xref: /linux/drivers/nvme/host/fc.c (revision 0408c58be5a475c99b271f08d85859f7b59ec767)
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23 
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28 
29 
30 /* *************************** Data Structures/Defines ****************** */
31 
32 
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS	1
38 #define NVME_FC_AQ_BLKMQ_DEPTH	\
39 	(NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE		(NVME_FC_AQ_BLKMQ_DEPTH + 1)
41 
42 enum nvme_fc_queue_flags {
43 	NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45 
46 #define NVMEFC_QUEUE_DELAY	3		/* ms units */
47 
48 struct nvme_fc_queue {
49 	struct nvme_fc_ctrl	*ctrl;
50 	struct device		*dev;
51 	struct blk_mq_hw_ctx	*hctx;
52 	void			*lldd_handle;
53 	int			queue_size;
54 	size_t			cmnd_capsule_len;
55 	u32			qnum;
56 	u32			rqcnt;
57 	u32			seqno;
58 
59 	u64			connection_id;
60 	atomic_t		csn;
61 
62 	unsigned long		flags;
63 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
64 
65 enum nvme_fcop_flags {
66 	FCOP_FLAGS_TERMIO	= (1 << 0),
67 	FCOP_FLAGS_RELEASED	= (1 << 1),
68 	FCOP_FLAGS_COMPLETE	= (1 << 2),
69 	FCOP_FLAGS_AEN		= (1 << 3),
70 };
71 
72 struct nvmefc_ls_req_op {
73 	struct nvmefc_ls_req	ls_req;
74 
75 	struct nvme_fc_rport	*rport;
76 	struct nvme_fc_queue	*queue;
77 	struct request		*rq;
78 	u32			flags;
79 
80 	int			ls_error;
81 	struct completion	ls_done;
82 	struct list_head	lsreq_list;	/* rport->ls_req_list */
83 	bool			req_queued;
84 };
85 
86 enum nvme_fcpop_state {
87 	FCPOP_STATE_UNINIT	= 0,
88 	FCPOP_STATE_IDLE	= 1,
89 	FCPOP_STATE_ACTIVE	= 2,
90 	FCPOP_STATE_ABORTED	= 3,
91 	FCPOP_STATE_COMPLETE	= 4,
92 };
93 
94 struct nvme_fc_fcp_op {
95 	struct nvme_request	nreq;		/*
96 						 * nvme/host/core.c
97 						 * requires this to be
98 						 * the 1st element in the
99 						 * private structure
100 						 * associated with the
101 						 * request.
102 						 */
103 	struct nvmefc_fcp_req	fcp_req;
104 
105 	struct nvme_fc_ctrl	*ctrl;
106 	struct nvme_fc_queue	*queue;
107 	struct request		*rq;
108 
109 	atomic_t		state;
110 	u32			flags;
111 	u32			rqno;
112 	u32			nents;
113 
114 	struct nvme_fc_cmd_iu	cmd_iu;
115 	struct nvme_fc_ersp_iu	rsp_iu;
116 };
117 
118 struct nvme_fc_lport {
119 	struct nvme_fc_local_port	localport;
120 
121 	struct ida			endp_cnt;
122 	struct list_head		port_list;	/* nvme_fc_port_list */
123 	struct list_head		endp_list;
124 	struct device			*dev;	/* physical device for dma */
125 	struct nvme_fc_port_template	*ops;
126 	struct kref			ref;
127 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
128 
129 struct nvme_fc_rport {
130 	struct nvme_fc_remote_port	remoteport;
131 
132 	struct list_head		endp_list; /* for lport->endp_list */
133 	struct list_head		ctrl_list;
134 	struct list_head		ls_req_list;
135 	struct device			*dev;	/* physical device for dma */
136 	struct nvme_fc_lport		*lport;
137 	spinlock_t			lock;
138 	struct kref			ref;
139 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
140 
141 enum nvme_fcctrl_flags {
142 	FCCTRL_TERMIO		= (1 << 0),
143 };
144 
145 struct nvme_fc_ctrl {
146 	spinlock_t		lock;
147 	struct nvme_fc_queue	*queues;
148 	struct device		*dev;
149 	struct nvme_fc_lport	*lport;
150 	struct nvme_fc_rport	*rport;
151 	u32			queue_count;
152 	u32			cnum;
153 
154 	u64			association_id;
155 
156 	u64			cap;
157 
158 	struct list_head	ctrl_list;	/* rport->ctrl_list */
159 
160 	struct blk_mq_tag_set	admin_tag_set;
161 	struct blk_mq_tag_set	tag_set;
162 
163 	struct work_struct	delete_work;
164 	struct work_struct	reset_work;
165 	struct delayed_work	connect_work;
166 
167 	struct kref		ref;
168 	u32			flags;
169 	u32			iocnt;
170 
171 	struct nvme_fc_fcp_op	aen_ops[NVME_FC_NR_AEN_COMMANDS];
172 
173 	struct nvme_ctrl	ctrl;
174 };
175 
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181 
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185 	return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187 
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191 	return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193 
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199 
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205 
206 
207 
208 /* *************************** Globals **************************** */
209 
210 
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212 
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216 
217 static struct workqueue_struct *nvme_fc_wq;
218 
219 
220 
221 /* *********************** FC-NVME Port Management ************************ */
222 
223 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
224 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
225 			struct nvme_fc_queue *, unsigned int);
226 
227 
228 /**
229  * nvme_fc_register_localport - transport entry point called by an
230  *                              LLDD to register the existence of a NVME
231  *                              host FC port.
232  * @pinfo:     pointer to information about the port to be registered
233  * @template:  LLDD entrypoints and operational parameters for the port
234  * @dev:       physical hardware device node port corresponds to. Will be
235  *             used for DMA mappings
236  * @lport_p:   pointer to a local port pointer. Upon success, the routine
237  *             will allocate a nvme_fc_local_port structure and place its
238  *             address in the local port pointer. Upon failure, local port
239  *             pointer will be set to 0.
240  *
241  * Returns:
242  * a completion status. Must be 0 upon success; a negative errno
243  * (ex: -ENXIO) upon failure.
244  */
245 int
246 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
247 			struct nvme_fc_port_template *template,
248 			struct device *dev,
249 			struct nvme_fc_local_port **portptr)
250 {
251 	struct nvme_fc_lport *newrec;
252 	unsigned long flags;
253 	int ret, idx;
254 
255 	if (!template->localport_delete || !template->remoteport_delete ||
256 	    !template->ls_req || !template->fcp_io ||
257 	    !template->ls_abort || !template->fcp_abort ||
258 	    !template->max_hw_queues || !template->max_sgl_segments ||
259 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
260 		ret = -EINVAL;
261 		goto out_reghost_failed;
262 	}
263 
264 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
265 			 GFP_KERNEL);
266 	if (!newrec) {
267 		ret = -ENOMEM;
268 		goto out_reghost_failed;
269 	}
270 
271 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
272 	if (idx < 0) {
273 		ret = -ENOSPC;
274 		goto out_fail_kfree;
275 	}
276 
277 	if (!get_device(dev) && dev) {
278 		ret = -ENODEV;
279 		goto out_ida_put;
280 	}
281 
282 	INIT_LIST_HEAD(&newrec->port_list);
283 	INIT_LIST_HEAD(&newrec->endp_list);
284 	kref_init(&newrec->ref);
285 	newrec->ops = template;
286 	newrec->dev = dev;
287 	ida_init(&newrec->endp_cnt);
288 	newrec->localport.private = &newrec[1];
289 	newrec->localport.node_name = pinfo->node_name;
290 	newrec->localport.port_name = pinfo->port_name;
291 	newrec->localport.port_role = pinfo->port_role;
292 	newrec->localport.port_id = pinfo->port_id;
293 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
294 	newrec->localport.port_num = idx;
295 
296 	spin_lock_irqsave(&nvme_fc_lock, flags);
297 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
298 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
299 
300 	if (dev)
301 		dma_set_seg_boundary(dev, template->dma_boundary);
302 
303 	*portptr = &newrec->localport;
304 	return 0;
305 
306 out_ida_put:
307 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
308 out_fail_kfree:
309 	kfree(newrec);
310 out_reghost_failed:
311 	*portptr = NULL;
312 
313 	return ret;
314 }
315 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
316 
317 static void
318 nvme_fc_free_lport(struct kref *ref)
319 {
320 	struct nvme_fc_lport *lport =
321 		container_of(ref, struct nvme_fc_lport, ref);
322 	unsigned long flags;
323 
324 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
325 	WARN_ON(!list_empty(&lport->endp_list));
326 
327 	/* remove from transport list */
328 	spin_lock_irqsave(&nvme_fc_lock, flags);
329 	list_del(&lport->port_list);
330 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
331 
332 	/* let the LLDD know we've finished tearing it down */
333 	lport->ops->localport_delete(&lport->localport);
334 
335 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
336 	ida_destroy(&lport->endp_cnt);
337 
338 	put_device(lport->dev);
339 
340 	kfree(lport);
341 }
342 
343 static void
344 nvme_fc_lport_put(struct nvme_fc_lport *lport)
345 {
346 	kref_put(&lport->ref, nvme_fc_free_lport);
347 }
348 
349 static int
350 nvme_fc_lport_get(struct nvme_fc_lport *lport)
351 {
352 	return kref_get_unless_zero(&lport->ref);
353 }
354 
355 /**
356  * nvme_fc_unregister_localport - transport entry point called by an
357  *                              LLDD to deregister/remove a previously
358  *                              registered a NVME host FC port.
359  * @localport: pointer to the (registered) local port that is to be
360  *             deregistered.
361  *
362  * Returns:
363  * a completion status. Must be 0 upon success; a negative errno
364  * (ex: -ENXIO) upon failure.
365  */
366 int
367 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
368 {
369 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
370 	unsigned long flags;
371 
372 	if (!portptr)
373 		return -EINVAL;
374 
375 	spin_lock_irqsave(&nvme_fc_lock, flags);
376 
377 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
378 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
379 		return -EINVAL;
380 	}
381 	portptr->port_state = FC_OBJSTATE_DELETED;
382 
383 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
384 
385 	nvme_fc_lport_put(lport);
386 
387 	return 0;
388 }
389 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
390 
391 /**
392  * nvme_fc_register_remoteport - transport entry point called by an
393  *                              LLDD to register the existence of a NVME
394  *                              subsystem FC port on its fabric.
395  * @localport: pointer to the (registered) local port that the remote
396  *             subsystem port is connected to.
397  * @pinfo:     pointer to information about the port to be registered
398  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
399  *             will allocate a nvme_fc_remote_port structure and place its
400  *             address in the remote port pointer. Upon failure, remote port
401  *             pointer will be set to 0.
402  *
403  * Returns:
404  * a completion status. Must be 0 upon success; a negative errno
405  * (ex: -ENXIO) upon failure.
