1 /* 2 * Copyright (c) 2016 Avago Technologies. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful. 9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, 10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A 11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO 12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. 13 * See the GNU General Public License for more details, a copy of which 14 * can be found in the file COPYING included with this package 15 * 16 */ 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 #include <linux/module.h> 19 #include <linux/parser.h> 20 #include <uapi/scsi/fc/fc_fs.h> 21 #include <uapi/scsi/fc/fc_els.h> 22 #include <linux/delay.h> 23 24 #include "nvme.h" 25 #include "fabrics.h" 26 #include <linux/nvme-fc-driver.h> 27 #include <linux/nvme-fc.h> 28 29 30 /* *************************** Data Structures/Defines ****************** */ 31 32 33 enum nvme_fc_queue_flags { 34 NVME_FC_Q_CONNECTED = 0, 35 NVME_FC_Q_LIVE, 36 }; 37 38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 39 40 struct nvme_fc_queue { 41 struct nvme_fc_ctrl *ctrl; 42 struct device *dev; 43 struct blk_mq_hw_ctx *hctx; 44 void *lldd_handle; 45 size_t cmnd_capsule_len; 46 u32 qnum; 47 u32 rqcnt; 48 u32 seqno; 49 50 u64 connection_id; 51 atomic_t csn; 52 53 unsigned long flags; 54 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 55 56 enum nvme_fcop_flags { 57 FCOP_FLAGS_TERMIO = (1 << 0), 58 FCOP_FLAGS_RELEASED = (1 << 1), 59 FCOP_FLAGS_COMPLETE = (1 << 2), 60 FCOP_FLAGS_AEN = (1 << 3), 61 }; 62 63 struct nvmefc_ls_req_op { 64 struct nvmefc_ls_req ls_req; 65 66 struct nvme_fc_rport *rport; 67 struct nvme_fc_queue *queue; 68 struct request *rq; 69 u32 flags; 70 71 int ls_error; 72 struct completion ls_done; 73 struct list_head lsreq_list; /* rport->ls_req_list */ 74 bool req_queued; 75 }; 76 77 enum nvme_fcpop_state { 78 FCPOP_STATE_UNINIT = 0, 79 FCPOP_STATE_IDLE = 1, 80 FCPOP_STATE_ACTIVE = 2, 81 FCPOP_STATE_ABORTED = 3, 82 FCPOP_STATE_COMPLETE = 4, 83 }; 84 85 struct nvme_fc_fcp_op { 86 struct nvme_request nreq; /* 87 * nvme/host/core.c 88 * requires this to be 89 * the 1st element in the 90 * private structure 91 * associated with the 92 * request. 93 */ 94 struct nvmefc_fcp_req fcp_req; 95 96 struct nvme_fc_ctrl *ctrl; 97 struct nvme_fc_queue *queue; 98 struct request *rq; 99 100 atomic_t state; 101 u32 flags; 102 u32 rqno; 103 u32 nents; 104 105 struct nvme_fc_cmd_iu cmd_iu; 106 struct nvme_fc_ersp_iu rsp_iu; 107 }; 108 109 struct nvme_fc_lport { 110 struct nvme_fc_local_port localport; 111 112 struct ida endp_cnt; 113 struct list_head port_list; /* nvme_fc_port_list */ 114 struct list_head endp_list; 115 struct device *dev; /* physical device for dma */ 116 struct nvme_fc_port_template *ops; 117 struct kref ref; 118 atomic_t act_rport_cnt; 119 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 120 121 struct nvme_fc_rport { 122 struct nvme_fc_remote_port remoteport; 123 124 struct list_head endp_list; /* for lport->endp_list */ 125 struct list_head ctrl_list; 126 struct list_head ls_req_list; 127 struct device *dev; /* physical device for dma */ 128 struct nvme_fc_lport *lport; 129 spinlock_t lock; 130 struct kref ref; 131 atomic_t act_ctrl_cnt; 132 unsigned long dev_loss_end; 133 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 134 135 enum nvme_fcctrl_flags { 136 FCCTRL_TERMIO = (1 << 0), 137 }; 138 139 struct nvme_fc_ctrl { 140 spinlock_t lock; 141 struct nvme_fc_queue *queues; 142 struct device *dev; 143 struct nvme_fc_lport *lport; 144 struct nvme_fc_rport *rport; 145 u32 cnum; 146 147 bool assoc_active; 148 u64 association_id; 149 150 struct list_head ctrl_list; /* rport->ctrl_list */ 151 152 struct blk_mq_tag_set admin_tag_set; 153 struct blk_mq_tag_set tag_set; 154 155 struct delayed_work connect_work; 156 157 struct kref ref; 158 u32 flags; 159 u32 iocnt; 160 wait_queue_head_t ioabort_wait; 161 162 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 163 164 struct nvme_ctrl ctrl; 165 }; 166 167 static inline struct nvme_fc_ctrl * 168 to_fc_ctrl(struct nvme_ctrl *ctrl) 169 { 170 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 171 } 172 173 static inline struct nvme_fc_lport * 174 localport_to_lport(struct nvme_fc_local_port *portptr) 175 { 176 return container_of(portptr, struct nvme_fc_lport, localport); 177 } 178 179 static inline struct nvme_fc_rport * 180 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 181 { 182 return container_of(portptr, struct nvme_fc_rport, remoteport); 183 } 184 185 static inline struct nvmefc_ls_req_op * 186 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 187 { 188 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 189 } 190 191 static inline struct nvme_fc_fcp_op * 192 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 193 { 194 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 195 } 196 197 198 199 /* *************************** Globals **************************** */ 200 201 202 static DEFINE_SPINLOCK(nvme_fc_lock); 203 204 static LIST_HEAD(nvme_fc_lport_list); 205 static DEFINE_IDA(nvme_fc_local_port_cnt); 206 static DEFINE_IDA(nvme_fc_ctrl_cnt); 207 208 209 210 /* 211 * These items are short-term. They will eventually be moved into 212 * a generic FC class. See comments in module init. 213 */ 214 static struct class *fc_class; 215 static struct device *fc_udev_device; 216 217 218 /* *********************** FC-NVME Port Management ************************ */ 219 220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 221 struct nvme_fc_queue *, unsigned int); 222 223 static void 224 nvme_fc_free_lport(struct kref *ref) 225 { 226 struct nvme_fc_lport *lport = 227 container_of(ref, struct nvme_fc_lport, ref); 228 unsigned long flags; 229 230 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 231 WARN_ON(!list_empty(&lport->endp_list)); 232 233 /* remove from transport list */ 234 spin_lock_irqsave(&nvme_fc_lock, flags); 235 list_del(&lport->port_list); 236 spin_unlock_irqrestore(&nvme_fc_lock, flags); 237 238 ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num); 239 ida_destroy(&lport->endp_cnt); 240 241 put_device(lport->dev); 242 243 kfree(lport); 244 } 245 246 static void 247 nvme_fc_lport_put(struct nvme_fc_lport *lport) 248 { 249 kref_put(&lport->ref, nvme_fc_free_lport); 250 } 251 252 static int 253 nvme_fc_lport_get(struct nvme_fc_lport *lport) 254 { 255 return kref_get_unless_zero(&lport->ref); 256 } 257 258 259 static struct nvme_fc_lport * 260 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 261 struct nvme_fc_port_template *ops, 262 struct device *dev) 263 { 264 struct nvme_fc_lport *lport; 265 unsigned long flags; 266 267 spin_lock_irqsave(&nvme_fc_lock, flags); 268 269 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 270 if (lport->localport.node_name != pinfo->node_name || 271 lport->localport.port_name != pinfo->port_name) 272 continue; 273 274 if (lport->dev != dev) { 275 lport = ERR_PTR(-EXDEV); 276 goto out_done; 277 } 278 279 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 280 lport = ERR_PTR(-EEXIST); 281 goto out_done; 282 } 283 284 if (!nvme_fc_lport_get(lport)) { 285 /* 286 * fails if ref cnt already 0. If so, 287 * act as if lport already deleted 288 */ 289 lport = NULL; 290 goto out_done; 291 } 292 293 /* resume the lport */ 294 295 lport->ops = ops; 296 lport->localport.port_role = pinfo->port_role; 297 lport->localport.port_id = pinfo->port_id; 298 lport->localport.port_state = FC_OBJSTATE_ONLINE; 299 300 spin_unlock_irqrestore(&nvme_fc_lock, flags); 301 302 return lport; 303 } 304 305 lport = NULL; 306 307 out_done: 308 spin_unlock_irqrestore(&nvme_fc_lock, flags); 309 310 return lport; 311 } 312 313 /** 314 * nvme_fc_register_localport - transport entry point called by an 315 * LLDD to register the existence of a NVME 316 * host FC port. 317 * @pinfo: pointer to information about the port to be registered 318 * @template: LLDD entrypoints and operational parameters for the port 319 * @dev: physical hardware device node port corresponds to. Will be 320 * used for DMA mappings 321 * @lport_p: pointer to a local port pointer. Upon success, the routine 322 * will allocate a nvme_fc_local_port structure and place its 323 * address in the local port pointer. Upon failure, local port 324 * pointer will be set to 0. 325 * 326 * Returns: 327 * a completion status. Must be 0 upon success; a negative errno 328 * (ex: -ENXIO) upon failure. 329 */ 330 int 331 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 332 struct nvme_fc_port_template *template, 333 struct device *dev, 334 struct nvme_fc_local_port **portptr) 335 { 336 struct nvme_fc_lport *newrec; 337 unsigned long flags; 338 int ret, idx; 339 340 if (!template->localport_delete || !template->remoteport_delete || 341 !template->ls_req || !template->fcp_io || 342 !template->ls_abort || !template->fcp_abort || 343 !template->max_hw_queues || !template->max_sgl_segments || 344 !template->max_dif_sgl_segments || !template->dma_boundary) { 345 ret = -EINVAL; 346 goto out_reghost_failed; 347 } 348 349 /* 350 * look to see if there is already a localport that had been 351 * deregistered and in the process of waiting for all the 352 * references to fully be removed. If the references haven't 353 * expired, we can simply re-enable the localport. Remoteports 354 * and controller reconnections should resume naturally. 355 */ 356 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 357 358 /* found an lport, but something about its state is bad */ 359 if (IS_ERR(newrec)) { 360 ret = PTR_ERR(newrec); 361 goto out_reghost_failed; 362 363 /* found existing lport, which was resumed */ 364 } else if (newrec) { 365 *portptr = &newrec->localport; 366 return 0; 367 } 368 369 /* nothing found - allocate a new localport struct */ 370 371 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 372 GFP_KERNEL); 373 if (!newrec) { 374 ret = -ENOMEM; 375 goto out_reghost_failed; 376 } 377 378 idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL); 379 if (idx < 0) { 380 ret = -ENOSPC; 381 goto out_fail_kfree; 382 } 383 384 if (!get_device(dev) && dev) { 385 ret = -ENODEV; 386 goto out_ida_put; 387 } 388 389 INIT_LIST_HEAD(&newrec->port_list); 390 INIT_LIST_HEAD(&newrec->endp_list); 391 kref_init(&newrec->ref); 392 atomic_set(&newrec->act_rport_cnt, 0); 393 newrec->ops = template; 394 newrec->dev = dev; 395 ida_init(&newrec->endp_cnt); 396 newrec->localport.private = &newrec[1]; 397 newrec->localport.node_name = pinfo->node_name; 398 newrec->localport.port_name = pinfo->port_name; 399 newrec->localport.port_role = pinfo->port_role; 400 newrec->localport.port_id = pinfo->port_id; 401 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 402 newrec->localport.port_num = idx; 403 404 spin_lock_irqsave(&nvme_fc_lock, flags); 405 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 406 spin_unlock_irqrestore(&nvme_fc_lock, flags); 407 408 if (dev) 409 dma_set_seg_boundary(dev, template->dma_boundary); 410 411 *portptr = &newrec->localport; 412 return 0; 413 414 out_ida_put: 415 ida_simple_remove(&nvme_fc_local_port_cnt, idx); 416 out_fail_kfree: 417 kfree(newrec); 418 out_reghost_failed: 419 *portptr = NULL; 420 421 return ret; 422 } 423 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 424 425 /** 426 * nvme_fc_unregister_localport - transport entry point called by an 427 * LLDD to deregister/remove a previously 428 * registered a NVME host FC port. 429 * @localport: pointer to the (registered) local port that is to be 430 * deregistered. 431 * 432 * Returns: 433 * a completion status. Must be 0 upon success; a negative errno 434 * (ex: -ENXIO) upon failure. 