xref: /linux/drivers/nvme/host/fc.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 enum nvme_fc_queue_flags {
34 	NVME_FC_Q_CONNECTED = 0,
35 	NVME_FC_Q_LIVE,
36 };
37 
38 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
39 
40 struct nvme_fc_queue {
41 	struct nvme_fc_ctrl	*ctrl;
42 	struct device		*dev;
43 	struct blk_mq_hw_ctx	*hctx;
44 	void			*lldd_handle;
45 	size_t			cmnd_capsule_len;
46 	u32			qnum;
47 	u32			rqcnt;
48 	u32			seqno;
49 
50 	u64			connection_id;
51 	atomic_t		csn;
52 
53 	unsigned long		flags;
54 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
55 
56 enum nvme_fcop_flags {
57 	FCOP_FLAGS_TERMIO	= (1 << 0),
58 	FCOP_FLAGS_RELEASED	= (1 << 1),
59 	FCOP_FLAGS_COMPLETE	= (1 << 2),
60 	FCOP_FLAGS_AEN		= (1 << 3),
61 };
62 
63 struct nvmefc_ls_req_op {
64 	struct nvmefc_ls_req	ls_req;
65 
66 	struct nvme_fc_rport	*rport;
67 	struct nvme_fc_queue	*queue;
68 	struct request		*rq;
69 	u32			flags;
70 
71 	int			ls_error;
72 	struct completion	ls_done;
73 	struct list_head	lsreq_list;	/* rport->ls_req_list */
74 	bool			req_queued;
75 };
76 
77 enum nvme_fcpop_state {
78 	FCPOP_STATE_UNINIT	= 0,
79 	FCPOP_STATE_IDLE	= 1,
80 	FCPOP_STATE_ACTIVE	= 2,
81 	FCPOP_STATE_ABORTED	= 3,
82 	FCPOP_STATE_COMPLETE	= 4,
83 };
84 
85 struct nvme_fc_fcp_op {
86 	struct nvme_request	nreq;		/*
87 						 * nvme/host/core.c
88 						 * requires this to be
89 						 * the 1st element in the
90 						 * private structure
91 						 * associated with the
92 						 * request.
93 						 */
94 	struct nvmefc_fcp_req	fcp_req;
95 
96 	struct nvme_fc_ctrl	*ctrl;
97 	struct nvme_fc_queue	*queue;
98 	struct request		*rq;
99 
100 	atomic_t		state;
101 	u32			flags;
102 	u32			rqno;
103 	u32			nents;
104 
105 	struct nvme_fc_cmd_iu	cmd_iu;
106 	struct nvme_fc_ersp_iu	rsp_iu;
107 };
108 
109 struct nvme_fc_lport {
110 	struct nvme_fc_local_port	localport;
111 
112 	struct ida			endp_cnt;
113 	struct list_head		port_list;	/* nvme_fc_port_list */
114 	struct list_head		endp_list;
115 	struct device			*dev;	/* physical device for dma */
116 	struct nvme_fc_port_template	*ops;
117 	struct kref			ref;
118 	atomic_t                        act_rport_cnt;
119 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
120 
121 struct nvme_fc_rport {
122 	struct nvme_fc_remote_port	remoteport;
123 
124 	struct list_head		endp_list; /* for lport->endp_list */
125 	struct list_head		ctrl_list;
126 	struct list_head		ls_req_list;
127 	struct device			*dev;	/* physical device for dma */
128 	struct nvme_fc_lport		*lport;
129 	spinlock_t			lock;
130 	struct kref			ref;
131 	atomic_t                        act_ctrl_cnt;
132 	unsigned long			dev_loss_end;
133 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
134 
135 enum nvme_fcctrl_flags {
136 	FCCTRL_TERMIO		= (1 << 0),
137 };
138 
139 struct nvme_fc_ctrl {
140 	spinlock_t		lock;
141 	struct nvme_fc_queue	*queues;
142 	struct device		*dev;
143 	struct nvme_fc_lport	*lport;
144 	struct nvme_fc_rport	*rport;
145 	u32			cnum;
146 
147 	bool			assoc_active;
148 	u64			association_id;
149 
150 	struct list_head	ctrl_list;	/* rport->ctrl_list */
151 
152 	struct blk_mq_tag_set	admin_tag_set;
153 	struct blk_mq_tag_set	tag_set;
154 
155 	struct delayed_work	connect_work;
156 
157 	struct kref		ref;
158 	u32			flags;
159 	u32			iocnt;
160 	wait_queue_head_t	ioabort_wait;
161 
162 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
163 
164 	struct nvme_ctrl	ctrl;
165 };
166 
167 static inline struct nvme_fc_ctrl *
168 to_fc_ctrl(struct nvme_ctrl *ctrl)
169 {
170 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
171 }
172 
173 static inline struct nvme_fc_lport *
174 localport_to_lport(struct nvme_fc_local_port *portptr)
175 {
176 	return container_of(portptr, struct nvme_fc_lport, localport);
177 }
178 
179 static inline struct nvme_fc_rport *
180 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
181 {
182 	return container_of(portptr, struct nvme_fc_rport, remoteport);
183 }
184 
185 static inline struct nvmefc_ls_req_op *
186 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
187 {
188 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
189 }
190 
191 static inline struct nvme_fc_fcp_op *
192 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
193 {
194 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
195 }
196 
197 
198 
199 /* *************************** Globals **************************** */
200 
201 
202 static DEFINE_SPINLOCK(nvme_fc_lock);
203 
204 static LIST_HEAD(nvme_fc_lport_list);
205 static DEFINE_IDA(nvme_fc_local_port_cnt);
206 static DEFINE_IDA(nvme_fc_ctrl_cnt);
207 
208 
209 
210 /*
211  * These items are short-term. They will eventually be moved into
212  * a generic FC class. See comments in module init.
213  */
214 static struct class *fc_class;
215 static struct device *fc_udev_device;
216 
217 
218 /* *********************** FC-NVME Port Management ************************ */
219 
220 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
221 			struct nvme_fc_queue *, unsigned int);
222 
223 static void
224 nvme_fc_free_lport(struct kref *ref)
225 {
226 	struct nvme_fc_lport *lport =
227 		container_of(ref, struct nvme_fc_lport, ref);
228 	unsigned long flags;
229 
230 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
231 	WARN_ON(!list_empty(&lport->endp_list));
232 
233 	/* remove from transport list */
234 	spin_lock_irqsave(&nvme_fc_lock, flags);
235 	list_del(&lport->port_list);
236 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
237 
238 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
239 	ida_destroy(&lport->endp_cnt);
240 
241 	put_device(lport->dev);
242 
243 	kfree(lport);
244 }
245 
246 static void
247 nvme_fc_lport_put(struct nvme_fc_lport *lport)
248 {
249 	kref_put(&lport->ref, nvme_fc_free_lport);
250 }
251 
252 static int
253 nvme_fc_lport_get(struct nvme_fc_lport *lport)
254 {
255 	return kref_get_unless_zero(&lport->ref);
256 }
257 
258 
259 static struct nvme_fc_lport *
260 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
261 			struct nvme_fc_port_template *ops,
262 			struct device *dev)
263 {
264 	struct nvme_fc_lport *lport;
265 	unsigned long flags;
266 
267 	spin_lock_irqsave(&nvme_fc_lock, flags);
268 
269 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
270 		if (lport->localport.node_name != pinfo->node_name ||
271 		    lport->localport.port_name != pinfo->port_name)
272 			continue;
273 
274 		if (lport->dev != dev) {
275 			lport = ERR_PTR(-EXDEV);
276 			goto out_done;
277 		}
278 
279 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
280 			lport = ERR_PTR(-EEXIST);
281 			goto out_done;
282 		}
283 
284 		if (!nvme_fc_lport_get(lport)) {
285 			/*
286 			 * fails if ref cnt already 0. If so,
287 			 * act as if lport already deleted
288 			 */
289 			lport = NULL;
290 			goto out_done;
291 		}
292 
293 		/* resume the lport */
294 
295 		lport->ops = ops;
296 		lport->localport.port_role = pinfo->port_role;
297 		lport->localport.port_id = pinfo->port_id;
298 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
299 
300 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
301 
302 		return lport;
303 	}
304 
305 	lport = NULL;
306 
307 out_done:
308 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
309 
310 	return lport;
311 }
312 
313 /**
314  * nvme_fc_register_localport - transport entry point called by an
315  *                              LLDD to register the existence of a NVME
316  *                              host FC port.
317  * @pinfo:     pointer to information about the port to be registered
318  * @template:  LLDD entrypoints and operational parameters for the port
319  * @dev:       physical hardware device node port corresponds to. Will be
320  *             used for DMA mappings
321  * @lport_p:   pointer to a local port pointer. Upon success, the routine
322  *             will allocate a nvme_fc_local_port structure and place its
323  *             address in the local port pointer. Upon failure, local port
324  *             pointer will be set to 0.
325  *
326  * Returns:
327  * a completion status. Must be 0 upon success; a negative errno
328  * (ex: -ENXIO) upon failure.
329  */
330 int
331 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
332 			struct nvme_fc_port_template *template,
333 			struct device *dev,
334 			struct nvme_fc_local_port **portptr)
335 {
336 	struct nvme_fc_lport *newrec;
337 	unsigned long flags;
338 	int ret, idx;
339 
340 	if (!template->localport_delete || !template->remoteport_delete ||
341 	    !template->ls_req || !template->fcp_io ||
342 	    !template->ls_abort || !template->fcp_abort ||
343 	    !template->max_hw_queues || !template->max_sgl_segments ||
344 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
345 		ret = -EINVAL;
346 		goto out_reghost_failed;
347 	}
348 
349 	/*
350 	 * look to see if there is already a localport that had been
351 	 * deregistered and in the process of waiting for all the
352 	 * references to fully be removed.  If the references haven't
353 	 * expired, we can simply re-enable the localport. Remoteports
354 	 * and controller reconnections should resume naturally.
355 	 */
356 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
357 
358 	/* found an lport, but something about its state is bad */
359 	if (IS_ERR(newrec)) {
360 		ret = PTR_ERR(newrec);
361 		goto out_reghost_failed;
362 
363 	/* found existing lport, which was resumed */
364 	} else if (newrec) {
365 		*portptr = &newrec->localport;
366 		return 0;
367 	}
368 
369 	/* nothing found - allocate a new localport struct */
370 
371 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
372 			 GFP_KERNEL);
373 	if (!newrec) {
374 		ret = -ENOMEM;
375 		goto out_reghost_failed;
376 	}
377 
378 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
379 	if (idx < 0) {
380 		ret = -ENOSPC;
381 		goto out_fail_kfree;
382 	}
383 
384 	if (!get_device(dev) && dev) {
385 		ret = -ENODEV;
386 		goto out_ida_put;
387 	}
388 
389 	INIT_LIST_HEAD(&newrec->port_list);
390 	INIT_LIST_HEAD(&newrec->endp_list);
391 	kref_init(&newrec->ref);
392 	atomic_set(&newrec->act_rport_cnt, 0);
393 	newrec->ops = template;
394 	newrec->dev = dev;
395 	ida_init(&newrec->endp_cnt);
396 	newrec->localport.private = &newrec[1];
397 	newrec->localport.node_name = pinfo->node_name;
398 	newrec->localport.port_name = pinfo->port_name;
399 	newrec->localport.port_role = pinfo->port_role;
400 	newrec->localport.port_id = pinfo->port_id;
401 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
402 	newrec->localport.port_num = idx;
403 
404 	spin_lock_irqsave(&nvme_fc_lock, flags);
405 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
406 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
407 
408 	if (dev)
409 		dma_set_seg_boundary(dev, template->dma_boundary);
410 
411 	*portptr = &newrec->localport;
412 	return 0;
413 
414 out_ida_put:
415 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
416 out_fail_kfree:
417 	kfree(newrec);
418 out_reghost_failed:
419 	*portptr = NULL;
420 
421 	return ret;
422 }
423 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
424 
425 /**
426  * nvme_fc_unregister_localport - transport entry point called by an
427  *                              LLDD to deregister/remove a previously
428  *                              registered a NVME host FC port.
429  * @localport: pointer to the (registered) local port that is to be
430  *             deregistered.
431  *
432  * Returns:
433  * a completion status. Must be 0 upon success; a negative errno
434  * (ex: -ENXIO) upon failure.
