1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-keyring.h> 16 17 static LIST_HEAD(nvmf_transports); 18 static DECLARE_RWSEM(nvmf_transports_rwsem); 19 20 static LIST_HEAD(nvmf_hosts); 21 static DEFINE_MUTEX(nvmf_hosts_mutex); 22 23 static struct nvmf_host *nvmf_default_host; 24 25 static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id) 26 { 27 struct nvmf_host *host; 28 29 host = kmalloc(sizeof(*host), GFP_KERNEL); 30 if (!host) 31 return NULL; 32 33 kref_init(&host->ref); 34 uuid_copy(&host->id, id); 35 strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 36 37 return host; 38 } 39 40 static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id) 41 { 42 struct nvmf_host *host; 43 44 mutex_lock(&nvmf_hosts_mutex); 45 46 /* 47 * We have defined a host as how it is perceived by the target. 48 * Therefore, we don't allow different Host NQNs with the same Host ID. 49 * Similarly, we do not allow the usage of the same Host NQN with 50 * different Host IDs. This'll maintain unambiguous host identification. 51 */ 52 list_for_each_entry(host, &nvmf_hosts, list) { 53 bool same_hostnqn = !strcmp(host->nqn, hostnqn); 54 bool same_hostid = uuid_equal(&host->id, id); 55 56 if (same_hostnqn && same_hostid) { 57 kref_get(&host->ref); 58 goto out_unlock; 59 } 60 if (same_hostnqn) { 61 pr_err("found same hostnqn %s but different hostid %pUb\n", 62 hostnqn, id); 63 host = ERR_PTR(-EINVAL); 64 goto out_unlock; 65 } 66 if (same_hostid) { 67 pr_err("found same hostid %pUb but different hostnqn %s\n", 68 id, hostnqn); 69 host = ERR_PTR(-EINVAL); 70 goto out_unlock; 71 } 72 } 73 74 host = nvmf_host_alloc(hostnqn, id); 75 if (!host) { 76 host = ERR_PTR(-ENOMEM); 77 goto out_unlock; 78 } 79 80 list_add_tail(&host->list, &nvmf_hosts); 81 out_unlock: 82 mutex_unlock(&nvmf_hosts_mutex); 83 return host; 84 } 85 86 static struct nvmf_host *nvmf_host_default(void) 87 { 88 struct nvmf_host *host; 89 char nqn[NVMF_NQN_SIZE]; 90 uuid_t id; 91 92 uuid_gen(&id); 93 snprintf(nqn, NVMF_NQN_SIZE, 94 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 95 96 host = nvmf_host_alloc(nqn, &id); 97 if (!host) 98 return NULL; 99 100 mutex_lock(&nvmf_hosts_mutex); 101 list_add_tail(&host->list, &nvmf_hosts); 102 mutex_unlock(&nvmf_hosts_mutex); 103 104 return host; 105 } 106 107 static void nvmf_host_destroy(struct kref *ref) 108 { 109 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 110 111 mutex_lock(&nvmf_hosts_mutex); 112 list_del(&host->list); 113 mutex_unlock(&nvmf_hosts_mutex); 114 115 kfree(host); 116 } 117 118 static void nvmf_host_put(struct nvmf_host *host) 119 { 120 if (host) 121 kref_put(&host->ref, nvmf_host_destroy); 122 } 123 124 /** 125 * nvmf_get_address() - Get address/port 126 * @ctrl: Host NVMe controller instance which we got the address 127 * @buf: OUTPUT parameter that will contain the address/port 128 * @size: buffer size 129 */ 130 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 131 { 132 int len = 0; 133 134 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 135 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 136 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 137 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 138 (len) ? "," : "", ctrl->opts->trsvcid); 139 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 140 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 141 (len) ? "," : "", ctrl->opts->host_traddr); 142 if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE) 143 len += scnprintf(buf + len, size - len, "%shost_iface=%s", 144 (len) ? "," : "", ctrl->opts->host_iface); 145 len += scnprintf(buf + len, size - len, "\n"); 146 147 return len; 148 } 149 EXPORT_SYMBOL_GPL(nvmf_get_address); 150 151 /** 152 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 153 * @ctrl: Host NVMe controller instance maintaining the admin 154 * queue used to submit the property read command to 155 * the allocated NVMe controller resource on the target system. 156 * @off: Starting offset value of the targeted property 157 * register (see the fabrics section of the NVMe standard). 158 * @val: OUTPUT parameter that will contain the value of 159 * the property after a successful read. 160 * 161 * Used by the host system to retrieve a 32-bit capsule property value 162 * from an NVMe controller on the target system. 163 * 164 * ("Capsule property" is an "PCIe register concept" applied to the 165 * NVMe fabrics space.) 166 * 167 * Return: 168 * 0: successful read 169 * > 0: NVMe error status code 170 * < 0: Linux errno error code 171 */ 172 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 173 { 174 struct nvme_command cmd = { }; 175 union nvme_result res; 176 int ret; 177 178 cmd.prop_get.opcode = nvme_fabrics_command; 179 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 180 cmd.prop_get.offset = cpu_to_le32(off); 181 182 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 183 NVME_QID_ANY, 0); 184 185 if (ret >= 0) 186 *val = le64_to_cpu(res.u64); 187 if (unlikely(ret != 0)) 188 dev_err(ctrl->device, 189 "Property Get error: %d, offset %#x\n", 190 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 191 192 return ret; 193 } 194 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 195 196 /** 197 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 198 * @ctrl: Host NVMe controller instance maintaining the admin 199 * queue used to submit the property read command to 200 * the allocated controller resource on the target system. 