1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-keyring.h> 16 17 static LIST_HEAD(nvmf_transports); 18 static DECLARE_RWSEM(nvmf_transports_rwsem); 19 20 static LIST_HEAD(nvmf_hosts); 21 static DEFINE_MUTEX(nvmf_hosts_mutex); 22 23 static struct nvmf_host *nvmf_default_host; 24 25 static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id) 26 { 27 struct nvmf_host *host; 28 29 host = kmalloc(sizeof(*host), GFP_KERNEL); 30 if (!host) 31 return NULL; 32 33 kref_init(&host->ref); 34 uuid_copy(&host->id, id); 35 strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 36 37 return host; 38 } 39 40 static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id) 41 { 42 struct nvmf_host *host; 43 44 mutex_lock(&nvmf_hosts_mutex); 45 46 /* 47 * We have defined a host as how it is perceived by the target. 48 * Therefore, we don't allow different Host NQNs with the same Host ID. 49 * Similarly, we do not allow the usage of the same Host NQN with 50 * different Host IDs. This'll maintain unambiguous host identification. 51 */ 52 list_for_each_entry(host, &nvmf_hosts, list) { 53 bool same_hostnqn = !strcmp(host->nqn, hostnqn); 54 bool same_hostid = uuid_equal(&host->id, id); 55 56 if (same_hostnqn && same_hostid) { 57 kref_get(&host->ref); 58 goto out_unlock; 59 } 60 if (same_hostnqn) { 61 pr_err("found same hostnqn %s but different hostid %pUb\n", 62 hostnqn, id); 63 host = ERR_PTR(-EINVAL); 64 goto out_unlock; 65 } 66 if (same_hostid) { 67 pr_err("found same hostid %pUb but different hostnqn %s\n", 68 id, hostnqn); 69 host = ERR_PTR(-EINVAL); 70 goto out_unlock; 71 } 72 } 73 74 host = nvmf_host_alloc(hostnqn, id); 75 if (!host) { 76 host = ERR_PTR(-ENOMEM); 77 goto out_unlock; 78 } 79 80 list_add_tail(&host->list, &nvmf_hosts); 81 out_unlock: 82 mutex_unlock(&nvmf_hosts_mutex); 83 return host; 84 } 85 86 static struct nvmf_host *nvmf_host_default(void) 87 { 88 struct nvmf_host *host; 89 char nqn[NVMF_NQN_SIZE]; 90 uuid_t id; 91 92 uuid_gen(&id); 93 snprintf(nqn, NVMF_NQN_SIZE, 94 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 95 96 host = nvmf_host_alloc(nqn, &id); 97 if (!host) 98 return NULL; 99 100 mutex_lock(&nvmf_hosts_mutex); 101 list_add_tail(&host->list, &nvmf_hosts); 102 mutex_unlock(&nvmf_hosts_mutex); 103 104 return host; 105 } 106 107 static void nvmf_host_destroy(struct kref *ref) 108 { 109 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 110 111 mutex_lock(&nvmf_hosts_mutex); 112 list_del(&host->list); 113 mutex_unlock(&nvmf_hosts_mutex); 114 115 kfree(host); 116 } 117 118 static void nvmf_host_put(struct nvmf_host *host) 119 { 120 if (host) 121 kref_put(&host->ref, nvmf_host_destroy); 122 } 123 124 /** 125 * nvmf_get_address() - Get address/port 126 * @ctrl: Host NVMe controller instance which we got the address 127 * @buf: OUTPUT parameter that will contain the address/port 128 * @size: buffer size 129 */ 130 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 131 { 132 int len = 0; 133 134 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 135 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 136 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 137 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 138 (len) ? "," : "", ctrl->opts->trsvcid); 139 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 140 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 141 (len) ? "," : "", ctrl->opts->host_traddr); 142 if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE) 143 len += scnprintf(buf + len, size - len, "%shost_iface=%s", 144 (len) ? "," : "", ctrl->opts->host_iface); 145 len += scnprintf(buf + len, size - len, "\n"); 146 147 return len; 148 } 149 EXPORT_SYMBOL_GPL(nvmf_get_address); 150 151 /** 152 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 153 * @ctrl: Host NVMe controller instance maintaining the admin 154 * queue used to submit the property read command to 155 * the allocated NVMe controller resource on the target system. 156 * @off: Starting offset value of the targeted property 157 * register (see the fabrics section of the NVMe standard). 158 * @val: OUTPUT parameter that will contain the value of 159 * the property after a successful read. 160 * 161 * Used by the host system to retrieve a 32-bit capsule property value 162 * from an NVMe controller on the target system. 163 * 164 * ("Capsule property" is an "PCIe register concept" applied to the 165 * NVMe fabrics space.) 166 * 167 * Return: 168 * 0: successful read 169 * > 0: NVMe error status code 170 * < 0: Linux errno error code 171 */ 172 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 173 { 174 struct nvme_command cmd = { }; 175 union nvme_result res; 176 int ret; 177 178 cmd.prop_get.opcode = nvme_fabrics_command; 179 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 180 cmd.prop_get.offset = cpu_to_le32(off); 181 182 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 183 NVME_QID_ANY, 0); 184 185 if (ret >= 0) 186 *val = le64_to_cpu(res.u64); 187 if (unlikely(ret != 0)) 188 dev_err(ctrl->device, 189 "Property Get error: %d, offset %#x\n", 190 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 191 192 return ret; 193 } 194 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 195 196 /** 197 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 198 * @ctrl: Host NVMe controller instance maintaining the admin 199 * queue used to submit the property read command to 200 * the allocated controller resource on the target system. 