435  */
436 int
437 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
438 {
439 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
440 	unsigned long flags;
441 
442 	if (!portptr)
443 		return -EINVAL;
444 
445 	spin_lock_irqsave(&nvme_fc_lock, flags);
446 
447 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
448 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
449 		return -EINVAL;
450 	}
451 	portptr->port_state = FC_OBJSTATE_DELETED;
452 
453 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 
455 	if (atomic_read(&lport->act_rport_cnt) == 0)
456 		lport->ops->localport_delete(&lport->localport);
457 
458 	nvme_fc_lport_put(lport);
459 
460 	return 0;
461 }
462 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
463 
464 /*
465  * TRADDR strings, per FC-NVME are fixed format:
466  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
467  * udev event will only differ by prefix of what field is
468  * being specified:
469  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
470  *  19 + 43 + null_fudge = 64 characters
471  */
472 #define FCNVME_TRADDR_LENGTH		64
473 
474 static void
475 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
476 		struct nvme_fc_rport *rport)
477 {
478 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
479 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
480 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
481 
482 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
483 		return;
484 
485 	snprintf(hostaddr, sizeof(hostaddr),
486 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
487 		lport->localport.node_name, lport->localport.port_name);
488 	snprintf(tgtaddr, sizeof(tgtaddr),
489 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
490 		rport->remoteport.node_name, rport->remoteport.port_name);
491 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
492 }
493 
494 static void
495 nvme_fc_free_rport(struct kref *ref)
496 {
497 	struct nvme_fc_rport *rport =
498 		container_of(ref, struct nvme_fc_rport, ref);
499 	struct nvme_fc_lport *lport =
500 			localport_to_lport(rport->remoteport.localport);
501 	unsigned long flags;
502 
503 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
504 	WARN_ON(!list_empty(&rport->ctrl_list));
505 
506 	/* remove from lport list */
507 	spin_lock_irqsave(&nvme_fc_lock, flags);
508 	list_del(&rport->endp_list);
509 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
510 
511 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
512 
513 	kfree(rport);
514 
515 	nvme_fc_lport_put(lport);
516 }
517 
518 static void
519 nvme_fc_rport_put(struct nvme_fc_rport *rport)
520 {
521 	kref_put(&rport->ref, nvme_fc_free_rport);
522 }
523 
524 static int
525 nvme_fc_rport_get(struct nvme_fc_rport *rport)
526 {
527 	return kref_get_unless_zero(&rport->ref);
528 }
529 
530 static void
531 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
532 {
533 	switch (ctrl->ctrl.state) {
534 	case NVME_CTRL_NEW:
535 	case NVME_CTRL_RECONNECTING:
536 		/*
537 		 * As all reconnects were suppressed, schedule a
538 		 * connect.
539 		 */
540 		dev_info(ctrl->ctrl.device,
541 			"NVME-FC{%d}: connectivity re-established. "
542 			"Attempting reconnect\n", ctrl->cnum);
543 
544 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
545 		break;
546 
547 	case NVME_CTRL_RESETTING:
548 		/*
549 		 * Controller is already in the process of terminating the
550 		 * association. No need to do anything further. The reconnect
551 		 * step will naturally occur after the reset completes.
552 		 */
553 		break;
554 
555 	default:
556 		/* no action to take - let it delete */
557 		break;
558 	}
559 }
560 
561 static struct nvme_fc_rport *
562 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
563 				struct nvme_fc_port_info *pinfo)
564 {
565 	struct nvme_fc_rport *rport;
566 	struct nvme_fc_ctrl *ctrl;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&nvme_fc_lock, flags);
570 
571 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
572 		if (rport->remoteport.node_name != pinfo->node_name ||
573 		    rport->remoteport.port_name != pinfo->port_name)
574 			continue;
575 
576 		if (!nvme_fc_rport_get(rport)) {
577 			rport = ERR_PTR(-ENOLCK);
578 			goto out_done;
579 		}
580 
581 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
582 
583 		spin_lock_irqsave(&rport->lock, flags);
584 
585 		/* has it been unregistered */
586 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
587 			/* means lldd called us twice */
588 			spin_unlock_irqrestore(&rport->lock, flags);
589 			nvme_fc_rport_put(rport);
590 			return ERR_PTR(-ESTALE);
591 		}
592 
593 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
594 		rport->dev_loss_end = 0;
595 
596 		/*
597 		 * kick off a reconnect attempt on all associations to the
598 		 * remote port. A successful reconnects will resume i/o.
599 		 */
600 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
601 			nvme_fc_resume_controller(ctrl);
602 
603 		spin_unlock_irqrestore(&rport->lock, flags);
604 
605 		return rport;
606 	}
607 
608 	rport = NULL;
609 
610 out_done:
611 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
612 
613 	return rport;
614 }
615 
616 static inline void
617 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
618 			struct nvme_fc_port_info *pinfo)
619 {
620 	if (pinfo->dev_loss_tmo)
621 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
622 	else
623 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
624 }
625 
626 /**
627  * nvme_fc_register_remoteport - transport entry point called by an
628  *                              LLDD to register the existence of a NVME
629  *                              subsystem FC port on its fabric.
630  * @localport: pointer to the (registered) local port that the remote
631  *             subsystem port is connected to.
632  * @pinfo:     pointer to information about the port to be registered
633  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
634  *             will allocate a nvme_fc_remote_port structure and place its
635  *             address in the remote port pointer. Upon failure, remote port
636  *             pointer will be set to 0.
637  *
638  * Returns:
639  * a completion status. Must be 0 upon success; a negative errno
640  * (ex: -ENXIO) upon failure.
641  */
642 int
643 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
644 				struct nvme_fc_port_info *pinfo,
645 				struct nvme_fc_remote_port **portptr)
646 {
647 	struct nvme_fc_lport *lport = localport_to_lport(localport);
648 	struct nvme_fc_rport *newrec;
649 	unsigned long flags;
650 	int ret, idx;
651 
652 	if (!nvme_fc_lport_get(lport)) {
653 		ret = -ESHUTDOWN;
654 		goto out_reghost_failed;
655 	}
656 
657 	/*
658 	 * look to see if there is already a remoteport that is waiting
659 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
660 	 * If so, transition to it and reconnect.
661 	 */
662 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
663 
664 	/* found an rport, but something about its state is bad */
665 	if (IS_ERR(newrec)) {
666 		ret = PTR_ERR(newrec);
667 		goto out_lport_put;
668 
669 	/* found existing rport, which was resumed */
670 	} else if (newrec) {
671 		nvme_fc_lport_put(lport);
672 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
673 		nvme_fc_signal_discovery_scan(lport, newrec);
674 		*portptr = &newrec->remoteport;
675 		return 0;
676 	}
677 
678 	/* nothing found - allocate a new remoteport struct */
679 
680 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
681 			 GFP_KERNEL);
682 	if (!newrec) {
683 		ret = -ENOMEM;
684 		goto out_lport_put;
685 	}
686 
687 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
688 	if (idx < 0) {
689 		ret = -ENOSPC;
690 		goto out_kfree_rport;
691 	}
692 
693 	INIT_LIST_HEAD(&newrec->endp_list);
694 	INIT_LIST_HEAD(&newrec->ctrl_list);
695 	INIT_LIST_HEAD(&newrec->ls_req_list);
696 	kref_init(&newrec->ref);
697 	atomic_set(&newrec->act_ctrl_cnt, 0);
698 	spin_lock_init(&newrec->lock);
699 	newrec->remoteport.localport = &lport->localport;
700 	newrec->dev = lport->dev;
701 	newrec->lport = lport;
702 	newrec->remoteport.private = &newrec[1];
703 	newrec->remoteport.port_role = pinfo->port_role;
704 	newrec->remoteport.node_name = pinfo->node_name;
705 	newrec->remoteport.port_name = pinfo->port_name;
706 	newrec->remoteport.port_id = pinfo->port_id;
707 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
708 	newrec->remoteport.port_num = idx;
709 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
710 
711 	spin_lock_irqsave(&nvme_fc_lock, flags);
712 	list_add_tail(&newrec->endp_list, &lport->endp_list);
713 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
714 
715 	nvme_fc_signal_discovery_scan(lport, newrec);
716 
717 	*portptr = &newrec->remoteport;
718 	return 0;
719 
720 out_kfree_rport:
721 	kfree(newrec);
722 out_lport_put:
723 	nvme_fc_lport_put(lport);
724 out_reghost_failed:
725 	*portptr = NULL;
726 	return ret;
727 }
728 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
729 
730 static int
731 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
732 {
733 	struct nvmefc_ls_req_op *lsop;
734 	unsigned long flags;
735 
736 restart:
737 	spin_lock_irqsave(&rport->lock, flags);
738 
739 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
740 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
741 			lsop->flags |= FCOP_FLAGS_TERMIO;
742 			spin_unlock_irqrestore(&rport->lock, flags);
743 			rport->lport->ops->ls_abort(&rport->lport->localport,
744 						&rport->remoteport,
745 						&lsop->ls_req);
746 			goto restart;
747 		}
748 	}
749 	spin_unlock_irqrestore(&rport->lock, flags);
750 
751 	return 0;
752 }
753 
754 static void
755 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
756 {
757 	dev_info(ctrl->ctrl.device,
758 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
759 		"Reconnect", ctrl->cnum);
760 
761 	switch (ctrl->ctrl.state) {
762 	case NVME_CTRL_NEW:
763 	case NVME_CTRL_LIVE:
764 		/*
765 		 * Schedule a controller reset. The reset will terminate the
766 		 * association and schedule the reconnect timer.  Reconnects
767 		 * will be attempted until either the ctlr_loss_tmo
768 		 * (max_retries * connect_delay) expires or the remoteport's
769 		 * dev_loss_tmo expires.
770 		 */
771 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
772 			dev_warn(ctrl->ctrl.device,
773 				"NVME-FC{%d}: Couldn't schedule reset. "
774 				"Deleting controller.\n",
775 				ctrl->cnum);
776 			nvme_delete_ctrl(&ctrl->ctrl);
777 		}
778 		break;
779 
780 	case NVME_CTRL_RECONNECTING:
781 		/*
782 		 * The association has already been terminated and the
783 		 * controller is attempting reconnects.  No need to do anything
784 		 * futher.  Reconnects will be attempted until either the
785 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
786 		 * remoteport's dev_loss_tmo expires.
787 		 */
788 		break;
789 
790 	case NVME_CTRL_RESETTING:
791 		/*
792 		 * Controller is already in the process of terminating the
793 		 * association.  No need to do anything further. The reconnect
794 		 * step will kick in naturally after the association is
795 		 * terminated.
796 		 */
797 		break;
798 
799 	case NVME_CTRL_DELETING:
800 	default:
801 		/* no action to take - let it delete */
802 		break;
803 	}
804 }
805 
806 /**
807  * nvme_fc_unregister_remoteport - transport entry point called by an
808  *                              LLDD to deregister/remove a previously
809  *                              registered a NVME subsystem FC port.
810  * @remoteport: pointer to the (registered) remote port that is to be
811  *              deregistered.
812  *
813  * Returns:
814  * a completion status. Must be 0 upon success; a negative errno
815  * (ex: -ENXIO) upon failure.
816  */
817 int
818 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
819 {
820 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
821 	struct nvme_fc_ctrl *ctrl;
822 	unsigned long flags;
823 
824 	if (!portptr)
825 		return -EINVAL;
826 
827 	spin_lock_irqsave(&rport->lock, flags);
828 
829 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
830 		spin_unlock_irqrestore(&rport->lock, flags);
831 		return -EINVAL;
832 	}
833 	portptr->port_state = FC_OBJSTATE_DELETED;
834 
835 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
836 
837 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
838 		/* if dev_loss_tmo==0, dev loss is immediate */
839 		if (!portptr->dev_loss_tmo) {
840 			dev_warn(ctrl->ctrl.device,
841 				"NVME-FC{%d}: controller connectivity lost. "
842 				"Deleting controller.\n",
843 				ctrl->cnum);
844 			nvme_delete_ctrl(&ctrl->ctrl);
845 		} else
846 			nvme_fc_ctrl_connectivity_loss(ctrl);
847 	}
848 
849 	spin_unlock_irqrestore(&rport->lock, flags);
850 
851 	nvme_fc_abort_lsops(rport);
852 
853 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
854 		rport->lport->ops->remoteport_delete(portptr);
855 
856 	/*
857 	 * release the reference, which will allow, if all controllers
858 	 * go away, which should only occur after dev_loss_tmo occurs,
859 	 * for the rport to be torn down.
860 	 */
861 	nvme_fc_rport_put(rport);
862 
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
866 
867 /**
868  * nvme_fc_rescan_remoteport - transport entry point called by an
869  *                              LLDD to request a nvme device rescan.
870  * @remoteport: pointer to the (registered) remote port that is to be
871  *              rescanned.