435 */ 436 int 437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 438 { 439 struct nvme_fc_lport *lport = localport_to_lport(portptr); 440 unsigned long flags; 441 442 if (!portptr) 443 return -EINVAL; 444 445 spin_lock_irqsave(&nvme_fc_lock, flags); 446 447 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 448 spin_unlock_irqrestore(&nvme_fc_lock, flags); 449 return -EINVAL; 450 } 451 portptr->port_state = FC_OBJSTATE_DELETED; 452 453 spin_unlock_irqrestore(&nvme_fc_lock, flags); 454 455 if (atomic_read(&lport->act_rport_cnt) == 0) 456 lport->ops->localport_delete(&lport->localport); 457 458 nvme_fc_lport_put(lport); 459 460 return 0; 461 } 462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 463 464 /* 465 * TRADDR strings, per FC-NVME are fixed format: 466 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 467 * udev event will only differ by prefix of what field is 468 * being specified: 469 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 470 * 19 + 43 + null_fudge = 64 characters 471 */ 472 #define FCNVME_TRADDR_LENGTH 64 473 474 static void 475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 476 struct nvme_fc_rport *rport) 477 { 478 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 479 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 480 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 481 482 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 483 return; 484 485 snprintf(hostaddr, sizeof(hostaddr), 486 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 487 lport->localport.node_name, lport->localport.port_name); 488 snprintf(tgtaddr, sizeof(tgtaddr), 489 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 490 rport->remoteport.node_name, rport->remoteport.port_name); 491 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 492 } 493 494 static void 495 nvme_fc_free_rport(struct kref *ref) 496 { 497 struct nvme_fc_rport *rport = 498 container_of(ref, struct nvme_fc_rport, ref); 499 struct nvme_fc_lport *lport = 500 localport_to_lport(rport->remoteport.localport); 501 unsigned long flags; 502 503 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 504 WARN_ON(!list_empty(&rport->ctrl_list)); 505 506 /* remove from lport list */ 507 spin_lock_irqsave(&nvme_fc_lock, flags); 508 list_del(&rport->endp_list); 509 spin_unlock_irqrestore(&nvme_fc_lock, flags); 510 511 ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num); 512 513 kfree(rport); 514 515 nvme_fc_lport_put(lport); 516 } 517 518 static void 519 nvme_fc_rport_put(struct nvme_fc_rport *rport) 520 { 521 kref_put(&rport->ref, nvme_fc_free_rport); 522 } 523 524 static int 525 nvme_fc_rport_get(struct nvme_fc_rport *rport) 526 { 527 return kref_get_unless_zero(&rport->ref); 528 } 529 530 static void 531 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 532 { 533 switch (ctrl->ctrl.state) { 534 case NVME_CTRL_NEW: 535 case NVME_CTRL_RECONNECTING: 536 /* 537 * As all reconnects were suppressed, schedule a 538 * connect. 539 */ 540 dev_info(ctrl->ctrl.device, 541 "NVME-FC{%d}: connectivity re-established. " 542 "Attempting reconnect\n", ctrl->cnum); 543 544 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 545 break; 546 547 case NVME_CTRL_RESETTING: 548 /* 549 * Controller is already in the process of terminating the 550 * association. No need to do anything further. The reconnect 551 * step will naturally occur after the reset completes. 552 */ 553 break; 554 555 default: 556 /* no action to take - let it delete */ 557 break; 558 } 559 } 560 561 static struct nvme_fc_rport * 562 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 563 struct nvme_fc_port_info *pinfo) 564 { 565 struct nvme_fc_rport *rport; 566 struct nvme_fc_ctrl *ctrl; 567 unsigned long flags; 568 569 spin_lock_irqsave(&nvme_fc_lock, flags); 570 571 list_for_each_entry(rport, &lport->endp_list, endp_list) { 572 if (rport->remoteport.node_name != pinfo->node_name || 573 rport->remoteport.port_name != pinfo->port_name) 574 continue; 575 576 if (!nvme_fc_rport_get(rport)) { 577 rport = ERR_PTR(-ENOLCK); 578 goto out_done; 579 } 580 581 spin_unlock_irqrestore(&nvme_fc_lock, flags); 582 583 spin_lock_irqsave(&rport->lock, flags); 584 585 /* has it been unregistered */ 586 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 587 /* means lldd called us twice */ 588 spin_unlock_irqrestore(&rport->lock, flags); 589 nvme_fc_rport_put(rport); 590 return ERR_PTR(-ESTALE); 591 } 592 593 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 594 rport->dev_loss_end = 0; 595 596 /* 597 * kick off a reconnect attempt on all associations to the 598 * remote port. A successful reconnects will resume i/o. 599 */ 600 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 601 nvme_fc_resume_controller(ctrl); 602 603 spin_unlock_irqrestore(&rport->lock, flags); 604 605 return rport; 606 } 607 608 rport = NULL; 609 610 out_done: 611 spin_unlock_irqrestore(&nvme_fc_lock, flags); 612 613 return rport; 614 } 615 616 static inline void 617 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 618 struct nvme_fc_port_info *pinfo) 619 { 620 if (pinfo->dev_loss_tmo) 621 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 622 else 623 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 624 } 625 626 /** 627 * nvme_fc_register_remoteport - transport entry point called by an 628 * LLDD to register the existence of a NVME 629 * subsystem FC port on its fabric. 630 * @localport: pointer to the (registered) local port that the remote 631 * subsystem port is connected to. 632 * @pinfo: pointer to information about the port to be registered 633 * @rport_p: pointer to a remote port pointer. Upon success, the routine 634 * will allocate a nvme_fc_remote_port structure and place its 635 * address in the remote port pointer. Upon failure, remote port 636 * pointer will be set to 0. 637 * 638 * Returns: 639 * a completion status. Must be 0 upon success; a negative errno 640 * (ex: -ENXIO) upon failure. 641 */ 642 int 643 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 644 struct nvme_fc_port_info *pinfo, 645 struct nvme_fc_remote_port **portptr) 646 { 647 struct nvme_fc_lport *lport = localport_to_lport(localport); 648 struct nvme_fc_rport *newrec; 649 unsigned long flags; 650 int ret, idx; 651 652 if (!nvme_fc_lport_get(lport)) { 653 ret = -ESHUTDOWN; 654 goto out_reghost_failed; 655 } 656 657 /* 658 * look to see if there is already a remoteport that is waiting 659 * for a reconnect (within dev_loss_tmo) with the same WWN's. 660 * If so, transition to it and reconnect. 661 */ 662 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 663 664 /* found an rport, but something about its state is bad */ 665 if (IS_ERR(newrec)) { 666 ret = PTR_ERR(newrec); 667 goto out_lport_put; 668 669 /* found existing rport, which was resumed */ 670 } else if (newrec) { 671 nvme_fc_lport_put(lport); 672 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 673 nvme_fc_signal_discovery_scan(lport, newrec); 674 *portptr = &newrec->remoteport; 675 return 0; 676 } 677 678 /* nothing found - allocate a new remoteport struct */ 679 680 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 681 GFP_KERNEL); 682 if (!newrec) { 683 ret = -ENOMEM; 684 goto out_lport_put; 685 } 686 687 idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL); 688 if (idx < 0) { 689 ret = -ENOSPC; 690 goto out_kfree_rport; 691 } 692 693 INIT_LIST_HEAD(&newrec->endp_list); 694 INIT_LIST_HEAD(&newrec->ctrl_list); 695 INIT_LIST_HEAD(&newrec->ls_req_list); 696 kref_init(&newrec->ref); 697 atomic_set(&newrec->act_ctrl_cnt, 0); 698 spin_lock_init(&newrec->lock); 699 newrec->remoteport.localport = &lport->localport; 700 newrec->dev = lport->dev; 701 newrec->lport = lport; 702 newrec->remoteport.private = &newrec[1]; 703 newrec->remoteport.port_role = pinfo->port_role; 704 newrec->remoteport.node_name = pinfo->node_name; 705 newrec->remoteport.port_name = pinfo->port_name; 706 newrec->remoteport.port_id = pinfo->port_id; 707 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 708 newrec->remoteport.port_num = idx; 709 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 710 711 spin_lock_irqsave(&nvme_fc_lock, flags); 712 list_add_tail(&newrec->endp_list, &lport->endp_list); 713 spin_unlock_irqrestore(&nvme_fc_lock, flags); 714 715 nvme_fc_signal_discovery_scan(lport, newrec); 716 717 *portptr = &newrec->remoteport; 718 return 0; 719 720 out_kfree_rport: 721 kfree(newrec); 722 out_lport_put: 723 nvme_fc_lport_put(lport); 724 out_reghost_failed: 725 *portptr = NULL; 726 return ret; 727 } 728 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 729 730 static int 731 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 732 { 733 struct nvmefc_ls_req_op *lsop; 734 unsigned long flags; 735 736 restart: 737 spin_lock_irqsave(&rport->lock, flags); 738 739 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 740 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 741 lsop->flags |= FCOP_FLAGS_TERMIO; 742 spin_unlock_irqrestore(&rport->lock, flags); 743 rport->lport->ops->ls_abort(&rport->lport->localport, 744 &rport->remoteport, 745 &lsop->ls_req); 746 goto restart; 747 } 748 } 749 spin_unlock_irqrestore(&rport->lock, flags); 750 751 return 0; 752 } 753 754 static void 755 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 756 { 757 dev_info(ctrl->ctrl.device, 758 "NVME-FC{%d}: controller connectivity lost. Awaiting " 759 "Reconnect", ctrl->cnum); 760 761 switch (ctrl->ctrl.state) { 762 case NVME_CTRL_NEW: 763 case NVME_CTRL_LIVE: 764 /* 765 * Schedule a controller reset. The reset will terminate the 766 * association and schedule the reconnect timer. Reconnects 767 * will be attempted until either the ctlr_loss_tmo 768 * (max_retries * connect_delay) expires or the remoteport's 769 * dev_loss_tmo expires. 770 */ 771 if (nvme_reset_ctrl(&ctrl->ctrl)) { 772 dev_warn(ctrl->ctrl.device, 773 "NVME-FC{%d}: Couldn't schedule reset. " 774 "Deleting controller.\n", 775 ctrl->cnum); 776 nvme_delete_ctrl(&ctrl->ctrl); 777 } 778 break; 779 780 case NVME_CTRL_RECONNECTING: 781 /* 782 * The association has already been terminated and the 783 * controller is attempting reconnects. No need to do anything 784 * futher. Reconnects will be attempted until either the 785 * ctlr_loss_tmo (max_retries * connect_delay) expires or the 786 * remoteport's dev_loss_tmo expires. 787 */ 788 break; 789 790 case NVME_CTRL_RESETTING: 791 /* 792 * Controller is already in the process of terminating the 793 * association. No need to do anything further. The reconnect 794 * step will kick in naturally after the association is 795 * terminated. 796 */ 797 break; 798 799 case NVME_CTRL_DELETING: 800 default: 801 /* no action to take - let it delete */ 802 break; 803 } 804 } 805 806 /** 807 * nvme_fc_unregister_remoteport - transport entry point called by an 808 * LLDD to deregister/remove a previously 809 * registered a NVME subsystem FC port. 810 * @remoteport: pointer to the (registered) remote port that is to be 811 * deregistered. 812 * 813 * Returns: 814 * a completion status. Must be 0 upon success; a negative errno 815 * (ex: -ENXIO) upon failure. 816 */ 817 int 818 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 819 { 820 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 821 struct nvme_fc_ctrl *ctrl; 822 unsigned long flags; 823 824 if (!portptr) 825 return -EINVAL; 826 827 spin_lock_irqsave(&rport->lock, flags); 828 829 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 830 spin_unlock_irqrestore(&rport->lock, flags); 831 return -EINVAL; 832 } 833 portptr->port_state = FC_OBJSTATE_DELETED; 834 835 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 836 837 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 838 /* if dev_loss_tmo==0, dev loss is immediate */ 839 if (!portptr->dev_loss_tmo) { 840 dev_warn(ctrl->ctrl.device, 841 "NVME-FC{%d}: controller connectivity lost. " 842 "Deleting controller.\n", 843 ctrl->cnum); 844 nvme_delete_ctrl(&ctrl->ctrl); 845 } else 846 nvme_fc_ctrl_connectivity_loss(ctrl); 847 } 848 849 spin_unlock_irqrestore(&rport->lock, flags); 850 851 nvme_fc_abort_lsops(rport); 852 853 if (atomic_read(&rport->act_ctrl_cnt) == 0) 854 rport->lport->ops->remoteport_delete(portptr); 855 856 /* 857 * release the reference, which will allow, if all controllers 858 * go away, which should only occur after dev_loss_tmo occurs, 859 * for the rport to be torn down. 860 */ 861 nvme_fc_rport_put(rport); 862 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 866 867 /** 868 * nvme_fc_rescan_remoteport - transport entry point called by an 869 * LLDD to request a nvme device rescan. 870 * @remoteport: pointer to the (registered) remote port that is to be 871 * rescanned. 872 * 873 * Returns: N/A 874 */ 875 void 876 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 877 { 878 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 879 880 nvme_fc_signal_discovery_scan(rport->lport, rport); 881 } 882 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 883 884 int 885 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 886 u32 dev_loss_tmo) 887 { 888 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 889 unsigned long flags; 890 891 spin_lock_irqsave(&rport->lock, flags); 892 893 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 894 spin_unlock_irqrestore(&rport->lock, flags); 895 return -EINVAL; 896 } 897 898 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 899 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 900 901 spin_unlock_irqrestore(&rport->lock, flags); 902 903 return 0; 904 } 905 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 906 907 908 /* *********************** FC-NVME DMA Handling **************************** */ 909 910 /* 911 * The fcloop device passes in a NULL device pointer. Real LLD's will 912 * pass in a valid device pointer. If NULL is passed to the dma mapping 913 * routines, depending on the platform, it may or may not succeed, and 914 * may crash. 915 * 916 * As such: 917 * Wrapper all the dma routines and check the dev pointer. 918 * 919 * If simple mappings (return just a dma address, we'll noop them, 920 * returning a dma address of 0. 921 * 922 * On more complex mappings (dma_map_sg), a pseudo routine fills 923 * in the scatter list, setting all dma addresses to 0. 