1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016 Avago Technologies. All rights reserved. 4 */ 5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 6 #include <linux/module.h> 7 #include <linux/parser.h> 8 #include <uapi/scsi/fc/fc_fs.h> 9 #include <uapi/scsi/fc/fc_els.h> 10 #include <linux/delay.h> 11 #include <linux/overflow.h> 12 #include <linux/blk-cgroup.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-fc-driver.h> 16 #include <linux/nvme-fc.h> 17 #include "fc.h" 18 #include <scsi/scsi_transport_fc.h> 19 20 /* *************************** Data Structures/Defines ****************** */ 21 22 23 enum nvme_fc_queue_flags { 24 NVME_FC_Q_CONNECTED = 0, 25 NVME_FC_Q_LIVE, 26 }; 27 28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO 60 /* seconds */ 29 #define NVME_FC_DEFAULT_RECONNECT_TMO 2 /* delay between reconnects 30 * when connected and a 31 * connection failure. 32 */ 33 34 struct nvme_fc_queue { 35 struct nvme_fc_ctrl *ctrl; 36 struct device *dev; 37 struct blk_mq_hw_ctx *hctx; 38 void *lldd_handle; 39 size_t cmnd_capsule_len; 40 u32 qnum; 41 u32 rqcnt; 42 u32 seqno; 43 44 u64 connection_id; 45 atomic_t csn; 46 47 unsigned long flags; 48 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 49 50 enum nvme_fcop_flags { 51 FCOP_FLAGS_TERMIO = (1 << 0), 52 FCOP_FLAGS_AEN = (1 << 1), 53 }; 54 55 struct nvmefc_ls_req_op { 56 struct nvmefc_ls_req ls_req; 57 58 struct nvme_fc_rport *rport; 59 struct nvme_fc_queue *queue; 60 struct request *rq; 61 u32 flags; 62 63 int ls_error; 64 struct completion ls_done; 65 struct list_head lsreq_list; /* rport->ls_req_list */ 66 bool req_queued; 67 }; 68 69 struct nvmefc_ls_rcv_op { 70 struct nvme_fc_rport *rport; 71 struct nvmefc_ls_rsp *lsrsp; 72 union nvmefc_ls_requests *rqstbuf; 73 union nvmefc_ls_responses *rspbuf; 74 u16 rqstdatalen; 75 bool handled; 76 dma_addr_t rspdma; 77 struct list_head lsrcv_list; /* rport->ls_rcv_list */ 78 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 79 80 enum nvme_fcpop_state { 81 FCPOP_STATE_UNINIT = 0, 82 FCPOP_STATE_IDLE = 1, 83 FCPOP_STATE_ACTIVE = 2, 84 FCPOP_STATE_ABORTED = 3, 85 FCPOP_STATE_COMPLETE = 4, 86 }; 87 88 struct nvme_fc_fcp_op { 89 struct nvme_request nreq; /* 90 * nvme/host/core.c 91 * requires this to be 92 * the 1st element in the 93 * private structure 94 * associated with the 95 * request. 96 */ 97 struct nvmefc_fcp_req fcp_req; 98 99 struct nvme_fc_ctrl *ctrl; 100 struct nvme_fc_queue *queue; 101 struct request *rq; 102 103 atomic_t state; 104 u32 flags; 105 u32 rqno; 106 u32 nents; 107 108 struct nvme_fc_cmd_iu cmd_iu; 109 struct nvme_fc_ersp_iu rsp_iu; 110 }; 111 112 struct nvme_fcp_op_w_sgl { 113 struct nvme_fc_fcp_op op; 114 struct scatterlist sgl[NVME_INLINE_SG_CNT]; 115 uint8_t priv[]; 116 }; 117 118 struct nvme_fc_lport { 119 struct nvme_fc_local_port localport; 120 121 struct ida endp_cnt; 122 struct list_head port_list; /* nvme_fc_port_list */ 123 struct list_head endp_list; 124 struct device *dev; /* physical device for dma */ 125 struct nvme_fc_port_template *ops; 126 struct kref ref; 127 atomic_t act_rport_cnt; 128 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 129 130 struct nvme_fc_rport { 131 struct nvme_fc_remote_port remoteport; 132 133 struct list_head endp_list; /* for lport->endp_list */ 134 struct list_head ctrl_list; 135 struct list_head ls_req_list; 136 struct list_head ls_rcv_list; 137 struct list_head disc_list; 138 struct device *dev; /* physical device for dma */ 139 struct nvme_fc_lport *lport; 140 spinlock_t lock; 141 struct kref ref; 142 atomic_t act_ctrl_cnt; 143 unsigned long dev_loss_end; 144 struct work_struct lsrcv_work; 145 } __aligned(sizeof(u64)); /* alignment for other things alloc'd with */ 146 147 /* fc_ctrl flags values - specified as bit positions */ 148 #define ASSOC_ACTIVE 0 149 #define ASSOC_FAILED 1 150 #define FCCTRL_TERMIO 2 151 152 struct nvme_fc_ctrl { 153 spinlock_t lock; 154 struct nvme_fc_queue *queues; 155 struct device *dev; 156 struct nvme_fc_lport *lport; 157 struct nvme_fc_rport *rport; 158 u32 cnum; 159 160 bool ioq_live; 161 u64 association_id; 162 struct nvmefc_ls_rcv_op *rcv_disconn; 163 164 struct list_head ctrl_list; /* rport->ctrl_list */ 165 166 struct blk_mq_tag_set admin_tag_set; 167 struct blk_mq_tag_set tag_set; 168 169 struct work_struct ioerr_work; 170 struct delayed_work connect_work; 171 172 struct kref ref; 173 unsigned long flags; 174 u32 iocnt; 175 wait_queue_head_t ioabort_wait; 176 177 struct nvme_fc_fcp_op aen_ops[NVME_NR_AEN_COMMANDS]; 178 179 struct nvme_ctrl ctrl; 180 }; 181 182 static inline struct nvme_fc_ctrl * 183 to_fc_ctrl(struct nvme_ctrl *ctrl) 184 { 185 return container_of(ctrl, struct nvme_fc_ctrl, ctrl); 186 } 187 188 static inline struct nvme_fc_lport * 189 localport_to_lport(struct nvme_fc_local_port *portptr) 190 { 191 return container_of(portptr, struct nvme_fc_lport, localport); 192 } 193 194 static inline struct nvme_fc_rport * 195 remoteport_to_rport(struct nvme_fc_remote_port *portptr) 196 { 197 return container_of(portptr, struct nvme_fc_rport, remoteport); 198 } 199 200 static inline struct nvmefc_ls_req_op * 201 ls_req_to_lsop(struct nvmefc_ls_req *lsreq) 202 { 203 return container_of(lsreq, struct nvmefc_ls_req_op, ls_req); 204 } 205 206 static inline struct nvme_fc_fcp_op * 207 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq) 208 { 209 return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req); 210 } 211 212 213 214 /* *************************** Globals **************************** */ 215 216 217 static DEFINE_SPINLOCK(nvme_fc_lock); 218 219 static LIST_HEAD(nvme_fc_lport_list); 220 static DEFINE_IDA(nvme_fc_local_port_cnt); 221 static DEFINE_IDA(nvme_fc_ctrl_cnt); 222 223 /* 224 * These items are short-term. They will eventually be moved into 225 * a generic FC class. See comments in module init. 226 */ 227 static struct device *fc_udev_device; 228 229 static void nvme_fc_complete_rq(struct request *rq); 230 231 /* *********************** FC-NVME Port Management ************************ */ 232 233 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *, 234 struct nvme_fc_queue *, unsigned int); 235 236 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work); 237 238 239 static void 240 nvme_fc_free_lport(struct kref *ref) 241 { 242 struct nvme_fc_lport *lport = 243 container_of(ref, struct nvme_fc_lport, ref); 244 unsigned long flags; 245 246 WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED); 247 WARN_ON(!list_empty(&lport->endp_list)); 248 249 /* remove from transport list */ 250 spin_lock_irqsave(&nvme_fc_lock, flags); 251 list_del(&lport->port_list); 252 spin_unlock_irqrestore(&nvme_fc_lock, flags); 253 254 ida_free(&nvme_fc_local_port_cnt, lport->localport.port_num); 255 ida_destroy(&lport->endp_cnt); 256 257 put_device(lport->dev); 258 259 kfree(lport); 260 } 261 262 static void 263 nvme_fc_lport_put(struct nvme_fc_lport *lport) 264 { 265 kref_put(&lport->ref, nvme_fc_free_lport); 266 } 267 268 static int 269 nvme_fc_lport_get(struct nvme_fc_lport *lport) 270 { 271 return kref_get_unless_zero(&lport->ref); 272 } 273 274 275 static struct nvme_fc_lport * 276 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo, 277 struct nvme_fc_port_template *ops, 278 struct device *dev) 279 { 280 struct nvme_fc_lport *lport; 281 unsigned long flags; 282 283 spin_lock_irqsave(&nvme_fc_lock, flags); 284 285 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 286 if (lport->localport.node_name != pinfo->node_name || 287 lport->localport.port_name != pinfo->port_name) 288 continue; 289 290 if (lport->dev != dev) { 291 lport = ERR_PTR(-EXDEV); 292 goto out_done; 293 } 294 295 if (lport->localport.port_state != FC_OBJSTATE_DELETED) { 296 lport = ERR_PTR(-EEXIST); 297 goto out_done; 298 } 299 300 if (!nvme_fc_lport_get(lport)) { 301 /* 302 * fails if ref cnt already 0. If so, 303 * act as if lport already deleted 304 */ 305 lport = NULL; 306 goto out_done; 307 } 308 309 /* resume the lport */ 310 311 lport->ops = ops; 312 lport->localport.port_role = pinfo->port_role; 313 lport->localport.port_id = pinfo->port_id; 314 lport->localport.port_state = FC_OBJSTATE_ONLINE; 315 316 spin_unlock_irqrestore(&nvme_fc_lock, flags); 317 318 return lport; 319 } 320 321 lport = NULL; 322 323 out_done: 324 spin_unlock_irqrestore(&nvme_fc_lock, flags); 325 326 return lport; 327 } 328 329 /** 330 * nvme_fc_register_localport - transport entry point called by an 331 * LLDD to register the existence of a NVME 332 * host FC port. 333 * @pinfo: pointer to information about the port to be registered 334 * @template: LLDD entrypoints and operational parameters for the port 335 * @dev: physical hardware device node port corresponds to. Will be 336 * used for DMA mappings 337 * @portptr: pointer to a local port pointer. Upon success, the routine 338 * will allocate a nvme_fc_local_port structure and place its 339 * address in the local port pointer. Upon failure, local port 340 * pointer will be set to 0. 341 * 342 * Returns: 343 * a completion status. Must be 0 upon success; a negative errno 344 * (ex: -ENXIO) upon failure. 345 */ 346 int 347 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo, 348 struct nvme_fc_port_template *template, 349 struct device *dev, 350 struct nvme_fc_local_port **portptr) 351 { 352 struct nvme_fc_lport *newrec; 353 unsigned long flags; 354 int ret, idx; 355 356 if (!template->localport_delete || !template->remoteport_delete || 357 !template->ls_req || !template->fcp_io || 358 !template->ls_abort || !template->fcp_abort || 359 !template->max_hw_queues || !template->max_sgl_segments || 360 !template->max_dif_sgl_segments || !template->dma_boundary) { 361 ret = -EINVAL; 362 goto out_reghost_failed; 363 } 364 365 /* 366 * look to see if there is already a localport that had been 367 * deregistered and in the process of waiting for all the 368 * references to fully be removed. If the references haven't 369 * expired, we can simply re-enable the localport. Remoteports 370 * and controller reconnections should resume naturally. 371 */ 372 newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev); 373 374 /* found an lport, but something about its state is bad */ 375 if (IS_ERR(newrec)) { 376 ret = PTR_ERR(newrec); 377 goto out_reghost_failed; 378 379 /* found existing lport, which was resumed */ 380 } else if (newrec) { 381 *portptr = &newrec->localport; 382 return 0; 383 } 384 385 /* nothing found - allocate a new localport struct */ 386 387 newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz), 388 GFP_KERNEL); 389 if (!newrec) { 390 ret = -ENOMEM; 391 goto out_reghost_failed; 392 } 393 394 idx = ida_alloc(&nvme_fc_local_port_cnt, GFP_KERNEL); 395 if (idx < 0) { 396 ret = -ENOSPC; 397 goto out_fail_kfree; 398 } 399 400 if (!get_device(dev) && dev) { 401 ret = -ENODEV; 402 goto out_ida_put; 403 } 404 405 INIT_LIST_HEAD(&newrec->port_list); 406 INIT_LIST_HEAD(&newrec->endp_list); 407 kref_init(&newrec->ref); 408 atomic_set(&newrec->act_rport_cnt, 0); 409 newrec->ops = template; 410 newrec->dev = dev; 411 ida_init(&newrec->endp_cnt); 412 if (template->local_priv_sz) 413 newrec->localport.private = &newrec[1]; 414 else 415 newrec->localport.private = NULL; 416 newrec->localport.node_name = pinfo->node_name; 417 newrec->localport.port_name = pinfo->port_name; 418 newrec->localport.port_role = pinfo->port_role; 419 newrec->localport.port_id = pinfo->port_id; 420 newrec->localport.port_state = FC_OBJSTATE_ONLINE; 421 newrec->localport.port_num = idx; 422 423 spin_lock_irqsave(&nvme_fc_lock, flags); 424 list_add_tail(&newrec->port_list, &nvme_fc_lport_list); 425 spin_unlock_irqrestore(&nvme_fc_lock, flags); 426 427 if (dev) 428 dma_set_seg_boundary(dev, template->dma_boundary); 429 430 *portptr = &newrec->localport; 431 return 0; 432 433 out_ida_put: 434 ida_free(&nvme_fc_local_port_cnt, idx); 435 out_fail_kfree: 436 kfree(newrec); 437 out_reghost_failed: 438 *portptr = NULL; 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(nvme_fc_register_localport); 443 444 /** 445 * nvme_fc_unregister_localport - transport entry point called by an 446 * LLDD to deregister/remove a previously 447 * registered a NVME host FC port. 448 * @portptr: pointer to the (registered) local port that is to be deregistered. 449 * 450 * Returns: 451 * a completion status. Must be 0 upon success; a negative errno 452 * (ex: -ENXIO) upon failure. 453 */ 454 int 455 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr) 456 { 457 struct nvme_fc_lport *lport = localport_to_lport(portptr); 458 unsigned long flags; 459 460 if (!portptr) 461 return -EINVAL; 462 463 spin_lock_irqsave(&nvme_fc_lock, flags); 464 465 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 466 spin_unlock_irqrestore(&nvme_fc_lock, flags); 467 return -EINVAL; 468 } 469 portptr->port_state = FC_OBJSTATE_DELETED; 470 471 spin_unlock_irqrestore(&nvme_fc_lock, flags); 472 473 if (atomic_read(&lport->act_rport_cnt) == 0) 474 lport->ops->localport_delete(&lport->localport); 475 476 nvme_fc_lport_put(lport); 477 478 return 0; 479 } 480 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport); 481 482 /* 483 * TRADDR strings, per FC-NVME are fixed format: 484 * "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters 485 * udev event will only differ by prefix of what field is 486 * being specified: 487 * "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters 488 * 19 + 43 + null_fudge = 64 characters 489 */ 490 #define FCNVME_TRADDR_LENGTH 64 491 492 static void 493 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport, 494 struct nvme_fc_rport *rport) 495 { 496 char hostaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_HOST_TRADDR=...*/ 497 char tgtaddr[FCNVME_TRADDR_LENGTH]; /* NVMEFC_TRADDR=...*/ 498 char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL }; 499 500 if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY)) 501 return; 502 503 snprintf(hostaddr, sizeof(hostaddr), 504 "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx", 505 lport->localport.node_name, lport->localport.port_name); 506 snprintf(tgtaddr, sizeof(tgtaddr), 507 "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx", 508 rport->remoteport.node_name, rport->remoteport.port_name); 509 kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp); 510 } 511 512 static void 513 nvme_fc_free_rport(struct kref *ref) 514 { 515 struct nvme_fc_rport *rport = 516 container_of(ref, struct nvme_fc_rport, ref); 517 struct nvme_fc_lport *lport = 518 localport_to_lport(rport->remoteport.localport); 519 unsigned long flags; 520 521 WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED); 522 WARN_ON(!list_empty(&rport->ctrl_list)); 523 524 /* remove from lport list */ 525 spin_lock_irqsave(&nvme_fc_lock, flags); 526 list_del(&rport->endp_list); 527 spin_unlock_irqrestore(&nvme_fc_lock, flags); 528 529 WARN_ON(!list_empty(&rport->disc_list)); 530 ida_free(&lport->endp_cnt, rport->remoteport.port_num); 531 532 kfree(rport); 533 534 nvme_fc_lport_put(lport); 535 } 536 537 static void 538 nvme_fc_rport_put(struct nvme_fc_rport *rport) 539 { 540 kref_put(&rport->ref, nvme_fc_free_rport); 541 } 542 543 static int 544 nvme_fc_rport_get(struct nvme_fc_rport *rport) 545 { 546 return kref_get_unless_zero(&rport->ref); 547 } 548 549 static void 550 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl) 551 { 552 switch (nvme_ctrl_state(&ctrl->ctrl)) { 553 case NVME_CTRL_NEW: 554 case NVME_CTRL_CONNECTING: 555 /* 556 * As all reconnects were suppressed, schedule a 557 * connect. 