872  *
873  * Returns: N/A
874  */
875 void
876 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
877 {
878 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
879 
880 	nvme_fc_signal_discovery_scan(rport->lport, rport);
881 }
882 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
883 
884 int
885 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
886 			u32 dev_loss_tmo)
887 {
888 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
889 	unsigned long flags;
890 
891 	spin_lock_irqsave(&rport->lock, flags);
892 
893 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
894 		spin_unlock_irqrestore(&rport->lock, flags);
895 		return -EINVAL;
896 	}
897 
898 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
899 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
900 
901 	spin_unlock_irqrestore(&rport->lock, flags);
902 
903 	return 0;
904 }
905 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
906 
907 
908 /* *********************** FC-NVME DMA Handling **************************** */
909 
910 /*
911  * The fcloop device passes in a NULL device pointer. Real LLD's will
912  * pass in a valid device pointer. If NULL is passed to the dma mapping
913  * routines, depending on the platform, it may or may not succeed, and
914  * may crash.
915  *
916  * As such:
917  * Wrapper all the dma routines and check the dev pointer.
918  *
919  * If simple mappings (return just a dma address, we'll noop them,
920  * returning a dma address of 0.
921  *
922  * On more complex mappings (dma_map_sg), a pseudo routine fills
923  * in the scatter list, setting all dma addresses to 0.
924  */
925 
926 static inline dma_addr_t
927 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
928 		enum dma_data_direction dir)
929 {
930 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
931 }
932 
933 static inline int
934 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
935 {
936 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
937 }
938 
939 static inline void
940 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
941 	enum dma_data_direction dir)
942 {
943 	if (dev)
944 		dma_unmap_single(dev, addr, size, dir);
945 }
946 
947 static inline void
948 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
949 		enum dma_data_direction dir)
950 {
951 	if (dev)
952 		dma_sync_single_for_cpu(dev, addr, size, dir);
953 }
954 
955 static inline void
956 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
957 		enum dma_data_direction dir)
958 {
959 	if (dev)
960 		dma_sync_single_for_device(dev, addr, size, dir);
961 }
962 
963 /* pseudo dma_map_sg call */
964 static int
965 fc_map_sg(struct scatterlist *sg, int nents)
966 {
967 	struct scatterlist *s;
968 	int i;
969 
970 	WARN_ON(nents == 0 || sg[0].length == 0);
971 
972 	for_each_sg(sg, s, nents, i) {
973 		s->dma_address = 0L;
974 #ifdef CONFIG_NEED_SG_DMA_LENGTH
975 		s->dma_length = s->length;
976 #endif
977 	}
978 	return nents;
979 }
980 
981 static inline int
982 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
983 		enum dma_data_direction dir)
984 {
985 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
986 }
987 
988 static inline void
989 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
990 		enum dma_data_direction dir)
991 {
992 	if (dev)
993 		dma_unmap_sg(dev, sg, nents, dir);
994 }
995 
996 /* *********************** FC-NVME LS Handling **************************** */
997 
998 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
999 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1000 
1001 
1002 static void
1003 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1004 {
1005 	struct nvme_fc_rport *rport = lsop->rport;
1006 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1007 	unsigned long flags;
1008 
1009 	spin_lock_irqsave(&rport->lock, flags);
1010 
1011 	if (!lsop->req_queued) {
1012 		spin_unlock_irqrestore(&rport->lock, flags);
1013 		return;
1014 	}
1015 
1016 	list_del(&lsop->lsreq_list);
1017 
1018 	lsop->req_queued = false;
1019 
1020 	spin_unlock_irqrestore(&rport->lock, flags);
1021 
1022 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1023 				  (lsreq->rqstlen + lsreq->rsplen),
1024 				  DMA_BIDIRECTIONAL);
1025 
1026 	nvme_fc_rport_put(rport);
1027 }
1028 
1029 static int
1030 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1031 		struct nvmefc_ls_req_op *lsop,
1032 		void (*done)(struct nvmefc_ls_req *req, int status))
1033 {
1034 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1035 	unsigned long flags;
1036 	int ret = 0;
1037 
1038 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1039 		return -ECONNREFUSED;
1040 
1041 	if (!nvme_fc_rport_get(rport))
1042 		return -ESHUTDOWN;
1043 
1044 	lsreq->done = done;
1045 	lsop->rport = rport;
1046 	lsop->req_queued = false;
1047 	INIT_LIST_HEAD(&lsop->lsreq_list);
1048 	init_completion(&lsop->ls_done);
1049 
1050 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1051 				  lsreq->rqstlen + lsreq->rsplen,
1052 				  DMA_BIDIRECTIONAL);
1053 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1054 		ret = -EFAULT;
1055 		goto out_putrport;
1056 	}
1057 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1058 
1059 	spin_lock_irqsave(&rport->lock, flags);
1060 
1061 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1062 
1063 	lsop->req_queued = true;
1064 
1065 	spin_unlock_irqrestore(&rport->lock, flags);
1066 
1067 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1068 					&rport->remoteport, lsreq);
1069 	if (ret)
1070 		goto out_unlink;
1071 
1072 	return 0;
1073 
1074 out_unlink:
1075 	lsop->ls_error = ret;
1076 	spin_lock_irqsave(&rport->lock, flags);
1077 	lsop->req_queued = false;
1078 	list_del(&lsop->lsreq_list);
1079 	spin_unlock_irqrestore(&rport->lock, flags);
1080 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1081 				  (lsreq->rqstlen + lsreq->rsplen),
1082 				  DMA_BIDIRECTIONAL);
1083 out_putrport:
1084 	nvme_fc_rport_put(rport);
1085 
1086 	return ret;
1087 }
1088 
1089 static void
1090 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1091 {
1092 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1093 
1094 	lsop->ls_error = status;
1095 	complete(&lsop->ls_done);
1096 }
1097 
1098 static int
1099 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1100 {
1101 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1102 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1103 	int ret;
1104 
1105 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1106 
1107 	if (!ret) {
1108 		/*
1109 		 * No timeout/not interruptible as we need the struct
1110 		 * to exist until the lldd calls us back. Thus mandate
1111 		 * wait until driver calls back. lldd responsible for
1112 		 * the timeout action
1113 		 */
1114 		wait_for_completion(&lsop->ls_done);
1115 
1116 		__nvme_fc_finish_ls_req(lsop);
1117 
1118 		ret = lsop->ls_error;
1119 	}
1120 
1121 	if (ret)
1122 		return ret;
1123 
1124 	/* ACC or RJT payload ? */
1125 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1126 		return -ENXIO;
1127 
1128 	return 0;
1129 }
1130 
1131 static int
1132 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1133 		struct nvmefc_ls_req_op *lsop,
1134 		void (*done)(struct nvmefc_ls_req *req, int status))
1135 {
1136 	/* don't wait for completion */
1137 
1138 	return __nvme_fc_send_ls_req(rport, lsop, done);
1139 }
1140 
1141 /* Validation Error indexes into the string table below */
1142 enum {
1143 	VERR_NO_ERROR		= 0,
1144 	VERR_LSACC		= 1,
1145 	VERR_LSDESC_RQST	= 2,
1146 	VERR_LSDESC_RQST_LEN	= 3,
1147 	VERR_ASSOC_ID		= 4,
1148 	VERR_ASSOC_ID_LEN	= 5,
1149 	VERR_CONN_ID		= 6,
1150 	VERR_CONN_ID_LEN	= 7,
1151 	VERR_CR_ASSOC		= 8,
1152 	VERR_CR_ASSOC_ACC_LEN	= 9,
1153 	VERR_CR_CONN		= 10,
1154 	VERR_CR_CONN_ACC_LEN	= 11,
1155 	VERR_DISCONN		= 12,
1156 	VERR_DISCONN_ACC_LEN	= 13,
1157 };
1158 
1159 static char *validation_errors[] = {
1160 	"OK",
1161 	"Not LS_ACC",
1162 	"Not LSDESC_RQST",
1163 	"Bad LSDESC_RQST Length",
1164 	"Not Association ID",
1165 	"Bad Association ID Length",
1166 	"Not Connection ID",
1167 	"Bad Connection ID Length",
1168 	"Not CR_ASSOC Rqst",
1169 	"Bad CR_ASSOC ACC Length",
1170 	"Not CR_CONN Rqst",
1171 	"Bad CR_CONN ACC Length",
1172 	"Not Disconnect Rqst",
1173 	"Bad Disconnect ACC Length",
1174 };
1175 
1176 static int
1177 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1178 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1179 {
1180 	struct nvmefc_ls_req_op *lsop;
1181 	struct nvmefc_ls_req *lsreq;
1182 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1183 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1184 	int ret, fcret = 0;
1185 
1186 	lsop = kzalloc((sizeof(*lsop) +
1187 			 ctrl->lport->ops->lsrqst_priv_sz +
1188 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1189 	if (!lsop) {
1190 		ret = -ENOMEM;
1191 		goto out_no_memory;
1192 	}
1193 	lsreq = &lsop->ls_req;
1194 
1195 	lsreq->private = (void *)&lsop[1];
1196 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1197 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1198 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199 
1200 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1201 	assoc_rqst->desc_list_len =
1202 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1203 
1204 	assoc_rqst->assoc_cmd.desc_tag =
1205 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1206 	assoc_rqst->assoc_cmd.desc_len =
1207 			fcnvme_lsdesc_len(
1208 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209 
1210 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1211 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1212 	/* Linux supports only Dynamic controllers */
1213 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1214 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1215 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1216 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1217 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1218 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1219 
1220 	lsop->queue = queue;
1221 	lsreq->rqstaddr = assoc_rqst;
1222 	lsreq->rqstlen = sizeof(*assoc_rqst);
1223 	lsreq->rspaddr = assoc_acc;
1224 	lsreq->rsplen = sizeof(*assoc_acc);
1225 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1226 
1227 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1228 	if (ret)
1229 		goto out_free_buffer;
1230 
1231 	/* process connect LS completion */
1232 
1233 	/* validate the ACC response */
1234 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1235 		fcret = VERR_LSACC;
1236 	else if (assoc_acc->hdr.desc_list_len !=
1237 			fcnvme_lsdesc_len(
1238 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1239 		fcret = VERR_CR_ASSOC_ACC_LEN;
1240 	else if (assoc_acc->hdr.rqst.desc_tag !=
1241 			cpu_to_be32(FCNVME_LSDESC_RQST))
1242 		fcret = VERR_LSDESC_RQST;
1243 	else if (assoc_acc->hdr.rqst.desc_len !=
1244 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1245 		fcret = VERR_LSDESC_RQST_LEN;
1246 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1247 		fcret = VERR_CR_ASSOC;
1248 	else if (assoc_acc->associd.desc_tag !=
1249 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1250 		fcret = VERR_ASSOC_ID;
1251 	else if (assoc_acc->associd.desc_len !=
1252 			fcnvme_lsdesc_len(
1253 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1254 		fcret = VERR_ASSOC_ID_LEN;
1255 	else if (assoc_acc->connectid.desc_tag !=
1256 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1257 		fcret = VERR_CONN_ID;
1258 	else if (assoc_acc->connectid.desc_len !=
1259 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1260 		fcret = VERR_CONN_ID_LEN;
1261 
1262 	if (fcret) {
1263 		ret = -EBADF;
1264 		dev_err(ctrl->dev,
1265 			"q %d connect failed: %s\n",
1266 			queue->qnum, validation_errors[fcret]);
1267 	} else {
1268 		ctrl->association_id =
1269 			be64_to_cpu(assoc_acc->associd.association_id);
1270 		queue->connection_id =
1271 			be64_to_cpu(assoc_acc->connectid.connection_id);
1272 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1273 	}
1274 
1275 out_free_buffer:
1276 	kfree(lsop);
1277 out_no_memory:
1278 	if (ret)
1279 		dev_err(ctrl->dev,
1280 			"queue %d connect admin queue failed (%d).\n",
1281 			queue->qnum, ret);
1282 	return ret;
1283 }
1284 
1285 static int
1286 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1287 			u16 qsize, u16 ersp_ratio)
1288 {
1289 	struct nvmefc_ls_req_op *lsop;
1290 	struct nvmefc_ls_req *lsreq;
1291 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1292 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1293 	int ret, fcret = 0;
1294 
1295 	lsop = kzalloc((sizeof(*lsop) +
1296 			 ctrl->lport->ops->lsrqst_priv_sz +
1297 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1298 	if (!lsop) {
1299 		ret = -ENOMEM;
1300 		goto out_no_memory;
1301 	}
1302 	lsreq = &lsop->ls_req;
1303 
1304 	lsreq->private = (void *)&lsop[1];
1305 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1306 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1307 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1308 
1309 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1310 	conn_rqst->desc_list_len = cpu_to_be32(
1311 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1312 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1313 
1314 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1315 	conn_rqst->associd.desc_len =
1316 			fcnvme_lsdesc_len(
1317 				sizeof(struct fcnvme_lsdesc_assoc_id));
1318 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1319 	conn_rqst->connect_cmd.desc_tag =
1320 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1321 	conn_rqst->connect_cmd.desc_len =
1322 			fcnvme_lsdesc_len(
1323 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1324 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1325 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1326 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1327 
1328 	lsop->queue = queue;
1329 	lsreq->rqstaddr = conn_rqst;
1330 	lsreq->rqstlen = sizeof(*conn_rqst);
1331 	lsreq->rspaddr = conn_acc;
1332 	lsreq->rsplen = sizeof(*conn_acc);
1333 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1334 
1335 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1336 	if (ret)
1337 		goto out_free_buffer;
1338 
1339 	/* process connect LS completion */
1340 
1341 	/* validate the ACC response */
1342 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1343 		fcret = VERR_LSACC;
1344 	else if (conn_acc->hdr.desc_list_len !=
1345 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1346 		fcret = VERR_CR_CONN_ACC_LEN;
1347 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1348 		fcret = VERR_LSDESC_RQST;
1349 	else if (conn_acc->hdr.rqst.desc_len !=
1350 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1351 		fcret = VERR_LSDESC_RQST_LEN;
1352 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1353 		fcret = VERR_CR_CONN;
1354 	else if (conn_acc->connectid.desc_tag !=
1355 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1356 		fcret = VERR_CONN_ID;
1357 	else if (conn_acc->connectid.desc_len !=
1358 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1359 		fcret = VERR_CONN_ID_LEN;
1360 
1361 	if (fcret) {
1362 		ret = -EBADF;
1363 		dev_err(ctrl->dev,
1364 			"q %d connect failed: %s\n",
1365 			queue->qnum, validation_errors[fcret]);
1366 	} else {
1367 		queue->connection_id =
1368 			be64_to_cpu(conn_acc->connectid.connection_id);
1369 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1370 	}
1371 
1372 out_free_buffer:
1373 	kfree(lsop);
1374 out_no_memory:
1375 	if (ret)
1376 		dev_err(ctrl->dev,
1377 			"queue %d connect command failed (%d).\n",
1378 			queue->qnum, ret);
1379 	return ret;
1380 }
1381 
1382 static void
1383 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1384 {
1385 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1386 
1387 	__nvme_fc_finish_ls_req(lsop);
1388 
1389 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1390 
1391 	kfree(lsop);
1392 }
1393 
1394 /*
1395  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1396  * the FC-NVME Association.  Terminating the association also
1397  * terminates the FC-NVME connections (per queue, both admin and io
1398  * queues) that are part of the association. E.g. things are torn
1399  * down, and the related FC-NVME Association ID and Connection IDs
1400  * become invalid.