406  */
407 int
408 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
409 				struct nvme_fc_port_info *pinfo,
410 				struct nvme_fc_remote_port **portptr)
411 {
412 	struct nvme_fc_lport *lport = localport_to_lport(localport);
413 	struct nvme_fc_rport *newrec;
414 	unsigned long flags;
415 	int ret, idx;
416 
417 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
418 			 GFP_KERNEL);
419 	if (!newrec) {
420 		ret = -ENOMEM;
421 		goto out_reghost_failed;
422 	}
423 
424 	if (!nvme_fc_lport_get(lport)) {
425 		ret = -ESHUTDOWN;
426 		goto out_kfree_rport;
427 	}
428 
429 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
430 	if (idx < 0) {
431 		ret = -ENOSPC;
432 		goto out_lport_put;
433 	}
434 
435 	INIT_LIST_HEAD(&newrec->endp_list);
436 	INIT_LIST_HEAD(&newrec->ctrl_list);
437 	INIT_LIST_HEAD(&newrec->ls_req_list);
438 	kref_init(&newrec->ref);
439 	spin_lock_init(&newrec->lock);
440 	newrec->remoteport.localport = &lport->localport;
441 	newrec->dev = lport->dev;
442 	newrec->lport = lport;
443 	newrec->remoteport.private = &newrec[1];
444 	newrec->remoteport.port_role = pinfo->port_role;
445 	newrec->remoteport.node_name = pinfo->node_name;
446 	newrec->remoteport.port_name = pinfo->port_name;
447 	newrec->remoteport.port_id = pinfo->port_id;
448 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
449 	newrec->remoteport.port_num = idx;
450 
451 	spin_lock_irqsave(&nvme_fc_lock, flags);
452 	list_add_tail(&newrec->endp_list, &lport->endp_list);
453 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
454 
455 	*portptr = &newrec->remoteport;
456 	return 0;
457 
458 out_lport_put:
459 	nvme_fc_lport_put(lport);
460 out_kfree_rport:
461 	kfree(newrec);
462 out_reghost_failed:
463 	*portptr = NULL;
464 	return ret;
465 }
466 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
467 
468 static void
469 nvme_fc_free_rport(struct kref *ref)
470 {
471 	struct nvme_fc_rport *rport =
472 		container_of(ref, struct nvme_fc_rport, ref);
473 	struct nvme_fc_lport *lport =
474 			localport_to_lport(rport->remoteport.localport);
475 	unsigned long flags;
476 
477 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
478 	WARN_ON(!list_empty(&rport->ctrl_list));
479 
480 	/* remove from lport list */
481 	spin_lock_irqsave(&nvme_fc_lock, flags);
482 	list_del(&rport->endp_list);
483 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
484 
485 	/* let the LLDD know we've finished tearing it down */
486 	lport->ops->remoteport_delete(&rport->remoteport);
487 
488 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
489 
490 	kfree(rport);
491 
492 	nvme_fc_lport_put(lport);
493 }
494 
495 static void
496 nvme_fc_rport_put(struct nvme_fc_rport *rport)
497 {
498 	kref_put(&rport->ref, nvme_fc_free_rport);
499 }
500 
501 static int
502 nvme_fc_rport_get(struct nvme_fc_rport *rport)
503 {
504 	return kref_get_unless_zero(&rport->ref);
505 }
506 
507 static int
508 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
509 {
510 	struct nvmefc_ls_req_op *lsop;
511 	unsigned long flags;
512 
513 restart:
514 	spin_lock_irqsave(&rport->lock, flags);
515 
516 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
517 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
518 			lsop->flags |= FCOP_FLAGS_TERMIO;
519 			spin_unlock_irqrestore(&rport->lock, flags);
520 			rport->lport->ops->ls_abort(&rport->lport->localport,
521 						&rport->remoteport,
522 						&lsop->ls_req);
523 			goto restart;
524 		}
525 	}
526 	spin_unlock_irqrestore(&rport->lock, flags);
527 
528 	return 0;
529 }
530 
531 /**
532  * nvme_fc_unregister_remoteport - transport entry point called by an
533  *                              LLDD to deregister/remove a previously
534  *                              registered a NVME subsystem FC port.
535  * @remoteport: pointer to the (registered) remote port that is to be
536  *              deregistered.
537  *
538  * Returns:
539  * a completion status. Must be 0 upon success; a negative errno
540  * (ex: -ENXIO) upon failure.
541  */
542 int
543 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
544 {
545 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
546 	struct nvme_fc_ctrl *ctrl;
547 	unsigned long flags;
548 
549 	if (!portptr)
550 		return -EINVAL;
551 
552 	spin_lock_irqsave(&rport->lock, flags);
553 
554 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
555 		spin_unlock_irqrestore(&rport->lock, flags);
556 		return -EINVAL;
557 	}
558 	portptr->port_state = FC_OBJSTATE_DELETED;
559 
560 	/* tear down all associations to the remote port */
561 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
562 		__nvme_fc_del_ctrl(ctrl);
563 
564 	spin_unlock_irqrestore(&rport->lock, flags);
565 
566 	nvme_fc_abort_lsops(rport);
567 
568 	nvme_fc_rport_put(rport);
569 	return 0;
570 }
571 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
572 
573 
574 /* *********************** FC-NVME DMA Handling **************************** */
575 
576 /*
577  * The fcloop device passes in a NULL device pointer. Real LLD's will
578  * pass in a valid device pointer. If NULL is passed to the dma mapping
579  * routines, depending on the platform, it may or may not succeed, and
580  * may crash.
581  *
582  * As such:
583  * Wrapper all the dma routines and check the dev pointer.
584  *
585  * If simple mappings (return just a dma address, we'll noop them,
586  * returning a dma address of 0.
587  *
588  * On more complex mappings (dma_map_sg), a pseudo routine fills
589  * in the scatter list, setting all dma addresses to 0.
590  */
591 
592 static inline dma_addr_t
593 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
594 		enum dma_data_direction dir)
595 {
596 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
597 }
598 
599 static inline int
600 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
601 {
602 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
603 }
604 
605 static inline void
606 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
607 	enum dma_data_direction dir)
608 {
609 	if (dev)
610 		dma_unmap_single(dev, addr, size, dir);
611 }
612 
613 static inline void
614 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
615 		enum dma_data_direction dir)
616 {
617 	if (dev)
618 		dma_sync_single_for_cpu(dev, addr, size, dir);
619 }
620 
621 static inline void
622 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
623 		enum dma_data_direction dir)
624 {
625 	if (dev)
626 		dma_sync_single_for_device(dev, addr, size, dir);
627 }
628 
629 /* pseudo dma_map_sg call */
630 static int
631 fc_map_sg(struct scatterlist *sg, int nents)
632 {
633 	struct scatterlist *s;
634 	int i;
635 
636 	WARN_ON(nents == 0 || sg[0].length == 0);
637 
638 	for_each_sg(sg, s, nents, i) {
639 		s->dma_address = 0L;
640 #ifdef CONFIG_NEED_SG_DMA_LENGTH
641 		s->dma_length = s->length;
642 #endif
643 	}
644 	return nents;
645 }
646 
647 static inline int
648 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
649 		enum dma_data_direction dir)
650 {
651 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
652 }
653 
654 static inline void
655 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
656 		enum dma_data_direction dir)
657 {
658 	if (dev)
659 		dma_unmap_sg(dev, sg, nents, dir);
660 }
661 
662 
663 /* *********************** FC-NVME LS Handling **************************** */
664 
665 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
666 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
667 
668 
669 static void
670 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
671 {
672 	struct nvme_fc_rport *rport = lsop->rport;
673 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&rport->lock, flags);
677 
678 	if (!lsop->req_queued) {
679 		spin_unlock_irqrestore(&rport->lock, flags);
680 		return;
681 	}
682 
683 	list_del(&lsop->lsreq_list);
684 
685 	lsop->req_queued = false;
686 
687 	spin_unlock_irqrestore(&rport->lock, flags);
688 
689 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
690 				  (lsreq->rqstlen + lsreq->rsplen),
691 				  DMA_BIDIRECTIONAL);
692 
693 	nvme_fc_rport_put(rport);
694 }
695 
696 static int
697 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
698 		struct nvmefc_ls_req_op *lsop,
699 		void (*done)(struct nvmefc_ls_req *req, int status))
700 {
701 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
702 	unsigned long flags;
703 	int ret = 0;
704 
705 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
706 		return -ECONNREFUSED;
707 
708 	if (!nvme_fc_rport_get(rport))
709 		return -ESHUTDOWN;
710 
711 	lsreq->done = done;
712 	lsop->rport = rport;
713 	lsop->req_queued = false;
714 	INIT_LIST_HEAD(&lsop->lsreq_list);
715 	init_completion(&lsop->ls_done);
716 
717 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
718 				  lsreq->rqstlen + lsreq->rsplen,
719 				  DMA_BIDIRECTIONAL);
720 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
721 		ret = -EFAULT;
722 		goto out_putrport;
723 	}
724 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
725 
726 	spin_lock_irqsave(&rport->lock, flags);
727 
728 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
729 
730 	lsop->req_queued = true;
731 
732 	spin_unlock_irqrestore(&rport->lock, flags);
733 
734 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
735 					&rport->remoteport, lsreq);
736 	if (ret)
737 		goto out_unlink;
738 
739 	return 0;
740 
741 out_unlink:
742 	lsop->ls_error = ret;
743 	spin_lock_irqsave(&rport->lock, flags);
744 	lsop->req_queued = false;
745 	list_del(&lsop->lsreq_list);
746 	spin_unlock_irqrestore(&rport->lock, flags);
747 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
748 				  (lsreq->rqstlen + lsreq->rsplen),
749 				  DMA_BIDIRECTIONAL);
750 out_putrport:
751 	nvme_fc_rport_put(rport);
752 
753 	return ret;
754 }
755 
756 static void
757 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
758 {
759 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
760 
761 	lsop->ls_error = status;
762 	complete(&lsop->ls_done);
763 }
764 
765 static int
766 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
767 {
768 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
769 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
770 	int ret;
771 
772 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
773 
774 	if (!ret) {
775 		/*
776 		 * No timeout/not interruptible as we need the struct
777 		 * to exist until the lldd calls us back. Thus mandate
778 		 * wait until driver calls back. lldd responsible for
779 		 * the timeout action
780 		 */
781 		wait_for_completion(&lsop->ls_done);
782 
783 		__nvme_fc_finish_ls_req(lsop);
784 
785 		ret = lsop->ls_error;
786 	}
787 
788 	if (ret)
789 		return ret;
790 
791 	/* ACC or RJT payload ? */
792 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
793 		return -ENXIO;
794 
795 	return 0;
796 }
797 
798 static int
799 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
800 		struct nvmefc_ls_req_op *lsop,
801 		void (*done)(struct nvmefc_ls_req *req, int status))
802 {
803 	/* don't wait for completion */
804 
805 	return __nvme_fc_send_ls_req(rport, lsop, done);
806 }
807 
808 /* Validation Error indexes into the string table below */
809 enum {
810 	VERR_NO_ERROR		= 0,
811 	VERR_LSACC		= 1,
812 	VERR_LSDESC_RQST	= 2,
813 	VERR_LSDESC_RQST_LEN	= 3,
814 	VERR_ASSOC_ID		= 4,
815 	VERR_ASSOC_ID_LEN	= 5,
816 	VERR_CONN_ID		= 6,
817 	VERR_CONN_ID_LEN	= 7,
818 	VERR_CR_ASSOC		= 8,
819 	VERR_CR_ASSOC_ACC_LEN	= 9,
820 	VERR_CR_CONN		= 10,
821 	VERR_CR_CONN_ACC_LEN	= 11,
822 	VERR_DISCONN		= 12,
823 	VERR_DISCONN_ACC_LEN	= 13,
824 };
825 
826 static char *validation_errors[] = {
827 	"OK",
828 	"Not LS_ACC",
829 	"Not LSDESC_RQST",
830 	"Bad LSDESC_RQST Length",
831 	"Not Association ID",
832 	"Bad Association ID Length",
833 	"Not Connection ID",
834 	"Bad Connection ID Length",
835 	"Not CR_ASSOC Rqst",
836 	"Bad CR_ASSOC ACC Length",
837 	"Not CR_CONN Rqst",
838 	"Bad CR_CONN ACC Length",
839 	"Not Disconnect Rqst",
840 	"Bad Disconnect ACC Length",
841 };
842 
843 static int
844 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
845 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
846 {
847 	struct nvmefc_ls_req_op *lsop;
848 	struct nvmefc_ls_req *lsreq;
849 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
850 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
851 	int ret, fcret = 0;
852 
853 	lsop = kzalloc((sizeof(*lsop) +
854 			 ctrl->lport->ops->lsrqst_priv_sz +
855 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
856 	if (!lsop) {
857 		ret = -ENOMEM;
858 		goto out_no_memory;
859 	}
860 	lsreq = &lsop->ls_req;
861 
862 	lsreq->private = (void *)&lsop[1];
863 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