201 * @off: Starting offset value of the targeted property 202 * register (see the fabrics section of the NVMe standard). 203 * @val: OUTPUT parameter that will contain the value of 204 * the property after a successful read. 205 * 206 * Used by the host system to retrieve a 64-bit capsule property value 207 * from an NVMe controller on the target system. 208 * 209 * ("Capsule property" is an "PCIe register concept" applied to the 210 * NVMe fabrics space.) 211 * 212 * Return: 213 * 0: successful read 214 * > 0: NVMe error status code 215 * < 0: Linux errno error code 216 */ 217 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 218 { 219 struct nvme_command cmd = { }; 220 union nvme_result res; 221 int ret; 222 223 cmd.prop_get.opcode = nvme_fabrics_command; 224 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 225 cmd.prop_get.attrib = 1; 226 cmd.prop_get.offset = cpu_to_le32(off); 227 228 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 229 NVME_QID_ANY, 0); 230 231 if (ret >= 0) 232 *val = le64_to_cpu(res.u64); 233 if (unlikely(ret != 0)) 234 dev_err(ctrl->device, 235 "Property Get error: %d, offset %#x\n", 236 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 237 return ret; 238 } 239 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 240 241 /** 242 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 243 * @ctrl: Host NVMe controller instance maintaining the admin 244 * queue used to submit the property read command to 245 * the allocated NVMe controller resource on the target system. 246 * @off: Starting offset value of the targeted property 247 * register (see the fabrics section of the NVMe standard). 248 * @val: Input parameter that contains the value to be 249 * written to the property. 250 * 251 * Used by the NVMe host system to write a 32-bit capsule property value 252 * to an NVMe controller on the target system. 253 * 254 * ("Capsule property" is an "PCIe register concept" applied to the 255 * NVMe fabrics space.) 256 * 257 * Return: 258 * 0: successful write 259 * > 0: NVMe error status code 260 * < 0: Linux errno error code 261 */ 262 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 263 { 264 struct nvme_command cmd = { }; 265 int ret; 266 267 cmd.prop_set.opcode = nvme_fabrics_command; 268 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 269 cmd.prop_set.attrib = 0; 270 cmd.prop_set.offset = cpu_to_le32(off); 271 cmd.prop_set.value = cpu_to_le64(val); 272 273 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 274 NVME_QID_ANY, 0); 275 if (unlikely(ret)) 276 dev_err(ctrl->device, 277 "Property Set error: %d, offset %#x\n", 278 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 279 return ret; 280 } 281 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 282 283 /** 284 * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for 285 * connect() errors. 286 * @ctrl: The specific /dev/nvmeX device that had the error. 287 * @errval: Error code to be decoded in a more human-friendly 288 * printout. 289 * @offset: For use with the NVMe error code 290 * NVME_SC_CONNECT_INVALID_PARAM. 291 * @cmd: This is the SQE portion of a submission capsule. 292 * @data: This is the "Data" portion of a submission capsule. 293 */ 294 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 295 int errval, int offset, struct nvme_command *cmd, 296 struct nvmf_connect_data *data) 297 { 298 int err_sctype = errval & ~NVME_SC_DNR; 299 300 if (errval < 0) { 301 dev_err(ctrl->device, 302 "Connect command failed, errno: %d\n", errval); 303 return; 304 } 305 306 switch (err_sctype) { 307 case NVME_SC_CONNECT_INVALID_PARAM: 308 if (offset >> 16) { 309 char *inv_data = "Connect Invalid Data Parameter"; 310 311 switch (offset & 0xffff) { 312 case (offsetof(struct nvmf_connect_data, cntlid)): 313 dev_err(ctrl->device, 314 "%s, cntlid: %d\n", 315 inv_data, data->cntlid); 316 break; 317 case (offsetof(struct nvmf_connect_data, hostnqn)): 318 dev_err(ctrl->device, 319 "%s, hostnqn \"%s\"\n", 320 inv_data, data->hostnqn); 321 break; 322 case (offsetof(struct nvmf_connect_data, subsysnqn)): 323 dev_err(ctrl->device, 324 "%s, subsysnqn \"%s\"\n", 325 inv_data, data->subsysnqn); 326 break; 327 default: 328 dev_err(ctrl->device, 329 "%s, starting byte offset: %d\n", 330 inv_data, offset & 0xffff); 331 break; 332 } 333 } else { 334 char *inv_sqe = "Connect Invalid SQE Parameter"; 335 336 switch (offset) { 337 case (offsetof(struct nvmf_connect_command, qid)): 338 dev_err(ctrl->device, 339 "%s, qid %d\n", 340 inv_sqe, cmd->connect.qid); 341 break; 342 default: 343 dev_err(ctrl->device, 344 "%s, starting byte offset: %d\n", 345 inv_sqe, offset); 346 } 347 } 348 break; 349 case NVME_SC_CONNECT_INVALID_HOST: 350 dev_err(ctrl->device, 351 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 352 data->subsysnqn, data->hostnqn); 353 break; 354 case NVME_SC_CONNECT_CTRL_BUSY: 355 dev_err(ctrl->device, 356 "Connect command failed: controller is busy or not available\n"); 357 break; 358 case NVME_SC_CONNECT_FORMAT: 359 dev_err(ctrl->device, 360 "Connect incompatible format: %d", 361 cmd->connect.recfmt); 362 