 	 * (but with error status).
2783 	 */
2784 	if (ctrl->ctrl.queue_count > 1) {
2785 		nvme_stop_queues(&ctrl->ctrl);
2786 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2787 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2788 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2789 	}
2790 
2791 	/*
2792 	 * Other transports, which don't have link-level contexts bound
2793 	 * to sqe's, would try to gracefully shutdown the controller by
2794 	 * writing the registers for shutdown and polling (call
2795 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2796 	 * just aborted and we will wait on those contexts, and given
2797 	 * there was no indication of how live the controlelr is on the
2798 	 * link, don't send more io to create more contexts for the
2799 	 * shutdown. Let the controller fail via keepalive failure if
2800 	 * its still present.
2801 	 */
2802 
2803 	/*
2804 	 * clean up the admin queue. Same thing as above.
2805 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2806 	 * terminate the exchanges.
2807 	 */
2808 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2809 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2810 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2811 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2812 
2813 	/* kill the aens as they are a separate path */
2814 	nvme_fc_abort_aen_ops(ctrl);
2815 
2816 	/* wait for all io that had to be aborted */
2817 	spin_lock_irq(&ctrl->lock);
2818 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2819 	ctrl->flags &= ~FCCTRL_TERMIO;
2820 	spin_unlock_irq(&ctrl->lock);
2821 
2822 	nvme_fc_term_aen_ops(ctrl);
2823 
2824 	/*
2825 	 * send a Disconnect(association) LS to fc-nvme target
2826 	 * Note: could have been sent at top of process, but
2827 	 * cleaner on link traffic if after the aborts complete.
2828 	 * Note: if association doesn't exist, association_id will be 0
2829 	 */
2830 	if (ctrl->association_id)
2831 		nvme_fc_xmt_disconnect_assoc(ctrl);
2832 
2833 	if (ctrl->ctrl.tagset) {
2834 		nvme_fc_delete_hw_io_queues(ctrl);
2835 		nvme_fc_free_io_queues(ctrl);
2836 	}
2837 
2838 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2839 	nvme_fc_free_queue(&ctrl->queues[0]);
2840 
2841 	/* re-enable the admin_q so anything new can fast fail */
2842 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2843 
2844 	/* resume the io queues so that things will fast fail */
2845 	nvme_start_queues(&ctrl->ctrl);
2846 
2847 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2848 }
2849 
2850 static void
2851 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2852 {
2853 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2854 
2855 	cancel_work_sync(&ctrl->err_work);
2856 	cancel_delayed_work_sync(&ctrl->connect_work);
2857 	/*
2858 	 * kill the association on the link side.  this will block
2859 	 * waiting for io to terminate
2860 	 */
2861 	nvme_fc_delete_association(ctrl);
2862 }
2863 
2864 static void
2865 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2866 {
2867 	struct nvme_fc_rport *rport = ctrl->rport;
2868 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2869 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2870 	bool recon = true;
2871 
2872 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
2873 		return;
2874 
2875 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2876 		dev_info(ctrl->ctrl.device,
2877 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2878 			ctrl->cnum, status);
2879 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2880 		recon = false;
2881 
2882 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2883 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2884 			dev_info(ctrl->ctrl.device,
2885 				"NVME-FC{%d}: Reconnect attempt in %ld "
2886 				"seconds\n",
2887 				ctrl->cnum, recon_delay / HZ);