558 */ 559 dev_info(ctrl->ctrl.device, 560 "NVME-FC{%d}: connectivity re-established. " 561 "Attempting reconnect\n", ctrl->cnum); 562 563 queue_delayed_work(nvme_wq, &ctrl->connect_work, 0); 564 break; 565 566 case NVME_CTRL_RESETTING: 567 /* 568 * Controller is already in the process of terminating the 569 * association. No need to do anything further. The reconnect 570 * step will naturally occur after the reset completes. 571 */ 572 break; 573 574 default: 575 /* no action to take - let it delete */ 576 break; 577 } 578 } 579 580 static struct nvme_fc_rport * 581 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport, 582 struct nvme_fc_port_info *pinfo) 583 { 584 struct nvme_fc_rport *rport; 585 struct nvme_fc_ctrl *ctrl; 586 unsigned long flags; 587 588 spin_lock_irqsave(&nvme_fc_lock, flags); 589 590 list_for_each_entry(rport, &lport->endp_list, endp_list) { 591 if (rport->remoteport.node_name != pinfo->node_name || 592 rport->remoteport.port_name != pinfo->port_name) 593 continue; 594 595 if (!nvme_fc_rport_get(rport)) { 596 rport = ERR_PTR(-ENOLCK); 597 goto out_done; 598 } 599 600 spin_unlock_irqrestore(&nvme_fc_lock, flags); 601 602 spin_lock_irqsave(&rport->lock, flags); 603 604 /* has it been unregistered */ 605 if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) { 606 /* means lldd called us twice */ 607 spin_unlock_irqrestore(&rport->lock, flags); 608 nvme_fc_rport_put(rport); 609 return ERR_PTR(-ESTALE); 610 } 611 612 rport->remoteport.port_role = pinfo->port_role; 613 rport->remoteport.port_id = pinfo->port_id; 614 rport->remoteport.port_state = FC_OBJSTATE_ONLINE; 615 rport->dev_loss_end = 0; 616 617 /* 618 * kick off a reconnect attempt on all associations to the 619 * remote port. A successful reconnects will resume i/o. 620 */ 621 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) 622 nvme_fc_resume_controller(ctrl); 623 624 spin_unlock_irqrestore(&rport->lock, flags); 625 626 return rport; 627 } 628 629 rport = NULL; 630 631 out_done: 632 spin_unlock_irqrestore(&nvme_fc_lock, flags); 633 634 return rport; 635 } 636 637 static inline void 638 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport, 639 struct nvme_fc_port_info *pinfo) 640 { 641 if (pinfo->dev_loss_tmo) 642 rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo; 643 else 644 rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO; 645 } 646 647 /** 648 * nvme_fc_register_remoteport - transport entry point called by an 649 * LLDD to register the existence of a NVME 650 * subsystem FC port on its fabric. 651 * @localport: pointer to the (registered) local port that the remote 652 * subsystem port is connected to. 653 * @pinfo: pointer to information about the port to be registered 654 * @portptr: pointer to a remote port pointer. Upon success, the routine 655 * will allocate a nvme_fc_remote_port structure and place its 656 * address in the remote port pointer. Upon failure, remote port 657 * pointer will be set to 0. 658 * 659 * Returns: 660 * a completion status. Must be 0 upon success; a negative errno 661 * (ex: -ENXIO) upon failure. 662 */ 663 int 664 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport, 665 struct nvme_fc_port_info *pinfo, 666 struct nvme_fc_remote_port **portptr) 667 { 668 struct nvme_fc_lport *lport = localport_to_lport(localport); 669 struct nvme_fc_rport *newrec; 670 unsigned long flags; 671 int ret, idx; 672 673 if (!nvme_fc_lport_get(lport)) { 674 ret = -ESHUTDOWN; 675 goto out_reghost_failed; 676 } 677 678 /* 679 * look to see if there is already a remoteport that is waiting 680 * for a reconnect (within dev_loss_tmo) with the same WWN's. 681 * If so, transition to it and reconnect. 682 */ 683 newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo); 684 685 /* found an rport, but something about its state is bad */ 686 if (IS_ERR(newrec)) { 687 ret = PTR_ERR(newrec); 688 goto out_lport_put; 689 690 /* found existing rport, which was resumed */ 691 } else if (newrec) { 692 nvme_fc_lport_put(lport); 693 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 694 nvme_fc_signal_discovery_scan(lport, newrec); 695 *portptr = &newrec->remoteport; 696 return 0; 697 } 698 699 /* nothing found - allocate a new remoteport struct */ 700 701 newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz), 702 GFP_KERNEL); 703 if (!newrec) { 704 ret = -ENOMEM; 705 goto out_lport_put; 706 } 707 708 idx = ida_alloc(&lport->endp_cnt, GFP_KERNEL); 709 if (idx < 0) { 710 ret = -ENOSPC; 711 goto out_kfree_rport; 712 } 713 714 INIT_LIST_HEAD(&newrec->endp_list); 715 INIT_LIST_HEAD(&newrec->ctrl_list); 716 INIT_LIST_HEAD(&newrec->ls_req_list); 717 INIT_LIST_HEAD(&newrec->disc_list); 718 kref_init(&newrec->ref); 719 atomic_set(&newrec->act_ctrl_cnt, 0); 720 spin_lock_init(&newrec->lock); 721 newrec->remoteport.localport = &lport->localport; 722 INIT_LIST_HEAD(&newrec->ls_rcv_list); 723 newrec->dev = lport->dev; 724 newrec->lport = lport; 725 if (lport->ops->remote_priv_sz) 726 newrec->remoteport.private = &newrec[1]; 727 else 728 newrec->remoteport.private = NULL; 729 newrec->remoteport.port_role = pinfo->port_role; 730 newrec->remoteport.node_name = pinfo->node_name; 731 newrec->remoteport.port_name = pinfo->port_name; 732 newrec->remoteport.port_id = pinfo->port_id; 733 newrec->remoteport.port_state = FC_OBJSTATE_ONLINE; 734 newrec->remoteport.port_num = idx; 735 __nvme_fc_set_dev_loss_tmo(newrec, pinfo); 736 INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work); 737 738 spin_lock_irqsave(&nvme_fc_lock, flags); 739 list_add_tail(&newrec->endp_list, &lport->endp_list); 740 spin_unlock_irqrestore(&nvme_fc_lock, flags); 741 742 nvme_fc_signal_discovery_scan(lport, newrec); 743 744 *portptr = &newrec->remoteport; 745 return 0; 746 747 out_kfree_rport: 748 kfree(newrec); 749 out_lport_put: 750 nvme_fc_lport_put(lport); 751 out_reghost_failed: 752 *portptr = NULL; 753 return ret; 754 } 755 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport); 756 757 static int 758 nvme_fc_abort_lsops(struct nvme_fc_rport *rport) 759 { 760 struct nvmefc_ls_req_op *lsop; 761 unsigned long flags; 762 763 restart: 764 spin_lock_irqsave(&rport->lock, flags); 765 766 list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) { 767 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) { 768 lsop->flags |= FCOP_FLAGS_TERMIO; 769 spin_unlock_irqrestore(&rport->lock, flags); 770 rport->lport->ops->ls_abort(&rport->lport->localport, 771 &rport->remoteport, 772 &lsop->ls_req); 773 goto restart; 774 } 775 } 776 spin_unlock_irqrestore(&rport->lock, flags); 777 778 return 0; 779 } 780 781 static void 782 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl) 783 { 784 dev_info(ctrl->ctrl.device, 785 "NVME-FC{%d}: controller connectivity lost. Awaiting " 786 "Reconnect", ctrl->cnum); 787 788 set_bit(ASSOC_FAILED, &ctrl->flags); 789 nvme_reset_ctrl(&ctrl->ctrl); 790 } 791 792 /** 793 * nvme_fc_unregister_remoteport - transport entry point called by an 794 * LLDD to deregister/remove a previously 795 * registered a NVME subsystem FC port. 796 * @portptr: pointer to the (registered) remote port that is to be 797 * deregistered. 798 * 799 * Returns: 800 * a completion status. Must be 0 upon success; a negative errno 801 * (ex: -ENXIO) upon failure. 802 */ 803 int 804 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr) 805 { 806 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 807 struct nvme_fc_ctrl *ctrl; 808 unsigned long flags; 809 810 if (!portptr) 811 return -EINVAL; 812 813 spin_lock_irqsave(&rport->lock, flags); 814 815 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 816 spin_unlock_irqrestore(&rport->lock, flags); 817 return -EINVAL; 818 } 819 portptr->port_state = FC_OBJSTATE_DELETED; 820 821 rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ); 822 823 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 824 /* if dev_loss_tmo==0, dev loss is immediate */ 825 if (!portptr->dev_loss_tmo) { 826 dev_warn(ctrl->ctrl.device, 827 "NVME-FC{%d}: controller connectivity lost.\n", 828 ctrl->cnum); 829 nvme_delete_ctrl(&ctrl->ctrl); 830 } else 831 nvme_fc_ctrl_connectivity_loss(ctrl); 832 } 833 834 spin_unlock_irqrestore(&rport->lock, flags); 835 836 nvme_fc_abort_lsops(rport); 837 838 if (atomic_read(&rport->act_ctrl_cnt) == 0) 839 rport->lport->ops->remoteport_delete(portptr); 840 841 /* 842 * release the reference, which will allow, if all controllers 843 * go away, which should only occur after dev_loss_tmo occurs, 844 * for the rport to be torn down. 845 */ 846 nvme_fc_rport_put(rport); 847 848 return 0; 849 } 850 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport); 851 852 /** 853 * nvme_fc_rescan_remoteport - transport entry point called by an 854 * LLDD to request a nvme device rescan. 855 * @remoteport: pointer to the (registered) remote port that is to be 856 * rescanned. 857 * 858 * Returns: N/A 859 */ 860 void 861 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport) 862 { 863 struct nvme_fc_rport *rport = remoteport_to_rport(remoteport); 864 865 nvme_fc_signal_discovery_scan(rport->lport, rport); 866 } 867 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport); 868 869 int 870 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr, 871 u32 dev_loss_tmo) 872 { 873 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 874 unsigned long flags; 875 876 spin_lock_irqsave(&rport->lock, flags); 877 878 if (portptr->port_state != FC_OBJSTATE_ONLINE) { 879 spin_unlock_irqrestore(&rport->lock, flags); 880 return -EINVAL; 881 } 882 883 /* a dev_loss_tmo of 0 (immediate) is allowed to be set */ 884 rport->remoteport.dev_loss_tmo = dev_loss_tmo; 885 886 spin_unlock_irqrestore(&rport->lock, flags); 887 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss); 891 892 893 /* *********************** FC-NVME DMA Handling **************************** */ 894 895 /* 896 * The fcloop device passes in a NULL device pointer. Real LLD's will 897 * pass in a valid device pointer. If NULL is passed to the dma mapping 898 * routines, depending on the platform, it may or may not succeed, and 899 * may crash. 900 * 901 * As such: 902 * Wrapper all the dma routines and check the dev pointer. 903 * 904 * If simple mappings (return just a dma address, we'll noop them, 905 * returning a dma address of 0. 906 * 907 * On more complex mappings (dma_map_sg), a pseudo routine fills 908 * in the scatter list, setting all dma addresses to 0. 909 */ 910 911 static inline dma_addr_t 912 fc_dma_map_single(struct device *dev, void *ptr, size_t size, 913 enum dma_data_direction dir) 914 { 915 return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; 916 } 917 918 static inline int 919 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 920 { 921 return dev ? dma_mapping_error(dev, dma_addr) : 0; 922 } 923 924 static inline void 925 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, 926 enum dma_data_direction dir) 927 { 928 if (dev) 929 dma_unmap_single(dev, addr, size, dir); 930 } 931 932 static inline void 933 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 934 enum dma_data_direction dir) 935 { 936 if (dev) 937 dma_sync_single_for_cpu(dev, addr, size, dir); 938 } 939 940 static inline void 941 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, 942 enum dma_data_direction dir) 943 { 944 if (dev) 945 dma_sync_single_for_device(dev, addr, size, dir); 946 } 947 948 /* pseudo dma_map_sg call */ 949 static int 950 fc_map_sg(struct scatterlist *sg, int nents) 951 { 952 struct scatterlist *s; 953 int i; 954 955 WARN_ON(nents == 0 || sg[0].length == 0); 956 957 for_each_sg(sg, s, nents, i) { 958 s->dma_address = 0L; 959 #ifdef CONFIG_NEED_SG_DMA_LENGTH 960 s->dma_length = s->length; 961 #endif 962 } 963 return nents; 964 } 965 966 static inline int 967 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 968 enum dma_data_direction dir) 969 { 970 return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); 971 } 972 973 static inline void 974 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, 975 enum dma_data_direction dir) 976 { 977 if (dev) 978 dma_unmap_sg(dev, sg, nents, dir); 979 } 980 981 /* *********************** FC-NVME LS Handling **************************** */ 982 983 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *); 984 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *); 985 986 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg); 987 988 static void 989 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop) 990 { 991 struct nvme_fc_rport *rport = lsop->rport; 992 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 993 unsigned long flags; 994 995 spin_lock_irqsave(&rport->lock, flags); 996 997 if (!lsop->req_queued) { 998 spin_unlock_irqrestore(&rport->lock, flags); 999 return; 1000 } 1001 1002 list_del(&lsop->lsreq_list); 1003 1004 lsop->req_queued = false; 1005 1006 spin_unlock_irqrestore(&rport->lock, flags); 1007 1008 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1009 (lsreq->rqstlen + lsreq->rsplen), 1010 DMA_BIDIRECTIONAL); 1011 1012 nvme_fc_rport_put(rport); 1013 } 1014 1015 static int 1016 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport, 1017 struct nvmefc_ls_req_op *lsop, 1018 void (*done)(struct nvmefc_ls_req *req, int status)) 1019 { 1020 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1021 unsigned long flags; 1022 int ret = 0; 1023 1024 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 1025 return -ECONNREFUSED; 1026 1027 if (!nvme_fc_rport_get(rport)) 1028 return -ESHUTDOWN; 1029 1030 lsreq->done = done; 1031 lsop->rport = rport; 1032 lsop->req_queued = false; 1033 INIT_LIST_HEAD(&lsop->lsreq_list); 1034 init_completion(&lsop->ls_done); 1035 1036 lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr, 1037 lsreq->rqstlen + lsreq->rsplen, 1038 DMA_BIDIRECTIONAL); 1039 if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) { 1040 ret = -EFAULT; 1041 goto out_putrport; 1042 } 1043 lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen; 1044 1045 spin_lock_irqsave(&rport->lock, flags); 1046 1047 list_add_tail(&lsop->lsreq_list, &rport->ls_req_list); 1048 1049 lsop->req_queued = true; 1050 1051 spin_unlock_irqrestore(&rport->lock, flags); 1052 1053 ret = rport->lport->ops->ls_req(&rport->lport->localport, 1054 &rport->remoteport, lsreq); 1055 if (ret) 1056 goto out_unlink; 1057 1058 return 0; 1059 1060 out_unlink: 1061 lsop->ls_error = ret; 1062 spin_lock_irqsave(&rport->lock, flags); 1063 lsop->req_queued = false; 1064 list_del(&lsop->lsreq_list); 1065 spin_unlock_irqrestore(&rport->lock, flags); 1066 fc_dma_unmap_single(rport->dev, lsreq->rqstdma, 1067 (lsreq->rqstlen + lsreq->rsplen), 1068 DMA_BIDIRECTIONAL); 1069 out_putrport: 1070 nvme_fc_rport_put(rport); 1071 1072 return ret; 1073 } 1074 1075 static void 1076 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status) 