201 * @off: Starting offset value of the targeted property 202 * register (see the fabrics section of the NVMe standard). 203 * @val: OUTPUT parameter that will contain the value of 204 * the property after a successful read. 205 * 206 * Used by the host system to retrieve a 64-bit capsule property value 207 * from an NVMe controller on the target system. 208 * 209 * ("Capsule property" is an "PCIe register concept" applied to the 210 * NVMe fabrics space.) 211 * 212 * Return: 213 * 0: successful read 214 * > 0: NVMe error status code 215 * < 0: Linux errno error code 216 */ 217 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 218 { 219 struct nvme_command cmd = { }; 220 union nvme_result res; 221 int ret; 222 223 cmd.prop_get.opcode = nvme_fabrics_command; 224 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 225 cmd.prop_get.attrib = 1; 226 cmd.prop_get.offset = cpu_to_le32(off); 227 228 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 229 NVME_QID_ANY, 0); 230 231 if (ret >= 0) 232 *val = le64_to_cpu(res.u64); 233 if (unlikely(ret != 0)) 234 dev_err(ctrl->device, 235 "Property Get error: %d, offset %#x\n", 236 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 237 return ret; 238 } 239 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 240 241 /** 242 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 243 * @ctrl: Host NVMe controller instance maintaining the admin 244 * queue used to submit the property read command to 245 * the allocated NVMe controller resource on the target system. 246 * @off: Starting offset value of the targeted property 247 * register (see the fabrics section of the NVMe standard). 248 * @val: Input parameter that contains the value to be 249 * written to the property. 250 * 251 * Used by the NVMe host system to write a 32-bit capsule property value 252 * to an NVMe controller on the target system. 253 * 254 * ("Capsule property" is an "PCIe register concept" applied to the 255 * NVMe fabrics space.) 256 * 257 * Return: 258 * 0: successful write 259 * > 0: NVMe error status code 260 * < 0: Linux errno error code 261 */ 262 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 263 { 264 struct nvme_command cmd = { }; 265 int ret; 266 267 cmd.prop_set.opcode = nvme_fabrics_command; 268 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 269 cmd.prop_set.attrib = 0; 270 cmd.prop_set.offset = cpu_to_le32(off); 271 cmd.prop_set.value = cpu_to_le64(val); 272 273 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 274 NVME_QID_ANY, 0); 275 if (unlikely(ret)) 276 dev_err(ctrl->device, 277 "Property Set error: %d, offset %#x\n", 278 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 279 return ret; 280 } 281 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 282 283 /** 284 * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for 285 * connect() errors. 286 * @ctrl: The specific /dev/nvmeX device that had the error. 287 * @errval: Error code to be decoded in a more human-friendly 288 * printout. 289 * @offset: For use with the NVMe error code 290 * NVME_SC_CONNECT_INVALID_PARAM. 291 * @cmd: This is the SQE portion of a submission capsule. 292 * @data: This is the "Data" portion of a submission capsule. 293 */ 294 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 295 int errval, int offset, struct nvme_command *cmd, 296 struct nvmf_connect_data *data) 297 { 298 int err_sctype = errval & ~NVME_SC_DNR; 299 300 if (errval < 0) { 301 dev_err(ctrl->device, 302 "Connect command failed, errno: %d\n", errval); 303 return; 304 } 305 306 switch (err_sctype) { 307 case NVME_SC_CONNECT_INVALID_PARAM: 308 if (offset >> 16) { 309 char *inv_data = "Connect Invalid Data Parameter"; 310 311 switch (offset & 0xffff) { 312 case (offsetof(struct nvmf_connect_data, cntlid)): 313 dev_err(ctrl->device, 314 "%s, cntlid: %d\n", 315 inv_data, data->cntlid); 316 break; 317 case (offsetof(struct nvmf_connect_data, hostnqn)): 318 dev_err(ctrl->device, 319 "%s, hostnqn \"%s\"\n", 320 inv_data, data->hostnqn); 321 break; 322 case (offsetof(struct nvmf_connect_data, subsysnqn)): 323 dev_err(ctrl->device, 324 "%s, subsysnqn \"%s\"\n", 325 inv_data, data->subsysnqn); 326 break; 327 default: 328 dev_err(ctrl->device, 329 "%s, starting byte offset: %d\n", 330 inv_data, offset & 0xffff); 331 break; 332 } 333 } else { 334 char *inv_sqe = "Connect Invalid SQE Parameter"; 335 336 switch (offset) { 337 case (offsetof(struct nvmf_connect_command, qid)): 338 dev_err(ctrl->device, 339 "%s, qid %d\n", 340 inv_sqe, cmd->connect.qid); 341 break; 342 default: 343 dev_err(ctrl->device, 344 "%s, starting byte offset: %d\n", 345 inv_sqe, offset); 346 } 347 } 348 break; 349 case NVME_SC_CONNECT_INVALID_HOST: 350 dev_err(ctrl->device, 351 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 352 data->subsysnqn, data->hostnqn); 353 break; 354 case NVME_SC_CONNECT_CTRL_BUSY: 355 dev_err(ctrl->device, 356 "Connect command failed: controller is busy or not available\n"); 357 break; 358 case NVME_SC_CONNECT_FORMAT: 359 dev_err(ctrl->device, 360 "Connect incompatible format: %d", 361 cmd->connect.recfmt); 