924 */ 925 926 static inline dma_addr_t 927 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 928 enum dma_data_direction dir) 929 { 930 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 931 } 932 933 static inline int 934 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 935 { 936 return dev ? dma_mapping_error(dev, dma_addr) : 0; 937 } 938 939 static inline void 940 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 941 enum dma_data_direction dir) 942 { 943 if (dev) 944 dma_unmap_single(dev, addr, size, dir); 945 } 946 947 static inline void 948 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 949 enum dma_data_direction dir) 950 { 951 if (dev) 952 dma_sync_single_for_cpu(dev, addr, size, dir); 953 } 954 955 static inline void 956 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 957 enum dma_data_direction dir) 958 { 959 if (dev) 960 dma_sync_single_for_device(dev, addr, size, dir); 961 } 962 963 /* pseudo dma_map_sg call */ 964 static int 965 fc_map_sg(struct scatterlist *sg, int nents) 966 { 967 struct scatterlist *s; 968 int i; 969 970 WARN_ON(nents == 0 || sg[0].length == 0); 971 972 for_each_sg(sg, s, nents, i) { 973 s->dma_address = 0L; 974 #ifdef CONFIG_NEED_SG_DMA_LENGTH 975 s->dma_length = s->length; 976 #endif 977 } 978 return nents; 979 } 980 981 static inline int 982 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 983 enum dma_data_direction dir) 984 { 985 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 986 } 987 988 static inline void 989 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 990 enum dma_data_direction dir) 991 { 992 if (dev) 993 dma_unmap_sg(dev, sg, nents, dir); 994 } 995 996 /* *********************** FC-NVME LS Handling **************************** */ 997 998 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 999 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 1000 1001 1002 static void 1003 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 1004 { 1005 struct nvme_fc_rport *rport = lsop->rport; 1006 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1007 unsigned long flags; 1008 1009 spin_lock_irqsave(&rport->lock, flags); 1010 1011 if (!lsop->req_queued) { 1012 spin_unlock_irqrestore(&rport->lock, flags); 1013 return; 1014 } 1015 1016 list_del(&lsop->lsreq_list); 1017 1018 lsop->req_queued = false; 1019 1020 spin_unlock_irqrestore(&rport->lock, flags); 1021 1022 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1023 (lsreq->rqstlen + lsreq->rsplen), 1024 DMA_BIDIRECTIONAL); 1025 1026 nvme_fc_rport_put(rport); 1027 } 1028 1029 static int 1030 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1031 struct nvmefc_ls_req_op *lsop, 1032 void (*done)(struct nvmefc_ls_req *req, int status)) 1033 { 1034 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1035 unsigned long flags; 1036 int ret = 0; 1037 1038 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1039 return -ECONNREFUSED; 1040 1041 if (!nvme_fc_rport_get(rport)) 1042 return -ESHUTDOWN; 1043 1044 lsreq->done = done; 1045 lsop->rport = rport; 1046 lsop->req_queued = false; 1047 INIT_LIST_HEAD(&lsop->lsreq_list); 1048 init_completion(&lsop->ls_done); 1049 1050 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1051 lsreq->rqstlen + lsreq->rsplen, 1052 DMA_BIDIRECTIONAL); 1053 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1054 ret = -EFAULT; 1055 goto out_putrport; 1056 } 1057 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1058 1059 spin_lock_irqsave(&rport->lock, flags); 1060 1061 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1062 1063 lsop->req_queued = true; 1064 1065 spin_unlock_irqrestore(&rport->lock, flags); 1066 1067 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1068 &rport->remoteport, lsreq); 1069 if (ret) 1070 goto out_unlink; 1071 1072 return 0; 1073 1074 out_unlink: 1075 lsop->ls_error = ret; 1076 spin_lock_irqsave(&rport->lock, flags); 1077 lsop->req_queued = false; 1078 list_del(&lsop->lsreq_list); 1079 spin_unlock_irqrestore(&rport->lock, flags); 1080 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1081 (lsreq->rqstlen + lsreq->rsplen), 1082 DMA_BIDIRECTIONAL); 1083 out_putrport: 1084 nvme_fc_rport_put(rport); 1085 1086 return ret; 1087 } 1088 1089 static void 1090 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1091 { 1092 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1093 1094 lsop->ls_error = status; 1095 complete(&lsop->ls_done); 1096 } 1097 1098 static int 1099 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1100 { 1101 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1102 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1103 int ret; 1104 1105 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1106 1107 if (!ret) { 1108 /* 1109 * No timeout/not interruptible as we need the struct 1110 * to exist until the lldd calls us back. Thus mandate 1111 * wait until driver calls back. lldd responsible for 1112 * the timeout action 1113 */ 1114 wait_for_completion(&lsop->ls_done); 1115 1116 __nvme_fc_finish_ls_req(lsop); 1117 1118 ret = lsop->ls_error; 1119 } 1120 1121 if (ret) 1122 return ret; 1123 1124 /* ACC or RJT payload ? */ 1125 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1126 return -ENXIO; 1127 1128 return 0; 1129 } 1130 1131 static int 1132 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1133 struct nvmefc_ls_req_op *lsop, 1134 void (*done)(struct nvmefc_ls_req *req, int status)) 1135 { 1136 /* don't wait for completion */ 1137 1138 return __nvme_fc_send_ls_req(rport, lsop, done); 1139 } 1140 1141 /* Validation Error indexes into the string table below */ 1142 enum { 1143 VERR_NO_ERROR = 0, 1144 VERR_LSACC = 1, 1145 VERR_LSDESC_RQST = 2, 1146 VERR_LSDESC_RQST_LEN = 3, 1147 VERR_ASSOC_ID = 4, 1148 VERR_ASSOC_ID_LEN = 5, 1149 VERR_CONN_ID = 6, 1150 VERR_CONN_ID_LEN = 7, 1151 VERR_CR_ASSOC = 8, 1152 VERR_CR_ASSOC_ACC_LEN = 9, 1153 VERR_CR_CONN = 10, 1154 VERR_CR_CONN_ACC_LEN = 11, 1155 VERR_DISCONN = 12, 1156 VERR_DISCONN_ACC_LEN = 13, 1157 }; 1158 1159 static char *validation_errors[] = { 1160 "OK", 1161 "Not LS_ACC", 1162 "Not LSDESC_RQST", 1163 "Bad LSDESC_RQST Length", 1164 "Not Association ID", 1165 "Bad Association ID Length", 1166 "Not Connection ID", 1167 "Bad Connection ID Length", 1168 "Not CR_ASSOC Rqst", 1169 "Bad CR_ASSOC ACC Length", 1170 "Not CR_CONN Rqst", 1171 "Bad CR_CONN ACC Length", 1172 "Not Disconnect Rqst", 1173 "Bad Disconnect ACC Length", 1174 }; 1175 1176 static int 1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1178 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1179 { 1180 struct nvmefc_ls_req_op *lsop; 1181 struct nvmefc_ls_req *lsreq; 1182 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1183 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1184 int ret, fcret = 0; 1185 1186 lsop = kzalloc((sizeof(*lsop) + 1187 ctrl->lport->ops->lsrqst_priv_sz + 1188 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL); 1189 if (!lsop) { 1190 ret = -ENOMEM; 1191 goto out_no_memory; 1192 } 1193 lsreq = &lsop->ls_req; 1194 1195 lsreq->private = (void *)&lsop[1]; 1196 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *) 1197 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1198 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1199 1200 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1201 assoc_rqst->desc_list_len = 1202 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1203 1204 assoc_rqst->assoc_cmd.desc_tag = 1205 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1206 assoc_rqst->assoc_cmd.desc_len = 1207 fcnvme_lsdesc_len( 1208 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1209 1210 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1211 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize); 1212 /* Linux supports only Dynamic controllers */ 1213 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1214 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1215 strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1216 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE)); 1217 strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1218 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE)); 1219 1220 lsop->queue = queue; 1221 lsreq->rqstaddr = assoc_rqst; 1222 lsreq->rqstlen = sizeof(*assoc_rqst); 1223 lsreq->rspaddr = assoc_acc; 1224 lsreq->rsplen = sizeof(*assoc_acc); 1225 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1226 1227 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1228 if (ret) 1229 goto out_free_buffer; 1230 1231 /* process connect LS completion */ 1232 1233 /* validate the ACC response */ 1234 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1235 fcret = VERR_LSACC; 1236 else if (assoc_acc->hdr.desc_list_len != 1237 fcnvme_lsdesc_len( 1238 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1239 fcret = VERR_CR_ASSOC_ACC_LEN; 1240 else if (assoc_acc->hdr.rqst.desc_tag != 1241 cpu_to_be32(FCNVME_LSDESC_RQST)) 1242 fcret = VERR_LSDESC_RQST; 1243 else if (assoc_acc->hdr.rqst.desc_len != 1244 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1245 fcret = VERR_LSDESC_RQST_LEN; 1246 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1247 fcret = VERR_CR_ASSOC; 1248 else if (assoc_acc->associd.desc_tag != 1249 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1250 fcret = VERR_ASSOC_ID; 1251 else if (assoc_acc->associd.desc_len != 1252 fcnvme_lsdesc_len( 1253 sizeof(struct fcnvme_lsdesc_assoc_id))) 1254 fcret = VERR_ASSOC_ID_LEN; 1255 else if (assoc_acc->connectid.desc_tag != 1256 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1257 fcret = VERR_CONN_ID; 1258 else if (assoc_acc->connectid.desc_len != 1259 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1260 fcret = VERR_CONN_ID_LEN; 1261 1262 if (fcret) { 1263 ret = -EBADF; 1264 dev_err(ctrl->dev, 1265 "q %d connect failed: %s\n", 1266 queue->qnum, validation_errors[fcret]); 1267 } else { 1268 ctrl->association_id = 1269 be64_to_cpu(assoc_acc->associd.association_id); 1270 queue->connection_id = 1271 be64_to_cpu(assoc_acc->connectid.connection_id); 1272 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1273 } 1274 1275 out_free_buffer: 1276 kfree(lsop); 1277 out_no_memory: 1278 if (ret) 1279 dev_err(ctrl->dev, 1280 "queue %d connect admin queue failed (%d).\n", 1281 queue->qnum, ret); 1282 return ret; 1283 } 1284 1285 static int 1286 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1287 u16 qsize, u16 ersp_ratio) 1288 { 1289 struct nvmefc_ls_req_op *lsop; 1290 struct nvmefc_ls_req *lsreq; 1291 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1292 struct fcnvme_ls_cr_conn_acc *conn_acc; 1293 int ret, fcret = 0; 1294 1295 lsop = kzalloc((sizeof(*lsop) + 1296 ctrl->lport->ops->lsrqst_priv_sz + 1297 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL); 1298 if (!lsop) { 1299 ret = -ENOMEM; 1300 goto out_no_memory; 1301 } 1302 lsreq = &lsop->ls_req; 1303 1304 lsreq->private = (void *)&lsop[1]; 1305 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *) 1306 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1307 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1308 1309 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1310 conn_rqst->desc_list_len = cpu_to_be32( 1311 sizeof(struct fcnvme_lsdesc_assoc_id) + 1312 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1313 1314 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1315 conn_rqst->associd.desc_len = 1316 fcnvme_lsdesc_len( 1317 sizeof(struct fcnvme_lsdesc_assoc_id)); 1318 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1319 conn_rqst->connect_cmd.desc_tag = 1320 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1321 conn_rqst->connect_cmd.desc_len = 1322 fcnvme_lsdesc_len( 1323 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1324 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1325 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1326 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize); 1327 1328 lsop->queue = queue; 1329 lsreq->rqstaddr = conn_rqst; 1330 lsreq->rqstlen = sizeof(*conn_rqst); 1331 lsreq->rspaddr = conn_acc; 1332 lsreq->rsplen = sizeof(*conn_acc); 1333 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1334 1335 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1336 if (ret) 1337 goto out_free_buffer; 1338 1339 /* process connect LS completion */ 1340 1341 /* validate the ACC response */ 1342 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1343 fcret = VERR_LSACC; 1344 else if (conn_acc->hdr.desc_list_len != 1345 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1346 fcret = VERR_CR_CONN_ACC_LEN; 1347 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1348 fcret = VERR_LSDESC_RQST; 1349 else if (conn_acc->hdr.rqst.desc_len != 1350 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1351 fcret = VERR_LSDESC_RQST_LEN; 1352 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1353 fcret = VERR_CR_CONN; 1354 else if (conn_acc->connectid.desc_tag != 1355 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1356 fcret = VERR_CONN_ID; 1357 else if (conn_acc->connectid.desc_len != 1358 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1359 fcret = VERR_CONN_ID_LEN; 1360 1361 if (fcret) { 1362 ret = -EBADF; 1363 dev_err(ctrl->dev, 1364 "q %d connect failed: %s\n", 1365 queue->qnum, validation_errors[fcret]); 1366 } else { 1367 queue->connection_id = 1368 be64_to_cpu(conn_acc->connectid.connection_id); 1369 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1370 } 1371 1372 out_free_buffer: 1373 kfree(lsop); 1374 out_no_memory: 1375 if (ret) 1376 dev_err(ctrl->dev, 1377 "queue %d connect command failed (%d).