1077 { 1078 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1079 1080 lsop->ls_error = status; 1081 complete(&lsop->ls_done); 1082 } 1083 1084 static int 1085 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop) 1086 { 1087 struct nvmefc_ls_req *lsreq = &lsop->ls_req; 1088 struct fcnvme_ls_rjt *rjt = lsreq->rspaddr; 1089 int ret; 1090 1091 ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done); 1092 1093 if (!ret) { 1094 /* 1095 * No timeout/not interruptible as we need the struct 1096 * to exist until the lldd calls us back. Thus mandate 1097 * wait until driver calls back. lldd responsible for 1098 * the timeout action 1099 */ 1100 wait_for_completion(&lsop->ls_done); 1101 1102 __nvme_fc_finish_ls_req(lsop); 1103 1104 ret = lsop->ls_error; 1105 } 1106 1107 if (ret) 1108 return ret; 1109 1110 /* ACC or RJT payload ? */ 1111 if (rjt->w0.ls_cmd == FCNVME_LS_RJT) 1112 return -ENXIO; 1113 1114 return 0; 1115 } 1116 1117 static int 1118 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport, 1119 struct nvmefc_ls_req_op *lsop, 1120 void (*done)(struct nvmefc_ls_req *req, int status)) 1121 { 1122 /* don't wait for completion */ 1123 1124 return __nvme_fc_send_ls_req(rport, lsop, done); 1125 } 1126 1127 static int 1128 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl, 1129 struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio) 1130 { 1131 struct nvmefc_ls_req_op *lsop; 1132 struct nvmefc_ls_req *lsreq; 1133 struct fcnvme_ls_cr_assoc_rqst *assoc_rqst; 1134 struct fcnvme_ls_cr_assoc_acc *assoc_acc; 1135 unsigned long flags; 1136 int ret, fcret = 0; 1137 1138 lsop = kzalloc((sizeof(*lsop) + 1139 sizeof(*assoc_rqst) + sizeof(*assoc_acc) + 1140 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1141 if (!lsop) { 1142 dev_info(ctrl->ctrl.device, 1143 "NVME-FC{%d}: send Create Association failed: ENOMEM\n", 1144 ctrl->cnum); 1145 ret = -ENOMEM; 1146 goto out_no_memory; 1147 } 1148 1149 assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1]; 1150 assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1]; 1151 lsreq = &lsop->ls_req; 1152 if (ctrl->lport->ops->lsrqst_priv_sz) 1153 lsreq->private = &assoc_acc[1]; 1154 else 1155 lsreq->private = NULL; 1156 1157 assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION; 1158 assoc_rqst->desc_list_len = 1159 cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1160 1161 assoc_rqst->assoc_cmd.desc_tag = 1162 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD); 1163 assoc_rqst->assoc_cmd.desc_len = 1164 fcnvme_lsdesc_len( 1165 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd)); 1166 1167 assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1168 assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1); 1169 /* Linux supports only Dynamic controllers */ 1170 assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff); 1171 uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id); 1172 strscpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn, 1173 sizeof(assoc_rqst->assoc_cmd.hostnqn)); 1174 strscpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn, 1175 sizeof(assoc_rqst->assoc_cmd.subnqn)); 1176 1177 lsop->queue = queue; 1178 lsreq->rqstaddr = assoc_rqst; 1179 lsreq->rqstlen = sizeof(*assoc_rqst); 1180 lsreq->rspaddr = assoc_acc; 1181 lsreq->rsplen = sizeof(*assoc_acc); 1182 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1183 1184 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1185 if (ret) 1186 goto out_free_buffer; 1187 1188 /* process connect LS completion */ 1189 1190 /* validate the ACC response */ 1191 if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1192 fcret = VERR_LSACC; 1193 else if (assoc_acc->hdr.desc_list_len != 1194 fcnvme_lsdesc_len( 1195 sizeof(struct fcnvme_ls_cr_assoc_acc))) 1196 fcret = VERR_CR_ASSOC_ACC_LEN; 1197 else if (assoc_acc->hdr.rqst.desc_tag != 1198 cpu_to_be32(FCNVME_LSDESC_RQST)) 1199 fcret = VERR_LSDESC_RQST; 1200 else if (assoc_acc->hdr.rqst.desc_len != 1201 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1202 fcret = VERR_LSDESC_RQST_LEN; 1203 else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION) 1204 fcret = VERR_CR_ASSOC; 1205 else if (assoc_acc->associd.desc_tag != 1206 cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) 1207 fcret = VERR_ASSOC_ID; 1208 else if (assoc_acc->associd.desc_len != 1209 fcnvme_lsdesc_len( 1210 sizeof(struct fcnvme_lsdesc_assoc_id))) 1211 fcret = VERR_ASSOC_ID_LEN; 1212 else if (assoc_acc->connectid.desc_tag != 1213 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1214 fcret = VERR_CONN_ID; 1215 else if (assoc_acc->connectid.desc_len != 1216 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1217 fcret = VERR_CONN_ID_LEN; 1218 1219 if (fcret) { 1220 ret = -EBADF; 1221 dev_err(ctrl->dev, 1222 "q %d Create Association LS failed: %s\n", 1223 queue->qnum, validation_errors[fcret]); 1224 } else { 1225 spin_lock_irqsave(&ctrl->lock, flags); 1226 ctrl->association_id = 1227 be64_to_cpu(assoc_acc->associd.association_id); 1228 queue->connection_id = 1229 be64_to_cpu(assoc_acc->connectid.connection_id); 1230 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1231 spin_unlock_irqrestore(&ctrl->lock, flags); 1232 } 1233 1234 out_free_buffer: 1235 kfree(lsop); 1236 out_no_memory: 1237 if (ret) 1238 dev_err(ctrl->dev, 1239 "queue %d connect admin queue failed (%d).\n", 1240 queue->qnum, ret); 1241 return ret; 1242 } 1243 1244 static int 1245 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 1246 u16 qsize, u16 ersp_ratio) 1247 { 1248 struct nvmefc_ls_req_op *lsop; 1249 struct nvmefc_ls_req *lsreq; 1250 struct fcnvme_ls_cr_conn_rqst *conn_rqst; 1251 struct fcnvme_ls_cr_conn_acc *conn_acc; 1252 int ret, fcret = 0; 1253 1254 lsop = kzalloc((sizeof(*lsop) + 1255 sizeof(*conn_rqst) + sizeof(*conn_acc) + 1256 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1257 if (!lsop) { 1258 dev_info(ctrl->ctrl.device, 1259 "NVME-FC{%d}: send Create Connection failed: ENOMEM\n", 1260 ctrl->cnum); 1261 ret = -ENOMEM; 1262 goto out_no_memory; 1263 } 1264 1265 conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1]; 1266 conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1]; 1267 lsreq = &lsop->ls_req; 1268 if (ctrl->lport->ops->lsrqst_priv_sz) 1269 lsreq->private = (void *)&conn_acc[1]; 1270 else 1271 lsreq->private = NULL; 1272 1273 conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION; 1274 conn_rqst->desc_list_len = cpu_to_be32( 1275 sizeof(struct fcnvme_lsdesc_assoc_id) + 1276 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1277 1278 conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); 1279 conn_rqst->associd.desc_len = 1280 fcnvme_lsdesc_len( 1281 sizeof(struct fcnvme_lsdesc_assoc_id)); 1282 conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id); 1283 conn_rqst->connect_cmd.desc_tag = 1284 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD); 1285 conn_rqst->connect_cmd.desc_len = 1286 fcnvme_lsdesc_len( 1287 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)); 1288 conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio); 1289 conn_rqst->connect_cmd.qid = cpu_to_be16(queue->qnum); 1290 conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1); 1291 1292 lsop->queue = queue; 1293 lsreq->rqstaddr = conn_rqst; 1294 lsreq->rqstlen = sizeof(*conn_rqst); 1295 lsreq->rspaddr = conn_acc; 1296 lsreq->rsplen = sizeof(*conn_acc); 1297 lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC; 1298 1299 ret = nvme_fc_send_ls_req(ctrl->rport, lsop); 1300 if (ret) 1301 goto out_free_buffer; 1302 1303 /* process connect LS completion */ 1304 1305 /* validate the ACC response */ 1306 if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC) 1307 fcret = VERR_LSACC; 1308 else if (conn_acc->hdr.desc_list_len != 1309 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc))) 1310 fcret = VERR_CR_CONN_ACC_LEN; 1311 else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST)) 1312 fcret = VERR_LSDESC_RQST; 1313 else if (conn_acc->hdr.rqst.desc_len != 1314 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst))) 1315 fcret = VERR_LSDESC_RQST_LEN; 1316 else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION) 1317 fcret = VERR_CR_CONN; 1318 else if (conn_acc->connectid.desc_tag != 1319 cpu_to_be32(FCNVME_LSDESC_CONN_ID)) 1320 fcret = VERR_CONN_ID; 1321 else if (conn_acc->connectid.desc_len != 1322 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id))) 1323 fcret = VERR_CONN_ID_LEN; 1324 1325 if (fcret) { 1326 ret = -EBADF; 1327 dev_err(ctrl->dev, 1328 "q %d Create I/O Connection LS failed: %s\n", 1329 queue->qnum, validation_errors[fcret]); 1330 } else { 1331 queue->connection_id = 1332 be64_to_cpu(conn_acc->connectid.connection_id); 1333 set_bit(NVME_FC_Q_CONNECTED, &queue->flags); 1334 } 1335 1336 out_free_buffer: 1337 kfree(lsop); 1338 out_no_memory: 1339 if (ret) 1340 dev_err(ctrl->dev, 1341 "queue %d connect I/O queue failed (%d).\n", 1342 queue->qnum, ret); 1343 return ret; 1344 } 1345 1346 static void 1347 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status) 1348 { 1349 struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq); 1350 1351 __nvme_fc_finish_ls_req(lsop); 1352 1353 /* fc-nvme initiator doesn't care about success or failure of cmd */ 1354 1355 kfree(lsop); 1356 } 1357 1358 /* 1359 * This routine sends a FC-NVME LS to disconnect (aka terminate) 1360 * the FC-NVME Association. Terminating the association also 1361 * terminates the FC-NVME connections (per queue, both admin and io 1362 * queues) that are part of the association. E.g. things are torn 1363 * down, and the related FC-NVME Association ID and Connection IDs 1364 * become invalid. 1365 * 1366 * The behavior of the fc-nvme initiator is such that it's 1367 * understanding of the association and connections will implicitly 1368 * be torn down. The action is implicit as it may be due to a loss of 1369 * connectivity with the fc-nvme target, so you may never get a 1370 * response even if you tried. As such, the action of this routine 1371 * is to asynchronously send the LS, ignore any results of the LS, and 1372 * continue on with terminating the association. If the fc-nvme target 1373 * is present and receives the LS, it too can tear down. 1374 */ 1375 static void 1376 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl) 1377 { 1378 struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst; 1379 struct fcnvme_ls_disconnect_assoc_acc *discon_acc; 1380 struct nvmefc_ls_req_op *lsop; 1381 struct nvmefc_ls_req *lsreq; 1382 int ret; 1383 1384 lsop = kzalloc((sizeof(*lsop) + 1385 sizeof(*discon_rqst) + sizeof(*discon_acc) + 1386 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL); 1387 if (!lsop) { 1388 dev_info(ctrl->ctrl.device, 1389 "NVME-FC{%d}: send Disconnect Association " 1390 "failed: ENOMEM\n", 1391 ctrl->cnum); 1392 return; 1393 } 1394 1395 discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1]; 1396 discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1]; 1397 lsreq = &lsop->ls_req; 1398 if (ctrl->lport->ops->lsrqst_priv_sz) 1399 lsreq->private = (void *)&discon_acc[1]; 1400 else 1401 lsreq->private = NULL; 1402 1403 nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc, 1404 ctrl->association_id); 1405 1406 ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop, 1407 nvme_fc_disconnect_assoc_done); 1408 if (ret) 1409 kfree(lsop); 1410 } 1411 1412 static void 1413 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp) 1414 { 1415 struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private; 1416 struct nvme_fc_rport *rport = lsop->rport; 1417 struct nvme_fc_lport *lport = rport->lport; 1418 unsigned long flags; 1419 1420 spin_lock_irqsave(&rport->lock, flags); 1421 list_del(&lsop->lsrcv_list); 1422 spin_unlock_irqrestore(&rport->lock, flags); 1423 1424 fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma, 1425 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1426 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1427 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1428 1429 kfree(lsop->rspbuf); 1430 kfree(lsop->rqstbuf); 1431 kfree(lsop); 1432 1433 nvme_fc_rport_put(rport); 1434 } 1435 1436 static void 1437 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop) 1438 { 1439 struct nvme_fc_rport *rport = lsop->rport; 1440 struct nvme_fc_lport *lport = rport->lport; 1441 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1442 int ret; 1443 1444 fc_dma_sync_single_for_device(lport->dev, lsop->rspdma, 1445 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1446 1447 ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport, 1448 lsop->lsrsp); 1449 if (ret) { 1450 dev_warn(lport->dev, 1451 "LLDD rejected LS RSP xmt: LS %d status %d\n", 1452 w0->ls_cmd, ret); 1453 nvme_fc_xmt_ls_rsp_done(lsop->lsrsp); 1454 return; 1455 } 1456 } 1457 1458 static struct nvme_fc_ctrl * 1459 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport, 1460 struct nvmefc_ls_rcv_op *lsop) 1461 { 1462 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1463 &lsop->rqstbuf->rq_dis_assoc; 1464 struct nvme_fc_ctrl *ctrl, *ret = NULL; 1465 struct nvmefc_ls_rcv_op *oldls = NULL; 1466 u64 association_id = be64_to_cpu(rqst->associd.association_id); 1467 unsigned long flags; 1468 1469 spin_lock_irqsave(&rport->lock, flags); 1470 1471 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 1472 if (!nvme_fc_ctrl_get(ctrl)) 1473 continue; 1474 spin_lock(&ctrl->lock); 1475 if (association_id == ctrl->association_id) { 1476 oldls = ctrl->rcv_disconn; 1477 ctrl->rcv_disconn = lsop; 1478 ret = ctrl; 1479 } 1480 spin_unlock(&ctrl->lock); 1481 if (ret) 1482 /* leave the ctrl get reference */ 1483 break; 1484 nvme_fc_ctrl_put(ctrl); 1485 } 1486 1487 spin_unlock_irqrestore(&rport->lock, flags); 1488 1489 /* transmit a response for anything that was pending */ 1490 if (oldls) { 1491 dev_info(rport->lport->dev, 1492 "NVME-FC{%d}: Multiple Disconnect Association " 1493 "LS's received\n", ctrl->cnum); 1494 /* overwrite good response with bogus failure */ 1495 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf, 1496 sizeof(*oldls->rspbuf), 1497 rqst->w0.ls_cmd, 1498 FCNVME_RJT_RC_UNAB, 1499 FCNVME_RJT_EXP_NONE, 0); 1500 nvme_fc_xmt_ls_rsp(oldls); 1501 } 1502 1503 return ret; 1504 } 1505 1506 /* 1507 * returns true to mean LS handled and ls_rsp can be sent 1508 * returns false to defer ls_rsp xmt (will be done as part of 1509 * association termination) 1510 */ 1511 static bool 1512 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop) 1513 { 1514 struct nvme_fc_rport *rport = lsop->rport; 1515 struct fcnvme_ls_disconnect_assoc_rqst *rqst = 1516 &lsop->rqstbuf->rq_dis_assoc; 1517 struct fcnvme_ls_disconnect_assoc_acc *acc = 1518 &lsop->rspbuf->rsp_dis_assoc; 1519 struct nvme_fc_ctrl *ctrl = NULL; 1520 int ret = 0; 1521 1522 memset(acc, 0, sizeof(*acc)); 1523 1524 ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst); 1525 if (!ret) { 1526 /* match an active association */ 1527 ctrl = nvme_fc_match_disconn_ls(rport, lsop); 1528 if (!ctrl) 1529 ret = VERR_NO_ASSOC; 1530 } 1531 1532 if (ret) { 1533 dev_info(rport->lport->dev, 1534 "Disconnect LS failed: %s\n", 1535 validation_errors[ret]); 1536 lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc, 1537 sizeof(*acc), rqst->w0.ls_cmd, 1538 (ret == VERR_NO_ASSOC) ? 