864 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
865 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
866 
867 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
868 	assoc_rqst->desc_list_len =
869 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
870 
871 	assoc_rqst->assoc_cmd.desc_tag =
872 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
873 	assoc_rqst->assoc_cmd.desc_len =
874 			fcnvme_lsdesc_len(
875 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
876 
877 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
878 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
879 	/* Linux supports only Dynamic controllers */
880 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
881 	memcpy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id,
882 		min_t(size_t, FCNVME_ASSOC_HOSTID_LEN, sizeof(uuid_be)));
883 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
884 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
885 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
886 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
887 
888 	lsop->queue = queue;
889 	lsreq->rqstaddr = assoc_rqst;
890 	lsreq->rqstlen = sizeof(*assoc_rqst);
891 	lsreq->rspaddr = assoc_acc;
892 	lsreq->rsplen = sizeof(*assoc_acc);
893 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
894 
895 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
896 	if (ret)
897 		goto out_free_buffer;
898 
899 	/* process connect LS completion */
900 
901 	/* validate the ACC response */
902 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
903 		fcret = VERR_LSACC;
904 	else if (assoc_acc->hdr.desc_list_len !=
905 			fcnvme_lsdesc_len(
906 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
907 		fcret = VERR_CR_ASSOC_ACC_LEN;
908 	else if (assoc_acc->hdr.rqst.desc_tag !=
909 			cpu_to_be32(FCNVME_LSDESC_RQST))
910 		fcret = VERR_LSDESC_RQST;
911 	else if (assoc_acc->hdr.rqst.desc_len !=
912 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
913 		fcret = VERR_LSDESC_RQST_LEN;
914 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
915 		fcret = VERR_CR_ASSOC;
916 	else if (assoc_acc->associd.desc_tag !=
917 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
918 		fcret = VERR_ASSOC_ID;
919 	else if (assoc_acc->associd.desc_len !=
920 			fcnvme_lsdesc_len(
921 				sizeof(struct fcnvme_lsdesc_assoc_id)))
922 		fcret = VERR_ASSOC_ID_LEN;
923 	else if (assoc_acc->connectid.desc_tag !=
924 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
925 		fcret = VERR_CONN_ID;
926 	else if (assoc_acc->connectid.desc_len !=
927 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
928 		fcret = VERR_CONN_ID_LEN;
929 
930 	if (fcret) {
931 		ret = -EBADF;
932 		dev_err(ctrl->dev,
933 			"q %d connect failed: %s\n",
934 			queue->qnum, validation_errors[fcret]);
935 	} else {
936 		ctrl->association_id =
937 			be64_to_cpu(assoc_acc->associd.association_id);
938 		queue->connection_id =
939 			be64_to_cpu(assoc_acc->connectid.connection_id);
940 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
941 	}
942 
943 out_free_buffer:
944 	kfree(lsop);
945 out_no_memory:
946 	if (ret)
947 		dev_err(ctrl->dev,
948 			"queue %d connect admin queue failed (%d).\n",
949 			queue->qnum, ret);
950 	return ret;
951 }
952 
953 static int
954 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
955 			u16 qsize, u16 ersp_ratio)
956 {
957 	struct nvmefc_ls_req_op *lsop;
958 	struct nvmefc_ls_req *lsreq;
959 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
960 	struct fcnvme_ls_cr_conn_acc *conn_acc;
961 	int ret, fcret = 0;
962 
963 	lsop = kzalloc((sizeof(*lsop) +
964 			 ctrl->lport->ops->lsrqst_priv_sz +
965 			 sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
966 	if (!lsop) {
967 		ret = -ENOMEM;
968 		goto out_no_memory;
969 	}
970 	lsreq = &lsop->ls_req;
971 
972 	lsreq->private = (void *)&lsop[1];
973 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
974 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
975 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
976 
977 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
978 	conn_rqst->desc_list_len = cpu_to_be32(
979 				sizeof(struct fcnvme_lsdesc_assoc_id) +
980 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
981 
982 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
983 	conn_rqst->associd.desc_len =
984 			fcnvme_lsdesc_len(
985 				sizeof(struct fcnvme_lsdesc_assoc_id));
986 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
987 	conn_rqst->connect_cmd.desc_tag =
988 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
989 	conn_rqst->connect_cmd.desc_len =
990 			fcnvme_lsdesc_len(
991 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
992 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
993 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
994 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
995 
996 	lsop->queue = queue;
997 	lsreq->rqstaddr = conn_rqst;
998 	lsreq->rqstlen = sizeof(*conn_rqst);
999 	lsreq->rspaddr = conn_acc;
1000 	lsreq->rsplen = sizeof(*conn_acc);
1001 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1002 
1003 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1004 	if (ret)
1005 		goto out_free_buffer;
1006 
1007 	/* process connect LS completion */
1008 
1009 	/* validate the ACC response */
1010 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1011 		fcret = VERR_LSACC;
1012 	else if (conn_acc->hdr.desc_list_len !=
1013 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1014 		fcret = VERR_CR_CONN_ACC_LEN;
1015 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1016 		fcret = VERR_LSDESC_RQST;
1017 	else if (conn_acc->hdr.rqst.desc_len !=
1018 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1019 		fcret = VERR_LSDESC_RQST_LEN;
1020 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1021 		fcret = VERR_CR_CONN;
1022 	else if (conn_acc->connectid.desc_tag !=
1023 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1024 		fcret = VERR_CONN_ID;
1025 	else if (conn_acc->connectid.desc_len !=
1026 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1027 		fcret = VERR_CONN_ID_LEN;
1028 
1029 	if (fcret) {
1030 		ret = -EBADF;
1031 		dev_err(ctrl->dev,
1032 			"q %d connect failed: %s\n",
1033 			queue->qnum, validation_errors[fcret]);
1034 	} else {
1035 		queue->connection_id =
1036 			be64_to_cpu(conn_acc->connectid.connection_id);
1037 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1038 	}
1039 
1040 out_free_buffer:
1041 	kfree(lsop);
1042 out_no_memory:
1043 	if (ret)
1044 		dev_err(ctrl->dev,
1045 			"queue %d connect command failed (%d).\n",
1046 			queue->qnum, ret);
1047 	return ret;
1048 }
1049 
1050 static void
1051 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1052 {
1053 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1054 
1055 	__nvme_fc_finish_ls_req(lsop);
1056 
1057 	/* fc-nvme iniator doesn't care about success or failure of cmd */
1058 
1059 	kfree(lsop);
1060 }
1061 
1062 /*
1063  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1064  * the FC-NVME Association.  Terminating the association also
1065  * terminates the FC-NVME connections (per queue, both admin and io
1066  * queues) that are part of the association. E.g. things are torn
1067  * down, and the related FC-NVME Association ID and Connection IDs
1068  * become invalid.
1069  *
1070  * The behavior of the fc-nvme initiator is such that it's
1071  * understanding of the association and connections will implicitly
1072  * be torn down. The action is implicit as it may be due to a loss of
1073  * connectivity with the fc-nvme target, so you may never get a
1074  * response even if you tried.  As such, the action of this routine
1075  * is to asynchronously send the LS, ignore any results of the LS, and
1076  * continue on with terminating the association. If the fc-nvme target
1077  * is present and receives the LS, it too can tear down.
1078  */
1079 static void
1080 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1081 {
1082 	struct fcnvme_ls_disconnect_rqst *discon_rqst;
1083 	struct fcnvme_ls_disconnect_acc *discon_acc;
1084 	struct nvmefc_ls_req_op *lsop;
1085 	struct nvmefc_ls_req *lsreq;
1086 	int ret;
1087 
1088 	lsop = kzalloc((sizeof(*lsop) +
1089 			 ctrl->lport->ops->lsrqst_priv_sz +
1090 			 sizeof(*discon_rqst) + sizeof(*discon_acc)),
1091 			GFP_KERNEL);
1092 	if (!lsop)
1093 		/* couldn't sent it... too bad */
1094 		return;
1095 
1096 	lsreq = &lsop->ls_req;
1097 
1098 	lsreq->private = (void *)&lsop[1];
1099 	discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1100 			(lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1101 	discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1102 
1103 	discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1104 	discon_rqst->desc_list_len = cpu_to_be32(
1105 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1106 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1107 
1108 	discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1109 	discon_rqst->associd.desc_len =
1110 			fcnvme_lsdesc_len(
1111 				sizeof(struct fcnvme_lsdesc_assoc_id));
1112 
1113 	discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1114 
1115 	discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1116 						FCNVME_LSDESC_DISCONN_CMD);
1117 	discon_rqst->discon_cmd.desc_len =
1118 			fcnvme_lsdesc_len(
1119 				sizeof(struct fcnvme_lsdesc_disconn_cmd));
1120 	discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1121 	discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1122 
1123 	lsreq->rqstaddr = discon_rqst;
1124 	lsreq->rqstlen = sizeof(*discon_rqst);
1125 	lsreq->rspaddr = discon_acc;
1126 	lsreq->rsplen = sizeof(*discon_acc);
1127 	lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1128 
1129 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1130 				nvme_fc_disconnect_assoc_done);
1131 	if (ret)
1132 		kfree(lsop);
1133 
1134 	/* only meaningful part to terminating the association */
1135 	ctrl->association_id = 0;
1136 }
1137 
1138 
1139 /* *********************** NVME Ctrl Routines **************************** */
1140 
1141 static void __nvme_fc_final_op_cleanup(struct request *rq);
1142 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1143 
1144 static int
1145 nvme_fc_reinit_request(void *data, struct request *rq)
1146 {
1147 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1148 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1149 
1150 	memset(cmdiu, 0, sizeof(*cmdiu));
1151 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1152 	cmdiu->fc_id = NVME_CMD_FC_ID;
1153 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1154 	memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1155 
1156 	return 0;
1157 }
1158 
1159 static void
1160 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1161 		struct nvme_fc_fcp_op *op)
1162 {
1163 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1164 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1165 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1166 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1167 
1168 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1169 }
1170 
1171 static void
1172 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1173 		unsigned int hctx_idx)
1174 {
1175 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1176 
1177 	return __nvme_fc_exit_request(set->driver_data, op);
1178 }
1179 
1180 static int
1181 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1182 {
1183 	int state;
1184 
1185 	state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1186 	if (state != FCPOP_STATE_ACTIVE) {
1187 		atomic_set(&op->state, state);
1188 		return -ECANCELED;
1189 	}
1190 
1191 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1192 					&ctrl->rport->remoteport,
1193 					op->queue->lldd_handle,
1194 					&op->fcp_req);
1195 
1196 	return 0;
1197 }
1198 
1199 static void
1200 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1201 {
1202 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1203 	unsigned long flags;
1204 	int i, ret;
1205 
1206 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1207 		if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1208 			continue;
1209 
1210 		spin_lock_irqsave(&ctrl->lock, flags);
1211 		if (ctrl->flags & FCCTRL_TERMIO) {
1212 			ctrl->iocnt++;
1213 			aen_op->flags |= FCOP_FLAGS_TERMIO;
1214 		}
1215 		spin_unlock_irqrestore(&ctrl->lock, flags);
1216 
1217 		ret = __nvme_fc_abort_op(ctrl, aen_op);
1218 		if (ret) {
1219 			/*
1220 			 * if __nvme_fc_abort_op failed the io wasn't
1221 			 * active. Thus this call path is running in
1222 			 * parallel to the io complete. Treat as non-error.