362 break; 363 case NVME_SC_HOST_PATH_ERROR: 364 dev_err(ctrl->device, 365 "Connect command failed: host path error\n"); 366 break; 367 case NVME_SC_AUTH_REQUIRED: 368 dev_err(ctrl->device, 369 "Connect command failed: authentication required\n"); 370 break; 371 default: 372 dev_err(ctrl->device, 373 "Connect command failed, error wo/DNR bit: %d\n", 374 err_sctype); 375 break; 376 } 377 } 378 379 static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl, 380 u16 cntlid) 381 { 382 struct nvmf_connect_data *data; 383 384 data = kzalloc(sizeof(*data), GFP_KERNEL); 385 if (!data) 386 return NULL; 387 388 uuid_copy(&data->hostid, &ctrl->opts->host->id); 389 data->cntlid = cpu_to_le16(cntlid); 390 strscpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 391 strscpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 392 393 return data; 394 } 395 396 static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid, 397 struct nvme_command *cmd) 398 { 399 cmd->connect.opcode = nvme_fabrics_command; 400 cmd->connect.fctype = nvme_fabrics_type_connect; 401 cmd->connect.qid = cpu_to_le16(qid); 402 403 if (qid) { 404 cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize); 405 } else { 406 cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 407 408 /* 409 * set keep-alive timeout in seconds granularity (ms * 1000) 410 */ 411 cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000); 412 } 413 414 if (ctrl->opts->disable_sqflow) 415 cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 416 } 417 418 /** 419 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 420 * API function. 421 * @ctrl: Host nvme controller instance used to request 422 * a new NVMe controller allocation on the target 423 * system and establish an NVMe Admin connection to 424 * that controller. 425 * 426 * This function enables an NVMe host device to request a new allocation of 427 * an NVMe controller resource on a target system as well establish a 428 * fabrics-protocol connection of the NVMe Admin queue between the 429 * host system device and the allocated NVMe controller on the 430 * target system via a NVMe Fabrics "Connect" command. 431 * 432 * Return: 433 * 0: success 434 * > 0: NVMe error status code 435 * < 0: Linux errno error code 436 * 437 */ 438 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 439 { 440 struct nvme_command cmd = { }; 441 union nvme_result res; 442 struct nvmf_connect_data *data; 443 int ret; 444 u32 result; 445 446 nvmf_connect_cmd_prep(ctrl, 0, &cmd); 447 448 data = nvmf_connect_data_prep(ctrl, 0xffff); 449 if (!data) 450 return -ENOMEM; 451 452 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 453 data, sizeof(*data), NVME_QID_ANY, 454 NVME_SUBMIT_AT_HEAD | 455 NVME_SUBMIT_NOWAIT | 456 NVME_SUBMIT_RESERVED); 457 if (ret) { 458 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 459 &cmd, data); 460 goto out_free_data; 461 } 462 463 result = le32_to_cpu(res.u32); 464 ctrl->cntlid = result & 0xFFFF; 465 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 466 /* Secure concatenation is not implemented */ 467 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 468 dev_warn(ctrl->device, 469 "qid 0: secure concatenation is not supported\n"); 470 ret = NVME_SC_AUTH_REQUIRED; 471 goto out_free_data; 472 } 473 /* Authentication required */ 474 ret = nvme_auth_negotiate(ctrl, 0); 475 if (ret) { 476 dev_warn(ctrl->device, 477 "qid 0: authentication setup failed\n"); 478 ret = NVME_SC_AUTH_REQUIRED; 479 goto out_free_data; 480 } 481 ret = nvme_auth_wait(ctrl, 0); 482 if (ret) 483 dev_warn(ctrl->device, 484 "qid 0: authentication failed\n"); 485 else 486 dev_info(ctrl->device, 487 "qid 0: authenticated\n"); 488 } 489 out_free_data: 490 kfree(data); 491 return ret; 492 } 493 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 494 495 /** 496 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 497 * API function. 498 * @ctrl: Host nvme controller instance used to establish an 499 * NVMe I/O queue connection to the already allocated NVMe 500 * controller on the target system. 501 * @qid: NVMe I/O queue number for the new I/O connection between 502 * host and target (note qid == 0 is illegal as this is 503 * the Admin queue, per NVMe standard). 504 * 505 * This function issues a fabrics-protocol connection 506 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 507 * between the host system device and the allocated NVMe controller 508 * on the target system. 509 * 510 * Return: 511 * 0: success 512 * > 0: NVMe error status code 513 * < 0: Linux errno error code 514 */ 515 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) 516 { 517 struct nvme_command cmd = { }; 518 struct nvmf_connect_data *data; 519 union nvme_result res; 520 int ret; 521 u32 result; 522 523 nvmf_connect_cmd_prep(ctrl, qid, &cmd); 524 525 data = nvmf_connect_data_prep(ctrl, ctrl->cntlid); 526 if (!data) 527 return -ENOMEM; 528 529 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 530 data, sizeof(*data), qid, 531 NVME_SUBMIT_AT_HEAD | 532 NVME_SUBMIT_RESERVED | 533 NVME_SUBMIT_NOWAIT); 534 if (ret) { 535 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 536 &cmd, data); 537 } 538 result = le32_to_cpu(res.u32); 539 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 540 /* Secure concatenation is