2888 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2889 			recon_delay = rport->dev_loss_end - jiffies;
2890 
2891 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2892 	} else {
2893 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2894 			dev_warn(ctrl->ctrl.device,
2895 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2896 				"reached.\n",
2897 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2898 		else
2899 			dev_warn(ctrl->ctrl.device,
2900 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2901 				"while waiting for remoteport connectivity.\n",
2902 				ctrl->cnum, portptr->dev_loss_tmo);
2903 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2904 	}
2905 }
2906 
2907 static void
2908 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
2909 {
2910 	nvme_stop_keep_alive(&ctrl->ctrl);
2911 
2912 	/* will block will waiting for io to terminate */
2913 	nvme_fc_delete_association(ctrl);
2914 
2915 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
2916 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
2917 		dev_err(ctrl->ctrl.device,
2918 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2919 			"to CONNECTING\n", ctrl->cnum);
2920 }
2921 
2922 static void
2923 nvme_fc_reset_ctrl_work(struct work_struct *work)
2924 {
2925 	struct nvme_fc_ctrl *ctrl =
2926 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2927 	int ret;
2928 
2929 	__nvme_fc_terminate_io(ctrl);
2930 
2931 	nvme_stop_ctrl(&ctrl->ctrl);
2932 
2933 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
2934 		ret = nvme_fc_create_association(ctrl);
2935 	else
2936 		ret = -ENOTCONN;
2937 
2938 	if (ret)
2939 		nvme_fc_reconnect_or_delete(ctrl, ret);
2940 	else
2941 		dev_info(ctrl->ctrl.device,
2942 			"NVME-FC{%d}: controller reset complete\n",
2943 			ctrl->cnum);
2944 }
2945 
2946 static void
2947 nvme_fc_connect_err_work(struct work_struct *work)
2948 {
2949 	struct nvme_fc_ctrl *ctrl =
2950 			container_of(work, struct nvme_fc_ctrl, err_work);
2951 
2952 	__nvme_fc_terminate_io(ctrl);
2953 
2954 	atomic_set(&ctrl->err_work_active, 0);
2955 
2956 	/*
2957 	 * Rescheduling the connection after recovering
2958 	 * from the io error is left to the reconnect work
2959 	 * item, which is what should have stalled waiting on
2960 	 * the io that had the error that scheduled this work.
2961 	 */
2962 }
2963 
2964 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2965 	.name			= "fc",
2966 	.module			= THIS_MODULE,
2967 	.flags			= NVME_F_FABRICS,
2968 	.reg_read32		= nvmf_reg_read32,
2969 	.reg_read64		= nvmf_reg_read64,
2970 	.reg_write32		= nvmf_reg_write32,
2971 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2972 	.submit_async_event	= nvme_fc_submit_async_event,
2973 	.delete_ctrl		= nvme_fc_delete_ctrl,
2974 	.get_address		= nvmf_get_address,
2975 };
2976 
2977 static void
2978 nvme_fc_connect_ctrl_work(struct work_struct *work)
2979 {
2980 	int ret;
2981 
2982 	struct nvme_fc_ctrl *ctrl =
2983 			container_of(to_delayed_work(work),
2984 				struct nvme_fc_ctrl, connect_work);
2985 
2986 	ret = nvme_fc_create_association(ctrl);
2987 	if (ret)
2988 		nvme_fc_reconnect_or_delete(ctrl, ret);
2989 	else
2990 		dev_info(ctrl->ctrl.device,
2991 			"NVME-FC{%d}: controller connect complete\n",
2992 			ctrl->cnum);
2993 }
2994 
2995 
2996 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2997 	.queue_rq	= nvme_fc_queue_rq,
2998 	.complete	= nvme_fc_complete_rq,
2999 	.init_request	= nvme_fc_init_request,
3000 	.exit_request	= nvme_fc_exit_request,
3001 	.init_hctx	= nvme_fc_init_admin_hctx,
3002 	.timeout	= nvme_fc_timeout,
3003 };
3004 
3005 
3006 /*
3007  * Fails a controller request if it matches an existing controller
3008  * (association) with the same tuple:
3009  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3010  *
3011  * The ports don't need to be compared as they are intrinsically
3012  * already matched by the port pointers supplied.