1223 			 */
1224 
1225 			/* back out the flags/counters */
1226 			spin_lock_irqsave(&ctrl->lock, flags);
1227 			if (ctrl->flags & FCCTRL_TERMIO)
1228 				ctrl->iocnt--;
1229 			aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1230 			spin_unlock_irqrestore(&ctrl->lock, flags);
1231 			return;
1232 		}
1233 	}
1234 }
1235 
1236 static inline int
1237 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1238 		struct nvme_fc_fcp_op *op)
1239 {
1240 	unsigned long flags;
1241 	bool complete_rq = false;
1242 
1243 	spin_lock_irqsave(&ctrl->lock, flags);
1244 	if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1245 		if (ctrl->flags & FCCTRL_TERMIO)
1246 			ctrl->iocnt--;
1247 	}
1248 	if (op->flags & FCOP_FLAGS_RELEASED)
1249 		complete_rq = true;
1250 	else
1251 		op->flags |= FCOP_FLAGS_COMPLETE;
1252 	spin_unlock_irqrestore(&ctrl->lock, flags);
1253 
1254 	return complete_rq;
1255 }
1256 
1257 static void
1258 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1259 {
1260 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1261 	struct request *rq = op->rq;
1262 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1263 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1264 	struct nvme_fc_queue *queue = op->queue;
1265 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1266 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1267 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1268 	union nvme_result result;
1269 	bool complete_rq, terminate_assoc = true;
1270 
1271 	/*
1272 	 * WARNING:
1273 	 * The current linux implementation of a nvme controller
1274 	 * allocates a single tag set for all io queues and sizes
1275 	 * the io queues to fully hold all possible tags. Thus, the
1276 	 * implementation does not reference or care about the sqhd
1277 	 * value as it never needs to use the sqhd/sqtail pointers
1278 	 * for submission pacing.
1279 	 *
1280 	 * This affects the FC-NVME implementation in two ways:
1281 	 * 1) As the value doesn't matter, we don't need to waste
1282 	 *    cycles extracting it from ERSPs and stamping it in the
1283 	 *    cases where the transport fabricates CQEs on successful
1284 	 *    completions.
1285 	 * 2) The FC-NVME implementation requires that delivery of
1286 	 *    ERSP completions are to go back to the nvme layer in order
1287 	 *    relative to the rsn, such that the sqhd value will always
1288 	 *    be "in order" for the nvme layer. As the nvme layer in
1289 	 *    linux doesn't care about sqhd, there's no need to return
1290 	 *    them in order.
1291 	 *
1292 	 * Additionally:
1293 	 * As the core nvme layer in linux currently does not look at
1294 	 * every field in the cqe - in cases where the FC transport must
1295 	 * fabricate a CQE, the following fields will not be set as they
1296 	 * are not referenced:
1297 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1298 	 *
1299 	 * Failure or error of an individual i/o, in a transport
1300 	 * detected fashion unrelated to the nvme completion status,
1301 	 * potentially cause the initiator and target sides to get out
1302 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1303 	 * Per FC-NVME spec, failure of an individual command requires
1304 	 * the connection to be terminated, which in turn requires the
1305 	 * association to be terminated.
1306 	 */
1307 
1308 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1309 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1310 
1311 	if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1312 		status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1313 	else if (freq->status)
1314 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1315 
1316 	/*
1317 	 * For the linux implementation, if we have an unsuccesful
1318 	 * status, they blk-mq layer can typically be called with the
1319 	 * non-zero status and the content of the cqe isn't important.
1320 	 */
1321 	if (status)
1322 		goto done;
1323 
1324 	/*
1325 	 * command completed successfully relative to the wire
1326 	 * protocol. However, validate anything received and
1327 	 * extract the status and result from the cqe (create it
1328 	 * where necessary).
1329 	 */
1330 
1331 	switch (freq->rcv_rsplen) {
1332 
1333 	case 0:
1334 	case NVME_FC_SIZEOF_ZEROS_RSP:
1335 		/*
1336 		 * No response payload or 12 bytes of payload (which
1337 		 * should all be zeros) are considered successful and
1338 		 * no payload in the CQE by the transport.
1339 		 */
1340 		if (freq->transferred_length !=
1341 			be32_to_cpu(op->cmd_iu.data_len)) {
1342 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1343 			goto done;
1344 		}
1345 		result.u64 = 0;
1346 		break;
1347 
1348 	case sizeof(struct nvme_fc_ersp_iu):
1349 		/*
1350 		 * The ERSP IU contains a full completion with CQE.
1351 		 * Validate ERSP IU and look at cqe.
1352 		 */
1353 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1354 					(freq->rcv_rsplen / 4) ||
1355 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1356 					freq->transferred_length ||
1357 			     op->rsp_iu.status_code ||
1358 			     sqe->common.command_id != cqe->command_id)) {
1359 			status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1360 			goto done;
1361 		}
1362 		result = cqe->result;
1363 		status = cqe->status;
1364 		break;
1365 
1366 	default:
1367 		status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1368 		goto done;
1369 	}
1370 
1371 	terminate_assoc = false;
1372 
1373 done:
1374 	if (op->flags & FCOP_FLAGS_AEN) {
1375 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1376 		complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1377 		atomic_set(&op->state, FCPOP_STATE_IDLE);
1378 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
1379 		nvme_fc_ctrl_put(ctrl);
1380 		goto check_error;
1381 	}
1382 
1383 	complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1384 	if (!complete_rq) {
1385 		if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1386 			status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1387 			if (blk_queue_dying(rq->q))
1388 				status |= cpu_to_le16(NVME_SC_DNR << 1);
1389 		}
1390 		nvme_end_request(rq, status, result);
1391 	} else
1392 		__nvme_fc_final_op_cleanup(rq);
1393 
1394 check_error:
1395 	if (terminate_assoc)
1396 		nvme_fc_error_recovery(ctrl, "transport detected io error");
1397 }
1398 
1399 static int
1400 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1401 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1402 		struct request *rq, u32 rqno)
1403 {
1404 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1405 	int ret = 0;
1406 
1407 	memset(op, 0, sizeof(*op));
1408 	op->fcp_req.cmdaddr = &op->cmd_iu;
1409 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1410 	op->fcp_req.rspaddr = &op->rsp_iu;
1411 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
1412 	op->fcp_req.done = nvme_fc_fcpio_done;
1413 	op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1414 	op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1415 	op->ctrl = ctrl;
1416 	op->queue = queue;
1417 	op->rq = rq;
1418 	op->rqno = rqno;
1419 
1420 	cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1421 	cmdiu->fc_id = NVME_CMD_FC_ID;
1422 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1423 
1424 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1425 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1426 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1427 		dev_err(ctrl->dev,
1428 			"FCP Op failed - cmdiu dma mapping failed.\n");
1429 		ret = EFAULT;
1430 		goto out_on_error;
1431 	}
1432 
1433 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1434 				&op->rsp_iu, sizeof(op->rsp_iu),
1435 				DMA_FROM_DEVICE);
1436 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1437 		dev_err(ctrl->dev,
1438 			"FCP Op failed - rspiu dma mapping failed.\n");
1439 		ret = EFAULT;
1440 	}
1441 
1442 	atomic_set(&op->state, FCPOP_STATE_IDLE);
1443 out_on_error:
1444 	return ret;
1445 }
1446 
1447 static int
1448 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1449 		unsigned int hctx_idx, unsigned int numa_node)
1450 {
1451 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1452 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1453 	struct nvme_fc_queue *queue = &ctrl->queues[hctx_idx+1];
1454 
1455 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1456 }
1457 
1458 static int
1459 nvme_fc_init_admin_request(struct blk_mq_tag_set *set, struct request *rq,
1460 		unsigned int hctx_idx, unsigned int numa_node)
1461 {
1462 	struct nvme_fc_ctrl *ctrl = set->driver_data;
1463 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1464 	struct nvme_fc_queue *queue = &ctrl->queues[0];
1465 
1466 	return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1467 }
1468 
1469 static int
1470 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1471 {
1472 	struct nvme_fc_fcp_op *aen_op;
1473 	struct nvme_fc_cmd_iu *cmdiu;
1474 	struct nvme_command *sqe;
1475 	void *private;
1476 	int i, ret;
1477 
1478 	aen_op = ctrl->aen_ops;
1479 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1480 		private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1481 						GFP_KERNEL);
1482 		if (!private)
1483 			return -ENOMEM;
1484 
1485 		cmdiu = &aen_op->cmd_iu;
1486 		sqe = &cmdiu->sqe;
1487 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1488 				aen_op, (struct request *)NULL,
1489 				(AEN_CMDID_BASE + i));
1490 		if (ret) {
1491 			kfree(private);
1492 			return ret;
1493 		}
1494 
1495 		aen_op->flags = FCOP_FLAGS_AEN;
1496 		aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1497 		aen_op->fcp_req.private = private;
1498 
1499 		memset(sqe, 0, sizeof(*sqe));
1500 		sqe->common.opcode = nvme_admin_async_event;
1501 		/* Note: core layer may overwrite the sqe.command_id value */
1502 		sqe->common.command_id = AEN_CMDID_BASE + i;
1503 	}
1504 	return 0;
1505 }
1506 
1507 static void
1508 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1509 {
1510 	struct nvme_fc_fcp_op *aen_op;
1511 	int i;
1512 
1513 	aen_op = ctrl->aen_ops;
1514 	for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1515 		if (!aen_op->fcp_req.private)
1516 			continue;
1517 
1518 		__nvme_fc_exit_request(ctrl, aen_op);
1519 
1520 		kfree(aen_op->fcp_req.private);
1521 		aen_op->fcp_req.private = NULL;
1522 	}
1523 }
1524 
1525 static inline void
1526 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1527 		unsigned int qidx)
1528 {
1529 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1530 
1531 	hctx->driver_data = queue;
1532 	queue->hctx = hctx;
1533 }
1534 
1535 static int
1536 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1537 		unsigned int hctx_idx)
1538 {
1539 	struct nvme_fc_ctrl *ctrl = data;
1540 
1541 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1542 
1543 	return 0;
1544 }
1545 
1546 static int
1547 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1548 		unsigned int hctx_idx)
1549 {
1550 	struct nvme_fc_ctrl *ctrl = data;
1551 
1552 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1553 
1554 	return 0;
1555 }
1556 
1557 static void
1558 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1559 {
1560 	struct nvme_fc_queue *queue;
1561 
1562 	queue = &ctrl->queues[idx];
1563 	memset(queue, 0, sizeof(*queue));
1564 	queue->ctrl = ctrl;
1565 	queue->qnum = idx;
1566 	atomic_set(&queue->csn, 1);
1567 	queue->dev = ctrl->dev;
1568 
1569 	if (idx > 0)
1570 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1571 	else
1572 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
1573 
1574 	queue->queue_size = queue_size;
1575 
1576 	/*
1577 	 * Considered whether we should allocate buffers for all SQEs
1578 	 * and CQEs and dma map them - mapping their respective entries
1579 	 * into the request structures (kernel vm addr and dma address)
1580 	 * thus the driver could use the buffers/mappings directly.