break; 363 case NVME_SC_HOST_PATH_ERROR: 364 dev_err(ctrl->device, 365 "Connect command failed: host path error\n"); 366 break; 367 case NVME_SC_AUTH_REQUIRED: 368 dev_err(ctrl->device, 369 "Connect command failed: authentication required\n"); 370 break; 371 default: 372 dev_err(ctrl->device, 373 "Connect command failed, error wo/DNR bit: %d\n", 374 err_sctype); 375 break; 376 } 377 } 378 379 static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl, 380 u16 cntlid) 381 { 382 struct nvmf_connect_data *data; 383 384 data = kzalloc(sizeof(*data), GFP_KERNEL); 385 if (!data) 386 return NULL; 387 388 uuid_copy(&data->hostid, &ctrl->opts->host->id); 389 data->cntlid = cpu_to_le16(cntlid); 390 strscpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 391 strscpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 392 393 return data; 394 } 395 396 static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid, 397 struct nvme_command *cmd) 398 { 399 cmd->connect.opcode = nvme_fabrics_command; 400 cmd->connect.fctype = nvme_fabrics_type_connect; 401 cmd->connect.qid = cpu_to_le16(qid); 402 403 if (qid) { 404 cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize); 405 } else { 406 cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 407 408 /* 409 * set keep-alive timeout in seconds granularity (ms * 1000) 410 */ 411 cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000); 412 } 413 414 if (ctrl->opts->disable_sqflow) 415 cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 416 } 417 418 /** 419 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 420 * API function. 421 * @ctrl: Host nvme controller instance used to request 422 * a new NVMe controller allocation on the target 423 * system and establish an NVMe Admin connection to 424 * that controller. 425 * 426 * This function enables an NVMe host device to request a new allocation of 427 * an NVMe controller resource on a target system as well establish a 428 * fabrics-protocol connection of the NVMe Admin queue between the 429 * host system device and the allocated NVMe controller on the 430 * target system via a NVMe Fabrics "Connect" command. 431 * 432 * Return: 433 * 0: success 434 * > 0: NVMe error status code 435 * < 0: Linux errno error code 436 * 437 */ 438 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 439 { 440 struct nvme_command cmd = { }; 441 union nvme_result res; 442 struct nvmf_connect_data *data; 443 int ret; 444 u32 result; 445 446 nvmf_connect_cmd_prep(ctrl, 0, &cmd); 447 448 data = nvmf_connect_data_prep(ctrl, 0xffff); 449 if (!data) 450 return -ENOMEM; 451 452 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 453 data, sizeof(*data), NVME_QID_ANY, 454 NVME_SUBMIT_AT_HEAD | 455 NVME_SUBMIT_NOWAIT | 456 NVME_SUBMIT_RESERVED); 457 if (ret) { 458 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 459 &cmd, data); 460 goto out_free_data; 461 } 462 463 result = le32_to_cpu(res.u32); 464 ctrl->cntlid = result & 0xFFFF; 465 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 466 /* Secure concatenation is not implemented */ 467 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 468 dev_warn(ctrl->device, 469 "qid 0: secure concatenation is not supported\n"); 470 ret = NVME_SC_AUTH_REQUIRED; 471 goto out_free_data; 472 } 473 /* Authentication required */ 474 ret = nvme_auth_negotiate(ctrl, 0); 475 if (ret) { 476 dev_warn(ctrl->device, 477 "qid 0: authentication setup failed\n"); 478 ret = NVME_SC_AUTH_REQUIRED; 479 goto out_free_data; 480 } 481 ret = nvme_auth_wait(ctrl, 0); 482 if (ret) 483 dev_warn(ctrl->device, 484 "qid 0: authentication failed\n"); 485 else 486 dev_info(ctrl->device, 487 "qid 0: authenticated\n"); 488 } 489 out_free_data: 490 kfree(data); 491 return ret; 492 } 493 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 494 495 /** 496 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 497 * API function. 498 * @ctrl: Host nvme controller instance used to establish an 499 * NVMe I/O queue connection to the already allocated NVMe 500 * controller on the target system. 501 * @qid: NVMe I/O queue number for the new I/O connection between 502 * host and target (note qid == 0 is illegal as this is 503 * the Admin queue, per NVMe standard). 504 * 505 * This function issues a fabrics-protocol connection 506 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 507 * between the host system device and the allocated NVMe controller 508 * on the target system. 509 * 510 * Return: 511 * 0: success 512 * > 0: NVMe error status code 513 * < 0: Linux errno error code 514 */ 515 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) 516 { 517 struct nvme_command cmd = { }; 518 struct nvmf_connect_data *data; 519 union nvme_result res; 520 int ret; 521 u32 result; 522 523 nvmf_connect_cmd_prep(ctrl, qid, &cmd); 524 525 data = nvmf_connect_data_prep(ctrl, ctrl->cntlid); 526 if (!data) 527 return -ENOMEM; 528 529 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 530 data, sizeof(*data), qid, 531 NVME_SUBMIT_AT_HEAD | 532 NVME_SUBMIT_RESERVED | 533 NVME_SUBMIT_NOWAIT); 534 if (ret) { 535 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 536 &cmd, data); 537 goto out_free_data; 538 } 539 result = le32_to_cpu(res.u32); 540 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 541 /* Secure