1401  *
1402  * The behavior of the fc-nvme initiator is such that it's
1403  * understanding of the association and connections will implicitly
1404  * be torn down. The action is implicit as it may be due to a loss of
1405  * connectivity with the fc-nvme target, so you may never get a
1406  * response even if you tried.  As such, the action of this routine
1407  * is to asynchronously send the LS, ignore any results of the LS, and
1408  * continue on with terminating the association. If the fc-nvme target
1409  * is present and receives the LS, it too can tear down.
1410  */
1411 static void
1412 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1413 {
1414 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1415 	struct fcnvme_ls_disconnect_acc *discon_acc;
1416 	struct nvmefc_ls_req_op *lsop;
1417 	struct nvmefc_ls_req *lsreq;
1418 	int ret;
1419 
1420 	lsop = kzalloc((sizeof(*lsop) +
1421 			 ctrl->lport->ops->lsrqst_priv_sz +
1422 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1423 			GFP_KERNEL);
1424 	if (!lsop)
1425 		/* couldn't sent it... too bad */
1426 		return;
1427 
1428 	lsreq = &lsop->ls_req;
1429 
1430 	lsreq->private = (void *)&lsop[1];
1431 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1432 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1433 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1434 
1435 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1436 	discon_rqst->desc_list_len = cpu_to_be32(
1437 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1438 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1439 
1440 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1441 	discon_rqst->associd.desc_len =
1442 			fcnvme_lsdesc_len(
1443 				sizeof(struct fcnvme_lsdesc_assoc_id));
1444 
1445 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1446 
1447 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1448 						FCNVME_LSDESC_DISCONN_CMD);
1449 	discon_rqst->discon_cmd.desc_len =
1450 			fcnvme_lsdesc_len(
1451 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1452 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1453 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1454 
1455 	lsreq->rqstaddr = discon_rqst;
1456 	lsreq->rqstlen = sizeof(*discon_rqst);
1457 	lsreq->rspaddr = discon_acc;
1458 	lsreq->rsplen = sizeof(*discon_acc);
1459 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1460 
1461 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1462 				nvme_fc_disconnect_assoc_done);
1463 	if (ret)
1464 		kfree(lsop);
1465 
1466 	/* only meaningful part to terminating the association */
1467 	ctrl->association_id = 0;
1468 }
1469 
1470 
1471 /* *********************** NVME Ctrl Routines **************************** */
1472 
1473 static void __nvme_fc_final_op_cleanup(struct request *rq);
1474 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1475 
1476 static int
1477 nvme_fc_reinit_request(void *data, struct request *rq)
1478 {
1479 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1480 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1481 
1482 	memset(cmdiu, 0, sizeof(*cmdiu));
1483 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1484 	cmdiu->fc_id = NVME_CMD_FC_ID;
1485 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1486 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1487 
1488 	return 0;
1489 }
1490 
1491 static void
1492 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1493 		struct nvme_fc_fcp_op *op)
1494 {
1495 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1496 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1497 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1498 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1499 
1500 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1501 }
1502 
1503 static void
1504 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1505 		unsigned int hctx_idx)
1506 {
1507 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1508 
1509 	return __nvme_fc_exit_request(set->driver_data, op);
1510 }
1511 
1512 static int
1513 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1514 {
1515 	int state;
1516 
1517 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1518 	if (state != FCPOP_STATE_ACTIVE) {
1519 		atomic_set(&op->state, state);
1520 		return -ECANCELED;
1521 	}
1522 
1523 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1524 					&ctrl->rport->remoteport,
1525 					op->queue->lldd_handle,
1526 					&op->fcp_req);
1527 
1528 	return 0;
1529 }
1530 
1531 static void
1532 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1533 {
1534 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1535 	unsigned long flags;
1536 	int i, ret;
1537 
1538 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1539 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1540 			continue;
1541 
1542 		spin_lock_irqsave(&ctrl->lock, flags);
1543 		if (ctrl->flags & FCCTRL_TERMIO) {
1544 			ctrl->iocnt++;
1545 			aen_op->flags |= FCOP_FLAGS_TERMIO;
1546 		}
1547 		spin_unlock_irqrestore(&ctrl->lock, flags);
1548 
1549 		ret = __nvme_fc_abort_op(ctrl, aen_op);
1550 		if (ret) {
1551 			/*
1552 			 * if __nvme_fc_abort_op failed the io wasn't
1553 			 * active. Thus this call path is running in
1554 			 * parallel to the io complete. Treat as non-error.
1555 			 */
1556 
1557 			/* back out the flags/counters */
1558 			spin_lock_irqsave(&ctrl->lock, flags);
1559 			if (ctrl->flags & FCCTRL_TERMIO)
1560 				ctrl->iocnt--;
1561 			aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1562 			spin_unlock_irqrestore(&ctrl->lock, flags);
1563 			return;
1564 		}
1565 	}
1566 }
1567 
1568 static inline int
1569 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1570 		struct nvme_fc_fcp_op *op)
1571 {
1572 	unsigned long flags;
1573 	bool complete_rq = false;
1574 
1575 	spin_lock_irqsave(&ctrl->lock, flags);
1576 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1577 		if (ctrl->flags & FCCTRL_TERMIO) {
1578 			if (!--ctrl->iocnt)
1579 				wake_up(&ctrl->ioabort_wait);
1580 		}
1581 	}
1582 	if (op->flags & FCOP_FLAGS_RELEASED)
1583 		complete_rq = true;
1584 	else
1585 		op->flags |= FCOP_FLAGS_COMPLETE;
1586 	spin_unlock_irqrestore(&ctrl->lock, flags);
1587 
1588 	return complete_rq;
1589 }
1590 
1591 static void
1592 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1593 {
1594 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1595 	struct request *rq = op->rq;
1596 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1597 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1598 	struct nvme_fc_queue *queue = op->queue;
1599 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1600 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1601 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1602 	union nvme_result result;
1603 	bool terminate_assoc = true;
1604 
1605 	/*
1606 	 * WARNING:
1607 	 * The current linux implementation of a nvme controller
1608 	 * allocates a single tag set for all io queues and sizes
1609 	 * the io queues to fully hold all possible tags. Thus, the
1610 	 * implementation does not reference or care about the sqhd
1611 	 * value as it never needs to use the sqhd/sqtail pointers
1612 	 * for submission pacing.
1613 	 *
1614 	 * This affects the FC-NVME implementation in two ways:
1615 	 * 1) As the value doesn't matter, we don't need to waste
1616 	 *    cycles extracting it from ERSPs and stamping it in the
1617 	 *    cases where the transport fabricates CQEs on successful
1618 	 *    completions.
1619 	 * 2) The FC-NVME implementation requires that delivery of
1620 	 *    ERSP completions are to go back to the nvme layer in order
1621 	 *    relative to the rsn, such that the sqhd value will always
1622 	 *    be "in order" for the nvme layer. As the nvme layer in
1623 	 *    linux doesn't care about sqhd, there's no need to return
1624 	 *    them in order.
1625 	 *
1626 	 * Additionally:
1627 	 * As the core nvme layer in linux currently does not look at
1628 	 * every field in the cqe - in cases where the FC transport must
1629 	 * fabricate a CQE, the following fields will not be set as they
1630 	 * are not referenced:
1631 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1632 	 *
1633 	 * Failure or error of an individual i/o, in a transport
1634 	 * detected fashion unrelated to the nvme completion status,
1635 	 * potentially cause the initiator and target sides to get out
1636 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1637 	 * Per FC-NVME spec, failure of an individual command requires
1638 	 * the connection to be terminated, which in turn requires the
1639 	 * association to be terminated.
1640 	 */
1641 
1642 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1643 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1644 
1645 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1646 			op->flags & FCOP_FLAGS_TERMIO)
1647 		status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1648 	else if (freq->status)
1649 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1650 
1651 	/*
1652 	 * For the linux implementation, if we have an unsuccesful
1653 	 * status, they blk-mq layer can typically be called with the
1654 	 * non-zero status and the content of the cqe isn't important.
1655 	 */
1656 	if (status)
1657 		goto done;
1658 
1659 	/*
1660 	 * command completed successfully relative to the wire
1661 	 * protocol. However, validate anything received and
1662 	 * extract the status and result from the cqe (create it
1663 	 * where necessary).
1664 	 */
1665 
1666 	switch (freq->rcv_rsplen) {
1667 
1668 	case 0:
1669 	case NVME_FC_SIZEOF_ZEROS_RSP:
1670 		/*
1671 		 * No response payload or 12 bytes of payload (which
1672 		 * should all be zeros) are considered successful and
1673 		 * no payload in the CQE by the transport.
1674 		 */
1675 		if (freq->transferred_length !=
1676 			be32_to_cpu(op->cmd_iu.data_len)) {
1677 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1678 			goto done;
1679 		}
1680 		result.u64 = 0;
1681 		break;
1682 
1683 	case sizeof(struct nvme_fc_ersp_iu):
1684 		/*
1685 		 * The ERSP IU contains a full completion with CQE.
1686 		 * Validate ERSP IU and look at cqe.