not implemented */ 541 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 542 dev_warn(ctrl->device, 543 "qid 0: secure concatenation is not supported\n"); 544 ret = NVME_SC_AUTH_REQUIRED; 545 goto out_free_data; 546 } 547 /* Authentication required */ 548 ret = nvme_auth_negotiate(ctrl, qid); 549 if (ret) { 550 dev_warn(ctrl->device, 551 "qid %d: authentication setup failed\n", qid); 552 ret = NVME_SC_AUTH_REQUIRED; 553 } else { 554 ret = nvme_auth_wait(ctrl, qid); 555 if (ret) 556 dev_warn(ctrl->device, 557 "qid %u: authentication failed\n", qid); 558 } 559 } 560 out_free_data: 561 kfree(data); 562 return ret; 563 } 564 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 565 566 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 567 { 568 if (ctrl->opts->max_reconnects == -1 || 569 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 570 return true; 571 572 return false; 573 } 574 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 575 576 /** 577 * nvmf_register_transport() - NVMe Fabrics Library registration function. 578 * @ops: Transport ops instance to be registered to the 579 * common fabrics library. 580 * 581 * API function that registers the type of specific transport fabric 582 * being implemented to the common NVMe fabrics library. Part of 583 * the overall init sequence of starting up a fabrics driver. 584 */ 585 int nvmf_register_transport(struct nvmf_transport_ops *ops) 586 { 587 if (!ops->create_ctrl) 588 return -EINVAL; 589 590 down_write(&nvmf_transports_rwsem); 591 list_add_tail(&ops->entry, &nvmf_transports); 592 up_write(&nvmf_transports_rwsem); 593 594 return 0; 595 } 596 EXPORT_SYMBOL_GPL(nvmf_register_transport); 597 598 /** 599 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 600 * @ops: Transport ops instance to be unregistered from the 601 * common fabrics library. 602 * 603 * Fabrics API function that unregisters the type of specific transport 604 * fabric being implemented from the common NVMe fabrics library. 605 * Part of the overall exit sequence of unloading the implemented driver. 606 */ 607 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 608 { 609 down_write(&nvmf_transports_rwsem); 610 list_del(&ops->entry); 611 up_write(&nvmf_transports_rwsem); 612 } 613 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 614 615 static struct nvmf_transport_ops *nvmf_lookup_transport( 616 struct nvmf_ctrl_options *opts) 617 { 618 struct nvmf_transport_ops *ops; 619 620 lockdep_assert_held(&nvmf_transports_rwsem); 621 622 list_for_each_entry(ops, &nvmf_transports, entry) { 623 if (strcmp(ops->name, opts->transport) == 0) 624 return ops; 625 } 626 627 return NULL; 628 } 629 630 static struct key *nvmf_parse_key(int key_id) 631 { 632 struct key *key; 633 634 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 635 pr_err("TLS is not supported\n"); 636 return ERR_PTR(-EINVAL); 637 } 638 639 key = key_lookup(key_id); 640 if (!IS_ERR(key)) 641 pr_err("key id %08x not found\n", key_id); 642 else 643 pr_debug("Using key id %08x\n", key_id); 644 return key; 645 } 646 647 static const match_table_t opt_tokens = { 648 { NVMF_OPT_TRANSPORT, "transport=%s" }, 649 { NVMF_OPT_TRADDR, "traddr=%s" }, 650 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 651 { NVMF_OPT_NQN, "nqn=%s" }, 652 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 653 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 654 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 655 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 656 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 657 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 658 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 659 { NVMF_OPT_HOST_IFACE, "host_iface=%s" }, 660 { NVMF_OPT_HOST_ID, "hostid=%s" }, 661 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 662 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 663 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 664 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 665 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 666 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 667 { NVMF_OPT_TOS, "tos=%d" }, 668 #ifdef CONFIG_NVME_TCP_TLS 669 { NVMF_OPT_KEYRING, "keyring=%d" }, 670 { NVMF_OPT_TLS_KEY, "tls_key=%d" }, 671 #endif 672 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 673 { NVMF_OPT_DISCOVERY, "discovery" }, 674 #ifdef CONFIG_NVME_HOST_AUTH 675 { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" }, 676 { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" }, 677 #endif 678 #ifdef CONFIG_NVME_TCP_TLS 679 { NVMF_OPT_TLS, "tls" }, 680 #endif 681 { NVMF_OPT_ERR, NULL } 682 }; 683 684 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 685 const char *buf) 686 { 687 substring_t args[MAX_OPT_ARGS]; 688 char *options, *o, *p; 689 int token, ret = 0; 690 size_t nqnlen = 0; 691 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO, key_id; 692 uuid_t hostid; 693 char hostnqn[NVMF_NQN_SIZE]; 694 struct key *key; 695 696 /* Set defaults */ 697 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 698 opts->nr_io_queues = num_online_cpus(); 699 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 700 opts->kato = 0; 701 opts->duplicate_connect = false; 702 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 703 opts->hdr_digest = false; 704 opts->data_digest = false; 705 opts->tos = -1; /* < 0 == use transport default */ 706 opts->tls = false; 707 opts->tls_key = NULL; 708 opts->keyring = NULL; 709 710 options = o = kstrdup(buf, GFP_KERNEL); 711 if (!options) 712 return -ENOMEM; 713 714 /* use default host if not given by user space */ 715 uuid_copy(&hostid, &nvmf_default_host->id); 716 strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE); 717 718 while ((p = strsep(&o, ",\n")) != NULL) { 719 if (!