concatenation is not implemented */ 542 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 543 dev_warn(ctrl->device, 544 "qid 0: secure concatenation is not supported\n"); 545 ret = NVME_SC_AUTH_REQUIRED; 546 goto out_free_data; 547 } 548 /* Authentication required */ 549 ret = nvme_auth_negotiate(ctrl, qid); 550 if (ret) { 551 dev_warn(ctrl->device, 552 "qid %d: authentication setup failed\n", qid); 553 ret = NVME_SC_AUTH_REQUIRED; 554 } else { 555 ret = nvme_auth_wait(ctrl, qid); 556 if (ret) 557 dev_warn(ctrl->device, 558 "qid %u: authentication failed\n", qid); 559 } 560 } 561 out_free_data: 562 kfree(data); 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 566 567 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 568 { 569 if (ctrl->opts->max_reconnects == -1 || 570 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 571 return true; 572 573 return false; 574 } 575 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 576 577 /** 578 * nvmf_register_transport() - NVMe Fabrics Library registration function. 579 * @ops: Transport ops instance to be registered to the 580 * common fabrics library. 581 * 582 * API function that registers the type of specific transport fabric 583 * being implemented to the common NVMe fabrics library. Part of 584 * the overall init sequence of starting up a fabrics driver. 585 */ 586 int nvmf_register_transport(struct nvmf_transport_ops *ops) 587 { 588 if (!ops->create_ctrl) 589 return -EINVAL; 590 591 down_write(&nvmf_transports_rwsem); 592 list_add_tail(&ops->entry, &nvmf_transports); 593 up_write(&nvmf_transports_rwsem); 594 595 return 0; 596 } 597 EXPORT_SYMBOL_GPL(nvmf_register_transport); 598 599 /** 600 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 601 * @ops: Transport ops instance to be unregistered from the 602 * common fabrics library. 603 * 604 * Fabrics API function that unregisters the type of specific transport 605 * fabric being implemented from the common NVMe fabrics library. 606 * Part of the overall exit sequence of unloading the implemented driver. 607 */ 608 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 609 { 610 down_write(&nvmf_transports_rwsem); 611 list_del(&ops->entry); 612 up_write(&nvmf_transports_rwsem); 613 } 614 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 615 616 static struct nvmf_transport_ops *nvmf_lookup_transport( 617 struct nvmf_ctrl_options *opts) 618 { 619 struct nvmf_transport_ops *ops; 620 621 lockdep_assert_held(&nvmf_transports_rwsem); 622 623 list_for_each_entry(ops, &nvmf_transports, entry) { 624 if (strcmp(ops->name, opts->transport) == 0) 625 return ops; 626 } 627 628 return NULL; 629 } 630 631 static struct key *nvmf_parse_key(int key_id) 632 { 633 struct key *key; 634 635 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 636 pr_err("TLS is not supported\n"); 637 return ERR_PTR(-EINVAL); 638 } 639 640 key = key_lookup(key_id); 641 if (IS_ERR(key)) 642 pr_err("key id %08x not found\n", key_id); 643 else 644 pr_debug("Using key id %08x\n", key_id); 645 return key; 646 } 647 648 static const match_table_t opt_tokens = { 649 { NVMF_OPT_TRANSPORT, "transport=%s" }, 650 { NVMF_OPT_TRADDR, "traddr=%s" }, 651 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 652 { NVMF_OPT_NQN, "nqn=%s" }, 653 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 654 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 655 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 656 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 657 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 658 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 659 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 660 { NVMF_OPT_HOST_IFACE, "host_iface=%s" }, 661 { NVMF_OPT_HOST_ID, "hostid=%s" }, 662 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 663 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 664 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 665 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 666 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 667 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 668 { NVMF_OPT_TOS, "tos=%d" }, 669 #ifdef CONFIG_NVME_TCP_TLS 670 { NVMF_OPT_KEYRING, "keyring=%d" }, 671 { NVMF_OPT_TLS_KEY, "tls_key=%d" }, 672 #endif 673 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 674 { NVMF_OPT_DISCOVERY, "discovery" }, 675 #ifdef CONFIG_NVME_HOST_AUTH 676 { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" }, 677 { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" }, 678 #endif 679 #ifdef CONFIG_NVME_TCP_TLS 680 { NVMF_OPT_TLS, "tls" }, 681 #endif 682 { NVMF_OPT_ERR, NULL } 683 }; 684 685 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 686 const char *buf) 687 { 688 substring_t args[MAX_OPT_ARGS]; 689 char *options, *o, *p; 690 int token, ret = 0; 691 size_t nqnlen = 0; 692 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO, key_id; 693 uuid_t hostid; 694 char hostnqn[NVMF_NQN_SIZE]; 695 struct key *key; 696 697 /* Set defaults */ 698 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 699 opts->nr_io_queues = num_online_cpus(); 700 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 701 opts->kato = 0; 702 opts->duplicate_connect = false; 703 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 704 opts->hdr_digest = false; 705 opts->data_digest = false; 706 opts->tos = -1; /* < 0 == use transport default */ 707 opts->tls = false; 708 opts->tls_key = NULL; 709 opts->keyring = NULL; 710 711 options = o = kstrdup(buf, GFP_KERNEL); 712 if (!options) 713 return -ENOMEM; 714 715 /* use default host if not given by user space */ 716 uuid_copy(&hostid, &nvmf_default_host->id); 717 strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE); 718 719 while ((p = strsep(&o, ",\n")) != NULL) { 720 if (!