3013  */
3014 static bool
3015 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3016 		struct nvmf_ctrl_options *opts)
3017 {
3018 	struct nvme_fc_ctrl *ctrl;
3019 	unsigned long flags;
3020 	bool found = false;
3021 
3022 	spin_lock_irqsave(&rport->lock, flags);
3023 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3024 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3025 		if (found)
3026 			break;
3027 	}
3028 	spin_unlock_irqrestore(&rport->lock, flags);
3029 
3030 	return found;
3031 }
3032 
3033 static struct nvme_ctrl *
3034 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3035 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3036 {
3037 	struct nvme_fc_ctrl *ctrl;
3038 	unsigned long flags;
3039 	int ret, idx;
3040 
3041 	if (!(rport->remoteport.port_role &
3042 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3043 		ret = -EBADR;
3044 		goto out_fail;
3045 	}
3046 
3047 	if (!opts->duplicate_connect &&
3048 	    nvme_fc_existing_controller(rport, opts)) {
3049 		ret = -EALREADY;
3050 		goto out_fail;
3051 	}
3052 
3053 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3054 	if (!ctrl) {
3055 		ret = -ENOMEM;
3056 		goto out_fail;
3057 	}
3058 
3059 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3060 	if (idx < 0) {
3061 		ret = -ENOSPC;
3062 		goto out_free_ctrl;
3063 	}
3064 
3065 	ctrl->ctrl.opts = opts;
3066 	ctrl->ctrl.nr_reconnects = 0;
3067 	if (lport->dev)
3068 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3069 	else
3070 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3071 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3072 	ctrl->lport = lport;
3073 	ctrl->rport = rport;
3074 	ctrl->dev = lport->dev;
3075 	ctrl->cnum = idx;
3076 	ctrl->ioq_live = false;
3077 	ctrl->assoc_active = false;
3078 	atomic_set(&ctrl->err_work_active, 0);
3079 	init_waitqueue_head(&ctrl->ioabort_wait);
3080 
3081 	get_device(ctrl->dev);
3082 	kref_init(&ctrl->ref);
3083 
3084 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3085 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3086 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3087 	spin_lock_init(&ctrl->lock);
3088 
3089 	/* io queue count */
3090 	ctrl->ctrl.queue_count = min_t(unsigned int,
3091 				opts->nr_io_queues,
3092 				lport->ops->max_hw_queues);
3093 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3094 
3095 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3096 	ctrl->ctrl.kato = opts->kato;
3097 	ctrl->ctrl.cntlid = 0xffff;
3098 
3099 	ret = -ENOMEM;
3100 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3101 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3102 	if (!ctrl->queues)
3103 		goto out_free_ida;
3104 
3105 	nvme_fc_init_queue(ctrl, 0);
3106 
3107 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3108 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3109 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3110 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3111 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3112 	ctrl->admin_tag_set.cmd_size =
3113 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3114 			    ctrl->lport->ops->fcprqst_priv_sz);
3115 	ctrl->admin_tag_set.driver_data = ctrl;
3116 	ctrl->admin_tag_set.nr_hw_queues = 1;
3117 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3118 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3119 
3120 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3121 	if (ret)
3122 		goto out_free_queues;
3123 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3124 
3125 	ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3126 	if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3127 		ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3128 		goto out_free_admin_tag_set;
3129 	}
3130 
3131 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3132 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3133 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3134 		goto out_cleanup_fabrics_q;
3135 	}
3136 
3137 	/*
3138 	 * Would have been nice to init io queues tag set as well.
3139 	 * However, we require interaction from the controller
3140 	 * for max io queue count before we can do so.
3141 	 * Defer this to the connect path.