*p) 720 continue; 721 722 token = match_token(p, opt_tokens, args); 723 opts->mask |= token; 724 switch (token) { 725 case NVMF_OPT_TRANSPORT: 726 p = match_strdup(args); 727 if (!p) { 728 ret = -ENOMEM; 729 goto out; 730 } 731 kfree(opts->transport); 732 opts->transport = p; 733 break; 734 case NVMF_OPT_NQN: 735 p = match_strdup(args); 736 if (!p) { 737 ret = -ENOMEM; 738 goto out; 739 } 740 kfree(opts->subsysnqn); 741 opts->subsysnqn = p; 742 nqnlen = strlen(opts->subsysnqn); 743 if (nqnlen >= NVMF_NQN_SIZE) { 744 pr_err("%s needs to be < %d bytes\n", 745 opts->subsysnqn, NVMF_NQN_SIZE); 746 ret = -EINVAL; 747 goto out; 748 } 749 opts->discovery_nqn = 750 !(strcmp(opts->subsysnqn, 751 NVME_DISC_SUBSYS_NAME)); 752 break; 753 case NVMF_OPT_TRADDR: 754 p = match_strdup(args); 755 if (!p) { 756 ret = -ENOMEM; 757 goto out; 758 } 759 kfree(opts->traddr); 760 opts->traddr = p; 761 break; 762 case NVMF_OPT_TRSVCID: 763 p = match_strdup(args); 764 if (!p) { 765 ret = -ENOMEM; 766 goto out; 767 } 768 kfree(opts->trsvcid); 769 opts->trsvcid = p; 770 break; 771 case NVMF_OPT_QUEUE_SIZE: 772 if (match_int(args, &token)) { 773 ret = -EINVAL; 774 goto out; 775 } 776 if (token < NVMF_MIN_QUEUE_SIZE || 777 token > NVMF_MAX_QUEUE_SIZE) { 778 pr_err("Invalid queue_size %d\n", token); 779 ret = -EINVAL; 780 goto out; 781 } 782 opts->queue_size = token; 783 break; 784 case NVMF_OPT_NR_IO_QUEUES: 785 if (match_int(args, &token)) { 786 ret = -EINVAL; 787 goto out; 788 } 789 if (token <= 0) { 790 pr_err("Invalid number of IOQs %d\n", token); 791 ret = -EINVAL; 792 goto out; 793 } 794 if (opts->discovery_nqn) { 795 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 796 break; 797 } 798 799 opts->nr_io_queues = min_t(unsigned int, 800 num_online_cpus(), token); 801 break; 802 case NVMF_OPT_KATO: 803 if (match_int(args, &token)) { 804 ret = -EINVAL; 805 goto out; 806 } 807 808 if (token < 0) { 809 pr_err("Invalid keep_alive_tmo %d\n", token); 810 ret = -EINVAL; 811 goto out; 812 } else if (token == 0 && !opts->discovery_nqn) { 813 /* Allowed for debug */ 814 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 815 } 816 opts->kato = token; 817 break; 818 case NVMF_OPT_CTRL_LOSS_TMO: 819 if (match_int(args, &token)) { 820 ret = -EINVAL; 821 goto out; 822 } 823 824 if (token < 0) 825 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 826 ctrl_loss_tmo = token; 827 break; 828 case NVMF_OPT_FAIL_FAST_TMO: 829 if (match_int(args, &token)) { 830 ret = -EINVAL; 831 goto out; 832 } 833 834 if (token >= 0) 835 pr_warn("I/O fail on reconnect controller after %d sec\n", 836 token); 837 else 838 token = -1; 839 840 opts->fast_io_fail_tmo = token; 841 break; 842 case NVMF_OPT_HOSTNQN: 843 if (opts->host) { 844 pr_err("hostnqn already user-assigned: %s\n", 845 opts->host->nqn); 846 ret = -EADDRINUSE; 847 goto out; 848 } 849 p = match_strdup(args); 850 if (!p) { 851 ret = -ENOMEM; 852 goto out; 853 } 854 nqnlen = strlen(p); 855 if (nqnlen >= NVMF_NQN_SIZE) { 856 pr_err("%s needs to be < %d bytes\n", 857 p, NVMF_NQN_SIZE); 858 kfree(p); 859 ret = -EINVAL; 860 goto out; 861 } 862 strscpy(hostnqn, p, NVMF_NQN_SIZE); 863 kfree(p); 864 break; 865 case NVMF_OPT_RECONNECT_DELAY: 866 if (match_int(args, &token)) { 867 ret = -EINVAL; 868 goto out; 869 } 870 if (token <= 0) { 871 pr_err("Invalid reconnect_delay %d\n", token); 872 ret = -EINVAL; 873 goto out; 874 } 875 opts->reconnect_delay = token; 876 break; 877 case NVMF_OPT_HOST_TRADDR: 878 p = match_strdup(args); 879 if (!p) { 880 ret = -ENOMEM; 881 goto out; 882 } 883 kfree(opts->host_traddr); 884 opts->host_traddr = p; 885 break; 886 case NVMF_OPT_HOST_IFACE: 887 p = match_strdup(args); 888 if (!p) { 889 ret = -ENOMEM; 890 goto out; 891 } 892 kfree(opts->host_iface); 893 opts->host_iface = p; 894 break; 895 case NVMF_OPT_HOST_ID: 896 p = match_strdup(args); 897 if (!p) { 898 ret = -ENOMEM; 899 goto out; 900 } 901 ret = uuid_parse(p, &hostid); 902 if (ret) { 903 pr_err("Invalid hostid %s\n", p); 904 ret = -EINVAL; 905 kfree(p); 906 goto out; 907 } 908 kfree(p); 909 break; 910 case NVMF_OPT_DUP_CONNECT: 911 opts->duplicate_connect = true; 912 break; 913 case NVMF_OPT_DISABLE_SQFLOW: 914 opts->disable_sqflow = true; 915 break; 916 case NVMF_OPT_HDR_DIGEST: 917 opts->hdr_digest = true; 918 break; 919 case NVMF_OPT_DATA_DIGEST: 920 opts->data_digest = true; 921 break; 922 case NVMF_OPT_NR_WRITE_QUEUES: 923 if (match_int(args, &token)) { 924 ret = -EINVAL; 925 goto out; 926 } 927 if (token <= 0) { 928 pr_err("Invalid nr_write_queues %d\n", token); 929 ret = -EINVAL; 930 goto out; 931 } 932 opts->nr_write_queues = token; 933 break; 934 case NVMF_OPT_NR_POLL_QUEUES: 935 if (match_int(args, &token)) { 936 ret = -EINVAL; 937 goto out; 938 } 939 if (token <= 0) { 940 pr_err("Invalid