1581 	 * It only makes sense if the LLDD would use them for its
1582 	 * messaging api. It's very unlikely most adapter api's would use
1583 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1584 	 * structures were used instead.
1585 	 */
1586 }
1587 
1588 /*
1589  * This routine terminates a queue at the transport level.
1590  * The transport has already ensured that all outstanding ios on
1591  * the queue have been terminated.
1592  * The transport will send a Disconnect LS request to terminate
1593  * the queue's connection. Termination of the admin queue will also
1594  * terminate the association at the target.
1595  */
1596 static void
1597 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1598 {
1599 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1600 		return;
1601 
1602 	/*
1603 	 * Current implementation never disconnects a single queue.
1604 	 * It always terminates a whole association. So there is never
1605 	 * a disconnect(queue) LS sent to the target.
1606 	 */
1607 
1608 	queue->connection_id = 0;
1609 	clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1610 }
1611 
1612 static void
1613 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1614 	struct nvme_fc_queue *queue, unsigned int qidx)
1615 {
1616 	if (ctrl->lport->ops->delete_queue)
1617 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1618 				queue->lldd_handle);
1619 	queue->lldd_handle = NULL;
1620 }
1621 
1622 static void
1623 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1624 {
1625 	int i;
1626 
1627 	for (i = 1; i < ctrl->queue_count; i++)
1628 		nvme_fc_free_queue(&ctrl->queues[i]);
1629 }
1630 
1631 static int
1632 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1633 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1634 {
1635 	int ret = 0;
1636 
1637 	queue->lldd_handle = NULL;
1638 	if (ctrl->lport->ops->create_queue)
1639 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1640 				qidx, qsize, &queue->lldd_handle);
1641 
1642 	return ret;
1643 }
1644 
1645 static void
1646 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1647 {
1648 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1649 	int i;
1650 
1651 	for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1652 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
1653 }
1654 
1655 static int
1656 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1657 {
1658 	struct nvme_fc_queue *queue = &ctrl->queues[1];
1659 	int i, ret;
1660 
1661 	for (i = 1; i < ctrl->queue_count; i++, queue++) {
1662 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1663 		if (ret)
1664 			goto delete_queues;
1665 	}
1666 
1667 	return 0;
1668 
1669 delete_queues:
1670 	for (; i >= 0; i--)
1671 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1672 	return ret;
1673 }
1674 
1675 static int
1676 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1677 {
1678 	int i, ret = 0;
1679 
1680 	for (i = 1; i < ctrl->queue_count; i++) {
1681 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1682 					(qsize / 5));
1683 		if (ret)
1684 			break;
1685 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1686 		if (ret)
1687 			break;
1688 	}
1689 
1690 	return ret;
1691 }
1692 
1693 static void
1694 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1695 {
1696 	int i;
1697 
1698 	for (i = 1; i < ctrl->queue_count; i++)
1699 		nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1700 }
1701 
1702 static void
1703 nvme_fc_ctrl_free(struct kref *ref)
1704 {
1705 	struct nvme_fc_ctrl *ctrl =
1706 		container_of(ref, struct nvme_fc_ctrl, ref);
1707 	unsigned long flags;
1708 
1709 	if (ctrl->ctrl.tagset) {
1710 		blk_cleanup_queue(ctrl->ctrl.connect_q);
1711 		blk_mq_free_tag_set(&ctrl->tag_set);
1712 	}
1713 
1714 	/* remove from rport list */
1715 	spin_lock_irqsave(&ctrl->rport->lock, flags);
1716 	list_del(&ctrl->ctrl_list);
1717 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1718 
1719 	blk_cleanup_queue(ctrl->ctrl.admin_q);
1720 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
1721 
1722 	kfree(ctrl->queues);
1723 
1724 	put_device(ctrl->dev);
1725 	nvme_fc_rport_put(ctrl->rport);
1726 
1727 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1728 	if (ctrl->ctrl.opts)
1729 		nvmf_free_options(ctrl->ctrl.opts);
1730 	kfree(ctrl);
1731 }
1732 
1733 static void
1734 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1735 {
1736 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1737 }
1738 
1739 static int
1740 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1741 {
1742 	return kref_get_unless_zero(&ctrl->ref);
1743 }
1744 
1745 /*
1746  * All accesses from nvme core layer done - can now free the
1747  * controller. Called after last nvme_put_ctrl() call
1748  */
1749 static void
1750 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1751 {
1752 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1753 
1754 	WARN_ON(nctrl != &ctrl->ctrl);
1755 
1756 	nvme_fc_ctrl_put(ctrl);
1757 }
1758 
1759 static void
1760 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1761 {
1762 	dev_warn(ctrl->ctrl.device,
1763 		"NVME-FC{%d}: transport association error detected: %s\n",
1764 		ctrl->cnum, errmsg);
1765 	dev_warn(ctrl->ctrl.device,
1766 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1767 
1768 	/* stop the queues on error, cleanup is in reset thread */
1769 	if (ctrl->queue_count > 1)
1770 		nvme_stop_queues(&ctrl->ctrl);
1771 
1772 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1773 		dev_err(ctrl->ctrl.device,
1774 			"NVME-FC{%d}: error_recovery: Couldn't change state "
1775 			"to RECONNECTING\n", ctrl->cnum);
1776 		return;
1777 	}
1778 
1779 	if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
1780 		dev_err(ctrl->ctrl.device,
1781 			"NVME-FC{%d}: error_recovery: Failed to schedule "
1782 			"reset work\n", ctrl->cnum);
1783 }
1784 
1785 static enum blk_eh_timer_return
1786 nvme_fc_timeout(struct request *rq, bool reserved)
1787 {
1788 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1789 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1790 	int ret;
1791 
1792 	if (reserved)
1793 		return BLK_EH_RESET_TIMER;
1794 
1795 	ret = __nvme_fc_abort_op(ctrl, op);
1796 	if (ret)
1797 		/* io wasn't active to abort consider it done */
1798 		return BLK_EH_HANDLED;
1799 
1800 	/*
1801 	 * we can't individually ABTS an io without affecting the queue,
1802 	 * thus killing the queue, adn thus the association.
1803 	 * So resolve by performing a controller reset, which will stop
1804 	 * the host/io stack, terminate the association on the link,
1805 	 * and recreate an association on the link.
1806 	 */
1807 	nvme_fc_error_recovery(ctrl, "io timeout error");
1808 
1809 	return BLK_EH_HANDLED;
1810 }
1811 
1812 static int
1813 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1814 		struct nvme_fc_fcp_op *op)
1815 {
1816 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1817 	enum dma_data_direction dir;
1818 	int ret;
1819 
1820 	freq->sg_cnt = 0;
1821 
1822 	if (!blk_rq_payload_bytes(rq))
1823 		return 0;
1824 
1825 	freq->sg_table.sgl = freq->first_sgl;
1826 	ret = sg_alloc_table_chained(&freq->sg_table,
1827 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1828 	if (ret)
1829 		return -ENOMEM;
1830 
1831 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1832 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1833 	dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1834 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1835 				op->nents, dir);
1836 	if (unlikely(freq->sg_cnt <= 0)) {
1837 		sg_free_table_chained(&freq->sg_table, true);
1838 		freq->sg_cnt = 0;
1839 		return -EFAULT;
1840 	}
1841 
1842 	/*
1843 	 * TODO: blk_integrity_rq(rq)  for DIF
1844 	 */
1845 	return 0;
1846 }
1847 
1848 static void
1849 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1850 		struct nvme_fc_fcp_op *op)
1851 {
1852 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1853 
1854 	if (!freq->sg_cnt)
1855 		return;
1856 
1857 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1858 				((rq_data_dir(rq) == WRITE) ?
1859 					DMA_TO_DEVICE : DMA_FROM_DEVICE));
1860 
1861 	nvme_cleanup_cmd(rq);
1862 
1863 	sg_free_table_chained(&freq->sg_table, true);
1864 
1865 	freq->sg_cnt = 0;
1866 }
1867 
1868 /*
1869  * In FC, the queue is a logical thing. At transport connect, the target
1870  * creates its "queue" and returns a handle that is to be given to the
1871  * target whenever it posts something to the corresponding SQ.  When an
1872  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1873  * command contained within the SQE, an io, and assigns a FC exchange
1874  * to it. The SQE and the associated SQ handle are sent in the initial
1875  * CMD IU sents on the exchange. All transfers relative to the io occur
1876  * as part of the exchange.  The CQE is the last thing for the io,
1877  * which is transferred (explicitly or implicitly) with the RSP IU
1878  * sent on the exchange. After the CQE is received, the FC exchange is
1879  * terminaed and the Exchange may be used on a different io.
1880  *
1881  * The transport to LLDD api has the transport making a request for a
1882  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1883  * resource and transfers the command. The LLDD will then process all
1884  * steps to complete the io. Upon completion, the transport done routine
1885  * is called.
1886  *
1887  * So - while the operation is outstanding to the LLDD, there is a link
1888  * level FC exchange resource that is also outstanding. This must be
1889  * considered in all cleanup operations.
1890  */
1891 static int
1892 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1893 	struct nvme_fc_fcp_op *op, u32 data_len,
1894 	enum nvmefc_fcp_datadir	io_dir)
1895 {
1896 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1897 	struct nvme_command *sqe = &cmdiu->sqe;
1898 	u32 csn;
1899 	int ret;
1900 
1901 	/*
1902 	 * before attempting to send the io, check to see if we believe
1903 	 * the target device is present
1904 	 */
1905 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1906 		return BLK_MQ_RQ_QUEUE_ERROR;
1907 
1908 	if (!nvme_fc_ctrl_get(ctrl))
1909 		return BLK_MQ_RQ_QUEUE_ERROR;
1910 
1911 	/* format the FC-NVME CMD IU and fcp_req */
1912 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1913 	csn = atomic_inc_return(&queue->csn);
1914 	cmdiu->csn = cpu_to_be32(csn);
1915 	cmdiu->data_len = cpu_to_be32(data_len);
1916 	switch (io_dir) {
1917 	case NVMEFC_FCP_WRITE:
1918 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1919 		break;
1920 	case NVMEFC_FCP_READ:
1921 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1922 		break;
1923 	case NVMEFC_FCP_NODATA:
1924 		cmdiu->flags = 0;
1925 		break;
1926 	}
1927 	op->fcp_req.payload_length = data_len;
1928 	op->fcp_req.io_dir = io_dir;
1929 	op->fcp_req.transferred_length = 0;
1930 	op->fcp_req.rcv_rsplen = 0;
1931 	op->fcp_req.status = NVME_SC_SUCCESS;
1932 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1933 
1934 	/*
1935 	 * validate per fabric rules, set fields mandated by fabric spec
1936 	 * as well as those by FC-NVME spec.
1937 	 */
1938 	WARN_ON_ONCE(sqe->common.metadata);
1939 	WARN_ON_ONCE(sqe->common.dptr.prp1);
1940 	WARN_ON_ONCE(sqe->common.dptr.prp2);
1941 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
1942 
1943 	/*
1944 	 * format SQE DPTR field per FC-NVME rules
1945 	 *    type=data block descr; subtype=offset;
1946 	 *    offset is currently 0.