\n", 1378 queue->qnum, ret); 1379 return ret; 1380 } 1381 1382 static void 1383 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1384 { 1385 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1386 1387 __nvme_fc_finish_ls_req(lsop); 1388 1389 /* fc-nvme iniator doesn't care about success or failure of cmd */ 1390 1391 kfree(lsop); 1392 } 1393 1394 /* 1395 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1396 * the FC-NVME Association. Terminating the association also 1397 * terminates the FC-NVME connections (per queue, both admin and io 1398 * queues) that are part of the association. E.g. things are torn 1399 * down, and the related FC-NVME Association ID and Connection IDs 1400 * become invalid. 1401 * 1402 * The behavior of the fc-nvme initiator is such that it's 1403 * understanding of the association and connections will implicitly 1404 * be torn down. The action is implicit as it may be due to a loss of 1405 * connectivity with the fc-nvme target, so you may never get a 1406 * response even if you tried. As such, the action of this routine 1407 * is to asynchronously send the LS, ignore any results of the LS, and 1408 * continue on with terminating the association. If the fc-nvme target 1409 * is present and receives the LS, it too can tear down. 1410 */ 1411 static void 1412 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1413 { 1414 struct fcnvme_ls_disconnect_rqst *discon_rqst; 1415 struct fcnvme_ls_disconnect_acc *discon_acc; 1416 struct nvmefc_ls_req_op *lsop; 1417 struct nvmefc_ls_req *lsreq; 1418 int ret; 1419 1420 lsop = kzalloc((sizeof(*lsop) + 1421 ctrl->lport->ops->lsrqst_priv_sz + 1422 sizeof(*discon_rqst) + sizeof(*discon_acc)), 1423 GFP_KERNEL); 1424 if (!lsop) 1425 /* couldn't sent it... too bad */ 1426 return; 1427 1428 lsreq = &lsop->ls_req; 1429 1430 lsreq->private = (void *)&lsop[1]; 1431 discon_rqst = (struct fcnvme_ls_disconnect_rqst *) 1432 (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz); 1433 discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1]; 1434 1435 discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT; 1436 discon_rqst->desc_list_len = cpu_to_be32( 1437 sizeof(struct fcnvme_lsdesc_assoc_id) + 1438 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1439 1440 discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1441 discon_rqst->associd.desc_len = 1442 fcnvme_lsdesc_len( 1443 sizeof(struct fcnvme_lsdesc_assoc_id)); 1444 1445 discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1446 1447 discon_rqst->discon_cmd.desc_tag = cpu_to_be32( 1448 FCNVME_LSDESC_DISCONN_CMD); 1449 discon_rqst->discon_cmd.desc_len = 1450 fcnvme_lsdesc_len( 1451 sizeof(struct fcnvme_lsdesc_disconn_cmd)); 1452 discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION; 1453 discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id); 1454 1455 lsreq->rqstaddr = discon_rqst; 1456 lsreq->rqstlen = sizeof(*discon_rqst); 1457 lsreq->rspaddr = discon_acc; 1458 lsreq->rsplen = sizeof(*discon_acc); 1459 lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC; 1460 1461 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1462 nvme_fc_disconnect_assoc_done); 1463 if (ret) 1464 kfree(lsop); 1465 1466 /* only meaningful part to terminating the association */ 1467 ctrl->association_id = 0; 1468 } 1469 1470 1471 /* *********************** NVME Ctrl Routines **************************** */ 1472 1473 static void __nvme_fc_final_op_cleanup(struct request *rq); 1474 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 1475 1476 static int 1477 nvme_fc_reinit_request(void *data, struct request *rq) 1478 { 1479 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1480 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1481 1482 memset(cmdiu, 0, sizeof(*cmdiu)); 1483 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1484 cmdiu->fc_id = NVME_CMD_FC_ID; 1485 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1486 memset(&op->rsp_iu, 0, sizeof(op->rsp_iu)); 1487 1488 return 0; 1489 } 1490 1491 static void 1492 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1493 struct nvme_fc_fcp_op *op) 1494 { 1495 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1496 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1497 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1498 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1499 1500 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1501 } 1502 1503 static void 1504 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1505 unsigned int hctx_idx) 1506 { 1507 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1508 1509 return __nvme_fc_exit_request(set->driver_data, op); 1510 } 1511 1512 static int 1513 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1514 { 1515 int state; 1516 1517 state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1518 if (state != FCPOP_STATE_ACTIVE) { 1519 atomic_set(&op->state, state); 1520 return -ECANCELED; 1521 } 1522 1523 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1524 &ctrl->rport->remoteport, 1525 op->queue->lldd_handle, 1526 &op->fcp_req); 1527 1528 return 0; 1529 } 1530 1531 static void 1532 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1533 { 1534 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1535 unsigned long flags; 1536 int i, ret; 1537 1538 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1539 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE) 1540 continue; 1541 1542 spin_lock_irqsave(&ctrl->lock, flags); 1543 if (ctrl->flags & FCCTRL_TERMIO) { 1544 ctrl->iocnt++; 1545 aen_op->flags |= FCOP_FLAGS_TERMIO; 1546 } 1547 spin_unlock_irqrestore(&ctrl->lock, flags); 1548 1549 ret = __nvme_fc_abort_op(ctrl, aen_op); 1550 if (ret) { 1551 /* 1552 * if __nvme_fc_abort_op failed the io wasn't 1553 * active. Thus this call path is running in 1554 * parallel to the io complete. Treat as non-error. 1555 */ 1556 1557 /* back out the flags/counters */ 1558 spin_lock_irqsave(&ctrl->lock, flags); 1559 if (ctrl->flags & FCCTRL_TERMIO) 1560 ctrl->iocnt--; 1561 aen_op->flags &= ~FCOP_FLAGS_TERMIO; 1562 spin_unlock_irqrestore(&ctrl->lock, flags); 1563 return; 1564 } 1565 } 1566 } 1567 1568 static inline int 1569 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1570 struct nvme_fc_fcp_op *op) 1571 { 1572 unsigned long flags; 1573 bool complete_rq = false; 1574 1575 spin_lock_irqsave(&ctrl->lock, flags); 1576 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) { 1577 if (ctrl->flags & FCCTRL_TERMIO) { 1578 if (!--ctrl->iocnt) 1579 wake_up(&ctrl->ioabort_wait); 1580 } 1581 } 1582 if (op->flags & FCOP_FLAGS_RELEASED) 1583 complete_rq = true; 1584 else 1585 op->flags |= FCOP_FLAGS_COMPLETE; 1586 spin_unlock_irqrestore(&ctrl->lock, flags); 1587 1588 return complete_rq; 1589 } 1590 1591 static void 1592 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1593 { 1594 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1595 struct request *rq = op->rq; 1596 struct nvmefc_fcp_req *freq = &op->fcp_req; 1597 struct nvme_fc_ctrl *ctrl = op->ctrl; 1598 struct nvme_fc_queue *queue = op->queue; 1599 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1600 struct nvme_command *sqe = &op->cmd_iu.sqe; 1601 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1602 union nvme_result result; 1603 bool terminate_assoc = true; 1604 1605 /* 1606 * WARNING: 1607 * The current linux implementation of a nvme controller 1608 * allocates a single tag set for all io queues and sizes 1609 * the io queues to fully hold all possible tags. Thus, the 1610 * implementation does not reference or care about the sqhd 1611 * value as it never needs to use the sqhd/sqtail pointers 1612 * for submission pacing. 1613 * 1614 * This affects the FC-NVME implementation in two ways: 1615 * 1) As the value doesn't matter, we don't need to waste 1616 * cycles extracting it from ERSPs and stamping it in the 1617 * cases where the transport fabricates CQEs on successful 1618 * completions. 1619 * 2) The FC-NVME implementation requires that delivery of 1620 * ERSP completions are to go back to the nvme layer in order 1621 * relative to the rsn, such that the sqhd value will always 1622 * be "in order" for the nvme layer. As the nvme layer in 1623 * linux doesn't care about sqhd, there's no need to return 1624 * them in order. 1625 * 1626 * Additionally: 1627 * As the core nvme layer in linux currently does not look at 1628 * every field in the cqe - in cases where the FC transport must 1629 * fabricate a CQE, the following fields will not be set as they 1630 * are not referenced: 1631 * cqe.sqid, cqe.sqhd, cqe.command_id 1632 * 1633 * Failure or error of an individual i/o, in a transport 1634 * detected fashion unrelated to the nvme completion status, 1635 * potentially cause the initiator and target sides to get out 1636 * of sync on SQ head/tail (aka outstanding io count allowed). 1637 * Per FC-NVME spec, failure of an individual command requires 1638 * the connection to be terminated, which in turn requires the 1639 * association to be terminated. 1640 */ 1641 1642 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1643 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1644 1645 if (atomic_read(&op->state) == FCPOP_STATE_ABORTED || 1646 op->flags & FCOP_FLAGS_TERMIO) 1647 status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); 1648 else if (freq->status) 1649 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1650 1651 /* 1652 * For the linux implementation, if we have an unsuccesful 1653 * status, they blk-mq layer can typically be called with the 1654 * non-zero status and the content of the cqe isn't important. 1655 */ 1656 if (status) 1657 goto done; 1658 1659 /* 1660 * command completed successfully relative to the wire 1661 * protocol. However, validate anything received and 1662 * extract the status and result from the cqe (create it 1663 * where necessary). 1664 */ 1665 1666 switch (freq->rcv_rsplen) { 1667 1668 case 0: 1669 case NVME_FC_SIZEOF_ZEROS_RSP: 1670 /* 1671 * No response payload or 12 bytes of payload (which 1672 * should all be zeros) are considered successful and 1673 * no payload in the CQE by the transport. 1674 */ 1675 if (freq->transferred_length != 1676 be32_to_cpu(op->cmd_iu.data_len)) { 1677 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1678 goto done; 1679 } 1680 result.u64 = 0; 1681 break; 1682 1683 case sizeof(struct nvme_fc_ersp_iu): 1684 /* 1685 * The ERSP IU contains a full completion with CQE. 1686 * Validate ERSP IU and look at cqe. 1687 */ 1688 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1689 (freq->rcv_rsplen / 4) || 1690 be32_to_cpu(op->rsp_iu.xfrd_len) != 1691 freq->transferred_length || 1692 op->rsp_iu.status_code || 1693 sqe->common.command_id != cqe->command_id)) { 1694 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1695 goto done; 1696 } 1697 result = cqe->result; 1698 status = cqe->status; 1699 break; 1700 1701 default: 1702 status = cpu_to_le16(NVME_SC_INTERNAL << 1); 1703 goto done; 1704 } 1705 1706 terminate_assoc = false; 1707 1708 done: 1709 if (op->flags & FCOP_FLAGS_AEN) { 1710 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 1711 __nvme_fc_fcpop_chk_teardowns(ctrl, op); 1712 atomic_set(&op->state, FCPOP_STATE_IDLE); 1713 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 1714 nvme_fc_ctrl_put(ctrl); 1715 goto check_error; 1716 } 1717 1718 /* 1719 * Force failures of commands if we're killing the controller 1720 * or have an error on a command used to create an new association 1721 */ 1722 if (status && 1723 (blk_queue_dying(rq->q) || 1724 ctrl->ctrl.state == NVME_CTRL_NEW || 1725 ctrl->ctrl.state == NVME_CTRL_RECONNECTING)) 1726 status |= cpu_to_le16(NVME_SC_DNR << 1); 1727 1728 if (__nvme_fc_fcpop_chk_teardowns(ctrl, op)) 1729 __nvme_fc_final_op_cleanup(rq); 1730 else 1731 nvme_end_request(rq, status, result); 1732 1733 check_error: 1734 if (terminate_assoc) 1735 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1736 } 1737 1738 static int 1739 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 1740 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 1741 struct request *rq, u32 rqno) 1742 { 1743 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 1744 int ret = 0; 1745 1746 memset(op, 0, sizeof(*op)); 1747 op->fcp_req.cmdaddr = &op->cmd_iu; 1748 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 1749 op->fcp_req.rspaddr = &op->rsp_iu; 1750 op->fcp_req.rsplen = sizeof(op->rsp_iu); 1751 op->fcp_req.done = nvme_fc_fcpio_done; 1752 op->fcp_req.first_sgl = (struct scatterlist *)&op[1]; 1753 op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE]; 1754 op->ctrl = ctrl; 1755 op->queue = queue; 1756 op->rq = rq; 1757 op->rqno = rqno; 1758 1759 cmdiu->scsi_id = NVME_CMD_SCSI_ID; 1760 cmdiu->fc_id = NVME_CMD_FC_ID; 1761 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 1762 1763 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 1764 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 1765 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 1766 dev_err(ctrl->dev, 1767 "FCP Op failed - cmdiu dma mapping failed.