nr_poll_queues %d\n", token); 941 ret = -EINVAL; 942 goto out; 943 } 944 opts->nr_poll_queues = token; 945 break; 946 case NVMF_OPT_TOS: 947 if (match_int(args, &token)) { 948 ret = -EINVAL; 949 goto out; 950 } 951 if (token < 0) { 952 pr_err("Invalid type of service %d\n", token); 953 ret = -EINVAL; 954 goto out; 955 } 956 if (token > 255) { 957 pr_warn("Clamping type of service to 255\n"); 958 token = 255; 959 } 960 opts->tos = token; 961 break; 962 case NVMF_OPT_KEYRING: 963 if (match_int(args, &key_id) || key_id <= 0) { 964 ret = -EINVAL; 965 goto out; 966 } 967 key = nvmf_parse_key(key_id); 968 if (IS_ERR(key)) { 969 ret = PTR_ERR(key); 970 goto out; 971 } 972 key_put(opts->keyring); 973 opts->keyring = key; 974 break; 975 case NVMF_OPT_TLS_KEY: 976 if (match_int(args, &key_id) || key_id <= 0) { 977 ret = -EINVAL; 978 goto out; 979 } 980 key = nvmf_parse_key(key_id); 981 if (IS_ERR(key)) { 982 ret = PTR_ERR(key); 983 goto out; 984 } 985 key_put(opts->tls_key); 986 opts->tls_key = key; 987 break; 988 case NVMF_OPT_DISCOVERY: 989 opts->discovery_nqn = true; 990 break; 991 case NVMF_OPT_DHCHAP_SECRET: 992 p = match_strdup(args); 993 if (!p) { 994 ret = -ENOMEM; 995 goto out; 996 } 997 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 998 pr_err("Invalid DH-CHAP secret %s\n", p); 999 ret = -EINVAL; 1000 goto out; 1001 } 1002 kfree(opts->dhchap_secret); 1003 opts->dhchap_secret = p; 1004 break; 1005 case NVMF_OPT_DHCHAP_CTRL_SECRET: 1006 p = match_strdup(args); 1007 if (!p) { 1008 ret = -ENOMEM; 1009 goto out; 1010 } 1011 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 1012 pr_err("Invalid DH-CHAP secret %s\n", p); 1013 ret = -EINVAL; 1014 goto out; 1015 } 1016 kfree(opts->dhchap_ctrl_secret); 1017 opts->dhchap_ctrl_secret = p; 1018 break; 1019 case NVMF_OPT_TLS: 1020 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 1021 pr_err("TLS is not supported\n"); 1022 ret = -EINVAL; 1023 goto out; 1024 } 1025 opts->tls = true; 1026 break; 1027 default: 1028 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 1029 p); 1030 ret = -EINVAL; 1031 goto out; 1032 } 1033 } 1034 1035 if (opts->discovery_nqn) { 1036 opts->nr_io_queues = 0; 1037 opts->nr_write_queues = 0; 1038 opts->nr_poll_queues = 0; 1039 opts->duplicate_connect = true; 1040 } else { 1041 if (!opts->kato) 1042 opts->kato = NVME_DEFAULT_KATO; 1043 } 1044 if (ctrl_loss_tmo < 0) { 1045 opts->max_reconnects = -1; 1046 } else { 1047 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 1048 opts->reconnect_delay); 1049 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 1050 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 1051 opts->fast_io_fail_tmo, ctrl_loss_tmo); 1052 } 1053 1054 opts->host = nvmf_host_add(hostnqn, &hostid); 1055 if (IS_ERR(opts->host)) { 1056 ret = PTR_ERR(opts->host); 1057 opts->host = NULL; 1058 goto out; 1059 } 1060 1061 out: 1062 kfree(options); 1063 return ret; 1064 } 1065 1066 void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, 1067 u32 io_queues[HCTX_MAX_TYPES]) 1068 { 1069 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1070 /* 1071 * separate read/write queues 1072 * hand out dedicated default queues only after we have 1073 * sufficient read queues. 1074 */ 1075 io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1076 nr_io_queues -= io_queues[HCTX_TYPE_READ]; 1077 io_queues[HCTX_TYPE_DEFAULT] = 1078 min(opts->nr_write_queues, nr_io_queues); 1079 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1080 } else { 1081 /* 1082 * shared read/write queues 1083 * either no write queues were requested, or we don't have 1084 * sufficient queue count to have dedicated default queues. 1085 */ 1086 io_queues[HCTX_TYPE_DEFAULT] = 1087 min(opts->nr_io_queues, nr_io_queues); 1088 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1089 } 1090 1091 if (opts->nr_poll_queues && nr_io_queues) { 1092 /* map dedicated poll queues only if we have queues left */ 1093 io_queues[HCTX_TYPE_POLL] = 1094 min(opts->nr_poll_queues, nr_io_queues); 1095 } 1096 } 1097 EXPORT_SYMBOL_GPL(nvmf_set_io_queues); 1098 1099 void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, 1100 u32 io_queues[HCTX_MAX_TYPES]) 1101 { 1102 struct nvmf_ctrl_options *opts = ctrl->opts; 1103 1104 if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) { 1105 /* separate read/write queues */ 1106 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1107 io_queues[HCTX_TYPE_DEFAULT]; 1108 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1109 set->map[HCTX_TYPE_READ].nr_queues = 1110 io_queues[HCTX_TYPE_READ]; 1111 set->map[HCTX_TYPE_READ].queue_offset = 1112 io_queues[HCTX_TYPE_DEFAULT]; 1113 } else { 1114 /* shared read/write queues */ 1115 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1116 io_queues[HCTX_TYPE_DEFAULT]; 1117 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1118 set->map[HCTX_TYPE_READ].nr_queues = 1119 io_queues[HCTX_TYPE_DEFAULT]; 1120 set->map[HCTX_TYPE_READ].queue_offset = 0; 1121 } 1122 1123 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1124 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 1125 if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) { 1126 /* map dedicated poll queues only if we have queues left */ 1127 set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL]; 1128 set->map[HCTX_TYPE_POLL].queue_offset = 1129 io_queues[HCTX_TYPE_DEFAULT] + 1130 io_queues[HCTX_TYPE_READ]; 1131 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1132 } 1133 1134 dev_info(ctrl->device, 1135 "mapped %d/%d/%d default/read/poll queues.