1947 	 */
1948 	sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1949 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1950 	sqe->rw.dptr.sgl.addr = 0;
1951 
1952 	if (!(op->flags & FCOP_FLAGS_AEN)) {
1953 		ret = nvme_fc_map_data(ctrl, op->rq, op);
1954 		if (ret < 0) {
1955 			nvme_cleanup_cmd(op->rq);
1956 			nvme_fc_ctrl_put(ctrl);
1957 			return (ret == -ENOMEM || ret == -EAGAIN) ?
1958 				BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1959 		}
1960 	}
1961 
1962 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1963 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
1964 
1965 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1966 
1967 	if (!(op->flags & FCOP_FLAGS_AEN))
1968 		blk_mq_start_request(op->rq);
1969 
1970 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1971 					&ctrl->rport->remoteport,
1972 					queue->lldd_handle, &op->fcp_req);
1973 
1974 	if (ret) {
1975 		if (op->rq) {			/* normal request */
1976 			nvme_fc_unmap_data(ctrl, op->rq, op);
1977 			nvme_cleanup_cmd(op->rq);
1978 		}
1979 		/* else - aen. no cleanup needed */
1980 
1981 		nvme_fc_ctrl_put(ctrl);
1982 
1983 		if (ret != -EBUSY)
1984 			return BLK_MQ_RQ_QUEUE_ERROR;
1985 
1986 		if (op->rq) {
1987 			blk_mq_stop_hw_queues(op->rq->q);
1988 			blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1989 		}
1990 		return BLK_MQ_RQ_QUEUE_BUSY;
1991 	}
1992 
1993 	return BLK_MQ_RQ_QUEUE_OK;
1994 }
1995 
1996 static int
1997 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1998 			const struct blk_mq_queue_data *bd)
1999 {
2000 	struct nvme_ns *ns = hctx->queue->queuedata;
2001 	struct nvme_fc_queue *queue = hctx->driver_data;
2002 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2003 	struct request *rq = bd->rq;
2004 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2005 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2006 	struct nvme_command *sqe = &cmdiu->sqe;
2007 	enum nvmefc_fcp_datadir	io_dir;
2008 	u32 data_len;
2009 	int ret;
2010 
2011 	ret = nvme_setup_cmd(ns, rq, sqe);
2012 	if (ret)
2013 		return ret;
2014 
2015 	data_len = blk_rq_payload_bytes(rq);
2016 	if (data_len)
2017 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2018 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2019 	else
2020 		io_dir = NVMEFC_FCP_NODATA;
2021 
2022 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2023 }
2024 
2025 static struct blk_mq_tags *
2026 nvme_fc_tagset(struct nvme_fc_queue *queue)
2027 {
2028 	if (queue->qnum == 0)
2029 		return queue->ctrl->admin_tag_set.tags[queue->qnum];
2030 
2031 	return queue->ctrl->tag_set.tags[queue->qnum - 1];
2032 }
2033 
2034 static int
2035 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2036 
2037 {
2038 	struct nvme_fc_queue *queue = hctx->driver_data;
2039 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2040 	struct request *req;
2041 	struct nvme_fc_fcp_op *op;
2042 
2043 	req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2044 	if (!req)
2045 		return 0;
2046 
2047 	op = blk_mq_rq_to_pdu(req);
2048 
2049 	if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2050 		 (ctrl->lport->ops->poll_queue))
2051 		ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2052 						 queue->lldd_handle);
2053 
2054 	return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2055 }
2056 
2057 static void
2058 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2059 {
2060 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2061 	struct nvme_fc_fcp_op *aen_op;
2062 	unsigned long flags;
2063 	bool terminating = false;
2064 	int ret;
2065 
2066 	if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2067 		return;
2068 
2069 	spin_lock_irqsave(&ctrl->lock, flags);
2070 	if (ctrl->flags & FCCTRL_TERMIO)
2071 		terminating = true;
2072 	spin_unlock_irqrestore(&ctrl->lock, flags);
2073 
2074 	if (terminating)
2075 		return;
2076 
2077 	aen_op = &ctrl->aen_ops[aer_idx];
2078 
2079 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2080 					NVMEFC_FCP_NODATA);
2081 	if (ret)
2082 		dev_err(ctrl->ctrl.device,
2083 			"failed async event work [%d]\n", aer_idx);
2084 }
2085 
2086 static void
2087 __nvme_fc_final_op_cleanup(struct request *rq)
2088 {
2089 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2090 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2091 
2092 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2093 	op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2094 			FCOP_FLAGS_COMPLETE);
2095 
2096 	nvme_cleanup_cmd(rq);
2097 	nvme_fc_unmap_data(ctrl, rq, op);
2098 	nvme_complete_rq(rq);
2099 	nvme_fc_ctrl_put(ctrl);
2100 
2101 }
2102 
2103 static void
2104 nvme_fc_complete_rq(struct request *rq)
2105 {
2106 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2107 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2108 	unsigned long flags;
2109 	bool completed = false;
2110 
2111 	/*
2112 	 * the core layer, on controller resets after calling
2113 	 * nvme_shutdown_ctrl(), calls complete_rq without our
2114 	 * calling blk_mq_complete_request(), thus there may still
2115 	 * be live i/o outstanding with the LLDD. Means transport has
2116 	 * to track complete calls vs fcpio_done calls to know what
2117 	 * path to take on completes and dones.
2118 	 */
2119 	spin_lock_irqsave(&ctrl->lock, flags);
2120 	if (op->flags & FCOP_FLAGS_COMPLETE)
2121 		completed = true;
2122 	else
2123 		op->flags |= FCOP_FLAGS_RELEASED;
2124 	spin_unlock_irqrestore(&ctrl->lock, flags);
2125 
2126 	if (completed)
2127 		__nvme_fc_final_op_cleanup(rq);
2128 }
2129 
2130 /*
2131  * This routine is used by the transport when it needs to find active
2132  * io on a queue that is to be terminated. The transport uses
2133  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2134  * this routine to kill them on a 1 by 1 basis.
2135  *
2136  * As FC allocates FC exchange for each io, the transport must contact
2137  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2138  * After terminating the exchange the LLDD will call the transport's
2139  * normal io done path for the request, but it will have an aborted
2140  * status. The done path will return the io request back to the block
2141  * layer with an error status.
2142  */
2143 static void
2144 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2145 {
2146 	struct nvme_ctrl *nctrl = data;
2147 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2148 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2149 	unsigned long flags;
2150 	int status;
2151 
2152 	if (!blk_mq_request_started(req))
2153 		return;
2154 
2155 	spin_lock_irqsave(&ctrl->lock, flags);
2156 	if (ctrl->flags & FCCTRL_TERMIO) {
2157 		ctrl->iocnt++;
2158 		op->flags |= FCOP_FLAGS_TERMIO;
2159 	}
2160 	spin_unlock_irqrestore(&ctrl->lock, flags);
2161 
2162 	status = __nvme_fc_abort_op(ctrl, op);
2163 	if (status) {
2164 		/*
2165 		 * if __nvme_fc_abort_op failed the io wasn't
2166 		 * active. Thus this call path is running in
2167 		 * parallel to the io complete. Treat as non-error.
2168 		 */
2169 
2170 		/* back out the flags/counters */
2171 		spin_lock_irqsave(&ctrl->lock, flags);
2172 		if (ctrl->flags & FCCTRL_TERMIO)
2173 			ctrl->iocnt--;
2174 		op->flags &= ~FCOP_FLAGS_TERMIO;
2175 		spin_unlock_irqrestore(&ctrl->lock, flags);
2176 		return;
2177 	}
2178 }
2179 
2180 
2181 static const struct blk_mq_ops nvme_fc_mq_ops = {
2182 	.queue_rq	= nvme_fc_queue_rq,
2183 	.complete	= nvme_fc_complete_rq,
2184 	.init_request	= nvme_fc_init_request,
2185 	.exit_request	= nvme_fc_exit_request,
2186 	.reinit_request	= nvme_fc_reinit_request,
2187 	.init_hctx	= nvme_fc_init_hctx,
2188 	.poll		= nvme_fc_poll,
2189 	.timeout	= nvme_fc_timeout,
2190 };
2191 
2192 static int
2193 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2194 {
2195 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2196 	int ret;
2197 
2198 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2199 	if (ret) {
2200 		dev_info(ctrl->ctrl.device,
2201 			"set_queue_count failed: %d\n", ret);
2202 		return ret;
2203 	}
2204 
2205 	ctrl->queue_count = opts->nr_io_queues + 1;
2206 	if (!opts->nr_io_queues)
2207 		return 0;
2208 
2209 	nvme_fc_init_io_queues(ctrl);
2210 
2211 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2212 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2213 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2214 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2215 	ctrl->tag_set.numa_node = NUMA_NO_NODE;
2216 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2217 	ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2218 					(SG_CHUNK_SIZE *
2219 						sizeof(struct scatterlist)) +
2220 					ctrl->lport->ops->fcprqst_priv_sz;
2221 	ctrl->tag_set.driver_data = ctrl;
2222 	ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2223 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2224 
2225 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2226 	if (ret)
2227 		return ret;
2228 
2229 	ctrl->ctrl.tagset = &ctrl->tag_set;
2230 
2231 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2232 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2233 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2234 		goto out_free_tag_set;
2235 	}
2236 
2237 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2238 	if (ret)
2239 		goto out_cleanup_blk_queue;
2240 
2241 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2242 	if (ret)
2243 		goto out_delete_hw_queues;
2244 
2245 	return 0;
2246 
2247 out_delete_hw_queues:
2248 	nvme_fc_delete_hw_io_queues(ctrl);
2249 out_cleanup_blk_queue:
2250 	nvme_stop_keep_alive(&ctrl->ctrl);
2251 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2252 out_free_tag_set:
2253 	blk_mq_free_tag_set(&ctrl->tag_set);
2254 	nvme_fc_free_io_queues(ctrl);
2255 
2256 	/* force put free routine to ignore io queues */
2257 	ctrl->ctrl.tagset = NULL;
2258 
2259 	return ret;
2260 }
2261 
2262 static int
2263 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2264 {
2265 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2266 	int ret;
2267 
2268 	ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2269 	if (ret) {
2270 		dev_info(ctrl->ctrl.device,
2271 			"set_queue_count failed: %d\n", ret);
2272 		return ret;
2273 	}
2274 
2275 	/* check for io queues existing */
2276 	if (ctrl->queue_count == 1)
2277 		return 0;
2278 
2279 	nvme_fc_init_io_queues(ctrl);
2280 
2281 	ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2282 	if (ret)
2283 		goto out_free_io_queues;
2284 
2285 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2286 	if (ret)
2287 		goto out_free_io_queues;
2288 
2289 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2290 	if (ret)
2291 		goto out_delete_hw_queues;
2292 
2293 	return 0;
2294 
2295 out_delete_hw_queues:
2296 	nvme_fc_delete_hw_io_queues(ctrl);
2297 out_free_io_queues:
2298 	nvme_fc_free_io_queues(ctrl);
2299 	return ret;
2300 }
2301 
2302 /*
2303  * This routine restarts the controller on the host side, and
2304  * on the link side, recreates the controller association.