\n"); 1768 ret = EFAULT; 1769 goto out_on_error; 1770 } 1771 1772 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 1773 &op->rsp_iu, sizeof(op->rsp_iu), 1774 DMA_FROM_DEVICE); 1775 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 1776 dev_err(ctrl->dev, 1777 "FCP Op failed - rspiu dma mapping failed.\n"); 1778 ret = EFAULT; 1779 } 1780 1781 atomic_set(&op->state, FCPOP_STATE_IDLE); 1782 out_on_error: 1783 return ret; 1784 } 1785 1786 static int 1787 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 1788 unsigned int hctx_idx, unsigned int numa_node) 1789 { 1790 struct nvme_fc_ctrl *ctrl = set->driver_data; 1791 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1792 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 1793 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 1794 1795 return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++); 1796 } 1797 1798 static int 1799 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 1800 { 1801 struct nvme_fc_fcp_op *aen_op; 1802 struct nvme_fc_cmd_iu *cmdiu; 1803 struct nvme_command *sqe; 1804 void *private; 1805 int i, ret; 1806 1807 aen_op = ctrl->aen_ops; 1808 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1809 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 1810 GFP_KERNEL); 1811 if (!private) 1812 return -ENOMEM; 1813 1814 cmdiu = &aen_op->cmd_iu; 1815 sqe = &cmdiu->sqe; 1816 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 1817 aen_op, (struct request *)NULL, 1818 (NVME_AQ_BLK_MQ_DEPTH + i)); 1819 if (ret) { 1820 kfree(private); 1821 return ret; 1822 } 1823 1824 aen_op->flags = FCOP_FLAGS_AEN; 1825 aen_op->fcp_req.first_sgl = NULL; /* no sg list */ 1826 aen_op->fcp_req.private = private; 1827 1828 memset(sqe, 0, sizeof(*sqe)); 1829 sqe->common.opcode = nvme_admin_async_event; 1830 /* Note: core layer may overwrite the sqe.command_id value */ 1831 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 1832 } 1833 return 0; 1834 } 1835 1836 static void 1837 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 1838 { 1839 struct nvme_fc_fcp_op *aen_op; 1840 int i; 1841 1842 aen_op = ctrl->aen_ops; 1843 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 1844 if (!aen_op->fcp_req.private) 1845 continue; 1846 1847 __nvme_fc_exit_request(ctrl, aen_op); 1848 1849 kfree(aen_op->fcp_req.private); 1850 aen_op->fcp_req.private = NULL; 1851 } 1852 } 1853 1854 static inline void 1855 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl, 1856 unsigned int qidx) 1857 { 1858 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 1859 1860 hctx->driver_data = queue; 1861 queue->hctx = hctx; 1862 } 1863 1864 static int 1865 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1866 unsigned int hctx_idx) 1867 { 1868 struct nvme_fc_ctrl *ctrl = data; 1869 1870 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1); 1871 1872 return 0; 1873 } 1874 1875 static int 1876 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 1877 unsigned int hctx_idx) 1878 { 1879 struct nvme_fc_ctrl *ctrl = data; 1880 1881 __nvme_fc_init_hctx(hctx, ctrl, hctx_idx); 1882 1883 return 0; 1884 } 1885 1886 static void 1887 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 1888 { 1889 struct nvme_fc_queue *queue; 1890 1891 queue = &ctrl->queues[idx]; 1892 memset(queue, 0, sizeof(*queue)); 1893 queue->ctrl = ctrl; 1894 queue->qnum = idx; 1895 atomic_set(&queue->csn, 1); 1896 queue->dev = ctrl->dev; 1897 1898 if (idx > 0) 1899 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 1900 else 1901 queue->cmnd_capsule_len = sizeof(struct nvme_command); 1902 1903 /* 1904 * Considered whether we should allocate buffers for all SQEs 1905 * and CQEs and dma map them - mapping their respective entries 1906 * into the request structures (kernel vm addr and dma address) 1907 * thus the driver could use the buffers/mappings directly. 1908 * It only makes sense if the LLDD would use them for its 1909 * messaging api. It's very unlikely most adapter api's would use 1910 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 1911 * structures were used instead. 1912 */ 1913 } 1914 1915 /* 1916 * This routine terminates a queue at the transport level. 1917 * The transport has already ensured that all outstanding ios on 1918 * the queue have been terminated. 1919 * The transport will send a Disconnect LS request to terminate 1920 * the queue's connection. Termination of the admin queue will also 1921 * terminate the association at the target. 1922 */ 1923 static void 1924 nvme_fc_free_queue(struct nvme_fc_queue *queue) 1925 { 1926 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 1927 return; 1928 1929 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 1930 /* 1931 * Current implementation never disconnects a single queue. 1932 * It always terminates a whole association. So there is never 1933 * a disconnect(queue) LS sent to the target. 1934 */ 1935 1936 queue->connection_id = 0; 1937 } 1938 1939 static void 1940 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 1941 struct nvme_fc_queue *queue, unsigned int qidx) 1942 { 1943 if (ctrl->lport->ops->delete_queue) 1944 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 1945 queue->lldd_handle); 1946 queue->lldd_handle = NULL; 1947 } 1948 1949 static void 1950 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 1951 { 1952 int i; 1953 1954 for (i = 1; i < ctrl->ctrl.queue_count; i++) 1955 nvme_fc_free_queue(&ctrl->queues[i]); 1956 } 1957 1958 static int 1959 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 1960 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 1961 { 1962 int ret = 0; 1963 1964 queue->lldd_handle = NULL; 1965 if (ctrl->lport->ops->create_queue) 1966 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 1967 qidx, qsize, &queue->lldd_handle); 1968 1969 return ret; 1970 } 1971 1972 static void 1973 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 1974 { 1975 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 1976 int i; 1977 1978 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 1979 __nvme_fc_delete_hw_queue(ctrl, queue, i); 1980 } 1981 1982 static int 1983 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 1984 { 1985 struct nvme_fc_queue *queue = &ctrl->queues[1]; 1986 int i, ret; 1987 1988 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 1989 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 1990 if (ret) 1991 goto delete_queues; 1992 } 1993 1994 return 0; 1995 1996 delete_queues: 1997 for (; i >= 0; i--) 1998 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 1999 return ret; 2000 } 2001 2002 static int 2003 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2004 { 2005 int i, ret = 0; 2006 2007 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2008 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2009 (qsize / 5)); 2010 if (ret) 2011 break; 2012 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2013 if (ret) 2014 break; 2015 2016 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2017 } 2018 2019 return ret; 2020 } 2021 2022 static void 2023 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2024 { 2025 int i; 2026 2027 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2028 nvme_fc_init_queue(ctrl, i); 2029 } 2030 2031 static void 2032 nvme_fc_ctrl_free(struct kref *ref) 2033 { 2034 struct nvme_fc_ctrl *ctrl = 2035 container_of(ref, struct nvme_fc_ctrl, ref); 2036 unsigned long flags; 2037 2038 if (ctrl->ctrl.tagset) { 2039 blk_cleanup_queue(ctrl->ctrl.connect_q); 2040 blk_mq_free_tag_set(&ctrl->tag_set); 2041 } 2042 2043 /* remove from rport list */ 2044 spin_lock_irqsave(&ctrl->rport->lock, flags); 2045 list_del(&ctrl->ctrl_list); 2046 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2047 2048 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2049 blk_cleanup_queue(ctrl->ctrl.admin_q); 2050 blk_mq_free_tag_set(&ctrl->admin_tag_set); 2051 2052 kfree(ctrl->queues); 2053 2054 put_device(ctrl->dev); 2055 nvme_fc_rport_put(ctrl->rport); 2056 2057 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 2058 if (ctrl->ctrl.opts) 2059 nvmf_free_options(ctrl->ctrl.opts); 2060 kfree(ctrl); 2061 } 2062 2063 static void 2064 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2065 { 2066 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2067 } 2068 2069 static int 2070 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2071 { 2072 return kref_get_unless_zero(&ctrl->ref); 2073 } 2074 2075 /* 2076 * All accesses from nvme core layer done - can now free the 2077 * controller. Called after last nvme_put_ctrl() call 2078 */ 2079 static void 2080 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl) 2081 { 2082 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2083 2084 WARN_ON(nctrl != &ctrl->ctrl); 2085 2086 nvme_fc_ctrl_put(ctrl); 2087 } 2088 2089 static void 2090 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2091 { 2092 /* only proceed if in LIVE state - e.g. on first error */ 2093 if (ctrl->ctrl.state != NVME_CTRL_LIVE) 2094 return; 2095 2096 dev_warn(ctrl->ctrl.device, 2097 "NVME-FC{%d}: transport association error detected: %s\n", 2098 ctrl->cnum, errmsg); 2099 dev_warn(ctrl->ctrl.device, 2100 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2101 2102 nvme_reset_ctrl(&ctrl->ctrl); 2103 } 2104 2105 static enum blk_eh_timer_return 2106 nvme_fc_timeout(struct request *rq, bool reserved) 2107 { 2108 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2109 struct nvme_fc_ctrl *ctrl = op->ctrl; 2110 int ret; 2111 2112 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2113 atomic_read(&op->state) == FCPOP_STATE_ABORTED) 2114 return BLK_EH_RESET_TIMER; 2115 2116 ret = __nvme_fc_abort_op(ctrl, op); 2117 if (ret) 2118 /* io wasn't active to abort */ 2119 return BLK_EH_NOT_HANDLED; 2120 2121 /* 2122 * we can't individually ABTS an io without affecting the queue, 2123 * thus killing the queue, adn thus the association. 2124 * So resolve by performing a controller reset, which will stop 2125 * the host/io stack, terminate the association on the link, 2126 * and recreate an association on the link. 2127 */ 2128 nvme_fc_error_recovery(ctrl, "io timeout error"); 2129 2130 /* 2131 * the io abort has been initiated. Have the reset timer 2132 * restarted and the abort completion will complete the io 2133 * shortly. Avoids a synchronous wait while the abort finishes. 2134 */ 2135 return BLK_EH_RESET_TIMER; 2136 } 2137 2138 static int 2139 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2140 struct nvme_fc_fcp_op *op) 2141 { 2142 struct nvmefc_fcp_req *freq = &op->fcp_req; 2143 enum dma_data_direction dir; 2144 int ret; 2145 2146 freq->sg_cnt = 0; 2147 2148 if (!blk_rq_payload_bytes(rq)) 2149 return 0; 2150 2151 freq->sg_table.sgl = freq->first_sgl; 2152 ret = sg_alloc_table_chained(&freq->sg_table, 2153 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl); 2154 if (ret) 2155 return -ENOMEM; 2156 2157 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2158 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2159 dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; 2160 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2161 op->nents, dir); 2162 if (unlikely(freq->sg_cnt <= 0)) { 2163 sg_free_table_chained(&freq->sg_table, true); 2164 freq->sg_cnt = 0; 2165 return -EFAULT; 2166 } 2167 2168 /* 2169 * TODO: blk_integrity_rq(rq) for DIF 2170 */ 2171 return 0; 2172 } 2173 2174 static void 2175 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2176 struct nvme_fc_fcp_op *op) 2177 { 2178 struct nvmefc_fcp_req *freq = &op->fcp_req; 2179 2180 if (!freq->sg_cnt) 2181 return; 2182 2183 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2184 ((rq_data_dir(rq) == WRITE) ? 