*p) 721 continue; 722 723 token = match_token(p, opt_tokens, args); 724 opts->mask |= token; 725 switch (token) { 726 case NVMF_OPT_TRANSPORT: 727 p = match_strdup(args); 728 if (!p) { 729 ret = -ENOMEM; 730 goto out; 731 } 732 kfree(opts->transport); 733 opts->transport = p; 734 break; 735 case NVMF_OPT_NQN: 736 p = match_strdup(args); 737 if (!p) { 738 ret = -ENOMEM; 739 goto out; 740 } 741 kfree(opts->subsysnqn); 742 opts->subsysnqn = p; 743 nqnlen = strlen(opts->subsysnqn); 744 if (nqnlen >= NVMF_NQN_SIZE) { 745 pr_err("%s needs to be < %d bytes\n", 746 opts->subsysnqn, NVMF_NQN_SIZE); 747 ret = -EINVAL; 748 goto out; 749 } 750 opts->discovery_nqn = 751 !(strcmp(opts->subsysnqn, 752 NVME_DISC_SUBSYS_NAME)); 753 break; 754 case NVMF_OPT_TRADDR: 755 p = match_strdup(args); 756 if (!p) { 757 ret = -ENOMEM; 758 goto out; 759 } 760 kfree(opts->traddr); 761 opts->traddr = p; 762 break; 763 case NVMF_OPT_TRSVCID: 764 p = match_strdup(args); 765 if (!p) { 766 ret = -ENOMEM; 767 goto out; 768 } 769 kfree(opts->trsvcid); 770 opts->trsvcid = p; 771 break; 772 case NVMF_OPT_QUEUE_SIZE: 773 if (match_int(args, &token)) { 774 ret = -EINVAL; 775 goto out; 776 } 777 if (token < NVMF_MIN_QUEUE_SIZE || 778 token > NVMF_MAX_QUEUE_SIZE) { 779 pr_err("Invalid queue_size %d\n", token); 780 ret = -EINVAL; 781 goto out; 782 } 783 opts->queue_size = token; 784 break; 785 case NVMF_OPT_NR_IO_QUEUES: 786 if (match_int(args, &token)) { 787 ret = -EINVAL; 788 goto out; 789 } 790 if (token <= 0) { 791 pr_err("Invalid number of IOQs %d\n", token); 792 ret = -EINVAL; 793 goto out; 794 } 795 if (opts->discovery_nqn) { 796 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 797 break; 798 } 799 800 opts->nr_io_queues = min_t(unsigned int, 801 num_online_cpus(), token); 802 break; 803 case NVMF_OPT_KATO: 804 if (match_int(args, &token)) { 805 ret = -EINVAL; 806 goto out; 807 } 808 809 if (token < 0) { 810 pr_err("Invalid keep_alive_tmo %d\n", token); 811 ret = -EINVAL; 812 goto out; 813 } else if (token == 0 && !opts->discovery_nqn) { 814 /* Allowed for debug */ 815 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 816 } 817 opts->kato = token; 818 break; 819 case NVMF_OPT_CTRL_LOSS_TMO: 820 if (match_int(args, &token)) { 821 ret = -EINVAL; 822 goto out; 823 } 824 825 if (token < 0) 826 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 827 ctrl_loss_tmo = token; 828 break; 829 case NVMF_OPT_FAIL_FAST_TMO: 830 if (match_int(args, &token)) { 831 ret = -EINVAL; 832 goto out; 833 } 834 835 if (token >= 0) 836 pr_warn("I/O fail on reconnect controller after %d sec\n", 837 token); 838 else 839 token = -1; 840 841 opts->fast_io_fail_tmo = token; 842 break; 843 case NVMF_OPT_HOSTNQN: 844 if (opts->host) { 845 pr_err("hostnqn already user-assigned: %s\n", 846 opts->host->nqn); 847 ret = -EADDRINUSE; 848 goto out; 849 } 850 p = match_strdup(args); 851 if (!p) { 852 ret = -ENOMEM; 853 goto out; 854 } 855 nqnlen = strlen(p); 856 if (nqnlen >= NVMF_NQN_SIZE) { 857 pr_err("%s needs to be < %d bytes\n", 858 p, NVMF_NQN_SIZE); 859 kfree(p); 860 ret = -EINVAL; 861 goto out; 862 } 863 strscpy(hostnqn, p, NVMF_NQN_SIZE); 864 kfree(p); 865 break; 866 case NVMF_OPT_RECONNECT_DELAY: 867 if (match_int(args, &token)) { 868 ret = -EINVAL; 869 goto out; 870 } 871 if (token <= 0) { 872 pr_err("Invalid reconnect_delay %d\n", token); 873 ret = -EINVAL; 874 goto out; 875 } 876 opts->reconnect_delay = token; 877 break; 878 case NVMF_OPT_HOST_TRADDR: 879 p = match_strdup(args); 880 if (!p) { 881 ret = -ENOMEM; 882 goto out; 883 } 884 kfree(opts->host_traddr); 885 opts->host_traddr = p; 886 break; 887 case NVMF_OPT_HOST_IFACE: 888 p = match_strdup(args); 889 if (!p) { 890 ret = -ENOMEM; 891 goto out; 892 } 893 kfree(opts->host_iface); 894 opts->host_iface = p; 895 break; 896 case NVMF_OPT_HOST_ID: 897 p = match_strdup(args); 898 if (!p) { 899 ret = -ENOMEM; 900 goto out; 901 } 902 ret = uuid_parse(p, &hostid); 903 if (ret) { 904 pr_err("Invalid hostid %s\n", p); 905 ret = -EINVAL; 906 kfree(p); 907 goto out; 908 } 909 kfree(p); 910 break; 911 case NVMF_OPT_DUP_CONNECT: 912 opts->duplicate_connect = true; 913 break; 914 case NVMF_OPT_DISABLE_SQFLOW: 915 opts->disable_sqflow = true; 916 break; 917 case NVMF_OPT_HDR_DIGEST: 918 opts->hdr_digest = true; 919 break; 920 case NVMF_OPT_DATA_DIGEST: 921 opts->data_digest = true; 922 break; 923 case NVMF_OPT_NR_WRITE_QUEUES: 924 if (match_int(args, &token)) { 925 ret = -EINVAL; 926 goto out; 927 } 928 if (token <= 0) { 929 pr_err("Invalid nr_write_queues %d\n", token); 930 ret = -EINVAL; 931 goto out; 932 } 933 opts->nr_write_queues = token; 934 break; 935 case NVMF_OPT_NR_POLL_QUEUES: 936 if (match_int(args, &token)) { 937 ret = -EINVAL; 938 goto out; 939 } 940 if (token <= 0) { 941 pr_err("Invalid nr_poll_queues %d\n", token); 942 ret = -EINVAL; 943 goto out; 944 } 945 opts->nr_poll_queues = token; 946 break; 947 case NVMF_OPT_TOS: 948 if (match_int(args, &token)) { 949 ret = -EINVAL; 950 goto out; 951 } 952 if (token < 0) { 953 pr_err("Invalid type of service %d\n", token); 954 ret = -EINVAL; 955 goto out; 956 } 957 if (token > 255) { 958 pr_warn("Clamping type of service to 255\n"); 959 token = 255; 960 } 961 opts->tos = token; 962 break; 963 case NVMF_OPT_KEYRING: 964 if (match_int(args, &key_id) || key_id <= 0) { 965 ret = -EINVAL; 966 goto out; 967 } 968 key = nvmf_parse_key(key_id); 969 if (IS_ERR(key)) { 970 ret = PTR_ERR(key); 971 goto out; 972 } 973 key_put(opts->keyring); 974 opts->keyring = key; 975 break; 976 case NVMF_OPT_TLS_KEY: 977 if (match_int(args, &key_id) || key_id <= 0) { 978 ret = -EINVAL; 979 goto out; 980 } 981 key = nvmf_parse_key(key_id); 982 if (IS_ERR(key)) { 983 ret = PTR_ERR(key); 984 goto out; 985 } 986 key_put(opts->tls_key); 987 opts->tls_key = key; 988 break; 989 case NVMF_OPT_DISCOVERY: 990 opts->discovery_nqn = true; 991 break; 992 case NVMF_OPT_DHCHAP_SECRET: 993 p = match_strdup(args); 994 if (!p) { 995 ret = -ENOMEM; 996 goto out; 997 } 998 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 999 pr_err("Invalid DH-CHAP secret %s\n", p); 1000 ret = -EINVAL; 1001 goto out; 1002 } 1003 kfree(opts->dhchap_secret); 1004 opts->dhchap_secret = p; 1005 break; 1006 case NVMF_OPT_DHCHAP_CTRL_SECRET: 1007 p = match_strdup(args); 1008 if (!p) { 1009 ret = -ENOMEM; 1010 goto out; 1011 } 1012 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 1013 pr_err("Invalid DH-CHAP secret %s\n", p); 1014 ret = -EINVAL; 1015 goto out; 1016 } 1017 kfree(opts->dhchap_ctrl_secret); 1018 opts->dhchap_ctrl_secret = p; 1019 break; 1020 case NVMF_OPT_TLS: 1021 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 1022 pr_err("TLS is not supported\n"); 1023 ret = -EINVAL; 1024 goto out; 1025 } 1026 opts->tls = true; 1027 break; 1028 default: 1029 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 1030 p); 1031 ret = -EINVAL; 1032 goto out; 1033 } 1034 } 1035 1036 if (opts->discovery_nqn) { 1037 opts->nr_io_queues = 0; 1038 opts->nr_write_queues = 0; 1039 opts->nr_poll_queues = 0; 1040 opts->duplicate_connect = true; 1041 } else { 1042 if (!opts->kato) 1043 opts->kato = NVME_DEFAULT_KATO; 1044 } 1045 if (ctrl_loss_tmo < 0) { 1046 opts->max_reconnects = -1; 1047 } else { 1048 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 1049 opts->reconnect_delay); 1050 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 1051 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 1052 opts->fast_io_fail_tmo, ctrl_loss_tmo); 1053 } 1054 1055 opts->host = nvmf_host_add(hostnqn, &hostid); 1056 if (IS_ERR(opts->host)) { 1057 ret = PTR_ERR(opts->host); 1058 opts->host = NULL; 1059 goto out; 1060 } 1061 1062 out: 1063 kfree(options); 1064 return ret; 1065 } 1066 1067 void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, 1068 u32 io_queues[HCTX_MAX_TYPES]) 1069 { 1070 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1071 /* 1072 * separate read/write queues 1073 * hand out dedicated default queues only after we have 1074 * sufficient read queues. 1075 */ 1076 io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1077 nr_io_queues -= io_queues[HCTX_TYPE_READ]; 1078 io_queues[HCTX_TYPE_DEFAULT] = 1079 min(opts->nr_write_queues, nr_io_queues); 1080 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1081 } else { 1082 /* 1083 * shared read/write queues 1084 * either no write queues were requested, or we don't have 1085 * sufficient queue count to have dedicated default queues. 1086 */ 1087 io_queues[HCTX_TYPE_DEFAULT] = 1088 min(opts->nr_io_queues, nr_io_queues); 1089 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1090 } 1091 1092 if (opts->nr_poll_queues && nr_io_queues) { 1093 /* map dedicated poll queues only if we have queues left */ 1094 io_queues[HCTX_TYPE_POLL] = 1095 min(opts->nr_poll_queues, nr_io_queues); 1096 } 1097 } 1098 EXPORT_SYMBOL_GPL(nvmf_set_io_queues); 1099 1100 void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, 1101 u32 io_queues[HCTX_MAX_TYPES]) 1102 { 1103 struct nvmf_ctrl_options *opts = ctrl->opts; 1104 1105 if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) { 1106 /* separate read/write queues */ 1107 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1108 io_queues[HCTX_TYPE_DEFAULT]; 1109 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1110 set->map[HCTX_TYPE_READ].nr_queues = 1111 io_queues[HCTX_TYPE_READ]; 1112 set->map[HCTX_TYPE_READ].queue_offset = 1113 io_queues[HCTX_TYPE_DEFAULT]; 1114 } else { 1115 /* shared read/write queues */ 1116 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1117 io_queues[HCTX_TYPE_DEFAULT]; 1118 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1119 set->map[HCTX_TYPE_READ].nr_queues = 1120 io_queues[HCTX_TYPE_DEFAULT]; 1121 set->map[HCTX_TYPE_READ].queue_offset = 0; 1122 } 1123 1124 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1125 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 1126 if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) { 1127 /* map dedicated poll queues only if we have queues left */ 1128 set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL]; 1129 set->map[HCTX_TYPE_POLL].queue_offset = 1130 io_queues[HCTX_TYPE_DEFAULT] + 1131 io_queues[HCTX_TYPE_READ]; 1132 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1133 } 1134 1135 dev_info(ctrl->device, 1136 "mapped %d/%d/%d default/read/poll queues.