1687 		 */
1688 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1689 					(freq->rcv_rsplen / 4) ||
1690 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1691 					freq->transferred_length ||
1692 			     op->rsp_iu.status_code ||
1693 			     sqe->common.command_id != cqe->command_id)) {
1694 			status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1695 			goto done;
1696 		}
1697 		result = cqe->result;
1698 		status = cqe->status;
1699 		break;
1700 
1701 	default:
1702 		status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1703 		goto done;
1704 	}
1705 
1706 	terminate_assoc = false;
1707 
1708 done:
1709 	if (op->flags & FCOP_FLAGS_AEN) {
1710 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1711 		__nvme_fc_fcpop_chk_teardowns(ctrl, op);
1712 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1713 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1714 		nvme_fc_ctrl_put(ctrl);
1715 		goto check_error;
1716 	}
1717 
1718 	/*
1719 	 * Force failures of commands if we're killing the controller
1720 	 * or have an error on a command used to create an new association
1721 	 */
1722 	if (status &&
1723 	    (blk_queue_dying(rq->q) ||
1724 	     ctrl->ctrl.state == NVME_CTRL_NEW ||
1725 	     ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1726 		status |= cpu_to_le16(NVME_SC_DNR << 1);
1727 
1728 	if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1729 		__nvme_fc_final_op_cleanup(rq);
1730 	else
1731 		nvme_end_request(rq, status, result);
1732 
1733 check_error:
1734 	if (terminate_assoc)
1735 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1736 }
1737 
1738 static int
1739 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1740 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1741 		struct request *rq, u32 rqno)
1742 {
1743 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1744 	int ret = 0;
1745 
1746 	memset(op, 0, sizeof(*op));
1747 	op->fcp_req.cmdaddr = &op->cmd_iu;
1748 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1749 	op->fcp_req.rspaddr = &op->rsp_iu;
1750 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1751 	op->fcp_req.done = nvme_fc_fcpio_done;
1752 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1753 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1754 	op->ctrl = ctrl;
1755 	op->queue = queue;
1756 	op->rq = rq;
1757 	op->rqno = rqno;
1758 
1759 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1760 	cmdiu->fc_id = NVME_CMD_FC_ID;
1761 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1762 
1763 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1764 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1765 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1766 		dev_err(ctrl->dev,
1767 			"FCP Op failed - cmdiu dma mapping failed.\n");
1768 		ret = EFAULT;
1769 		goto out_on_error;
1770 	}
1771 
1772 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1773 				&op->rsp_iu, sizeof(op->rsp_iu),
1774 				DMA_FROM_DEVICE);
1775 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1776 		dev_err(ctrl->dev,
1777 			"FCP Op failed - rspiu dma mapping failed.\n");
1778 		ret = EFAULT;
1779 	}
1780 
1781 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1782 out_on_error:
1783 	return ret;
1784 }
1785 
1786 static int
1787 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1788 		unsigned int hctx_idx, unsigned int numa_node)
1789 {
1790 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1791 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1792 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1793 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1794 
1795 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1796 }
1797 
1798 static int
1799 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1800 {
1801 	struct nvme_fc_fcp_op *aen_op;
1802 	struct nvme_fc_cmd_iu *cmdiu;
1803 	struct nvme_command *sqe;
1804 	void *private;
1805 	int i, ret;
1806 
1807 	aen_op = ctrl->aen_ops;
1808 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1809 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1810 						GFP_KERNEL);
1811 		if (!private)
1812 			return -ENOMEM;
1813 
1814 		cmdiu = &aen_op->cmd_iu;
1815 		sqe = &cmdiu->sqe;
1816 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1817 				aen_op, (struct request *)NULL,
1818 				(NVME_AQ_BLK_MQ_DEPTH + i));
1819 		if (ret) {
1820 			kfree(private);
1821 			return ret;
1822 		}
1823 
1824 		aen_op->flags = FCOP_FLAGS_AEN;
1825 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1826 		aen_op->fcp_req.private = private;
1827 
1828 		memset(sqe, 0, sizeof(*sqe));
1829 		sqe->common.opcode = nvme_admin_async_event;
1830 		/* Note: core layer may overwrite the sqe.command_id value */
1831 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1832 	}
1833 	return 0;
1834 }
1835 
1836 static void
1837 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1838 {
1839 	struct nvme_fc_fcp_op *aen_op;
1840 	int i;
1841 
1842 	aen_op = ctrl->aen_ops;
1843 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1844 		if (!aen_op->fcp_req.private)
1845 			continue;
1846 
1847 		__nvme_fc_exit_request(ctrl, aen_op);
1848 
1849 		kfree(aen_op->fcp_req.private);
1850 		aen_op->fcp_req.private = NULL;
1851 	}
1852 }
1853 
1854 static inline void
1855 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1856 		unsigned int qidx)
1857 {
1858 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1859 
1860 	hctx->driver_data = queue;
1861 	queue->hctx = hctx;
1862 }
1863 
1864 static int
1865 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1866 		unsigned int hctx_idx)
1867 {
1868 	struct nvme_fc_ctrl *ctrl = data;
1869 
1870 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1871 
1872 	return 0;
1873 }
1874 
1875 static int
1876 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1877 		unsigned int hctx_idx)
1878 {
1879 	struct nvme_fc_ctrl *ctrl = data;
1880 
1881 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1882 
1883 	return 0;
1884 }
1885 
1886 static void
1887 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1888 {
1889 	struct nvme_fc_queue *queue;
1890 
1891 	queue = &ctrl->queues[idx];
1892 	memset(queue, 0, sizeof(*queue));
1893 	queue->ctrl = ctrl;
1894 	queue->qnum = idx;
1895 	atomic_set(&queue->csn, 1);
1896 	queue->dev = ctrl->dev;
1897 
1898 	if (idx > 0)
1899 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1900 	else
1901 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1902 
1903 	/*
1904 	 * Considered whether we should allocate buffers for all SQEs
1905 	 * and CQEs and dma map them - mapping their respective entries
1906 	 * into the request structures (kernel vm addr and dma address)
1907 	 * thus the driver could use the buffers/mappings directly.
1908 	 * It only makes sense if the LLDD would use them for its
1909 	 * messaging api. It's very unlikely most adapter api's would use
1910 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1911 	 * structures were used instead.
1912 	 */
1913 }
1914 
1915 /*
1916  * This routine terminates a queue at the transport level.
1917  * The transport has already ensured that all outstanding ios on
1918  * the queue have been terminated.
1919  * The transport will send a Disconnect LS request to terminate
1920  * the queue's connection. Termination of the admin queue will also
1921  * terminate the association at the target.
1922  */
1923 static void
1924 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1925 {
1926 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1927 		return;
1928 
1929 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1930 	/*
1931 	 * Current implementation never disconnects a single queue.
1932 	 * It always terminates a whole association. So there is never
1933 	 * a disconnect(queue) LS sent to the target.
1934 	 */
1935 
1936 	queue->connection_id = 0;
1937 }
1938 
1939 static void
1940 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1941 	struct nvme_fc_queue *queue, unsigned int qidx)
1942 {
1943 	if (ctrl->lport->ops->delete_queue)
1944 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1945 				queue->lldd_handle);
1946 	queue->lldd_handle = NULL;
1947 }
1948 
1949 static void
1950 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1951 {
1952 	int i;
1953 
1954 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
1955 		nvme_fc_free_queue(&ctrl->queues[i]);
1956 }
1957 
1958 static int
1959 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1960 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1961 {
1962 	int ret = 0;
1963 
1964 	queue->lldd_handle = NULL;
1965 	if (ctrl->lport->ops->create_queue)
1966 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1967 				qidx, qsize, &queue->lldd_handle);
1968 
1969 	return ret;
1970 }
1971 
1972 static void
1973 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1974 {
1975 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1976 	int i;
1977 
1978 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1979 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1980 }
1981 
1982 static int
1983 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1984 {
1985 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1986 	int i, ret;
1987 
1988 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1989 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1990 		if (ret)
1991 			goto delete_queues;
1992 	}
1993 
1994 	return 0;
1995 
1996 delete_queues:
1997 	for (; i >= 0; i--)
1998 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1999 	return ret;
2000 }
2001 
2002 static int
2003 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2004 {
2005 	int i, ret = 0;
2006 
2007 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2008 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2009 					(qsize / 5));
2010 		if (ret)
2011 			break;
2012 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2013 		if (ret)
2014 			break;
2015 
2016 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2017 	}
2018 
2019 	return ret;
2020 }
2021 
2022 static void
2023 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2024 {
2025 	int i;
2026 
2027 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2028 		nvme_fc_init_queue(ctrl, i);
2029 }
2030 
2031 static void
2032 nvme_fc_ctrl_free(struct kref *ref)
2033 {
2034 	struct nvme_fc_ctrl *ctrl =
2035 		container_of(ref, struct nvme_fc_ctrl, ref);
2036 	unsigned long flags;
2037 
2038 	if (ctrl->ctrl.tagset) {
2039 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2040 		blk_mq_free_tag_set(&ctrl->tag_set);
2041 	}
2042 
2043 	/* remove from rport list */
2044 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2045 	list_del(&ctrl->ctrl_list);
2046 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2047 
2048 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2049 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2050 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2051 
2052 	kfree(ctrl->queues);
2053 
2054 	put_device(ctrl->dev);
2055 	nvme_fc_rport_put(ctrl->rport);
2056 
2057 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2058 	if (ctrl->ctrl.opts)
2059 		nvmf_free_options(ctrl->ctrl.opts);
2060 	kfree(ctrl);
2061 }
2062 
2063 static void
2064 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2065 {
2066 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2067 }
2068 
2069 static int
2070 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2071 {
2072 	return kref_get_unless_zero(&ctrl->ref);
2073 }
2074 
2075 /*
2076  * All accesses from nvme core layer done - can now free the
2077  * controller. Called after last nvme_put_ctrl() call
2078  */
2079 static void
2080 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2081 {
2082 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2083 
2084 	WARN_ON(nctrl != &ctrl->ctrl);
2085 
2086 	nvme_fc_ctrl_put(ctrl);
2087 }
2088 
2089 static void
2090 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2091 {
2092 	/* only proceed if in LIVE state - e.g. on first error */
2093 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2094 		return;
2095 
2096 	dev_warn(ctrl->ctrl.device,
2097 		"NVME-FC{%d}: transport association error detected: %s\n",
2098 		ctrl->cnum, errmsg);
2099 	dev_warn(ctrl->ctrl.device,
2100 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2101 
2102 	nvme_reset_ctrl(&ctrl->ctrl);
2103 }
2104 
2105 static enum blk_eh_timer_return
2106 nvme_fc_timeout(struct request *rq, bool reserved)
2107 {
2108 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2109 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2110 	int ret;
2111 
2112 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2113 			atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2114 		return BLK_EH_RESET_TIMER;
2115 
2116 	ret = __nvme_fc_abort_op(ctrl, op);
2117 	if (ret)
2118 		/* io wasn't active to abort */
2119 		return BLK_EH_NOT_HANDLED;
2120 
2121 	/*
2122 	 * we can't individually ABTS an io without affecting the queue,
2123 	 * thus killing the queue, adn thus the association.
2124 	 * So resolve by performing a controller reset, which will stop
2125 	 * the host/io stack, terminate the association on the link,
2126 	 * and recreate an association on the link.
2127 	 */
2128 	nvme_fc_error_recovery(ctrl, "io timeout error");
2129 
2130 	/*
2131 	 * the io abort has been initiated. Have the reset timer
2132 	 * restarted and the abort completion will complete the io
2133 	 * shortly. Avoids a synchronous wait while the abort finishes.
2134 	 */
2135 	return BLK_EH_RESET_TIMER;
2136 }
2137 
2138 static int
2139 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2140 		struct nvme_fc_fcp_op *op)
2141 {
2142 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2143 	enum dma_data_direction dir;
2144 	int ret;
2145 
2146 	freq->sg_cnt = 0;
2147 
2148 	if (!blk_rq_payload_bytes(rq))
2149 		return 0;
2150 
2151 	freq->sg_table.sgl = freq->first_sgl;
2152 	ret = sg_alloc_table_chained(&freq->sg_table,
2153 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2154 	if (ret)
2155 		return -ENOMEM;
2156 
2157 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2158 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2159 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2160 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2161 				op->nents, dir);
2162 	if (unlikely(freq->sg_cnt <= 0)) {
2163 		sg_free_table_chained(&freq->sg_table, true);
2164 		freq->sg_cnt = 0;
2165 		return -EFAULT;
2166 	}
2167 
2168 	/*
2169 	 * TODO: blk_integrity_rq(rq)  for DIF
2170 	 */
2171 	return 0;
2172 }
2173 
2174 static void
2175 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2176 		struct nvme_fc_fcp_op *op)
2177 {
2178 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2179 
2180 	if (!freq->sg_cnt)
2181 		return;
2182 
2183 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2184 				((rq_data_dir(rq) == WRITE) ?
2185 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
2186 
2187 	nvme_cleanup_cmd(rq);
2188 
2189 	sg_free_table_chained(&freq->sg_table, true);
2190 
2191 	freq->sg_cnt = 0;
2192 }
2193 
2194 /*
2195  * In FC, the queue is a logical thing. At transport connect, the target
2196  * creates its "queue" and returns a handle that is to be given to the
2197  * target whenever it posts something to the corresponding SQ.  When an
2198  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2199  * command contained within the SQE, an io, and assigns a FC exchange
2200  * to it. The SQE and the associated SQ handle are sent in the initial
2201  * CMD IU sents on the exchange. All transfers relative to the io occur
2202  * as part of the exchange.  The CQE is the last thing for the io,
2203  * which is transferred (explicitly or implicitly) with the RSP IU
2204  * sent on the exchange. After the CQE is received, the FC exchange is
2205  * terminaed and the Exchange may be used on a different io.
2206  *
2207  * The transport to LLDD api has the transport making a request for a
2208  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2209  * resource and transfers the command. The LLDD will then process all
2210  * steps to complete the io. Upon completion, the transport done routine
2211  * is called.