2185 DMA_TO_DEVICE : DMA_FROM_DEVICE)); 2186 2187 nvme_cleanup_cmd(rq); 2188 2189 sg_free_table_chained(&freq->sg_table, true); 2190 2191 freq->sg_cnt = 0; 2192 } 2193 2194 /* 2195 * In FC, the queue is a logical thing. At transport connect, the target 2196 * creates its "queue" and returns a handle that is to be given to the 2197 * target whenever it posts something to the corresponding SQ. When an 2198 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2199 * command contained within the SQE, an io, and assigns a FC exchange 2200 * to it. The SQE and the associated SQ handle are sent in the initial 2201 * CMD IU sents on the exchange. All transfers relative to the io occur 2202 * as part of the exchange. The CQE is the last thing for the io, 2203 * which is transferred (explicitly or implicitly) with the RSP IU 2204 * sent on the exchange. After the CQE is received, the FC exchange is 2205 * terminaed and the Exchange may be used on a different io. 2206 * 2207 * The transport to LLDD api has the transport making a request for a 2208 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2209 * resource and transfers the command. The LLDD will then process all 2210 * steps to complete the io. Upon completion, the transport done routine 2211 * is called. 2212 * 2213 * So - while the operation is outstanding to the LLDD, there is a link 2214 * level FC exchange resource that is also outstanding. This must be 2215 * considered in all cleanup operations. 2216 */ 2217 static blk_status_t 2218 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2219 struct nvme_fc_fcp_op *op, u32 data_len, 2220 enum nvmefc_fcp_datadir io_dir) 2221 { 2222 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2223 struct nvme_command *sqe = &cmdiu->sqe; 2224 u32 csn; 2225 int ret; 2226 2227 /* 2228 * before attempting to send the io, check to see if we believe 2229 * the target device is present 2230 */ 2231 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2232 return BLK_STS_RESOURCE; 2233 2234 if (!nvme_fc_ctrl_get(ctrl)) 2235 return BLK_STS_IOERR; 2236 2237 /* format the FC-NVME CMD IU and fcp_req */ 2238 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2239 csn = atomic_inc_return(&queue->csn); 2240 cmdiu->csn = cpu_to_be32(csn); 2241 cmdiu->data_len = cpu_to_be32(data_len); 2242 switch (io_dir) { 2243 case NVMEFC_FCP_WRITE: 2244 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2245 break; 2246 case NVMEFC_FCP_READ: 2247 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2248 break; 2249 case NVMEFC_FCP_NODATA: 2250 cmdiu->flags = 0; 2251 break; 2252 } 2253 op->fcp_req.payload_length = data_len; 2254 op->fcp_req.io_dir = io_dir; 2255 op->fcp_req.transferred_length = 0; 2256 op->fcp_req.rcv_rsplen = 0; 2257 op->fcp_req.status = NVME_SC_SUCCESS; 2258 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2259 2260 /* 2261 * validate per fabric rules, set fields mandated by fabric spec 2262 * as well as those by FC-NVME spec. 2263 */ 2264 WARN_ON_ONCE(sqe->common.metadata); 2265 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2266 2267 /* 2268 * format SQE DPTR field per FC-NVME rules: 2269 * type=0x5 Transport SGL Data Block Descriptor 2270 * subtype=0xA Transport-specific value 2271 * address=0 2272 * length=length of the data series 2273 */ 2274 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2275 NVME_SGL_FMT_TRANSPORT_A; 2276 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2277 sqe->rw.dptr.sgl.addr = 0; 2278 2279 if (!(op->flags & FCOP_FLAGS_AEN)) { 2280 ret = nvme_fc_map_data(ctrl, op->rq, op); 2281 if (ret < 0) { 2282 nvme_cleanup_cmd(op->rq); 2283 nvme_fc_ctrl_put(ctrl); 2284 if (ret == -ENOMEM || ret == -EAGAIN) 2285 return BLK_STS_RESOURCE; 2286 return BLK_STS_IOERR; 2287 } 2288 } 2289 2290 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2291 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2292 2293 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2294 2295 if (!(op->flags & FCOP_FLAGS_AEN)) 2296 blk_mq_start_request(op->rq); 2297 2298 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2299 &ctrl->rport->remoteport, 2300 queue->lldd_handle, &op->fcp_req); 2301 2302 if (ret) { 2303 if (!(op->flags & FCOP_FLAGS_AEN)) 2304 nvme_fc_unmap_data(ctrl, op->rq, op); 2305 2306 nvme_fc_ctrl_put(ctrl); 2307 2308 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2309 ret != -EBUSY) 2310 return BLK_STS_IOERR; 2311 2312 return BLK_STS_RESOURCE; 2313 } 2314 2315 return BLK_STS_OK; 2316 } 2317 2318 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue, 2319 struct request *rq) 2320 { 2321 if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags))) 2322 return nvmf_check_init_req(&queue->ctrl->ctrl, rq); 2323 return BLK_STS_OK; 2324 } 2325 2326 static blk_status_t 2327 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2328 const struct blk_mq_queue_data *bd) 2329 { 2330 struct nvme_ns *ns = hctx->queue->queuedata; 2331 struct nvme_fc_queue *queue = hctx->driver_data; 2332 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2333 struct request *rq = bd->rq; 2334 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2335 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2336 struct nvme_command *sqe = &cmdiu->sqe; 2337 enum nvmefc_fcp_datadir io_dir; 2338 u32 data_len; 2339 blk_status_t ret; 2340 2341 ret = nvme_fc_is_ready(queue, rq); 2342 if (unlikely(ret)) 2343 return ret; 2344 2345 ret = nvme_setup_cmd(ns, rq, sqe); 2346 if (ret) 2347 return ret; 2348 2349 data_len = blk_rq_payload_bytes(rq); 2350 if (data_len) 2351 io_dir = ((rq_data_dir(rq) == WRITE) ? 2352 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2353 else 2354 io_dir = NVMEFC_FCP_NODATA; 2355 2356 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2357 } 2358 2359 static struct blk_mq_tags * 2360 nvme_fc_tagset(struct nvme_fc_queue *queue) 2361 { 2362 if (queue->qnum == 0) 2363 return queue->ctrl->admin_tag_set.tags[queue->qnum]; 2364 2365 return queue->ctrl->tag_set.tags[queue->qnum - 1]; 2366 } 2367 2368 static int 2369 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) 2370 2371 { 2372 struct nvme_fc_queue *queue = hctx->driver_data; 2373 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2374 struct request *req; 2375 struct nvme_fc_fcp_op *op; 2376 2377 req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag); 2378 if (!req) 2379 return 0; 2380 2381 op = blk_mq_rq_to_pdu(req); 2382 2383 if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) && 2384 (ctrl->lport->ops->poll_queue)) 2385 ctrl->lport->ops->poll_queue(&ctrl->lport->localport, 2386 queue->lldd_handle); 2387 2388 return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE)); 2389 } 2390 2391 static void 2392 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2393 { 2394 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2395 struct nvme_fc_fcp_op *aen_op; 2396 unsigned long flags; 2397 bool terminating = false; 2398 blk_status_t ret; 2399 2400 spin_lock_irqsave(&ctrl->lock, flags); 2401 if (ctrl->flags & FCCTRL_TERMIO) 2402 terminating = true; 2403 spin_unlock_irqrestore(&ctrl->lock, flags); 2404 2405 if (terminating) 2406 return; 2407 2408 aen_op = &ctrl->aen_ops[0]; 2409 2410 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2411 NVMEFC_FCP_NODATA); 2412 if (ret) 2413 dev_err(ctrl->ctrl.device, 2414 "failed async event work\n"); 2415 } 2416 2417 static void 2418 __nvme_fc_final_op_cleanup(struct request *rq) 2419 { 2420 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2421 struct nvme_fc_ctrl *ctrl = op->ctrl; 2422 2423 atomic_set(&op->state, FCPOP_STATE_IDLE); 2424 op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED | 2425 FCOP_FLAGS_COMPLETE); 2426 2427 nvme_fc_unmap_data(ctrl, rq, op); 2428 nvme_complete_rq(rq); 2429 nvme_fc_ctrl_put(ctrl); 2430 2431 } 2432 2433 static void 2434 nvme_fc_complete_rq(struct request *rq) 2435 { 2436 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2437 struct nvme_fc_ctrl *ctrl = op->ctrl; 2438 unsigned long flags; 2439 bool completed = false; 2440 2441 /* 2442 * the core layer, on controller resets after calling 2443 * nvme_shutdown_ctrl(), calls complete_rq without our 2444 * calling blk_mq_complete_request(), thus there may still 2445 * be live i/o outstanding with the LLDD. Means transport has 2446 * to track complete calls vs fcpio_done calls to know what 2447 * path to take on completes and dones. 2448 */ 2449 spin_lock_irqsave(&ctrl->lock, flags); 2450 if (op->flags & FCOP_FLAGS_COMPLETE) 2451 completed = true; 2452 else 2453 op->flags |= FCOP_FLAGS_RELEASED; 2454 spin_unlock_irqrestore(&ctrl->lock, flags); 2455 2456 if (completed) 2457 __nvme_fc_final_op_cleanup(rq); 2458 } 2459 2460 /* 2461 * This routine is used by the transport when it needs to find active 2462 * io on a queue that is to be terminated. The transport uses 2463 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2464 * this routine to kill them on a 1 by 1 basis. 2465 * 2466 * As FC allocates FC exchange for each io, the transport must contact 2467 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2468 * After terminating the exchange the LLDD will call the transport's 2469 * normal io done path for the request, but it will have an aborted 2470 * status. The done path will return the io request back to the block 2471 * layer with an error status. 2472 */ 2473 static void 2474 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved) 2475 { 2476 struct nvme_ctrl *nctrl = data; 2477 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2478 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2479 unsigned long flags; 2480 int status; 2481 2482 if (!blk_mq_request_started(req)) 2483 return; 2484 2485 spin_lock_irqsave(&ctrl->lock, flags); 2486 if (ctrl->flags & FCCTRL_TERMIO) { 2487 ctrl->iocnt++; 2488 op->flags |= FCOP_FLAGS_TERMIO; 2489 } 2490 spin_unlock_irqrestore(&ctrl->lock, flags); 2491 2492 status = __nvme_fc_abort_op(ctrl, op); 2493 if (status) { 2494 /* 2495 * if __nvme_fc_abort_op failed the io wasn't 2496 * active. Thus this call path is running in 2497 * parallel to the io complete. Treat as non-error. 2498 */ 2499 2500 /* back out the flags/counters */ 2501 spin_lock_irqsave(&ctrl->lock, flags); 2502 if (ctrl->flags & FCCTRL_TERMIO) 2503 ctrl->iocnt--; 2504 op->flags &= ~FCOP_FLAGS_TERMIO; 2505 spin_unlock_irqrestore(&ctrl->lock, flags); 2506 return; 2507 } 2508 } 2509 2510 2511 static const struct blk_mq_ops nvme_fc_mq_ops = { 2512 .queue_rq = nvme_fc_queue_rq, 2513 .complete = nvme_fc_complete_rq, 2514 .init_request = nvme_fc_init_request, 2515 .exit_request = nvme_fc_exit_request, 2516 .init_hctx = nvme_fc_init_hctx, 2517 .poll = nvme_fc_poll, 2518 .timeout = nvme_fc_timeout, 2519 }; 2520 2521 static int 2522 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2523 { 2524 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2525 unsigned int nr_io_queues; 2526 int ret; 2527 2528 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2529 ctrl->lport->ops->max_hw_queues); 2530 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2531 if (ret) { 2532 dev_info(ctrl->ctrl.device, 2533 "set_queue_count failed: %d\n", ret); 2534 return ret; 2535 } 2536 2537 ctrl->ctrl.queue_count = nr_io_queues + 1; 2538 if (!nr_io_queues) 2539 return 0; 2540 2541 nvme_fc_init_io_queues(ctrl); 2542 2543 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set)); 2544 ctrl->tag_set.ops = &nvme_fc_mq_ops; 2545 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size; 2546 ctrl->tag_set.reserved_tags = 1; /* fabric connect */ 2547 ctrl->tag_set.numa_node = NUMA_NO_NODE; 2548 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2549 ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 2550 (SG_CHUNK_SIZE * 2551 sizeof(struct scatterlist)) + 2552 ctrl->lport->ops->fcprqst_priv_sz; 2553 ctrl->tag_set.driver_data = ctrl; 2554 ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1; 2555 ctrl->tag_set.timeout = NVME_IO_TIMEOUT; 2556 2557 ret = blk_mq_alloc_tag_set(&ctrl->tag_set); 2558 if (ret) 2559 return ret; 2560 2561 ctrl->ctrl.tagset = &ctrl->tag_set; 2562 2563 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); 2564 if (IS_ERR(ctrl->ctrl.connect_q)) { 2565 ret = PTR_ERR(ctrl->ctrl.connect_q); 2566 goto out_free_tag_set; 2567 } 2568 2569 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2570 if (ret) 2571 goto out_cleanup_blk_queue; 2572 2573 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2574 if (ret) 2575 goto out_delete_hw_queues; 2576 2577 return 0; 2578 2579 out_delete_hw_queues: 2580 nvme_fc_delete_hw_io_queues(ctrl); 2581 out_cleanup_blk_queue: 2582 blk_cleanup_queue(ctrl->ctrl.connect_q); 2583 out_free_tag_set: 2584 blk_mq_free_tag_set(&ctrl->tag_set); 2585 nvme_fc_free_io_queues(ctrl); 2586 2587 /* force put free routine to ignore io queues */ 2588 ctrl->ctrl.tagset = NULL; 2589 2590 return ret; 2591 } 2592 2593 static int 2594 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl) 2595 { 2596 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2597 unsigned int nr_io_queues; 2598 int ret; 2599 2600 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2601 ctrl->lport->ops->max_hw_queues); 2602 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2603 if (ret) { 2604 dev_info(ctrl->ctrl.device, 2605 "set_queue_count failed: %d\n", ret); 2606 return ret; 2607 } 2608 2609 ctrl->ctrl.queue_count = nr_io_queues + 1; 2610 /* check for io queues existing */ 2611 if (ctrl->ctrl.queue_count == 1) 2612 return 0; 2613 