1539 FCNVME_RJT_RC_INV_ASSOC : 1540 FCNVME_RJT_RC_LOGIC, 1541 FCNVME_RJT_EXP_NONE, 0); 1542 return true; 1543 } 1544 1545 /* format an ACCept response */ 1546 1547 lsop->lsrsp->rsplen = sizeof(*acc); 1548 1549 nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, 1550 fcnvme_lsdesc_len( 1551 sizeof(struct fcnvme_ls_disconnect_assoc_acc)), 1552 FCNVME_LS_DISCONNECT_ASSOC); 1553 1554 /* 1555 * the transmit of the response will occur after the exchanges 1556 * for the association have been ABTS'd by 1557 * nvme_fc_delete_association(). 1558 */ 1559 1560 /* fail the association */ 1561 nvme_fc_error_recovery(ctrl, "Disconnect Association LS received"); 1562 1563 /* release the reference taken by nvme_fc_match_disconn_ls() */ 1564 nvme_fc_ctrl_put(ctrl); 1565 1566 return false; 1567 } 1568 1569 /* 1570 * Actual Processing routine for received FC-NVME LS Requests from the LLD 1571 * returns true if a response should be sent afterward, false if rsp will 1572 * be sent asynchronously. 1573 */ 1574 static bool 1575 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop) 1576 { 1577 struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0; 1578 bool ret = true; 1579 1580 lsop->lsrsp->nvme_fc_private = lsop; 1581 lsop->lsrsp->rspbuf = lsop->rspbuf; 1582 lsop->lsrsp->rspdma = lsop->rspdma; 1583 lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done; 1584 /* Be preventative. handlers will later set to valid length */ 1585 lsop->lsrsp->rsplen = 0; 1586 1587 /* 1588 * handlers: 1589 * parse request input, execute the request, and format the 1590 * LS response 1591 */ 1592 switch (w0->ls_cmd) { 1593 case FCNVME_LS_DISCONNECT_ASSOC: 1594 ret = nvme_fc_ls_disconnect_assoc(lsop); 1595 break; 1596 case FCNVME_LS_DISCONNECT_CONN: 1597 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1598 sizeof(*lsop->rspbuf), w0->ls_cmd, 1599 FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0); 1600 break; 1601 case FCNVME_LS_CREATE_ASSOCIATION: 1602 case FCNVME_LS_CREATE_CONNECTION: 1603 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1604 sizeof(*lsop->rspbuf), w0->ls_cmd, 1605 FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0); 1606 break; 1607 default: 1608 lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf, 1609 sizeof(*lsop->rspbuf), w0->ls_cmd, 1610 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); 1611 break; 1612 } 1613 1614 return(ret); 1615 } 1616 1617 static void 1618 nvme_fc_handle_ls_rqst_work(struct work_struct *work) 1619 { 1620 struct nvme_fc_rport *rport = 1621 container_of(work, struct nvme_fc_rport, lsrcv_work); 1622 struct fcnvme_ls_rqst_w0 *w0; 1623 struct nvmefc_ls_rcv_op *lsop; 1624 unsigned long flags; 1625 bool sendrsp; 1626 1627 restart: 1628 sendrsp = true; 1629 spin_lock_irqsave(&rport->lock, flags); 1630 list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) { 1631 if (lsop->handled) 1632 continue; 1633 1634 lsop->handled = true; 1635 if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 1636 spin_unlock_irqrestore(&rport->lock, flags); 1637 sendrsp = nvme_fc_handle_ls_rqst(lsop); 1638 } else { 1639 spin_unlock_irqrestore(&rport->lock, flags); 1640 w0 = &lsop->rqstbuf->w0; 1641 lsop->lsrsp->rsplen = nvme_fc_format_rjt( 1642 lsop->rspbuf, 1643 sizeof(*lsop->rspbuf), 1644 w0->ls_cmd, 1645 FCNVME_RJT_RC_UNAB, 1646 FCNVME_RJT_EXP_NONE, 0); 1647 } 1648 if (sendrsp) 1649 nvme_fc_xmt_ls_rsp(lsop); 1650 goto restart; 1651 } 1652 spin_unlock_irqrestore(&rport->lock, flags); 1653 } 1654 1655 static 1656 void nvme_fc_rcv_ls_req_err_msg(struct nvme_fc_lport *lport, 1657 struct fcnvme_ls_rqst_w0 *w0) 1658 { 1659 dev_info(lport->dev, "RCV %s LS failed: No memory\n", 1660 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1661 nvmefc_ls_names[w0->ls_cmd] : ""); 1662 } 1663 1664 /** 1665 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD 1666 * upon the reception of a NVME LS request. 1667 * 1668 * The nvme-fc layer will copy payload to an internal structure for 1669 * processing. As such, upon completion of the routine, the LLDD may 1670 * immediately free/reuse the LS request buffer passed in the call. 1671 * 1672 * If this routine returns error, the LLDD should abort the exchange. 1673 * 1674 * @portptr: pointer to the (registered) remote port that the LS 1675 * was received from. The remoteport is associated with 1676 * a specific localport. 1677 * @lsrsp: pointer to a nvmefc_ls_rsp response structure to be 1678 * used to reference the exchange corresponding to the LS 1679 * when issuing an ls response. 1680 * @lsreqbuf: pointer to the buffer containing the LS Request 1681 * @lsreqbuf_len: length, in bytes, of the received LS request 1682 */ 1683 int 1684 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr, 1685 struct nvmefc_ls_rsp *lsrsp, 1686 void *lsreqbuf, u32 lsreqbuf_len) 1687 { 1688 struct nvme_fc_rport *rport = remoteport_to_rport(portptr); 1689 struct nvme_fc_lport *lport = rport->lport; 1690 struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf; 1691 struct nvmefc_ls_rcv_op *lsop; 1692 unsigned long flags; 1693 int ret; 1694 1695 nvme_fc_rport_get(rport); 1696 1697 /* validate there's a routine to transmit a response */ 1698 if (!lport->ops->xmt_ls_rsp) { 1699 dev_info(lport->dev, 1700 "RCV %s LS failed: no LLDD xmt_ls_rsp\n", 1701 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1702 nvmefc_ls_names[w0->ls_cmd] : ""); 1703 ret = -EINVAL; 1704 goto out_put; 1705 } 1706 1707 if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) { 1708 dev_info(lport->dev, 1709 "RCV %s LS failed: payload too large\n", 1710 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1711 nvmefc_ls_names[w0->ls_cmd] : ""); 1712 ret = -E2BIG; 1713 goto out_put; 1714 } 1715 1716 lsop = kzalloc(sizeof(*lsop), GFP_KERNEL); 1717 if (!lsop) { 1718 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1719 ret = -ENOMEM; 1720 goto out_put; 1721 } 1722 1723 lsop->rqstbuf = kzalloc(sizeof(*lsop->rqstbuf), GFP_KERNEL); 1724 lsop->rspbuf = kzalloc(sizeof(*lsop->rspbuf), GFP_KERNEL); 1725 if (!lsop->rqstbuf || !lsop->rspbuf) { 1726 nvme_fc_rcv_ls_req_err_msg(lport, w0); 1727 ret = -ENOMEM; 1728 goto out_free; 1729 } 1730 1731 lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf, 1732 sizeof(*lsop->rspbuf), 1733 DMA_TO_DEVICE); 1734 if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) { 1735 dev_info(lport->dev, 1736 "RCV %s LS failed: DMA mapping failure\n", 1737 (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ? 1738 nvmefc_ls_names[w0->ls_cmd] : ""); 1739 ret = -EFAULT; 1740 goto out_free; 1741 } 1742 1743 lsop->rport = rport; 1744 lsop->lsrsp = lsrsp; 1745 1746 memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len); 1747 lsop->rqstdatalen = lsreqbuf_len; 1748 1749 spin_lock_irqsave(&rport->lock, flags); 1750 if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) { 1751 spin_unlock_irqrestore(&rport->lock, flags); 1752 ret = -ENOTCONN; 1753 goto out_unmap; 1754 } 1755 list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list); 1756 spin_unlock_irqrestore(&rport->lock, flags); 1757 1758 schedule_work(&rport->lsrcv_work); 1759 1760 return 0; 1761 1762 out_unmap: 1763 fc_dma_unmap_single(lport->dev, lsop->rspdma, 1764 sizeof(*lsop->rspbuf), DMA_TO_DEVICE); 1765 out_free: 1766 kfree(lsop->rspbuf); 1767 kfree(lsop->rqstbuf); 1768 kfree(lsop); 1769 out_put: 1770 nvme_fc_rport_put(rport); 1771 return ret; 1772 } 1773 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req); 1774 1775 1776 /* *********************** NVME Ctrl Routines **************************** */ 1777 1778 static void 1779 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl, 1780 struct nvme_fc_fcp_op *op) 1781 { 1782 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma, 1783 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1784 fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma, 1785 sizeof(op->cmd_iu), DMA_TO_DEVICE); 1786 1787 atomic_set(&op->state, FCPOP_STATE_UNINIT); 1788 } 1789 1790 static void 1791 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq, 1792 unsigned int hctx_idx) 1793 { 1794 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 1795 1796 return __nvme_fc_exit_request(to_fc_ctrl(set->driver_data), op); 1797 } 1798 1799 static int 1800 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op) 1801 { 1802 unsigned long flags; 1803 int opstate; 1804 1805 spin_lock_irqsave(&ctrl->lock, flags); 1806 opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED); 1807 if (opstate != FCPOP_STATE_ACTIVE) 1808 atomic_set(&op->state, opstate); 1809 else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) { 1810 op->flags |= FCOP_FLAGS_TERMIO; 1811 ctrl->iocnt++; 1812 } 1813 spin_unlock_irqrestore(&ctrl->lock, flags); 1814 1815 if (opstate != FCPOP_STATE_ACTIVE) 1816 return -ECANCELED; 1817 1818 ctrl->lport->ops->fcp_abort(&ctrl->lport->localport, 1819 &ctrl->rport->remoteport, 1820 op->queue->lldd_handle, 1821 &op->fcp_req); 1822 1823 return 0; 1824 } 1825 1826 static void 1827 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl) 1828 { 1829 struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops; 1830 int i; 1831 1832 /* ensure we've initialized the ops once */ 1833 if (!(aen_op->flags & FCOP_FLAGS_AEN)) 1834 return; 1835 1836 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) 1837 __nvme_fc_abort_op(ctrl, aen_op); 1838 } 1839 1840 static inline void 1841 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl, 1842 struct nvme_fc_fcp_op *op, int opstate) 1843 { 1844 unsigned long flags; 1845 1846 if (opstate == FCPOP_STATE_ABORTED) { 1847 spin_lock_irqsave(&ctrl->lock, flags); 1848 if (test_bit(FCCTRL_TERMIO, &ctrl->flags) && 1849 op->flags & FCOP_FLAGS_TERMIO) { 1850 if (!--ctrl->iocnt) 1851 wake_up(&ctrl->ioabort_wait); 1852 } 1853 spin_unlock_irqrestore(&ctrl->lock, flags); 1854 } 1855 } 1856 1857 static void 1858 nvme_fc_ctrl_ioerr_work(struct work_struct *work) 1859 { 1860 struct nvme_fc_ctrl *ctrl = 1861 container_of(work, struct nvme_fc_ctrl, ioerr_work); 1862 1863 nvme_fc_error_recovery(ctrl, "transport detected io error"); 1864 } 1865 1866 /* 1867 * nvme_fc_io_getuuid - Routine called to get the appid field 1868 * associated with request by the lldd 1869 * @req:IO request from nvme fc to driver 1870 * Returns: UUID if there is an appid associated with VM or 1871 * NULL if the user/libvirt has not set the appid to VM 1872 */ 1873 char *nvme_fc_io_getuuid(struct nvmefc_fcp_req *req) 1874 { 1875 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1876 struct request *rq = op->rq; 1877 1878 if (!IS_ENABLED(CONFIG_BLK_CGROUP_FC_APPID) || !rq || !rq->bio) 1879 return NULL; 1880 return blkcg_get_fc_appid(rq->bio); 1881 } 1882 EXPORT_SYMBOL_GPL(nvme_fc_io_getuuid); 1883 1884 static void 1885 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req) 1886 { 1887 struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req); 1888 struct request *rq = op->rq; 1889 struct nvmefc_fcp_req *freq = &op->fcp_req; 1890 struct nvme_fc_ctrl *ctrl = op->ctrl; 1891 struct nvme_fc_queue *queue = op->queue; 1892 struct nvme_completion *cqe = &op->rsp_iu.cqe; 1893 struct nvme_command *sqe = &op->cmd_iu.sqe; 1894 __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1); 1895 union nvme_result result; 1896 bool terminate_assoc = true; 1897 int opstate; 1898 1899 /* 1900 * WARNING: 1901 * The current linux implementation of a nvme controller 1902 * allocates a single tag set for all io queues and sizes 1903 * the io queues to fully hold all possible tags. Thus, the 1904 * implementation does not reference or care about the sqhd 1905 * value as it never needs to use the sqhd/sqtail pointers 1906 * for submission pacing. 1907 * 1908 * This affects the FC-NVME implementation in two ways: 1909 * 1) As the value doesn't matter, we don't need to waste 1910 * cycles extracting it from ERSPs and stamping it in the 1911 * cases where the transport fabricates CQEs on successful 1912 * completions. 1913 * 2) The FC-NVME implementation requires that delivery of 1914 * ERSP completions are to go back to the nvme layer in order 1915 * relative to the rsn, such that the sqhd value will always 1916 * be "in order" for the nvme layer. As the nvme layer in 1917 * linux doesn't care about sqhd, there's no need to return 1918 * them in order. 1919 * 1920 * Additionally: 1921 * As the core nvme layer in linux currently does not look at 1922 * every field in the cqe - in cases where the FC transport must 1923 * fabricate a CQE, the following fields will not be set as they 1924 * are not referenced: 1925 * cqe.sqid, cqe.sqhd, cqe.command_id 1926 * 1927 * Failure or error of an individual i/o, in a transport 1928 * detected fashion unrelated to the nvme completion status, 1929 * potentially cause the initiator and target sides to get out 1930 * of sync on SQ head/tail (aka outstanding io count allowed). 1931 * Per FC-NVME spec, failure of an individual command requires 1932 * the connection to be terminated, which in turn requires the 1933 * association to be terminated. 1934 */ 1935 1936 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 1937 1938 fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma, 1939 sizeof(op->rsp_iu), DMA_FROM_DEVICE); 1940 1941 if (opstate == FCPOP_STATE_ABORTED) 1942 status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1); 1943 else if (freq->status) { 1944 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1945 dev_info(ctrl->ctrl.device, 1946 "NVME-FC{%d}: io failed due to lldd error %d\n", 1947 ctrl->cnum, freq->status); 1948 } 1949 1950 /* 1951 * For the linux implementation, if we have an unsuccesful 1952 * status, they blk-mq layer can typically be called with the 1953 * non-zero status and the content of the cqe isn't important. 1954 */ 1955 if (status) 1956 goto done; 1957 1958 /* 1959 * command completed successfully relative to the wire 1960 * protocol. However, validate anything received and 1961 * extract the status and result from the cqe (create it 1962 * where necessary). 1963 */ 1964 1965 switch (freq->rcv_rsplen) { 1966 1967 case 0: 1968 case NVME_FC_SIZEOF_ZEROS_RSP: 1969 /* 1970 * No response payload or 12 bytes of payload (which 1971 * should all be zeros) are considered successful and 1972 * no payload in the CQE by the transport. 