2305  */
2306 static int
2307 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2308 {
2309 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2310 	u32 segs;
2311 	int ret;
2312 	bool changed;
2313 
2314 	++ctrl->ctrl.opts->nr_reconnects;
2315 
2316 	/*
2317 	 * Create the admin queue
2318 	 */
2319 
2320 	nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2321 
2322 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2323 				NVME_FC_AQ_BLKMQ_DEPTH);
2324 	if (ret)
2325 		goto out_free_queue;
2326 
2327 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2328 				NVME_FC_AQ_BLKMQ_DEPTH,
2329 				(NVME_FC_AQ_BLKMQ_DEPTH / 4));
2330 	if (ret)
2331 		goto out_delete_hw_queue;
2332 
2333 	if (ctrl->ctrl.state != NVME_CTRL_NEW)
2334 		blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2335 
2336 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2337 	if (ret)
2338 		goto out_disconnect_admin_queue;
2339 
2340 	/*
2341 	 * Check controller capabilities
2342 	 *
2343 	 * todo:- add code to check if ctrl attributes changed from
2344 	 * prior connection values
2345 	 */
2346 
2347 	ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2348 	if (ret) {
2349 		dev_err(ctrl->ctrl.device,
2350 			"prop_get NVME_REG_CAP failed\n");
2351 		goto out_disconnect_admin_queue;
2352 	}
2353 
2354 	ctrl->ctrl.sqsize =
2355 		min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2356 
2357 	ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2358 	if (ret)
2359 		goto out_disconnect_admin_queue;
2360 
2361 	segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2362 			ctrl->lport->ops->max_sgl_segments);
2363 	ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2364 
2365 	ret = nvme_init_identify(&ctrl->ctrl);
2366 	if (ret)
2367 		goto out_disconnect_admin_queue;
2368 
2369 	/* sanity checks */
2370 
2371 	/* FC-NVME does not have other data in the capsule */
2372 	if (ctrl->ctrl.icdoff) {
2373 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2374 				ctrl->ctrl.icdoff);
2375 		goto out_disconnect_admin_queue;
2376 	}
2377 
2378 	nvme_start_keep_alive(&ctrl->ctrl);
2379 
2380 	/* FC-NVME supports normal SGL Data Block Descriptors */
2381 
2382 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
2383 		/* warn if maxcmd is lower than queue_size */
2384 		dev_warn(ctrl->ctrl.device,
2385 			"queue_size %zu > ctrl maxcmd %u, reducing "
2386 			"to queue_size\n",
2387 			opts->queue_size, ctrl->ctrl.maxcmd);
2388 		opts->queue_size = ctrl->ctrl.maxcmd;
2389 	}
2390 
2391 	ret = nvme_fc_init_aen_ops(ctrl);
2392 	if (ret)
2393 		goto out_term_aen_ops;
2394 
2395 	/*
2396 	 * Create the io queues
2397 	 */
2398 
2399 	if (ctrl->queue_count > 1) {
2400 		if (ctrl->ctrl.state == NVME_CTRL_NEW)
2401 			ret = nvme_fc_create_io_queues(ctrl);
2402 		else
2403 			ret = nvme_fc_reinit_io_queues(ctrl);
2404 		if (ret)
2405 			goto out_term_aen_ops;
2406 	}
2407 
2408 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2409 	WARN_ON_ONCE(!changed);
2410 
2411 	ctrl->ctrl.opts->nr_reconnects = 0;
2412 
2413 	if (ctrl->queue_count > 1) {
2414 		nvme_start_queues(&ctrl->ctrl);
2415 		nvme_queue_scan(&ctrl->ctrl);
2416 		nvme_queue_async_events(&ctrl->ctrl);
2417 	}
2418 
2419 	return 0;	/* Success */
2420 
2421 out_term_aen_ops:
2422 	nvme_fc_term_aen_ops(ctrl);
2423 	nvme_stop_keep_alive(&ctrl->ctrl);
2424 out_disconnect_admin_queue:
2425 	/* send a Disconnect(association) LS to fc-nvme target */
2426 	nvme_fc_xmt_disconnect_assoc(ctrl);
2427 out_delete_hw_queue:
2428 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2429 out_free_queue:
2430 	nvme_fc_free_queue(&ctrl->queues[0]);
2431 
2432 	return ret;
2433 }
2434 
2435 /*
2436  * This routine stops operation of the controller on the host side.
2437  * On the host os stack side: Admin and IO queues are stopped,
2438  *   outstanding ios on them terminated via FC ABTS.
2439  * On the link side: the association is terminated.
2440  */
2441 static void
2442 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2443 {
2444 	unsigned long flags;
2445 
2446 	nvme_stop_keep_alive(&ctrl->ctrl);
2447 
2448 	spin_lock_irqsave(&ctrl->lock, flags);
2449 	ctrl->flags |= FCCTRL_TERMIO;
2450 	ctrl->iocnt = 0;
2451 	spin_unlock_irqrestore(&ctrl->lock, flags);
2452 
2453 	/*
2454 	 * If io queues are present, stop them and terminate all outstanding
2455 	 * ios on them. As FC allocates FC exchange for each io, the
2456 	 * transport must contact the LLDD to terminate the exchange,
2457 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2458 	 * to tell us what io's are busy and invoke a transport routine
2459 	 * to kill them with the LLDD.  After terminating the exchange
2460 	 * the LLDD will call the transport's normal io done path, but it
2461 	 * will have an aborted status. The done path will return the
2462 	 * io requests back to the block layer as part of normal completions
2463 	 * (but with error status).
2464 	 */
2465 	if (ctrl->queue_count > 1) {
2466 		nvme_stop_queues(&ctrl->ctrl);
2467 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
2468 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2469 	}
2470 
2471 	/*
2472 	 * Other transports, which don't have link-level contexts bound
2473 	 * to sqe's, would try to gracefully shutdown the controller by
2474 	 * writing the registers for shutdown and polling (call
2475 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2476 	 * just aborted and we will wait on those contexts, and given
2477 	 * there was no indication of how live the controlelr is on the
2478 	 * link, don't send more io to create more contexts for the
2479 	 * shutdown. Let the controller fail via keepalive failure if
2480 	 * its still present.
2481 	 */
2482 
2483 	/*
2484 	 * clean up the admin queue. Same thing as above.
2485 	 * use blk_mq_tagset_busy_itr() and the transport routine to
2486 	 * terminate the exchanges.
2487 	 */
2488 	blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2489 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2490 				nvme_fc_terminate_exchange, &ctrl->ctrl);
2491 
2492 	/* kill the aens as they are a separate path */
2493 	nvme_fc_abort_aen_ops(ctrl);
2494 
2495 	/* wait for all io that had to be aborted */
2496 	spin_lock_irqsave(&ctrl->lock, flags);
2497 	while (ctrl->iocnt) {
2498 		spin_unlock_irqrestore(&ctrl->lock, flags);
2499 		msleep(1000);
2500 		spin_lock_irqsave(&ctrl->lock, flags);
2501 	}
2502 	ctrl->flags &= ~FCCTRL_TERMIO;
2503 	spin_unlock_irqrestore(&ctrl->lock, flags);
2504 
2505 	nvme_fc_term_aen_ops(ctrl);
2506 
2507 	/*
2508 	 * send a Disconnect(association) LS to fc-nvme target
2509 	 * Note: could have been sent at top of process, but
2510 	 * cleaner on link traffic if after the aborts complete.
2511 	 * Note: if association doesn't exist, association_id will be 0
2512 	 */
2513 	if (ctrl->association_id)
2514 		nvme_fc_xmt_disconnect_assoc(ctrl);
2515 
2516 	if (ctrl->ctrl.tagset) {
2517 		nvme_fc_delete_hw_io_queues(ctrl);
2518 		nvme_fc_free_io_queues(ctrl);
2519 	}
2520 
2521 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2522 	nvme_fc_free_queue(&ctrl->queues[0]);
2523 }
2524 
2525 static void
2526 nvme_fc_delete_ctrl_work(struct work_struct *work)
2527 {
2528 	struct nvme_fc_ctrl *ctrl =
2529 		container_of(work, struct nvme_fc_ctrl, delete_work);
2530 
2531 	cancel_work_sync(&ctrl->reset_work);
2532 	cancel_delayed_work_sync(&ctrl->connect_work);
2533 
2534 	/*
2535 	 * kill the association on the link side.  this will block
2536 	 * waiting for io to terminate
2537 	 */
2538 	nvme_fc_delete_association(ctrl);
2539 
2540 	/*
2541 	 * tear down the controller
2542 	 * After the last reference on the nvme ctrl is removed,
2543 	 * the transport nvme_fc_nvme_ctrl_freed() callback will be
2544 	 * invoked. From there, the transport will tear down it's
2545 	 * logical queues and association.