2212  *
2213  * So - while the operation is outstanding to the LLDD, there is a link
2214  * level FC exchange resource that is also outstanding. This must be
2215  * considered in all cleanup operations.
2216  */
2217 static blk_status_t
2218 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2219 	struct nvme_fc_fcp_op *op, u32 data_len,
2220 	enum nvmefc_fcp_datadir	io_dir)
2221 {
2222 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2223 	struct nvme_command *sqe = &cmdiu->sqe;
2224 	u32 csn;
2225 	int ret;
2226 
2227 	/*
2228 	 * before attempting to send the io, check to see if we believe
2229 	 * the target device is present
2230 	 */
2231 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2232 		return BLK_STS_RESOURCE;
2233 
2234 	if (!nvme_fc_ctrl_get(ctrl))
2235 		return BLK_STS_IOERR;
2236 
2237 	/* format the FC-NVME CMD IU and fcp_req */
2238 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2239 	csn = atomic_inc_return(&queue->csn);
2240 	cmdiu->csn = cpu_to_be32(csn);
2241 	cmdiu->data_len = cpu_to_be32(data_len);
2242 	switch (io_dir) {
2243 	case NVMEFC_FCP_WRITE:
2244 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2245 		break;
2246 	case NVMEFC_FCP_READ:
2247 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2248 		break;
2249 	case NVMEFC_FCP_NODATA:
2250 		cmdiu->flags = 0;
2251 		break;
2252 	}
2253 	op->fcp_req.payload_length = data_len;
2254 	op->fcp_req.io_dir = io_dir;
2255 	op->fcp_req.transferred_length = 0;
2256 	op->fcp_req.rcv_rsplen = 0;
2257 	op->fcp_req.status = NVME_SC_SUCCESS;
2258 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2259 
2260 	/*
2261 	 * validate per fabric rules, set fields mandated by fabric spec
2262 	 * as well as those by FC-NVME spec.
2263 	 */
2264 	WARN_ON_ONCE(sqe->common.metadata);
2265 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2266 
2267 	/*
2268 	 * format SQE DPTR field per FC-NVME rules:
2269 	 *    type=0x5     Transport SGL Data Block Descriptor
2270 	 *    subtype=0xA  Transport-specific value
2271 	 *    address=0
2272 	 *    length=length of the data series
2273 	 */
2274 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2275 					NVME_SGL_FMT_TRANSPORT_A;
2276 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2277 	sqe->rw.dptr.sgl.addr = 0;
2278 
2279 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2280 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2281 		if (ret < 0) {
2282 			nvme_cleanup_cmd(op->rq);
2283 			nvme_fc_ctrl_put(ctrl);
2284 			if (ret == -ENOMEM || ret == -EAGAIN)
2285 				return BLK_STS_RESOURCE;
2286 			return BLK_STS_IOERR;
2287 		}
2288 	}
2289 
2290 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2291 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2292 
2293 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2294 
2295 	if (!(op->flags & FCOP_FLAGS_AEN))
2296 		blk_mq_start_request(op->rq);
2297 
2298 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2299 					&ctrl->rport->remoteport,
2300 					queue->lldd_handle, &op->fcp_req);
2301 
2302 	if (ret) {
2303 		if (!(op->flags & FCOP_FLAGS_AEN))
2304 			nvme_fc_unmap_data(ctrl, op->rq, op);
2305 
2306 		nvme_fc_ctrl_put(ctrl);
2307 
2308 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2309 				ret != -EBUSY)
2310 			return BLK_STS_IOERR;
2311 
2312 		return BLK_STS_RESOURCE;
2313 	}
2314 
2315 	return BLK_STS_OK;
2316 }
2317 
2318 static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2319 		struct request *rq)
2320 {
2321 	if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2322 		return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2323 	return BLK_STS_OK;
2324 }
2325 
2326 static blk_status_t
2327 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2328 			const struct blk_mq_queue_data *bd)
2329 {
2330 	struct nvme_ns *ns = hctx->queue->queuedata;
2331 	struct nvme_fc_queue *queue = hctx->driver_data;
2332 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2333 	struct request *rq = bd->rq;
2334 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2335 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2336 	struct nvme_command *sqe = &cmdiu->sqe;
2337 	enum nvmefc_fcp_datadir	io_dir;
2338 	u32 data_len;
2339 	blk_status_t ret;
2340 
2341 	ret = nvme_fc_is_ready(queue, rq);
2342 	if (unlikely(ret))
2343 		return ret;
2344 
2345 	ret = nvme_setup_cmd(ns, rq, sqe);
2346 	if (ret)
2347 		return ret;
2348 
2349 	data_len = blk_rq_payload_bytes(rq);
2350 	if (data_len)
2351 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2352 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2353 	else
2354 		io_dir = NVMEFC_FCP_NODATA;
2355 
2356 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2357 }
2358 
2359 static struct blk_mq_tags *
2360 nvme_fc_tagset(struct nvme_fc_queue *queue)
2361 {
2362 	if (queue->qnum == 0)
2363 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2364 
2365 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2366 }
2367 
2368 static int
2369 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2370 
2371 {
2372 	struct nvme_fc_queue *queue = hctx->driver_data;
2373 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2374 	struct request *req;
2375 	struct nvme_fc_fcp_op *op;
2376 
2377 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2378 	if (!req)
2379 		return 0;
2380 
2381 	op = blk_mq_rq_to_pdu(req);
2382 
2383 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2384 		 (ctrl->lport->ops->poll_queue))
2385 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2386 						 queue->lldd_handle);
2387 
2388 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2389 }
2390 
2391 static void
2392 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2393 {
2394 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2395 	struct nvme_fc_fcp_op *aen_op;
2396 	unsigned long flags;
2397 	bool terminating = false;
2398 	blk_status_t ret;
2399 
2400 	spin_lock_irqsave(&ctrl->lock, flags);
2401 	if (ctrl->flags & FCCTRL_TERMIO)
2402 		terminating = true;
2403 	spin_unlock_irqrestore(&ctrl->lock, flags);
2404 
2405 	if (terminating)
2406 		return;
2407 
2408 	aen_op = &ctrl->aen_ops[0];
2409 
2410 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2411 					NVMEFC_FCP_NODATA);
2412 	if (ret)
2413 		dev_err(ctrl->ctrl.device,
2414 			"failed async event work\n");
2415 }
2416 
2417 static void
2418 __nvme_fc_final_op_cleanup(struct request *rq)
2419 {
2420 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2421 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2422 
2423 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2424 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2425 			FCOP_FLAGS_COMPLETE);
2426 
2427 	nvme_fc_unmap_data(ctrl, rq, op);
2428 	nvme_complete_rq(rq);
2429 	nvme_fc_ctrl_put(ctrl);
2430 
2431 }
2432 
2433 static void
2434 nvme_fc_complete_rq(struct request *rq)
2435 {
2436 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2437 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2438 	unsigned long flags;
2439 	bool completed = false;
2440 
2441 	/*
2442 	 * the core layer, on controller resets after calling
2443 	 * nvme_shutdown_ctrl(), calls complete_rq without our
2444 	 * calling blk_mq_complete_request(), thus there may still
2445 	 * be live i/o outstanding with the LLDD. Means transport has
2446 	 * to track complete calls vs fcpio_done calls to know what
2447 	 * path to take on completes and dones.
2448 	 */
2449 	spin_lock_irqsave(&ctrl->lock, flags);
2450 	if (op->flags & FCOP_FLAGS_COMPLETE)
2451 		completed = true;
2452 	else
2453 		op->flags |= FCOP_FLAGS_RELEASED;
2454 	spin_unlock_irqrestore(&ctrl->lock, flags);
2455 
2456 	if (completed)
2457 		__nvme_fc_final_op_cleanup(rq);
2458 }
2459 
2460 /*
2461  * This routine is used by the transport when it needs to find active
2462  * io on a queue that is to be terminated. The transport uses
2463  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2464  * this routine to kill them on a 1 by 1 basis.
2465  *
2466  * As FC allocates FC exchange for each io, the transport must contact
2467  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2468  * After terminating the exchange the LLDD will call the transport's
2469  * normal io done path for the request, but it will have an aborted
2470  * status. The done path will return the io request back to the block
2471  * layer with an error status.
2472  */
2473 static void
2474 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2475 {
2476 	struct nvme_ctrl *nctrl = data;
2477 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2478 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2479 	unsigned long flags;
2480 	int status;
2481 
2482 	if (!blk_mq_request_started(req))
2483 		return;
2484 
2485 	spin_lock_irqsave(&ctrl->lock, flags);
2486 	if (ctrl->flags & FCCTRL_TERMIO) {
2487 		ctrl->iocnt++;
2488 		op->flags |= FCOP_FLAGS_TERMIO;
2489 	}
2490 	spin_unlock_irqrestore(&ctrl->lock, flags);
2491 
2492 	status = __nvme_fc_abort_op(ctrl, op);
2493 	if (status) {
2494 		/*
2495 		 * if __nvme_fc_abort_op failed the io wasn't
2496 		 * active. Thus this call path is running in
2497 		 * parallel to the io complete. Treat as non-error.
2498 		 */
2499 
2500 		/* back out the flags/counters */
2501 		spin_lock_irqsave(&ctrl->lock, flags);
2502 		if (ctrl->flags & FCCTRL_TERMIO)
2503 			ctrl->iocnt--;
2504 		op->flags &= ~FCOP_FLAGS_TERMIO;
2505 		spin_unlock_irqrestore(&ctrl->lock, flags);
2506 		return;
2507 	}
2508 }
2509 
2510 
2511 static const struct blk_mq_ops nvme_fc_mq_ops = {
2512 	.queue_rq	= nvme_fc_queue_rq,
2513 	.complete	= nvme_fc_complete_rq,
2514 	.init_request	= nvme_fc_init_request,
2515 	.exit_request	= nvme_fc_exit_request,
2516 	.init_hctx	= nvme_fc_init_hctx,
2517 	.poll		= nvme_fc_poll,
2518 	.timeout	= nvme_fc_timeout,
2519 };
2520 
2521 static int
2522 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2523 {
2524 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2525 	unsigned int nr_io_queues;
2526 	int ret;
2527 
2528 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2529 				ctrl->lport->ops->max_hw_queues);
2530 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2531 	if (ret) {
2532 		dev_info(ctrl->ctrl.device,
2533 			"set_queue_count failed: %d\n", ret);
2534 		return ret;
2535 	}
2536 
2537 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2538 	if (!nr_io_queues)
2539 		return 0;
2540 
2541 	nvme_fc_init_io_queues(ctrl);
2542 
2543 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2544 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2545 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2546 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2547 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2548 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2549 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2550 					(SG_CHUNK_SIZE *
2551 						sizeof(struct scatterlist)) +
2552 					ctrl->lport->ops->fcprqst_priv_sz;
2553 	ctrl->tag_set.driver_data = ctrl;
2554 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2555 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2556 
2557 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2558 	if (ret)
2559 		return ret;
2560 
2561 	ctrl->ctrl.tagset = &ctrl->tag_set;
2562 
2563 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2564 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2565 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2566 		goto out_free_tag_set;
2567 	}
2568 
2569 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2570 	if (ret)
2571 		goto out_cleanup_blk_queue;
2572 
2573 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2574 	if (ret)
2575 		goto out_delete_hw_queues;
2576 
2577 	return 0;
2578 
2579 out_delete_hw_queues:
2580 	nvme_fc_delete_hw_io_queues(ctrl);
2581 out_cleanup_blk_queue:
2582 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2583 out_free_tag_set:
2584 	blk_mq_free_tag_set(&ctrl->tag_set);
2585 	nvme_fc_free_io_queues(ctrl);
2586 
2587 	/* force put free routine to ignore io queues */
2588 	ctrl->ctrl.tagset = NULL;
2589 
2590 	return ret;
2591 }
2592 
2593 static int
2594 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2595 {
2596 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2597 	unsigned int nr_io_queues;
2598 	int ret;
2599 
2600 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2601 				ctrl->lport->ops->max_hw_queues);
2602 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2603 	if (ret) {
2604 		dev_info(ctrl->ctrl.device,
2605 			"set_queue_count failed: %d\n", ret);
2606 		return ret;
2607 	}
2608 
2609 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2610 	/* check for io queues existing */
2611 	if (ctrl->ctrl.queue_count == 1)
2612 		return 0;
2613 
2614 	nvme_fc_init_io_queues(ctrl);
2615 
2616 	ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2617 	if (ret)
2618 		goto out_free_io_queues;
2619 
2620 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2621 	if (ret)
2622 		goto out_free_io_queues;
2623 
2624 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2625 	if (ret)
2626 		goto out_delete_hw_queues;
2627 
2628 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2629 
2630 	return 0;
2631 
2632 out_delete_hw_queues:
2633 	nvme_fc_delete_hw_io_queues(ctrl);
2634 out_free_io_queues:
2635 	nvme_fc_free_io_queues(ctrl);
2636 	return ret;
2637 }
2638 
2639 static void
2640 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2641 {
2642 	struct nvme_fc_lport *lport = rport->lport;
2643 
2644 	atomic_inc(&lport->act_rport_cnt);
2645 }
2646 
2647 static void
2648 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2649 {
2650 	struct nvme_fc_lport *lport = rport->lport;
2651 	u32 cnt;
2652 
2653 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2654 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2655 		lport->ops->localport_delete(&lport->localport);
2656 }
2657 
2658 static int
2659 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2660 {
2661 	struct nvme_fc_rport *rport = ctrl->rport;
2662 	u32 cnt;
2663 
2664 	if (ctrl->assoc_active)
2665 		return 1;
2666 
2667 	ctrl->assoc_active = true;
2668 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2669 	if (cnt == 1)
2670 		nvme_fc_rport_active_on_lport(rport);
2671 
2672 	return 0;
2673 }
2674 
2675 static int
2676 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2677 {
2678 	struct nvme_fc_rport *rport = ctrl->rport;
2679 	struct nvme_fc_lport *lport = rport->lport;
2680 	u32 cnt;
2681 
2682 	/* ctrl->assoc_active=false will be set independently */
2683 
2684 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2685 	if (cnt == 0) {
2686 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2687 			lport->ops->remoteport_delete(&rport->remoteport);
2688 		nvme_fc_rport_inactive_on_lport(rport);
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 /*
2695  * This routine restarts the controller on the host side, and
2696  * on the link side, recreates the controller association.