3142 	 */
3143 
3144 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3145 	if (ret)
3146 		goto out_cleanup_admin_q;
3147 
3148 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3149 
3150 	spin_lock_irqsave(&rport->lock, flags);
3151 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3152 	spin_unlock_irqrestore(&rport->lock, flags);
3153 
3154 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3155 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3156 		dev_err(ctrl->ctrl.device,
3157 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3158 		goto fail_ctrl;
3159 	}
3160 
3161 	nvme_get_ctrl(&ctrl->ctrl);
3162 
3163 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3164 		nvme_put_ctrl(&ctrl->ctrl);
3165 		dev_err(ctrl->ctrl.device,
3166 			"NVME-FC{%d}: failed to schedule initial connect\n",
3167 			ctrl->cnum);
3168 		goto fail_ctrl;
3169 	}
3170 
3171 	flush_delayed_work(&ctrl->connect_work);
3172 
3173 	dev_info(ctrl->ctrl.device,
3174 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3175 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3176 
3177 	return &ctrl->ctrl;
3178 
3179 fail_ctrl:
3180 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3181 	cancel_work_sync(&ctrl->ctrl.reset_work);
3182 	cancel_work_sync(&ctrl->err_work);
3183 	cancel_delayed_work_sync(&ctrl->connect_work);
3184 
3185 	ctrl->ctrl.opts = NULL;
3186 
3187 	/* initiate nvme ctrl ref counting teardown */
3188 	nvme_uninit_ctrl(&ctrl->ctrl);
3189 
3190 	/* Remove core ctrl ref. */
3191 	nvme_put_ctrl(&ctrl->ctrl);
3192 
3193 	/* as we're past the point where we transition to the ref
3194 	 * counting teardown path, if we return a bad pointer here,
3195 	 * the calling routine, thinking it's prior to the
3196 	 * transition, will do an rport put. Since the teardown
3197 	 * path also does a rport put, we do an extra get here to
3198 	 * so proper order/teardown happens.
3199 	 */
3200 	nvme_fc_rport_get(rport);
3201 
3202 	return ERR_PTR(-EIO);
3203 
3204 out_cleanup_admin_q:
3205 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3206 out_cleanup_fabrics_q:
3207 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3208 out_free_admin_tag_set:
3209 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3210 out_free_queues:
3211 	kfree(ctrl->queues);
3212 out_free_ida:
3213 	put_device(ctrl->dev);
3214 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3215 out_free_ctrl:
3216 	kfree(ctrl);
3217 out_fail:
3218 	/* exit via here doesn't follow ctlr ref points */
3219 	return ERR_PTR(ret);
3220 }
3221 
3222 
3223 struct nvmet_fc_traddr {
3224 	u64	nn;
3225 	u64	pn;
3226 };
3227 
3228 static int
3229 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3230 {
3231 	u64 token64;
3232 
3233 	if (match_u64(sstr, &token64))
3234 		return -EINVAL;
3235 	*val = token64;
3236 
3237 	return 0;
3238 }
3239 
3240 /*
3241  * This routine validates and extracts the WWN's from the TRADDR string.
3242  * As kernel parsers need the 0x to determine number base, universally
3243  * build string to parse with 0x prefix before parsing name strings.
3244  */
3245 static int
3246 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3247 {
3248 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3249 	substring_t wwn = { name, &name[sizeof(name)-1] };
3250 	int nnoffset, pnoffset;
3251 
3252 	/* validate if string is one of the 2 allowed formats */
3253 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3254 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3255 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3256 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3257 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3258 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3259 						NVME_FC_TRADDR_OXNNLEN;
3260 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3261 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3262 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3263 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3264 		nnoffset = NVME_FC_TRADDR_NNLEN;
3265 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3266 	} else
3267 		goto out_einval;
3268 
3269 	name[0] = '0';
3270 	name[1] = 'x';
3271 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3272 
3273 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3274 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3275 		goto out_einval;
3276 
3277 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3278 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3279 		goto out_einval;
3280 
3281 	return 0;
3282 
3283 out_einval:
3284 	pr_warn("%s: bad traddr string\n", __func__);
3285 	return -EINVAL;
3286 }
3287 
3288 static struct nvme_ctrl *
3289 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3290 {
3291 	struct nvme_fc_lport *lport;
3292 	struct nvme_fc_rport *rport;
3293 	struct nvme_ctrl *ctrl;