2614 nvme_fc_init_io_queues(ctrl); 2615 2616 ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); 2617 if (ret) 2618 goto out_free_io_queues; 2619 2620 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2621 if (ret) 2622 goto out_free_io_queues; 2623 2624 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size); 2625 if (ret) 2626 goto out_delete_hw_queues; 2627 2628 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2629 2630 return 0; 2631 2632 out_delete_hw_queues: 2633 nvme_fc_delete_hw_io_queues(ctrl); 2634 out_free_io_queues: 2635 nvme_fc_free_io_queues(ctrl); 2636 return ret; 2637 } 2638 2639 static void 2640 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2641 { 2642 struct nvme_fc_lport *lport = rport->lport; 2643 2644 atomic_inc(&lport->act_rport_cnt); 2645 } 2646 2647 static void 2648 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2649 { 2650 struct nvme_fc_lport *lport = rport->lport; 2651 u32 cnt; 2652 2653 cnt = atomic_dec_return(&lport->act_rport_cnt); 2654 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2655 lport->ops->localport_delete(&lport->localport); 2656 } 2657 2658 static int 2659 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2660 { 2661 struct nvme_fc_rport *rport = ctrl->rport; 2662 u32 cnt; 2663 2664 if (ctrl->assoc_active) 2665 return 1; 2666 2667 ctrl->assoc_active = true; 2668 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2669 if (cnt == 1) 2670 nvme_fc_rport_active_on_lport(rport); 2671 2672 return 0; 2673 } 2674 2675 static int 2676 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2677 { 2678 struct nvme_fc_rport *rport = ctrl->rport; 2679 struct nvme_fc_lport *lport = rport->lport; 2680 u32 cnt; 2681 2682 /* ctrl->assoc_active=false will be set independently */ 2683 2684 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 2685 if (cnt == 0) { 2686 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 2687 lport->ops->remoteport_delete(&rport->remoteport); 2688 nvme_fc_rport_inactive_on_lport(rport); 2689 } 2690 2691 return 0; 2692 } 2693 2694 /* 2695 * This routine restarts the controller on the host side, and 2696 * on the link side, recreates the controller association. 2697 */ 2698 static int 2699 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 2700 { 2701 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2702 int ret; 2703 bool changed; 2704 2705 ++ctrl->ctrl.nr_reconnects; 2706 2707 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2708 return -ENODEV; 2709 2710 if (nvme_fc_ctlr_active_on_rport(ctrl)) 2711 return -ENOTUNIQ; 2712 2713 /* 2714 * Create the admin queue 2715 */ 2716 2717 nvme_fc_init_queue(ctrl, 0); 2718 2719 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 2720 NVME_AQ_BLK_MQ_DEPTH); 2721 if (ret) 2722 goto out_free_queue; 2723 2724 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 2725 NVME_AQ_BLK_MQ_DEPTH, 2726 (NVME_AQ_BLK_MQ_DEPTH / 4)); 2727 if (ret) 2728 goto out_delete_hw_queue; 2729 2730 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2731 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2732 2733 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 2734 if (ret) 2735 goto out_disconnect_admin_queue; 2736 2737 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2738 2739 /* 2740 * Check controller capabilities 2741 * 2742 * todo:- add code to check if ctrl attributes changed from 2743 * prior connection values 2744 */ 2745 2746 ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap); 2747 if (ret) { 2748 dev_err(ctrl->ctrl.device, 2749 "prop_get NVME_REG_CAP failed\n"); 2750 goto out_disconnect_admin_queue; 2751 } 2752 2753 ctrl->ctrl.sqsize = 2754 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize); 2755 2756 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); 2757 if (ret) 2758 goto out_disconnect_admin_queue; 2759 2760 ctrl->ctrl.max_hw_sectors = 2761 (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9); 2762 2763 ret = nvme_init_identify(&ctrl->ctrl); 2764 if (ret) 2765 goto out_disconnect_admin_queue; 2766 2767 /* sanity checks */ 2768 2769 /* FC-NVME does not have other data in the capsule */ 2770 if (ctrl->ctrl.icdoff) { 2771 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 2772 ctrl->ctrl.icdoff); 2773 goto out_disconnect_admin_queue; 2774 } 2775 2776 /* FC-NVME supports normal SGL Data Block Descriptors */ 2777 2778 if (opts->queue_size > ctrl->ctrl.maxcmd) { 2779 /* warn if maxcmd is lower than queue_size */ 2780 dev_warn(ctrl->ctrl.device, 2781 "queue_size %zu > ctrl maxcmd %u, reducing " 2782 "to queue_size\n", 2783 opts->queue_size, ctrl->ctrl.maxcmd); 2784 opts->queue_size = ctrl->ctrl.maxcmd; 2785 } 2786 2787 ret = nvme_fc_init_aen_ops(ctrl); 2788 if (ret) 2789 goto out_term_aen_ops; 2790 2791 /* 2792 * Create the io queues 2793 */ 2794 2795 if (ctrl->ctrl.queue_count > 1) { 2796 if (ctrl->ctrl.state == NVME_CTRL_NEW) 2797 ret = nvme_fc_create_io_queues(ctrl); 2798 else 2799 ret = nvme_fc_reinit_io_queues(ctrl); 2800 if (ret) 2801 goto out_term_aen_ops; 2802 } 2803 2804 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); 2805 2806 ctrl->ctrl.nr_reconnects = 0; 2807 2808 if (changed) 2809 nvme_start_ctrl(&ctrl->ctrl); 2810 2811 return 0; /* Success */ 2812 2813 out_term_aen_ops: 2814 nvme_fc_term_aen_ops(ctrl); 2815 out_disconnect_admin_queue: 2816 /* send a Disconnect(association) LS to fc-nvme target */ 2817 nvme_fc_xmt_disconnect_assoc(ctrl); 2818 out_delete_hw_queue: 2819 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2820 out_free_queue: 2821 nvme_fc_free_queue(&ctrl->queues[0]); 2822 ctrl->assoc_active = false; 2823 nvme_fc_ctlr_inactive_on_rport(ctrl); 2824 2825 return ret; 2826 } 2827 2828 /* 2829 * This routine stops operation of the controller on the host side. 2830 * On the host os stack side: Admin and IO queues are stopped, 2831 * outstanding ios on them terminated via FC ABTS. 2832 * On the link side: the association is terminated. 2833 */ 2834 static void 2835 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 2836 { 2837 unsigned long flags; 2838 2839 if (!ctrl->assoc_active) 2840 return; 2841 ctrl->assoc_active = false; 2842 2843 spin_lock_irqsave(&ctrl->lock, flags); 2844 ctrl->flags |= FCCTRL_TERMIO; 2845 ctrl->iocnt = 0; 2846 spin_unlock_irqrestore(&ctrl->lock, flags); 2847 2848 /* 2849 * If io queues are present, stop them and terminate all outstanding 2850 * ios on them. As FC allocates FC exchange for each io, the 2851 * transport must contact the LLDD to terminate the exchange, 2852 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2853 * to tell us what io's are busy and invoke a transport routine 2854 * to kill them with the LLDD. After terminating the exchange 2855 * the LLDD will call the transport's normal io done path, but it 2856 * will have an aborted status. The done path will return the 2857 * io requests back to the block layer as part of normal completions 2858 * (but with error status). 2859 */ 2860 if (ctrl->ctrl.queue_count > 1) { 2861 nvme_stop_queues(&ctrl->ctrl); 2862 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2863 nvme_fc_terminate_exchange, &ctrl->ctrl); 2864 } 2865 2866 /* 2867 * Other transports, which don't have link-level contexts bound 2868 * to sqe's, would try to gracefully shutdown the controller by 2869 * writing the registers for shutdown and polling (call 2870 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially 2871 * just aborted and we will wait on those contexts, and given 2872 * there was no indication of how live the controlelr is on the 2873 * link, don't send more io to create more contexts for the 2874 * shutdown. Let the controller fail via keepalive failure if 2875 * its still present. 2876 */ 2877 2878 /* 2879 * clean up the admin queue. Same thing as above. 2880 * use blk_mq_tagset_busy_itr() and the transport routine to 2881 * terminate the exchanges. 2882 */ 2883 if (ctrl->ctrl.state != NVME_CTRL_NEW) 2884 blk_mq_quiesce_queue(ctrl->ctrl.admin_q); 2885 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2886 nvme_fc_terminate_exchange, &ctrl->ctrl); 2887 2888 /* kill the aens as they are a separate path */ 2889 nvme_fc_abort_aen_ops(ctrl); 2890 2891 /* wait for all io that had to be aborted */ 2892 spin_lock_irq(&ctrl->lock); 2893 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 2894 ctrl->flags &= ~FCCTRL_TERMIO; 2895 spin_unlock_irq(&ctrl->lock); 2896 2897 nvme_fc_term_aen_ops(ctrl); 2898 2899 /* 2900 * send a Disconnect(association) LS to fc-nvme target 2901 * Note: could have been sent at top of process, but 2902 * cleaner on link traffic if after the aborts complete. 2903 * Note: if association doesn't exist, association_id will be 0 2904 */ 2905 if (ctrl->association_id) 2906 nvme_fc_xmt_disconnect_assoc(ctrl); 2907 2908 if (ctrl->ctrl.tagset) { 2909 nvme_fc_delete_hw_io_queues(ctrl); 2910 nvme_fc_free_io_queues(ctrl); 2911 } 2912 2913 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 2914 nvme_fc_free_queue(&ctrl->queues[0]); 2915 2916 /* re-enable the admin_q so anything new can fast fail */ 2917 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); 2918 2919 nvme_fc_ctlr_inactive_on_rport(ctrl); 2920 } 2921 2922 static void 2923 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 2924 { 2925 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2926 2927 cancel_delayed_work_sync(&ctrl->connect_work); 2928 /* 2929 * kill the association on the link side. this will block 2930 * waiting for io to terminate 2931 */ 2932 nvme_fc_delete_association(ctrl); 2933 2934 /* resume the io queues so that things will fast fail */ 2935 nvme_start_queues(nctrl); 2936 } 2937 2938 static void 2939 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 2940 { 2941 struct nvme_fc_rport *rport = ctrl->rport; 2942 struct nvme_fc_remote_port *portptr = &rport->remoteport; 2943 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 2944 bool recon = true; 2945 2946 if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) 2947 return; 2948 2949 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2950 dev_info(ctrl->ctrl.device, 2951 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 2952 ctrl->cnum, status); 2953 else if (time_after_eq(jiffies, rport->dev_loss_end)) 2954 recon = false; 2955 2956 if (recon && nvmf_should_reconnect(&ctrl->ctrl)) { 2957 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2958 dev_info(ctrl->ctrl.device, 2959 "NVME-FC{%d}: Reconnect attempt in %ld " 2960 "seconds\n", 2961 ctrl->cnum, recon_delay / HZ); 2962 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 2963 recon_delay = rport->dev_loss_end - jiffies; 2964 2965 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 2966 } else { 2967 if (portptr->port_state == FC_OBJSTATE_ONLINE) 2968 dev_warn(ctrl->ctrl.device, 2969 "NVME-FC{%d}: Max reconnect attempts (%d) " 2970 "reached. Removing controller\n", 2971 ctrl->cnum, ctrl->ctrl.nr_reconnects); 2972 else 2973 dev_warn(ctrl->ctrl.device, 2974 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 2975 "while waiting for remoteport connectivity. " 2976 "Removing controller\n", ctrl->cnum, 2977 portptr->dev_loss_tmo); 2978 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 2979 } 2980 } 2981 2982 static void 2983 nvme_fc_reset_ctrl_work(struct work_struct *work) 2984 { 2985 struct nvme_fc_ctrl *ctrl = 2986 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 2987 int ret; 2988 2989 nvme_stop_ctrl(&ctrl->ctrl); 2990 2991 /* will block will waiting for io to terminate */ 2992 nvme_fc_delete_association(ctrl); 2993 2994 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) { 2995 dev_err(ctrl->ctrl.device, 2996 "NVME-FC{%d}: error_recovery: Couldn't change state " 2997 "to RECONNECTING\n", ctrl->cnum); 2998 return; 2999 } 3000 3001 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) 3002 ret = nvme_fc_create_association(ctrl); 3003 else 3004 ret = -ENOTCONN; 3005 3006 if (ret) 3007 nvme_fc_reconnect_or_delete(ctrl, ret); 3008 else 3009 dev_info(ctrl->ctrl.device, 3010 "NVME-FC{%d}: controller reset complete\n", 3011 ctrl->cnum); 3012 } 3013 3014 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3015 .name = "fc", 3016 .module = THIS_MODULE, 3017 .flags = NVME_F_FABRICS, 3018 .reg_read32 = nvmf_reg_read32, 3019 .reg_read64 = nvmf_reg_read64, 3020 .reg_write32 = nvmf_reg_write32, 3021 .free_ctrl = nvme_fc_nvme_ctrl_freed, 3022 .submit_async_event = nvme_fc_submit_async_event, 3023 .delete_ctrl = nvme_fc_delete_ctrl, 3024 .get_address = nvmf_get_address, 3025 .reinit_request = nvme_fc_reinit_request, 3026 }; 3027 3028 static void 3029 nvme_fc_connect_ctrl_work(struct work_struct *work) 3030 { 3031 int ret; 3032 3033 struct nvme_fc_ctrl *ctrl = 3034 container_of(to_delayed_work(work), 3035 struct nvme_fc_ctrl, connect_work); 3036 3037 ret = nvme_fc_create_association(ctrl); 3038 if (ret) 3039 nvme_fc_reconnect_or_delete(ctrl, ret); 3040 else 3041 dev_info(ctrl->ctrl.device, 3042 "NVME-FC{%d}: controller reconnect complete\n", 3043 ctrl->cnum); 3044 } 3045 3046 3047 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3048 .queue_rq = nvme_fc_queue_rq, 3049 .complete = nvme_fc_complete_rq, 3050 .init_request = nvme_fc_init_request, 3051 .exit_request = nvme_fc_exit_request, 3052 .init_hctx = nvme_fc_init_admin_hctx, 3053 .timeout = nvme_fc_timeout, 3054 }; 3055 3056 3057 /* 3058 * Fails a controller request if it matches an existing controller 3059 * (association) with the same tuple: 3060 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3061 * 3062 * The ports don't need to be compared as they are intrinsically 3063 * already matched by the port pointers supplied. 