\n", 1137 io_queues[HCTX_TYPE_DEFAULT], 1138 io_queues[HCTX_TYPE_READ], 1139 io_queues[HCTX_TYPE_POLL]); 1140 } 1141 EXPORT_SYMBOL_GPL(nvmf_map_queues); 1142 1143 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 1144 unsigned int required_opts) 1145 { 1146 if ((opts->mask & required_opts) != required_opts) { 1147 unsigned int i; 1148 1149 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1150 if ((opt_tokens[i].token & required_opts) && 1151 !(opt_tokens[i].token & opts->mask)) { 1152 pr_warn("missing parameter '%s'\n", 1153 opt_tokens[i].pattern); 1154 } 1155 } 1156 1157 return -EINVAL; 1158 } 1159 1160 return 0; 1161 } 1162 1163 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 1164 struct nvmf_ctrl_options *opts) 1165 { 1166 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 1167 strcmp(opts->traddr, ctrl->opts->traddr) || 1168 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 1169 return false; 1170 1171 /* 1172 * Checking the local address or host interfaces is rough. 1173 * 1174 * In most cases, none is specified and the host port or 1175 * host interface is selected by the stack. 1176 * 1177 * Assume no match if: 1178 * - local address or host interface is specified and address 1179 * or host interface is not the same 1180 * - local address or host interface is not specified but 1181 * remote is, or vice versa (admin using specific 1182 * host_traddr/host_iface when it matters). 1183 */ 1184 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 1185 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1186 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 1187 return false; 1188 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 1189 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1190 return false; 1191 } 1192 1193 if ((opts->mask & NVMF_OPT_HOST_IFACE) && 1194 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1195 if (strcmp(opts->host_iface, ctrl->opts->host_iface)) 1196 return false; 1197 } else if ((opts->mask & NVMF_OPT_HOST_IFACE) || 1198 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1199 return false; 1200 } 1201 1202 return true; 1203 } 1204 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 1205 1206 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 1207 unsigned int allowed_opts) 1208 { 1209 if (opts->mask & ~allowed_opts) { 1210 unsigned int i; 1211 1212 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1213 if ((opt_tokens[i].token & opts->mask) && 1214 (opt_tokens[i].token & ~allowed_opts)) { 1215 pr_warn("invalid parameter '%s'\n", 1216 opt_tokens[i].pattern); 1217 } 1218 } 1219 1220 return -EINVAL; 1221 } 1222 1223 return 0; 1224 } 1225 1226 void nvmf_free_options(struct nvmf_ctrl_options *opts) 1227 { 1228 nvmf_host_put(opts->host); 1229 key_put(opts->keyring); 1230 key_put(opts->tls_key); 1231 kfree(opts->transport); 1232 kfree(opts->traddr); 1233 kfree(opts->trsvcid); 1234 kfree(opts->subsysnqn); 1235 kfree(opts->host_traddr); 1236 kfree(opts->host_iface); 1237 kfree(opts->dhchap_secret); 1238 kfree(opts->dhchap_ctrl_secret); 1239 kfree(opts); 1240 } 1241 EXPORT_SYMBOL_GPL(nvmf_free_options); 1242 1243 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 1244 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 1245 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 1246 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 1247 NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\ 1248 NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\ 1249 NVMF_OPT_DHCHAP_CTRL_SECRET) 1250 1251 static struct nvme_ctrl * 1252 nvmf_create_ctrl(struct device *dev, const char *buf) 1253 { 1254 struct nvmf_ctrl_options *opts; 1255 struct nvmf_transport_ops *ops; 1256 struct nvme_ctrl *ctrl; 1257 int ret; 1258 1259 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1260 if (!opts) 1261 return ERR_PTR(-ENOMEM); 1262 1263 ret = nvmf_parse_options(opts, buf); 1264 if (ret) 1265 goto out_free_opts; 1266 1267 1268 request_module("nvme-%s", opts->transport); 1269 1270 /* 1271 * Check the generic options first as we need a valid transport for 1272 * the lookup below. Then clear the generic flags so that transport 1273 * drivers don't have to care about them. 1274 */ 1275 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 1276 if (ret) 1277 goto out_free_opts; 1278 opts->mask &= ~NVMF_REQUIRED_OPTS; 1279 1280 down_read(&nvmf_transports_rwsem); 1281 ops = nvmf_lookup_transport(opts); 1282 if (!ops) { 1283 pr_info("no handler found for transport %s.