1973 */ 1974 if (freq->transferred_length != 1975 be32_to_cpu(op->cmd_iu.data_len)) { 1976 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1977 dev_info(ctrl->ctrl.device, 1978 "NVME-FC{%d}: io failed due to bad transfer " 1979 "length: %d vs expected %d\n", 1980 ctrl->cnum, freq->transferred_length, 1981 be32_to_cpu(op->cmd_iu.data_len)); 1982 goto done; 1983 } 1984 result.u64 = 0; 1985 break; 1986 1987 case sizeof(struct nvme_fc_ersp_iu): 1988 /* 1989 * The ERSP IU contains a full completion with CQE. 1990 * Validate ERSP IU and look at cqe. 1991 */ 1992 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) != 1993 (freq->rcv_rsplen / 4) || 1994 be32_to_cpu(op->rsp_iu.xfrd_len) != 1995 freq->transferred_length || 1996 op->rsp_iu.ersp_result || 1997 sqe->common.command_id != cqe->command_id)) { 1998 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 1999 dev_info(ctrl->ctrl.device, 2000 "NVME-FC{%d}: io failed due to bad NVMe_ERSP: " 2001 "iu len %d, xfr len %d vs %d, status code " 2002 "%d, cmdid %d vs %d\n", 2003 ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len), 2004 be32_to_cpu(op->rsp_iu.xfrd_len), 2005 freq->transferred_length, 2006 op->rsp_iu.ersp_result, 2007 sqe->common.command_id, 2008 cqe->command_id); 2009 goto done; 2010 } 2011 result = cqe->result; 2012 status = cqe->status; 2013 break; 2014 2015 default: 2016 status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1); 2017 dev_info(ctrl->ctrl.device, 2018 "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu " 2019 "len %d\n", 2020 ctrl->cnum, freq->rcv_rsplen); 2021 goto done; 2022 } 2023 2024 terminate_assoc = false; 2025 2026 done: 2027 if (op->flags & FCOP_FLAGS_AEN) { 2028 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result); 2029 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2030 atomic_set(&op->state, FCPOP_STATE_IDLE); 2031 op->flags = FCOP_FLAGS_AEN; /* clear other flags */ 2032 nvme_fc_ctrl_put(ctrl); 2033 goto check_error; 2034 } 2035 2036 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2037 if (!nvme_try_complete_req(rq, status, result)) 2038 nvme_fc_complete_rq(rq); 2039 2040 check_error: 2041 if (terminate_assoc && 2042 nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_RESETTING) 2043 queue_work(nvme_reset_wq, &ctrl->ioerr_work); 2044 } 2045 2046 static int 2047 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl, 2048 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, 2049 struct request *rq, u32 rqno) 2050 { 2051 struct nvme_fcp_op_w_sgl *op_w_sgl = 2052 container_of(op, typeof(*op_w_sgl), op); 2053 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2054 int ret = 0; 2055 2056 memset(op, 0, sizeof(*op)); 2057 op->fcp_req.cmdaddr = &op->cmd_iu; 2058 op->fcp_req.cmdlen = sizeof(op->cmd_iu); 2059 op->fcp_req.rspaddr = &op->rsp_iu; 2060 op->fcp_req.rsplen = sizeof(op->rsp_iu); 2061 op->fcp_req.done = nvme_fc_fcpio_done; 2062 op->ctrl = ctrl; 2063 op->queue = queue; 2064 op->rq = rq; 2065 op->rqno = rqno; 2066 2067 cmdiu->format_id = NVME_CMD_FORMAT_ID; 2068 cmdiu->fc_id = NVME_CMD_FC_ID; 2069 cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32)); 2070 if (queue->qnum) 2071 cmdiu->rsv_cat = fccmnd_set_cat_css(0, 2072 (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT)); 2073 else 2074 cmdiu->rsv_cat = fccmnd_set_cat_admin(0); 2075 2076 op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev, 2077 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE); 2078 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) { 2079 dev_err(ctrl->dev, 2080 "FCP Op failed - cmdiu dma mapping failed.\n"); 2081 ret = -EFAULT; 2082 goto out_on_error; 2083 } 2084 2085 op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev, 2086 &op->rsp_iu, sizeof(op->rsp_iu), 2087 DMA_FROM_DEVICE); 2088 if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) { 2089 dev_err(ctrl->dev, 2090 "FCP Op failed - rspiu dma mapping failed.\n"); 2091 ret = -EFAULT; 2092 } 2093 2094 atomic_set(&op->state, FCPOP_STATE_IDLE); 2095 out_on_error: 2096 return ret; 2097 } 2098 2099 static int 2100 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq, 2101 unsigned int hctx_idx, unsigned int numa_node) 2102 { 2103 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2104 struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq); 2105 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; 2106 struct nvme_fc_queue *queue = &ctrl->queues[queue_idx]; 2107 int res; 2108 2109 res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++); 2110 if (res) 2111 return res; 2112 op->op.fcp_req.first_sgl = op->sgl; 2113 op->op.fcp_req.private = &op->priv[0]; 2114 nvme_req(rq)->ctrl = &ctrl->ctrl; 2115 nvme_req(rq)->cmd = &op->op.cmd_iu.sqe; 2116 return res; 2117 } 2118 2119 static int 2120 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl) 2121 { 2122 struct nvme_fc_fcp_op *aen_op; 2123 struct nvme_fc_cmd_iu *cmdiu; 2124 struct nvme_command *sqe; 2125 void *private = NULL; 2126 int i, ret; 2127 2128 aen_op = ctrl->aen_ops; 2129 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2130 if (ctrl->lport->ops->fcprqst_priv_sz) { 2131 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz, 2132 GFP_KERNEL); 2133 if (!private) 2134 return -ENOMEM; 2135 } 2136 2137 cmdiu = &aen_op->cmd_iu; 2138 sqe = &cmdiu->sqe; 2139 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0], 2140 aen_op, (struct request *)NULL, 2141 (NVME_AQ_BLK_MQ_DEPTH + i)); 2142 if (ret) { 2143 kfree(private); 2144 return ret; 2145 } 2146 2147 aen_op->flags = FCOP_FLAGS_AEN; 2148 aen_op->fcp_req.private = private; 2149 2150 memset(sqe, 0, sizeof(*sqe)); 2151 sqe->common.opcode = nvme_admin_async_event; 2152 /* Note: core layer may overwrite the sqe.command_id value */ 2153 sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i; 2154 } 2155 return 0; 2156 } 2157 2158 static void 2159 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl) 2160 { 2161 struct nvme_fc_fcp_op *aen_op; 2162 int i; 2163 2164 cancel_work_sync(&ctrl->ctrl.async_event_work); 2165 aen_op = ctrl->aen_ops; 2166 for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) { 2167 __nvme_fc_exit_request(ctrl, aen_op); 2168 2169 kfree(aen_op->fcp_req.private); 2170 aen_op->fcp_req.private = NULL; 2171 } 2172 } 2173 2174 static inline int 2175 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int qidx) 2176 { 2177 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(data); 2178 struct nvme_fc_queue *queue = &ctrl->queues[qidx]; 2179 2180 hctx->driver_data = queue; 2181 queue->hctx = hctx; 2182 return 0; 2183 } 2184 2185 static int 2186 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int hctx_idx) 2187 { 2188 return __nvme_fc_init_hctx(hctx, data, hctx_idx + 1); 2189 } 2190 2191 static int 2192 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, 2193 unsigned int hctx_idx) 2194 { 2195 return __nvme_fc_init_hctx(hctx, data, hctx_idx); 2196 } 2197 2198 static void 2199 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx) 2200 { 2201 struct nvme_fc_queue *queue; 2202 2203 queue = &ctrl->queues[idx]; 2204 memset(queue, 0, sizeof(*queue)); 2205 queue->ctrl = ctrl; 2206 queue->qnum = idx; 2207 atomic_set(&queue->csn, 0); 2208 queue->dev = ctrl->dev; 2209 2210 if (idx > 0) 2211 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; 2212 else 2213 queue->cmnd_capsule_len = sizeof(struct nvme_command); 2214 2215 /* 2216 * Considered whether we should allocate buffers for all SQEs 2217 * and CQEs and dma map them - mapping their respective entries 2218 * into the request structures (kernel vm addr and dma address) 2219 * thus the driver could use the buffers/mappings directly. 2220 * It only makes sense if the LLDD would use them for its 2221 * messaging api. It's very unlikely most adapter api's would use 2222 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload 2223 * structures were used instead. 2224 */ 2225 } 2226 2227 /* 2228 * This routine terminates a queue at the transport level. 2229 * The transport has already ensured that all outstanding ios on 2230 * the queue have been terminated. 2231 * The transport will send a Disconnect LS request to terminate 2232 * the queue's connection. Termination of the admin queue will also 2233 * terminate the association at the target. 2234 */ 2235 static void 2236 nvme_fc_free_queue(struct nvme_fc_queue *queue) 2237 { 2238 if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags)) 2239 return; 2240 2241 clear_bit(NVME_FC_Q_LIVE, &queue->flags); 2242 /* 2243 * Current implementation never disconnects a single queue. 2244 * It always terminates a whole association. So there is never 2245 * a disconnect(queue) LS sent to the target. 2246 */ 2247 2248 queue->connection_id = 0; 2249 atomic_set(&queue->csn, 0); 2250 } 2251 2252 static void 2253 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl, 2254 struct nvme_fc_queue *queue, unsigned int qidx) 2255 { 2256 if (ctrl->lport->ops->delete_queue) 2257 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx, 2258 queue->lldd_handle); 2259 queue->lldd_handle = NULL; 2260 } 2261 2262 static void 2263 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl) 2264 { 2265 int i; 2266 2267 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2268 nvme_fc_free_queue(&ctrl->queues[i]); 2269 } 2270 2271 static int 2272 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl, 2273 struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize) 2274 { 2275 int ret = 0; 2276 2277 queue->lldd_handle = NULL; 2278 if (ctrl->lport->ops->create_queue) 2279 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport, 2280 qidx, qsize, &queue->lldd_handle); 2281 2282 return ret; 2283 } 2284 2285 static void 2286 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl) 2287 { 2288 struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1]; 2289 int i; 2290 2291 for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--) 2292 __nvme_fc_delete_hw_queue(ctrl, queue, i); 2293 } 2294 2295 static int 2296 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2297 { 2298 struct nvme_fc_queue *queue = &ctrl->queues[1]; 2299 int i, ret; 2300 2301 for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) { 2302 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize); 2303 if (ret) 2304 goto delete_queues; 2305 } 2306 2307 return 0; 2308 2309 delete_queues: 2310 for (; i > 0; i--) 2311 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i); 2312 return ret; 2313 } 2314 2315 static int 2316 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize) 2317 { 2318 int i, ret = 0; 2319 2320 for (i = 1; i < ctrl->ctrl.queue_count; i++) { 2321 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize, 2322 (qsize / 5)); 2323 if (ret) 2324 break; 2325 ret = nvmf_connect_io_queue(&ctrl->ctrl, i); 2326 if (ret) 2327 break; 2328 2329 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags); 2330 } 2331 2332 return ret; 2333 } 2334 2335 static void 2336 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl) 2337 { 2338 int i; 2339 2340 for (i = 1; i < ctrl->ctrl.queue_count; i++) 2341 nvme_fc_init_queue(ctrl, i); 2342 } 2343 2344 static void 2345 nvme_fc_ctrl_free(struct kref *ref) 2346 { 2347 struct nvme_fc_ctrl *ctrl = 2348 container_of(ref, struct nvme_fc_ctrl, ref); 2349 unsigned long flags; 2350 2351 if (ctrl->ctrl.tagset) 2352 nvme_remove_io_tag_set(&ctrl->ctrl); 2353 2354 /* remove from rport list */ 2355 spin_lock_irqsave(&ctrl->rport->lock, flags); 2356 list_del(&ctrl->ctrl_list); 2357 spin_unlock_irqrestore(&ctrl->rport->lock, flags); 2358 2359 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2360 nvme_remove_admin_tag_set(&ctrl->ctrl); 2361 2362 kfree(ctrl->queues); 2363 2364 put_device(ctrl->dev); 2365 nvme_fc_rport_put(ctrl->rport); 2366 2367 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 2368 if (ctrl->ctrl.opts) 2369 nvmf_free_options(ctrl->ctrl.opts); 2370 kfree(ctrl); 2371 } 2372 2373 static void 2374 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl) 2375 { 2376 kref_put(&ctrl->ref, nvme_fc_ctrl_free); 2377 } 2378 2379 static int 2380 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl) 2381 { 2382 return kref_get_unless_zero(&ctrl->ref); 2383 } 2384 2385 /* 2386 * All accesses from nvme core layer done - can now free the 2387 * controller. Called after last nvme_put_ctrl() call 2388 */ 2389 static void 2390 nvme_fc_free_ctrl(struct nvme_ctrl *nctrl) 2391 { 2392 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2393 2394 WARN_ON(nctrl != &ctrl->ctrl); 2395 2396 nvme_fc_ctrl_put(ctrl); 2397 } 2398 2399 /* 2400 * This routine is used by the transport when it needs to find active 2401 * io on a queue that is to be terminated. The transport uses 2402 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke 2403 * this routine to kill them on a 1 by 1 basis. 2404 * 2405 * As FC allocates FC exchange for each io, the transport must contact 2406 * the LLDD to terminate the exchange, thus releasing the FC exchange. 2407 * After terminating the exchange the LLDD will call the transport's 2408 * normal io done path for the request, but it will have an aborted 2409 * status. The done path will return the io request back to the block 2410 * layer with an error status. 2411 */ 2412 static bool nvme_fc_terminate_exchange(struct request *req, void *data) 2413 { 2414 struct nvme_ctrl *nctrl = data; 2415 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 2416 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req); 2417 2418 op->nreq.flags |= NVME_REQ_CANCELLED; 2419 __nvme_fc_abort_op(ctrl, op); 2420 return true; 2421 } 2422 2423 /* 2424 * This routine runs through all outstanding commands on the association 2425 * and aborts them. This routine is typically be called by the 2426 * delete_association routine. It is also called due to an error during 2427 * reconnect. In that scenario, it is most likely a command that initializes 2428 * the controller, including fabric Connect commands on io queues, that 2429 * may have timed out or failed thus the io must be killed for the connect 2430 * thread to see the error. 2431 */ 2432 static void 2433 __nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues) 2434 { 2435 int q; 2436 2437 /* 2438 * if aborting io, the queues are no longer good, mark them 2439 * all as not live. 2440 */ 2441 if (ctrl->ctrl.queue_count > 1) { 2442 for (q = 1; q < ctrl->ctrl.queue_count; q++) 2443 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags); 2444 } 2445 clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 2446 2447 /* 2448 * If io queues are present, stop them and terminate all outstanding 2449 * ios on them. As FC allocates FC exchange for each io, the 2450 * transport must contact the LLDD to terminate the exchange, 2451 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr() 2452 * to tell us what io's are busy and invoke a transport routine 2453 * to kill them with the LLDD. After terminating the exchange 2454 * the LLDD will call the transport's normal io done path, but it 2455 * will have an aborted status. The done path will return the 2456 * io requests back to the block layer as part of normal completions 2457 * (but with error status). 2458 */ 2459 if (ctrl->ctrl.queue_count > 1) { 2460 nvme_quiesce_io_queues(&ctrl->ctrl); 2461 nvme_sync_io_queues(&ctrl->ctrl); 2462 blk_mq_tagset_busy_iter(&ctrl->tag_set, 2463 nvme_fc_terminate_exchange, &ctrl->ctrl); 2464 blk_mq_tagset_wait_completed_request(&ctrl->tag_set); 2465 if (start_queues) 2466 nvme_unquiesce_io_queues(&ctrl->ctrl); 2467 } 2468 2469 /* 2470 * Other transports, which don't have link-level contexts bound 2471 * to sqe's, would try to gracefully shutdown the controller by 2472 * writing the registers for shutdown and polling (call 2473 * nvme_disable_ctrl()). Given a bunch of i/o was potentially 2474 * just aborted and we will wait on those contexts, and given 2475 * there was no indication of how live the controlelr is on the 2476 * link, don't send more io to create more contexts for the 2477 * shutdown. Let the controller fail via keepalive failure if 2478 * its still present. 