\n", 1136 io_queues[HCTX_TYPE_DEFAULT], 1137 io_queues[HCTX_TYPE_READ], 1138 io_queues[HCTX_TYPE_POLL]); 1139 } 1140 EXPORT_SYMBOL_GPL(nvmf_map_queues); 1141 1142 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 1143 unsigned int required_opts) 1144 { 1145 if ((opts->mask & required_opts) != required_opts) { 1146 unsigned int i; 1147 1148 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1149 if ((opt_tokens[i].token & required_opts) && 1150 !(opt_tokens[i].token & opts->mask)) { 1151 pr_warn("missing parameter '%s'\n", 1152 opt_tokens[i].pattern); 1153 } 1154 } 1155 1156 return -EINVAL; 1157 } 1158 1159 return 0; 1160 } 1161 1162 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 1163 struct nvmf_ctrl_options *opts) 1164 { 1165 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 1166 strcmp(opts->traddr, ctrl->opts->traddr) || 1167 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 1168 return false; 1169 1170 /* 1171 * Checking the local address or host interfaces is rough. 1172 * 1173 * In most cases, none is specified and the host port or 1174 * host interface is selected by the stack. 1175 * 1176 * Assume no match if: 1177 * - local address or host interface is specified and address 1178 * or host interface is not the same 1179 * - local address or host interface is not specified but 1180 * remote is, or vice versa (admin using specific 1181 * host_traddr/host_iface when it matters). 1182 */ 1183 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 1184 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1185 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 1186 return false; 1187 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 1188 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1189 return false; 1190 } 1191 1192 if ((opts->mask & NVMF_OPT_HOST_IFACE) && 1193 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1194 if (strcmp(opts->host_iface, ctrl->opts->host_iface)) 1195 return false; 1196 } else if ((opts->mask & NVMF_OPT_HOST_IFACE) || 1197 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1198 return false; 1199 } 1200 1201 return true; 1202 } 1203 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 1204 1205 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 1206 unsigned int allowed_opts) 1207 { 1208 if (opts->mask & ~allowed_opts) { 1209 unsigned int i; 1210 1211 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1212 if ((opt_tokens[i].token & opts->mask) && 1213 (opt_tokens[i].token & ~allowed_opts)) { 1214 pr_warn("invalid parameter '%s'\n", 1215 opt_tokens[i].pattern); 1216 } 1217 } 1218 1219 return -EINVAL; 1220 } 1221 1222 return 0; 1223 } 1224 1225 void nvmf_free_options(struct nvmf_ctrl_options *opts) 1226 { 1227 nvmf_host_put(opts->host); 1228 key_put(opts->keyring); 1229 key_put(opts->tls_key); 1230 kfree(opts->transport); 1231 kfree(opts->traddr); 1232 kfree(opts->trsvcid); 1233 kfree(opts->subsysnqn); 1234 kfree(opts->host_traddr); 1235 kfree(opts->host_iface); 1236 kfree(opts->dhchap_secret); 1237 kfree(opts->dhchap_ctrl_secret); 1238 kfree(opts); 1239 } 1240 EXPORT_SYMBOL_GPL(nvmf_free_options); 1241 1242 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 1243 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 1244 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 1245 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 1246 NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\ 1247 NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\ 1248 NVMF_OPT_DHCHAP_CTRL_SECRET) 1249 1250 static struct nvme_ctrl * 1251 nvmf_create_ctrl(struct device *dev, const char *buf) 1252 { 1253 struct nvmf_ctrl_options *opts; 1254 struct nvmf_transport_ops *ops; 1255 struct nvme_ctrl *ctrl; 1256 int ret; 1257 1258 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1259 if (!opts) 1260 return ERR_PTR(-ENOMEM); 1261 1262 ret = nvmf_parse_options(opts, buf); 1263 if (ret) 1264 goto out_free_opts; 1265 1266 1267 request_module("nvme-%s", opts->transport); 1268 1269 /* 1270 * Check the generic options first as we need a valid transport for 1271 * the lookup below. Then clear the generic flags so that transport 1272 * drivers don't have to care about them. 1273 */ 1274 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 1275 if (ret) 1276 goto out_free_opts; 1277 opts->mask &= ~NVMF_REQUIRED_OPTS; 1278 1279 down_read(&nvmf_transports_rwsem); 1280 ops = nvmf_lookup_transport(opts); 1281 if (!ops) { 1282 pr_info("no handler found for transport %s.