2546 	 */
2547 	nvme_uninit_ctrl(&ctrl->ctrl);
2548 
2549 	nvme_put_ctrl(&ctrl->ctrl);
2550 }
2551 
2552 static bool
2553 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2554 {
2555 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2556 		return true;
2557 
2558 	if (!queue_work(nvme_fc_wq, &ctrl->delete_work))
2559 		return true;
2560 
2561 	return false;
2562 }
2563 
2564 static int
2565 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2566 {
2567 	return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2568 }
2569 
2570 /*
2571  * Request from nvme core layer to delete the controller
2572  */
2573 static int
2574 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2575 {
2576 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2577 	int ret;
2578 
2579 	if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2580 		return -EBUSY;
2581 
2582 	ret = __nvme_fc_del_ctrl(ctrl);
2583 
2584 	if (!ret)
2585 		flush_workqueue(nvme_fc_wq);
2586 
2587 	nvme_put_ctrl(&ctrl->ctrl);
2588 
2589 	return ret;
2590 }
2591 
2592 static void
2593 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2594 {
2595 	/* If we are resetting/deleting then do nothing */
2596 	if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2597 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2598 			ctrl->ctrl.state == NVME_CTRL_LIVE);
2599 		return;
2600 	}
2601 
2602 	dev_info(ctrl->ctrl.device,
2603 		"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2604 		ctrl->cnum, status);
2605 
2606 	if (nvmf_should_reconnect(&ctrl->ctrl)) {
2607 		dev_info(ctrl->ctrl.device,
2608 			"NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2609 			ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2610 		queue_delayed_work(nvme_fc_wq, &ctrl->connect_work,
2611 				ctrl->ctrl.opts->reconnect_delay * HZ);
2612 	} else {
2613 		dev_warn(ctrl->ctrl.device,
2614 				"NVME-FC{%d}: Max reconnect attempts (%d) "
2615 				"reached. Removing controller\n",
2616 				ctrl->cnum, ctrl->ctrl.opts->nr_reconnects);
2617 		WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2618 	}
2619 }
2620 
2621 static void
2622 nvme_fc_reset_ctrl_work(struct work_struct *work)
2623 {
2624 	struct nvme_fc_ctrl *ctrl =
2625 			container_of(work, struct nvme_fc_ctrl, reset_work);
2626 	int ret;
2627 
2628 	/* will block will waiting for io to terminate */
2629 	nvme_fc_delete_association(ctrl);
2630 
2631 	ret = nvme_fc_create_association(ctrl);
2632 	if (ret)
2633 		nvme_fc_reconnect_or_delete(ctrl, ret);
2634 	else
2635 		dev_info(ctrl->ctrl.device,
2636 			"NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2637 }
2638 
2639 /*
2640  * called by the nvme core layer, for sysfs interface that requests
2641  * a reset of the nvme controller
2642  */
2643 static int
2644 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2645 {
2646 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2647 
2648 	dev_info(ctrl->ctrl.device,
2649 		"NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2650 
2651 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2652 		return -EBUSY;
2653 
2654 	if (!queue_work(nvme_fc_wq, &ctrl->reset_work))
2655 		return -EBUSY;
2656 
2657 	flush_work(&ctrl->reset_work);
2658 
2659 	return 0;
2660 }
2661 
2662 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2663 	.name			= "fc",
2664 	.module			= THIS_MODULE,
2665 	.flags			= NVME_F_FABRICS,
2666 	.reg_read32		= nvmf_reg_read32,
2667 	.reg_read64		= nvmf_reg_read64,
2668 	.reg_write32		= nvmf_reg_write32,
2669 	.reset_ctrl		= nvme_fc_reset_nvme_ctrl,
2670 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
2671 	.submit_async_event	= nvme_fc_submit_async_event,
2672 	.delete_ctrl		= nvme_fc_del_nvme_ctrl,
2673 	.get_subsysnqn		= nvmf_get_subsysnqn,
2674 	.get_address		= nvmf_get_address,
2675 };
2676 
2677 static void
2678 nvme_fc_connect_ctrl_work(struct work_struct *work)
2679 {
2680 	int ret;
2681 
2682 	struct nvme_fc_ctrl *ctrl =
2683 			container_of(to_delayed_work(work),
2684 				struct nvme_fc_ctrl, connect_work);
2685 
2686 	ret = nvme_fc_create_association(ctrl);
2687 	if (ret)
2688 		nvme_fc_reconnect_or_delete(ctrl, ret);
2689 	else
2690 		dev_info(ctrl->ctrl.device,
2691 			"NVME-FC{%d}: controller reconnect complete\n",
2692 			ctrl->cnum);
2693 }
2694 
2695 
2696 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2697 	.queue_rq	= nvme_fc_queue_rq,
2698 	.complete	= nvme_fc_complete_rq,
2699 	.init_request	= nvme_fc_init_admin_request,
2700 	.exit_request	= nvme_fc_exit_request,
2701 	.reinit_request	= nvme_fc_reinit_request,
2702 	.init_hctx	= nvme_fc_init_admin_hctx,
2703 	.timeout	= nvme_fc_timeout,
2704 };
2705 
2706 
2707 static struct nvme_ctrl *
2708 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2709 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2710 {
2711 	struct nvme_fc_ctrl *ctrl;
2712 	unsigned long flags;
2713 	int ret, idx;
2714 
2715 	if (!(rport->remoteport.port_role &
2716 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2717 		ret = -EBADR;
2718 		goto out_fail;
2719 	}
2720 
2721 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2722 	if (!ctrl) {
2723 		ret = -ENOMEM;
2724 		goto out_fail;
2725 	}
2726 
2727 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2728 	if (idx < 0) {
2729 		ret = -ENOSPC;
2730 		goto out_free_ctrl;
2731 	}
2732 
2733 	ctrl->ctrl.opts = opts;
2734 	INIT_LIST_HEAD(&ctrl->ctrl_list);
2735 	ctrl->lport = lport;
2736 	ctrl->rport = rport;
2737 	ctrl->dev = lport->dev;
2738 	ctrl->cnum = idx;
2739 
2740 	get_device(ctrl->dev);
2741 	kref_init(&ctrl->ref);
2742 
2743 	INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2744 	INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2745 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2746 	spin_lock_init(&ctrl->lock);
2747 
2748 	/* io queue count */
2749 	ctrl->queue_count = min_t(unsigned int,
2750 				opts->nr_io_queues,
2751 				lport->ops->max_hw_queues);
2752 	opts->nr_io_queues = ctrl->queue_count;	/* so opts has valid value */
2753 	ctrl->queue_count++;	/* +1 for admin queue */
2754 
2755 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2756 	ctrl->ctrl.kato = opts->kato;
2757 
2758 	ret = -ENOMEM;
2759 	ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2760 				GFP_KERNEL);
2761 	if (!ctrl->queues)
2762 		goto out_free_ida;
2763 
2764 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2765 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2766 	ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2767 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2768 	ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2769 	ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2770 					(SG_CHUNK_SIZE *
2771 						sizeof(struct scatterlist)) +
2772 					ctrl->lport->ops->fcprqst_priv_sz;
2773 	ctrl->admin_tag_set.driver_data = ctrl;
2774 	ctrl->admin_tag_set.nr_hw_queues = 1;
2775 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2776 
2777 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2778 	if (ret)
2779 		goto out_free_queues;
2780 
2781 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2782 	if (IS_ERR(ctrl->ctrl.admin_q)) {
2783 		ret = PTR_ERR(ctrl->ctrl.admin_q);
2784 		goto out_free_admin_tag_set;
2785 	}
2786 
2787 	/*
2788 	 * Would have been nice to init io queues tag set as well.
2789 	 * However, we require interaction from the controller
2790 	 * for max io queue count before we can do so.
2791 	 * Defer this to the connect path.
2792 	 */
2793 
2794 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2795 	if (ret)
2796 		goto out_cleanup_admin_q;
2797 
2798 	/* at this point, teardown path changes to ref counting on nvme ctrl */
2799 
2800 	spin_lock_irqsave(&rport->lock, flags);
2801 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2802 	spin_unlock_irqrestore(&rport->lock, flags);
2803 
2804 	ret = nvme_fc_create_association(ctrl);
2805 	if (ret) {
2806 		ctrl->ctrl.opts = NULL;
2807 		/* initiate nvme ctrl ref counting teardown */
2808 		nvme_uninit_ctrl(&ctrl->ctrl);
2809 		nvme_put_ctrl(&ctrl->ctrl);
2810 
2811 		/* as we're past the point where we transition to the ref
2812 		 * counting teardown path, if we return a bad pointer here,
2813 		 * the calling routine, thinking it's prior to the
2814 		 * transition, will do an rport put. Since the teardown
2815 		 * path also does a rport put, we do an extra get here to
2816 		 * so proper order/teardown happens.
2817 		 */
2818 		nvme_fc_rport_get(rport);
2819 
2820 		if (ret > 0)
2821 			ret = -EIO;
2822 		return ERR_PTR(ret);
2823 	}
2824 
2825 	kref_get(&ctrl->ctrl.kref);
2826 
2827 	dev_info(ctrl->ctrl.device,
2828 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2829 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2830 
2831 	return &ctrl->ctrl;
2832 
2833 out_cleanup_admin_q:
2834 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2835 out_free_admin_tag_set:
2836 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2837 out_free_queues:
2838 	kfree(ctrl->queues);
2839 out_free_ida:
2840 	put_device(ctrl->dev);
2841 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2842 out_free_ctrl:
2843 	kfree(ctrl);
2844 out_fail:
2845 	/* exit via here doesn't follow ctlr ref points */
2846 	return ERR_PTR(ret);
2847 }
2848 
2849 enum {
2850 	FCT_TRADDR_ERR		= 0,
2851 	FCT_TRADDR_WWNN		= 1 << 0,
2852 	FCT_TRADDR_WWPN		= 1 << 1,
2853 };
2854 
2855 struct nvmet_fc_traddr {
2856 	u64	nn;
2857 	u64	pn;
2858 };
2859 
2860 static const match_table_t traddr_opt_tokens = {
2861 	{ FCT_TRADDR_WWNN,	"nn-%s"		},
2862 	{ FCT_TRADDR_WWPN,	"pn-%s"		},
2863 	{ FCT_TRADDR_ERR,	NULL		}
2864 };
2865 
2866 static int
2867 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2868 {
2869 	substring_t args[MAX_OPT_ARGS];
2870 	char *options, *o, *p;
2871 	int token, ret = 0;
2872 	u64 token64;
2873 
2874 	options = o = kstrdup(buf, GFP_KERNEL);
2875 	if (!options)
2876 		return -ENOMEM;
2877 
2878 	while ((p = strsep(&o, ":\n")) != NULL) {
2879 		if (!*p)
2880 			continue;
2881 
2882 		token = match_token(p, traddr_opt_tokens, args);
2883 		switch (token) {
2884 		case FCT_TRADDR_WWNN:
2885 			if (match_u64(args, &token64)) {
2886 				ret = -EINVAL;
2887 				goto out;
2888 			}
2889 			traddr->nn = token64;
2890 			break;
2891 		case FCT_TRADDR_WWPN:
2892 			if (match_u64(args, &token64)) {
2893 				ret = -EINVAL;
2894 				goto out;
2895 			}
2896 			traddr->pn = token64;
2897 			break;
2898 		default:
2899 			pr_warn("unknown traddr token or missing value '%s'\n",
2900 					p);
2901 			ret = -EINVAL;
2902 			goto out;
2903 		}
2904 	}
2905 
2906 out:
2907 	kfree(options);
2908 	return ret;
2909 }
2910 
2911 static struct nvme_ctrl *
2912 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2913 {
2914 	struct nvme_fc_lport *lport;
2915 	struct nvme_fc_rport *rport;
2916 	struct nvme_ctrl *ctrl;
2917 	struct nvmet_fc_traddr laddr = { 0L, 0L };
2918 	struct nvmet_fc_traddr raddr = { 0L, 0L };
2919 	unsigned long flags;
2920 	int ret;
2921 
2922 	ret = nvme_fc_parse_address(&raddr, opts->traddr);
2923 	if (ret || !raddr.nn || !raddr.pn)
2924 		return ERR_PTR(-EINVAL);
2925 
2926 	ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2927 	if (ret || !laddr.nn || !laddr.pn)
2928 		return ERR_PTR(-EINVAL);
2929 
2930 	/* find the host and remote ports to connect together */
2931 	spin_lock_irqsave(&nvme_fc_lock, flags);
2932 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2933 		if (lport->localport.node_name != laddr.nn ||
2934 		    lport->localport.port_name != laddr.pn)
2935 			continue;
2936 
2937 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
2938 			if (rport->remoteport.node_name != raddr.nn ||
2939 			    rport->remoteport.port_name != raddr.pn)
2940 				continue;
2941 
2942 			/* if fail to get reference fall through. Will error */
2943 			if (!nvme_fc_rport_get(rport))
2944 				break;
2945 
2946 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
2947 
2948 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2949 			if (IS_ERR(ctrl))
2950 				nvme_fc_rport_put(rport);
2951 			return ctrl;
2952 		}
2953 	}
2954 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
2955 
2956 	return ERR_PTR(-ENOENT);
2957 }
2958 
2959 
2960 static struct nvmf_transport_ops nvme_fc_transport = {
2961 	.name		= "fc",
2962 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2963 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2964 	.create_ctrl	= nvme_fc_create_ctrl,
2965 };
2966 
2967 static int __init nvme_fc_init_module(void)
2968 {
2969 	int ret;
2970 
2971 	nvme_fc_wq = create_workqueue("nvme_fc_wq");
2972 	if (!nvme_fc_wq)
2973 		return -ENOMEM;
2974 
2975 	ret = nvmf_register_transport(&nvme_fc_transport);
2976 	if (ret)
2977 		goto err;
2978 
2979 	return 0;
2980 err:
2981 	destroy_workqueue(nvme_fc_wq);
2982 	return ret;
2983 }
2984 
2985 static void __exit nvme_fc_exit_module(void)
2986 {
2987 	/* sanity check - all lports should be removed */
2988 	if (!list_empty(&nvme_fc_lport_list))
2989 		pr_warn("%s: localport list not empty\n", __func__);
2990 
2991 	nvmf_unregister_transport(&nvme_fc_transport);
2992 
2993 	destroy_workqueue(nvme_fc_wq);
2994 
2995 	ida_destroy(&nvme_fc_local_port_cnt);
2996 	ida_destroy(&nvme_fc_ctrl_cnt);
2997 }
2998 
2999 module_init(nvme_fc_init_module);
3000 module_exit(nvme_fc_exit_module);
3001 
3002 MODULE_LICENSE("GPL v2");
3003