2479 */ 2480 2481 /* 2482 * clean up the admin queue. Same thing as above. 2483 */ 2484 nvme_quiesce_admin_queue(&ctrl->ctrl); 2485 blk_sync_queue(ctrl->ctrl.admin_q); 2486 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, 2487 nvme_fc_terminate_exchange, &ctrl->ctrl); 2488 blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set); 2489 if (start_queues) 2490 nvme_unquiesce_admin_queue(&ctrl->ctrl); 2491 } 2492 2493 static void 2494 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg) 2495 { 2496 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl); 2497 2498 /* 2499 * if an error (io timeout, etc) while (re)connecting, the remote 2500 * port requested terminating of the association (disconnect_ls) 2501 * or an error (timeout or abort) occurred on an io while creating 2502 * the controller. Abort any ios on the association and let the 2503 * create_association error path resolve things. 2504 */ 2505 if (state == NVME_CTRL_CONNECTING) { 2506 __nvme_fc_abort_outstanding_ios(ctrl, true); 2507 dev_warn(ctrl->ctrl.device, 2508 "NVME-FC{%d}: transport error during (re)connect\n", 2509 ctrl->cnum); 2510 return; 2511 } 2512 2513 /* Otherwise, only proceed if in LIVE state - e.g. on first error */ 2514 if (state != NVME_CTRL_LIVE) 2515 return; 2516 2517 dev_warn(ctrl->ctrl.device, 2518 "NVME-FC{%d}: transport association event: %s\n", 2519 ctrl->cnum, errmsg); 2520 dev_warn(ctrl->ctrl.device, 2521 "NVME-FC{%d}: resetting controller\n", ctrl->cnum); 2522 2523 nvme_reset_ctrl(&ctrl->ctrl); 2524 } 2525 2526 static enum blk_eh_timer_return nvme_fc_timeout(struct request *rq) 2527 { 2528 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2529 struct nvme_fc_ctrl *ctrl = op->ctrl; 2530 u16 qnum = op->queue->qnum; 2531 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2532 struct nvme_command *sqe = &cmdiu->sqe; 2533 2534 /* 2535 * Attempt to abort the offending command. Command completion 2536 * will detect the aborted io and will fail the connection. 2537 */ 2538 dev_info(ctrl->ctrl.device, 2539 "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d (%s) w10/11: " 2540 "x%08x/x%08x\n", 2541 ctrl->cnum, qnum, sqe->common.opcode, sqe->fabrics.fctype, 2542 nvme_fabrics_opcode_str(qnum, sqe), 2543 sqe->common.cdw10, sqe->common.cdw11); 2544 if (__nvme_fc_abort_op(ctrl, op)) 2545 nvme_fc_error_recovery(ctrl, "io timeout abort failed"); 2546 2547 /* 2548 * the io abort has been initiated. Have the reset timer 2549 * restarted and the abort completion will complete the io 2550 * shortly. Avoids a synchronous wait while the abort finishes. 2551 */ 2552 return BLK_EH_RESET_TIMER; 2553 } 2554 2555 static int 2556 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2557 struct nvme_fc_fcp_op *op) 2558 { 2559 struct nvmefc_fcp_req *freq = &op->fcp_req; 2560 int ret; 2561 2562 freq->sg_cnt = 0; 2563 2564 if (!blk_rq_nr_phys_segments(rq)) 2565 return 0; 2566 2567 freq->sg_table.sgl = freq->first_sgl; 2568 ret = sg_alloc_table_chained(&freq->sg_table, 2569 blk_rq_nr_phys_segments(rq), freq->sg_table.sgl, 2570 NVME_INLINE_SG_CNT); 2571 if (ret) 2572 return -ENOMEM; 2573 2574 op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl); 2575 WARN_ON(op->nents > blk_rq_nr_phys_segments(rq)); 2576 freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl, 2577 op->nents, rq_dma_dir(rq)); 2578 if (unlikely(freq->sg_cnt <= 0)) { 2579 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2580 freq->sg_cnt = 0; 2581 return -EFAULT; 2582 } 2583 2584 /* 2585 * TODO: blk_integrity_rq(rq) for DIF 2586 */ 2587 return 0; 2588 } 2589 2590 static void 2591 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq, 2592 struct nvme_fc_fcp_op *op) 2593 { 2594 struct nvmefc_fcp_req *freq = &op->fcp_req; 2595 2596 if (!freq->sg_cnt) 2597 return; 2598 2599 fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents, 2600 rq_dma_dir(rq)); 2601 2602 sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT); 2603 2604 freq->sg_cnt = 0; 2605 } 2606 2607 /* 2608 * In FC, the queue is a logical thing. At transport connect, the target 2609 * creates its "queue" and returns a handle that is to be given to the 2610 * target whenever it posts something to the corresponding SQ. When an 2611 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the 2612 * command contained within the SQE, an io, and assigns a FC exchange 2613 * to it. The SQE and the associated SQ handle are sent in the initial 2614 * CMD IU sents on the exchange. All transfers relative to the io occur 2615 * as part of the exchange. The CQE is the last thing for the io, 2616 * which is transferred (explicitly or implicitly) with the RSP IU 2617 * sent on the exchange. After the CQE is received, the FC exchange is 2618 * terminaed and the Exchange may be used on a different io. 2619 * 2620 * The transport to LLDD api has the transport making a request for a 2621 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange 2622 * resource and transfers the command. The LLDD will then process all 2623 * steps to complete the io. Upon completion, the transport done routine 2624 * is called. 2625 * 2626 * So - while the operation is outstanding to the LLDD, there is a link 2627 * level FC exchange resource that is also outstanding. This must be 2628 * considered in all cleanup operations. 2629 */ 2630 static blk_status_t 2631 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue, 2632 struct nvme_fc_fcp_op *op, u32 data_len, 2633 enum nvmefc_fcp_datadir io_dir) 2634 { 2635 struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu; 2636 struct nvme_command *sqe = &cmdiu->sqe; 2637 int ret, opstate; 2638 2639 /* 2640 * before attempting to send the io, check to see if we believe 2641 * the target device is present 2642 */ 2643 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 2644 return BLK_STS_RESOURCE; 2645 2646 if (!nvme_fc_ctrl_get(ctrl)) 2647 return BLK_STS_IOERR; 2648 2649 /* format the FC-NVME CMD IU and fcp_req */ 2650 cmdiu->connection_id = cpu_to_be64(queue->connection_id); 2651 cmdiu->data_len = cpu_to_be32(data_len); 2652 switch (io_dir) { 2653 case NVMEFC_FCP_WRITE: 2654 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE; 2655 break; 2656 case NVMEFC_FCP_READ: 2657 cmdiu->flags = FCNVME_CMD_FLAGS_READ; 2658 break; 2659 case NVMEFC_FCP_NODATA: 2660 cmdiu->flags = 0; 2661 break; 2662 } 2663 op->fcp_req.payload_length = data_len; 2664 op->fcp_req.io_dir = io_dir; 2665 op->fcp_req.transferred_length = 0; 2666 op->fcp_req.rcv_rsplen = 0; 2667 op->fcp_req.status = NVME_SC_SUCCESS; 2668 op->fcp_req.sqid = cpu_to_le16(queue->qnum); 2669 2670 /* 2671 * validate per fabric rules, set fields mandated by fabric spec 2672 * as well as those by FC-NVME spec. 2673 */ 2674 WARN_ON_ONCE(sqe->common.metadata); 2675 sqe->common.flags |= NVME_CMD_SGL_METABUF; 2676 2677 /* 2678 * format SQE DPTR field per FC-NVME rules: 2679 * type=0x5 Transport SGL Data Block Descriptor 2680 * subtype=0xA Transport-specific value 2681 * address=0 2682 * length=length of the data series 2683 */ 2684 sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) | 2685 NVME_SGL_FMT_TRANSPORT_A; 2686 sqe->rw.dptr.sgl.length = cpu_to_le32(data_len); 2687 sqe->rw.dptr.sgl.addr = 0; 2688 2689 if (!(op->flags & FCOP_FLAGS_AEN)) { 2690 ret = nvme_fc_map_data(ctrl, op->rq, op); 2691 if (ret < 0) { 2692 nvme_cleanup_cmd(op->rq); 2693 nvme_fc_ctrl_put(ctrl); 2694 if (ret == -ENOMEM || ret == -EAGAIN) 2695 return BLK_STS_RESOURCE; 2696 return BLK_STS_IOERR; 2697 } 2698 } 2699 2700 fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma, 2701 sizeof(op->cmd_iu), DMA_TO_DEVICE); 2702 2703 atomic_set(&op->state, FCPOP_STATE_ACTIVE); 2704 2705 if (!(op->flags & FCOP_FLAGS_AEN)) 2706 nvme_start_request(op->rq); 2707 2708 cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn)); 2709 ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport, 2710 &ctrl->rport->remoteport, 2711 queue->lldd_handle, &op->fcp_req); 2712 2713 if (ret) { 2714 /* 2715 * If the lld fails to send the command is there an issue with 2716 * the csn value? If the command that fails is the Connect, 2717 * no - as the connection won't be live. If it is a command 2718 * post-connect, it's possible a gap in csn may be created. 2719 * Does this matter? As Linux initiators don't send fused 2720 * commands, no. The gap would exist, but as there's nothing 2721 * that depends on csn order to be delivered on the target 2722 * side, it shouldn't hurt. It would be difficult for a 2723 * target to even detect the csn gap as it has no idea when the 2724 * cmd with the csn was supposed to arrive. 2725 */ 2726 opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE); 2727 __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate); 2728 2729 if (!(op->flags & FCOP_FLAGS_AEN)) { 2730 nvme_fc_unmap_data(ctrl, op->rq, op); 2731 nvme_cleanup_cmd(op->rq); 2732 } 2733 2734 nvme_fc_ctrl_put(ctrl); 2735 2736 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE && 2737 ret != -EBUSY) 2738 return BLK_STS_IOERR; 2739 2740 return BLK_STS_RESOURCE; 2741 } 2742 2743 return BLK_STS_OK; 2744 } 2745 2746 static blk_status_t 2747 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx, 2748 const struct blk_mq_queue_data *bd) 2749 { 2750 struct nvme_ns *ns = hctx->queue->queuedata; 2751 struct nvme_fc_queue *queue = hctx->driver_data; 2752 struct nvme_fc_ctrl *ctrl = queue->ctrl; 2753 struct request *rq = bd->rq; 2754 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2755 enum nvmefc_fcp_datadir io_dir; 2756 bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags); 2757 u32 data_len; 2758 blk_status_t ret; 2759 2760 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE || 2761 !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) 2762 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq); 2763 2764 ret = nvme_setup_cmd(ns, rq); 2765 if (ret) 2766 return ret; 2767 2768 /* 2769 * nvme core doesn't quite treat the rq opaquely. Commands such 2770 * as WRITE ZEROES will return a non-zero rq payload_bytes yet 2771 * there is no actual payload to be transferred. 2772 * To get it right, key data transmission on there being 1 or 2773 * more physical segments in the sg list. If there is no 2774 * physical segments, there is no payload. 2775 */ 2776 if (blk_rq_nr_phys_segments(rq)) { 2777 data_len = blk_rq_payload_bytes(rq); 2778 io_dir = ((rq_data_dir(rq) == WRITE) ? 2779 NVMEFC_FCP_WRITE : NVMEFC_FCP_READ); 2780 } else { 2781 data_len = 0; 2782 io_dir = NVMEFC_FCP_NODATA; 2783 } 2784 2785 2786 return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir); 2787 } 2788 2789 static void 2790 nvme_fc_submit_async_event(struct nvme_ctrl *arg) 2791 { 2792 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg); 2793 struct nvme_fc_fcp_op *aen_op; 2794 blk_status_t ret; 2795 2796 if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) 2797 return; 2798 2799 aen_op = &ctrl->aen_ops[0]; 2800 2801 ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0, 2802 NVMEFC_FCP_NODATA); 2803 if (ret) 2804 dev_err(ctrl->ctrl.device, 2805 "failed async event work\n"); 2806 } 2807 2808 static void 2809 nvme_fc_complete_rq(struct request *rq) 2810 { 2811 struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq); 2812 struct nvme_fc_ctrl *ctrl = op->ctrl; 2813 2814 atomic_set(&op->state, FCPOP_STATE_IDLE); 2815 op->flags &= ~FCOP_FLAGS_TERMIO; 2816 2817 nvme_fc_unmap_data(ctrl, rq, op); 2818 nvme_complete_rq(rq); 2819 nvme_fc_ctrl_put(ctrl); 2820 } 2821 2822 static void nvme_fc_map_queues(struct blk_mq_tag_set *set) 2823 { 2824 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(set->driver_data); 2825 int i; 2826 2827 for (i = 0; i < set->nr_maps; i++) { 2828 struct blk_mq_queue_map *map = &set->map[i]; 2829 2830 if (!map->nr_queues) { 2831 WARN_ON(i == HCTX_TYPE_DEFAULT); 2832 continue; 2833 } 2834 2835 /* Call LLDD map queue functionality if defined */ 2836 if (ctrl->lport->ops->map_queues) 2837 ctrl->lport->ops->map_queues(&ctrl->lport->localport, 2838 map); 2839 else 2840 blk_mq_map_queues(map); 2841 } 2842 } 2843 2844 static const struct blk_mq_ops nvme_fc_mq_ops = { 2845 .queue_rq = nvme_fc_queue_rq, 2846 .complete = nvme_fc_complete_rq, 2847 .init_request = nvme_fc_init_request, 2848 .exit_request = nvme_fc_exit_request, 2849 .init_hctx = nvme_fc_init_hctx, 2850 .timeout = nvme_fc_timeout, 2851 .map_queues = nvme_fc_map_queues, 2852 }; 2853 2854 static int 2855 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl) 2856 { 2857 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2858 unsigned int nr_io_queues; 2859 int ret; 2860 2861 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2862 ctrl->lport->ops->max_hw_queues); 2863 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2864 if (ret) { 2865 dev_info(ctrl->ctrl.device, 2866 "set_queue_count failed: %d\n", ret); 2867 return ret; 2868 } 2869 2870 ctrl->ctrl.queue_count = nr_io_queues + 1; 2871 if (!nr_io_queues) 2872 return 0; 2873 2874 nvme_fc_init_io_queues(ctrl); 2875 2876 ret = nvme_alloc_io_tag_set(&ctrl->ctrl, &ctrl->tag_set, 2877 &nvme_fc_mq_ops, 1, 2878 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 2879 ctrl->lport->ops->fcprqst_priv_sz)); 2880 if (ret) 2881 return ret; 2882 2883 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2884 if (ret) 2885 goto out_cleanup_tagset; 2886 2887 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2888 if (ret) 2889 goto out_delete_hw_queues; 2890 2891 ctrl->ioq_live = true; 2892 2893 return 0; 2894 2895 out_delete_hw_queues: 2896 nvme_fc_delete_hw_io_queues(ctrl); 2897 out_cleanup_tagset: 2898 nvme_remove_io_tag_set(&ctrl->ctrl); 2899 nvme_fc_free_io_queues(ctrl); 2900 2901 /* force put free routine to ignore io queues */ 2902 ctrl->ctrl.tagset = NULL; 2903 2904 return ret; 2905 } 2906 2907 static int 2908 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl) 2909 { 2910 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 2911 u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1; 2912 unsigned int nr_io_queues; 2913 int ret; 2914 2915 nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()), 2916 ctrl->lport->ops->max_hw_queues); 2917 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); 2918 if (ret) { 2919 dev_info(ctrl->ctrl.device, 2920 "set_queue_count failed: %d\n", ret); 2921 return ret; 2922 } 2923 2924 if (!nr_io_queues && prior_ioq_cnt) { 2925 dev_info(ctrl->ctrl.device, 2926 "Fail Reconnect: At least 1 io queue " 2927 "required (was %d)\n", prior_ioq_cnt); 2928 return -ENOSPC; 2929 } 2930 2931 ctrl->ctrl.queue_count = nr_io_queues + 1; 2932 /* check for io queues existing */ 2933 if (ctrl->ctrl.queue_count == 1) 2934 return 0; 2935 2936 if (prior_ioq_cnt != nr_io_queues) { 2937 dev_info(ctrl->ctrl.device, 2938 "reconnect: revising io queue count from %d to %d\n", 2939 prior_ioq_cnt, nr_io_queues); 2940 blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues); 2941 } 2942 2943 ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2944 if (ret) 2945 goto out_free_io_queues; 2946 2947 ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1); 2948 if (ret) 2949 goto out_delete_hw_queues; 2950 2951 return 0; 2952 2953 out_delete_hw_queues: 2954 nvme_fc_delete_hw_io_queues(ctrl); 2955 out_free_io_queues: 2956 nvme_fc_free_io_queues(ctrl); 2957 return ret; 2958 } 2959 2960 static void 2961 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport) 2962 { 2963 struct nvme_fc_lport *lport = rport->lport; 2964 2965 atomic_inc(&lport->act_rport_cnt); 2966 } 2967 2968 static void 2969 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport) 2970 { 2971 struct nvme_fc_lport *lport = rport->lport; 2972 u32 cnt; 2973 2974 cnt = atomic_dec_return(&lport->act_rport_cnt); 2975 if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED) 2976 lport->ops->localport_delete(&lport->localport); 2977 } 2978 2979 static int 2980 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl) 2981 { 2982 struct nvme_fc_rport *rport = ctrl->rport; 2983 u32 cnt; 2984 2985 if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags)) 2986 return 1; 2987 2988 cnt = atomic_inc_return(&rport->act_ctrl_cnt); 2989 if (cnt == 1) 2990 nvme_fc_rport_active_on_lport(rport); 2991 2992 return 0; 2993 } 2994 2995 static int 2996 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl) 2997 { 2998 struct nvme_fc_rport *rport = ctrl->rport; 2999 struct nvme_fc_lport *lport = rport->lport; 3000 u32 cnt; 3001 3002 /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */ 3003 3004 cnt = atomic_dec_return(&rport->act_ctrl_cnt); 3005 if (cnt == 0) { 3006 if (rport->remoteport.port_state == FC_OBJSTATE_DELETED) 3007 lport->ops->remoteport_delete(&rport->remoteport); 3008 nvme_fc_rport_inactive_on_lport(rport); 3009 } 3010 3011 return 0; 3012 } 3013 3014 /* 3015 * This routine restarts the controller on the host side, and 3016 * on the link side, recreates the controller association. 