2697  */
2698 static int
2699 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2700 {
2701 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2702 	int ret;
2703 	bool changed;
2704 
2705 	++ctrl->ctrl.nr_reconnects;
2706 
2707 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2708 		return -ENODEV;
2709 
2710 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2711 		return -ENOTUNIQ;
2712 
2713 	/*
2714 	 * Create the admin queue
2715 	 */
2716 
2717 	nvme_fc_init_queue(ctrl, 0);
2718 
2719 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2720 				NVME_AQ_BLK_MQ_DEPTH);
2721 	if (ret)
2722 		goto out_free_queue;
2723 
2724 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2725 				NVME_AQ_BLK_MQ_DEPTH,
2726 				(NVME_AQ_BLK_MQ_DEPTH / 4));
2727 	if (ret)
2728 		goto out_delete_hw_queue;
2729 
2730 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2731 		blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2732 
2733 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2734 	if (ret)
2735 		goto out_disconnect_admin_queue;
2736 
2737 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2738 
2739 	/*
2740 	 * Check controller capabilities
2741 	 *
2742 	 * todo:- add code to check if ctrl attributes changed from
2743 	 * prior connection values
2744 	 */
2745 
2746 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2747 	if (ret) {
2748 		dev_err(ctrl->ctrl.device,
2749 			"prop_get NVME_REG_CAP failed\n");
2750 		goto out_disconnect_admin_queue;
2751 	}
2752 
2753 	ctrl->ctrl.sqsize =
2754 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2755 
2756 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2757 	if (ret)
2758 		goto out_disconnect_admin_queue;
2759 
2760 	ctrl->ctrl.max_hw_sectors =
2761 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2762 
2763 	ret = nvme_init_identify(&ctrl->ctrl);
2764 	if (ret)
2765 		goto out_disconnect_admin_queue;
2766 
2767 	/* sanity checks */
2768 
2769 	/* FC-NVME does not have other data in the capsule */
2770 	if (ctrl->ctrl.icdoff) {
2771 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2772 				ctrl->ctrl.icdoff);
2773 		goto out_disconnect_admin_queue;
2774 	}
2775 
2776 	/* FC-NVME supports normal SGL Data Block Descriptors */
2777 
2778 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2779 		/* warn if maxcmd is lower than queue_size */
2780 		dev_warn(ctrl->ctrl.device,
2781 			"queue_size %zu > ctrl maxcmd %u, reducing "
2782 			"to queue_size\n",
2783 			opts->queue_size, ctrl->ctrl.maxcmd);
2784 		opts->queue_size = ctrl->ctrl.maxcmd;
2785 	}
2786 
2787 	ret = nvme_fc_init_aen_ops(ctrl);
2788 	if (ret)
2789 		goto out_term_aen_ops;
2790 
2791 	/*
2792 	 * Create the io queues
2793 	 */
2794 
2795 	if (ctrl->ctrl.queue_count > 1) {
2796 		if (ctrl->ctrl.state == NVME_CTRL_NEW)
2797 			ret = nvme_fc_create_io_queues(ctrl);
2798 		else
2799 			ret = nvme_fc_reinit_io_queues(ctrl);
2800 		if (ret)
2801 			goto out_term_aen_ops;
2802 	}
2803 
2804 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2805 
2806 	ctrl->ctrl.nr_reconnects = 0;
2807 
2808 	if (changed)
2809 		nvme_start_ctrl(&ctrl->ctrl);
2810 
2811 	return 0;	/* Success */
2812 
2813 out_term_aen_ops:
2814 	nvme_fc_term_aen_ops(ctrl);
2815 out_disconnect_admin_queue:
2816 	/* send a Disconnect(association) LS to fc-nvme target */
2817 	nvme_fc_xmt_disconnect_assoc(ctrl);
2818 out_delete_hw_queue:
2819 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2820 out_free_queue:
2821 	nvme_fc_free_queue(&ctrl->queues[0]);
2822 	ctrl->assoc_active = false;
2823 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2824 
2825 	return ret;
2826 }
2827 
2828 /*
2829  * This routine stops operation of the controller on the host side.
2830  * On the host os stack side: Admin and IO queues are stopped,
2831  *   outstanding ios on them terminated via FC ABTS.
2832  * On the link side: the association is terminated.
2833  */
2834 static void
2835 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2836 {
2837 	unsigned long flags;
2838 
2839 	if (!ctrl->assoc_active)
2840 		return;
2841 	ctrl->assoc_active = false;
2842 
2843 	spin_lock_irqsave(&ctrl->lock, flags);
2844 	ctrl->flags |= FCCTRL_TERMIO;
2845 	ctrl->iocnt = 0;
2846 	spin_unlock_irqrestore(&ctrl->lock, flags);
2847 
2848 	/*
2849 	 * If io queues are present, stop them and terminate all outstanding
2850 	 * ios on them. As FC allocates FC exchange for each io, the
2851 	 * transport must contact the LLDD to terminate the exchange,
2852 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2853 	 * to tell us what io's are busy and invoke a transport routine
2854 	 * to kill them with the LLDD.  After terminating the exchange
2855 	 * the LLDD will call the transport's normal io done path, but it
2856 	 * will have an aborted status. The done path will return the
2857 	 * io requests back to the block layer as part of normal completions
2858 	 * (but with error status).
2859 	 */
2860 	if (ctrl->ctrl.queue_count > 1) {
2861 		nvme_stop_queues(&ctrl->ctrl);
2862 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2863 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2864 	}
2865 
2866 	/*
2867 	 * Other transports, which don't have link-level contexts bound
2868 	 * to sqe's, would try to gracefully shutdown the controller by
2869 	 * writing the registers for shutdown and polling (call
2870 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2871 	 * just aborted and we will wait on those contexts, and given
2872 	 * there was no indication of how live the controlelr is on the
2873 	 * link, don't send more io to create more contexts for the
2874 	 * shutdown. Let the controller fail via keepalive failure if
2875 	 * its still present.
2876 	 */
2877 
2878 	/*
2879 	 * clean up the admin queue. Same thing as above.
2880 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2881 	 * terminate the exchanges.
2882 	 */
2883 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2884 		blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2885 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2886 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2887 
2888 	/* kill the aens as they are a separate path */
2889 	nvme_fc_abort_aen_ops(ctrl);
2890 
2891 	/* wait for all io that had to be aborted */
2892 	spin_lock_irq(&ctrl->lock);
2893 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2894 	ctrl->flags &= ~FCCTRL_TERMIO;
2895 	spin_unlock_irq(&ctrl->lock);
2896 
2897 	nvme_fc_term_aen_ops(ctrl);
2898 
2899 	/*
2900 	 * send a Disconnect(association) LS to fc-nvme target
2901 	 * Note: could have been sent at top of process, but
2902 	 * cleaner on link traffic if after the aborts complete.
2903 	 * Note: if association doesn't exist, association_id will be 0
2904 	 */
2905 	if (ctrl->association_id)
2906 		nvme_fc_xmt_disconnect_assoc(ctrl);
2907 
2908 	if (ctrl->ctrl.tagset) {
2909 		nvme_fc_delete_hw_io_queues(ctrl);
2910 		nvme_fc_free_io_queues(ctrl);
2911 	}
2912 
2913 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2914 	nvme_fc_free_queue(&ctrl->queues[0]);
2915 
2916 	/* re-enable the admin_q so anything new can fast fail */
2917 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2918 
2919 	nvme_fc_ctlr_inactive_on_rport(ctrl);
2920 }
2921 
2922 static void
2923 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2924 {
2925 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2926 
2927 	cancel_delayed_work_sync(&ctrl->connect_work);
2928 	/*
2929 	 * kill the association on the link side.  this will block
2930 	 * waiting for io to terminate
2931 	 */
2932 	nvme_fc_delete_association(ctrl);
2933 
2934 	/* resume the io queues so that things will fast fail */
2935 	nvme_start_queues(nctrl);
2936 }
2937 
2938 static void
2939 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2940 {
2941 	struct nvme_fc_rport *rport = ctrl->rport;
2942 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
2943 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2944 	bool recon = true;
2945 
2946 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2947 		return;
2948 
2949 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
2950 		dev_info(ctrl->ctrl.device,
2951 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2952 			ctrl->cnum, status);
2953 	else if (time_after_eq(jiffies, rport->dev_loss_end))
2954 		recon = false;
2955 
2956 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2957 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2958 			dev_info(ctrl->ctrl.device,
2959 				"NVME-FC{%d}: Reconnect attempt in %ld "
2960 				"seconds\n",
2961 				ctrl->cnum, recon_delay / HZ);
2962 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2963 			recon_delay = rport->dev_loss_end - jiffies;
2964 
2965 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2966 	} else {
2967 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
2968 			dev_warn(ctrl->ctrl.device,
2969 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2970 				"reached. Removing controller\n",
2971 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
2972 		else
2973 			dev_warn(ctrl->ctrl.device,
2974 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
2975 				"while waiting for remoteport connectivity. "
2976 				"Removing controller\n", ctrl->cnum,
2977 				portptr->dev_loss_tmo);
2978 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2979 	}
2980 }
2981 
2982 static void
2983 nvme_fc_reset_ctrl_work(struct work_struct *work)
2984 {
2985 	struct nvme_fc_ctrl *ctrl =
2986 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2987 	int ret;
2988 
2989 	nvme_stop_ctrl(&ctrl->ctrl);
2990 
2991 	/* will block will waiting for io to terminate */
2992 	nvme_fc_delete_association(ctrl);
2993 
2994 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2995 		dev_err(ctrl->ctrl.device,
2996 			"NVME-FC{%d}: error_recovery: Couldn't change state "
2997 			"to RECONNECTING\n", ctrl->cnum);
2998 		return;
2999 	}
3000 
3001 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
3002 		ret = nvme_fc_create_association(ctrl);
3003 	else
3004 		ret = -ENOTCONN;
3005 
3006 	if (ret)
3007 		nvme_fc_reconnect_or_delete(ctrl, ret);
3008 	else
3009 		dev_info(ctrl->ctrl.device,
3010 			"NVME-FC{%d}: controller reset complete\n",
3011 			ctrl->cnum);
3012 }
3013 
3014 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3015 	.name			= "fc",
3016 	.module			= THIS_MODULE,
3017 	.flags			= NVME_F_FABRICS,
3018 	.reg_read32		= nvmf_reg_read32,
3019 	.reg_read64		= nvmf_reg_read64,
3020 	.reg_write32		= nvmf_reg_write32,
3021 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
3022 	.submit_async_event	= nvme_fc_submit_async_event,
3023 	.delete_ctrl		= nvme_fc_delete_ctrl,
3024 	.get_address		= nvmf_get_address,
3025 	.reinit_request		= nvme_fc_reinit_request,
3026 };
3027 
3028 static void
3029 nvme_fc_connect_ctrl_work(struct work_struct *work)
3030 {
3031 	int ret;
3032 
3033 	struct nvme_fc_ctrl *ctrl =
3034 			container_of(to_delayed_work(work),
3035 				struct nvme_fc_ctrl, connect_work);
3036 
3037 	ret = nvme_fc_create_association(ctrl);
3038 	if (ret)
3039 		nvme_fc_reconnect_or_delete(ctrl, ret);
3040 	else
3041 		dev_info(ctrl->ctrl.device,
3042 			"NVME-FC{%d}: controller reconnect complete\n",
3043 			ctrl->cnum);
3044 }
3045 
3046 
3047 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3048 	.queue_rq	= nvme_fc_queue_rq,
3049 	.complete	= nvme_fc_complete_rq,
3050 	.init_request	= nvme_fc_init_request,
3051 	.exit_request	= nvme_fc_exit_request,
3052 	.init_hctx	= nvme_fc_init_admin_hctx,
3053 	.timeout	= nvme_fc_timeout,
3054 };
3055 
3056 
3057 /*
3058  * Fails a controller request if it matches an existing controller
3059  * (association) with the same tuple:
3060  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3061  *
3062  * The ports don't need to be compared as they are intrinsically
3063  * already matched by the port pointers supplied.