\n", 1283 opts->transport); 1284 ret = -EINVAL; 1285 goto out_unlock; 1286 } 1287 1288 if (!try_module_get(ops->module)) { 1289 ret = -EBUSY; 1290 goto out_unlock; 1291 } 1292 up_read(&nvmf_transports_rwsem); 1293 1294 ret = nvmf_check_required_opts(opts, ops->required_opts); 1295 if (ret) 1296 goto out_module_put; 1297 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1298 ops->allowed_opts | ops->required_opts); 1299 if (ret) 1300 goto out_module_put; 1301 1302 ctrl = ops->create_ctrl(dev, opts); 1303 if (IS_ERR(ctrl)) { 1304 ret = PTR_ERR(ctrl); 1305 goto out_module_put; 1306 } 1307 1308 module_put(ops->module); 1309 return ctrl; 1310 1311 out_module_put: 1312 module_put(ops->module); 1313 goto out_free_opts; 1314 out_unlock: 1315 up_read(&nvmf_transports_rwsem); 1316 out_free_opts: 1317 nvmf_free_options(opts); 1318 return ERR_PTR(ret); 1319 } 1320 1321 static struct class *nvmf_class; 1322 static struct device *nvmf_device; 1323 static DEFINE_MUTEX(nvmf_dev_mutex); 1324 1325 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1326 size_t count, loff_t *pos) 1327 { 1328 struct seq_file *seq_file = file->private_data; 1329 struct nvme_ctrl *ctrl; 1330 const char *buf; 1331 int ret = 0; 1332 1333 if (count > PAGE_SIZE) 1334 return -ENOMEM; 1335 1336 buf = memdup_user_nul(ubuf, count); 1337 if (IS_ERR(buf)) 1338 return PTR_ERR(buf); 1339 1340 mutex_lock(&nvmf_dev_mutex); 1341 if (seq_file->private) { 1342 ret = -EINVAL; 1343 goto out_unlock; 1344 } 1345 1346 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1347 if (IS_ERR(ctrl)) { 1348 ret = PTR_ERR(ctrl); 1349 goto out_unlock; 1350 } 1351 1352 seq_file->private = ctrl; 1353 1354 out_unlock: 1355 mutex_unlock(&nvmf_dev_mutex); 1356 kfree(buf); 1357 return ret ? ret : count; 1358 } 1359 1360 static void __nvmf_concat_opt_tokens(struct seq_file *seq_file) 1361 { 1362 const struct match_token *tok; 1363 int idx; 1364 1365 /* 1366 * Add dummy entries for instance and cntlid to 1367 * signal an invalid/non-existing controller 1368 */ 1369 seq_puts(seq_file, "instance=-1,cntlid=-1"); 1370 for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) { 1371 tok = &opt_tokens[idx]; 1372 if (tok->token == NVMF_OPT_ERR) 1373 continue; 1374 seq_puts(seq_file, ","); 1375 seq_puts(seq_file, tok->pattern); 1376 } 1377 seq_puts(seq_file, "\n"); 1378 } 1379 1380 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1381 { 1382 struct nvme_ctrl *ctrl; 1383 1384 mutex_lock(&nvmf_dev_mutex); 1385 ctrl = seq_file->private; 1386 if (!ctrl) { 1387 __nvmf_concat_opt_tokens(seq_file); 1388 goto out_unlock; 1389 } 1390 1391 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1392 ctrl->instance, ctrl->cntlid); 1393 1394 out_unlock: 1395 mutex_unlock(&nvmf_dev_mutex); 1396 return 0; 1397 } 1398 1399 static int nvmf_dev_open(struct inode *inode, struct file *file) 1400 { 1401 /* 1402 * The miscdevice code initializes file->private_data, but doesn't 1403 * make use of it later. 1404 */ 1405 file->private_data = NULL; 1406 return single_open(file, nvmf_dev_show, NULL); 1407 } 1408 1409 static int nvmf_dev_release(struct inode *inode, struct file *file) 1410 { 1411 struct seq_file *seq_file = file->private_data; 1412 struct nvme_ctrl *ctrl = seq_file->private; 1413 1414 if (ctrl) 1415 nvme_put_ctrl(ctrl); 1416 return single_release(inode, file); 1417 } 1418 1419 static const struct file_operations nvmf_dev_fops = { 1420 .owner = THIS_MODULE, 1421 .write = nvmf_dev_write, 1422 .read = seq_read, 1423 .open = nvmf_dev_open, 1424 .release = nvmf_dev_release, 1425 }; 1426 1427 static struct miscdevice nvmf_misc = { 1428 .minor = MISC_DYNAMIC_MINOR, 1429 .name = "nvme-fabrics", 1430 .fops = &nvmf_dev_fops, 1431 }; 1432 1433 static int __init nvmf_init(void) 1434 { 1435 int ret; 1436 1437 nvmf_default_host = nvmf_host_default(); 1438 if (!nvmf_default_host) 1439 return -ENOMEM; 1440 1441 nvmf_class = class_create("nvme-fabrics"); 1442 if (IS_ERR(nvmf_class)) { 1443 pr_err("couldn't register class nvme-fabrics\n"); 1444 ret = PTR_ERR(nvmf_class); 1445 goto out_free_host; 1446 } 1447 1448 nvmf_device = 1449 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1450 if (IS_ERR(nvmf_device)) { 1451 pr_err("couldn't create nvme-fabrics device!\n"); 1452 ret = PTR_ERR(nvmf_device); 1453 goto out_destroy_class; 1454 } 1455 1456 ret = misc_register(&nvmf_misc); 1457 if (ret) { 1458 pr_err("couldn't register misc device: %d\n", ret); 1459 goto out_destroy_device; 1460 } 1461 1462 return 0; 1463 1464 out_destroy_device: 1465 device_destroy(nvmf_class, MKDEV(0, 0)); 1466 out_destroy_class: 1467 class_destroy(nvmf_class); 1468 out_free_host: 1469 nvmf_host_put(nvmf_default_host); 1470 return ret; 1471 } 1472 1473 static void __exit nvmf_exit(void) 1474 { 1475 misc_deregister(&nvmf_misc); 1476 device_destroy(nvmf_class, MKDEV(0, 0)); 1477 class_destroy(nvmf_class); 1478 nvmf_host_put(nvmf_default_host); 1479 1480 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1481 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1482 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1483 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1484 BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64); 1485 BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64); 1486 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1487 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8); 1488 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16); 1489 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16); 1490 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16); 1491 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16); 1492 } 1493 1494 MODULE_LICENSE("GPL v2"); 1495 MODULE_DESCRIPTION("NVMe host fabrics library"); 1496 1497 module_init(nvmf_init); 1498 module_exit(nvmf_exit); 1499