3017 */ 3018 static int 3019 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl) 3020 { 3021 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; 3022 struct nvmefc_ls_rcv_op *disls = NULL; 3023 unsigned long flags; 3024 int ret; 3025 3026 ++ctrl->ctrl.nr_reconnects; 3027 3028 if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3029 return -ENODEV; 3030 3031 if (nvme_fc_ctlr_active_on_rport(ctrl)) 3032 return -ENOTUNIQ; 3033 3034 dev_info(ctrl->ctrl.device, 3035 "NVME-FC{%d}: create association : host wwpn 0x%016llx " 3036 " rport wwpn 0x%016llx: NQN \"%s\"\n", 3037 ctrl->cnum, ctrl->lport->localport.port_name, 3038 ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn); 3039 3040 clear_bit(ASSOC_FAILED, &ctrl->flags); 3041 3042 /* 3043 * Create the admin queue 3044 */ 3045 3046 ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0, 3047 NVME_AQ_DEPTH); 3048 if (ret) 3049 goto out_free_queue; 3050 3051 ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0], 3052 NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4)); 3053 if (ret) 3054 goto out_delete_hw_queue; 3055 3056 ret = nvmf_connect_admin_queue(&ctrl->ctrl); 3057 if (ret) 3058 goto out_disconnect_admin_queue; 3059 3060 set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags); 3061 3062 /* 3063 * Check controller capabilities 3064 * 3065 * todo:- add code to check if ctrl attributes changed from 3066 * prior connection values 3067 */ 3068 3069 ret = nvme_enable_ctrl(&ctrl->ctrl); 3070 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3071 ret = -EIO; 3072 if (ret) 3073 goto out_disconnect_admin_queue; 3074 3075 ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments; 3076 ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments << 3077 (ilog2(SZ_4K) - 9); 3078 3079 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3080 3081 ret = nvme_init_ctrl_finish(&ctrl->ctrl, false); 3082 if (ret) 3083 goto out_disconnect_admin_queue; 3084 if (test_bit(ASSOC_FAILED, &ctrl->flags)) { 3085 ret = -EIO; 3086 goto out_stop_keep_alive; 3087 } 3088 /* sanity checks */ 3089 3090 /* FC-NVME does not have other data in the capsule */ 3091 if (ctrl->ctrl.icdoff) { 3092 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n", 3093 ctrl->ctrl.icdoff); 3094 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3095 goto out_stop_keep_alive; 3096 } 3097 3098 /* FC-NVME supports normal SGL Data Block Descriptors */ 3099 if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) { 3100 dev_err(ctrl->ctrl.device, 3101 "Mandatory sgls are not supported!\n"); 3102 ret = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; 3103 goto out_stop_keep_alive; 3104 } 3105 3106 if (opts->queue_size > ctrl->ctrl.maxcmd) { 3107 /* warn if maxcmd is lower than queue_size */ 3108 dev_warn(ctrl->ctrl.device, 3109 "queue_size %zu > ctrl maxcmd %u, reducing " 3110 "to maxcmd\n", 3111 opts->queue_size, ctrl->ctrl.maxcmd); 3112 opts->queue_size = ctrl->ctrl.maxcmd; 3113 ctrl->ctrl.sqsize = opts->queue_size - 1; 3114 } 3115 3116 ret = nvme_fc_init_aen_ops(ctrl); 3117 if (ret) 3118 goto out_term_aen_ops; 3119 3120 /* 3121 * Create the io queues 3122 */ 3123 3124 if (ctrl->ctrl.queue_count > 1) { 3125 if (!ctrl->ioq_live) 3126 ret = nvme_fc_create_io_queues(ctrl); 3127 else 3128 ret = nvme_fc_recreate_io_queues(ctrl); 3129 } 3130 if (!ret && test_bit(ASSOC_FAILED, &ctrl->flags)) 3131 ret = -EIO; 3132 if (ret) 3133 goto out_term_aen_ops; 3134 3135 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE)) { 3136 ret = -EIO; 3137 goto out_term_aen_ops; 3138 } 3139 3140 ctrl->ctrl.nr_reconnects = 0; 3141 nvme_start_ctrl(&ctrl->ctrl); 3142 3143 return 0; /* Success */ 3144 3145 out_term_aen_ops: 3146 nvme_fc_term_aen_ops(ctrl); 3147 out_stop_keep_alive: 3148 nvme_stop_keep_alive(&ctrl->ctrl); 3149 out_disconnect_admin_queue: 3150 dev_warn(ctrl->ctrl.device, 3151 "NVME-FC{%d}: create_assoc failed, assoc_id %llx ret %d\n", 3152 ctrl->cnum, ctrl->association_id, ret); 3153 /* send a Disconnect(association) LS to fc-nvme target */ 3154 nvme_fc_xmt_disconnect_assoc(ctrl); 3155 spin_lock_irqsave(&ctrl->lock, flags); 3156 ctrl->association_id = 0; 3157 disls = ctrl->rcv_disconn; 3158 ctrl->rcv_disconn = NULL; 3159 spin_unlock_irqrestore(&ctrl->lock, flags); 3160 if (disls) 3161 nvme_fc_xmt_ls_rsp(disls); 3162 out_delete_hw_queue: 3163 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3164 out_free_queue: 3165 nvme_fc_free_queue(&ctrl->queues[0]); 3166 clear_bit(ASSOC_ACTIVE, &ctrl->flags); 3167 nvme_fc_ctlr_inactive_on_rport(ctrl); 3168 3169 return ret; 3170 } 3171 3172 3173 /* 3174 * This routine stops operation of the controller on the host side. 3175 * On the host os stack side: Admin and IO queues are stopped, 3176 * outstanding ios on them terminated via FC ABTS. 3177 * On the link side: the association is terminated. 3178 */ 3179 static void 3180 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl) 3181 { 3182 struct nvmefc_ls_rcv_op *disls = NULL; 3183 unsigned long flags; 3184 3185 if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags)) 3186 return; 3187 3188 spin_lock_irqsave(&ctrl->lock, flags); 3189 set_bit(FCCTRL_TERMIO, &ctrl->flags); 3190 ctrl->iocnt = 0; 3191 spin_unlock_irqrestore(&ctrl->lock, flags); 3192 3193 __nvme_fc_abort_outstanding_ios(ctrl, false); 3194 3195 /* kill the aens as they are a separate path */ 3196 nvme_fc_abort_aen_ops(ctrl); 3197 3198 /* wait for all io that had to be aborted */ 3199 spin_lock_irq(&ctrl->lock); 3200 wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock); 3201 clear_bit(FCCTRL_TERMIO, &ctrl->flags); 3202 spin_unlock_irq(&ctrl->lock); 3203 3204 nvme_fc_term_aen_ops(ctrl); 3205 3206 /* 3207 * send a Disconnect(association) LS to fc-nvme target 3208 * Note: could have been sent at top of process, but 3209 * cleaner on link traffic if after the aborts complete. 3210 * Note: if association doesn't exist, association_id will be 0 3211 */ 3212 if (ctrl->association_id) 3213 nvme_fc_xmt_disconnect_assoc(ctrl); 3214 3215 spin_lock_irqsave(&ctrl->lock, flags); 3216 ctrl->association_id = 0; 3217 disls = ctrl->rcv_disconn; 3218 ctrl->rcv_disconn = NULL; 3219 spin_unlock_irqrestore(&ctrl->lock, flags); 3220 if (disls) 3221 /* 3222 * if a Disconnect Request was waiting for a response, send 3223 * now that all ABTS's have been issued (and are complete). 3224 */ 3225 nvme_fc_xmt_ls_rsp(disls); 3226 3227 if (ctrl->ctrl.tagset) { 3228 nvme_fc_delete_hw_io_queues(ctrl); 3229 nvme_fc_free_io_queues(ctrl); 3230 } 3231 3232 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0); 3233 nvme_fc_free_queue(&ctrl->queues[0]); 3234 3235 /* re-enable the admin_q so anything new can fast fail */ 3236 nvme_unquiesce_admin_queue(&ctrl->ctrl); 3237 3238 /* resume the io queues so that things will fast fail */ 3239 nvme_unquiesce_io_queues(&ctrl->ctrl); 3240 3241 nvme_fc_ctlr_inactive_on_rport(ctrl); 3242 } 3243 3244 static void 3245 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl) 3246 { 3247 struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl); 3248 3249 cancel_work_sync(&ctrl->ioerr_work); 3250 cancel_delayed_work_sync(&ctrl->connect_work); 3251 /* 3252 * kill the association on the link side. this will block 3253 * waiting for io to terminate 3254 */ 3255 nvme_fc_delete_association(ctrl); 3256 } 3257 3258 static void 3259 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status) 3260 { 3261 struct nvme_fc_rport *rport = ctrl->rport; 3262 struct nvme_fc_remote_port *portptr = &rport->remoteport; 3263 unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ; 3264 bool recon = true; 3265 3266 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_CONNECTING) 3267 return; 3268 3269 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3270 dev_info(ctrl->ctrl.device, 3271 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n", 3272 ctrl->cnum, status); 3273 } else if (time_after_eq(jiffies, rport->dev_loss_end)) 3274 recon = false; 3275 3276 if (recon && nvmf_should_reconnect(&ctrl->ctrl, status)) { 3277 if (portptr->port_state == FC_OBJSTATE_ONLINE) 3278 dev_info(ctrl->ctrl.device, 3279 "NVME-FC{%d}: Reconnect attempt in %ld " 3280 "seconds\n", 3281 ctrl->cnum, recon_delay / HZ); 3282 else if (time_after(jiffies + recon_delay, rport->dev_loss_end)) 3283 recon_delay = rport->dev_loss_end - jiffies; 3284 3285 queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay); 3286 } else { 3287 if (portptr->port_state == FC_OBJSTATE_ONLINE) { 3288 if (status > 0 && (status & NVME_STATUS_DNR)) 3289 dev_warn(ctrl->ctrl.device, 3290 "NVME-FC{%d}: reconnect failure\n", 3291 ctrl->cnum); 3292 else 3293 dev_warn(ctrl->ctrl.device, 3294 "NVME-FC{%d}: Max reconnect attempts " 3295 "(%d) reached.\n", 3296 ctrl->cnum, ctrl->ctrl.nr_reconnects); 3297 } else 3298 dev_warn(ctrl->ctrl.device, 3299 "NVME-FC{%d}: dev_loss_tmo (%d) expired " 3300 "while waiting for remoteport connectivity.\n", 3301 ctrl->cnum, min_t(int, portptr->dev_loss_tmo, 3302 (ctrl->ctrl.opts->max_reconnects * 3303 ctrl->ctrl.opts->reconnect_delay))); 3304 WARN_ON(nvme_delete_ctrl(&ctrl->ctrl)); 3305 } 3306 } 3307 3308 static void 3309 nvme_fc_reset_ctrl_work(struct work_struct *work) 3310 { 3311 struct nvme_fc_ctrl *ctrl = 3312 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work); 3313 3314 nvme_stop_ctrl(&ctrl->ctrl); 3315 3316 /* will block will waiting for io to terminate */ 3317 nvme_fc_delete_association(ctrl); 3318 3319 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) 3320 dev_err(ctrl->ctrl.device, 3321 "NVME-FC{%d}: error_recovery: Couldn't change state " 3322 "to CONNECTING\n", ctrl->cnum); 3323 3324 if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) { 3325 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3326 dev_err(ctrl->ctrl.device, 3327 "NVME-FC{%d}: failed to schedule connect " 3328 "after reset\n", ctrl->cnum); 3329 } else { 3330 flush_delayed_work(&ctrl->connect_work); 3331 } 3332 } else { 3333 nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN); 3334 } 3335 } 3336 3337 3338 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = { 3339 .name = "fc", 3340 .module = THIS_MODULE, 3341 .flags = NVME_F_FABRICS, 3342 .reg_read32 = nvmf_reg_read32, 3343 .reg_read64 = nvmf_reg_read64, 3344 .reg_write32 = nvmf_reg_write32, 3345 .subsystem_reset = nvmf_subsystem_reset, 3346 .free_ctrl = nvme_fc_free_ctrl, 3347 .submit_async_event = nvme_fc_submit_async_event, 3348 .delete_ctrl = nvme_fc_delete_ctrl, 3349 .get_address = nvmf_get_address, 3350 }; 3351 3352 static void 3353 nvme_fc_connect_ctrl_work(struct work_struct *work) 3354 { 3355 int ret; 3356 3357 struct nvme_fc_ctrl *ctrl = 3358 container_of(to_delayed_work(work), 3359 struct nvme_fc_ctrl, connect_work); 3360 3361 ret = nvme_fc_create_association(ctrl); 3362 if (ret) 3363 nvme_fc_reconnect_or_delete(ctrl, ret); 3364 else 3365 dev_info(ctrl->ctrl.device, 3366 "NVME-FC{%d}: controller connect complete\n", 3367 ctrl->cnum); 3368 } 3369 3370 3371 static const struct blk_mq_ops nvme_fc_admin_mq_ops = { 3372 .queue_rq = nvme_fc_queue_rq, 3373 .complete = nvme_fc_complete_rq, 3374 .init_request = nvme_fc_init_request, 3375 .exit_request = nvme_fc_exit_request, 3376 .init_hctx = nvme_fc_init_admin_hctx, 3377 .timeout = nvme_fc_timeout, 3378 }; 3379 3380 3381 /* 3382 * Fails a controller request if it matches an existing controller 3383 * (association) with the same tuple: 3384 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN> 3385 * 3386 * The ports don't need to be compared as they are intrinsically 3387 * already matched by the port pointers supplied. 3388 */ 3389 static bool 3390 nvme_fc_existing_controller(struct nvme_fc_rport *rport, 3391 struct nvmf_ctrl_options *opts) 3392 { 3393 struct nvme_fc_ctrl *ctrl; 3394 unsigned long flags; 3395 bool found = false; 3396 3397 spin_lock_irqsave(&rport->lock, flags); 3398 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3399 found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts); 3400 if (found) 3401 break; 3402 } 3403 spin_unlock_irqrestore(&rport->lock, flags); 3404 3405 return found; 3406 } 3407 3408 static struct nvme_fc_ctrl * 3409 nvme_fc_alloc_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3410 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3411 { 3412 struct nvme_fc_ctrl *ctrl; 3413 int ret, idx, ctrl_loss_tmo; 3414 3415 if (!