3064  */
3065 static bool
3066 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3067 		struct nvmf_ctrl_options *opts)
3068 {
3069 	struct nvme_fc_ctrl *ctrl;
3070 	unsigned long flags;
3071 	bool found = false;
3072 
3073 	spin_lock_irqsave(&rport->lock, flags);
3074 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3075 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3076 		if (found)
3077 			break;
3078 	}
3079 	spin_unlock_irqrestore(&rport->lock, flags);
3080 
3081 	return found;
3082 }
3083 
3084 static struct nvme_ctrl *
3085 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3086 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3087 {
3088 	struct nvme_fc_ctrl *ctrl;
3089 	unsigned long flags;
3090 	int ret, idx, retry;
3091 
3092 	if (!(rport->remoteport.port_role &
3093 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3094 		ret = -EBADR;
3095 		goto out_fail;
3096 	}
3097 
3098 	if (!opts->duplicate_connect &&
3099 	    nvme_fc_existing_controller(rport, opts)) {
3100 		ret = -EALREADY;
3101 		goto out_fail;
3102 	}
3103 
3104 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3105 	if (!ctrl) {
3106 		ret = -ENOMEM;
3107 		goto out_fail;
3108 	}
3109 
3110 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3111 	if (idx < 0) {
3112 		ret = -ENOSPC;
3113 		goto out_free_ctrl;
3114 	}
3115 
3116 	ctrl->ctrl.opts = opts;
3117 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3118 	ctrl->lport = lport;
3119 	ctrl->rport = rport;
3120 	ctrl->dev = lport->dev;
3121 	ctrl->cnum = idx;
3122 	ctrl->assoc_active = false;
3123 	init_waitqueue_head(&ctrl->ioabort_wait);
3124 
3125 	get_device(ctrl->dev);
3126 	kref_init(&ctrl->ref);
3127 
3128 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3129 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3130 	spin_lock_init(&ctrl->lock);
3131 
3132 	/* io queue count */
3133 	ctrl->ctrl.queue_count = min_t(unsigned int,
3134 				opts->nr_io_queues,
3135 				lport->ops->max_hw_queues);
3136 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3137 
3138 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3139 	ctrl->ctrl.kato = opts->kato;
3140 
3141 	ret = -ENOMEM;
3142 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3143 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3144 	if (!ctrl->queues)
3145 		goto out_free_ida;
3146 
3147 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3148 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3149 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3150 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3151 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3152 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3153 					(SG_CHUNK_SIZE *
3154 						sizeof(struct scatterlist)) +
3155 					ctrl->lport->ops->fcprqst_priv_sz;
3156 	ctrl->admin_tag_set.driver_data = ctrl;
3157 	ctrl->admin_tag_set.nr_hw_queues = 1;
3158 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3159 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3160 
3161 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3162 	if (ret)
3163 		goto out_free_queues;
3164 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3165 
3166 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3167 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3168 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3169 		goto out_free_admin_tag_set;
3170 	}
3171 
3172 	/*
3173 	 * Would have been nice to init io queues tag set as well.
3174 	 * However, we require interaction from the controller
3175 	 * for max io queue count before we can do so.
3176 	 * Defer this to the connect path.
3177 	 */
3178 
3179 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3180 	if (ret)
3181 		goto out_cleanup_admin_q;
3182 
3183 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3184 
3185 	spin_lock_irqsave(&rport->lock, flags);
3186 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3187 	spin_unlock_irqrestore(&rport->lock, flags);
3188 
3189 	/*
3190 	 * It's possible that transactions used to create the association
3191 	 * may fail. Examples: CreateAssociation LS or CreateIOConnection
3192 	 * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3193 	 * command times out for one of the actions to init the controller
3194 	 * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3195 	 * transport errors (frame drop, LS failure) inherently must kill
3196 	 * the association. The transport is coded so that any command used
3197 	 * to create the association (prior to a LIVE state transition
3198 	 * while NEW or RECONNECTING) will fail if it completes in error or
3199 	 * times out.
3200 	 *
3201 	 * As such: as the connect request was mostly likely due to a
3202 	 * udev event that discovered the remote port, meaning there is
3203 	 * not an admin or script there to restart if the connect
3204 	 * request fails, retry the initial connection creation up to
3205 	 * three times before giving up and declaring failure.
3206 	 */
3207 	for (retry = 0; retry < 3; retry++) {
3208 		ret = nvme_fc_create_association(ctrl);
3209 		if (!ret)
3210 			break;
3211 	}
3212 
3213 	if (ret) {
3214 		/* couldn't schedule retry - fail out */
3215 		dev_err(ctrl->ctrl.device,
3216 			"NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3217 
3218 		ctrl->ctrl.opts = NULL;
3219 
3220 		/* initiate nvme ctrl ref counting teardown */
3221 		nvme_uninit_ctrl(&ctrl->ctrl);
3222 
3223 		/* Remove core ctrl ref. */
3224 		nvme_put_ctrl(&ctrl->ctrl);
3225 
3226 		/* as we're past the point where we transition to the ref
3227 		 * counting teardown path, if we return a bad pointer here,
3228 		 * the calling routine, thinking it's prior to the
3229 		 * transition, will do an rport put. Since the teardown
3230 		 * path also does a rport put, we do an extra get here to
3231 		 * so proper order/teardown happens.
3232 		 */
3233 		nvme_fc_rport_get(rport);
3234 
3235 		if (ret > 0)
3236 			ret = -EIO;
3237 		return ERR_PTR(ret);
3238 	}
3239 
3240 	nvme_get_ctrl(&ctrl->ctrl);
3241 
3242 	dev_info(ctrl->ctrl.device,
3243 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3244 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3245 
3246 	return &ctrl->ctrl;
3247 
3248 out_cleanup_admin_q:
3249 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3250 out_free_admin_tag_set:
3251 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3252 out_free_queues:
3253 	kfree(ctrl->queues);
3254 out_free_ida:
3255 	put_device(ctrl->dev);
3256 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3257 out_free_ctrl:
3258 	kfree(ctrl);
3259 out_fail:
3260 	/* exit via here doesn't follow ctlr ref points */
3261 	return ERR_PTR(ret);
3262 }
3263 
3264 
3265 struct nvmet_fc_traddr {
3266 	u64	nn;
3267 	u64	pn;
3268 };
3269 
3270 static int
3271 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3272 {
3273 	u64 token64;
3274 
3275 	if (match_u64(sstr, &token64))
3276 		return -EINVAL;
3277 	*val = token64;
3278 
3279 	return 0;
3280 }
3281 
3282 /*
3283  * This routine validates and extracts the WWN's from the TRADDR string.
3284  * As kernel parsers need the 0x to determine number base, universally
3285  * build string to parse with 0x prefix before parsing name strings.
3286  */
3287 static int
3288 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3289 {
3290 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3291 	substring_t wwn = { name, &name[sizeof(name)-1] };
3292 	int nnoffset, pnoffset;
3293 
3294 	/* validate it string one of the 2 allowed formats */
3295 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3296 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3297 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3298 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3299 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3300 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3301 						NVME_FC_TRADDR_OXNNLEN;
3302 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3303 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3304 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3305 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3306 		nnoffset = NVME_FC_TRADDR_NNLEN;
3307 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3308 	} else
3309 		goto out_einval;
3310 
3311 	name[0] = '0';
3312 	name[1] = 'x';
3313 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3314 
3315 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3316 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3317 		goto out_einval;
3318 
3319 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3320 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3321 		goto out_einval;
3322 
3323 	return 0;
3324 
3325 out_einval:
3326 	pr_warn("%s: bad traddr string\n", __func__);
3327 	return -EINVAL;
3328 }
3329 
3330 static struct nvme_ctrl *
3331 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3332 {
3333 	struct nvme_fc_lport *lport;
3334 	struct nvme_fc_rport *rport;
3335 	struct nvme_ctrl *ctrl;
3336 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3337 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3338 	unsigned long flags;
3339 	int ret;
3340 
3341 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3342 	if (ret || !raddr.nn || !raddr.pn)
3343 		return ERR_PTR(-EINVAL);
3344 
3345 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3346 	if (ret || !laddr.nn || !laddr.pn)
3347 		return ERR_PTR(-EINVAL);
3348 
3349 	/* find the host and remote ports to connect together */
3350 	spin_lock_irqsave(&nvme_fc_lock, flags);
3351 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3352 		if (lport->localport.node_name != laddr.nn ||
3353 		    lport->localport.port_name != laddr.pn)
3354 			continue;
3355 
3356 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3357 			if (rport->remoteport.node_name != raddr.nn ||
3358 			    rport->remoteport.port_name != raddr.pn)
3359 				continue;
3360 
3361 			/* if fail to get reference fall through. Will error */
3362 			if (!nvme_fc_rport_get(rport))
3363 				break;
3364 
3365 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3366 
3367 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3368 			if (IS_ERR(ctrl))
3369 				nvme_fc_rport_put(rport);
3370 			return ctrl;
3371 		}
3372 	}
3373 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3374 
3375 	return ERR_PTR(-ENOENT);
3376 }
3377 
3378 
3379 static struct nvmf_transport_ops nvme_fc_transport = {
3380 	.name		= "fc",
3381 	.module		= THIS_MODULE,
3382 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3383 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3384 	.create_ctrl	= nvme_fc_create_ctrl,
3385 };
3386 
3387 static int __init nvme_fc_init_module(void)
3388 {
3389 	int ret;
3390 
3391 	/*
3392 	 * NOTE:
3393 	 * It is expected that in the future the kernel will combine
3394 	 * the FC-isms that are currently under scsi and now being
3395 	 * added to by NVME into a new standalone FC class. The SCSI
3396 	 * and NVME protocols and their devices would be under this
3397 	 * new FC class.
3398 	 *
3399 	 * As we need something to post FC-specific udev events to,
3400 	 * specifically for nvme probe events, start by creating the
3401 	 * new device class.  When the new standalone FC class is
3402 	 * put in place, this code will move to a more generic
3403 	 * location for the class.
3404 	 */
3405 	fc_class = class_create(THIS_MODULE, "fc");
3406 	if (IS_ERR(fc_class)) {
3407 		pr_err("couldn't register class fc\n");
3408 		return PTR_ERR(fc_class);
3409 	}
3410 
3411 	/*
3412 	 * Create a device for the FC-centric udev events
3413 	 */
3414 	fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3415 				"fc_udev_device");
3416 	if (IS_ERR(fc_udev_device)) {
3417 		pr_err("couldn't create fc_udev device!\n");
3418 		ret = PTR_ERR(fc_udev_device);
3419 		goto out_destroy_class;
3420 	}
3421 
3422 	ret = nvmf_register_transport(&nvme_fc_transport);
3423 	if (ret)
3424 		goto out_destroy_device;
3425 
3426 	return 0;
3427 
3428 out_destroy_device:
3429 	device_destroy(fc_class, MKDEV(0, 0));
3430 out_destroy_class:
3431 	class_destroy(fc_class);
3432 	return ret;
3433 }
3434 
3435 static void __exit nvme_fc_exit_module(void)
3436 {
3437 	/* sanity check - all lports should be removed */
3438 	if (!list_empty(&nvme_fc_lport_list))
3439 		pr_warn("%s: localport list not empty\n", __func__);
3440 
3441 	nvmf_unregister_transport(&nvme_fc_transport);
3442 
3443 	ida_destroy(&nvme_fc_local_port_cnt);
3444 	ida_destroy(&nvme_fc_ctrl_cnt);
3445 
3446 	device_destroy(fc_class, MKDEV(0, 0));
3447 	class_destroy(fc_class);
3448 }
3449 
3450 module_init(nvme_fc_init_module);
3451 module_exit(nvme_fc_exit_module);
3452 
3453 MODULE_LICENSE("GPL v2");
3454