3064 */ 3065 static bool 3066 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3067 struct nvmf_ctrl_options *opts) 3068 { 3069 struct nvme_fc_ctrl *ctrl; 3070 unsigned long flags; 3071 bool found = false; 3072 3073 spin_lock_irqsave(&rport->lock, flags); 3074 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3075 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3076 if (found) 3077 break; 3078 } 3079 spin_unlock_irqrestore(&rport->lock, flags); 3080 3081 return found; 3082 } 3083 3084 static struct nvme_ctrl * 3085 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3086 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3087 { 3088 struct nvme_fc_ctrl *ctrl; 3089 unsigned long flags; 3090 int ret, idx, retry; 3091 3092 if (!(rport->remoteport.port_role & 3093 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3094 ret = -EBADR; 3095 goto out_fail; 3096 } 3097 3098 if (!opts->duplicate_connect && 3099 nvme_fc_existing_controller(rport, opts)) { 3100 ret = -EALREADY; 3101 goto out_fail; 3102 } 3103 3104 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3105 if (!ctrl) { 3106 ret = -ENOMEM; 3107 goto out_fail; 3108 } 3109 3110 idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL); 3111 if (idx < 0) { 3112 ret = -ENOSPC; 3113 goto out_free_ctrl; 3114 } 3115 3116 ctrl->ctrl.opts = opts; 3117 INIT_LIST_HEAD(&ctrl->ctrl_list); 3118 ctrl->lport = lport; 3119 ctrl->rport = rport; 3120 ctrl->dev = lport->dev; 3121 ctrl->cnum = idx; 3122 ctrl->assoc_active = false; 3123 init_waitqueue_head(&ctrl->ioabort_wait); 3124 3125 get_device(ctrl->dev); 3126 kref_init(&ctrl->ref); 3127 3128 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3129 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3130 spin_lock_init(&ctrl->lock); 3131 3132 /* io queue count */ 3133 ctrl->ctrl.queue_count = min_t(unsigned int, 3134 opts->nr_io_queues, 3135 lport->ops->max_hw_queues); 3136 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3137 3138 ctrl->ctrl.sqsize = opts->queue_size - 1; 3139 ctrl->ctrl.kato = opts->kato; 3140 3141 ret = -ENOMEM; 3142 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3143 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3144 if (!ctrl->queues) 3145 goto out_free_ida; 3146 3147 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set)); 3148 ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops; 3149 ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH; 3150 ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */ 3151 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE; 3152 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) + 3153 (SG_CHUNK_SIZE * 3154 sizeof(struct scatterlist)) + 3155 ctrl->lport->ops->fcprqst_priv_sz; 3156 ctrl->admin_tag_set.driver_data = ctrl; 3157 ctrl->admin_tag_set.nr_hw_queues = 1; 3158 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT; 3159 ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED; 3160 3161 ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set); 3162 if (ret) 3163 goto out_free_queues; 3164 ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set; 3165 3166 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); 3167 if (IS_ERR(ctrl->ctrl.admin_q)) { 3168 ret = PTR_ERR(ctrl->ctrl.admin_q); 3169 goto out_free_admin_tag_set; 3170 } 3171 3172 /* 3173 * Would have been nice to init io queues tag set as well. 3174 * However, we require interaction from the controller 3175 * for max io queue count before we can do so. 3176 * Defer this to the connect path. 3177 */ 3178 3179 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3180 if (ret) 3181 goto out_cleanup_admin_q; 3182 3183 /* at this point, teardown path changes to ref counting on nvme ctrl */ 3184 3185 spin_lock_irqsave(&rport->lock, flags); 3186 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3187 spin_unlock_irqrestore(&rport->lock, flags); 3188 3189 /* 3190 * It's possible that transactions used to create the association 3191 * may fail. Examples: CreateAssociation LS or CreateIOConnection 3192 * LS gets dropped/corrupted/fails; or a frame gets dropped or a 3193 * command times out for one of the actions to init the controller 3194 * (Connect, Get/Set_Property, Set_Features, etc). Many of these 3195 * transport errors (frame drop, LS failure) inherently must kill 3196 * the association. The transport is coded so that any command used 3197 * to create the association (prior to a LIVE state transition 3198 * while NEW or RECONNECTING) will fail if it completes in error or 3199 * times out. 3200 * 3201 * As such: as the connect request was mostly likely due to a 3202 * udev event that discovered the remote port, meaning there is 3203 * not an admin or script there to restart if the connect 3204 * request fails, retry the initial connection creation up to 3205 * three times before giving up and declaring failure. 3206 */ 3207 for (retry = 0; retry < 3; retry++) { 3208 ret = nvme_fc_create_association(ctrl); 3209 if (!ret) 3210 break; 3211 } 3212 3213 if (ret) { 3214 /* couldn't schedule retry - fail out */ 3215 dev_err(ctrl->ctrl.device, 3216 "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum); 3217 3218 ctrl->ctrl.opts = NULL; 3219 3220 /* initiate nvme ctrl ref counting teardown */ 3221 nvme_uninit_ctrl(&ctrl->ctrl); 3222 3223 /* Remove core ctrl ref. */ 3224 nvme_put_ctrl(&ctrl->ctrl); 3225 3226 /* as we're past the point where we transition to the ref 3227 * counting teardown path, if we return a bad pointer here, 3228 * the calling routine, thinking it's prior to the 3229 * transition, will do an rport put. Since the teardown 3230 * path also does a rport put, we do an extra get here to 3231 * so proper order/teardown happens. 3232 */ 3233 nvme_fc_rport_get(rport); 3234 3235 if (ret > 0) 3236 ret = -EIO; 3237 return ERR_PTR(ret); 3238 } 3239 3240 nvme_get_ctrl(&ctrl->ctrl); 3241 3242 dev_info(ctrl->ctrl.device, 3243 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n", 3244 ctrl->cnum, ctrl->ctrl.opts->subsysnqn); 3245 3246 return &ctrl->ctrl; 3247 3248 out_cleanup_admin_q: 3249 blk_cleanup_queue(ctrl->ctrl.admin_q); 3250 out_free_admin_tag_set: 3251 blk_mq_free_tag_set(&ctrl->admin_tag_set); 3252 out_free_queues: 3253 kfree(ctrl->queues); 3254 out_free_ida: 3255 put_device(ctrl->dev); 3256 ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum); 3257 out_free_ctrl: 3258 kfree(ctrl); 3259 out_fail: 3260 /* exit via here doesn't follow ctlr ref points */ 3261 return ERR_PTR(ret); 3262 } 3263 3264 3265 struct nvmet_fc_traddr { 3266 u64 nn; 3267 u64 pn; 3268 }; 3269 3270 static int 3271 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3272 { 3273 u64 token64; 3274 3275 if (match_u64(sstr, &token64)) 3276 return -EINVAL; 3277 *val = token64; 3278 3279 return 0; 3280 } 3281 3282 /* 3283 * This routine validates and extracts the WWN's from the TRADDR string. 3284 * As kernel parsers need the 0x to determine number base, universally 3285 * build string to parse with 0x prefix before parsing name strings. 3286 */ 3287 static int 3288 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3289 { 3290 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3291 substring_t wwn = { name, &name[sizeof(name)-1] }; 3292 int nnoffset, pnoffset; 3293 3294 /* validate it string one of the 2 allowed formats */ 3295 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3296 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3297 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3298 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3299 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3300 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3301 NVME_FC_TRADDR_OXNNLEN; 3302 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3303 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3304 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3305 "pn-", NVME_FC_TRADDR_NNLEN))) { 3306 nnoffset = NVME_FC_TRADDR_NNLEN; 3307 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3308 } else 3309 goto out_einval; 3310 3311 name[0] = '0'; 3312 name[1] = 'x'; 3313 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3314 3315 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3316 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3317 goto out_einval; 3318 3319 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3320 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3321 goto out_einval; 3322 3323 return 0; 3324 3325 out_einval: 3326 pr_warn("%s: bad traddr string\n", __func__); 3327 return -EINVAL; 3328 } 3329 3330 static struct nvme_ctrl * 3331 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3332 { 3333 struct nvme_fc_lport *lport; 3334 struct nvme_fc_rport *rport; 3335 struct nvme_ctrl *ctrl; 3336 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3337 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3338 unsigned long flags; 3339 int ret; 3340 3341 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3342 if (ret || !raddr.nn || !raddr.pn) 3343 return ERR_PTR(-EINVAL); 3344 3345 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3346 if (ret || !laddr.nn || !laddr.pn) 3347 return ERR_PTR(-EINVAL); 3348 3349 /* find the host and remote ports to connect together */ 3350 spin_lock_irqsave(&nvme_fc_lock, flags); 3351 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3352 if (lport->localport.node_name != laddr.nn || 3353 lport->localport.port_name != laddr.pn) 3354 continue; 3355 3356 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3357 if (rport->remoteport.node_name != raddr.nn || 3358 rport->remoteport.port_name != raddr.pn) 3359 continue; 3360 3361 /* if fail to get reference fall through. Will error */ 3362 if (!nvme_fc_rport_get(rport)) 3363 break; 3364 3365 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3366 3367 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3368 if (IS_ERR(ctrl)) 3369 nvme_fc_rport_put(rport); 3370 return ctrl; 3371 } 3372 } 3373 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3374 3375 return ERR_PTR(-ENOENT); 3376 } 3377 3378 3379 static struct nvmf_transport_ops nvme_fc_transport = { 3380 .name = "fc", 3381 .module = THIS_MODULE, 3382 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3383 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3384 .create_ctrl = nvme_fc_create_ctrl, 3385 }; 3386 3387 static int __init nvme_fc_init_module(void) 3388 { 3389 int ret; 3390 3391 /* 3392 * NOTE: 3393 * It is expected that in the future the kernel will combine 3394 * the FC-isms that are currently under scsi and now being 3395 * added to by NVME into a new standalone FC class. The SCSI 3396 * and NVME protocols and their devices would be under this 3397 * new FC class. 3398 * 3399 * As we need something to post FC-specific udev events to, 3400 * specifically for nvme probe events, start by creating the 3401 * new device class. When the new standalone FC class is 3402 * put in place, this code will move to a more generic 3403 * location for the class. 3404 */ 3405 fc_class = class_create(THIS_MODULE, "fc"); 3406 if (IS_ERR(fc_class)) { 3407 pr_err("couldn't register class fc\n"); 3408 return PTR_ERR(fc_class); 3409 } 3410 3411 /* 3412 * Create a device for the FC-centric udev events 3413 */ 3414 fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL, 3415 "fc_udev_device"); 3416 if (IS_ERR(fc_udev_device)) { 3417 pr_err("couldn't create fc_udev device!\n"); 3418 ret = PTR_ERR(fc_udev_device); 3419 goto out_destroy_class; 3420 } 3421 3422 ret = nvmf_register_transport(&nvme_fc_transport); 3423 if (ret) 3424 goto out_destroy_device; 3425 3426 return 0; 3427 3428 out_destroy_device: 3429 device_destroy(fc_class, MKDEV(0, 0)); 3430 out_destroy_class: 3431 class_destroy(fc_class); 3432 return ret; 3433 } 3434 3435 static void __exit nvme_fc_exit_module(void) 3436 { 3437 /* sanity check - all lports should be removed */ 3438 if (!list_empty(&nvme_fc_lport_list)) 3439 pr_warn("%s: localport list not empty\n", __func__); 3440 3441 nvmf_unregister_transport(&nvme_fc_transport); 3442 3443 ida_destroy(&nvme_fc_local_port_cnt); 3444 ida_destroy(&nvme_fc_ctrl_cnt); 3445 3446 device_destroy(fc_class, MKDEV(0, 0)); 3447 class_destroy(fc_class); 3448 } 3449 3450 module_init(nvme_fc_init_module); 3451 module_exit(nvme_fc_exit_module); 3452 3453 MODULE_LICENSE("GPL v2"); 3454