(rport->remoteport.port_role & 3416 (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) { 3417 ret = -EBADR; 3418 goto out_fail; 3419 } 3420 3421 if (!opts->duplicate_connect && 3422 nvme_fc_existing_controller(rport, opts)) { 3423 ret = -EALREADY; 3424 goto out_fail; 3425 } 3426 3427 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); 3428 if (!ctrl) { 3429 ret = -ENOMEM; 3430 goto out_fail; 3431 } 3432 3433 idx = ida_alloc(&nvme_fc_ctrl_cnt, GFP_KERNEL); 3434 if (idx < 0) { 3435 ret = -ENOSPC; 3436 goto out_free_ctrl; 3437 } 3438 3439 /* 3440 * if ctrl_loss_tmo is being enforced and the default reconnect delay 3441 * is being used, change to a shorter reconnect delay for FC. 3442 */ 3443 if (opts->max_reconnects != -1 && 3444 opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY && 3445 opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) { 3446 ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay; 3447 opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO; 3448 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3449 opts->reconnect_delay); 3450 } 3451 3452 ctrl->ctrl.opts = opts; 3453 ctrl->ctrl.nr_reconnects = 0; 3454 INIT_LIST_HEAD(&ctrl->ctrl_list); 3455 ctrl->lport = lport; 3456 ctrl->rport = rport; 3457 ctrl->dev = lport->dev; 3458 ctrl->cnum = idx; 3459 ctrl->ioq_live = false; 3460 init_waitqueue_head(&ctrl->ioabort_wait); 3461 3462 get_device(ctrl->dev); 3463 kref_init(&ctrl->ref); 3464 3465 INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work); 3466 INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work); 3467 INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work); 3468 spin_lock_init(&ctrl->lock); 3469 3470 /* io queue count */ 3471 ctrl->ctrl.queue_count = min_t(unsigned int, 3472 opts->nr_io_queues, 3473 lport->ops->max_hw_queues); 3474 ctrl->ctrl.queue_count++; /* +1 for admin queue */ 3475 3476 ctrl->ctrl.sqsize = opts->queue_size - 1; 3477 ctrl->ctrl.kato = opts->kato; 3478 ctrl->ctrl.cntlid = 0xffff; 3479 3480 ret = -ENOMEM; 3481 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, 3482 sizeof(struct nvme_fc_queue), GFP_KERNEL); 3483 if (!ctrl->queues) 3484 goto out_free_ida; 3485 3486 nvme_fc_init_queue(ctrl, 0); 3487 3488 /* 3489 * Would have been nice to init io queues tag set as well. 3490 * However, we require interaction from the controller 3491 * for max io queue count before we can do so. 3492 * Defer this to the connect path. 3493 */ 3494 3495 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0); 3496 if (ret) 3497 goto out_free_queues; 3498 if (lport->dev) 3499 ctrl->ctrl.numa_node = dev_to_node(lport->dev); 3500 3501 return ctrl; 3502 3503 out_free_queues: 3504 kfree(ctrl->queues); 3505 out_free_ida: 3506 put_device(ctrl->dev); 3507 ida_free(&nvme_fc_ctrl_cnt, ctrl->cnum); 3508 out_free_ctrl: 3509 kfree(ctrl); 3510 out_fail: 3511 /* exit via here doesn't follow ctlr ref points */ 3512 return ERR_PTR(ret); 3513 } 3514 3515 static struct nvme_ctrl * 3516 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts, 3517 struct nvme_fc_lport *lport, struct nvme_fc_rport *rport) 3518 { 3519 struct nvme_fc_ctrl *ctrl; 3520 unsigned long flags; 3521 int ret; 3522 3523 ctrl = nvme_fc_alloc_ctrl(dev, opts, lport, rport); 3524 if (IS_ERR(ctrl)) 3525 return ERR_CAST(ctrl); 3526 3527 ret = nvme_add_ctrl(&ctrl->ctrl); 3528 if (ret) 3529 goto out_put_ctrl; 3530 3531 ret = nvme_alloc_admin_tag_set(&ctrl->ctrl, &ctrl->admin_tag_set, 3532 &nvme_fc_admin_mq_ops, 3533 struct_size_t(struct nvme_fcp_op_w_sgl, priv, 3534 ctrl->lport->ops->fcprqst_priv_sz)); 3535 if (ret) 3536 goto fail_ctrl; 3537 3538 spin_lock_irqsave(&rport->lock, flags); 3539 list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list); 3540 spin_unlock_irqrestore(&rport->lock, flags); 3541 3542 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { 3543 dev_err(ctrl->ctrl.device, 3544 "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum); 3545 goto fail_ctrl; 3546 } 3547 3548 if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) { 3549 dev_err(ctrl->ctrl.device, 3550 "NVME-FC{%d}: failed to schedule initial connect\n", 3551 ctrl->cnum); 3552 goto fail_ctrl; 3553 } 3554 3555 flush_delayed_work(&ctrl->connect_work); 3556 3557 dev_info(ctrl->ctrl.device, 3558 "NVME-FC{%d}: new ctrl: NQN \"%s\", hostnqn: %s\n", 3559 ctrl->cnum, nvmf_ctrl_subsysnqn(&ctrl->ctrl), opts->host->nqn); 3560 3561 return &ctrl->ctrl; 3562 3563 fail_ctrl: 3564 nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING); 3565 cancel_work_sync(&ctrl->ioerr_work); 3566 cancel_work_sync(&ctrl->ctrl.reset_work); 3567 cancel_delayed_work_sync(&ctrl->connect_work); 3568 3569 ctrl->ctrl.opts = NULL; 3570 3571 /* initiate nvme ctrl ref counting teardown */ 3572 nvme_uninit_ctrl(&ctrl->ctrl); 3573 3574 out_put_ctrl: 3575 /* Remove core ctrl ref. */ 3576 nvme_put_ctrl(&ctrl->ctrl); 3577 3578 /* as we're past the point where we transition to the ref 3579 * counting teardown path, if we return a bad pointer here, 3580 * the calling routine, thinking it's prior to the 3581 * transition, will do an rport put. Since the teardown 3582 * path also does a rport put, we do an extra get here to 3583 * so proper order/teardown happens. 3584 */ 3585 nvme_fc_rport_get(rport); 3586 3587 return ERR_PTR(-EIO); 3588 } 3589 3590 struct nvmet_fc_traddr { 3591 u64 nn; 3592 u64 pn; 3593 }; 3594 3595 static int 3596 __nvme_fc_parse_u64(substring_t *sstr, u64 *val) 3597 { 3598 u64 token64; 3599 3600 if (match_u64(sstr, &token64)) 3601 return -EINVAL; 3602 *val = token64; 3603 3604 return 0; 3605 } 3606 3607 /* 3608 * This routine validates and extracts the WWN's from the TRADDR string. 3609 * As kernel parsers need the 0x to determine number base, universally 3610 * build string to parse with 0x prefix before parsing name strings. 3611 */ 3612 static int 3613 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) 3614 { 3615 char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; 3616 substring_t wwn = { name, &name[sizeof(name)-1] }; 3617 int nnoffset, pnoffset; 3618 3619 /* validate if string is one of the 2 allowed formats */ 3620 if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && 3621 !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && 3622 !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], 3623 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) { 3624 nnoffset = NVME_FC_TRADDR_OXNNLEN; 3625 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + 3626 NVME_FC_TRADDR_OXNNLEN; 3627 } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && 3628 !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && 3629 !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], 3630 "pn-", NVME_FC_TRADDR_NNLEN))) { 3631 nnoffset = NVME_FC_TRADDR_NNLEN; 3632 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; 3633 } else 3634 goto out_einval; 3635 3636 name[0] = '0'; 3637 name[1] = 'x'; 3638 name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; 3639 3640 memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3641 if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) 3642 goto out_einval; 3643 3644 memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); 3645 if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) 3646 goto out_einval; 3647 3648 return 0; 3649 3650 out_einval: 3651 pr_warn("%s: bad traddr string\n", __func__); 3652 return -EINVAL; 3653 } 3654 3655 static struct nvme_ctrl * 3656 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts) 3657 { 3658 struct nvme_fc_lport *lport; 3659 struct nvme_fc_rport *rport; 3660 struct nvme_ctrl *ctrl; 3661 struct nvmet_fc_traddr laddr = { 0L, 0L }; 3662 struct nvmet_fc_traddr raddr = { 0L, 0L }; 3663 unsigned long flags; 3664 int ret; 3665 3666 ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE); 3667 if (ret || !raddr.nn || !raddr.pn) 3668 return ERR_PTR(-EINVAL); 3669 3670 ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE); 3671 if (ret || !laddr.nn || !laddr.pn) 3672 return ERR_PTR(-EINVAL); 3673 3674 /* find the host and remote ports to connect together */ 3675 spin_lock_irqsave(&nvme_fc_lock, flags); 3676 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3677 if (lport->localport.node_name != laddr.nn || 3678 lport->localport.port_name != laddr.pn || 3679 lport->localport.port_state != FC_OBJSTATE_ONLINE) 3680 continue; 3681 3682 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3683 if (rport->remoteport.node_name != raddr.nn || 3684 rport->remoteport.port_name != raddr.pn || 3685 rport->remoteport.port_state != FC_OBJSTATE_ONLINE) 3686 continue; 3687 3688 /* if fail to get reference fall through. Will error */ 3689 if (!nvme_fc_rport_get(rport)) 3690 break; 3691 3692 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3693 3694 ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport); 3695 if (IS_ERR(ctrl)) 3696 nvme_fc_rport_put(rport); 3697 return ctrl; 3698 } 3699 } 3700 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3701 3702 pr_warn("%s: %s - %s combination not found\n", 3703 __func__, opts->traddr, opts->host_traddr); 3704 return ERR_PTR(-ENOENT); 3705 } 3706 3707 3708 static struct nvmf_transport_ops nvme_fc_transport = { 3709 .name = "fc", 3710 .module = THIS_MODULE, 3711 .required_opts = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR, 3712 .allowed_opts = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO, 3713 .create_ctrl = nvme_fc_create_ctrl, 3714 }; 3715 3716 /* Arbitrary successive failures max. With lots of subsystems could be high */ 3717 #define DISCOVERY_MAX_FAIL 20 3718 3719 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev, 3720 struct device_attribute *attr, const char *buf, size_t count) 3721 { 3722 unsigned long flags; 3723 LIST_HEAD(local_disc_list); 3724 struct nvme_fc_lport *lport; 3725 struct nvme_fc_rport *rport; 3726 int failcnt = 0; 3727 3728 spin_lock_irqsave(&nvme_fc_lock, flags); 3729 restart: 3730 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) { 3731 list_for_each_entry(rport, &lport->endp_list, endp_list) { 3732 if (!nvme_fc_lport_get(lport)) 3733 continue; 3734 if (!nvme_fc_rport_get(rport)) { 3735 /* 3736 * This is a temporary condition. Upon restart 3737 * this rport will be gone from the list. 3738 * 3739 * Revert the lport put and retry. Anything 3740 * added to the list already will be skipped (as 3741 * they are no longer list_empty). Loops should 3742 * resume at rports that were not yet seen. 3743 */ 3744 nvme_fc_lport_put(lport); 3745 3746 if (failcnt++ < DISCOVERY_MAX_FAIL) 3747 goto restart; 3748 3749 pr_err("nvme_discovery: too many reference " 3750 "failures\n"); 3751 goto process_local_list; 3752 } 3753 if (list_empty(&rport->disc_list)) 3754 list_add_tail(&rport->disc_list, 3755 &local_disc_list); 3756 } 3757 } 3758 3759 process_local_list: 3760 while (!list_empty(&local_disc_list)) { 3761 rport = list_first_entry(&local_disc_list, 3762 struct nvme_fc_rport, disc_list); 3763 list_del_init(&rport->disc_list); 3764 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3765 3766 lport = rport->lport; 3767 /* signal discovery. Won't hurt if it repeats */ 3768 nvme_fc_signal_discovery_scan(lport, rport); 3769 nvme_fc_rport_put(rport); 3770 nvme_fc_lport_put(lport); 3771 3772 spin_lock_irqsave(&nvme_fc_lock, flags); 3773 } 3774 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3775 3776 return count; 3777 } 3778 3779 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store); 3780 3781 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3782 /* Parse the cgroup id from a buf and return the length of cgrpid */ 3783 static int fc_parse_cgrpid(const char *buf, u64 *id) 3784 { 3785 char cgrp_id[16+1]; 3786 int cgrpid_len, j; 3787 3788 memset(cgrp_id, 0x0, sizeof(cgrp_id)); 3789 for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) { 3790 if (buf[cgrpid_len] != ':') 3791 cgrp_id[cgrpid_len] = buf[cgrpid_len]; 3792 else { 3793 j = 1; 3794 break; 3795 } 3796 } 3797 if (!j) 3798 return -EINVAL; 3799 if (kstrtou64(cgrp_id, 16, id) < 0) 3800 return -EINVAL; 3801 return cgrpid_len; 3802 } 3803 3804 /* 3805 * Parse and update the appid in the blkcg associated with the cgroupid. 3806 */ 3807 static ssize_t fc_appid_store(struct device *dev, 3808 struct device_attribute *attr, const char *buf, size_t count) 3809 { 3810 size_t orig_count = count; 3811 u64 cgrp_id; 3812 int appid_len = 0; 3813 int cgrpid_len = 0; 3814 char app_id[FC_APPID_LEN]; 3815 int ret = 0; 3816 3817 if (buf[count-1] == '\n') 3818 count--; 3819 3820 if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':'))) 3821 return -EINVAL; 3822 3823 cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id); 3824 if (cgrpid_len < 0) 3825 return -EINVAL; 3826 appid_len = count - cgrpid_len - 1; 3827 if (appid_len > FC_APPID_LEN) 3828 return -EINVAL; 3829 3830 memset(app_id, 0x0, sizeof(app_id)); 3831 memcpy(app_id, &buf[cgrpid_len+1], appid_len); 3832 ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id)); 3833 if (ret < 0) 3834 return ret; 3835 return orig_count; 3836 } 3837 static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store); 3838 #endif /* CONFIG_BLK_CGROUP_FC_APPID */ 3839 3840 static struct attribute *nvme_fc_attrs[] = { 3841 &dev_attr_nvme_discovery.attr, 3842 #ifdef CONFIG_BLK_CGROUP_FC_APPID 3843 &dev_attr_appid_store.attr, 3844 #endif 3845 NULL 3846 }; 3847 3848 static const struct attribute_group nvme_fc_attr_group = { 3849 .attrs = nvme_fc_attrs, 3850 }; 3851 3852 static const struct attribute_group *nvme_fc_attr_groups[] = { 3853 &nvme_fc_attr_group, 3854 NULL 3855 }; 3856 3857 static struct class fc_class = { 3858 .name = "fc", 3859 .dev_groups = nvme_fc_attr_groups, 3860 }; 3861 3862 static int __init nvme_fc_init_module(void) 3863 { 3864 int ret; 3865 3866 /* 3867 * NOTE: 3868 * It is expected that in the future the kernel will combine 3869 * the FC-isms that are currently under scsi and now being 3870 * added to by NVME into a new standalone FC class. The SCSI 3871 * and NVME protocols and their devices would be under this 3872 * new FC class. 3873 * 3874 * As we need something to post FC-specific udev events to, 3875 * specifically for nvme probe events, start by creating the 3876 * new device class. When the new standalone FC class is 3877 * put in place, this code will move to a more generic 3878 * location for the class. 3879 */ 3880 ret = class_register(&fc_class); 3881 if (ret) { 3882 pr_err("couldn't register class fc\n"); 3883 return ret; 3884 } 3885 3886 /* 3887 * Create a device for the FC-centric udev events 3888 */ 3889 fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL, 3890 "fc_udev_device"); 3891 if (IS_ERR(fc_udev_device)) { 3892 pr_err("couldn't create fc_udev device!\n"); 3893 ret = PTR_ERR(fc_udev_device); 3894 goto out_destroy_class; 3895 } 3896 3897 ret = nvmf_register_transport(&nvme_fc_transport); 3898 if (ret) 3899 goto out_destroy_device; 3900 3901 return 0; 3902 3903 out_destroy_device: 3904 device_destroy(&fc_class, MKDEV(0, 0)); 3905 out_destroy_class: 3906 class_unregister(&fc_class); 3907 3908 return ret; 3909 } 3910 3911 static void 3912 nvme_fc_delete_controllers(struct nvme_fc_rport *rport) 3913 { 3914 struct nvme_fc_ctrl *ctrl; 3915 3916 spin_lock(&rport->lock); 3917 list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) { 3918 dev_warn(ctrl->ctrl.device, 3919 "NVME-FC{%d}: transport unloading: deleting ctrl\n", 3920 ctrl->cnum); 3921 nvme_delete_ctrl(&ctrl->ctrl); 3922 } 3923 spin_unlock(&rport->lock); 3924 } 3925 3926 static void __exit nvme_fc_exit_module(void) 3927 { 3928 struct nvme_fc_lport *lport; 3929 struct nvme_fc_rport *rport; 3930 unsigned long flags; 3931 3932 spin_lock_irqsave(&nvme_fc_lock, flags); 3933 list_for_each_entry(lport, &nvme_fc_lport_list, port_list) 3934 list_for_each_entry(rport, &lport->endp_list, endp_list) 3935 nvme_fc_delete_controllers(rport); 3936 spin_unlock_irqrestore(&nvme_fc_lock, flags); 3937 flush_workqueue(nvme_delete_wq); 3938 3939 nvmf_unregister_transport(&nvme_fc_transport); 3940 3941 device_destroy(&fc_class, MKDEV(0, 0)); 3942 class_unregister(&fc_class); 3943 } 3944 3945 module_init(nvme_fc_init_module); 3946 module_exit(nvme_fc_exit_module); 3947 3948 MODULE_DESCRIPTION("NVMe host FC transport driver"); 3949 MODULE_LICENSE("GPL v2"); 3950