3294 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3295 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3296 	unsigned long flags;
3297 	int ret;
3298 
3299 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3300 	if (ret || !raddr.nn || !raddr.pn)
3301 		return ERR_PTR(-EINVAL);
3302 
3303 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3304 	if (ret || !laddr.nn || !laddr.pn)
3305 		return ERR_PTR(-EINVAL);
3306 
3307 	/* find the host and remote ports to connect together */
3308 	spin_lock_irqsave(&nvme_fc_lock, flags);
3309 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3310 		if (lport->localport.node_name != laddr.nn ||
3311 		    lport->localport.port_name != laddr.pn)
3312 			continue;
3313 
3314 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3315 			if (rport->remoteport.node_name != raddr.nn ||
3316 			    rport->remoteport.port_name != raddr.pn)
3317 				continue;
3318 
3319 			/* if fail to get reference fall through. Will error */
3320 			if (!nvme_fc_rport_get(rport))
3321 				break;
3322 
3323 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3324 
3325 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3326 			if (IS_ERR(ctrl))
3327 				nvme_fc_rport_put(rport);
3328 			return ctrl;
3329 		}
3330 	}
3331 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3332 
3333 	pr_warn("%s: %s - %s combination not found\n",
3334 		__func__, opts->traddr, opts->host_traddr);
3335 	return ERR_PTR(-ENOENT);
3336 }
3337 
3338 
3339 static struct nvmf_transport_ops nvme_fc_transport = {
3340 	.name		= "fc",
3341 	.module		= THIS_MODULE,
3342 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3343 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3344 	.create_ctrl	= nvme_fc_create_ctrl,
3345 };
3346 
3347 /* Arbitrary successive failures max. With lots of subsystems could be high */
3348 #define DISCOVERY_MAX_FAIL	20
3349 
3350 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3351 		struct device_attribute *attr, const char *buf, size_t count)
3352 {
3353 	unsigned long flags;
3354 	LIST_HEAD(local_disc_list);
3355 	struct nvme_fc_lport *lport;
3356 	struct nvme_fc_rport *rport;
3357 	int failcnt = 0;
3358 
3359 	spin_lock_irqsave(&nvme_fc_lock, flags);
3360 restart:
3361 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3362 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3363 			if (!nvme_fc_lport_get(lport))
3364 				continue;
3365 			if (!nvme_fc_rport_get(rport)) {
3366 				/*
3367 				 * This is a temporary condition. Upon restart
3368 				 * this rport will be gone from the list.
3369 				 *
3370 				 * Revert the lport put and retry.  Anything
3371 				 * added to the list already will be skipped (as
3372 				 * they are no longer list_empty).  Loops should
3373 				 * resume at rports that were not yet seen.
3374 				 */
3375 				nvme_fc_lport_put(lport);
3376 
3377 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3378 					goto restart;
3379 
3380 				pr_err("nvme_discovery: too many reference "
3381 				       "failures\n");
3382 				goto process_local_list;
3383 			}
3384 			if (list_empty(&rport->disc_list))
3385 				list_add_tail(&rport->disc_list,
3386 					      &local_disc_list);
3387 		}
3388 	}
3389 
3390 process_local_list:
3391 	while (!list_empty(&local_disc_list)) {
3392 		rport = list_first_entry(&local_disc_list,
3393 					 struct nvme_fc_rport, disc_list);
3394 		list_del_init(&rport->disc_list);
3395 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3396 
3397 		lport = rport->lport;
3398 		/* signal discovery. Won't hurt if it repeats */
3399 		nvme_fc_signal_discovery_scan(lport, rport);
3400 		nvme_fc_rport_put(rport);
3401 		nvme_fc_lport_put(lport);
3402 
3403 		spin_lock_irqsave(&nvme_fc_lock, flags);
3404 	}
3405 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3406 
3407 	return count;
3408 }
3409 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3410 
3411 static struct attribute *nvme_fc_attrs[] = {
3412 	&dev_attr_nvme_discovery.attr,
3413 	NULL
3414 };
3415 
3416 static struct attribute_group nvme_fc_attr_group = {
3417 	.attrs = nvme_fc_attrs,
3418 };
3419 
3420 static const struct attribute_group *nvme_fc_attr_groups[] = {
3421 	&nvme_fc_attr_group,
3422 	NULL
3423 };
3424 
3425 static struct class fc_class = {
3426 	.name = "fc",
3427 	.dev_groups = nvme_fc_attr_groups,
3428 	.owner = THIS_MODULE,
3429 };
3430 
3431 static int __init nvme_fc_init_module(void)
3432 {
3433 	int ret;
3434 
3435 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3436 	if (!nvme_fc_wq)
3437 		return -ENOMEM;
3438 
3439 	/*
3440 	 * NOTE:
3441 	 * It is expected that in the future the kernel will combine
3442 	 * the FC-isms that are currently under scsi and now being
3443 	 * added to by NVME into a new standalone FC class. The SCSI
3444 	 * and NVME protocols and their devices would be under this
3445 	 * new FC class.