\n", 1284 opts->transport); 1285 ret = -EINVAL; 1286 goto out_unlock; 1287 } 1288 1289 if (!try_module_get(ops->module)) { 1290 ret = -EBUSY; 1291 goto out_unlock; 1292 } 1293 up_read(&nvmf_transports_rwsem); 1294 1295 ret = nvmf_check_required_opts(opts, ops->required_opts); 1296 if (ret) 1297 goto out_module_put; 1298 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1299 ops->allowed_opts | ops->required_opts); 1300 if (ret) 1301 goto out_module_put; 1302 1303 ctrl = ops->create_ctrl(dev, opts); 1304 if (IS_ERR(ctrl)) { 1305 ret = PTR_ERR(ctrl); 1306 goto out_module_put; 1307 } 1308 1309 module_put(ops->module); 1310 return ctrl; 1311 1312 out_module_put: 1313 module_put(ops->module); 1314 goto out_free_opts; 1315 out_unlock: 1316 up_read(&nvmf_transports_rwsem); 1317 out_free_opts: 1318 nvmf_free_options(opts); 1319 return ERR_PTR(ret); 1320 } 1321 1322 static const struct class nvmf_class = { 1323 .name = "nvme-fabrics", 1324 }; 1325 1326 static struct device *nvmf_device; 1327 static DEFINE_MUTEX(nvmf_dev_mutex); 1328 1329 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1330 size_t count, loff_t *pos) 1331 { 1332 struct seq_file *seq_file = file->private_data; 1333 struct nvme_ctrl *ctrl; 1334 const char *buf; 1335 int ret = 0; 1336 1337 if (count > PAGE_SIZE) 1338 return -ENOMEM; 1339 1340 buf = memdup_user_nul(ubuf, count); 1341 if (IS_ERR(buf)) 1342 return PTR_ERR(buf); 1343 1344 mutex_lock(&nvmf_dev_mutex); 1345 if (seq_file->private) { 1346 ret = -EINVAL; 1347 goto out_unlock; 1348 } 1349 1350 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1351 if (IS_ERR(ctrl)) { 1352 ret = PTR_ERR(ctrl); 1353 goto out_unlock; 1354 } 1355 1356 seq_file->private = ctrl; 1357 1358 out_unlock: 1359 mutex_unlock(&nvmf_dev_mutex); 1360 kfree(buf); 1361 return ret ? ret : count; 1362 } 1363 1364 static void __nvmf_concat_opt_tokens(struct seq_file *seq_file) 1365 { 1366 const struct match_token *tok; 1367 int idx; 1368 1369 /* 1370 * Add dummy entries for instance and cntlid to 1371 * signal an invalid/non-existing controller 1372 */ 1373 seq_puts(seq_file, "instance=-1,cntlid=-1"); 1374 for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) { 1375 tok = &opt_tokens[idx]; 1376 if (tok->token == NVMF_OPT_ERR) 1377 continue; 1378 seq_puts(seq_file, ","); 1379 seq_puts(seq_file, tok->pattern); 1380 } 1381 seq_puts(seq_file, "\n"); 1382 } 1383 1384 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1385 { 1386 struct nvme_ctrl *ctrl; 1387 1388 mutex_lock(&nvmf_dev_mutex); 1389 ctrl = seq_file->private; 1390 if (!ctrl) { 1391 __nvmf_concat_opt_tokens(seq_file); 1392 goto out_unlock; 1393 } 1394 1395 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1396 ctrl->instance, ctrl->cntlid); 1397 1398 out_unlock: 1399 mutex_unlock(&nvmf_dev_mutex); 1400 return 0; 1401 } 1402 1403 static int nvmf_dev_open(struct inode *inode, struct file *file) 1404 { 1405 /* 1406 * The miscdevice code initializes file->private_data, but doesn't 1407 * make use of it later. 1408 */ 1409 file->private_data = NULL; 1410 return single_open(file, nvmf_dev_show, NULL); 1411 } 1412 1413 static int nvmf_dev_release(struct inode *inode, struct file *file) 1414 { 1415 struct seq_file *seq_file = file->private_data; 1416 struct nvme_ctrl *ctrl = seq_file->private; 1417 1418 if (ctrl) 1419 nvme_put_ctrl(ctrl); 1420 return single_release(inode, file); 1421 } 1422 1423 static const struct file_operations nvmf_dev_fops = { 1424 .owner = THIS_MODULE, 1425 .write = nvmf_dev_write, 1426 .read = seq_read, 1427 .open = nvmf_dev_open, 1428 .release = nvmf_dev_release, 1429 }; 1430 1431 static struct miscdevice nvmf_misc = { 1432 .minor = MISC_DYNAMIC_MINOR, 1433 .name = "nvme-fabrics", 1434 .fops = &nvmf_dev_fops, 1435 }; 1436 1437 static int __init nvmf_init(void) 1438 { 1439 int ret; 1440 1441 nvmf_default_host = nvmf_host_default(); 1442 if (!nvmf_default_host) 1443 return -ENOMEM; 1444 1445 ret = class_register(&nvmf_class); 1446 if (ret) { 1447 pr_err("couldn't register class nvme-fabrics\n"); 1448 goto out_free_host; 1449 } 1450 1451 nvmf_device = 1452 device_create(&nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1453 if (IS_ERR(nvmf_device)) { 1454 pr_err("couldn't create nvme-fabrics device!\n"); 1455 ret = PTR_ERR(nvmf_device); 1456 goto out_destroy_class; 1457 } 1458 1459 ret = misc_register(&nvmf_misc); 1460 if (ret) { 1461 pr_err("couldn't register misc device: %d\n", ret); 1462 goto out_destroy_device; 1463 } 1464 1465 return 0; 1466 1467 out_destroy_device: 1468 device_destroy(&nvmf_class, MKDEV(0, 0)); 1469 out_destroy_class: 1470 class_unregister(&nvmf_class); 1471 out_free_host: 1472 nvmf_host_put(nvmf_default_host); 1473 return ret; 1474 } 1475 1476 static void __exit nvmf_exit(void) 1477 { 1478 misc_deregister(&nvmf_misc); 1479 device_destroy(&nvmf_class, MKDEV(0, 0)); 1480 class_unregister(&nvmf_class); 1481 nvmf_host_put(nvmf_default_host); 1482 1483 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1484 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1485 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1486 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1487 BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64); 1488 BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64); 1489 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1490 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8); 1491 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16); 1492 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16); 1493 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16); 1494 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16); 1495 } 1496 1497 MODULE_LICENSE("GPL v2"); 1498 MODULE_DESCRIPTION("NVMe host fabrics library"); 1499 1500 module_init(nvmf_init); 1501 module_exit(nvmf_exit); 1502