3446 	 *
3447 	 * As we need something to post FC-specific udev events to,
3448 	 * specifically for nvme probe events, start by creating the
3449 	 * new device class.  When the new standalone FC class is
3450 	 * put in place, this code will move to a more generic
3451 	 * location for the class.
3452 	 */
3453 	ret = class_register(&fc_class);
3454 	if (ret) {
3455 		pr_err("couldn't register class fc\n");
3456 		goto out_destroy_wq;
3457 	}
3458 
3459 	/*
3460 	 * Create a device for the FC-centric udev events
3461 	 */
3462 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3463 				"fc_udev_device");
3464 	if (IS_ERR(fc_udev_device)) {
3465 		pr_err("couldn't create fc_udev device!\n");
3466 		ret = PTR_ERR(fc_udev_device);
3467 		goto out_destroy_class;
3468 	}
3469 
3470 	ret = nvmf_register_transport(&nvme_fc_transport);
3471 	if (ret)
3472 		goto out_destroy_device;
3473 
3474 	return 0;
3475 
3476 out_destroy_device:
3477 	device_destroy(&fc_class, MKDEV(0, 0));
3478 out_destroy_class:
3479 	class_unregister(&fc_class);
3480 out_destroy_wq:
3481 	destroy_workqueue(nvme_fc_wq);
3482 
3483 	return ret;
3484 }
3485 
3486 static void
3487 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3488 {
3489 	struct nvme_fc_ctrl *ctrl;
3490 
3491 	spin_lock(&rport->lock);
3492 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3493 		dev_warn(ctrl->ctrl.device,
3494 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3495 			ctrl->cnum);
3496 		nvme_delete_ctrl(&ctrl->ctrl);
3497 	}
3498 	spin_unlock(&rport->lock);
3499 }
3500 
3501 static void
3502 nvme_fc_cleanup_for_unload(void)
3503 {
3504 	struct nvme_fc_lport *lport;
3505 	struct nvme_fc_rport *rport;
3506 
3507 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3508 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3509 			nvme_fc_delete_controllers(rport);
3510 		}
3511 	}
3512 }
3513 
3514 static void __exit nvme_fc_exit_module(void)
3515 {
3516 	unsigned long flags;
3517 	bool need_cleanup = false;
3518 
3519 	spin_lock_irqsave(&nvme_fc_lock, flags);
3520 	nvme_fc_waiting_to_unload = true;
3521 	if (!list_empty(&nvme_fc_lport_list)) {
3522 		need_cleanup = true;
3523 		nvme_fc_cleanup_for_unload();
3524 	}
3525 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3526 	if (need_cleanup) {
3527 		pr_info("%s: waiting for ctlr deletes\n", __func__);
3528 		wait_for_completion(&nvme_fc_unload_proceed);
3529 		pr_info("%s: ctrl deletes complete\n", __func__);
3530 	}
3531 
3532 	nvmf_unregister_transport(&nvme_fc_transport);
3533 
3534 	ida_destroy(&nvme_fc_local_port_cnt);
3535 	ida_destroy(&nvme_fc_ctrl_cnt);
3536 
3537 	device_destroy(&fc_class, MKDEV(0, 0));
3538 	class_unregister(&fc_class);
3539 	destroy_workqueue(nvme_fc_wq);
3540 }
3541 
3542 module_init(nvme_fc_init_module);
3543 module_exit(nvme_fc_exit_module);
3544 
3545 MODULE_LICENSE("GPL v2");
3546